diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bartpho/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bartpho/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..79f8ce22c1f1475bb60ea888080ac9ef9d7cdaf3
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bartpho/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bartpho/__pycache__/tokenization_bartpho.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bartpho/__pycache__/tokenization_bartpho.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e12004479d10ba117e55500d8618bb3bacd18903
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bartpho/__pycache__/tokenization_bartpho.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..14cf8bb5879320c3838808bea5715ac06b046fd9
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py
@@ -0,0 +1,71 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available
+
+
+_import_structure = {"configuration_bert_generation": ["BertGenerationConfig"]}
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_bert_generation"] = ["BertGenerationTokenizer"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_bert_generation"] = [
+ "BertGenerationDecoder",
+ "BertGenerationEncoder",
+ "BertGenerationPreTrainedModel",
+ "load_tf_weights_in_bert_generation",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_bert_generation import BertGenerationConfig
+
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_bert_generation import BertGenerationTokenizer
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_bert_generation import (
+ BertGenerationDecoder,
+ BertGenerationEncoder,
+ BertGenerationPreTrainedModel,
+ load_tf_weights_in_bert_generation,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..627e1226612969e3d70b1fddaa49b4d53191202e
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..69c35b39fb6c9204f69c1cc309e99007aba80dc4
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3c1809cfa600fb59121f7eb656c94d791a273082
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6b717d677803eaa10fc1785deaeb399d5451ddb7
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py
new file mode 100644
index 0000000000000000000000000000000000000000..841aec5c0fb7acc3fb651aa213bf4cf2e1a6a581
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py
@@ -0,0 +1,124 @@
+# coding=utf-8
+# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" BertGeneration model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+
+
+class BertGenerationConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`BertGenerationPreTrainedModel`]. It is used to
+ instantiate a BertGeneration model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the BertGeneration
+ [google/bert_for_seq_generation_L-24_bbc_encoder](https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50358):
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`BertGeneration`].
+ hidden_size (`int`, *optional*, defaults to 1024):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 24):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 4096):
+ Dimensionality of the "intermediate" (often called feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ Padding token id.
+ bos_token_id (`int`, *optional*, defaults to 2):
+ Beginning of stream token id.
+ eos_token_id (`int`, *optional*, defaults to 1):
+ End of stream token id.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+
+ Examples:
+
+ ```python
+ >>> from transformers import BertGenerationConfig, BertGenerationEncoder
+
+ >>> # Initializing a BertGeneration config
+ >>> configuration = BertGenerationConfig()
+
+ >>> # Initializing a model (with random weights) from the config
+ >>> model = BertGenerationEncoder(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "bert-generation"
+
+ def __init__(
+ self,
+ vocab_size=50358,
+ hidden_size=1024,
+ num_hidden_layers=24,
+ num_attention_heads=16,
+ intermediate_size=4096,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=0,
+ bos_token_id=2,
+ eos_token_id=1,
+ position_embedding_type="absolute",
+ use_cache=True,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_cache = use_cache
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py
new file mode 100644
index 0000000000000000000000000000000000000000..b7250f6f7b926fc21102007ce34568d9276615f9
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py
@@ -0,0 +1,1008 @@
+# coding=utf-8
+# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch BERT model specific for generation."""
+
+import math
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_bert_generation import BertGenerationConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/bert_for_seq_generation_L-24_bbc_encoder"
+_CONFIG_FOR_DOC = "BertGenerationConfig"
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BertGeneration
+class BertGenerationSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->BertGeneration
+class BertGenerationSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BertGenerationModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BertGeneration
+class BertGenerationAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = BertGenerationSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = BertGenerationSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BertGeneration
+class BertGenerationIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BertGeneration
+class BertGenerationOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->BertGeneration
+class BertGenerationLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = BertGenerationAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = BertGenerationAttention(config, position_embedding_type="absolute")
+ self.intermediate = BertGenerationIntermediate(config)
+ self.output = BertGenerationOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->BertGeneration
+class BertEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([BertGenerationLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+def load_tf_weights_in_bert_generation(
+ model, tf_hub_path, model_class, is_encoder_named_decoder=False, is_encoder=False
+):
+ try:
+ import numpy as np
+ import tensorflow.compat.v1 as tf
+ import tensorflow_hub as hub
+ import tensorflow_text # noqa: F401
+
+ tf.disable_eager_execution()
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_model = hub.Module(tf_hub_path)
+ init = tf.global_variables_initializer()
+ with tf.Session() as sess:
+ init.run()
+ all_variables = tf_model.variable_map
+ keep_track_variables = all_variables.copy()
+ for key in list(all_variables.keys()):
+ if "global" in key:
+ logger.info(f"Skipping {key}...")
+ continue
+ if not is_encoder:
+ model_pointer = getattr(model, model_class)
+ else:
+ model_pointer = model
+ is_embedding = False
+ logger.info(f"Trying to match {key}...")
+ # remove start_string = "module/bert/"
+ sub_layers = key.split("/")[2:]
+ if is_encoder_named_decoder and sub_layers[0] == "encoder":
+ logger.info(f"Skipping encoder layer {key} for decoder")
+ continue
+ if is_encoder and sub_layers[0] == "decoder":
+ logger.info(f"Skipping decoder layer {key} for encoder")
+ continue
+ for i, sub_layer in enumerate(sub_layers):
+ if sub_layer == "embeddings":
+ is_embedding = True
+ elif sub_layer == "LayerNorm":
+ is_embedding = False
+ if "layer" in sub_layer:
+ model_pointer = model_pointer.layer[int(sub_layer.split("_")[-1])]
+ elif sub_layer in ["kernel", "gamma"]:
+ model_pointer = model_pointer.weight
+ elif sub_layer == "beta":
+ model_pointer = model_pointer.bias
+ elif sub_layer == "encdec":
+ model_pointer = model_pointer.crossattention.self
+ elif sub_layer == "encdec_output":
+ model_pointer = model_pointer.crossattention.output
+ elif is_encoder_named_decoder and sub_layer == "decoder":
+ model_pointer = model_pointer.encoder
+ else:
+ if sub_layer == "attention" and "encdec" in sub_layers[i + 1]:
+ continue
+ try:
+ model_pointer = getattr(model_pointer, sub_layer)
+ except AttributeError:
+ logger.info(f"Skipping to initialize {key} at {sub_layer}...")
+ raise AttributeError
+
+ array = np.asarray(sess.run(all_variables[key]))
+ if not is_embedding:
+ logger.info(f"Transposing numpy weight of shape {array.shape} for {key}")
+ array = np.transpose(array)
+ else:
+ model_pointer = model_pointer.weight
+
+ if model_pointer.shape != array.shape:
+ raise ValueError(f"Pointer shape {model_pointer.shape} and array shape {array.shape} mismatched")
+ logger.info(f"Initialize PyTorch weight {key}")
+
+ model_pointer.data = torch.from_numpy(array.astype(np.float32))
+ keep_track_variables.pop(key, None)
+
+ logger.info(f"Weights not copied to PyTorch model: {', '.join(keep_track_variables.keys())}")
+ return model
+
+
+class BertGenerationEmbeddings(nn.Module):
+ """Construct the embeddings from word and position embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+
+ def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ position_embeddings = self.position_embeddings(position_ids)
+
+ embeddings = inputs_embeds + position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class BertGenerationPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = BertGenerationConfig
+ base_model_prefix = "bert"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+BERT_GENERATION_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`BertGenerationConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BERT_GENERATION_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare BertGeneration model transformer outputting raw hidden-states without any specific head on top.",
+ BERT_GENERATION_START_DOCSTRING,
+)
+class BertGenerationEncoder(BertGenerationPreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+
+ This model should be used when leveraging Bert or Roberta checkpoints for the [`EncoderDecoderModel`] class as
+ described in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
+ by Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
+
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+ """
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = BertGenerationEmbeddings(config)
+ self.encoder = BertEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: `1` for
+ tokens that are NOT MASKED, `0` for MASKED tokens.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask = None
+ if not use_cache:
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+class BertGenerationOnlyLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ logits = self.decoder(hidden_states)
+ return logits
+
+ def _tie_weights(self):
+ # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
+ self.bias = self.decoder.bias
+
+
+@add_start_docstrings(
+ """BertGeneration Model with a `language modeling` head on top for CLM fine-tuning.""",
+ BERT_GENERATION_START_DOCSTRING,
+)
+class BertGenerationDecoder(BertGenerationPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `BertGenerationDecoder` as a standalone, add `is_decoder=True.`")
+
+ self.bert = BertGenerationEncoder(config)
+ self.lm_head = BertGenerationOnlyLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
+ ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, BertGenerationDecoder, BertGenerationConfig
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
+ >>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
+ >>> config.is_decoder = True
+ >>> model = BertGenerationDecoder.from_pretrained(
+ ... "google/bert_for_seq_generation_L-24_bbc_encoder", config=config
+ ... )
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_token_type_ids=False, return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ if labels is not None:
+ use_cache = False
+
+ outputs = self.bert(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ lm_loss = None
+ if labels is not None:
+ # we are doing next-token prediction; shift prediction scores and input ids by one
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
+ labels = labels[:, 1:].contiguous()
+ loss_fct = CrossEntropyLoss()
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[1:]
+ return ((lm_loss,) + output) if lm_loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=lm_loss,
+ logits=prediction_scores,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_shape)
+
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
+
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py
new file mode 100644
index 0000000000000000000000000000000000000000..772eb123c398884472862d41ab3f1cb580f99bb9
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py
@@ -0,0 +1,173 @@
+# coding=utf-8
+# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization class for model BertGeneration."""
+
+
+import os
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from ...tokenization_utils import PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
+
+
+class BertGenerationTokenizer(PreTrainedTokenizer):
+ """
+ Construct a BertGeneration tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The begin of sequence token.
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ sep_token (`str`, *optional*, defaults to `"<::::>"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ prefix_tokens: List[int] = []
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ bos_token="",
+ eos_token="",
+ unk_token="",
+ pad_token="",
+ sep_token="<::::>",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ self.vocab_file = vocab_file
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(vocab_file)
+
+ # Add extra_ids to the special token list
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ sep_token=sep_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ return self.sp_model.get_piece_size()
+
+ def get_vocab(self):
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ def _tokenize(self, text: str) -> List[str]:
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.sp_model.piece_to_id(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ token = self.sp_model.IdToPiece(index)
+ return token
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ current_sub_tokens = []
+ out_string = ""
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string.strip()
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b08d55836488a01a3a9c1d180b23850d300113d1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__init__.py
@@ -0,0 +1,77 @@
+# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
+
+
+_import_structure = {
+ "configuration_bros": ["BROS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BrosConfig"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["processing_bros"] = ["BrosProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_bros"] = [
+ "BROS_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "BrosPreTrainedModel",
+ "BrosModel",
+ "BrosForTokenClassification",
+ "BrosSpadeEEForTokenClassification",
+ "BrosSpadeELForTokenClassification",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_bros import BROS_PRETRAINED_CONFIG_ARCHIVE_MAP, BrosConfig
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .processing_bros import BrosProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_bros import (
+ BROS_PRETRAINED_MODEL_ARCHIVE_LIST,
+ BrosForTokenClassification,
+ BrosModel,
+ BrosPreTrainedModel,
+ BrosSpadeEEForTokenClassification,
+ BrosSpadeELForTokenClassification,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9e5fa1cc6d12758cb9fcaa45b0b754b398234883
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/configuration_bros.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/configuration_bros.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..128d8f766f3e54a0f3d3226e341b6c464277ebd5
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/configuration_bros.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/convert_bros_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/convert_bros_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c7265d718dac259e146a3b972f058e34a0904eca
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/convert_bros_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/modeling_bros.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/modeling_bros.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d222d5a578f437c8121ffda73dcd0ce8bf599a89
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/modeling_bros.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3e190e38efb9a995494add303da1cad52f59fdc0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/configuration_bros.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/configuration_bros.py
new file mode 100644
index 0000000000000000000000000000000000000000..547bbf39ad2ccd8cefcdac47527d48943a35ecba
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/configuration_bros.py
@@ -0,0 +1,138 @@
+# coding=utf-8
+# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Bros model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import BROS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class BrosConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`BrosModel`] or a [`TFBrosModel`]. It is used to
+ instantiate a Bros model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the Bros
+ [jinho8345/bros-base-uncased](https://huggingface.co/jinho8345/bros-base-uncased) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the Bros model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`BrosModel`] or [`TFBrosModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`BrosModel`] or [`TFBrosModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ The index of the padding token in the token vocabulary.
+ dim_bbox (`int`, *optional*, defaults to 8):
+ The dimension of the bounding box coordinates. (x0, y1, x1, y0, x1, y1, x0, y1)
+ bbox_scale (`float`, *optional*, defaults to 100.0):
+ The scale factor of the bounding box coordinates.
+ n_relations (`int`, *optional*, defaults to 1):
+ The number of relations for SpadeEE(entity extraction), SpadeEL(entity linking) head.
+ classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the classifier head.
+
+
+ Examples:
+
+ ```python
+ >>> from transformers import BrosConfig, BrosModel
+
+ >>> # Initializing a BROS jinho8345/bros-base-uncased style configuration
+ >>> configuration = BrosConfig()
+
+ >>> # Initializing a model from the jinho8345/bros-base-uncased style configuration
+ >>> model = BrosModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "bros"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=0,
+ dim_bbox=8,
+ bbox_scale=100.0,
+ n_relations=1,
+ classifier_dropout_prob=0.1,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_size=vocab_size,
+ hidden_size=hidden_size,
+ num_hidden_layers=num_hidden_layers,
+ num_attention_heads=num_attention_heads,
+ intermediate_size=intermediate_size,
+ hidden_act=hidden_act,
+ hidden_dropout_prob=hidden_dropout_prob,
+ attention_probs_dropout_prob=attention_probs_dropout_prob,
+ max_position_embeddings=max_position_embeddings,
+ type_vocab_size=type_vocab_size,
+ initializer_range=initializer_range,
+ layer_norm_eps=layer_norm_eps,
+ pad_token_id=pad_token_id,
+ **kwargs,
+ )
+
+ self.dim_bbox = dim_bbox
+ self.bbox_scale = bbox_scale
+ self.n_relations = n_relations
+ self.dim_bbox_sinusoid_emb_2d = self.hidden_size // 4
+ self.dim_bbox_sinusoid_emb_1d = self.dim_bbox_sinusoid_emb_2d // self.dim_bbox
+ self.dim_bbox_projection = self.hidden_size // self.num_attention_heads
+ self.classifier_dropout_prob = classifier_dropout_prob
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/convert_bros_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/convert_bros_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..c0984f2c74b20cc61a02f616815d59b79d5a2afb
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/convert_bros_to_pytorch.py
@@ -0,0 +1,145 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Bros checkpoints."""
+
+import argparse
+
+import bros # original repo
+import torch
+
+from transformers import BrosConfig, BrosModel, BrosProcessor
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+def get_configs(model_name):
+ bros_config = BrosConfig.from_pretrained(model_name)
+ return bros_config
+
+
+def remove_ignore_keys_(state_dict):
+ ignore_keys = [
+ "embeddings.bbox_sinusoid_emb.inv_freq",
+ ]
+ for k in ignore_keys:
+ state_dict.pop(k, None)
+
+
+def rename_key(name):
+ if name == "embeddings.bbox_projection.weight":
+ name = "bbox_embeddings.bbox_projection.weight"
+
+ if name == "embeddings.bbox_sinusoid_emb.x_pos_emb.inv_freq":
+ name = "bbox_embeddings.bbox_sinusoid_emb.x_pos_emb.inv_freq"
+
+ if name == "embeddings.bbox_sinusoid_emb.y_pos_emb.inv_freq":
+ name = "bbox_embeddings.bbox_sinusoid_emb.y_pos_emb.inv_freq"
+
+ return name
+
+
+def convert_state_dict(orig_state_dict, model):
+ # rename keys
+ for key in orig_state_dict.copy().keys():
+ val = orig_state_dict.pop(key)
+ orig_state_dict[rename_key(key)] = val
+
+ # remove ignore keys
+ remove_ignore_keys_(orig_state_dict)
+
+ return orig_state_dict
+
+
+def convert_bros_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False):
+ # load original model
+ original_model = bros.BrosModel.from_pretrained(model_name).eval()
+
+ # load HuggingFace Model
+ bros_config = get_configs(model_name)
+ model = BrosModel.from_pretrained(model_name, config=bros_config)
+ model.eval()
+
+ state_dict = original_model.state_dict()
+ new_state_dict = convert_state_dict(state_dict, model)
+ model.load_state_dict(new_state_dict)
+
+ # verify results
+
+ # original BROS model require 4 points (8 float values) for each bbox, prepare bbox with [batch_size, seq_len, 8] shape
+ bbox = torch.tensor(
+ [
+ [
+ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
+ [0.4396, 0.6720, 0.4659, 0.6720, 0.4659, 0.6850, 0.4396, 0.6850],
+ [0.4698, 0.6720, 0.4843, 0.6720, 0.4843, 0.6850, 0.4698, 0.6850],
+ [0.4698, 0.6720, 0.4843, 0.6720, 0.4843, 0.6850, 0.4698, 0.6850],
+ [0.2047, 0.6870, 0.2730, 0.6870, 0.2730, 0.7000, 0.2047, 0.7000],
+ [0.2047, 0.6870, 0.2730, 0.6870, 0.2730, 0.7000, 0.2047, 0.7000],
+ [1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
+ ]
+ ]
+ )
+
+ processor = BrosProcessor.from_pretrained(model_name)
+
+ encoding = processor("His name is Rocco.", return_tensors="pt")
+ encoding["bbox"] = bbox
+
+ original_hidden_states = original_model(**encoding).last_hidden_state
+ # pixel_values = processor(image, return_tensors="pt").pixel_values
+
+ last_hidden_states = model(**encoding).last_hidden_state
+
+ assert torch.allclose(original_hidden_states, last_hidden_states, atol=1e-4)
+
+ if pytorch_dump_folder_path is not None:
+ print(f"Saving model and processor to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ processor.save_pretrained(pytorch_dump_folder_path)
+
+ if push_to_hub:
+ model.push_to_hub("jinho8345/" + model_name.split("/")[-1], commit_message="Update model")
+ processor.push_to_hub("jinho8345/" + model_name.split("/")[-1], commit_message="Update model")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+
+ # Required parameters
+ parser.add_argument(
+ "--model_name",
+ default="jinho8345/bros-base-uncased",
+ required=False,
+ type=str,
+ help="Name of the original model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path",
+ default=None,
+ required=False,
+ type=str,
+ help="Path to the output PyTorch model directory.",
+ )
+ parser.add_argument(
+ "--push_to_hub",
+ action="store_true",
+ help="Whether or not to push the converted model and processor to the 🤗 hub.",
+ )
+
+ args = parser.parse_args()
+ convert_bros_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/modeling_bros.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/modeling_bros.py
new file mode 100644
index 0000000000000000000000000000000000000000..32f0338f0ec061754ec596ec3caafda3643cd3f8
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/modeling_bros.py
@@ -0,0 +1,1318 @@
+# coding=utf-8
+# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Bros model."""
+
+
+import math
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_bros import BrosConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "jinho8345/bros-base-uncased"
+_CONFIG_FOR_DOC = "BrosConfig"
+
+
+from ..deprecated._archive_maps import BROS_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+BROS_START_DOCSTRING = r"""
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`BrosConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BROS_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`BrosProcessor`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ bbox ('torch.FloatTensor' of shape '(batch_size, num_boxes, 4)'):
+ Bounding box coordinates for each token in the input sequence. Each bounding box is a list of four values
+ (x1, y1, x2, y2), where (x1, y1) is the top left corner, and (x2, y2) is the bottom right corner of the
+ bounding box.
+
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ bbox_first_token_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to indicate the first token of each bounding box. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@dataclass
+class BrosSpadeOutput(ModelOutput):
+ """
+ Base class for outputs of token classification models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
+ Classification loss.
+ initial_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
+ Classification scores for entity initial tokens (before SoftMax).
+ subsequent_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length+1)`):
+ Classification scores for entity sequence tokens (before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ initial_token_logits: torch.FloatTensor = None
+ subsequent_token_logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+class BrosPositionalEmbedding1D(nn.Module):
+ # Reference: https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py#L15
+
+ def __init__(self, config):
+ super(BrosPositionalEmbedding1D, self).__init__()
+
+ self.dim_bbox_sinusoid_emb_1d = config.dim_bbox_sinusoid_emb_1d
+
+ inv_freq = 1 / (
+ 10000 ** (torch.arange(0.0, self.dim_bbox_sinusoid_emb_1d, 2.0) / self.dim_bbox_sinusoid_emb_1d)
+ )
+ self.register_buffer("inv_freq", inv_freq)
+
+ def forward(self, pos_seq: torch.Tensor) -> torch.Tensor:
+ seq_size = pos_seq.size()
+ b1, b2, b3 = seq_size
+ sinusoid_inp = pos_seq.view(b1, b2, b3, 1) * self.inv_freq.view(1, 1, 1, self.dim_bbox_sinusoid_emb_1d // 2)
+ pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
+ return pos_emb
+
+
+class BrosPositionalEmbedding2D(nn.Module):
+ def __init__(self, config):
+ super(BrosPositionalEmbedding2D, self).__init__()
+
+ self.dim_bbox = config.dim_bbox
+ self.x_pos_emb = BrosPositionalEmbedding1D(config)
+ self.y_pos_emb = BrosPositionalEmbedding1D(config)
+
+ def forward(self, bbox: torch.Tensor) -> torch.Tensor:
+ stack = []
+ for i in range(self.dim_bbox):
+ if i % 2 == 0:
+ stack.append(self.x_pos_emb(bbox[..., i]))
+ else:
+ stack.append(self.y_pos_emb(bbox[..., i]))
+ bbox_pos_emb = torch.cat(stack, dim=-1)
+ return bbox_pos_emb
+
+
+class BrosBboxEmbeddings(nn.Module):
+ def __init__(self, config):
+ super(BrosBboxEmbeddings, self).__init__()
+ self.bbox_sinusoid_emb = BrosPositionalEmbedding2D(config)
+ self.bbox_projection = nn.Linear(config.dim_bbox_sinusoid_emb_2d, config.dim_bbox_projection, bias=False)
+
+ def forward(self, bbox: torch.Tensor):
+ bbox_t = bbox.transpose(0, 1)
+ bbox_pos = bbox_t[None, :, :, :] - bbox_t[:, None, :, :]
+ bbox_pos_emb = self.bbox_sinusoid_emb(bbox_pos)
+ bbox_pos_emb = self.bbox_projection(bbox_pos_emb)
+
+ return bbox_pos_emb
+
+
+class BrosTextEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
+ self.register_buffer(
+ "token_type_ids",
+ torch.zeros(
+ self.position_ids.size(),
+ dtype=torch.long,
+ device=self.position_ids.device,
+ ),
+ persistent=False,
+ )
+
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ past_key_values_length: int = 0,
+ ) -> torch.Tensor:
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class BrosSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor):
+ new_x_shape = x.size()[:-1] + (
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ bbox_pos_emb: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[torch.Tensor] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ seq_length = hidden_states.size()[1]
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ # bbox positional encoding
+ batch_size, n_head, seq_length, d_head = query_layer.shape
+ bbox_pos_emb = bbox_pos_emb.view(seq_length, seq_length, batch_size, d_head)
+ bbox_pos_emb = bbox_pos_emb.permute([2, 0, 1, 3])
+ bbox_pos_scores = torch.einsum("bnid,bijd->bnij", (query_layer, bbox_pos_emb))
+
+ attention_scores = attention_scores + bbox_pos_scores
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BrosModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Bros
+class BrosSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class BrosAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = BrosSelfAttention(config)
+ self.output = BrosSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads,
+ self.self.num_attention_heads,
+ self.self.attention_head_size,
+ self.pruned_heads,
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ bbox_pos_emb: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states=hidden_states,
+ bbox_pos_emb=bbox_pos_emb,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Bros
+class BrosIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+class BrosOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class BrosLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = BrosAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise Exception(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = BrosAttention(config)
+ self.intermediate = BrosIntermediate(config)
+ self.output = BrosOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ bbox_pos_emb: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ bbox_pos_emb=bbox_pos_emb,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if hasattr(self, "crossattention"):
+ raise Exception(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk,
+ self.chunk_size_feed_forward,
+ self.seq_len_dim,
+ attention_output,
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class BrosEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([BrosLayer(config) for _ in range(config.num_hidden_layers)])
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ bbox_pos_emb: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if getattr(self.config, "gradient_checkpointing", False) and self.training:
+ if use_cache:
+ logger.warning(
+ "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
+ "`use_cache=False`..."
+ )
+ use_cache = False
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ bbox_pos_emb,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states=hidden_states,
+ bbox_pos_emb=bbox_pos_emb,
+ attention_mask=attention_mask,
+ head_mask=layer_head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Bros
+class BrosPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class BrosRelationExtractor(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.n_relations = config.n_relations
+ self.backbone_hidden_size = config.hidden_size
+ self.head_hidden_size = config.hidden_size
+ self.classifier_dropout_prob = config.classifier_dropout_prob
+
+ self.drop = nn.Dropout(self.classifier_dropout_prob)
+ self.query = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size)
+
+ self.key = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size)
+
+ self.dummy_node = nn.Parameter(torch.zeros(1, self.backbone_hidden_size))
+
+ def forward(self, query_layer: torch.Tensor, key_layer: torch.Tensor):
+ query_layer = self.query(self.drop(query_layer))
+
+ dummy_vec = self.dummy_node.unsqueeze(0).repeat(1, key_layer.size(1), 1)
+ key_layer = torch.cat([key_layer, dummy_vec], axis=0)
+ key_layer = self.key(self.drop(key_layer))
+
+ query_layer = query_layer.view(
+ query_layer.size(0), query_layer.size(1), self.n_relations, self.head_hidden_size
+ )
+ key_layer = key_layer.view(key_layer.size(0), key_layer.size(1), self.n_relations, self.head_hidden_size)
+
+ relation_score = torch.matmul(
+ query_layer.permute(2, 1, 0, 3), key_layer.permute(2, 1, 3, 0)
+ ) # equivalent to torch.einsum("ibnd,jbnd->nbij", (query_layer, key_layer))
+
+ return relation_score
+
+
+class BrosPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = BrosConfig
+ base_model_prefix = "bros"
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+@add_start_docstrings(
+ "The bare Bros Model transformer outputting raw hidden-states without any specific head on top.",
+ BROS_START_DOCSTRING,
+)
+class BrosModel(BrosPreTrainedModel):
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = BrosTextEmbeddings(config)
+ self.bbox_embeddings = BrosBboxEmbeddings(config)
+ self.encoder = BrosEncoder(config)
+
+ self.pooler = BrosPooler(config) if add_pooling_layer else None
+
+ self.init_weights()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ bbox: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import torch
+ >>> from transformers import BrosProcessor, BrosModel
+
+ >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> model = BrosModel.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
+ >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
+ >>> encoding["bbox"] = bbox
+
+ >>> outputs = model(**encoding)
+ >>> last_hidden_states = outputs.last_hidden_state
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if bbox is None:
+ raise ValueError("You have to specify bbox")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+
+ # if bbox has 2 points (4 float tensors) per token, convert it to 4 points (8 float tensors) per token
+ if bbox.shape[-1] == 4:
+ bbox = bbox[:, :, [0, 1, 2, 1, 2, 3, 0, 3]]
+ scaled_bbox = bbox * self.config.bbox_scale
+ bbox_position_embeddings = self.bbox_embeddings(scaled_bbox)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ bbox_pos_emb=bbox_position_embeddings,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Bros Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ BROS_START_DOCSTRING,
+)
+class BrosForTokenClassification(BrosPreTrainedModel):
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.bros = BrosModel(config)
+ classifier_dropout = (
+ config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ self.init_weights()
+
+ @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ bbox: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ bbox_first_token_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import torch
+ >>> from transformers import BrosProcessor, BrosForTokenClassification
+
+ >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> model = BrosForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
+ >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
+ >>> encoding["bbox"] = bbox
+
+ >>> outputs = model(**encoding)
+ ```"""
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bros(
+ input_ids,
+ bbox=bbox,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ if bbox_first_token_mask is not None:
+ bbox_first_token_mask = bbox_first_token_mask.view(-1)
+ loss = loss_fct(
+ logits.view(-1, self.num_labels)[bbox_first_token_mask], labels.view(-1)[bbox_first_token_mask]
+ )
+ else:
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Bros Model with a token classification head on top (initial_token_layers and subsequent_token_layer on top of the
+ hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. The initial_token_classifier is used to
+ predict the first token of each entity, and the subsequent_token_classifier is used to predict the subsequent
+ tokens within an entity. Compared to BrosForTokenClassification, this model is more robust to serialization errors
+ since it predicts next token from one token.
+ """,
+ BROS_START_DOCSTRING,
+)
+class BrosSpadeEEForTokenClassification(BrosPreTrainedModel):
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+ self.num_labels = config.num_labels
+ self.n_relations = config.n_relations
+ self.backbone_hidden_size = config.hidden_size
+
+ self.bros = BrosModel(config)
+ classifier_dropout = (
+ config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob
+ )
+
+ # Initial token classification for Entity Extraction (NER)
+ self.initial_token_classifier = nn.Sequential(
+ nn.Dropout(classifier_dropout),
+ nn.Linear(config.hidden_size, config.hidden_size),
+ nn.Dropout(classifier_dropout),
+ nn.Linear(config.hidden_size, config.num_labels),
+ )
+
+ # Subsequent token classification for Entity Extraction (NER)
+ self.subsequent_token_classifier = BrosRelationExtractor(config)
+
+ self.init_weights()
+
+ @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=BrosSpadeOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ bbox: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ bbox_first_token_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ initial_token_labels: Optional[torch.Tensor] = None,
+ subsequent_token_labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BrosSpadeOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import torch
+ >>> from transformers import BrosProcessor, BrosSpadeEEForTokenClassification
+
+ >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> model = BrosSpadeEEForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
+ >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
+ >>> encoding["bbox"] = bbox
+
+ >>> outputs = model(**encoding)
+ ```"""
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bros(
+ input_ids=input_ids,
+ bbox=bbox,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_states = outputs[0]
+ last_hidden_states = last_hidden_states.transpose(0, 1).contiguous()
+ initial_token_logits = self.initial_token_classifier(last_hidden_states).transpose(0, 1).contiguous()
+ subsequent_token_logits = self.subsequent_token_classifier(last_hidden_states, last_hidden_states).squeeze(0)
+
+ # make subsequent token (sequence token classification) mask
+ inv_attention_mask = 1 - attention_mask
+ batch_size, max_seq_length = inv_attention_mask.shape
+ device = inv_attention_mask.device
+ invalid_token_mask = torch.cat([inv_attention_mask, torch.zeros([batch_size, 1]).to(device)], axis=1).bool()
+ subsequent_token_logits = subsequent_token_logits.masked_fill(
+ invalid_token_mask[:, None, :], torch.finfo(subsequent_token_logits.dtype).min
+ )
+ self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool()
+ subsequent_token_logits = subsequent_token_logits.masked_fill(
+ self_token_mask[None, :, :], torch.finfo(subsequent_token_logits.dtype).min
+ )
+ subsequent_token_mask = attention_mask.view(-1).bool()
+
+ loss = None
+ if initial_token_labels is not None and subsequent_token_labels is not None:
+ loss_fct = CrossEntropyLoss()
+
+ # get initial token loss
+ initial_token_labels = initial_token_labels.view(-1)
+ if bbox_first_token_mask is not None:
+ bbox_first_token_mask = bbox_first_token_mask.view(-1)
+ initial_token_loss = loss_fct(
+ initial_token_logits.view(-1, self.num_labels)[bbox_first_token_mask],
+ initial_token_labels[bbox_first_token_mask],
+ )
+ else:
+ initial_token_loss = loss_fct(initial_token_logits.view(-1, self.num_labels), initial_token_labels)
+
+ subsequent_token_labels = subsequent_token_labels.view(-1)
+ subsequent_token_loss = loss_fct(
+ subsequent_token_logits.view(-1, max_seq_length + 1)[subsequent_token_mask],
+ subsequent_token_labels[subsequent_token_mask],
+ )
+
+ loss = initial_token_loss + subsequent_token_loss
+
+ if not return_dict:
+ output = (initial_token_logits, subsequent_token_logits) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return BrosSpadeOutput(
+ loss=loss,
+ initial_token_logits=initial_token_logits,
+ subsequent_token_logits=subsequent_token_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Bros Model with a token classification head on top (a entity_linker layer on top of the hidden-states output) e.g.
+ for Entity-Linking. The entity_linker is used to predict intra-entity links (one entity to another entity).
+ """,
+ BROS_START_DOCSTRING,
+)
+class BrosSpadeELForTokenClassification(BrosPreTrainedModel):
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+ self.num_labels = config.num_labels
+ self.n_relations = config.n_relations
+ self.backbone_hidden_size = config.hidden_size
+
+ self.bros = BrosModel(config)
+ (config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob)
+
+ self.entity_linker = BrosRelationExtractor(config)
+
+ self.init_weights()
+
+ @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ bbox: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ bbox_first_token_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import torch
+ >>> from transformers import BrosProcessor, BrosSpadeELForTokenClassification
+
+ >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> model = BrosSpadeELForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
+ >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
+ >>> encoding["bbox"] = bbox
+
+ >>> outputs = model(**encoding)
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bros(
+ input_ids=input_ids,
+ bbox=bbox,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_states = outputs[0]
+ last_hidden_states = last_hidden_states.transpose(0, 1).contiguous()
+
+ logits = self.entity_linker(last_hidden_states, last_hidden_states).squeeze(0)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+
+ batch_size, max_seq_length = attention_mask.shape
+ device = attention_mask.device
+
+ self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool()
+
+ mask = bbox_first_token_mask.view(-1)
+ bbox_first_token_mask = torch.cat(
+ [
+ ~bbox_first_token_mask,
+ torch.zeros([batch_size, 1], dtype=torch.bool).to(device),
+ ],
+ axis=1,
+ )
+ logits = logits.masked_fill(bbox_first_token_mask[:, None, :], torch.finfo(logits.dtype).min)
+ logits = logits.masked_fill(self_token_mask[None, :, :], torch.finfo(logits.dtype).min)
+
+ loss = loss_fct(logits.view(-1, max_seq_length + 1)[mask], labels.view(-1)[mask])
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/processing_bros.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/processing_bros.py
new file mode 100644
index 0000000000000000000000000000000000000000..9c2e0642d8cdc4625da7d111457f7830fb4b75df
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bros/processing_bros.py
@@ -0,0 +1,109 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Processor class for Bros.
+"""
+
+from typing import List, Optional, Union
+
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
+from ...utils import TensorType
+
+
+class BrosProcessor(ProcessorMixin):
+ r"""
+ Constructs a Bros processor which wraps a BERT tokenizer.
+
+ [`BrosProcessor`] offers all the functionalities of [`BertTokenizerFast`]. See the docstring of
+ [`~BrosProcessor.__call__`] and [`~BrosProcessor.decode`] for more information.
+
+ Args:
+ tokenizer (`BertTokenizerFast`, *optional*):
+ An instance of ['BertTokenizerFast`]. The tokenizer is a required input.
+ """
+
+ attributes = ["tokenizer"]
+ tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
+
+ def __init__(self, tokenizer=None, **kwargs):
+ if tokenizer is None:
+ raise ValueError("You need to specify a `tokenizer`.")
+
+ super().__init__(tokenizer)
+
+ def __call__(
+ self,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ This method uses [`BertTokenizerFast.__call__`] to prepare text for the model.
+
+ Please refer to the docstring of the above two methods for more information.
+ """
+ encoding = self.tokenizer(
+ text=text,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+
+ return encoding
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
+ the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ return list(dict.fromkeys(tokenizer_input_names))
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a560265f4bfcb8d43f88d2b3cd55f751409016ec
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__init__.py
@@ -0,0 +1,75 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
+
+
+_import_structure = {
+ "configuration_deformable_detr": ["DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeformableDetrConfig"],
+}
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["feature_extraction_deformable_detr"] = ["DeformableDetrFeatureExtractor"]
+ _import_structure["image_processing_deformable_detr"] = ["DeformableDetrImageProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_deformable_detr"] = [
+ "DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "DeformableDetrForObjectDetection",
+ "DeformableDetrModel",
+ "DeformableDetrPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_deformable_detr import DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DeformableDetrConfig
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .feature_extraction_deformable_detr import DeformableDetrFeatureExtractor
+ from .image_processing_deformable_detr import DeformableDetrImageProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_deformable_detr import (
+ DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
+ DeformableDetrForObjectDetection,
+ DeformableDetrModel,
+ DeformableDetrPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b4bbc3ab7fe712de28e1567940029658d5b6b925
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/configuration_deformable_detr.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/configuration_deformable_detr.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b511eb6d87d6fbc9de41b2585be66c84ba940510
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/configuration_deformable_detr.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/convert_deformable_detr_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/convert_deformable_detr_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..afeecc1fa3f621cdc62a88d1e236e0804fd4e22d
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/convert_deformable_detr_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/feature_extraction_deformable_detr.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/feature_extraction_deformable_detr.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..64c1dbfa99ce3331b80bc7798ce093121a5ba90f
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/feature_extraction_deformable_detr.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/image_processing_deformable_detr.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/image_processing_deformable_detr.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..55dcd5d0157d30aadb7b06e5b157947d0b58be41
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/image_processing_deformable_detr.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/load_custom.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/load_custom.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..700eedacf8ab441d919b9f7134ae1f3b6b2b5929
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/load_custom.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/modeling_deformable_detr.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/modeling_deformable_detr.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0cd301ead5d745a1818fd5842e3b51c3a28afa12
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/__pycache__/modeling_deformable_detr.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/configuration_deformable_detr.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/configuration_deformable_detr.py
new file mode 100644
index 0000000000000000000000000000000000000000..6d32f6220df5868a7d7aca620444306f5ad33ba5
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/configuration_deformable_detr.py
@@ -0,0 +1,277 @@
+# coding=utf-8
+# Copyright 2022 SenseTime and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Deformable DETR model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+from ..auto import CONFIG_MAPPING
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class DeformableDetrConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`DeformableDetrModel`]. It is used to instantiate
+ a Deformable DETR model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the Deformable DETR
+ [SenseTime/deformable-detr](https://huggingface.co/SenseTime/deformable-detr) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ use_timm_backbone (`bool`, *optional*, defaults to `True`):
+ Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
+ API.
+ backbone_config (`PretrainedConfig` or `dict`, *optional*):
+ The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
+ case it will default to `ResNetConfig()`.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ num_queries (`int`, *optional*, defaults to 300):
+ Number of object queries, i.e. detection slots. This is the maximal number of objects
+ [`DeformableDetrModel`] can detect in a single image. In case `two_stage` is set to `True`, we use
+ `two_stage_num_proposals` instead.
+ d_model (`int`, *optional*, defaults to 256):
+ Dimension of the layers.
+ encoder_layers (`int`, *optional*, defaults to 6):
+ Number of encoder layers.
+ decoder_layers (`int`, *optional*, defaults to 6):
+ Number of decoder layers.
+ encoder_attention_heads (`int`, *optional*, defaults to 8):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ decoder_attention_heads (`int`, *optional*, defaults to 8):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ decoder_ffn_dim (`int`, *optional*, defaults to 1024):
+ Dimension of the "intermediate" (often named feed-forward) layer in decoder.
+ encoder_ffn_dim (`int`, *optional*, defaults to 1024):
+ Dimension of the "intermediate" (often named feed-forward) layer in decoder.
+ activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ activation_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for activations inside the fully connected layer.
+ init_std (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ init_xavier_std (`float`, *optional*, defaults to 1):
+ The scaling factor used for the Xavier initialization gain in the HM Attention map module.
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ auxiliary_loss (`bool`, *optional*, defaults to `False`):
+ Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
+ position_embedding_type (`str`, *optional*, defaults to `"sine"`):
+ Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
+ backbone (`str`, *optional*, defaults to `"resnet50"`):
+ Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
+ will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
+ is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
+ use_pretrained_backbone (`bool`, *optional*, defaults to `True`):
+ Whether to use pretrained weights for the backbone.
+ backbone_kwargs (`dict`, *optional*):
+ Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
+ e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
+ dilation (`bool`, *optional*, defaults to `False`):
+ Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
+ `use_timm_backbone` = `True`.
+ class_cost (`float`, *optional*, defaults to 1):
+ Relative weight of the classification error in the Hungarian matching cost.
+ bbox_cost (`float`, *optional*, defaults to 5):
+ Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
+ giou_cost (`float`, *optional*, defaults to 2):
+ Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
+ mask_loss_coefficient (`float`, *optional*, defaults to 1):
+ Relative weight of the Focal loss in the panoptic segmentation loss.
+ dice_loss_coefficient (`float`, *optional*, defaults to 1):
+ Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
+ bbox_loss_coefficient (`float`, *optional*, defaults to 5):
+ Relative weight of the L1 bounding box loss in the object detection loss.
+ giou_loss_coefficient (`float`, *optional*, defaults to 2):
+ Relative weight of the generalized IoU loss in the object detection loss.
+ eos_coefficient (`float`, *optional*, defaults to 0.1):
+ Relative classification weight of the 'no-object' class in the object detection loss.
+ num_feature_levels (`int`, *optional*, defaults to 4):
+ The number of input feature levels.
+ encoder_n_points (`int`, *optional*, defaults to 4):
+ The number of sampled keys in each feature level for each attention head in the encoder.
+ decoder_n_points (`int`, *optional*, defaults to 4):
+ The number of sampled keys in each feature level for each attention head in the decoder.
+ two_stage (`bool`, *optional*, defaults to `False`):
+ Whether to apply a two-stage deformable DETR, where the region proposals are also generated by a variant of
+ Deformable DETR, which are further fed into the decoder for iterative bounding box refinement.
+ two_stage_num_proposals (`int`, *optional*, defaults to 300):
+ The number of region proposals to be generated, in case `two_stage` is set to `True`.
+ with_box_refine (`bool`, *optional*, defaults to `False`):
+ Whether to apply iterative bounding box refinement, where each decoder layer refines the bounding boxes
+ based on the predictions from the previous layer.
+ focal_alpha (`float`, *optional*, defaults to 0.25):
+ Alpha parameter in the focal loss.
+ disable_custom_kernels (`bool`, *optional*, defaults to `False`):
+ Disable the use of custom CUDA and CPU kernels. This option is necessary for the ONNX export, as custom
+ kernels are not supported by PyTorch ONNX export.
+
+ Examples:
+
+ ```python
+ >>> from transformers import DeformableDetrConfig, DeformableDetrModel
+
+ >>> # Initializing a Deformable DETR SenseTime/deformable-detr style configuration
+ >>> configuration = DeformableDetrConfig()
+
+ >>> # Initializing a model (with random weights) from the SenseTime/deformable-detr style configuration
+ >>> model = DeformableDetrModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "deformable_detr"
+ attribute_map = {
+ "hidden_size": "d_model",
+ "num_attention_heads": "encoder_attention_heads",
+ }
+
+ def __init__(
+ self,
+ use_timm_backbone=True,
+ backbone_config=None,
+ num_channels=3,
+ num_queries=300,
+ max_position_embeddings=1024,
+ encoder_layers=6,
+ encoder_ffn_dim=1024,
+ encoder_attention_heads=8,
+ decoder_layers=6,
+ decoder_ffn_dim=1024,
+ decoder_attention_heads=8,
+ encoder_layerdrop=0.0,
+ is_encoder_decoder=True,
+ activation_function="relu",
+ d_model=256,
+ dropout=0.1,
+ attention_dropout=0.0,
+ activation_dropout=0.0,
+ init_std=0.02,
+ init_xavier_std=1.0,
+ return_intermediate=True,
+ auxiliary_loss=False,
+ position_embedding_type="sine",
+ backbone="resnet50",
+ use_pretrained_backbone=True,
+ backbone_kwargs=None,
+ dilation=False,
+ num_feature_levels=4,
+ encoder_n_points=4,
+ decoder_n_points=4,
+ two_stage=False,
+ two_stage_num_proposals=300,
+ with_box_refine=False,
+ class_cost=1,
+ bbox_cost=5,
+ giou_cost=2,
+ mask_loss_coefficient=1,
+ dice_loss_coefficient=1,
+ bbox_loss_coefficient=5,
+ giou_loss_coefficient=2,
+ eos_coefficient=0.1,
+ focal_alpha=0.25,
+ disable_custom_kernels=False,
+ **kwargs,
+ ):
+ if not use_timm_backbone and use_pretrained_backbone:
+ raise ValueError(
+ "Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`"
+ )
+
+ if backbone_config is not None and backbone is not None:
+ raise ValueError("You can't specify both `backbone` and `backbone_config`.")
+
+ if backbone_config is not None and use_timm_backbone:
+ raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.")
+
+ if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
+ raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
+
+ if not use_timm_backbone:
+ if backbone_config is None:
+ logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
+ backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
+ elif isinstance(backbone_config, dict):
+ backbone_model_type = backbone_config.get("model_type")
+ config_class = CONFIG_MAPPING[backbone_model_type]
+ backbone_config = config_class.from_dict(backbone_config)
+ self.use_timm_backbone = use_timm_backbone
+ self.backbone_config = backbone_config
+ self.num_channels = num_channels
+ self.num_queries = num_queries
+ self.max_position_embeddings = max_position_embeddings
+ self.d_model = d_model
+ self.encoder_ffn_dim = encoder_ffn_dim
+ self.encoder_layers = encoder_layers
+ self.encoder_attention_heads = encoder_attention_heads
+ self.decoder_ffn_dim = decoder_ffn_dim
+ self.decoder_layers = decoder_layers
+ self.decoder_attention_heads = decoder_attention_heads
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.activation_function = activation_function
+ self.init_std = init_std
+ self.init_xavier_std = init_xavier_std
+ self.encoder_layerdrop = encoder_layerdrop
+ self.auxiliary_loss = auxiliary_loss
+ self.position_embedding_type = position_embedding_type
+ self.backbone = backbone
+ self.use_pretrained_backbone = use_pretrained_backbone
+ self.backbone_kwargs = backbone_kwargs
+ self.dilation = dilation
+ # deformable attributes
+ self.num_feature_levels = num_feature_levels
+ self.encoder_n_points = encoder_n_points
+ self.decoder_n_points = decoder_n_points
+ self.two_stage = two_stage
+ self.two_stage_num_proposals = two_stage_num_proposals
+ self.with_box_refine = with_box_refine
+ if two_stage is True and with_box_refine is False:
+ raise ValueError("If two_stage is True, with_box_refine must be True.")
+ # Hungarian matcher
+ self.class_cost = class_cost
+ self.bbox_cost = bbox_cost
+ self.giou_cost = giou_cost
+ # Loss coefficients
+ self.mask_loss_coefficient = mask_loss_coefficient
+ self.dice_loss_coefficient = dice_loss_coefficient
+ self.bbox_loss_coefficient = bbox_loss_coefficient
+ self.giou_loss_coefficient = giou_loss_coefficient
+ self.eos_coefficient = eos_coefficient
+ self.focal_alpha = focal_alpha
+ self.disable_custom_kernels = disable_custom_kernels
+ super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
+
+ @property
+ def num_attention_heads(self) -> int:
+ return self.encoder_attention_heads
+
+ @property
+ def hidden_size(self) -> int:
+ return self.d_model
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/convert_deformable_detr_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/convert_deformable_detr_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..928fa368ed34c2d3f59baa8038aded596df2d58e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/convert_deformable_detr_to_pytorch.py
@@ -0,0 +1,237 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Deformable DETR checkpoints."""
+
+
+import argparse
+import json
+from pathlib import Path
+
+import requests
+import torch
+from huggingface_hub import cached_download, hf_hub_url
+from PIL import Image
+
+from transformers import DeformableDetrConfig, DeformableDetrForObjectDetection, DeformableDetrImageProcessor
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+def rename_key(orig_key):
+ if "backbone.0.body" in orig_key:
+ orig_key = orig_key.replace("backbone.0.body", "backbone.conv_encoder.model")
+ if "transformer" in orig_key:
+ orig_key = orig_key.replace("transformer.", "")
+ if "norm1" in orig_key:
+ if "encoder" in orig_key:
+ orig_key = orig_key.replace("norm1", "self_attn_layer_norm")
+ else:
+ orig_key = orig_key.replace("norm1", "encoder_attn_layer_norm")
+ if "norm2" in orig_key:
+ if "encoder" in orig_key:
+ orig_key = orig_key.replace("norm2", "final_layer_norm")
+ else:
+ orig_key = orig_key.replace("norm2", "self_attn_layer_norm")
+ if "norm3" in orig_key:
+ orig_key = orig_key.replace("norm3", "final_layer_norm")
+ if "linear1" in orig_key:
+ orig_key = orig_key.replace("linear1", "fc1")
+ if "linear2" in orig_key:
+ orig_key = orig_key.replace("linear2", "fc2")
+ if "query_embed" in orig_key:
+ orig_key = orig_key.replace("query_embed", "query_position_embeddings")
+ if "cross_attn" in orig_key:
+ orig_key = orig_key.replace("cross_attn", "encoder_attn")
+
+ return orig_key
+
+
+def read_in_q_k_v(state_dict):
+ # transformer decoder self-attention layers
+ for i in range(6):
+ # read in weights + bias of input projection layer of self-attention
+ in_proj_weight = state_dict.pop(f"decoder.layers.{i}.self_attn.in_proj_weight")
+ in_proj_bias = state_dict.pop(f"decoder.layers.{i}.self_attn.in_proj_bias")
+ # next, add query, keys and values (in that order) to the state dict
+ state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
+ state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
+ state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
+ state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
+ state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
+ state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
+
+
+# We will verify our results on an image of cute cats
+def prepare_img():
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ im = Image.open(requests.get(url, stream=True).raw)
+
+ return im
+
+
+@torch.no_grad()
+def convert_deformable_detr_checkpoint(
+ checkpoint_path,
+ single_scale,
+ dilation,
+ with_box_refine,
+ two_stage,
+ pytorch_dump_folder_path,
+ push_to_hub,
+):
+ """
+ Copy/paste/tweak model's weights to our Deformable DETR structure.
+ """
+
+ # load default config
+ config = DeformableDetrConfig()
+ # set config attributes
+ if single_scale:
+ config.num_feature_levels = 1
+ config.dilation = dilation
+ config.with_box_refine = with_box_refine
+ config.two_stage = two_stage
+ # set labels
+ config.num_labels = 91
+ repo_id = "huggingface/label-files"
+ filename = "coco-detection-id2label.json"
+ id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r"))
+ id2label = {int(k): v for k, v in id2label.items()}
+ config.id2label = id2label
+ config.label2id = {v: k for k, v in id2label.items()}
+
+ # load image processor
+ image_processor = DeformableDetrImageProcessor(format="coco_detection")
+
+ # prepare image
+ img = prepare_img()
+ encoding = image_processor(images=img, return_tensors="pt")
+ pixel_values = encoding["pixel_values"]
+
+ logger.info("Converting model...")
+
+ # load original state dict
+ state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
+ # rename keys
+ for key in state_dict.copy().keys():
+ val = state_dict.pop(key)
+ state_dict[rename_key(key)] = val
+ # query, key and value matrices need special treatment
+ read_in_q_k_v(state_dict)
+ # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
+ prefix = "model."
+ for key in state_dict.copy().keys():
+ if not key.startswith("class_embed") and not key.startswith("bbox_embed"):
+ val = state_dict.pop(key)
+ state_dict[prefix + key] = val
+ # finally, create HuggingFace model and load state dict
+ model = DeformableDetrForObjectDetection(config)
+ model.load_state_dict(state_dict)
+ model.eval()
+
+ device = "cuda" if torch.cuda.is_available() else "cpu"
+ model.to(device)
+ # verify our conversion
+ outputs = model(pixel_values.to(device))
+
+ expected_logits = torch.tensor(
+ [[-9.6645, -4.3449, -5.8705], [-9.7035, -3.8504, -5.0724], [-10.5634, -5.3379, -7.5116]]
+ )
+ expected_boxes = torch.tensor([[0.8693, 0.2289, 0.2492], [0.3150, 0.5489, 0.5845], [0.5563, 0.7580, 0.8518]])
+
+ if single_scale:
+ expected_logits = torch.tensor(
+ [[-9.9051, -4.2541, -6.4852], [-9.6947, -4.0854, -6.8033], [-10.0665, -5.8470, -7.7003]]
+ )
+ expected_boxes = torch.tensor([[0.7292, 0.4991, 0.5532], [0.7959, 0.2426, 0.4236], [0.7582, 0.3518, 0.4451]])
+
+ if single_scale and dilation:
+ expected_logits = torch.tensor(
+ [[-8.9652, -4.1074, -5.6635], [-9.0596, -4.9447, -6.6075], [-10.1178, -4.5275, -6.2671]]
+ )
+ expected_boxes = torch.tensor([[0.7665, 0.4130, 0.4769], [0.8364, 0.1841, 0.3391], [0.6261, 0.3895, 0.7978]])
+
+ if with_box_refine:
+ expected_logits = torch.tensor(
+ [[-8.8895, -5.4187, -6.8153], [-8.4706, -6.1668, -7.6184], [-9.0042, -5.5359, -6.9141]]
+ )
+ expected_boxes = torch.tensor([[0.7828, 0.2208, 0.4323], [0.0892, 0.5996, 0.1319], [0.5524, 0.6389, 0.8914]])
+
+ if with_box_refine and two_stage:
+ expected_logits = torch.tensor(
+ [[-6.7108, -4.3213, -6.3777], [-8.9014, -6.1799, -6.7240], [-6.9315, -4.4735, -6.2298]]
+ )
+ expected_boxes = torch.tensor([[0.2583, 0.5499, 0.4683], [0.7652, 0.9068, 0.4882], [0.5490, 0.2763, 0.0564]])
+
+ print("Logits:", outputs.logits[0, :3, :3])
+
+ assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(device), atol=1e-4)
+ assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(device), atol=1e-4)
+
+ print("Everything ok!")
+
+ # Save model and image processor
+ logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ model.save_pretrained(pytorch_dump_folder_path)
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+
+ # Push to hub
+ if push_to_hub:
+ model_name = "deformable-detr"
+ model_name += "-single-scale" if single_scale else ""
+ model_name += "-dc5" if dilation else ""
+ model_name += "-with-box-refine" if with_box_refine else ""
+ model_name += "-two-stage" if two_stage else ""
+ print("Pushing model to hub...")
+ model.push_to_hub(repo_path_or_name=model_name, organization="nielsr", commit_message="Add model")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "--checkpoint_path",
+ type=str,
+ default="/home/niels/checkpoints/deformable_detr/r50_deformable_detr-checkpoint.pth",
+ help="Path to Pytorch checkpoint (.pth file) you'd like to convert.",
+ )
+ parser.add_argument("--single_scale", action="store_true", help="Whether to set config.num_features_levels = 1.")
+ parser.add_argument("--dilation", action="store_true", help="Whether to set config.dilation=True.")
+ parser.add_argument("--with_box_refine", action="store_true", help="Whether to set config.with_box_refine=True.")
+ parser.add_argument("--two_stage", action="store_true", help="Whether to set config.two_stage=True.")
+ parser.add_argument(
+ "--pytorch_dump_folder_path",
+ default=None,
+ type=str,
+ required=True,
+ help="Path to the folder to output PyTorch model.",
+ )
+ parser.add_argument(
+ "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
+ )
+ args = parser.parse_args()
+ convert_deformable_detr_checkpoint(
+ args.checkpoint_path,
+ args.single_scale,
+ args.dilation,
+ args.with_box_refine,
+ args.two_stage,
+ args.pytorch_dump_folder_path,
+ args.push_to_hub,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/feature_extraction_deformable_detr.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/feature_extraction_deformable_detr.py
new file mode 100644
index 0000000000000000000000000000000000000000..f04743e91ceefe5fbad2485e9767f0a97dd6db49
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/feature_extraction_deformable_detr.py
@@ -0,0 +1,43 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Feature extractor class for Deformable DETR."""
+
+import warnings
+
+from ...image_transforms import rgb_to_id as _rgb_to_id
+from ...utils import logging
+from .image_processing_deformable_detr import DeformableDetrImageProcessor
+
+
+logger = logging.get_logger(__name__)
+
+
+def rgb_to_id(x):
+ warnings.warn(
+ "rgb_to_id has moved and will not be importable from this module from v5. "
+ "Please import from transformers.image_transforms instead.",
+ FutureWarning,
+ )
+ return _rgb_to_id(x)
+
+
+class DeformableDetrFeatureExtractor(DeformableDetrImageProcessor):
+ def __init__(self, *args, **kwargs) -> None:
+ warnings.warn(
+ "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
+ " Please use DeformableDetrImageProcessor instead.",
+ FutureWarning,
+ )
+ super().__init__(*args, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/image_processing_deformable_detr.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/image_processing_deformable_detr.py
new file mode 100644
index 0000000000000000000000000000000000000000..5525eeeb8c58d53f20af014e8c83071af1189ccd
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/image_processing_deformable_detr.py
@@ -0,0 +1,1553 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for Deformable DETR."""
+
+import io
+import pathlib
+from collections import defaultdict
+from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
+
+import numpy as np
+
+from ...feature_extraction_utils import BatchFeature
+from ...image_processing_utils import BaseImageProcessor, get_size_dict
+from ...image_transforms import (
+ PaddingMode,
+ center_to_corners_format,
+ corners_to_center_format,
+ id_to_rgb,
+ pad,
+ rescale,
+ resize,
+ rgb_to_id,
+ to_channel_dimension_format,
+)
+from ...image_utils import (
+ IMAGENET_DEFAULT_MEAN,
+ IMAGENET_DEFAULT_STD,
+ AnnotationFormat,
+ AnnotationType,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ get_image_size,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_annotations,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import (
+ TensorType,
+ is_flax_available,
+ is_jax_tensor,
+ is_scipy_available,
+ is_tf_available,
+ is_tf_tensor,
+ is_torch_available,
+ is_torch_tensor,
+ is_vision_available,
+ logging,
+)
+
+
+if is_torch_available():
+ import torch
+ from torch import nn
+
+
+if is_vision_available():
+ import PIL
+
+if is_scipy_available():
+ import scipy.special
+ import scipy.stats
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)
+
+
+# Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio
+def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]:
+ """
+ Computes the output image size given the input image size and the desired output size.
+
+ Args:
+ image_size (`Tuple[int, int]`):
+ The input image size.
+ size (`int`):
+ The desired output size.
+ max_size (`int`, *optional*):
+ The maximum allowed output size.
+ """
+ height, width = image_size
+ if max_size is not None:
+ min_original_size = float(min((height, width)))
+ max_original_size = float(max((height, width)))
+ if max_original_size / min_original_size * size > max_size:
+ size = int(round(max_size * min_original_size / max_original_size))
+
+ if (height <= width and height == size) or (width <= height and width == size):
+ return height, width
+
+ if width < height:
+ ow = size
+ oh = int(size * height / width)
+ else:
+ oh = size
+ ow = int(size * width / height)
+ return (oh, ow)
+
+
+# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size
+def get_resize_output_image_size(
+ input_image: np.ndarray,
+ size: Union[int, Tuple[int, int], List[int]],
+ max_size: Optional[int] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+) -> Tuple[int, int]:
+ """
+ Computes the output image size given the input image size and the desired output size. If the desired output size
+ is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
+ image size is computed by keeping the aspect ratio of the input image size.
+
+ Args:
+ input_image (`np.ndarray`):
+ The image to resize.
+ size (`int` or `Tuple[int, int]` or `List[int]`):
+ The desired output size.
+ max_size (`int`, *optional*):
+ The maximum allowed output size.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred from the input image.
+ """
+ image_size = get_image_size(input_image, input_data_format)
+ if isinstance(size, (list, tuple)):
+ return size
+
+ return get_size_with_aspect_ratio(image_size, size, max_size)
+
+
+# Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn
+def get_numpy_to_framework_fn(arr) -> Callable:
+ """
+ Returns a function that converts a numpy array to the framework of the input array.
+
+ Args:
+ arr (`np.ndarray`): The array to convert.
+ """
+ if isinstance(arr, np.ndarray):
+ return np.array
+ if is_tf_available() and is_tf_tensor(arr):
+ import tensorflow as tf
+
+ return tf.convert_to_tensor
+ if is_torch_available() and is_torch_tensor(arr):
+ import torch
+
+ return torch.tensor
+ if is_flax_available() and is_jax_tensor(arr):
+ import jax.numpy as jnp
+
+ return jnp.array
+ raise ValueError(f"Cannot convert arrays of type {type(arr)}")
+
+
+# Copied from transformers.models.detr.image_processing_detr.safe_squeeze
+def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray:
+ """
+ Squeezes an array, but only if the axis specified has dim 1.
+ """
+ if axis is None:
+ return arr.squeeze()
+
+ try:
+ return arr.squeeze(axis=axis)
+ except ValueError:
+ return arr
+
+
+# Copied from transformers.models.detr.image_processing_detr.normalize_annotation
+def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict:
+ image_height, image_width = image_size
+ norm_annotation = {}
+ for key, value in annotation.items():
+ if key == "boxes":
+ boxes = value
+ boxes = corners_to_center_format(boxes)
+ boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32)
+ norm_annotation[key] = boxes
+ else:
+ norm_annotation[key] = value
+ return norm_annotation
+
+
+# Copied from transformers.models.detr.image_processing_detr.max_across_indices
+def max_across_indices(values: Iterable[Any]) -> List[Any]:
+ """
+ Return the maximum value across all indices of an iterable of values.
+ """
+ return [max(values_i) for values_i in zip(*values)]
+
+
+# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
+def get_max_height_width(
+ images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
+) -> List[int]:
+ """
+ Get the maximum height and width across all images in a batch.
+ """
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if input_data_format == ChannelDimension.FIRST:
+ _, max_height, max_width = max_across_indices([img.shape for img in images])
+ elif input_data_format == ChannelDimension.LAST:
+ max_height, max_width, _ = max_across_indices([img.shape for img in images])
+ else:
+ raise ValueError(f"Invalid channel dimension format: {input_data_format}")
+ return (max_height, max_width)
+
+
+# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
+def make_pixel_mask(
+ image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
+) -> np.ndarray:
+ """
+ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
+
+ Args:
+ image (`np.ndarray`):
+ Image to make the pixel mask for.
+ output_size (`Tuple[int, int]`):
+ Output size of the mask.
+ """
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
+ mask = np.zeros(output_size, dtype=np.int64)
+ mask[:input_height, :input_width] = 1
+ return mask
+
+
+# Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask
+def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray:
+ """
+ Convert a COCO polygon annotation to a mask.
+
+ Args:
+ segmentations (`List[List[float]]`):
+ List of polygons, each polygon represented by a list of x-y coordinates.
+ height (`int`):
+ Height of the mask.
+ width (`int`):
+ Width of the mask.
+ """
+ try:
+ from pycocotools import mask as coco_mask
+ except ImportError:
+ raise ImportError("Pycocotools is not installed in your environment.")
+
+ masks = []
+ for polygons in segmentations:
+ rles = coco_mask.frPyObjects(polygons, height, width)
+ mask = coco_mask.decode(rles)
+ if len(mask.shape) < 3:
+ mask = mask[..., None]
+ mask = np.asarray(mask, dtype=np.uint8)
+ mask = np.any(mask, axis=2)
+ masks.append(mask)
+ if masks:
+ masks = np.stack(masks, axis=0)
+ else:
+ masks = np.zeros((0, height, width), dtype=np.uint8)
+
+ return masks
+
+
+# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->DeformableDetr
+def prepare_coco_detection_annotation(
+ image,
+ target,
+ return_segmentation_masks: bool = False,
+ input_data_format: Optional[Union[ChannelDimension, str]] = None,
+):
+ """
+ Convert the target in COCO format into the format expected by DeformableDetr.
+ """
+ image_height, image_width = get_image_size(image, channel_dim=input_data_format)
+
+ image_id = target["image_id"]
+ image_id = np.asarray([image_id], dtype=np.int64)
+
+ # Get all COCO annotations for the given image.
+ annotations = target["annotations"]
+ annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0]
+
+ classes = [obj["category_id"] for obj in annotations]
+ classes = np.asarray(classes, dtype=np.int64)
+
+ # for conversion to coco api
+ area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32)
+ iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64)
+
+ boxes = [obj["bbox"] for obj in annotations]
+ # guard against no boxes via resizing
+ boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
+ boxes[:, 2:] += boxes[:, :2]
+ boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
+ boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
+
+ keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
+
+ new_target = {}
+ new_target["image_id"] = image_id
+ new_target["class_labels"] = classes[keep]
+ new_target["boxes"] = boxes[keep]
+ new_target["area"] = area[keep]
+ new_target["iscrowd"] = iscrowd[keep]
+ new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64)
+
+ if annotations and "keypoints" in annotations[0]:
+ keypoints = [obj["keypoints"] for obj in annotations]
+ # Converting the filtered keypoints list to a numpy array
+ keypoints = np.asarray(keypoints, dtype=np.float32)
+ # Apply the keep mask here to filter the relevant annotations
+ keypoints = keypoints[keep]
+ num_keypoints = keypoints.shape[0]
+ keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
+ new_target["keypoints"] = keypoints
+
+ if return_segmentation_masks:
+ segmentation_masks = [obj["segmentation"] for obj in annotations]
+ masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width)
+ new_target["masks"] = masks[keep]
+
+ return new_target
+
+
+# Copied from transformers.models.detr.image_processing_detr.masks_to_boxes
+def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
+ """
+ Compute the bounding boxes around the provided panoptic segmentation masks.
+
+ Args:
+ masks: masks in format `[number_masks, height, width]` where N is the number of masks
+
+ Returns:
+ boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
+ """
+ if masks.size == 0:
+ return np.zeros((0, 4))
+
+ h, w = masks.shape[-2:]
+ y = np.arange(0, h, dtype=np.float32)
+ x = np.arange(0, w, dtype=np.float32)
+ # see https://github.com/pytorch/pytorch/issues/50276
+ y, x = np.meshgrid(y, x, indexing="ij")
+
+ x_mask = masks * np.expand_dims(x, axis=0)
+ x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
+ x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
+ x_min = x.filled(fill_value=1e8)
+ x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
+
+ y_mask = masks * np.expand_dims(y, axis=0)
+ y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
+ y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
+ y_min = y.filled(fill_value=1e8)
+ y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
+
+ return np.stack([x_min, y_min, x_max, y_max], 1)
+
+
+# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->DeformableDetr
+def prepare_coco_panoptic_annotation(
+ image: np.ndarray,
+ target: Dict,
+ masks_path: Union[str, pathlib.Path],
+ return_masks: bool = True,
+ input_data_format: Union[ChannelDimension, str] = None,
+) -> Dict:
+ """
+ Prepare a coco panoptic annotation for DeformableDetr.
+ """
+ image_height, image_width = get_image_size(image, channel_dim=input_data_format)
+ annotation_path = pathlib.Path(masks_path) / target["file_name"]
+
+ new_target = {}
+ new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64)
+ new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64)
+ new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64)
+
+ if "segments_info" in target:
+ masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32)
+ masks = rgb_to_id(masks)
+
+ ids = np.array([segment_info["id"] for segment_info in target["segments_info"]])
+ masks = masks == ids[:, None, None]
+ masks = masks.astype(np.uint8)
+ if return_masks:
+ new_target["masks"] = masks
+ new_target["boxes"] = masks_to_boxes(masks)
+ new_target["class_labels"] = np.array(
+ [segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64
+ )
+ new_target["iscrowd"] = np.asarray(
+ [segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64
+ )
+ new_target["area"] = np.asarray(
+ [segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32
+ )
+
+ return new_target
+
+
+# Copied from transformers.models.detr.image_processing_detr.get_segmentation_image
+def get_segmentation_image(
+ masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False
+):
+ h, w = input_size
+ final_h, final_w = target_size
+
+ m_id = scipy.special.softmax(masks.transpose(0, 1), -1)
+
+ if m_id.shape[-1] == 0:
+ # We didn't detect any mask :(
+ m_id = np.zeros((h, w), dtype=np.int64)
+ else:
+ m_id = m_id.argmax(-1).reshape(h, w)
+
+ if deduplicate:
+ # Merge the masks corresponding to the same stuff class
+ for equiv in stuff_equiv_classes.values():
+ for eq_id in equiv:
+ m_id[m_id == eq_id] = equiv[0]
+
+ seg_img = id_to_rgb(m_id)
+ seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST)
+ return seg_img
+
+
+# Copied from transformers.models.detr.image_processing_detr.get_mask_area
+def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray:
+ final_h, final_w = target_size
+ np_seg_img = seg_img.astype(np.uint8)
+ np_seg_img = np_seg_img.reshape(final_h, final_w, 3)
+ m_id = rgb_to_id(np_seg_img)
+ area = [(m_id == i).sum() for i in range(n_classes)]
+ return area
+
+
+# Copied from transformers.models.detr.image_processing_detr.score_labels_from_class_probabilities
+def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
+ probs = scipy.special.softmax(logits, axis=-1)
+ labels = probs.argmax(-1, keepdims=True)
+ scores = np.take_along_axis(probs, labels, axis=-1)
+ scores, labels = scores.squeeze(-1), labels.squeeze(-1)
+ return scores, labels
+
+
+# Copied from transformers.models.detr.image_processing_detr.post_process_panoptic_sample
+def post_process_panoptic_sample(
+ out_logits: np.ndarray,
+ masks: np.ndarray,
+ boxes: np.ndarray,
+ processed_size: Tuple[int, int],
+ target_size: Tuple[int, int],
+ is_thing_map: Dict,
+ threshold=0.85,
+) -> Dict:
+ """
+ Converts the output of [`DetrForSegmentation`] into panoptic segmentation predictions for a single sample.
+
+ Args:
+ out_logits (`torch.Tensor`):
+ The logits for this sample.
+ masks (`torch.Tensor`):
+ The predicted segmentation masks for this sample.
+ boxes (`torch.Tensor`):
+ The prediced bounding boxes for this sample. The boxes are in the normalized format `(center_x, center_y,
+ width, height)` and values between `[0, 1]`, relative to the size the image (disregarding padding).
+ processed_size (`Tuple[int, int]`):
+ The processed size of the image `(height, width)`, as returned by the preprocessing step i.e. the size
+ after data augmentation but before batching.
+ target_size (`Tuple[int, int]`):
+ The target size of the image, `(height, width)` corresponding to the requested final size of the
+ prediction.
+ is_thing_map (`Dict`):
+ A dictionary mapping class indices to a boolean value indicating whether the class is a thing or not.
+ threshold (`float`, *optional*, defaults to 0.85):
+ The threshold used to binarize the segmentation masks.
+ """
+ # we filter empty queries and detection below threshold
+ scores, labels = score_labels_from_class_probabilities(out_logits)
+ keep = (labels != out_logits.shape[-1] - 1) & (scores > threshold)
+
+ cur_scores = scores[keep]
+ cur_classes = labels[keep]
+ cur_boxes = center_to_corners_format(boxes[keep])
+
+ if len(cur_boxes) != len(cur_classes):
+ raise ValueError("Not as many boxes as there are classes")
+
+ cur_masks = masks[keep]
+ cur_masks = resize(cur_masks[:, None], processed_size, resample=PILImageResampling.BILINEAR)
+ cur_masks = safe_squeeze(cur_masks, 1)
+ b, h, w = cur_masks.shape
+
+ # It may be that we have several predicted masks for the same stuff class.
+ # In the following, we track the list of masks ids for each stuff class (they are merged later on)
+ cur_masks = cur_masks.reshape(b, -1)
+ stuff_equiv_classes = defaultdict(list)
+ for k, label in enumerate(cur_classes):
+ if not is_thing_map[label]:
+ stuff_equiv_classes[label].append(k)
+
+ seg_img = get_segmentation_image(cur_masks, processed_size, target_size, stuff_equiv_classes, deduplicate=True)
+ area = get_mask_area(cur_masks, processed_size, n_classes=len(cur_scores))
+
+ # We filter out any mask that is too small
+ if cur_classes.size() > 0:
+ # We know filter empty masks as long as we find some
+ filtered_small = np.array([a <= 4 for a in area], dtype=bool)
+ while filtered_small.any():
+ cur_masks = cur_masks[~filtered_small]
+ cur_scores = cur_scores[~filtered_small]
+ cur_classes = cur_classes[~filtered_small]
+ seg_img = get_segmentation_image(cur_masks, (h, w), target_size, stuff_equiv_classes, deduplicate=True)
+ area = get_mask_area(seg_img, target_size, n_classes=len(cur_scores))
+ filtered_small = np.array([a <= 4 for a in area], dtype=bool)
+ else:
+ cur_classes = np.ones((1, 1), dtype=np.int64)
+
+ segments_info = [
+ {"id": i, "isthing": is_thing_map[cat], "category_id": int(cat), "area": a}
+ for i, (cat, a) in enumerate(zip(cur_classes, area))
+ ]
+ del cur_classes
+
+ with io.BytesIO() as out:
+ PIL.Image.fromarray(seg_img).save(out, format="PNG")
+ predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
+
+ return predictions
+
+
+# Copied from transformers.models.detr.image_processing_detr.resize_annotation
+def resize_annotation(
+ annotation: Dict[str, Any],
+ orig_size: Tuple[int, int],
+ target_size: Tuple[int, int],
+ threshold: float = 0.5,
+ resample: PILImageResampling = PILImageResampling.NEAREST,
+):
+ """
+ Resizes an annotation to a target size.
+
+ Args:
+ annotation (`Dict[str, Any]`):
+ The annotation dictionary.
+ orig_size (`Tuple[int, int]`):
+ The original size of the input image.
+ target_size (`Tuple[int, int]`):
+ The target size of the image, as returned by the preprocessing `resize` step.
+ threshold (`float`, *optional*, defaults to 0.5):
+ The threshold used to binarize the segmentation masks.
+ resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
+ The resampling filter to use when resizing the masks.
+ """
+ ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size))
+ ratio_height, ratio_width = ratios
+
+ new_annotation = {}
+ new_annotation["size"] = target_size
+
+ for key, value in annotation.items():
+ if key == "boxes":
+ boxes = value
+ scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
+ new_annotation["boxes"] = scaled_boxes
+ elif key == "area":
+ area = value
+ scaled_area = area * (ratio_width * ratio_height)
+ new_annotation["area"] = scaled_area
+ elif key == "masks":
+ masks = value[:, None]
+ masks = np.array([resize(mask, target_size, resample=resample) for mask in masks])
+ masks = masks.astype(np.float32)
+ masks = masks[:, 0] > threshold
+ new_annotation["masks"] = masks
+ elif key == "size":
+ new_annotation["size"] = target_size
+ else:
+ new_annotation[key] = value
+
+ return new_annotation
+
+
+# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle
+def binary_mask_to_rle(mask):
+ """
+ Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
+
+ Args:
+ mask (`torch.Tensor` or `numpy.array`):
+ A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
+ segment_id or class_id.
+ Returns:
+ `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
+ format.
+ """
+ if is_torch_tensor(mask):
+ mask = mask.numpy()
+
+ pixels = mask.flatten()
+ pixels = np.concatenate([[0], pixels, [0]])
+ runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
+ runs[1::2] -= runs[::2]
+ return list(runs)
+
+
+# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle
+def convert_segmentation_to_rle(segmentation):
+ """
+ Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
+
+ Args:
+ segmentation (`torch.Tensor` or `numpy.array`):
+ A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
+ Returns:
+ `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
+ """
+ segment_ids = torch.unique(segmentation)
+
+ run_length_encodings = []
+ for idx in segment_ids:
+ mask = torch.where(segmentation == idx, 1, 0)
+ rle = binary_mask_to_rle(mask)
+ run_length_encodings.append(rle)
+
+ return run_length_encodings
+
+
+# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects
+def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
+ """
+ Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
+ `labels`.
+
+ Args:
+ masks (`torch.Tensor`):
+ A tensor of shape `(num_queries, height, width)`.
+ scores (`torch.Tensor`):
+ A tensor of shape `(num_queries)`.
+ labels (`torch.Tensor`):
+ A tensor of shape `(num_queries)`.
+ object_mask_threshold (`float`):
+ A number between 0 and 1 used to binarize the masks.
+ Raises:
+ `ValueError`: Raised when the first dimension doesn't match in all input tensors.
+ Returns:
+ `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
+ < `object_mask_threshold`.
+ """
+ if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
+ raise ValueError("mask, scores and labels must have the same shape!")
+
+ to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
+
+ return masks[to_keep], scores[to_keep], labels[to_keep]
+
+
+# Copied from transformers.models.detr.image_processing_detr.check_segment_validity
+def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
+ # Get the mask associated with the k class
+ mask_k = mask_labels == k
+ mask_k_area = mask_k.sum()
+
+ # Compute the area of all the stuff in query k
+ original_area = (mask_probs[k] >= mask_threshold).sum()
+ mask_exists = mask_k_area > 0 and original_area > 0
+
+ # Eliminate disconnected tiny segments
+ if mask_exists:
+ area_ratio = mask_k_area / original_area
+ if not area_ratio.item() > overlap_mask_area_threshold:
+ mask_exists = False
+
+ return mask_exists, mask_k
+
+
+# Copied from transformers.models.detr.image_processing_detr.compute_segments
+def compute_segments(
+ mask_probs,
+ pred_scores,
+ pred_labels,
+ mask_threshold: float = 0.5,
+ overlap_mask_area_threshold: float = 0.8,
+ label_ids_to_fuse: Optional[Set[int]] = None,
+ target_size: Tuple[int, int] = None,
+):
+ height = mask_probs.shape[1] if target_size is None else target_size[0]
+ width = mask_probs.shape[2] if target_size is None else target_size[1]
+
+ segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
+ segments: List[Dict] = []
+
+ if target_size is not None:
+ mask_probs = nn.functional.interpolate(
+ mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
+ )[0]
+
+ current_segment_id = 0
+
+ # Weigh each mask by its prediction score
+ mask_probs *= pred_scores.view(-1, 1, 1)
+ mask_labels = mask_probs.argmax(0) # [height, width]
+
+ # Keep track of instances of each class
+ stuff_memory_list: Dict[str, int] = {}
+ for k in range(pred_labels.shape[0]):
+ pred_class = pred_labels[k].item()
+ should_fuse = pred_class in label_ids_to_fuse
+
+ # Check if mask exists and large enough to be a segment
+ mask_exists, mask_k = check_segment_validity(
+ mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
+ )
+
+ if mask_exists:
+ if pred_class in stuff_memory_list:
+ current_segment_id = stuff_memory_list[pred_class]
+ else:
+ current_segment_id += 1
+
+ # Add current object segment to final segmentation map
+ segmentation[mask_k] = current_segment_id
+ segment_score = round(pred_scores[k].item(), 6)
+ segments.append(
+ {
+ "id": current_segment_id,
+ "label_id": pred_class,
+ "was_fused": should_fuse,
+ "score": segment_score,
+ }
+ )
+ if should_fuse:
+ stuff_memory_list[pred_class] = current_segment_id
+
+ return segmentation, segments
+
+
+class DeformableDetrImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a Deformable DETR image processor.
+
+ Args:
+ format (`str`, *optional*, defaults to `"coco_detection"`):
+ Data format of the annotations. One of "coco_detection" or "coco_panoptic".
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be
+ overridden by the `do_resize` parameter in the `preprocess` method.
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
+ Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in
+ the `preprocess` method.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
+ Resampling filter to use if resizing the image.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
+ `do_rescale` parameter in the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
+ `preprocess` method.
+ do_normalize:
+ Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
+ `preprocess` method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
+ Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
+ channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
+ Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
+ for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ do_convert_annotations (`bool`, *optional*, defaults to `True`):
+ Controls whether to convert the annotations to the format expected by the DETR model. Converts the
+ bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
+ Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
+ do_pad (`bool`, *optional*, defaults to `True`):
+ Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
+ method. If `True` will pad the images in the batch to the largest height and width in the batch.
+ Padding will be applied to the bottom and right of the image with zeros.
+ """
+
+ model_input_names = ["pixel_values", "pixel_mask"]
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.__init__
+ def __init__(
+ self,
+ format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Union[float, List[float]] = None,
+ image_std: Union[float, List[float]] = None,
+ do_convert_annotations: Optional[bool] = None,
+ do_pad: bool = True,
+ **kwargs,
+ ) -> None:
+ if "pad_and_return_pixel_mask" in kwargs:
+ do_pad = kwargs.pop("pad_and_return_pixel_mask")
+
+ if "max_size" in kwargs:
+ logger.warning_once(
+ "The `max_size` parameter is deprecated and will be removed in v4.26. "
+ "Please specify in `size['longest_edge'] instead`.",
+ )
+ max_size = kwargs.pop("max_size")
+ else:
+ max_size = None if size is None else 1333
+
+ size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
+ size = get_size_dict(size, max_size=max_size, default_to_square=False)
+
+ # Backwards compatibility
+ if do_convert_annotations is None:
+ do_convert_annotations = do_normalize
+
+ super().__init__(**kwargs)
+ self.format = format
+ self.do_resize = do_resize
+ self.size = size
+ self.resample = resample
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_normalize = do_normalize
+ self.do_convert_annotations = do_convert_annotations
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
+ self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
+ self.do_pad = do_pad
+ self._valid_processor_keys = [
+ "images",
+ "annotations",
+ "return_segmentation_masks",
+ "masks_path",
+ "do_resize",
+ "size",
+ "resample",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "do_convert_annotations",
+ "image_mean",
+ "image_std",
+ "do_pad",
+ "format",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ @classmethod
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->DeformableDetr
+ def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
+ """
+ Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
+ created using from_dict and kwargs e.g. `DeformableDetrImageProcessor.from_pretrained(checkpoint, size=600,
+ max_size=800)`
+ """
+ image_processor_dict = image_processor_dict.copy()
+ if "max_size" in kwargs:
+ image_processor_dict["max_size"] = kwargs.pop("max_size")
+ if "pad_and_return_pixel_mask" in kwargs:
+ image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
+ return super().from_dict(image_processor_dict, **kwargs)
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->DeformableDetr
+ def prepare_annotation(
+ self,
+ image: np.ndarray,
+ target: Dict,
+ format: Optional[AnnotationFormat] = None,
+ return_segmentation_masks: bool = None,
+ masks_path: Optional[Union[str, pathlib.Path]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> Dict:
+ """
+ Prepare an annotation for feeding into DeformableDetr model.
+ """
+ format = format if format is not None else self.format
+
+ if format == AnnotationFormat.COCO_DETECTION:
+ return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
+ target = prepare_coco_detection_annotation(
+ image, target, return_segmentation_masks, input_data_format=input_data_format
+ )
+ elif format == AnnotationFormat.COCO_PANOPTIC:
+ return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
+ target = prepare_coco_panoptic_annotation(
+ image,
+ target,
+ masks_path=masks_path,
+ return_masks=return_segmentation_masks,
+ input_data_format=input_data_format,
+ )
+ else:
+ raise ValueError(f"Format {format} is not supported.")
+ return target
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
+ def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
+ logger.warning_once(
+ "The `prepare` method is deprecated and will be removed in a v4.33. "
+ "Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
+ "does not return the image anymore.",
+ )
+ target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
+ return image, target
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
+ def convert_coco_poly_to_mask(self, *args, **kwargs):
+ logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
+ return convert_coco_poly_to_mask(*args, **kwargs)
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection
+ def prepare_coco_detection(self, *args, **kwargs):
+ logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
+ return prepare_coco_detection_annotation(*args, **kwargs)
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
+ def prepare_coco_panoptic(self, *args, **kwargs):
+ logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
+ return prepare_coco_panoptic_annotation(*args, **kwargs)
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ data_format: Optional[ChannelDimension] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
+ int, smaller edge of the image will be matched to this number.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or
+ `height` and `width`.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
+ Resampling filter to use if resizing the image.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
+ image is used.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ """
+ if "max_size" in kwargs:
+ logger.warning_once(
+ "The `max_size` parameter is deprecated and will be removed in v4.26. "
+ "Please specify in `size['longest_edge'] instead`.",
+ )
+ max_size = kwargs.pop("max_size")
+ else:
+ max_size = None
+ size = get_size_dict(size, max_size=max_size, default_to_square=False)
+ if "shortest_edge" in size and "longest_edge" in size:
+ size = get_resize_output_image_size(
+ image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
+ )
+ elif "height" in size and "width" in size:
+ size = (size["height"], size["width"])
+ else:
+ raise ValueError(
+ "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
+ f" {size.keys()}."
+ )
+ image = resize(
+ image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
+ )
+ return image
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
+ def resize_annotation(
+ self,
+ annotation,
+ orig_size,
+ size,
+ resample: PILImageResampling = PILImageResampling.NEAREST,
+ ) -> Dict:
+ """
+ Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
+ to this number.
+ """
+ return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
+ def rescale(
+ self,
+ image: np.ndarray,
+ rescale_factor: float,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """
+ Rescale the image by the given factor. image = image * rescale_factor.
+
+ Args:
+ image (`np.ndarray`):
+ Image to rescale.
+ rescale_factor (`float`):
+ The value to use for rescaling.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
+ image is used. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ input_data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format for the input image. If unset, is inferred from the input image. Can be
+ one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ """
+ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
+ def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
+ """
+ Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
+ `[center_x, center_y, width, height]` format and from absolute to relative pixel values.
+ """
+ return normalize_annotation(annotation, image_size=image_size)
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image
+ def _update_annotation_for_padded_image(
+ self,
+ annotation: Dict,
+ input_image_size: Tuple[int, int],
+ output_image_size: Tuple[int, int],
+ padding,
+ update_bboxes,
+ ) -> Dict:
+ """
+ Update the annotation for a padded image.
+ """
+ new_annotation = {}
+ new_annotation["size"] = output_image_size
+
+ for key, value in annotation.items():
+ if key == "masks":
+ masks = value
+ masks = pad(
+ masks,
+ padding,
+ mode=PaddingMode.CONSTANT,
+ constant_values=0,
+ input_data_format=ChannelDimension.FIRST,
+ )
+ masks = safe_squeeze(masks, 1)
+ new_annotation["masks"] = masks
+ elif key == "boxes" and update_bboxes:
+ boxes = value
+ boxes *= np.asarray(
+ [
+ input_image_size[1] / output_image_size[1],
+ input_image_size[0] / output_image_size[0],
+ input_image_size[1] / output_image_size[1],
+ input_image_size[0] / output_image_size[0],
+ ]
+ )
+ new_annotation["boxes"] = boxes
+ elif key == "size":
+ new_annotation["size"] = output_image_size
+ else:
+ new_annotation[key] = value
+ return new_annotation
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image
+ def _pad_image(
+ self,
+ image: np.ndarray,
+ output_size: Tuple[int, int],
+ annotation: Optional[Dict[str, Any]] = None,
+ constant_values: Union[float, Iterable[float]] = 0,
+ data_format: Optional[ChannelDimension] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ update_bboxes: bool = True,
+ ) -> np.ndarray:
+ """
+ Pad an image with zeros to the given size.
+ """
+ input_height, input_width = get_image_size(image, channel_dim=input_data_format)
+ output_height, output_width = output_size
+
+ pad_bottom = output_height - input_height
+ pad_right = output_width - input_width
+ padding = ((0, pad_bottom), (0, pad_right))
+ padded_image = pad(
+ image,
+ padding,
+ mode=PaddingMode.CONSTANT,
+ constant_values=constant_values,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ )
+ if annotation is not None:
+ annotation = self._update_annotation_for_padded_image(
+ annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes
+ )
+ return padded_image, annotation
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad
+ def pad(
+ self,
+ images: List[np.ndarray],
+ annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
+ constant_values: Union[float, Iterable[float]] = 0,
+ return_pixel_mask: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Optional[ChannelDimension] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ update_bboxes: bool = True,
+ ) -> BatchFeature:
+ """
+ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
+ in the batch and optionally returns their corresponding pixel mask.
+
+ Args:
+ images (List[`np.ndarray`]):
+ Images to pad.
+ annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
+ Annotations to transform according to the padding that is applied to the images.
+ constant_values (`float` or `Iterable[float]`, *optional*):
+ The value to use for the padding if `mode` is `"constant"`.
+ return_pixel_mask (`bool`, *optional*, defaults to `True`):
+ Whether to return a pixel mask.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred.
+ update_bboxes (`bool`, *optional*, defaults to `True`):
+ Whether to update the bounding boxes in the annotations to match the padded images. If the
+ bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
+ format, the bounding boxes will not be updated.
+ """
+ pad_size = get_max_height_width(images, input_data_format=input_data_format)
+
+ annotation_list = annotations if annotations is not None else [None] * len(images)
+ padded_images = []
+ padded_annotations = []
+ for image, annotation in zip(images, annotation_list):
+ padded_image, padded_annotation = self._pad_image(
+ image,
+ pad_size,
+ annotation,
+ constant_values=constant_values,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ update_bboxes=update_bboxes,
+ )
+ padded_images.append(padded_image)
+ padded_annotations.append(padded_annotation)
+
+ data = {"pixel_values": padded_images}
+
+ if return_pixel_mask:
+ masks = [
+ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
+ for image in images
+ ]
+ data["pixel_mask"] = masks
+
+ encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
+
+ if annotations is not None:
+ encoded_inputs["labels"] = [
+ BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations
+ ]
+
+ return encoded_inputs
+
+ # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.preprocess
+ def preprocess(
+ self,
+ images: ImageInput,
+ annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
+ return_segmentation_masks: bool = None,
+ masks_path: Optional[Union[str, pathlib.Path]] = None,
+ do_resize: Optional[bool] = None,
+ size: Optional[Dict[str, int]] = None,
+ resample=None, # PILImageResampling
+ do_rescale: Optional[bool] = None,
+ rescale_factor: Optional[Union[int, float]] = None,
+ do_normalize: Optional[bool] = None,
+ do_convert_annotations: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_pad: Optional[bool] = None,
+ format: Optional[Union[str, AnnotationFormat]] = None,
+ return_tensors: Optional[Union[TensorType, str]] = None,
+ data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> BatchFeature:
+ """
+ Preprocess an image or a batch of images so that it can be used by the model.
+
+ Args:
+ images (`ImageInput`):
+ Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
+ from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
+ List of annotations associated with the image or batch of images. If annotation is for object
+ detection, the annotations should be a dictionary with the following keys:
+ - "image_id" (`int`): The image id.
+ - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
+ dictionary. An image can have no annotations, in which case the list should be empty.
+ If annotation is for segmentation, the annotations should be a dictionary with the following keys:
+ - "image_id" (`int`): The image id.
+ - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
+ An image can have no segments, in which case the list should be empty.
+ - "file_name" (`str`): The file name of the image.
+ return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
+ Whether to return segmentation masks.
+ masks_path (`str` or `pathlib.Path`, *optional*):
+ Path to the directory containing the segmentation masks.
+ do_resize (`bool`, *optional*, defaults to self.do_resize):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to self.size):
+ Size of the image after resizing.
+ resample (`PILImageResampling`, *optional*, defaults to self.resample):
+ Resampling filter to use when resizing the image.
+ do_rescale (`bool`, *optional*, defaults to self.do_rescale):
+ Whether to rescale the image.
+ rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
+ Rescale factor to use when rescaling the image.
+ do_normalize (`bool`, *optional*, defaults to self.do_normalize):
+ Whether to normalize the image.
+ do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
+ Whether to convert the annotations to the format expected by the model. Converts the bounding
+ boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
+ and in relative coordinates.
+ image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
+ Mean to use when normalizing the image.
+ image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
+ Standard deviation to use when normalizing the image.
+ do_pad (`bool`, *optional*, defaults to self.do_pad):
+ Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
+ and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
+ format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
+ Format of the annotations.
+ return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
+ Type of tensors to return. If `None`, will return the list of images.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ if "pad_and_return_pixel_mask" in kwargs:
+ logger.warning_once(
+ "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
+ "use `do_pad` instead."
+ )
+ do_pad = kwargs.pop("pad_and_return_pixel_mask")
+
+ max_size = None
+ if "max_size" in kwargs:
+ logger.warning_once(
+ "The `max_size` argument is deprecated and will be removed in a future version, use"
+ " `size['longest_edge']` instead."
+ )
+ size = kwargs.pop("max_size")
+
+ do_resize = self.do_resize if do_resize is None else do_resize
+ size = self.size if size is None else size
+ size = get_size_dict(size=size, max_size=max_size, default_to_square=False)
+ resample = self.resample if resample is None else resample
+ do_rescale = self.do_rescale if do_rescale is None else do_rescale
+ rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
+ do_normalize = self.do_normalize if do_normalize is None else do_normalize
+ image_mean = self.image_mean if image_mean is None else image_mean
+ image_std = self.image_std if image_std is None else image_std
+ do_convert_annotations = (
+ self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations
+ )
+ do_pad = self.do_pad if do_pad is None else do_pad
+ format = self.format if format is None else format
+
+ images = make_list_of_images(images)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ # Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ if annotations is not None and isinstance(annotations, dict):
+ annotations = [annotations]
+
+ if annotations is not None and len(images) != len(annotations):
+ raise ValueError(
+ f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
+ )
+
+ format = AnnotationFormat(format)
+ if annotations is not None:
+ validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
+
+ if (
+ masks_path is not None
+ and format == AnnotationFormat.COCO_PANOPTIC
+ and not isinstance(masks_path, (pathlib.Path, str))
+ ):
+ raise ValueError(
+ "The path to the directory containing the mask PNG files should be provided as a"
+ f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
+ )
+
+ # All transformations expect numpy arrays
+ images = [to_numpy_array(image) for image in images]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
+ if annotations is not None:
+ prepared_images = []
+ prepared_annotations = []
+ for image, target in zip(images, annotations):
+ target = self.prepare_annotation(
+ image,
+ target,
+ format,
+ return_segmentation_masks=return_segmentation_masks,
+ masks_path=masks_path,
+ input_data_format=input_data_format,
+ )
+ prepared_images.append(image)
+ prepared_annotations.append(target)
+ images = prepared_images
+ annotations = prepared_annotations
+ del prepared_images, prepared_annotations
+
+ # transformations
+ if do_resize:
+ if annotations is not None:
+ resized_images, resized_annotations = [], []
+ for image, target in zip(images, annotations):
+ orig_size = get_image_size(image, input_data_format)
+ resized_image = self.resize(
+ image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format
+ )
+ resized_annotation = self.resize_annotation(
+ target, orig_size, get_image_size(resized_image, input_data_format)
+ )
+ resized_images.append(resized_image)
+ resized_annotations.append(resized_annotation)
+ images = resized_images
+ annotations = resized_annotations
+ del resized_images, resized_annotations
+ else:
+ images = [
+ self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_rescale:
+ images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
+
+ if do_normalize:
+ images = [
+ self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
+ ]
+
+ if do_convert_annotations and annotations is not None:
+ annotations = [
+ self.normalize_annotation(annotation, get_image_size(image, input_data_format))
+ for annotation, image in zip(annotations, images)
+ ]
+
+ if do_pad:
+ # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
+ encoded_inputs = self.pad(
+ images,
+ annotations=annotations,
+ return_pixel_mask=True,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ update_bboxes=do_convert_annotations,
+ return_tensors=return_tensors,
+ )
+ else:
+ images = [
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
+ for image in images
+ ]
+ encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
+ if annotations is not None:
+ encoded_inputs["labels"] = [
+ BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
+ ]
+
+ return encoded_inputs
+
+ # POSTPROCESSING METHODS - TODO: add support for other frameworks
+ def post_process(self, outputs, target_sizes):
+ """
+ Converts the raw output of [`DeformableDetrForObjectDetection`] into final bounding boxes in (top_left_x,
+ top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
+
+ Args:
+ outputs ([`DeformableDetrObjectDetectionOutput`]):
+ Raw outputs of the model.
+ target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
+ Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
+ original image size (before any data augmentation). For visualization, this should be the image size
+ after data augment, but before padding.
+ Returns:
+ `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
+ in the batch as predicted by the model.
+ """
+ logger.warning_once(
+ "`post_process` is deprecated and will be removed in v5 of Transformers, please use"
+ " `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
+ )
+
+ out_logits, out_bbox = outputs.logits, outputs.pred_boxes
+
+ if len(out_logits) != len(target_sizes):
+ raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
+ if target_sizes.shape[1] != 2:
+ raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
+
+ prob = out_logits.sigmoid()
+ topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1)
+ scores = topk_values
+ topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
+ labels = topk_indexes % out_logits.shape[2]
+ boxes = center_to_corners_format(out_bbox)
+ boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
+
+ # and from relative [0, 1] to absolute [0, height] coordinates
+ img_h, img_w = target_sizes.unbind(1)
+ scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
+ boxes = boxes * scale_fct[:, None, :]
+
+ results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
+
+ return results
+
+ def post_process_object_detection(
+ self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, top_k: int = 100
+ ):
+ """
+ Converts the raw output of [`DeformableDetrForObjectDetection`] into final bounding boxes in (top_left_x,
+ top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
+
+ Args:
+ outputs ([`DetrObjectDetectionOutput`]):
+ Raw outputs of the model.
+ threshold (`float`, *optional*):
+ Score threshold to keep object detection predictions.
+ target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
+ Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
+ (height, width) of each image in the batch. If left to None, predictions will not be resized.
+ top_k (`int`, *optional*, defaults to 100):
+ Keep only top k bounding boxes before filtering by thresholding.
+
+ Returns:
+ `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
+ in the batch as predicted by the model.
+ """
+ out_logits, out_bbox = outputs.logits, outputs.pred_boxes
+
+ if target_sizes is not None:
+ if len(out_logits) != len(target_sizes):
+ raise ValueError(
+ "Make sure that you pass in as many target sizes as the batch dimension of the logits"
+ )
+
+ prob = out_logits.sigmoid()
+ prob = prob.view(out_logits.shape[0], -1)
+ k_value = min(top_k, prob.size(1))
+ topk_values, topk_indexes = torch.topk(prob, k_value, dim=1)
+ scores = topk_values
+ topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
+ labels = topk_indexes % out_logits.shape[2]
+ boxes = center_to_corners_format(out_bbox)
+ boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
+
+ # and from relative [0, 1] to absolute [0, height] coordinates
+ if target_sizes is not None:
+ if isinstance(target_sizes, List):
+ img_h = torch.Tensor([i[0] for i in target_sizes])
+ img_w = torch.Tensor([i[1] for i in target_sizes])
+ else:
+ img_h, img_w = target_sizes.unbind(1)
+ scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
+ boxes = boxes * scale_fct[:, None, :]
+
+ results = []
+ for s, l, b in zip(scores, labels, boxes):
+ score = s[s > threshold]
+ label = l[s > threshold]
+ box = b[s > threshold]
+ results.append({"scores": score, "labels": label, "boxes": box})
+
+ return results
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/load_custom.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/load_custom.py
new file mode 100644
index 0000000000000000000000000000000000000000..c3a822e2764170c24c7098956e81788856385451
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/load_custom.py
@@ -0,0 +1,49 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Loading of Deformable DETR's CUDA kernels"""
+import os
+from pathlib import Path
+
+
+def load_cuda_kernels():
+ from torch.utils.cpp_extension import load
+
+ root = Path(__file__).resolve().parent.parent.parent / "kernels" / "deformable_detr"
+ src_files = [
+ root / filename
+ for filename in [
+ "vision.cpp",
+ os.path.join("cpu", "ms_deform_attn_cpu.cpp"),
+ os.path.join("cuda", "ms_deform_attn_cuda.cu"),
+ ]
+ ]
+
+ load(
+ "MultiScaleDeformableAttention",
+ src_files,
+ with_cuda=True,
+ extra_include_paths=[str(root)],
+ extra_cflags=["-DWITH_CUDA=1"],
+ extra_cuda_cflags=[
+ "-DCUDA_HAS_FP16=1",
+ "-D__CUDA_NO_HALF_OPERATORS__",
+ "-D__CUDA_NO_HALF_CONVERSIONS__",
+ "-D__CUDA_NO_HALF2_OPERATORS__",
+ ],
+ )
+
+ import MultiScaleDeformableAttention as MSDA
+
+ return MSDA
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/modeling_deformable_detr.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/modeling_deformable_detr.py
new file mode 100644
index 0000000000000000000000000000000000000000..c0ac7cffc7ab44578ab33463071d409bf628264f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deformable_detr/modeling_deformable_detr.py
@@ -0,0 +1,2536 @@
+# coding=utf-8
+# Copyright 2022 SenseTime and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Deformable DETR model."""
+
+
+import copy
+import math
+import os
+import warnings
+from dataclasses import dataclass
+from pathlib import Path
+from typing import Dict, List, Optional, Tuple, Union
+
+import torch
+import torch.nn.functional as F
+from torch import Tensor, nn
+from torch.autograd import Function
+from torch.autograd.function import once_differentiable
+
+from ...activations import ACT2FN
+from ...file_utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_scipy_available,
+ is_timm_available,
+ is_torch_cuda_available,
+ is_vision_available,
+ replace_return_docstrings,
+ requires_backends,
+)
+from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
+from ...modeling_outputs import BaseModelOutput
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import meshgrid
+from ...utils import is_accelerate_available, is_ninja_available, logging
+from ...utils.backbone_utils import load_backbone
+from .configuration_deformable_detr import DeformableDetrConfig
+
+
+logger = logging.get_logger(__name__)
+
+MultiScaleDeformableAttention = None
+
+
+def load_cuda_kernels():
+ from torch.utils.cpp_extension import load
+
+ global MultiScaleDeformableAttention
+
+ root = Path(__file__).resolve().parent.parent.parent / "kernels" / "deformable_detr"
+ src_files = [
+ root / filename
+ for filename in [
+ "vision.cpp",
+ os.path.join("cpu", "ms_deform_attn_cpu.cpp"),
+ os.path.join("cuda", "ms_deform_attn_cuda.cu"),
+ ]
+ ]
+
+ MultiScaleDeformableAttention = load(
+ "MultiScaleDeformableAttention",
+ src_files,
+ with_cuda=True,
+ extra_include_paths=[str(root)],
+ extra_cflags=["-DWITH_CUDA=1"],
+ extra_cuda_cflags=[
+ "-DCUDA_HAS_FP16=1",
+ "-D__CUDA_NO_HALF_OPERATORS__",
+ "-D__CUDA_NO_HALF_CONVERSIONS__",
+ "-D__CUDA_NO_HALF2_OPERATORS__",
+ ],
+ )
+
+
+if is_vision_available():
+ from transformers.image_transforms import center_to_corners_format
+
+if is_accelerate_available():
+ from accelerate import PartialState
+ from accelerate.utils import reduce
+
+
+class MultiScaleDeformableAttentionFunction(Function):
+ @staticmethod
+ def forward(
+ context,
+ value,
+ value_spatial_shapes,
+ value_level_start_index,
+ sampling_locations,
+ attention_weights,
+ im2col_step,
+ ):
+ context.im2col_step = im2col_step
+ output = MultiScaleDeformableAttention.ms_deform_attn_forward(
+ value,
+ value_spatial_shapes,
+ value_level_start_index,
+ sampling_locations,
+ attention_weights,
+ context.im2col_step,
+ )
+ context.save_for_backward(
+ value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights
+ )
+ return output
+
+ @staticmethod
+ @once_differentiable
+ def backward(context, grad_output):
+ (
+ value,
+ value_spatial_shapes,
+ value_level_start_index,
+ sampling_locations,
+ attention_weights,
+ ) = context.saved_tensors
+ grad_value, grad_sampling_loc, grad_attn_weight = MultiScaleDeformableAttention.ms_deform_attn_backward(
+ value,
+ value_spatial_shapes,
+ value_level_start_index,
+ sampling_locations,
+ attention_weights,
+ grad_output,
+ context.im2col_step,
+ )
+
+ return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
+
+
+if is_scipy_available():
+ from scipy.optimize import linear_sum_assignment
+
+if is_timm_available():
+ from timm import create_model
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "DeformableDetrConfig"
+_CHECKPOINT_FOR_DOC = "sensetime/deformable-detr"
+
+
+from ..deprecated._archive_maps import DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+class DeformableDetrDecoderOutput(ModelOutput):
+ """
+ Base class for outputs of the DeformableDetrDecoder. This class adds two attributes to
+ BaseModelOutputWithCrossAttentions, namely:
+ - a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
+ - a stacked tensor of intermediate reference points.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
+ Stacked intermediate hidden states (output of each layer of the decoder).
+ intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
+ Stacked intermediate reference points (reference points of each layer of the decoder).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
+ used to compute the weighted average in the cross-attention heads.
+ """
+
+ last_hidden_state: torch.FloatTensor = None
+ intermediate_hidden_states: torch.FloatTensor = None
+ intermediate_reference_points: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class DeformableDetrModelOutput(ModelOutput):
+ """
+ Base class for outputs of the Deformable DETR encoder-decoder model.
+
+ Args:
+ init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
+ Initial reference points sent through the Transformer decoder.
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the decoder of the model.
+ intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
+ Stacked intermediate hidden states (output of each layer of the decoder).
+ intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
+ Stacked intermediate reference points (reference points of each layer of the decoder).
+ decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
+ plus the initial embedding outputs.
+ decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
+ num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
+ average in the self-attention heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
+ Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
+ weighted average in the cross-attention heads.
+ encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder of the model.
+ encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
+ layer plus the initial embedding outputs.
+ encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
+ Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
+ self-attention heads.
+ enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
+ Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
+ picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
+ foreground and background).
+ enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
+ Logits of predicted bounding boxes coordinates in the first stage.
+ """
+
+ init_reference_points: torch.FloatTensor = None
+ last_hidden_state: torch.FloatTensor = None
+ intermediate_hidden_states: torch.FloatTensor = None
+ intermediate_reference_points: torch.FloatTensor = None
+ decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ encoder_last_hidden_state: Optional[torch.FloatTensor] = None
+ encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ enc_outputs_class: Optional[torch.FloatTensor] = None
+ enc_outputs_coord_logits: Optional[torch.FloatTensor] = None
+
+
+@dataclass
+class DeformableDetrObjectDetectionOutput(ModelOutput):
+ """
+ Output type of [`DeformableDetrForObjectDetection`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
+ Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
+ bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
+ scale-invariant IoU loss.
+ loss_dict (`Dict`, *optional*):
+ A dictionary containing the individual losses. Useful for logging.
+ logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
+ Classification logits (including no-object) for all queries.
+ pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
+ Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
+ values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
+ possible padding). You can use [`~DeformableDetrProcessor.post_process_object_detection`] to retrieve the
+ unnormalized bounding boxes.
+ auxiliary_outputs (`list[Dict]`, *optional*):
+ Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
+ and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
+ `pred_boxes`) for each decoder layer.
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the decoder of the model.
+ decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
+ plus the initial embedding outputs.
+ decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
+ num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
+ average in the self-attention heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
+ Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
+ weighted average in the cross-attention heads.
+ encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder of the model.
+ encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
+ layer plus the initial embedding outputs.
+ encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_heads, 4,
+ 4)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average
+ in the self-attention heads.
+ intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
+ Stacked intermediate hidden states (output of each layer of the decoder).
+ intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
+ Stacked intermediate reference points (reference points of each layer of the decoder).
+ init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
+ Initial reference points sent through the Transformer decoder.
+ enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
+ Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
+ picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
+ foreground and background).
+ enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
+ Logits of predicted bounding boxes coordinates in the first stage.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ loss_dict: Optional[Dict] = None
+ logits: torch.FloatTensor = None
+ pred_boxes: torch.FloatTensor = None
+ auxiliary_outputs: Optional[List[Dict]] = None
+ init_reference_points: Optional[torch.FloatTensor] = None
+ last_hidden_state: Optional[torch.FloatTensor] = None
+ intermediate_hidden_states: Optional[torch.FloatTensor] = None
+ intermediate_reference_points: Optional[torch.FloatTensor] = None
+ decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ encoder_last_hidden_state: Optional[torch.FloatTensor] = None
+ encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ enc_outputs_class: Optional = None
+ enc_outputs_coord_logits: Optional = None
+
+
+def _get_clones(module, N):
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
+
+
+def inverse_sigmoid(x, eps=1e-5):
+ x = x.clamp(min=0, max=1)
+ x1 = x.clamp(min=eps)
+ x2 = (1 - x).clamp(min=eps)
+ return torch.log(x1 / x2)
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->DeformableDetr
+class DeformableDetrFrozenBatchNorm2d(nn.Module):
+ """
+ BatchNorm2d where the batch statistics and the affine parameters are fixed.
+
+ Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
+ torchvision.models.resnet[18,34,50,101] produce nans.
+ """
+
+ def __init__(self, n):
+ super().__init__()
+ self.register_buffer("weight", torch.ones(n))
+ self.register_buffer("bias", torch.zeros(n))
+ self.register_buffer("running_mean", torch.zeros(n))
+ self.register_buffer("running_var", torch.ones(n))
+
+ def _load_from_state_dict(
+ self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
+ ):
+ num_batches_tracked_key = prefix + "num_batches_tracked"
+ if num_batches_tracked_key in state_dict:
+ del state_dict[num_batches_tracked_key]
+
+ super()._load_from_state_dict(
+ state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
+ )
+
+ def forward(self, x):
+ # move reshapes to the beginning
+ # to make it user-friendly
+ weight = self.weight.reshape(1, -1, 1, 1)
+ bias = self.bias.reshape(1, -1, 1, 1)
+ running_var = self.running_var.reshape(1, -1, 1, 1)
+ running_mean = self.running_mean.reshape(1, -1, 1, 1)
+ epsilon = 1e-5
+ scale = weight * (running_var + epsilon).rsqrt()
+ bias = bias - running_mean * scale
+ return x * scale + bias
+
+
+# Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->DeformableDetr
+def replace_batch_norm(model):
+ r"""
+ Recursively replace all `torch.nn.BatchNorm2d` with `DeformableDetrFrozenBatchNorm2d`.
+
+ Args:
+ model (torch.nn.Module):
+ input model
+ """
+ for name, module in model.named_children():
+ if isinstance(module, nn.BatchNorm2d):
+ new_module = DeformableDetrFrozenBatchNorm2d(module.num_features)
+
+ if not module.weight.device == torch.device("meta"):
+ new_module.weight.data.copy_(module.weight)
+ new_module.bias.data.copy_(module.bias)
+ new_module.running_mean.data.copy_(module.running_mean)
+ new_module.running_var.data.copy_(module.running_var)
+
+ model._modules[name] = new_module
+
+ if len(list(module.children())) > 0:
+ replace_batch_norm(module)
+
+
+class DeformableDetrConvEncoder(nn.Module):
+ """
+ Convolutional backbone, using either the AutoBackbone API or one from the timm library.
+
+ nn.BatchNorm2d layers are replaced by DeformableDetrFrozenBatchNorm2d as defined above.
+
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.config = config
+
+ if config.use_timm_backbone:
+ requires_backends(self, ["timm"])
+ kwargs = {}
+ if config.dilation:
+ kwargs["output_stride"] = 16
+ backbone = create_model(
+ config.backbone,
+ pretrained=config.use_pretrained_backbone,
+ features_only=True,
+ out_indices=(2, 3, 4) if config.num_feature_levels > 1 else (4,),
+ in_chans=config.num_channels,
+ **kwargs,
+ )
+ else:
+ backbone = load_backbone(config)
+
+ # replace batch norm by frozen batch norm
+ with torch.no_grad():
+ replace_batch_norm(backbone)
+ self.model = backbone
+ self.intermediate_channel_sizes = (
+ self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels
+ )
+
+ backbone_model_type = config.backbone if config.use_timm_backbone else config.backbone_config.model_type
+ if "resnet" in backbone_model_type:
+ for name, parameter in self.model.named_parameters():
+ if config.use_timm_backbone:
+ if "layer2" not in name and "layer3" not in name and "layer4" not in name:
+ parameter.requires_grad_(False)
+ else:
+ if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
+ parameter.requires_grad_(False)
+
+ # Copied from transformers.models.detr.modeling_detr.DetrConvEncoder.forward with Detr->DeformableDetr
+ def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
+ # send pixel_values through the model to get list of feature maps
+ features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps
+
+ out = []
+ for feature_map in features:
+ # downsample pixel_mask to match shape of corresponding feature_map
+ mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
+ out.append((feature_map, mask))
+ return out
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrConvModel with Detr->DeformableDetr
+class DeformableDetrConvModel(nn.Module):
+ """
+ This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder.
+ """
+
+ def __init__(self, conv_encoder, position_embedding):
+ super().__init__()
+ self.conv_encoder = conv_encoder
+ self.position_embedding = position_embedding
+
+ def forward(self, pixel_values, pixel_mask):
+ # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples
+ out = self.conv_encoder(pixel_values, pixel_mask)
+ pos = []
+ for feature_map, mask in out:
+ # position encoding
+ pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype))
+
+ return out, pos
+
+
+class DeformableDetrSinePositionEmbedding(nn.Module):
+ """
+ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
+ need paper, generalized to work on images.
+ """
+
+ def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None):
+ super().__init__()
+ self.embedding_dim = embedding_dim
+ self.temperature = temperature
+ self.normalize = normalize
+ if scale is not None and normalize is False:
+ raise ValueError("normalize should be True if scale is passed")
+ if scale is None:
+ scale = 2 * math.pi
+ self.scale = scale
+
+ def forward(self, pixel_values, pixel_mask):
+ if pixel_mask is None:
+ raise ValueError("No pixel mask provided")
+ y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
+ x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
+ if self.normalize:
+ eps = 1e-6
+ y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
+ x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
+
+ dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float()
+ dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)
+
+ pos_x = x_embed[:, :, :, None] / dim_t
+ pos_y = y_embed[:, :, :, None] / dim_t
+ pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
+ pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
+ return pos
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrLearnedPositionEmbedding
+class DeformableDetrLearnedPositionEmbedding(nn.Module):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def __init__(self, embedding_dim=256):
+ super().__init__()
+ self.row_embeddings = nn.Embedding(50, embedding_dim)
+ self.column_embeddings = nn.Embedding(50, embedding_dim)
+
+ def forward(self, pixel_values, pixel_mask=None):
+ height, width = pixel_values.shape[-2:]
+ width_values = torch.arange(width, device=pixel_values.device)
+ height_values = torch.arange(height, device=pixel_values.device)
+ x_emb = self.column_embeddings(width_values)
+ y_emb = self.row_embeddings(height_values)
+ pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
+ pos = pos.permute(2, 0, 1)
+ pos = pos.unsqueeze(0)
+ pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
+ return pos
+
+
+# Copied from transformers.models.detr.modeling_detr.build_position_encoding with Detr->DeformableDetr
+def build_position_encoding(config):
+ n_steps = config.d_model // 2
+ if config.position_embedding_type == "sine":
+ # TODO find a better way of exposing other arguments
+ position_embedding = DeformableDetrSinePositionEmbedding(n_steps, normalize=True)
+ elif config.position_embedding_type == "learned":
+ position_embedding = DeformableDetrLearnedPositionEmbedding(n_steps)
+ else:
+ raise ValueError(f"Not supported {config.position_embedding_type}")
+
+ return position_embedding
+
+
+def multi_scale_deformable_attention(
+ value: Tensor, value_spatial_shapes: Tensor, sampling_locations: Tensor, attention_weights: Tensor
+) -> Tensor:
+ batch_size, _, num_heads, hidden_dim = value.shape
+ _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
+ value_list = value.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=1)
+ sampling_grids = 2 * sampling_locations - 1
+ sampling_value_list = []
+ for level_id, (height, width) in enumerate(value_spatial_shapes):
+ # batch_size, height*width, num_heads, hidden_dim
+ # -> batch_size, height*width, num_heads*hidden_dim
+ # -> batch_size, num_heads*hidden_dim, height*width
+ # -> batch_size*num_heads, hidden_dim, height, width
+ value_l_ = (
+ value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width)
+ )
+ # batch_size, num_queries, num_heads, num_points, 2
+ # -> batch_size, num_heads, num_queries, num_points, 2
+ # -> batch_size*num_heads, num_queries, num_points, 2
+ sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
+ # batch_size*num_heads, hidden_dim, num_queries, num_points
+ sampling_value_l_ = nn.functional.grid_sample(
+ value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
+ )
+ sampling_value_list.append(sampling_value_l_)
+ # (batch_size, num_queries, num_heads, num_levels, num_points)
+ # -> (batch_size, num_heads, num_queries, num_levels, num_points)
+ # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
+ attention_weights = attention_weights.transpose(1, 2).reshape(
+ batch_size * num_heads, 1, num_queries, num_levels * num_points
+ )
+ output = (
+ (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
+ .sum(-1)
+ .view(batch_size, num_heads * hidden_dim, num_queries)
+ )
+ return output.transpose(1, 2).contiguous()
+
+
+class DeformableDetrMultiscaleDeformableAttention(nn.Module):
+ """
+ Multiscale deformable attention as proposed in Deformable DETR.
+ """
+
+ def __init__(self, config: DeformableDetrConfig, num_heads: int, n_points: int):
+ super().__init__()
+
+ kernel_loaded = MultiScaleDeformableAttention is not None
+ if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
+ try:
+ load_cuda_kernels()
+ except Exception as e:
+ logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")
+
+ if config.d_model % num_heads != 0:
+ raise ValueError(
+ f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
+ )
+ dim_per_head = config.d_model // num_heads
+ # check if dim_per_head is power of 2
+ if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
+ warnings.warn(
+ "You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the"
+ " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
+ " implementation."
+ )
+
+ self.im2col_step = 64
+
+ self.d_model = config.d_model
+ self.n_levels = config.num_feature_levels
+ self.n_heads = num_heads
+ self.n_points = n_points
+
+ self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
+ self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
+ self.value_proj = nn.Linear(config.d_model, config.d_model)
+ self.output_proj = nn.Linear(config.d_model, config.d_model)
+
+ self.disable_custom_kernels = config.disable_custom_kernels
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ nn.init.constant_(self.sampling_offsets.weight.data, 0.0)
+ default_dtype = torch.get_default_dtype()
+ thetas = torch.arange(self.n_heads, dtype=torch.int64).to(default_dtype) * (2.0 * math.pi / self.n_heads)
+ grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
+ grid_init = (
+ (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
+ .view(self.n_heads, 1, 1, 2)
+ .repeat(1, self.n_levels, self.n_points, 1)
+ )
+ for i in range(self.n_points):
+ grid_init[:, :, i, :] *= i + 1
+ with torch.no_grad():
+ self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
+ nn.init.constant_(self.attention_weights.weight.data, 0.0)
+ nn.init.constant_(self.attention_weights.bias.data, 0.0)
+ nn.init.xavier_uniform_(self.value_proj.weight.data)
+ nn.init.constant_(self.value_proj.bias.data, 0.0)
+ nn.init.xavier_uniform_(self.output_proj.weight.data)
+ nn.init.constant_(self.output_proj.bias.data, 0.0)
+
+ def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
+ return tensor if position_embeddings is None else tensor + position_embeddings
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ position_embeddings: Optional[torch.Tensor] = None,
+ reference_points=None,
+ spatial_shapes=None,
+ level_start_index=None,
+ output_attentions: bool = False,
+ ):
+ # add position embeddings to the hidden states before projecting to queries and keys
+ if position_embeddings is not None:
+ hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
+
+ batch_size, num_queries, _ = hidden_states.shape
+ batch_size, sequence_length, _ = encoder_hidden_states.shape
+ if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
+ raise ValueError(
+ "Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
+ )
+
+ value = self.value_proj(encoder_hidden_states)
+ if attention_mask is not None:
+ # we invert the attention_mask
+ value = value.masked_fill(~attention_mask[..., None], float(0))
+ value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
+ sampling_offsets = self.sampling_offsets(hidden_states).view(
+ batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
+ )
+ attention_weights = self.attention_weights(hidden_states).view(
+ batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
+ )
+ attention_weights = F.softmax(attention_weights, -1).view(
+ batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
+ )
+ # batch_size, num_queries, n_heads, n_levels, n_points, 2
+ num_coordinates = reference_points.shape[-1]
+ if num_coordinates == 2:
+ offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
+ sampling_locations = (
+ reference_points[:, :, None, :, None, :]
+ + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
+ )
+ elif num_coordinates == 4:
+ sampling_locations = (
+ reference_points[:, :, None, :, None, :2]
+ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
+ )
+ else:
+ raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
+
+ if self.disable_custom_kernels:
+ # PyTorch implementation
+ output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
+ else:
+ try:
+ # custom kernel
+ output = MultiScaleDeformableAttentionFunction.apply(
+ value,
+ spatial_shapes,
+ level_start_index,
+ sampling_locations,
+ attention_weights,
+ self.im2col_step,
+ )
+ except Exception:
+ # PyTorch implementation
+ output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
+ output = self.output_proj(output)
+
+ return output, attention_weights
+
+
+class DeformableDetrMultiheadAttention(nn.Module):
+ """
+ Multi-headed attention from 'Attention Is All You Need' paper.
+
+ Here, we add position embeddings to the queries and keys (as explained in the Deformable DETR paper).
+ """
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ bias: bool = True,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ if self.head_dim * num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
+ return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
+ return tensor if position_embeddings is None else tensor + position_embeddings
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_embeddings: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ batch_size, target_len, embed_dim = hidden_states.size()
+ # add position embeddings to the hidden states before projecting to queries and keys
+ if position_embeddings is not None:
+ hidden_states_original = hidden_states
+ hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
+
+ # get queries, keys and values
+ query_states = self.q_proj(hidden_states) * self.scaling
+ key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
+ value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
+
+ proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
+ key_states = key_states.view(*proj_shape)
+ value_states = value_states.view(*proj_shape)
+
+ source_len = key_states.size(1)
+
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
+ raise ValueError(
+ f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ # expand attention_mask
+ if attention_mask is not None:
+ # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
+
+ if attention_mask is not None:
+ if attention_mask.size() != (batch_size, 1, target_len, source_len):
+ raise ValueError(
+ f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
+ f" {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
+ attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
+ attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+ attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped
+
+
+class DeformableDetrEncoderLayer(nn.Module):
+ def __init__(self, config: DeformableDetrConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+ self.self_attn = DeformableDetrMultiscaleDeformableAttention(
+ config, num_heads=config.encoder_attention_heads, n_points=config.encoder_n_points
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: torch.Tensor,
+ position_embeddings: torch.Tensor = None,
+ reference_points=None,
+ spatial_shapes=None,
+ level_start_index=None,
+ output_attentions: bool = False,
+ ):
+ """
+ Args:
+ hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Input to the layer.
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Attention mask.
+ position_embeddings (`torch.FloatTensor`, *optional*):
+ Position embeddings, to be added to `hidden_states`.
+ reference_points (`torch.FloatTensor`, *optional*):
+ Reference points.
+ spatial_shapes (`torch.LongTensor`, *optional*):
+ Spatial shapes of the backbone feature maps.
+ level_start_index (`torch.LongTensor`, *optional*):
+ Level start index.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+
+ # Apply Multi-scale Deformable Attention Module on the multi-scale feature maps.
+ hidden_states, attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=hidden_states,
+ encoder_attention_mask=attention_mask,
+ position_embeddings=position_embeddings,
+ reference_points=reference_points,
+ spatial_shapes=spatial_shapes,
+ level_start_index=level_start_index,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ if self.training:
+ if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+class DeformableDetrDecoderLayer(nn.Module):
+ def __init__(self, config: DeformableDetrConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ # self-attention
+ self.self_attn = DeformableDetrMultiheadAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ )
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ # cross-attention
+ self.encoder_attn = DeformableDetrMultiscaleDeformableAttention(
+ config,
+ num_heads=config.decoder_attention_heads,
+ n_points=config.decoder_n_points,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ # feedforward neural networks
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ position_embeddings: Optional[torch.Tensor] = None,
+ reference_points=None,
+ spatial_shapes=None,
+ level_start_index=None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ ):
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`):
+ Input to the layer of shape `(seq_len, batch, embed_dim)`.
+ position_embeddings (`torch.FloatTensor`, *optional*):
+ Position embeddings that are added to the queries and keys in the self-attention layer.
+ reference_points (`torch.FloatTensor`, *optional*):
+ Reference points.
+ spatial_shapes (`torch.LongTensor`, *optional*):
+ Spatial shapes.
+ level_start_index (`torch.LongTensor`, *optional*):
+ Level start index.
+ encoder_hidden_states (`torch.FloatTensor`):
+ cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
+ `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
+ values.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+
+ # Self Attention
+ hidden_states, self_attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ position_embeddings=position_embeddings,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ second_residual = hidden_states
+
+ # Cross-Attention
+ cross_attn_weights = None
+ hidden_states, cross_attn_weights = self.encoder_attn(
+ hidden_states=hidden_states,
+ attention_mask=encoder_attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ position_embeddings=position_embeddings,
+ reference_points=reference_points,
+ spatial_shapes=spatial_shapes,
+ level_start_index=level_start_index,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = second_residual + hidden_states
+
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ return outputs
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrClassificationHead
+class DeformableDetrClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float):
+ super().__init__()
+ self.dense = nn.Linear(input_dim, inner_dim)
+ self.dropout = nn.Dropout(p=pooler_dropout)
+ self.out_proj = nn.Linear(inner_dim, num_classes)
+
+ def forward(self, hidden_states: torch.Tensor):
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.dense(hidden_states)
+ hidden_states = torch.tanh(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.out_proj(hidden_states)
+ return hidden_states
+
+
+class DeformableDetrPreTrainedModel(PreTrainedModel):
+ config_class = DeformableDetrConfig
+ base_model_prefix = "model"
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = True
+ _no_split_modules = [r"DeformableDetrConvEncoder", r"DeformableDetrEncoderLayer", r"DeformableDetrDecoderLayer"]
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ std = self.config.init_std
+
+ if isinstance(module, DeformableDetrLearnedPositionEmbedding):
+ nn.init.uniform_(module.row_embeddings.weight)
+ nn.init.uniform_(module.column_embeddings.weight)
+ elif isinstance(module, DeformableDetrMultiscaleDeformableAttention):
+ module._reset_parameters()
+ elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ if hasattr(module, "reference_points") and not self.config.two_stage:
+ nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0)
+ nn.init.constant_(module.reference_points.bias.data, 0.0)
+ if hasattr(module, "level_embed"):
+ nn.init.normal_(module.level_embed)
+
+
+DEFORMABLE_DETR_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`DeformableDetrConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+DEFORMABLE_DETR_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it.
+
+ Pixel values can be obtained using [`AutoImageProcessor`]. See [`DeformableDetrImageProcessor.__call__`]
+ for details.
+
+ pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
+ Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
+
+ - 1 for pixels that are real (i.e. **not masked**),
+ - 0 for pixels that are padding (i.e. **masked**).
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
+ Not used by default. Can be used to mask object queries.
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
+ can choose to directly pass a flattened representation of an image.
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
+ Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
+ embedded representation.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class DeformableDetrEncoder(DeformableDetrPreTrainedModel):
+ """
+ Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
+ [`DeformableDetrEncoderLayer`].
+
+ The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers.
+
+ Args:
+ config: DeformableDetrConfig
+ """
+
+ def __init__(self, config: DeformableDetrConfig):
+ super().__init__(config)
+ self.gradient_checkpointing = False
+
+ self.dropout = config.dropout
+ self.layers = nn.ModuleList([DeformableDetrEncoderLayer(config) for _ in range(config.encoder_layers)])
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @staticmethod
+ def get_reference_points(spatial_shapes, valid_ratios, device):
+ """
+ Get reference points for each feature map. Used in decoder.
+
+ Args:
+ spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
+ Spatial shapes of each feature map.
+ valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
+ Valid ratios of each feature map.
+ device (`torch.device`):
+ Device on which to create the tensors.
+ Returns:
+ `torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
+ """
+ reference_points_list = []
+ for level, (height, width) in enumerate(spatial_shapes):
+ ref_y, ref_x = meshgrid(
+ torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device),
+ torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device),
+ indexing="ij",
+ )
+ # TODO: valid_ratios could be useless here. check https://github.com/fundamentalvision/Deformable-DETR/issues/36
+ ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, level, 1] * height)
+ ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, level, 0] * width)
+ ref = torch.stack((ref_x, ref_y), -1)
+ reference_points_list.append(ref)
+ reference_points = torch.cat(reference_points_list, 1)
+ reference_points = reference_points[:, :, None] * valid_ratios[:, None]
+ return reference_points
+
+ def forward(
+ self,
+ inputs_embeds=None,
+ attention_mask=None,
+ position_embeddings=None,
+ spatial_shapes=None,
+ level_start_index=None,
+ valid_ratios=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ r"""
+ Args:
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
+ - 1 for pixel features that are real (i.e. **not masked**),
+ - 0 for pixel features that are padding (i.e. **masked**).
+ [What are attention masks?](../glossary#attention-mask)
+ position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Position embeddings that are added to the queries and keys in each self-attention layer.
+ spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
+ Spatial shapes of each feature map.
+ level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
+ Starting index of each feature map.
+ valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
+ Ratio of valid area in each feature level.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ hidden_states = inputs_embeds
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=inputs_embeds.device)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+ for i, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ position_embeddings,
+ reference_points,
+ spatial_shapes,
+ level_start_index,
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ position_embeddings=position_embeddings,
+ reference_points=reference_points,
+ spatial_shapes=spatial_shapes,
+ level_start_index=level_start_index,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+class DeformableDetrDecoder(DeformableDetrPreTrainedModel):
+ """
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DeformableDetrDecoderLayer`].
+
+ The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
+
+ Some tweaks for Deformable DETR:
+
+ - `position_embeddings`, `reference_points`, `spatial_shapes` and `valid_ratios` are added to the forward pass.
+ - it also returns a stack of intermediate outputs and reference points from all decoding layers.
+
+ Args:
+ config: DeformableDetrConfig
+ """
+
+ def __init__(self, config: DeformableDetrConfig):
+ super().__init__(config)
+
+ self.dropout = config.dropout
+ self.layers = nn.ModuleList([DeformableDetrDecoderLayer(config) for _ in range(config.decoder_layers)])
+ self.gradient_checkpointing = False
+
+ # hack implementation for iterative bounding box refinement and two-stage Deformable DETR
+ self.bbox_embed = None
+ self.class_embed = None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ inputs_embeds=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ position_embeddings=None,
+ reference_points=None,
+ spatial_shapes=None,
+ level_start_index=None,
+ valid_ratios=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ r"""
+ Args:
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
+ The query embeddings that are passed into the decoder.
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
+ in `[0, 1]`:
+ - 1 for pixels that are real (i.e. **not masked**),
+ - 0 for pixels that are padding (i.e. **masked**).
+ position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
+ Position embeddings that are added to the queries and keys in each self-attention layer.
+ reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*):
+ Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area.
+ spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`):
+ Spatial shapes of the feature maps.
+ level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*):
+ Indexes for the start of each feature level. In range `[0, sequence_length]`.
+ valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*):
+ Ratio of valid area in each feature level.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if inputs_embeds is not None:
+ hidden_states = inputs_embeds
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+ intermediate = ()
+ intermediate_reference_points = ()
+
+ for idx, decoder_layer in enumerate(self.layers):
+ num_coordinates = reference_points.shape[-1]
+ if num_coordinates == 4:
+ reference_points_input = (
+ reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None]
+ )
+ elif reference_points.shape[-1] == 2:
+ reference_points_input = reference_points[:, :, None] * valid_ratios[:, None]
+ else:
+ raise ValueError("Reference points' last dimension must be of size 2")
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ position_embeddings,
+ reference_points_input,
+ spatial_shapes,
+ level_start_index,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ position_embeddings=position_embeddings,
+ encoder_hidden_states=encoder_hidden_states,
+ reference_points=reference_points_input,
+ spatial_shapes=spatial_shapes,
+ level_start_index=level_start_index,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ # hack implementation for iterative bounding box refinement
+ if self.bbox_embed is not None:
+ tmp = self.bbox_embed[idx](hidden_states)
+ num_coordinates = reference_points.shape[-1]
+ if num_coordinates == 4:
+ new_reference_points = tmp + inverse_sigmoid(reference_points)
+ new_reference_points = new_reference_points.sigmoid()
+ elif num_coordinates == 2:
+ new_reference_points = tmp
+ new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points)
+ new_reference_points = new_reference_points.sigmoid()
+ else:
+ raise ValueError(
+ f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}"
+ )
+ reference_points = new_reference_points.detach()
+
+ intermediate += (hidden_states,)
+ intermediate_reference_points += (reference_points,)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ # Keep batch_size as first dimension
+ intermediate = torch.stack(intermediate, dim=1)
+ intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ intermediate,
+ intermediate_reference_points,
+ all_hidden_states,
+ all_self_attns,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return DeformableDetrDecoderOutput(
+ last_hidden_state=hidden_states,
+ intermediate_hidden_states=intermediate,
+ intermediate_reference_points=intermediate_reference_points,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ The bare Deformable DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw
+ hidden-states without any specific head on top.
+ """,
+ DEFORMABLE_DETR_START_DOCSTRING,
+)
+class DeformableDetrModel(DeformableDetrPreTrainedModel):
+ def __init__(self, config: DeformableDetrConfig):
+ super().__init__(config)
+
+ # Create backbone + positional encoding
+ backbone = DeformableDetrConvEncoder(config)
+ position_embeddings = build_position_encoding(config)
+ self.backbone = DeformableDetrConvModel(backbone, position_embeddings)
+
+ # Create input projection layers
+ if config.num_feature_levels > 1:
+ num_backbone_outs = len(backbone.intermediate_channel_sizes)
+ input_proj_list = []
+ for _ in range(num_backbone_outs):
+ in_channels = backbone.intermediate_channel_sizes[_]
+ input_proj_list.append(
+ nn.Sequential(
+ nn.Conv2d(in_channels, config.d_model, kernel_size=1),
+ nn.GroupNorm(32, config.d_model),
+ )
+ )
+ for _ in range(config.num_feature_levels - num_backbone_outs):
+ input_proj_list.append(
+ nn.Sequential(
+ nn.Conv2d(in_channels, config.d_model, kernel_size=3, stride=2, padding=1),
+ nn.GroupNorm(32, config.d_model),
+ )
+ )
+ in_channels = config.d_model
+ self.input_proj = nn.ModuleList(input_proj_list)
+ else:
+ self.input_proj = nn.ModuleList(
+ [
+ nn.Sequential(
+ nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1),
+ nn.GroupNorm(32, config.d_model),
+ )
+ ]
+ )
+
+ if not config.two_stage:
+ self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model * 2)
+
+ self.encoder = DeformableDetrEncoder(config)
+ self.decoder = DeformableDetrDecoder(config)
+
+ self.level_embed = nn.Parameter(torch.Tensor(config.num_feature_levels, config.d_model))
+
+ if config.two_stage:
+ self.enc_output = nn.Linear(config.d_model, config.d_model)
+ self.enc_output_norm = nn.LayerNorm(config.d_model)
+ self.pos_trans = nn.Linear(config.d_model * 2, config.d_model * 2)
+ self.pos_trans_norm = nn.LayerNorm(config.d_model * 2)
+ else:
+ self.reference_points = nn.Linear(config.d_model, 2)
+
+ self.post_init()
+
+ def get_encoder(self):
+ return self.encoder
+
+ def get_decoder(self):
+ return self.decoder
+
+ def freeze_backbone(self):
+ for name, param in self.backbone.conv_encoder.model.named_parameters():
+ param.requires_grad_(False)
+
+ def unfreeze_backbone(self):
+ for name, param in self.backbone.conv_encoder.model.named_parameters():
+ param.requires_grad_(True)
+
+ def get_valid_ratio(self, mask, dtype=torch.float32):
+ """Get the valid ratio of all feature maps."""
+
+ _, height, width = mask.shape
+ valid_height = torch.sum(mask[:, :, 0], 1)
+ valid_width = torch.sum(mask[:, 0, :], 1)
+ valid_ratio_height = valid_height.to(dtype) / height
+ valid_ratio_width = valid_width.to(dtype) / width
+ valid_ratio = torch.stack([valid_ratio_width, valid_ratio_height], -1)
+ return valid_ratio
+
+ def get_proposal_pos_embed(self, proposals):
+ """Get the position embedding of the proposals."""
+
+ num_pos_feats = self.config.d_model // 2
+ temperature = 10000
+ scale = 2 * math.pi
+
+ dim_t = torch.arange(num_pos_feats, dtype=torch.int64, device=proposals.device).float()
+ dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
+ # batch_size, num_queries, 4
+ proposals = proposals.sigmoid() * scale
+ # batch_size, num_queries, 4, 128
+ pos = proposals[:, :, :, None] / dim_t
+ # batch_size, num_queries, 4, 64, 2 -> batch_size, num_queries, 512
+ pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
+ return pos
+
+ def gen_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes):
+ """Generate the encoder output proposals from encoded enc_output.
+
+ Args:
+ enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder.
+ padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`.
+ spatial_shapes (Tensor[num_feature_levels, 2]): Spatial shapes of the feature maps.
+
+ Returns:
+ `tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
+ - object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to
+ directly predict a bounding box. (without the need of a decoder)
+ - output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse
+ sigmoid.
+ """
+ batch_size = enc_output.shape[0]
+ proposals = []
+ _cur = 0
+ for level, (height, width) in enumerate(spatial_shapes):
+ mask_flatten_ = padding_mask[:, _cur : (_cur + height * width)].view(batch_size, height, width, 1)
+ valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
+ valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
+
+ grid_y, grid_x = meshgrid(
+ torch.linspace(0, height - 1, height, dtype=torch.float32, device=enc_output.device),
+ torch.linspace(0, width - 1, width, dtype=torch.float32, device=enc_output.device),
+ indexing="ij",
+ )
+ grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
+
+ scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2)
+ grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale
+ width_heigth = torch.ones_like(grid) * 0.05 * (2.0**level)
+ proposal = torch.cat((grid, width_heigth), -1).view(batch_size, -1, 4)
+ proposals.append(proposal)
+ _cur += height * width
+ output_proposals = torch.cat(proposals, 1)
+ output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
+ output_proposals = torch.log(output_proposals / (1 - output_proposals)) # inverse sigmoid
+ output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float("inf"))
+ output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
+
+ # assign each pixel as an object query
+ object_query = enc_output
+ object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0))
+ object_query = object_query.masked_fill(~output_proposals_valid, float(0))
+ object_query = self.enc_output_norm(self.enc_output(object_query))
+ return object_query, output_proposals
+
+ @add_start_docstrings_to_model_forward(DEFORMABLE_DETR_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=DeformableDetrModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ pixel_mask: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_outputs: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], DeformableDetrModelOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, DeformableDetrModel
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("SenseTime/deformable-detr")
+ >>> model = DeformableDetrModel.from_pretrained("SenseTime/deformable-detr")
+
+ >>> inputs = image_processor(images=image, return_tensors="pt")
+
+ >>> outputs = model(**inputs)
+
+ >>> last_hidden_states = outputs.last_hidden_state
+ >>> list(last_hidden_states.shape)
+ [1, 300, 256]
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ batch_size, num_channels, height, width = pixel_values.shape
+ device = pixel_values.device
+
+ if pixel_mask is None:
+ pixel_mask = torch.ones(((batch_size, height, width)), dtype=torch.long, device=device)
+
+ # Extract multi-scale feature maps of same resolution `config.d_model` (cf Figure 4 in paper)
+ # First, sent pixel_values + pixel_mask through Backbone to obtain the features
+ # which is a list of tuples
+ features, position_embeddings_list = self.backbone(pixel_values, pixel_mask)
+
+ # Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
+ sources = []
+ masks = []
+ for level, (source, mask) in enumerate(features):
+ sources.append(self.input_proj[level](source))
+ masks.append(mask)
+ if mask is None:
+ raise ValueError("No attention mask was provided")
+
+ # Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage
+ if self.config.num_feature_levels > len(sources):
+ _len_sources = len(sources)
+ for level in range(_len_sources, self.config.num_feature_levels):
+ if level == _len_sources:
+ source = self.input_proj[level](features[-1][0])
+ else:
+ source = self.input_proj[level](sources[-1])
+ mask = nn.functional.interpolate(pixel_mask[None].float(), size=source.shape[-2:]).to(torch.bool)[0]
+ pos_l = self.backbone.position_embedding(source, mask).to(source.dtype)
+ sources.append(source)
+ masks.append(mask)
+ position_embeddings_list.append(pos_l)
+
+ # Create queries
+ query_embeds = None
+ if not self.config.two_stage:
+ query_embeds = self.query_position_embeddings.weight
+
+ # Prepare encoder inputs (by flattening)
+ source_flatten = []
+ mask_flatten = []
+ lvl_pos_embed_flatten = []
+ spatial_shapes = []
+ for level, (source, mask, pos_embed) in enumerate(zip(sources, masks, position_embeddings_list)):
+ batch_size, num_channels, height, width = source.shape
+ spatial_shape = (height, width)
+ spatial_shapes.append(spatial_shape)
+ source = source.flatten(2).transpose(1, 2)
+ mask = mask.flatten(1)
+ pos_embed = pos_embed.flatten(2).transpose(1, 2)
+ lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1)
+ lvl_pos_embed_flatten.append(lvl_pos_embed)
+ source_flatten.append(source)
+ mask_flatten.append(mask)
+ source_flatten = torch.cat(source_flatten, 1)
+ mask_flatten = torch.cat(mask_flatten, 1)
+ lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
+ spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=source_flatten.device)
+ level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
+ valid_ratios = torch.stack([self.get_valid_ratio(m, dtype=source_flatten.dtype) for m in masks], 1)
+
+ # Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder
+ # Also provide spatial_shapes, level_start_index and valid_ratios
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ inputs_embeds=source_flatten,
+ attention_mask=mask_flatten,
+ position_embeddings=lvl_pos_embed_flatten,
+ spatial_shapes=spatial_shapes,
+ level_start_index=level_start_index,
+ valid_ratios=valid_ratios,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ # Fifth, prepare decoder inputs
+ batch_size, _, num_channels = encoder_outputs[0].shape
+ enc_outputs_class = None
+ enc_outputs_coord_logits = None
+ if self.config.two_stage:
+ object_query_embedding, output_proposals = self.gen_encoder_output_proposals(
+ encoder_outputs[0], ~mask_flatten, spatial_shapes
+ )
+
+ # hack implementation for two-stage Deformable DETR
+ # apply a detection head to each pixel (A.4 in paper)
+ # linear projection for bounding box binary classification (i.e. foreground and background)
+ enc_outputs_class = self.decoder.class_embed[-1](object_query_embedding)
+ # 3-layer FFN to predict bounding boxes coordinates (bbox regression branch)
+ delta_bbox = self.decoder.bbox_embed[-1](object_query_embedding)
+ enc_outputs_coord_logits = delta_bbox + output_proposals
+
+ # only keep top scoring `config.two_stage_num_proposals` proposals
+ topk = self.config.two_stage_num_proposals
+ topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1]
+ topk_coords_logits = torch.gather(
+ enc_outputs_coord_logits, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
+ )
+
+ topk_coords_logits = topk_coords_logits.detach()
+ reference_points = topk_coords_logits.sigmoid()
+ init_reference_points = reference_points
+ pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_logits)))
+ query_embed, target = torch.split(pos_trans_out, num_channels, dim=2)
+ else:
+ query_embed, target = torch.split(query_embeds, num_channels, dim=1)
+ query_embed = query_embed.unsqueeze(0).expand(batch_size, -1, -1)
+ target = target.unsqueeze(0).expand(batch_size, -1, -1)
+ reference_points = self.reference_points(query_embed).sigmoid()
+ init_reference_points = reference_points
+
+ decoder_outputs = self.decoder(
+ inputs_embeds=target,
+ position_embeddings=query_embed,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=mask_flatten,
+ reference_points=reference_points,
+ spatial_shapes=spatial_shapes,
+ level_start_index=level_start_index,
+ valid_ratios=valid_ratios,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ enc_outputs = tuple(value for value in [enc_outputs_class, enc_outputs_coord_logits] if value is not None)
+ tuple_outputs = (init_reference_points,) + decoder_outputs + encoder_outputs + enc_outputs
+
+ return tuple_outputs
+
+ return DeformableDetrModelOutput(
+ init_reference_points=init_reference_points,
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
+ intermediate_reference_points=decoder_outputs.intermediate_reference_points,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ enc_outputs_class=enc_outputs_class,
+ enc_outputs_coord_logits=enc_outputs_coord_logits,
+ )
+
+
+@add_start_docstrings(
+ """
+ Deformable DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on
+ top, for tasks such as COCO detection.
+ """,
+ DEFORMABLE_DETR_START_DOCSTRING,
+)
+class DeformableDetrForObjectDetection(DeformableDetrPreTrainedModel):
+ # When using clones, all layers > 0 will be clones, but layer 0 *is* required
+ _tied_weights_keys = [r"bbox_embed\.[1-9]\d*", r"class_embed\.[1-9]\d*"]
+ # We can't initialize the model on meta device as some weights are modified during the initialization
+ _no_split_modules = None
+
+ def __init__(self, config: DeformableDetrConfig):
+ super().__init__(config)
+
+ # Deformable DETR encoder-decoder model
+ self.model = DeformableDetrModel(config)
+
+ # Detection heads on top
+ self.class_embed = nn.Linear(config.d_model, config.num_labels)
+ self.bbox_embed = DeformableDetrMLPPredictionHead(
+ input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
+ )
+
+ prior_prob = 0.01
+ bias_value = -math.log((1 - prior_prob) / prior_prob)
+ self.class_embed.bias.data = torch.ones(config.num_labels) * bias_value
+ nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
+ nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
+
+ # if two-stage, the last class_embed and bbox_embed is for region proposal generation
+ num_pred = (config.decoder_layers + 1) if config.two_stage else config.decoder_layers
+ if config.with_box_refine:
+ self.class_embed = _get_clones(self.class_embed, num_pred)
+ self.bbox_embed = _get_clones(self.bbox_embed, num_pred)
+ nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
+ # hack implementation for iterative bounding box refinement
+ self.model.decoder.bbox_embed = self.bbox_embed
+ else:
+ nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0)
+ self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)])
+ self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)])
+ self.model.decoder.bbox_embed = None
+ if config.two_stage:
+ # hack implementation for two-stage
+ self.model.decoder.class_embed = self.class_embed
+ for box_embed in self.bbox_embed:
+ nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
+ @torch.jit.unused
+ def _set_aux_loss(self, outputs_class, outputs_coord):
+ # this is a workaround to make torchscript happy, as torchscript
+ # doesn't support dictionary with non-homogeneous values, such
+ # as a dict having both a Tensor and a list.
+ return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
+
+ @add_start_docstrings_to_model_forward(DEFORMABLE_DETR_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=DeformableDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ pixel_mask: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_outputs: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[List[dict]] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], DeformableDetrObjectDetectionOutput]:
+ r"""
+ labels (`List[Dict]` of len `(batch_size,)`, *optional*):
+ Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
+ following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
+ respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
+ in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, DeformableDetrForObjectDetection
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("SenseTime/deformable-detr")
+ >>> model = DeformableDetrForObjectDetection.from_pretrained("SenseTime/deformable-detr")
+
+ >>> inputs = image_processor(images=image, return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
+ >>> target_sizes = torch.tensor([image.size[::-1]])
+ >>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[
+ ... 0
+ ... ]
+ >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
+ ... box = [round(i, 2) for i in box.tolist()]
+ ... print(
+ ... f"Detected {model.config.id2label[label.item()]} with confidence "
+ ... f"{round(score.item(), 3)} at location {box}"
+ ... )
+ Detected cat with confidence 0.8 at location [16.5, 52.84, 318.25, 470.78]
+ Detected cat with confidence 0.789 at location [342.19, 24.3, 640.02, 372.25]
+ Detected remote with confidence 0.633 at location [40.79, 72.78, 176.76, 117.25]
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # First, sent images through DETR base model to obtain encoder + decoder outputs
+ outputs = self.model(
+ pixel_values,
+ pixel_mask=pixel_mask,
+ decoder_attention_mask=decoder_attention_mask,
+ encoder_outputs=encoder_outputs,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs.intermediate_hidden_states if return_dict else outputs[2]
+ init_reference = outputs.init_reference_points if return_dict else outputs[0]
+ inter_references = outputs.intermediate_reference_points if return_dict else outputs[3]
+
+ # class logits + predicted bounding boxes
+ outputs_classes = []
+ outputs_coords = []
+
+ for level in range(hidden_states.shape[1]):
+ if level == 0:
+ reference = init_reference
+ else:
+ reference = inter_references[:, level - 1]
+ reference = inverse_sigmoid(reference)
+ outputs_class = self.class_embed[level](hidden_states[:, level])
+ delta_bbox = self.bbox_embed[level](hidden_states[:, level])
+ if reference.shape[-1] == 4:
+ outputs_coord_logits = delta_bbox + reference
+ elif reference.shape[-1] == 2:
+ delta_bbox[..., :2] += reference
+ outputs_coord_logits = delta_bbox
+ else:
+ raise ValueError(f"reference.shape[-1] should be 4 or 2, but got {reference.shape[-1]}")
+ outputs_coord = outputs_coord_logits.sigmoid()
+ outputs_classes.append(outputs_class)
+ outputs_coords.append(outputs_coord)
+ outputs_class = torch.stack(outputs_classes)
+ outputs_coord = torch.stack(outputs_coords)
+
+ logits = outputs_class[-1]
+ pred_boxes = outputs_coord[-1]
+
+ loss, loss_dict, auxiliary_outputs = None, None, None
+ if labels is not None:
+ # First: create the matcher
+ matcher = DeformableDetrHungarianMatcher(
+ class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost
+ )
+ # Second: create the criterion
+ losses = ["labels", "boxes", "cardinality"]
+ criterion = DeformableDetrLoss(
+ matcher=matcher,
+ num_classes=self.config.num_labels,
+ focal_alpha=self.config.focal_alpha,
+ losses=losses,
+ )
+ criterion.to(self.device)
+ # Third: compute the losses, based on outputs and labels
+ outputs_loss = {}
+ outputs_loss["logits"] = logits
+ outputs_loss["pred_boxes"] = pred_boxes
+ if self.config.auxiliary_loss:
+ auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord)
+ outputs_loss["auxiliary_outputs"] = auxiliary_outputs
+ if self.config.two_stage:
+ enc_outputs_coord = outputs.enc_outputs_coord_logits.sigmoid()
+ outputs_loss["enc_outputs"] = {"logits": outputs.enc_outputs_class, "pred_boxes": enc_outputs_coord}
+
+ loss_dict = criterion(outputs_loss, labels)
+ # Fourth: compute total loss, as a weighted sum of the various losses
+ weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient}
+ weight_dict["loss_giou"] = self.config.giou_loss_coefficient
+ if self.config.auxiliary_loss:
+ aux_weight_dict = {}
+ for i in range(self.config.decoder_layers - 1):
+ aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
+ weight_dict.update(aux_weight_dict)
+ loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
+
+ if not return_dict:
+ if auxiliary_outputs is not None:
+ output = (logits, pred_boxes) + auxiliary_outputs + outputs
+ else:
+ output = (logits, pred_boxes) + outputs
+ tuple_outputs = ((loss, loss_dict) + output) if loss is not None else output
+
+ return tuple_outputs
+
+ dict_outputs = DeformableDetrObjectDetectionOutput(
+ loss=loss,
+ loss_dict=loss_dict,
+ logits=logits,
+ pred_boxes=pred_boxes,
+ auxiliary_outputs=auxiliary_outputs,
+ last_hidden_state=outputs.last_hidden_state,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ intermediate_hidden_states=outputs.intermediate_hidden_states,
+ intermediate_reference_points=outputs.intermediate_reference_points,
+ init_reference_points=outputs.init_reference_points,
+ enc_outputs_class=outputs.enc_outputs_class,
+ enc_outputs_coord_logits=outputs.enc_outputs_coord_logits,
+ )
+
+ return dict_outputs
+
+
+# Copied from transformers.models.detr.modeling_detr.dice_loss
+def dice_loss(inputs, targets, num_boxes):
+ """
+ Compute the DICE loss, similar to generalized IOU for masks
+
+ Args:
+ inputs: A float tensor of arbitrary shape.
+ The predictions for each example.
+ targets: A float tensor with the same shape as inputs. Stores the binary
+ classification label for each element in inputs (0 for the negative class and 1 for the positive
+ class).
+ """
+ inputs = inputs.sigmoid()
+ inputs = inputs.flatten(1)
+ numerator = 2 * (inputs * targets).sum(1)
+ denominator = inputs.sum(-1) + targets.sum(-1)
+ loss = 1 - (numerator + 1) / (denominator + 1)
+ return loss.sum() / num_boxes
+
+
+# Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss
+def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
+ """
+ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
+
+ Args:
+ inputs (`torch.FloatTensor` of arbitrary shape):
+ The predictions for each example.
+ targets (`torch.FloatTensor` with the same shape as `inputs`)
+ A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class
+ and 1 for the positive class).
+ alpha (`float`, *optional*, defaults to `0.25`):
+ Optional weighting factor in the range (0,1) to balance positive vs. negative examples.
+ gamma (`int`, *optional*, defaults to `2`):
+ Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples.
+
+ Returns:
+ Loss tensor
+ """
+ prob = inputs.sigmoid()
+ ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
+ # add modulating factor
+ p_t = prob * targets + (1 - prob) * (1 - targets)
+ loss = ce_loss * ((1 - p_t) ** gamma)
+
+ if alpha >= 0:
+ alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
+ loss = alpha_t * loss
+
+ return loss.mean(1).sum() / num_boxes
+
+
+class DeformableDetrLoss(nn.Module):
+ """
+ This class computes the losses for `DeformableDetrForObjectDetection`. The process happens in two steps: 1) we
+ compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of
+ matched ground-truth / prediction (supervise class and box).
+
+ Args:
+ matcher (`DeformableDetrHungarianMatcher`):
+ Module able to compute a matching between targets and proposals.
+ num_classes (`int`):
+ Number of object categories, omitting the special no-object category.
+ focal_alpha (`float`):
+ Alpha parameter in focal loss.
+ losses (`List[str]`):
+ List of all the losses to be applied. See `get_loss` for a list of all available losses.
+ """
+
+ def __init__(self, matcher, num_classes, focal_alpha, losses):
+ super().__init__()
+ self.matcher = matcher
+ self.num_classes = num_classes
+ self.focal_alpha = focal_alpha
+ self.losses = losses
+
+ # removed logging parameter, which was part of the original implementation
+ def loss_labels(self, outputs, targets, indices, num_boxes):
+ """
+ Classification loss (Binary focal loss) targets dicts must contain the key "class_labels" containing a tensor
+ of dim [nb_target_boxes]
+ """
+ if "logits" not in outputs:
+ raise KeyError("No logits were found in the outputs")
+ source_logits = outputs["logits"]
+
+ idx = self._get_source_permutation_idx(indices)
+ target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
+ target_classes = torch.full(
+ source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
+ )
+ target_classes[idx] = target_classes_o
+
+ target_classes_onehot = torch.zeros(
+ [source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1],
+ dtype=source_logits.dtype,
+ layout=source_logits.layout,
+ device=source_logits.device,
+ )
+ target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
+
+ target_classes_onehot = target_classes_onehot[:, :, :-1]
+ loss_ce = (
+ sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2)
+ * source_logits.shape[1]
+ )
+ losses = {"loss_ce": loss_ce}
+
+ return losses
+
+ @torch.no_grad()
+ # Copied from transformers.models.detr.modeling_detr.DetrLoss.loss_cardinality
+ def loss_cardinality(self, outputs, targets, indices, num_boxes):
+ """
+ Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.
+
+ This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
+ """
+ logits = outputs["logits"]
+ device = logits.device
+ target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
+ # Count the number of predictions that are NOT "no-object" (which is the last class)
+ card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
+ card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
+ losses = {"cardinality_error": card_err}
+ return losses
+
+ # Copied from transformers.models.detr.modeling_detr.DetrLoss.loss_boxes
+ def loss_boxes(self, outputs, targets, indices, num_boxes):
+ """
+ Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.
+
+ Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
+ are expected in format (center_x, center_y, w, h), normalized by the image size.
+ """
+ if "pred_boxes" not in outputs:
+ raise KeyError("No predicted boxes found in outputs")
+ idx = self._get_source_permutation_idx(indices)
+ source_boxes = outputs["pred_boxes"][idx]
+ target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
+
+ loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")
+
+ losses = {}
+ losses["loss_bbox"] = loss_bbox.sum() / num_boxes
+
+ loss_giou = 1 - torch.diag(
+ generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))
+ )
+ losses["loss_giou"] = loss_giou.sum() / num_boxes
+ return losses
+
+ # Copied from transformers.models.detr.modeling_detr.DetrLoss._get_source_permutation_idx
+ def _get_source_permutation_idx(self, indices):
+ # permute predictions following indices
+ batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
+ source_idx = torch.cat([source for (source, _) in indices])
+ return batch_idx, source_idx
+
+ # Copied from transformers.models.detr.modeling_detr.DetrLoss._get_target_permutation_idx
+ def _get_target_permutation_idx(self, indices):
+ # permute targets following indices
+ batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
+ target_idx = torch.cat([target for (_, target) in indices])
+ return batch_idx, target_idx
+
+ def get_loss(self, loss, outputs, targets, indices, num_boxes):
+ loss_map = {
+ "labels": self.loss_labels,
+ "cardinality": self.loss_cardinality,
+ "boxes": self.loss_boxes,
+ }
+ if loss not in loss_map:
+ raise ValueError(f"Loss {loss} not supported")
+ return loss_map[loss](outputs, targets, indices, num_boxes)
+
+ def forward(self, outputs, targets):
+ """
+ This performs the loss computation.
+
+ Args:
+ outputs (`dict`, *optional*):
+ Dictionary of tensors, see the output specification of the model for the format.
+ targets (`List[dict]`, *optional*):
+ List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
+ losses applied, see each loss' doc.
+ """
+ outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs" and k != "enc_outputs"}
+
+ # Retrieve the matching between the outputs of the last layer and the targets
+ indices = self.matcher(outputs_without_aux, targets)
+
+ # Compute the average number of target boxes accross all nodes, for normalization purposes
+ num_boxes = sum(len(t["class_labels"]) for t in targets)
+ num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
+ world_size = 1
+ if is_accelerate_available():
+ if PartialState._shared_state != {}:
+ num_boxes = reduce(num_boxes)
+ world_size = PartialState().num_processes
+ num_boxes = torch.clamp(num_boxes / world_size, min=1).item()
+
+ # Compute all the requested losses
+ losses = {}
+ for loss in self.losses:
+ losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
+
+ # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
+ if "auxiliary_outputs" in outputs:
+ for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
+ indices = self.matcher(auxiliary_outputs, targets)
+ for loss in self.losses:
+ l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
+ l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
+ losses.update(l_dict)
+
+ if "enc_outputs" in outputs:
+ enc_outputs = outputs["enc_outputs"]
+ bin_targets = copy.deepcopy(targets)
+ for bt in bin_targets:
+ bt["class_labels"] = torch.zeros_like(bt["class_labels"])
+ indices = self.matcher(enc_outputs, bin_targets)
+ for loss in self.losses:
+ l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes)
+ l_dict = {k + "_enc": v for k, v in l_dict.items()}
+ losses.update(l_dict)
+
+ return losses
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead
+class DeformableDetrMLPPredictionHead(nn.Module):
+ """
+ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
+ height and width of a bounding box w.r.t. an image.
+
+ Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
+
+ """
+
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
+ super().__init__()
+ self.num_layers = num_layers
+ h = [hidden_dim] * (num_layers - 1)
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
+
+ def forward(self, x):
+ for i, layer in enumerate(self.layers):
+ x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+ return x
+
+
+class DeformableDetrHungarianMatcher(nn.Module):
+ """
+ This class computes an assignment between the targets and the predictions of the network.
+
+ For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
+ predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
+ un-matched (and thus treated as non-objects).
+
+ Args:
+ class_cost:
+ The relative weight of the classification error in the matching cost.
+ bbox_cost:
+ The relative weight of the L1 error of the bounding box coordinates in the matching cost.
+ giou_cost:
+ The relative weight of the giou loss of the bounding box in the matching cost.
+ """
+
+ def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):
+ super().__init__()
+ requires_backends(self, ["scipy"])
+
+ self.class_cost = class_cost
+ self.bbox_cost = bbox_cost
+ self.giou_cost = giou_cost
+ if class_cost == 0 and bbox_cost == 0 and giou_cost == 0:
+ raise ValueError("All costs of the Matcher can't be 0")
+
+ @torch.no_grad()
+ def forward(self, outputs, targets):
+ """
+ Args:
+ outputs (`dict`):
+ A dictionary that contains at least these entries:
+ * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
+ * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.
+ targets (`List[dict]`):
+ A list of targets (len(targets) = batch_size), where each target is a dict containing:
+ * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of
+ ground-truth
+ objects in the target) containing the class labels
+ * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.
+
+ Returns:
+ `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:
+ - index_i is the indices of the selected predictions (in order)
+ - index_j is the indices of the corresponding selected targets (in order)
+ For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
+ """
+ batch_size, num_queries = outputs["logits"].shape[:2]
+
+ # We flatten to compute the cost matrices in a batch
+ out_prob = outputs["logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes]
+ out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
+
+ # Also concat the target labels and boxes
+ target_ids = torch.cat([v["class_labels"] for v in targets])
+ target_bbox = torch.cat([v["boxes"] for v in targets])
+
+ # Compute the classification cost.
+ alpha = 0.25
+ gamma = 2.0
+ neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log())
+ pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
+ class_cost = pos_cost_class[:, target_ids] - neg_cost_class[:, target_ids]
+
+ # Compute the L1 cost between boxes
+ bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
+
+ # Compute the giou cost between boxes
+ giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
+
+ # Final cost matrix
+ cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
+ cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
+
+ sizes = [len(v["boxes"]) for v in targets]
+ indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
+ return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
+
+
+# Copied from transformers.models.detr.modeling_detr._upcast
+def _upcast(t: Tensor) -> Tensor:
+ # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
+ if t.is_floating_point():
+ return t if t.dtype in (torch.float32, torch.float64) else t.float()
+ else:
+ return t if t.dtype in (torch.int32, torch.int64) else t.int()
+
+
+# Copied from transformers.models.detr.modeling_detr.box_area
+def box_area(boxes: Tensor) -> Tensor:
+ """
+ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
+
+ Args:
+ boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
+ Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
+ < x2` and `0 <= y1 < y2`.
+
+ Returns:
+ `torch.FloatTensor`: a tensor containing the area for each box.
+ """
+ boxes = _upcast(boxes)
+ return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
+
+
+# Copied from transformers.models.detr.modeling_detr.box_iou
+def box_iou(boxes1, boxes2):
+ area1 = box_area(boxes1)
+ area2 = box_area(boxes2)
+
+ left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
+ right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
+
+ width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
+ inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
+
+ union = area1[:, None] + area2 - inter
+
+ iou = inter / union
+ return iou, union
+
+
+# Copied from transformers.models.detr.modeling_detr.generalized_box_iou
+def generalized_box_iou(boxes1, boxes2):
+ """
+ Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format.
+
+ Returns:
+ `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)
+ """
+ # degenerate boxes gives inf / nan results
+ # so do an early check
+ if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
+ raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
+ if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
+ raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
+ iou, union = box_iou(boxes1, boxes2)
+
+ top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
+ bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
+
+ width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2]
+ area = width_height[:, :, 0] * width_height[:, :, 1]
+
+ return iou - (area - union) / area
+
+
+# Copied from transformers.models.detr.modeling_detr._max_by_axis
+def _max_by_axis(the_list):
+ # type: (List[List[int]]) -> List[int]
+ maxes = the_list[0]
+ for sublist in the_list[1:]:
+ for index, item in enumerate(sublist):
+ maxes[index] = max(maxes[index], item)
+ return maxes
+
+
+# Copied from transformers.models.detr.modeling_detr.NestedTensor
+class NestedTensor(object):
+ def __init__(self, tensors, mask: Optional[Tensor]):
+ self.tensors = tensors
+ self.mask = mask
+
+ def to(self, device):
+ cast_tensor = self.tensors.to(device)
+ mask = self.mask
+ if mask is not None:
+ cast_mask = mask.to(device)
+ else:
+ cast_mask = None
+ return NestedTensor(cast_tensor, cast_mask)
+
+ def decompose(self):
+ return self.tensors, self.mask
+
+ def __repr__(self):
+ return str(self.tensors)
+
+
+# Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list
+def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
+ if tensor_list[0].ndim == 3:
+ max_size = _max_by_axis([list(img.shape) for img in tensor_list])
+ batch_shape = [len(tensor_list)] + max_size
+ batch_size, num_channels, height, width = batch_shape
+ dtype = tensor_list[0].dtype
+ device = tensor_list[0].device
+ tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
+ mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
+ for img, pad_img, m in zip(tensor_list, tensor, mask):
+ pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
+ m[: img.shape[1], : img.shape[2]] = False
+ else:
+ raise ValueError("Only 3-dimensional tensors are supported")
+ return NestedTensor(tensor, mask)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f6b7c2137b209cbf31c3c1870aa45e6a94b4dbfb
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__init__.py
@@ -0,0 +1,58 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {
+ "configuration_jamba": ["JambaConfig"],
+}
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_jamba"] = [
+ "JambaForCausalLM",
+ "JambaForSequenceClassification",
+ "JambaModel",
+ "JambaPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_jamba import JambaConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_jamba import (
+ JambaForCausalLM,
+ JambaForSequenceClassification,
+ JambaModel,
+ JambaPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b17bcb476e57326e828f9362a7f2b5c255d5f2a8
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/configuration_jamba.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/configuration_jamba.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e52ed8eae720034a48b80f9169c57cbdd59da028
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/configuration_jamba.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/modeling_jamba.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/modeling_jamba.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dd79b520ac13979e4f514e2a271536b2084a1a67
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/__pycache__/modeling_jamba.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/configuration_jamba.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/configuration_jamba.py
new file mode 100644
index 0000000000000000000000000000000000000000..de9cd378bdc1a5903d6ed7077146ac3f4e8ff731
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/configuration_jamba.py
@@ -0,0 +1,223 @@
+# coding=utf-8
+# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Jamba model configuration"""
+import math
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class JambaConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a
+ Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the Jamba-v0.1 model.
+
+ [ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1)
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 65536):
+ Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`JambaModel`]
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
+ model has a output word embedding layer.
+ hidden_size (`int`, *optional*, defaults to 4096):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 14336):
+ Dimension of the MLP representations.
+ num_hidden_layers (`int`, *optional*, defaults to 32):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_key_value_heads (`int`, *optional*, defaults to 8):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details checkout [this
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
+ The epsilon used by the rms normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
+ Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
+ integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
+ logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
+ sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
+ significantly.
+ output_router_logits (`bool`, *optional*, defaults to `False`):
+ Whether or not the router logits should be returned by the model. Enabling this will also
+ allow the model to output the auxiliary loss. See [here]() for more details
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
+ The aux loss factor for the total loss.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ The id of the padding token.
+ bos_token_id (`int`, *optional*, defaults to 1):
+ The id of the "beginning-of-sequence" token.
+ eos_token_id (`int`, *optional*, defaults to 2):
+ The id of the "end-of-sequence" token.
+ sliding_window (`int`, *optional*):
+ Sliding window attention window size. If not specified, will default to `None`.
+ max_position_embeddings (`int`, *optional*, defaults to 262144):
+ This value doesn't have any real effect. The maximum sequence length that this model is intended to be
+ used with. It can be used with longer sequences, but performance may degrade.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
+ The number of experts to root per-token, can be also interpreted as the `top-p` routing
+ parameter
+ num_experts (`int`, *optional*, defaults to 16):
+ Number of experts per Sparse MLP layer.
+ expert_layer_period (`int`, *optional*, defaults to 2):
+ Once in this many layers, we will have an expert layer
+ expert_layer_offset (`int`, *optional*, defaults to 1):
+ The first layer index that contains an expert mlp layer
+ attn_layer_period (`int`, *optional*, defaults to 8):
+ Once in this many layers, we will have a vanilla attention layer
+ attn_layer_offset (`int`, *optional*, defaults to 4):
+ The first layer index that contains a vanilla attention mlp layer
+ use_mamba_kernels (`bool`, *optional*, defaults to `True`):
+ Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
+ `causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if
+ `True` and kernels are not available
+ mamba_d_state (`int`, *optional*, defaults to 16):
+ The dimension the mamba state space latents
+ mamba_d_conv (`int`, *optional*, defaults to 4):
+ The size of the mamba convolution kernel
+ mamba_expand (`int`, *optional*, defaults to 2):
+ Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
+ mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
+ Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
+ mamba_conv_bias (`bool`, *optional*, defaults to `True`):
+ Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
+ mamba_proj_bias (`bool`, *optional*, defaults to `False`):
+ Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
+
+ """
+
+ model_type = "jamba"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ vocab_size=65536,
+ tie_word_embeddings=False,
+ hidden_size=4096,
+ intermediate_size=14336,
+ num_hidden_layers=32,
+ num_attention_heads=32,
+ num_key_value_heads=8,
+ hidden_act="silu",
+ initializer_range=0.02,
+ rms_norm_eps=1e-6,
+ use_cache=True,
+ num_logits_to_keep=1,
+ output_router_logits=False,
+ router_aux_loss_coef=0.001,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ sliding_window=None,
+ max_position_embeddings=262144,
+ attention_dropout=0.0,
+ num_experts_per_tok=2,
+ num_experts=16,
+ expert_layer_period=2,
+ expert_layer_offset=1,
+ attn_layer_period=8,
+ attn_layer_offset=4,
+ use_mamba_kernels=True,
+ mamba_d_state=16,
+ mamba_d_conv=4,
+ mamba_expand=2,
+ mamba_dt_rank="auto",
+ mamba_conv_bias=True,
+ mamba_proj_bias=False,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.tie_word_embeddings = tie_word_embeddings
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.sliding_window = sliding_window
+ self.max_position_embeddings = max_position_embeddings
+ self.attention_dropout = attention_dropout
+
+ # for backward compatibility
+ if num_key_value_heads is None:
+ num_key_value_heads = num_attention_heads
+
+ self.num_key_value_heads = num_key_value_heads
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.rms_norm_eps = rms_norm_eps
+
+ self.use_cache = use_cache
+ self.num_logits_to_keep = num_logits_to_keep
+ self.output_router_logits = output_router_logits
+ self.router_aux_loss_coef = router_aux_loss_coef
+
+ self.num_experts_per_tok = num_experts_per_tok
+ self.num_experts = num_experts
+ self.expert_layer_period = expert_layer_period
+ self.expert_layer_offset = expert_layer_offset
+ self.attn_layer_period = attn_layer_period
+ self.attn_layer_offset = attn_layer_offset
+
+ self.use_mamba_kernels = use_mamba_kernels
+ self.mamba_d_state = mamba_d_state
+ self.mamba_d_conv = mamba_d_conv
+ self.mamba_expand = mamba_expand
+ self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
+ self.mamba_conv_bias = mamba_conv_bias
+ self.mamba_proj_bias = mamba_proj_bias
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
+
+ @property
+ def layers_block_type(self):
+ return [
+ "attention" if i % self.attn_layer_period == self.attn_layer_offset else "mamba"
+ for i in range(self.num_hidden_layers)
+ ]
+
+ @property
+ def layers_num_experts(self):
+ return [
+ self.num_experts if i % self.expert_layer_period == self.expert_layer_offset else 1
+ for i in range(self.num_hidden_layers)
+ ]
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/modeling_jamba.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/modeling_jamba.py
new file mode 100644
index 0000000000000000000000000000000000000000..9780d95d4ee37604335163b0d6c865c8da542e53
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/jamba/modeling_jamba.py
@@ -0,0 +1,1882 @@
+# coding=utf-8
+# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
+# and OPT implementations in this library. It has been modified from its
+# original forms to accommodate minor architectural differences compared
+# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Jamba model."""
+import inspect
+import math
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import torch
+import torch.nn.functional as F
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...cache_utils import DynamicCache # we need __iter__ and __len__ of pkv
+from ...modeling_attn_mask_utils import (
+ AttentionMaskConverter,
+)
+from ...modeling_outputs import (
+ MoeCausalLMOutputWithPast,
+ MoeModelOutputWithPast,
+ SequenceClassifierOutputWithPast,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_flash_attn_greater_or_equal_2_10,
+ logging,
+ replace_return_docstrings,
+)
+from ...utils.import_utils import (
+ is_causal_conv1d_available,
+ is_flash_attn_2_available,
+ is_mamba_ssm_available,
+)
+from .configuration_jamba import JambaConfig
+
+
+if is_flash_attn_2_available():
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
+
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
+
+
+if is_mamba_ssm_available():
+ from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
+ from mamba_ssm.ops.triton.selective_state_update import selective_state_update
+else:
+ selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
+
+if is_causal_conv1d_available():
+ from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
+else:
+ causal_conv1d_update, causal_conv1d_fn = None, None
+
+is_fast_path_available = all(
+ (selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
+)
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "JambaConfig"
+
+
+# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func with gate->router
+def load_balancing_loss_func(
+ router_logits: torch.Tensor,
+ num_experts: torch.Tensor = None,
+ top_k=2,
+ attention_mask: Optional[torch.Tensor] = None,
+) -> float:
+ r"""
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
+
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
+ experts is too unbalanced.
+
+ Args:
+ router_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
+ Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of
+ shape [batch_size X sequence_length, num_experts].
+ attention_mask (`torch.Tensor`, None):
+ The attention_mask used in forward function
+ shape [batch_size X sequence_length] if not None.
+ num_experts (`int`, *optional*):
+ Number of experts
+
+ Returns:
+ The auxiliary loss.
+ """
+ if router_logits is None or not isinstance(router_logits, tuple):
+ return 0
+
+ if isinstance(router_logits, tuple):
+ compute_device = router_logits[0].device
+ concatenated_router_logits = torch.cat(
+ [layer_router.to(compute_device) for layer_router in router_logits], dim=0
+ )
+
+ routing_weights = torch.nn.functional.softmax(concatenated_router_logits, dim=-1)
+
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
+
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
+
+ if attention_mask is None:
+ # Compute the percentage of tokens routed to each experts
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
+
+ # Compute the average probability of routing to these experts
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
+ else:
+ batch_size, sequence_length = attention_mask.shape
+ num_hidden_layers = concatenated_router_logits.shape[0] // (batch_size * sequence_length)
+
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
+ expert_attention_mask = (
+ attention_mask[None, :, :, None, None]
+ .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
+ .reshape(-1, top_k, num_experts)
+ .to(compute_device)
+ )
+
+ # Compute the percentage of tokens routed to each experts
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
+ expert_attention_mask, dim=0
+ )
+
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
+ router_per_expert_attention_mask = (
+ attention_mask[None, :, :, None]
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
+ .reshape(-1, num_experts)
+ .to(compute_device)
+ )
+
+ # Compute the average probability of routing to these experts
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
+ router_per_expert_attention_mask, dim=0
+ )
+
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
+ return overall_loss * num_experts
+
+
+# Copied from transformers.models.llama.modeling_llama._get_unpad_data
+def _get_unpad_data(attention_mask):
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
+ return (
+ indices,
+ cu_seqlens,
+ max_seqlen_in_batch,
+ )
+
+
+# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Jamba
+class JambaRMSNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ JambaRMSNorm is equivalent to T5LayerNorm
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ input_dtype = hidden_states.dtype
+ hidden_states = hidden_states.to(torch.float32)
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+ return self.weight * hidden_states.to(input_dtype)
+
+
+# Copied from transformers.models.llama.modeling_llama.repeat_kv
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+ """
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
+ """
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
+ if n_rep == 1:
+ return hidden_states
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
+
+
+class HybridMambaAttentionDynamicCache(DynamicCache):
+ """
+ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
+ (which has a constant shape regardless of seq_len).
+
+ This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
+ and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
+ For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
+ while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
+ For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
+ while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
+ and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
+ """
+
+ def __init__(self, config, batch_size, dtype=torch.float16, device=None):
+ self.dtype = dtype
+ self.layers_block_type = config.layers_block_type
+ self.has_previous_state = False # only used by mamba
+ intermediate_size = config.mamba_expand * config.hidden_size
+ ssm_state_size = config.mamba_d_state
+ conv_kernel_size = config.mamba_d_conv
+ self.conv_states = []
+ self.ssm_states = []
+ for i in range(config.num_hidden_layers):
+ if self.layers_block_type[i] == "mamba":
+ self.conv_states += [
+ torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
+ ]
+ self.ssm_states += [
+ torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
+ ]
+ else:
+ self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
+ self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
+
+ self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
+ self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
+
+ def update(
+ self,
+ key_states: torch.Tensor,
+ value_states: torch.Tensor,
+ layer_idx: int,
+ cache_kwargs: Optional[Dict[str, Any]] = None,
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ # Update the cache
+ if self.key_cache[layer_idx].shape[-1] == 0:
+ self.key_cache[layer_idx] = key_states
+ self.value_cache[layer_idx] = value_states
+ else:
+ self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
+ self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
+
+ return self.key_cache[layer_idx], self.value_cache[layer_idx]
+
+ def reorder_cache(self, beam_idx: torch.LongTensor):
+ """Reorders the cache for beam search, given the selected beam indices."""
+ for layer_idx in range(len(self.key_cache)):
+ device = self.key_cache[layer_idx].device
+ self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
+ device = self.value_cache[layer_idx].device
+ self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
+
+ device = self.conv_states[layer_idx].device
+ self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
+ device = self.ssm_states[layer_idx].device
+ self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
+
+ def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
+ raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
+
+ @classmethod
+ def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
+ raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
+
+
+# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Jamba
+class JambaAttention(nn.Module):
+ """
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
+ and "Generating Long Sequences with Sparse Transformers".
+ """
+
+ def __init__(self, config: JambaConfig, layer_idx: Optional[int] = None):
+ super().__init__()
+ self.config = config
+ self.layer_idx = layer_idx
+ if layer_idx is None:
+ logger.warning_once(
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
+ "when creating this class."
+ )
+
+ self.hidden_size = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.hidden_size // self.num_heads
+ self.num_key_value_heads = config.num_key_value_heads
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
+ self.is_causal = True
+ self.attention_dropout = config.attention_dropout
+
+ if (self.head_dim * self.num_heads) != self.hidden_size:
+ raise ValueError(
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
+ f" and `num_heads`: {self.num_heads})."
+ )
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ bsz, q_len, _ = hidden_states.size()
+
+ query_states = self.q_proj(hidden_states)
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+
+ if past_key_value is not None:
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
+
+ # repeat k/v heads if n_kv_heads < n_heads
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
+
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
+
+ if attention_mask is not None: # no matter the length, we just slice it
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
+ attn_weights = attn_weights + causal_mask
+
+ # upcast attention to fp32
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
+ attn_output = torch.matmul(attn_weights, value_states)
+
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
+
+ attn_output = self.o_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+
+
+# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Jamba
+class JambaFlashAttention2(JambaAttention):
+ """
+ Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
+ flash attention and deal with padding tokens in case the input contains any of them.
+ """
+
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs,
+ ):
+ bsz, q_len, _ = hidden_states.size()
+
+ query_states = self.q_proj(hidden_states)
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ # Flash attention requires the input to have the shape
+ # batch_size x seq_length x head_dim x hidden_dim
+ # therefore we just need to keep the original shape
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+
+ kv_seq_len = cache_position[-1]
+
+ use_sliding_windows = (
+ _flash_supports_window_size
+ and getattr(self.config, "sliding_window", None) is not None
+ and kv_seq_len > self.config.sliding_window
+ )
+
+ if not _flash_supports_window_size:
+ logger.warning_once(
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
+ " make sure to upgrade flash-attn library."
+ )
+
+ if past_key_value is not None:
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
+ cache_has_contents = cache_position[0] > 0
+ if (
+ getattr(self.config, "sliding_window", None) is not None
+ and kv_seq_len > self.config.sliding_window
+ and cache_has_contents
+ ):
+ slicing_tokens = 1 - self.config.sliding_window
+
+ past_key = past_key_value[self.layer_idx][0]
+ past_value = past_key_value[self.layer_idx][1]
+
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
+
+ if past_key.shape[-2] != self.config.sliding_window - 1:
+ raise ValueError(
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
+ f" {past_key.shape}"
+ )
+
+ if attention_mask is not None:
+ attention_mask = attention_mask[:, slicing_tokens:]
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
+
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
+
+ # repeat k/v heads if n_kv_heads < n_heads
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
+
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
+ # cast them back in float16 just to be sure everything works as expected.
+ input_dtype = query_states.dtype
+ if input_dtype == torch.float32:
+ if torch.is_autocast_enabled():
+ target_dtype = torch.get_autocast_gpu_dtype()
+ # Handle the case where the model is quantized
+ elif hasattr(self.config, "_pre_quantization_dtype"):
+ target_dtype = self.config._pre_quantization_dtype
+ else:
+ target_dtype = self.q_proj.weight.dtype
+
+ logger.warning_once(
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
+ f" {target_dtype}."
+ )
+
+ query_states = query_states.to(target_dtype)
+ key_states = key_states.to(target_dtype)
+ value_states = value_states.to(target_dtype)
+
+ # Reashape to the expected shape for Flash Attention
+ query_states = query_states.transpose(1, 2)
+ key_states = key_states.transpose(1, 2)
+ value_states = value_states.transpose(1, 2)
+
+ attn_output = self._flash_attention_forward(
+ query_states,
+ key_states,
+ value_states,
+ attention_mask,
+ q_len,
+ dropout=dropout_rate,
+ use_sliding_windows=use_sliding_windows,
+ )
+
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
+ attn_output = self.o_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+
+ def _flash_attention_forward(
+ self,
+ query_states,
+ key_states,
+ value_states,
+ attention_mask,
+ query_length,
+ dropout=0.0,
+ softmax_scale=None,
+ use_sliding_windows=False,
+ ):
+ """
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
+ first unpad the input, then computes the attention scores and pad the final attention scores.
+
+ Args:
+ query_states (`torch.Tensor`):
+ Input query states to be passed to Flash Attention API
+ key_states (`torch.Tensor`):
+ Input key states to be passed to Flash Attention API
+ value_states (`torch.Tensor`):
+ Input value states to be passed to Flash Attention API
+ attention_mask (`torch.Tensor`):
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
+ position of padding tokens and 1 for the position of non-padding tokens.
+ dropout (`float`, *optional*):
+ Attention dropout
+ softmax_scale (`float`, *optional*):
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
+ use_sliding_windows (`bool`, *optional*):
+ Whether to activate sliding window attention.
+ """
+ if not self._flash_attn_uses_top_left_mask:
+ causal = self.is_causal
+ else:
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
+ causal = self.is_causal and query_length != 1
+
+ # Contains at least one padding token in the sequence
+ if attention_mask is not None:
+ batch_size = query_states.shape[0]
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
+ query_states, key_states, value_states, attention_mask, query_length
+ )
+
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
+
+ if not use_sliding_windows:
+ attn_output_unpad = flash_attn_varlen_func(
+ query_states,
+ key_states,
+ value_states,
+ cu_seqlens_q=cu_seqlens_q,
+ cu_seqlens_k=cu_seqlens_k,
+ max_seqlen_q=max_seqlen_in_batch_q,
+ max_seqlen_k=max_seqlen_in_batch_k,
+ dropout_p=dropout,
+ softmax_scale=softmax_scale,
+ causal=causal,
+ )
+ else:
+ attn_output_unpad = flash_attn_varlen_func(
+ query_states,
+ key_states,
+ value_states,
+ cu_seqlens_q=cu_seqlens_q,
+ cu_seqlens_k=cu_seqlens_k,
+ max_seqlen_q=max_seqlen_in_batch_q,
+ max_seqlen_k=max_seqlen_in_batch_k,
+ dropout_p=dropout,
+ softmax_scale=softmax_scale,
+ causal=causal,
+ window_size=(self.config.sliding_window, self.config.sliding_window),
+ )
+
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
+ else:
+ if not use_sliding_windows:
+ attn_output = flash_attn_func(
+ query_states,
+ key_states,
+ value_states,
+ dropout,
+ softmax_scale=softmax_scale,
+ causal=causal,
+ )
+ else:
+ attn_output = flash_attn_func(
+ query_states,
+ key_states,
+ value_states,
+ dropout,
+ softmax_scale=softmax_scale,
+ causal=causal,
+ window_size=(self.config.sliding_window, self.config.sliding_window),
+ )
+
+ return attn_output
+
+ # Copied from transformers.models.mixtral.modeling_mixtral.MixtralFlashAttention2._upad_input
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
+
+ # On the first iteration we need to properly re-create the padding mask
+ # by slicing it on the proper place
+ if kv_seq_len != attention_mask.shape[-1]:
+ attention_mask_num_tokens = attention_mask.shape[-1]
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
+
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
+
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
+
+ if query_length == kv_seq_len:
+ query_layer = index_first_axis(
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
+ )
+ cu_seqlens_q = cu_seqlens_k
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
+ indices_q = indices_k
+ elif query_length == 1:
+ max_seqlen_in_batch_q = 1
+ cu_seqlens_q = torch.arange(
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
+ ) # There is a memcpy here, that is very bad.
+ indices_q = cu_seqlens_q[:-1]
+ query_layer = query_layer.squeeze(1)
+ else:
+ # The -q_len: slice assumes left padding.
+ attention_mask = attention_mask[:, -query_length:]
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
+
+ return (
+ query_layer,
+ key_layer,
+ value_layer,
+ indices_q,
+ (cu_seqlens_q, cu_seqlens_k),
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
+ )
+
+
+# Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Jamba
+class JambaSdpaAttention(JambaAttention):
+ """
+ Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
+ `JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
+ SDPA API.
+ """
+
+ # Adapted from JambaAttention.forward
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
+ output_attentions: bool = False,
+ use_cache: bool = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ if output_attentions:
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
+ logger.warning_once(
+ "JambaModel is using JambaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
+ )
+ return super().forward(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+
+ bsz, q_len, _ = hidden_states.size()
+
+ query_states = self.q_proj(hidden_states)
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
+
+ if past_key_value is not None:
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
+
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
+
+ causal_mask = attention_mask
+ if attention_mask is not None:
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
+
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
+ if query_states.device.type == "cuda" and attention_mask is not None:
+ query_states = query_states.contiguous()
+ key_states = key_states.contiguous()
+ value_states = value_states.contiguous()
+
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
+ query_states,
+ key_states,
+ value_states,
+ attn_mask=causal_mask,
+ dropout_p=self.attention_dropout if self.training else 0.0,
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
+ )
+
+ attn_output = attn_output.transpose(1, 2).contiguous()
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
+
+ attn_output = self.o_proj(attn_output)
+
+ return attn_output, None, past_key_value
+
+
+JAMBA_ATTENTION_CLASSES = {
+ "eager": JambaAttention,
+ "flash_attention_2": JambaFlashAttention2,
+ "sdpa": JambaSdpaAttention,
+}
+
+
+# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
+class JambaMambaMixer(nn.Module):
+ """
+ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
+ A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
+ ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
+ and is why Mamba is called **selective** state spaces)
+ """
+
+ def __init__(self, config: JambaConfig, layer_idx):
+ super().__init__()
+ self.config = config
+ self.layer_idx = layer_idx
+ self.hidden_size = config.hidden_size
+ self.ssm_state_size = config.mamba_d_state
+ self.conv_kernel_size = config.mamba_d_conv
+ self.intermediate_size = config.mamba_expand * config.hidden_size
+ self.time_step_rank = config.mamba_dt_rank
+ self.use_conv_bias = config.mamba_conv_bias
+ self.use_bias = config.mamba_proj_bias
+ self.conv1d = nn.Conv1d(
+ in_channels=self.intermediate_size,
+ out_channels=self.intermediate_size,
+ bias=self.use_conv_bias,
+ kernel_size=self.conv_kernel_size,
+ groups=self.intermediate_size,
+ padding=self.conv_kernel_size - 1,
+ )
+
+ self.activation = config.hidden_act
+ self.act = ACT2FN[config.hidden_act]
+
+ self.use_fast_kernels = config.use_mamba_kernels
+
+ # projection of the input hidden states
+ self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias)
+ # selective projection used to make dt, B and C input dependant
+ self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
+ # time step projection (discretization)
+ self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
+
+ # S4D real initialization. These are not discretized!
+ # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
+ A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
+ A = A.expand(self.intermediate_size, -1).contiguous()
+
+ self.A_log = nn.Parameter(torch.log(A))
+ self.D = nn.Parameter(torch.ones(self.intermediate_size))
+ self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
+
+ self.dt_layernorm = JambaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps)
+ self.b_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
+ self.c_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
+
+ if not is_fast_path_available:
+ logger.warning_once(
+ "The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
+ " is None. To install follow https://github.com/state-spaces/mamba/#installation and"
+ " https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config"
+ )
+
+ def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: HybridMambaAttentionDynamicCache = None):
+ batch_size, seq_len, _ = hidden_states.shape
+ use_precomputed_states = (
+ cache_params is not None
+ and cache_params.has_previous_state
+ and seq_len == 1
+ and cache_params.conv_states[self.layer_idx].shape[0]
+ == cache_params.ssm_states[self.layer_idx].shape[0]
+ == batch_size
+ )
+ # 1. Gated MLP's linear projection
+ projected_states = self.in_proj(hidden_states).transpose(1, 2)
+
+ # We can't use `mamba_inner_fn` even if in training and without cache params because we have the
+ # inner layernorms which isn't supported by this fused kernel
+ hidden_states, gate = projected_states.chunk(2, dim=1)
+
+ # 2. Convolution sequence transformation
+ conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
+ if use_precomputed_states:
+ hidden_states = causal_conv1d_update(
+ hidden_states.squeeze(-1),
+ cache_params.conv_states[self.layer_idx],
+ conv_weights,
+ self.conv1d.bias,
+ self.activation,
+ )
+ hidden_states = hidden_states.unsqueeze(-1)
+ else:
+ if cache_params is not None:
+ conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0))
+ cache_params.conv_states[self.layer_idx].copy_(conv_states)
+ hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation)
+
+ # 3. State Space Model sequence transformation
+ # 3.a. input varying initialization of time_step, B and C
+ ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
+ time_step, B, C = torch.split(
+ ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
+ )
+
+ time_step = self.dt_layernorm(time_step)
+ B = self.b_layernorm(B)
+ C = self.c_layernorm(C)
+
+ # Here we need to apply dt_proj without the bias, as the bias is added in the selective scan kernel.
+ # This is a hack to apply dt_proj while still using the forward pass of `torch.nn.Linear`, which is needed
+ # in order to make quantization work. Quantization code replaces `torch.nn.Linear` layers with quantized
+ # linear layers, and requires to call the forward pass directly.
+ # The original code here was: ```discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)```
+ time_proj_bias = self.dt_proj.bias
+ self.dt_proj.bias = None
+ discrete_time_step = self.dt_proj(time_step).transpose(1, 2)
+ self.dt_proj.bias = time_proj_bias
+
+ A = -torch.exp(self.A_log.float())
+ # 3.c perform the recurrence y ← SSM(A, B, C)(x)
+ time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None
+ if use_precomputed_states:
+ scan_outputs = selective_state_update(
+ cache_params.ssm_states[self.layer_idx],
+ hidden_states[..., 0],
+ discrete_time_step[..., 0],
+ A,
+ B[:, 0],
+ C[:, 0],
+ self.D,
+ gate[..., 0],
+ time_proj_bias,
+ dt_softplus=True,
+ ).unsqueeze(-1)
+ else:
+ scan_outputs, ssm_state = selective_scan_fn(
+ hidden_states,
+ discrete_time_step,
+ A,
+ B.transpose(1, 2),
+ C.transpose(1, 2),
+ self.D.float(),
+ gate,
+ time_proj_bias,
+ delta_softplus=True,
+ return_last_state=True,
+ )
+ if ssm_state is not None and cache_params is not None:
+ cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
+
+ # 4. Final linear projection
+ contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
+
+ return contextualized_states
+
+ # fmt: off
+ def slow_forward(self, input_states, cache_params: HybridMambaAttentionDynamicCache = None):
+ batch_size, seq_len, _ = input_states.shape
+ dtype = input_states.dtype
+ # 1. Gated MLP's linear projection
+ projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
+ hidden_states, gate = projected_states.chunk(2, dim=1)
+
+ use_cache = isinstance(cache_params,HybridMambaAttentionDynamicCache)
+ # 2. Convolution sequence transformation
+ if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size:
+ if self.training:
+ # In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass
+ ssm_state = cache_params.ssm_states[self.layer_idx].clone()
+ else:
+ ssm_state = cache_params.ssm_states[self.layer_idx]
+
+ if cache_params.has_previous_state and seq_len == 1 and \
+ cache_params.conv_states[self.layer_idx].shape[0] == batch_size:
+ conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
+ conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
+ conv_state[:, :, -1] = hidden_states[:, :, 0]
+ cache_params.conv_states[self.layer_idx] = conv_state
+ hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
+ if self.use_conv_bias:
+ hidden_states += self.conv1d.bias
+ hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
+ else:
+ conv_state = nn.functional.pad(
+ hidden_states,
+ (self.conv_kernel_size - hidden_states.shape[-1], 0)
+ )
+ cache_params.conv_states[self.layer_idx] = conv_state
+ hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
+ else:
+ ssm_state = torch.zeros(
+ (batch_size, self.intermediate_size, self.ssm_state_size),
+ device=hidden_states.device, dtype=dtype
+ )
+ hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
+
+ # 3. State Space Model sequence transformation
+ # 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
+ ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
+ time_step, B, C = torch.split(
+ ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
+ )
+
+ time_step = self.dt_layernorm(time_step)
+ B = self.b_layernorm(B)
+ C = self.c_layernorm(C)
+
+ discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
+ discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
+
+ # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
+ A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size]
+ discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size]
+ discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediade_size, seq_len, ssm_state_size]
+ deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
+
+ # 3.c perform the recurrence y ← SSM(A, B, C)(x)
+ scan_outputs = []
+ for i in range(seq_len):
+ ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state]
+ scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1]
+ scan_outputs.append(scan_output[:, :, 0])
+ scan_output = torch.stack(scan_outputs, dim=-1) # [batch, intermediade_size, seq_len]
+ scan_output = scan_output + (hidden_states * self.D[None, :, None])
+ scan_output = (scan_output * self.act(gate))
+
+ if use_cache:
+ cache_params.ssm_states[self.layer_idx] = ssm_state
+
+ # 4. Final linear projection
+ contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
+ return contextualized_states
+ # fmt: on
+
+ def forward(self, hidden_states, cache_params: HybridMambaAttentionDynamicCache = None):
+ if self.use_fast_kernels:
+ if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type:
+ raise ValueError(
+ "Fast Mamba kernels are not available. Make sure to they are installed and that the mamba module is on a CUDA device"
+ )
+ return self.cuda_kernels_forward(hidden_states, cache_params)
+ return self.slow_forward(hidden_states, cache_params)
+
+
+# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Jamba
+class JambaMLP(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.intermediate_size = config.intermediate_size
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, x):
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
+
+
+# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock with Mistral->Jamba
+class JambaSparseMoeBlock(nn.Module):
+ """
+ This implementation is
+ strictly equivalent to standard MoE with full capacity (no
+ dropped tokens). It's faster since it formulates MoE operations
+ in terms of block-sparse operations to accomodate imbalanced
+ assignments of tokens to experts, whereas standard MoE either
+ (1) drop tokens at the cost of reduced performance or (2) set
+ capacity factor to number of experts and thus waste computation
+ and memory on padding.
+ """
+
+ def __init__(self, config: JambaConfig):
+ super().__init__()
+ self.hidden_dim = config.hidden_size
+ self.ffn_dim = config.intermediate_size
+ self.num_experts = config.num_experts
+ self.top_k = config.num_experts_per_tok
+
+ self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
+ self.experts = nn.ModuleList([JambaMLP(config) for _ in range(self.num_experts)])
+
+ def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ """ """
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
+
+ hidden_states = hidden_states.view(-1, hidden_dim)
+ # router_logits: (batch * sequence_length, n_experts)
+ router_logits = self.router(hidden_states)
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
+ # we cast back to the input dtype
+ routing_weights = routing_weights.to(hidden_states.dtype)
+
+ final_hidden_states = torch.zeros(
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
+ )
+
+ # One hot encode the selected experts to create an expert mask
+ # this will be used to easily index which expert is going to be sollicitated
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
+
+ # Loop over all available experts in the model and perform the computation on each expert
+ for expert_idx in range(self.num_experts):
+ expert_layer = self.experts[expert_idx]
+ idx, top_x = torch.where(expert_mask[expert_idx])
+
+ if top_x.shape[0] == 0:
+ continue
+
+ # Index the correct hidden states and compute the expert hidden state for
+ # the current expert. We need to make sure to multiply the output hidden
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
+ current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
+
+ # However `index_add_` only support torch tensors for indexing so we'll use
+ # the `top_x` tensor here.
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
+ return final_hidden_states, router_logits
+
+
+class JambaAttentionDecoderLayer(nn.Module):
+ def __init__(self, config: JambaConfig, layer_idx: int):
+ super().__init__()
+ num_experts = config.layers_num_experts[layer_idx]
+ self.self_attn = JAMBA_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
+
+ ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
+ self.feed_forward = ffn_layer_class(config)
+ self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
+ output_attentions: Optional[bool] = False,
+ output_router_logits: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
+ `(batch, sequence_length)` where padding elements are indicated by 0.
+ past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_router_logits (`bool`, *optional*):
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
+ should not be returned during inference.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence.
+ """
+
+ residual = hidden_states
+
+ hidden_states = self.input_layernorm(hidden_states)
+
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ )
+
+ # residual connection after attention
+ hidden_states = residual + hidden_states
+
+ # feed-forward (experts/MLP)
+ residual = hidden_states
+ hidden_states = self.pre_ff_layernorm(hidden_states)
+ ff_outputs = self.feed_forward(hidden_states)
+ if isinstance(ff_outputs, tuple):
+ hidden_states, router_logits = ff_outputs
+ else:
+ hidden_states, router_logits = ff_outputs, None
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ if output_router_logits:
+ outputs += (router_logits,)
+
+ return outputs
+
+
+class JambaMambaDecoderLayer(nn.Module):
+ def __init__(self, config: JambaConfig, layer_idx: int):
+ super().__init__()
+ num_experts = config.layers_num_experts[layer_idx]
+ self.mamba = JambaMambaMixer(config=config, layer_idx=layer_idx)
+
+ ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
+ self.feed_forward = ffn_layer_class(config)
+ self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
+ output_attentions: Optional[bool] = False,
+ output_router_logits: Optional[bool] = False,
+ use_cache: Optional[bool] = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
+ `(batch, sequence_length)` where padding elements are indicated by 0.
+ past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_router_logits (`bool`, *optional*):
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
+ should not be returned during inference.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence.
+ """
+
+ residual = hidden_states
+
+ hidden_states = self.input_layernorm(hidden_states)
+
+ hidden_states = self.mamba(
+ hidden_states=hidden_states,
+ cache_params=past_key_value,
+ )
+ self_attn_weights = None
+
+ # residual connection after mamba
+ hidden_states = residual + hidden_states
+
+ # feed-forward (experts/MLP)
+ residual = hidden_states
+ hidden_states = self.pre_ff_layernorm(hidden_states)
+ ff_outputs = self.feed_forward(hidden_states)
+ if isinstance(ff_outputs, tuple):
+ hidden_states, router_logits = ff_outputs
+ else:
+ hidden_states, router_logits = ff_outputs, None
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights,)
+
+ if use_cache:
+ outputs += (past_key_value,)
+
+ if output_router_logits:
+ outputs += (router_logits,)
+
+ return outputs
+
+
+JAMBA_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`JambaConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings(
+ "The bare Jamba Model outputting raw hidden-states without any specific head on top.",
+ JAMBA_START_DOCSTRING,
+)
+class JambaPreTrainedModel(PreTrainedModel):
+ config_class = JambaConfig
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["JambaAttentionDecoderLayer", "JambaMambaDecoderLayer"]
+ _skip_keys_device_placement = "past_key_values"
+ _supports_flash_attn_2 = True
+ _supports_sdpa = True
+ _supports_cache_class = True
+
+ def _init_weights(self, module):
+ std = self.config.initializer_range
+ if isinstance(module, (nn.Linear, nn.Conv1d)):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+JAMBA_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ past_key_values (`HybridMambaAttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ A HybridMambaAttentionDynamicCache object containing pre-computed hidden-states (keys and values in the
+ self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
+ `past_key_values` input) to speed up sequential decoding.
+ Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
+ Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
+ `(batch_size, d_inner, d_state)` respectively.
+ See the `HybridMambaAttentionDynamicCache` class for more details.
+
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ output_router_logits (`bool`, *optional*):
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
+ should not be returned during inference.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
+ the complete sequence length.
+"""
+
+ALL_DECODER_LAYER_TYPES = {"attention": JambaAttentionDecoderLayer, "mamba": JambaMambaDecoderLayer}
+
+
+@add_start_docstrings(
+ "The bare Jamba Model outputting raw hidden-states without any specific head on top.",
+ JAMBA_START_DOCSTRING,
+)
+# Adapted from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->JAMBA, Mistral->Jamba
+class JambaModel(JambaPreTrainedModel):
+ """
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JambaDecoderLayer`]
+
+ Args:
+ config: JambaConfig
+ """
+
+ def __init__(self, config: JambaConfig):
+ super().__init__(config)
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
+ decoder_layers = []
+ for i in range(config.num_hidden_layers):
+ layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[i]]
+ decoder_layers.append(layer_class(config, layer_idx=i))
+ self.layers = nn.ModuleList(decoder_layers)
+
+ self._attn_implementation = config._attn_implementation
+ self.final_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_router_logits: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_router_logits = (
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
+ )
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if (input_ids is None) ^ (inputs_embeds is not None):
+ raise ValueError(
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
+ )
+
+ if self.gradient_checkpointing and self.training and use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
+ )
+ use_cache = False
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+ hidden_states = inputs_embeds
+
+ if use_cache and past_key_values is None:
+ logger.warning_once(
+ "Jamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was "
+ "provided, so no cache will be returned."
+ )
+
+ if cache_position is None:
+ cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
+ if position_ids is None:
+ position_ids = cache_position.unsqueeze(0)
+
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
+
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_router_logits = () if output_router_logits else None
+
+ for decoder_layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ causal_mask,
+ position_ids,
+ past_key_values,
+ output_attentions,
+ output_router_logits,
+ use_cache,
+ cache_position,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=causal_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_values,
+ output_attentions=output_attentions,
+ output_router_logits=output_router_logits,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ if layer_outputs[1] is not None:
+ # append attentions only of attention layers. Mamba layers return `None` as the attention weights
+ all_self_attns += (layer_outputs[1],)
+
+ if output_router_logits:
+ if layer_outputs[-1] is not None:
+ # append router logits only of expert layers. Regular MLP layers return `None` as the router logits
+ all_router_logits += (layer_outputs[-1],)
+
+ hidden_states = self.final_layernorm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if past_key_values and not past_key_values.has_previous_state:
+ past_key_values.has_previous_state = True
+
+ next_cache = None if not use_cache else past_key_values
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
+ if v is not None
+ )
+ return MoeModelOutputWithPast(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ router_logits=all_router_logits,
+ )
+
+ def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
+ if self.config._attn_implementation == "flash_attention_2":
+ if attention_mask is not None and 0.0 in attention_mask:
+ return attention_mask
+ return None
+
+ dtype, device = input_tensor.dtype, input_tensor.device
+ min_dtype = torch.finfo(dtype).min
+ sequence_length = input_tensor.shape[1]
+ target_length = cache_position[-1] + 1
+
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
+ if sequence_length != 1:
+ causal_mask = torch.triu(causal_mask, diagonal=1)
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
+ if attention_mask is not None:
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
+ if attention_mask.dim() == 2:
+ mask_length = attention_mask.shape[-1]
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
+
+ if (
+ self.config._attn_implementation == "sdpa"
+ and attention_mask is not None
+ and attention_mask.device.type == "cuda"
+ ):
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
+ # Details: https://github.com/pytorch/pytorch/issues/110213
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
+
+ return causal_mask
+
+
+# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->Jamba
+class JambaForCausalLM(JambaPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config: JambaConfig):
+ super().__init__(config)
+ self.model = JambaModel(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+ self.router_aux_loss_coef = config.router_aux_loss_coef
+ self.num_experts = config.num_experts
+ self.num_experts_per_tok = config.num_experts_per_tok
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+
+ @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
+ # Ignore copy
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_router_logits: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ num_logits_to_keep: Optional[Union[int, None]] = None,
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ num_logits_to_keep (`int` or `None`, *optional*):
+ Calculate logits for the last `num_logits_to_keep` tokens. If `None`, calculate logits for all
+ `input_ids`. Only last token logits are needed for generation, and calculating them only for that token
+ can save memory, which becomes pretty significant for long sequences.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, JambaForCausalLM
+
+ >>> model = JambaForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
+ >>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
+
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_router_logits = (
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
+ )
+
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ output_router_logits=output_router_logits,
+ cache_position=cache_position,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ if num_logits_to_keep is None:
+ logits = self.lm_head(hidden_states)
+ else:
+ logits = self.lm_head(hidden_states[..., -num_logits_to_keep:, :])
+ logits = logits.float()
+
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
+ shift_labels = shift_labels.view(-1)
+ # Enable model parallelism
+ shift_labels = shift_labels.to(shift_logits.device)
+ loss = loss_fct(shift_logits, shift_labels)
+
+ aux_loss = None
+ if output_router_logits:
+ aux_loss = load_balancing_loss_func(
+ outputs.router_logits if return_dict else outputs[-1],
+ self.num_experts,
+ self.num_experts_per_tok,
+ attention_mask,
+ )
+ if labels is not None:
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ if output_router_logits:
+ output = (aux_loss,) + output
+ return (loss,) + output if loss is not None else output
+
+ return MoeCausalLMOutputWithPast(
+ loss=loss,
+ aux_loss=aux_loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ router_logits=outputs.router_logits,
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ inputs_embeds=None,
+ output_router_logits=False,
+ cache_position=None,
+ **kwargs,
+ ):
+ empty_past_kv = past_key_values is None
+
+ # Omit tokens covered by past_key_values
+ if not empty_past_kv:
+ past_length = cache_position[0] if cache_position is not None else attention_mask.shape[1]
+ max_cache_length = self.config.sliding_window
+ # Keep only the unprocessed tokens:
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
+ # input)
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
+ # input_ids based on the past_length.
+ elif past_length < input_ids.shape[1]:
+ input_ids = input_ids[:, past_length:]
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
+
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
+ if (
+ max_cache_length is not None
+ and attention_mask is not None
+ and past_length + input_ids.shape[1] > max_cache_length
+ ):
+ attention_mask = attention_mask[:, -max_cache_length:]
+ else:
+ past_key_values = HybridMambaAttentionDynamicCache(
+ self.config, input_ids.shape[0], self.dtype, device=self.device
+ )
+
+ position_ids = kwargs.get("position_ids", None)
+ if attention_mask is not None and position_ids is None:
+ # create position_ids on the fly for batch generation
+ position_ids = attention_mask.long().cumsum(-1) - 1
+ position_ids.masked_fill_(attention_mask == 0, 1)
+ if not empty_past_kv:
+ position_ids = position_ids[:, -input_ids.shape[1] :]
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and empty_past_kv:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "position_ids": position_ids,
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "attention_mask": attention_mask,
+ "output_router_logits": output_router_logits,
+ "num_logits_to_keep": self.config.num_logits_to_keep,
+ "cache_position": cache_position,
+ }
+ )
+ return model_inputs
+
+
+@add_start_docstrings(
+ """
+ The Jamba Model with a sequence classification head on top (linear layer).
+
+ [`JambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
+ (e.g. GPT-2) do.
+
+ Since it does classification on the last token, it requires to know the position of the last token. If a
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
+ each row of the batch).
+ """,
+ JAMBA_START_DOCSTRING,
+)
+# Copied from transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification with Mixtral->Jamba, MIXTRAL->JAMBA
+class JambaForSequenceClassification(JambaPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.model = JambaModel(config)
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = transformer_outputs[0]
+ logits = self.score(hidden_states)
+
+ if input_ids is not None:
+ batch_size = input_ids.shape[0]
+ else:
+ batch_size = inputs_embeds.shape[0]
+
+ if self.config.pad_token_id is None and batch_size != 1:
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
+ if self.config.pad_token_id is None:
+ sequence_lengths = -1
+ else:
+ if input_ids is not None:
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
+ sequence_lengths = sequence_lengths.to(logits.device)
+ else:
+ sequence_lengths = -1
+
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
+
+ loss = None
+ if labels is not None:
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(pooled_logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(pooled_logits, labels)
+ if not return_dict:
+ output = (pooled_logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutputWithPast(
+ loss=loss,
+ logits=pooled_logits,
+ past_key_values=transformer_outputs.past_key_values,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/luke/convert_luke_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/luke/convert_luke_original_pytorch_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..c86fa6e30890f1262874a5373401054f488c9e06
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/luke/convert_luke_original_pytorch_checkpoint_to_pytorch.py
@@ -0,0 +1,170 @@
+# coding=utf-8
+# Copyright 2020 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert LUKE checkpoint."""
+
+import argparse
+import json
+import os
+
+import torch
+
+from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer
+from transformers.tokenization_utils_base import AddedToken
+
+
+@torch.no_grad()
+def convert_luke_checkpoint(checkpoint_path, metadata_path, entity_vocab_path, pytorch_dump_folder_path, model_size):
+ # Load configuration defined in the metadata file
+ with open(metadata_path) as metadata_file:
+ metadata = json.load(metadata_file)
+ config = LukeConfig(use_entity_aware_attention=True, **metadata["model_config"])
+
+ # Load in the weights from the checkpoint_path
+ state_dict = torch.load(checkpoint_path, map_location="cpu")
+
+ # Load the entity vocab file
+ entity_vocab = load_entity_vocab(entity_vocab_path)
+
+ tokenizer = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"])
+
+ # Add special tokens to the token vocabulary for downstream tasks
+ entity_token_1 = AddedToken("", lstrip=False, rstrip=False)
+ entity_token_2 = AddedToken("", lstrip=False, rstrip=False)
+ tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_1, entity_token_2]})
+ config.vocab_size += 2
+
+ print(f"Saving tokenizer to {pytorch_dump_folder_path}")
+ tokenizer.save_pretrained(pytorch_dump_folder_path)
+ with open(os.path.join(pytorch_dump_folder_path, LukeTokenizer.vocab_files_names["entity_vocab_file"]), "w") as f:
+ json.dump(entity_vocab, f)
+
+ tokenizer = LukeTokenizer.from_pretrained(pytorch_dump_folder_path)
+
+ # Initialize the embeddings of the special tokens
+ word_emb = state_dict["embeddings.word_embeddings.weight"]
+ ent_emb = word_emb[tokenizer.convert_tokens_to_ids(["@"])[0]].unsqueeze(0)
+ ent2_emb = word_emb[tokenizer.convert_tokens_to_ids(["#"])[0]].unsqueeze(0)
+ state_dict["embeddings.word_embeddings.weight"] = torch.cat([word_emb, ent_emb, ent2_emb])
+
+ # Initialize the query layers of the entity-aware self-attention mechanism
+ for layer_index in range(config.num_hidden_layers):
+ for matrix_name in ["query.weight", "query.bias"]:
+ prefix = f"encoder.layer.{layer_index}.attention.self."
+ state_dict[prefix + "w2e_" + matrix_name] = state_dict[prefix + matrix_name]
+ state_dict[prefix + "e2w_" + matrix_name] = state_dict[prefix + matrix_name]
+ state_dict[prefix + "e2e_" + matrix_name] = state_dict[prefix + matrix_name]
+
+ # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
+ entity_emb = state_dict["entity_embeddings.entity_embeddings.weight"]
+ entity_emb[entity_vocab["[MASK2]"]] = entity_emb[entity_vocab["[MASK]"]]
+
+ model = LukeModel(config=config).eval()
+
+ missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
+ if not (len(missing_keys) == 1 and missing_keys[0] == "embeddings.position_ids"):
+ raise ValueError(f"Missing keys {', '.join(missing_keys)}. Expected only missing embeddings.position_ids")
+ if not (all(key.startswith("entity_predictions") or key.startswith("lm_head") for key in unexpected_keys)):
+ raise ValueError(
+ "Unexpected keys"
+ f" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions') or key.startswith('lm_head'))])}"
+ )
+
+ # Check outputs
+ tokenizer = LukeTokenizer.from_pretrained(pytorch_dump_folder_path, task="entity_classification")
+
+ text = (
+ "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the"
+ " new world number one avoid a humiliating second- round exit at Wimbledon ."
+ )
+ span = (39, 42)
+ encoding = tokenizer(text, entity_spans=[span], add_prefix_space=True, return_tensors="pt")
+
+ outputs = model(**encoding)
+
+ # Verify word hidden states
+ if model_size == "large":
+ expected_shape = torch.Size((1, 42, 1024))
+ expected_slice = torch.tensor(
+ [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]]
+ )
+ else: # base
+ expected_shape = torch.Size((1, 42, 768))
+ expected_slice = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]])
+
+ if not (outputs.last_hidden_state.shape == expected_shape):
+ raise ValueError(
+ f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}"
+ )
+ if not torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4):
+ raise ValueError
+
+ # Verify entity hidden states
+ if model_size == "large":
+ expected_shape = torch.Size((1, 1, 1024))
+ expected_slice = torch.tensor([[0.0466, -0.0106, -0.0179]])
+ else: # base
+ expected_shape = torch.Size((1, 1, 768))
+ expected_slice = torch.tensor([[0.1457, 0.1044, 0.0174]])
+
+ if not (outputs.entity_last_hidden_state.shape != expected_shape):
+ raise ValueError(
+ f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"
+ f" {expected_shape}"
+ )
+ if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4):
+ raise ValueError
+
+ # Finally, save our PyTorch model and tokenizer
+ print("Saving PyTorch model to {}".format(pytorch_dump_folder_path))
+ model.save_pretrained(pytorch_dump_folder_path)
+
+
+def load_entity_vocab(entity_vocab_path):
+ entity_vocab = {}
+ with open(entity_vocab_path, "r", encoding="utf-8") as f:
+ for index, line in enumerate(f):
+ title, _ = line.rstrip().split("\t")
+ entity_vocab[title] = index
+
+ return entity_vocab
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
+ parser.add_argument(
+ "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
+ )
+ parser.add_argument(
+ "--entity_vocab_path",
+ default=None,
+ type=str,
+ help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
+ )
+ parser.add_argument(
+ "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
+ )
+ args = parser.parse_args()
+ convert_luke_checkpoint(
+ args.checkpoint_path,
+ args.metadata_path,
+ args.entity_vocab_path,
+ args.pytorch_dump_folder_path,
+ args.model_size,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/luke/modeling_luke.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/luke/modeling_luke.py
new file mode 100644
index 0000000000000000000000000000000000000000..3523e739f5b69fdffc13a55c0fa6e65bda0d0bd7
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/luke/modeling_luke.py
@@ -0,0 +1,2231 @@
+# coding=utf-8
+# Copyright Studio Ousia and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch LUKE model."""
+
+import math
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN, gelu
+from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_luke import LukeConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "LukeConfig"
+_CHECKPOINT_FOR_DOC = "studio-ousia/luke-base"
+
+
+from ..deprecated._archive_maps import LUKE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+@dataclass
+class BaseLukeModelOutputWithPooling(BaseModelOutputWithPooling):
+ """
+ Base class for outputs of the LUKE model.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`):
+ Sequence of entity hidden-states at the output of the last layer of the model.
+ pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
+ Last layer hidden-state of the first token of the sequence (classification token) further processed by a
+ Linear layer and a Tanh activation function.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
+ layer plus the initial entity embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length +
+ entity_length, sequence_length + entity_length)`. Attentions weights after the attention softmax, used to
+ compute the weighted average in the self-attention heads.
+ """
+
+ entity_last_hidden_state: torch.FloatTensor = None
+ entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class BaseLukeModelOutput(BaseModelOutput):
+ """
+ Base class for model's outputs, with potential hidden states and attentions.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`):
+ Sequence of entity hidden-states at the output of the last layer of the model.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
+ layer plus the initial entity embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ entity_last_hidden_state: torch.FloatTensor = None
+ entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class LukeMaskedLMOutput(ModelOutput):
+ """
+ Base class for model's outputs, with potential hidden states and attentions.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ The sum of masked language modeling (MLM) loss and entity prediction loss.
+ mlm_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Masked language modeling (MLM) loss.
+ mep_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Masked entity prediction (MEP) loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ entity_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the entity prediction head (scores for each entity vocabulary token before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
+ layer plus the initial entity embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ mlm_loss: Optional[torch.FloatTensor] = None
+ mep_loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ entity_logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class EntityClassificationOutput(ModelOutput):
+ """
+ Outputs of entity classification models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Classification loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
+ Classification scores (before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
+ layer plus the initial entity embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class EntityPairClassificationOutput(ModelOutput):
+ """
+ Outputs of entity pair classification models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Classification loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
+ Classification scores (before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
+ layer plus the initial entity embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class EntitySpanClassificationOutput(ModelOutput):
+ """
+ Outputs of entity span classification models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Classification loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, entity_length, config.num_labels)`):
+ Classification scores (before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
+ layer plus the initial entity embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class LukeSequenceClassifierOutput(ModelOutput):
+ """
+ Outputs of sentence classification models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Classification (or regression if config.num_labels==1) loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
+ Classification (or regression if config.num_labels==1) scores (before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
+ layer plus the initial entity embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class LukeTokenClassifierOutput(ModelOutput):
+ """
+ Base class for outputs of token classification models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
+ Classification loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
+ Classification scores (before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
+ layer plus the initial entity embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class LukeQuestionAnsweringModelOutput(ModelOutput):
+ """
+ Outputs of question answering models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
+ start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Span-start scores (before SoftMax).
+ end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Span-end scores (before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
+ layer plus the initial entity embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ start_logits: torch.FloatTensor = None
+ end_logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class LukeMultipleChoiceModelOutput(ModelOutput):
+ """
+ Outputs of multiple choice models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
+ Classification loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
+ *num_choices* is the second dimension of the input tensors. (see *input_ids* above).
+
+ Classification scores (before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
+ layer plus the initial entity embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+class LukeEmbeddings(nn.Module):
+ """
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # End copy
+ self.padding_idx = config.pad_token_id
+ self.position_embeddings = nn.Embedding(
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
+ )
+
+ def forward(
+ self,
+ input_ids=None,
+ token_type_ids=None,
+ position_ids=None,
+ inputs_embeds=None,
+ ):
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device)
+ else:
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
+
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ position_embeddings = self.position_embeddings(position_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + position_embeddings + token_type_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
+ """
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
+
+ Args:
+ inputs_embeds: torch.Tensor
+
+ Returns: torch.Tensor
+ """
+ input_shape = inputs_embeds.size()[:-1]
+ sequence_length = input_shape[1]
+
+ position_ids = torch.arange(
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
+ )
+ return position_ids.unsqueeze(0).expand(input_shape)
+
+
+class LukeEntityEmbeddings(nn.Module):
+ def __init__(self, config: LukeConfig):
+ super().__init__()
+ self.config = config
+
+ self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0)
+ if config.entity_emb_size != config.hidden_size:
+ self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False)
+
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(
+ self, entity_ids: torch.LongTensor, position_ids: torch.LongTensor, token_type_ids: torch.LongTensor = None
+ ):
+ if token_type_ids is None:
+ token_type_ids = torch.zeros_like(entity_ids)
+
+ entity_embeddings = self.entity_embeddings(entity_ids)
+ if self.config.entity_emb_size != self.config.hidden_size:
+ entity_embeddings = self.entity_embedding_dense(entity_embeddings)
+
+ position_embeddings = self.position_embeddings(position_ids.clamp(min=0))
+ position_embedding_mask = (position_ids != -1).type_as(position_embeddings).unsqueeze(-1)
+ position_embeddings = position_embeddings * position_embedding_mask
+ position_embeddings = torch.sum(position_embeddings, dim=-2)
+ position_embeddings = position_embeddings / position_embedding_mask.sum(dim=-2).clamp(min=1e-7)
+
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = entity_embeddings + position_embeddings + token_type_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+
+ return embeddings
+
+
+class LukeSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
+ f"heads {config.num_attention_heads}."
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.use_entity_aware_attention = config.use_entity_aware_attention
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ if self.use_entity_aware_attention:
+ self.w2e_query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.e2w_query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.e2e_query = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ word_hidden_states,
+ entity_hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ ):
+ word_size = word_hidden_states.size(1)
+
+ if entity_hidden_states is None:
+ concat_hidden_states = word_hidden_states
+ else:
+ concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1)
+
+ key_layer = self.transpose_for_scores(self.key(concat_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(concat_hidden_states))
+
+ if self.use_entity_aware_attention and entity_hidden_states is not None:
+ # compute query vectors using word-word (w2w), word-entity (w2e), entity-word (e2w), entity-entity (e2e)
+ # query layers
+ w2w_query_layer = self.transpose_for_scores(self.query(word_hidden_states))
+ w2e_query_layer = self.transpose_for_scores(self.w2e_query(word_hidden_states))
+ e2w_query_layer = self.transpose_for_scores(self.e2w_query(entity_hidden_states))
+ e2e_query_layer = self.transpose_for_scores(self.e2e_query(entity_hidden_states))
+
+ # compute w2w, w2e, e2w, and e2e key vectors used with the query vectors computed above
+ w2w_key_layer = key_layer[:, :, :word_size, :]
+ e2w_key_layer = key_layer[:, :, :word_size, :]
+ w2e_key_layer = key_layer[:, :, word_size:, :]
+ e2e_key_layer = key_layer[:, :, word_size:, :]
+
+ # compute attention scores based on the dot product between the query and key vectors
+ w2w_attention_scores = torch.matmul(w2w_query_layer, w2w_key_layer.transpose(-1, -2))
+ w2e_attention_scores = torch.matmul(w2e_query_layer, w2e_key_layer.transpose(-1, -2))
+ e2w_attention_scores = torch.matmul(e2w_query_layer, e2w_key_layer.transpose(-1, -2))
+ e2e_attention_scores = torch.matmul(e2e_query_layer, e2e_key_layer.transpose(-1, -2))
+
+ # combine attention scores to create the final attention score matrix
+ word_attention_scores = torch.cat([w2w_attention_scores, w2e_attention_scores], dim=3)
+ entity_attention_scores = torch.cat([e2w_attention_scores, e2e_attention_scores], dim=3)
+ attention_scores = torch.cat([word_attention_scores, entity_attention_scores], dim=2)
+
+ else:
+ query_layer = self.transpose_for_scores(self.query(concat_hidden_states))
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in LukeModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ output_word_hidden_states = context_layer[:, :word_size, :]
+ if entity_hidden_states is None:
+ output_entity_hidden_states = None
+ else:
+ output_entity_hidden_states = context_layer[:, word_size:, :]
+
+ if output_attentions:
+ outputs = (output_word_hidden_states, output_entity_hidden_states, attention_probs)
+ else:
+ outputs = (output_word_hidden_states, output_entity_hidden_states)
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
+class LukeSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class LukeAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = LukeSelfAttention(config)
+ self.output = LukeSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ raise NotImplementedError("LUKE does not support the pruning of attention heads")
+
+ def forward(
+ self,
+ word_hidden_states,
+ entity_hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ ):
+ word_size = word_hidden_states.size(1)
+ self_outputs = self.self(
+ word_hidden_states,
+ entity_hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions,
+ )
+ if entity_hidden_states is None:
+ concat_self_outputs = self_outputs[0]
+ concat_hidden_states = word_hidden_states
+ else:
+ concat_self_outputs = torch.cat(self_outputs[:2], dim=1)
+ concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1)
+
+ attention_output = self.output(concat_self_outputs, concat_hidden_states)
+
+ word_attention_output = attention_output[:, :word_size, :]
+ if entity_hidden_states is None:
+ entity_attention_output = None
+ else:
+ entity_attention_output = attention_output[:, word_size:, :]
+
+ # add attentions if we output them
+ outputs = (word_attention_output, entity_attention_output) + self_outputs[2:]
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate
+class LukeIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput
+class LukeOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class LukeLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = LukeAttention(config)
+ self.intermediate = LukeIntermediate(config)
+ self.output = LukeOutput(config)
+
+ def forward(
+ self,
+ word_hidden_states,
+ entity_hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ ):
+ word_size = word_hidden_states.size(1)
+
+ self_attention_outputs = self.attention(
+ word_hidden_states,
+ entity_hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ )
+ if entity_hidden_states is None:
+ concat_attention_output = self_attention_outputs[0]
+ else:
+ concat_attention_output = torch.cat(self_attention_outputs[:2], dim=1)
+
+ outputs = self_attention_outputs[2:] # add self attentions if we output attention weights
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output
+ )
+ word_layer_output = layer_output[:, :word_size, :]
+ if entity_hidden_states is None:
+ entity_layer_output = None
+ else:
+ entity_layer_output = layer_output[:, word_size:, :]
+
+ outputs = (word_layer_output, entity_layer_output) + outputs
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class LukeEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ word_hidden_states,
+ entity_hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ all_word_hidden_states = () if output_hidden_states else None
+ all_entity_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
+ all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ word_hidden_states,
+ entity_hidden_states,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ word_hidden_states,
+ entity_hidden_states,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ )
+
+ word_hidden_states = layer_outputs[0]
+
+ if entity_hidden_states is not None:
+ entity_hidden_states = layer_outputs[1]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
+ all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ word_hidden_states,
+ all_word_hidden_states,
+ all_self_attentions,
+ entity_hidden_states,
+ all_entity_hidden_states,
+ ]
+ if v is not None
+ )
+ return BaseLukeModelOutput(
+ last_hidden_state=word_hidden_states,
+ hidden_states=all_word_hidden_states,
+ attentions=all_self_attentions,
+ entity_last_hidden_state=entity_hidden_states,
+ entity_hidden_states=all_entity_hidden_states,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler
+class LukePooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class EntityPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.entity_emb_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.entity_emb_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+class EntityPredictionHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.transform = EntityPredictionHeadTransform(config)
+ self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False)
+ self.bias = nn.Parameter(torch.zeros(config.entity_vocab_size))
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states) + self.bias
+
+ return hidden_states
+
+
+class LukePreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = LukeConfig
+ base_model_prefix = "luke"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"]
+
+ def _init_weights(self, module: nn.Module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ if module.embedding_dim == 1: # embedding for bias parameters
+ module.weight.data.zero_()
+ else:
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+LUKE_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`LukeConfig`]): Model configuration class with all the parameters of the
+ model. Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+LUKE_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+
+ entity_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`):
+ Indices of entity tokens in the entity vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ entity_attention_mask (`torch.FloatTensor` of shape `(batch_size, entity_length)`, *optional*):
+ Mask to avoid performing attention on padding entity token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for entity tokens that are **not masked**,
+ - 0 for entity tokens that are **masked**.
+
+ entity_token_type_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*):
+ Segment token indices to indicate first and second portions of the entity token inputs. Indices are
+ selected in `[0, 1]`:
+
+ - 0 corresponds to a *portion A* entity token,
+ - 1 corresponds to a *portion B* entity token.
+
+ entity_position_ids (`torch.LongTensor` of shape `(batch_size, entity_length, max_mention_length)`, *optional*):
+ Indices of positions of each input entity in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare LUKE model transformer outputting raw hidden-states for both word tokens and entities without any"
+ " specific head on top.",
+ LUKE_START_DOCSTRING,
+)
+class LukeModel(LukePreTrainedModel):
+ def __init__(self, config: LukeConfig, add_pooling_layer: bool = True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = LukeEmbeddings(config)
+ self.entity_embeddings = LukeEntityEmbeddings(config)
+ self.encoder = LukeEncoder(config)
+
+ self.pooler = LukePooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def get_entity_embeddings(self):
+ return self.entity_embeddings.entity_embeddings
+
+ def set_entity_embeddings(self, value):
+ self.entity_embeddings.entity_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ raise NotImplementedError("LUKE does not support the pruning of attention heads")
+
+ @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=BaseLukeModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ entity_ids: Optional[torch.LongTensor] = None,
+ entity_attention_mask: Optional[torch.FloatTensor] = None,
+ entity_token_type_ids: Optional[torch.LongTensor] = None,
+ entity_position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseLukeModelOutputWithPooling]:
+ r"""
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, LukeModel
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-base")
+ >>> model = LukeModel.from_pretrained("studio-ousia/luke-base")
+ # Compute the contextualized entity representation corresponding to the entity mention "Beyoncé"
+
+ >>> text = "Beyoncé lives in Los Angeles."
+ >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé"
+
+ >>> encoding = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt")
+ >>> outputs = model(**encoding)
+ >>> word_last_hidden_state = outputs.last_hidden_state
+ >>> entity_last_hidden_state = outputs.entity_last_hidden_state
+ # Input Wikipedia entities to obtain enriched contextualized representations of word tokens
+
+ >>> text = "Beyoncé lives in Los Angeles."
+ >>> entities = [
+ ... "Beyoncé",
+ ... "Los Angeles",
+ ... ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles"
+ >>> entity_spans = [
+ ... (0, 7),
+ ... (17, 28),
+ ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
+
+ >>> encoding = tokenizer(
+ ... text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt"
+ ... )
+ >>> outputs = model(**encoding)
+ >>> word_last_hidden_state = outputs.last_hidden_state
+ >>> entity_last_hidden_state = outputs.entity_last_hidden_state
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones((batch_size, seq_length), device=device)
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+ if entity_ids is not None:
+ entity_seq_length = entity_ids.size(1)
+ if entity_attention_mask is None:
+ entity_attention_mask = torch.ones((batch_size, entity_seq_length), device=device)
+ if entity_token_type_ids is None:
+ entity_token_type_ids = torch.zeros((batch_size, entity_seq_length), dtype=torch.long, device=device)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ # First, compute word embeddings
+ word_embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ )
+
+ # Second, compute extended attention mask
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask)
+
+ # Third, compute entity embeddings and concatenate with word embeddings
+ if entity_ids is None:
+ entity_embedding_output = None
+ else:
+ entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids)
+
+ # Fourth, send embeddings through the model
+ encoder_outputs = self.encoder(
+ word_embedding_output,
+ entity_embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ # Fifth, get the output. LukeModel outputs the same as BertModel, namely sequence_output of shape (batch_size, seq_len, hidden_size)
+ sequence_output = encoder_outputs[0]
+
+ # Sixth, we compute the pooled_output, word_sequence_output and entity_sequence_output based on the sequence_output
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseLukeModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ entity_last_hidden_state=encoder_outputs.entity_last_hidden_state,
+ entity_hidden_states=encoder_outputs.entity_hidden_states,
+ )
+
+ def get_extended_attention_mask(
+ self, word_attention_mask: torch.LongTensor, entity_attention_mask: Optional[torch.LongTensor]
+ ):
+ """
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
+
+ Arguments:
+ word_attention_mask (`torch.LongTensor`):
+ Attention mask for word tokens with ones indicating tokens to attend to, zeros for tokens to ignore.
+ entity_attention_mask (`torch.LongTensor`, *optional*):
+ Attention mask for entity tokens with ones indicating tokens to attend to, zeros for tokens to ignore.
+
+ Returns:
+ `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
+ """
+ attention_mask = word_attention_mask
+ if entity_attention_mask is not None:
+ attention_mask = torch.cat([attention_mask, entity_attention_mask], dim=-1)
+
+ if attention_mask.dim() == 3:
+ extended_attention_mask = attention_mask[:, None, :, :]
+ elif attention_mask.dim() == 2:
+ extended_attention_mask = attention_mask[:, None, None, :]
+ else:
+ raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})")
+
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
+ extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
+ return extended_attention_mask
+
+
+def create_position_ids_from_input_ids(input_ids, padding_idx):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ x: torch.Tensor x:
+
+ Returns: torch.Tensor
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = input_ids.ne(padding_idx).int()
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask
+ return incremental_indices.long() + padding_idx
+
+
+# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead
+class LukeLMHead(nn.Module):
+ """Roberta Head for masked language modeling."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+ self.decoder.bias = self.bias
+
+ def forward(self, features, **kwargs):
+ x = self.dense(features)
+ x = gelu(x)
+ x = self.layer_norm(x)
+
+ # project back to size of vocabulary with bias
+ x = self.decoder(x)
+
+ return x
+
+ def _tie_weights(self):
+ # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
+ # For accelerate compatibility and to not break backward compatibility
+ if self.decoder.bias.device.type == "meta":
+ self.decoder.bias = self.bias
+ else:
+ self.bias = self.decoder.bias
+
+
+@add_start_docstrings(
+ """
+ The LUKE model with a language modeling head and entity prediction head on top for masked language modeling and
+ masked entity prediction.
+ """,
+ LUKE_START_DOCSTRING,
+)
+class LukeForMaskedLM(LukePreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.luke = LukeModel(config)
+
+ self.lm_head = LukeLMHead(config)
+ self.entity_predictions = EntityPredictionHead(config)
+
+ self.loss_fn = nn.CrossEntropyLoss()
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def tie_weights(self):
+ super().tie_weights()
+ self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings)
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=LukeMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ entity_ids: Optional[torch.LongTensor] = None,
+ entity_attention_mask: Optional[torch.LongTensor] = None,
+ entity_token_type_ids: Optional[torch.LongTensor] = None,
+ entity_position_ids: Optional[torch.LongTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ entity_labels: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, LukeMaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ entity_labels (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+
+ Returns:
+
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.luke(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ entity_ids=entity_ids,
+ entity_attention_mask=entity_attention_mask,
+ entity_token_type_ids=entity_token_type_ids,
+ entity_position_ids=entity_position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+
+ loss = None
+
+ mlm_loss = None
+ logits = self.lm_head(outputs.last_hidden_state)
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1))
+ if loss is None:
+ loss = mlm_loss
+
+ mep_loss = None
+ entity_logits = None
+ if outputs.entity_last_hidden_state is not None:
+ entity_logits = self.entity_predictions(outputs.entity_last_hidden_state)
+ if entity_labels is not None:
+ mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1))
+ if loss is None:
+ loss = mep_loss
+ else:
+ loss = loss + mep_loss
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ loss,
+ mlm_loss,
+ mep_loss,
+ logits,
+ entity_logits,
+ outputs.hidden_states,
+ outputs.entity_hidden_states,
+ outputs.attentions,
+ ]
+ if v is not None
+ )
+
+ return LukeMaskedLMOutput(
+ loss=loss,
+ mlm_loss=mlm_loss,
+ mep_loss=mep_loss,
+ logits=logits,
+ entity_logits=entity_logits,
+ hidden_states=outputs.hidden_states,
+ entity_hidden_states=outputs.entity_hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ The LUKE model with a classification head on top (a linear layer on top of the hidden state of the first entity
+ token) for entity classification tasks, such as Open Entity.
+ """,
+ LUKE_START_DOCSTRING,
+)
+class LukeForEntityClassification(LukePreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.luke = LukeModel(config)
+
+ self.num_labels = config.num_labels
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=EntityClassificationOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ entity_ids: Optional[torch.LongTensor] = None,
+ entity_attention_mask: Optional[torch.FloatTensor] = None,
+ entity_token_type_ids: Optional[torch.LongTensor] = None,
+ entity_position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, EntityClassificationOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*):
+ Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is
+ used for the single-label classification. In this case, labels should contain the indices that should be in
+ `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy
+ loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0
+ and 1 indicate false and true, respectively.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, LukeForEntityClassification
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-open-entity")
+ >>> model = LukeForEntityClassification.from_pretrained("studio-ousia/luke-large-finetuned-open-entity")
+
+ >>> text = "Beyoncé lives in Los Angeles."
+ >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé"
+ >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
+ >>> outputs = model(**inputs)
+ >>> logits = outputs.logits
+ >>> predicted_class_idx = logits.argmax(-1).item()
+ >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
+ Predicted class: person
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.luke(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ entity_ids=entity_ids,
+ entity_attention_mask=entity_attention_mask,
+ entity_token_type_ids=entity_token_type_ids,
+ entity_position_ids=entity_position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+
+ feature_vector = outputs.entity_last_hidden_state[:, 0, :]
+ feature_vector = self.dropout(feature_vector)
+ logits = self.classifier(feature_vector)
+
+ loss = None
+ if labels is not None:
+ # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary
+ # cross entropy is used otherwise.
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ if labels.ndim == 1:
+ loss = nn.functional.cross_entropy(logits, labels)
+ else:
+ loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
+ if v is not None
+ )
+
+ return EntityClassificationOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ entity_hidden_states=outputs.entity_hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ The LUKE model with a classification head on top (a linear layer on top of the hidden states of the two entity
+ tokens) for entity pair classification tasks, such as TACRED.
+ """,
+ LUKE_START_DOCSTRING,
+)
+class LukeForEntityPairClassification(LukePreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.luke = LukeModel(config)
+
+ self.num_labels = config.num_labels
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=EntityPairClassificationOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ entity_ids: Optional[torch.LongTensor] = None,
+ entity_attention_mask: Optional[torch.FloatTensor] = None,
+ entity_token_type_ids: Optional[torch.LongTensor] = None,
+ entity_position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, EntityPairClassificationOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*):
+ Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is
+ used for the single-label classification. In this case, labels should contain the indices that should be in
+ `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy
+ loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0
+ and 1 indicate false and true, respectively.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, LukeForEntityPairClassification
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
+ >>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
+
+ >>> text = "Beyoncé lives in Los Angeles."
+ >>> entity_spans = [
+ ... (0, 7),
+ ... (17, 28),
+ ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
+ >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
+ >>> outputs = model(**inputs)
+ >>> logits = outputs.logits
+ >>> predicted_class_idx = logits.argmax(-1).item()
+ >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
+ Predicted class: per:cities_of_residence
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.luke(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ entity_ids=entity_ids,
+ entity_attention_mask=entity_attention_mask,
+ entity_token_type_ids=entity_token_type_ids,
+ entity_position_ids=entity_position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+
+ feature_vector = torch.cat(
+ [outputs.entity_last_hidden_state[:, 0, :], outputs.entity_last_hidden_state[:, 1, :]], dim=1
+ )
+ feature_vector = self.dropout(feature_vector)
+ logits = self.classifier(feature_vector)
+
+ loss = None
+ if labels is not None:
+ # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary
+ # cross entropy is used otherwise.
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ if labels.ndim == 1:
+ loss = nn.functional.cross_entropy(logits, labels)
+ else:
+ loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
+ if v is not None
+ )
+
+ return EntityPairClassificationOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ entity_hidden_states=outputs.entity_hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ The LUKE model with a span classification head on top (a linear layer on top of the hidden states output) for tasks
+ such as named entity recognition.
+ """,
+ LUKE_START_DOCSTRING,
+)
+class LukeForEntitySpanClassification(LukePreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.luke = LukeModel(config)
+
+ self.num_labels = config.num_labels
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=EntitySpanClassificationOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ entity_ids: Optional[torch.LongTensor] = None,
+ entity_attention_mask: Optional[torch.LongTensor] = None,
+ entity_token_type_ids: Optional[torch.LongTensor] = None,
+ entity_position_ids: Optional[torch.LongTensor] = None,
+ entity_start_positions: Optional[torch.LongTensor] = None,
+ entity_end_positions: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, EntitySpanClassificationOutput]:
+ r"""
+ entity_start_positions (`torch.LongTensor`):
+ The start positions of entities in the word token sequence.
+
+ entity_end_positions (`torch.LongTensor`):
+ The end positions of entities in the word token sequence.
+
+ labels (`torch.LongTensor` of shape `(batch_size, entity_length)` or `(batch_size, entity_length, num_labels)`, *optional*):
+ Labels for computing the classification loss. If the shape is `(batch_size, entity_length)`, the cross
+ entropy loss is used for the single-label classification. In this case, labels should contain the indices
+ that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, entity_length,
+ num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case,
+ labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, LukeForEntitySpanClassification
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
+ >>> model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
+
+ >>> text = "Beyoncé lives in Los Angeles"
+ # List all possible entity spans in the text
+
+ >>> word_start_positions = [0, 8, 14, 17, 21] # character-based start positions of word tokens
+ >>> word_end_positions = [7, 13, 16, 20, 28] # character-based end positions of word tokens
+ >>> entity_spans = []
+ >>> for i, start_pos in enumerate(word_start_positions):
+ ... for end_pos in word_end_positions[i:]:
+ ... entity_spans.append((start_pos, end_pos))
+
+ >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
+ >>> outputs = model(**inputs)
+ >>> logits = outputs.logits
+ >>> predicted_class_indices = logits.argmax(-1).squeeze().tolist()
+ >>> for span, predicted_class_idx in zip(entity_spans, predicted_class_indices):
+ ... if predicted_class_idx != 0:
+ ... print(text[span[0] : span[1]], model.config.id2label[predicted_class_idx])
+ Beyoncé PER
+ Los Angeles LOC
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.luke(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ entity_ids=entity_ids,
+ entity_attention_mask=entity_attention_mask,
+ entity_token_type_ids=entity_token_type_ids,
+ entity_position_ids=entity_position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+ hidden_size = outputs.last_hidden_state.size(-1)
+
+ entity_start_positions = entity_start_positions.unsqueeze(-1).expand(-1, -1, hidden_size)
+ if entity_start_positions.device != outputs.last_hidden_state.device:
+ entity_start_positions = entity_start_positions.to(outputs.last_hidden_state.device)
+ start_states = torch.gather(outputs.last_hidden_state, -2, entity_start_positions)
+
+ entity_end_positions = entity_end_positions.unsqueeze(-1).expand(-1, -1, hidden_size)
+ if entity_end_positions.device != outputs.last_hidden_state.device:
+ entity_end_positions = entity_end_positions.to(outputs.last_hidden_state.device)
+ end_states = torch.gather(outputs.last_hidden_state, -2, entity_end_positions)
+
+ feature_vector = torch.cat([start_states, end_states, outputs.entity_last_hidden_state], dim=2)
+
+ feature_vector = self.dropout(feature_vector)
+ logits = self.classifier(feature_vector)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ # When the number of dimension of `labels` is 2, cross entropy is used as the loss function. The binary
+ # cross entropy is used otherwise.
+ if labels.ndim == 2:
+ loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
+ else:
+ loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
+ if v is not None
+ )
+
+ return EntitySpanClassificationOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ entity_hidden_states=outputs.entity_hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ The LUKE Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ LUKE_START_DOCSTRING,
+)
+class LukeForSequenceClassification(LukePreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.luke = LukeModel(config)
+ self.dropout = nn.Dropout(
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=LukeSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ entity_ids: Optional[torch.LongTensor] = None,
+ entity_attention_mask: Optional[torch.FloatTensor] = None,
+ entity_token_type_ids: Optional[torch.LongTensor] = None,
+ entity_position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, LukeSequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.luke(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ entity_ids=entity_ids,
+ entity_attention_mask=entity_attention_mask,
+ entity_token_type_ids=entity_token_type_ids,
+ entity_position_ids=entity_position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+
+ pooled_output = outputs.pooler_output
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
+ if v is not None
+ )
+
+ return LukeSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ entity_hidden_states=outputs.entity_hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ The LUKE Model with a token classification head on top (a linear layer on top of the hidden-states output). To
+ solve Named-Entity Recognition (NER) task using LUKE, `LukeForEntitySpanClassification` is more suitable than this
+ class.
+ """,
+ LUKE_START_DOCSTRING,
+)
+class LukeForTokenClassification(LukePreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.luke = LukeModel(config, add_pooling_layer=False)
+ self.dropout = nn.Dropout(
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=LukeTokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ entity_ids: Optional[torch.LongTensor] = None,
+ entity_attention_mask: Optional[torch.FloatTensor] = None,
+ entity_token_type_ids: Optional[torch.LongTensor] = None,
+ entity_position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, LukeTokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.luke(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ entity_ids=entity_ids,
+ entity_attention_mask=entity_attention_mask,
+ entity_token_type_ids=entity_token_type_ids,
+ entity_position_ids=entity_position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+
+ sequence_output = outputs.last_hidden_state
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
+ if v is not None
+ )
+
+ return LukeTokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ entity_hidden_states=outputs.entity_hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ The LUKE Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ LUKE_START_DOCSTRING,
+)
+class LukeForQuestionAnswering(LukePreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+
+ self.luke = LukeModel(config, add_pooling_layer=False)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=LukeQuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.FloatTensor] = None,
+ entity_ids: Optional[torch.LongTensor] = None,
+ entity_attention_mask: Optional[torch.FloatTensor] = None,
+ entity_token_type_ids: Optional[torch.LongTensor] = None,
+ entity_position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, LukeQuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.luke(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ entity_ids=entity_ids,
+ entity_attention_mask=entity_attention_mask,
+ entity_token_type_ids=entity_token_type_ids,
+ entity_position_ids=entity_position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+
+ sequence_output = outputs.last_hidden_state
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1)
+ end_logits = end_logits.squeeze(-1)
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions.clamp_(0, ignored_index)
+ end_positions.clamp_(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ total_loss,
+ start_logits,
+ end_logits,
+ outputs.hidden_states,
+ outputs.entity_hidden_states,
+ outputs.attentions,
+ ]
+ if v is not None
+ )
+
+ return LukeQuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ entity_hidden_states=outputs.entity_hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ The LUKE Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ LUKE_START_DOCSTRING,
+)
+class LukeForMultipleChoice(LukePreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.luke = LukeModel(config)
+ self.dropout = nn.Dropout(
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=LukeMultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ entity_ids: Optional[torch.LongTensor] = None,
+ entity_attention_mask: Optional[torch.FloatTensor] = None,
+ entity_token_type_ids: Optional[torch.LongTensor] = None,
+ entity_position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, LukeMultipleChoiceModelOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
+ inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ entity_ids = entity_ids.view(-1, entity_ids.size(-1)) if entity_ids is not None else None
+ entity_attention_mask = (
+ entity_attention_mask.view(-1, entity_attention_mask.size(-1))
+ if entity_attention_mask is not None
+ else None
+ )
+ entity_token_type_ids = (
+ entity_token_type_ids.view(-1, entity_token_type_ids.size(-1))
+ if entity_token_type_ids is not None
+ else None
+ )
+ entity_position_ids = (
+ entity_position_ids.view(-1, entity_position_ids.size(-2), entity_position_ids.size(-1))
+ if entity_position_ids is not None
+ else None
+ )
+
+ outputs = self.luke(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ entity_ids=entity_ids,
+ entity_attention_mask=entity_attention_mask,
+ entity_token_type_ids=entity_token_type_ids,
+ entity_position_ids=entity_position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ )
+
+ pooled_output = outputs.pooler_output
+
+ pooled_output = self.dropout(pooled_output)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(reshaped_logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ loss,
+ reshaped_logits,
+ outputs.hidden_states,
+ outputs.entity_hidden_states,
+ outputs.attentions,
+ ]
+ if v is not None
+ )
+
+ return LukeMultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ entity_hidden_states=outputs.entity_hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/nystromformer/configuration_nystromformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/nystromformer/configuration_nystromformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..af6e8d2c21b099e5af5784f1abe7473492a47832
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/nystromformer/configuration_nystromformer.py
@@ -0,0 +1,132 @@
+# coding=utf-8
+# Copyright 2022 UW-Madison and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Nystromformer model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class NystromformerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`NystromformerModel`]. It is used to instantiate
+ an Nystromformer model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the Nystromformer
+ [uw-madison/nystromformer-512](https://huggingface.co/uw-madison/nystromformer-512) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30000):
+ Vocabulary size of the Nystromformer model. Defines the number of different tokens that can be represented
+ by the `inputs_ids` passed when calling [`NystromformerModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimension of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`NystromformerModel`].
+ segment_means_seq_len (`int`, *optional*, defaults to 64):
+ Sequence length used in segment-means.
+ num_landmarks (`int`, *optional*, defaults to 64):
+ The number of landmark (or Nystrom) points to use in Nystrom approximation of the softmax self-attention
+ matrix.
+ conv_kernel_size (`int`, *optional*, defaults to 65):
+ The kernel size of depthwise convolution used in Nystrom approximation.
+ inv_coeff_init_option (`bool`, *optional*, defaults to `False`):
+ Whether or not to use exact coefficient computation for the initial values for the iterative method of
+ calculating the Moore-Penrose inverse of a matrix.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+
+ Example:
+
+ ```python
+ >>> from transformers import NystromformerModel, NystromformerConfig
+
+ >>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration
+ >>> configuration = NystromformerConfig()
+
+ >>> # Initializing a model from the uw-madison/nystromformer-512 style configuration
+ >>> model = NystromformerModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "nystromformer"
+
+ def __init__(
+ self,
+ vocab_size=30000,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu_new",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=510,
+ type_vocab_size=2,
+ segment_means_seq_len=64,
+ num_landmarks=64,
+ conv_kernel_size=65,
+ inv_coeff_init_option=False,
+ initializer_range=0.02,
+ layer_norm_eps=1e-5,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.type_vocab_size = type_vocab_size
+ self.segment_means_seq_len = segment_means_seq_len
+ self.num_landmarks = num_landmarks
+ self.conv_kernel_size = conv_kernel_size
+ self.inv_coeff_init_option = inv_coeff_init_option
+ self.layer_norm_eps = layer_norm_eps
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..c974d994eca0322462ec7d97ce96728c9cb4ba24
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/__init__.py
@@ -0,0 +1,29 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+
+
+_import_structure = {"tokenization_phobert": ["PhobertTokenizer"]}
+
+
+if TYPE_CHECKING:
+ from .tokenization_phobert import PhobertTokenizer
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2f02e2e19620610245e1aed0b12fd29a803e1101
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/__pycache__/tokenization_phobert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/__pycache__/tokenization_phobert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..95896f8d7ed3eb06ff261e846aff90d96767441c
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/__pycache__/tokenization_phobert.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/tokenization_phobert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/tokenization_phobert.py
new file mode 100644
index 0000000000000000000000000000000000000000..f312f495015012791b4ad416c3e375f51dfa07f2
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/phobert/tokenization_phobert.py
@@ -0,0 +1,349 @@
+# coding=utf-8
+# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
+# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization classes for PhoBERT"""
+
+
+import os
+import re
+from shutil import copyfile
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {
+ "vocab_file": "vocab.txt",
+ "merges_file": "bpe.codes",
+}
+
+
+def get_pairs(word):
+ """
+ Return set of symbol pairs in a word.
+
+ Word is represented as tuple of symbols (symbols being variable-length strings).
+ """
+ pairs = set()
+ prev_char = word[0]
+ for char in word[1:]:
+ pairs.add((prev_char, char))
+ prev_char = char
+
+ pairs = set(pairs)
+ return pairs
+
+
+class PhobertTokenizer(PreTrainedTokenizer):
+ """
+ Construct a PhoBERT tokenizer. Based on Byte-Pair-Encoding.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ bos_token (`st`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab_file,
+ merges_file,
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ **kwargs,
+ ):
+ self.vocab_file = vocab_file
+ self.merges_file = merges_file
+
+ self.encoder = {}
+ self.encoder[str(bos_token)] = 0
+ self.encoder[str(pad_token)] = 1
+ self.encoder[str(eos_token)] = 2
+ self.encoder[str(unk_token)] = 3
+
+ self.add_from_file(vocab_file)
+
+ self.decoder = {v: k for k, v in self.encoder.items()}
+
+ with open(merges_file, encoding="utf-8") as merges_handle:
+ merges = merges_handle.read().split("\n")[:-1]
+ merges = [tuple(merge.split()[:-1]) for merge in merges]
+
+ self.bpe_ranks = dict(zip(merges, range(len(merges))))
+ self.cache = {}
+
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ **kwargs,
+ )
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A PhoBERT sequence has the following format:
+
+ - single sequence: ` X `
+ - pair of sequences: ` A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ @property
+ def vocab_size(self):
+ return len(self.encoder)
+
+ def get_vocab(self):
+ return dict(self.encoder, **self.added_tokens_encoder)
+
+ def bpe(self, token):
+ if token in self.cache:
+ return self.cache[token]
+ word = tuple(token)
+ word = tuple(list(word[:-1]) + [word[-1] + ""])
+ pairs = get_pairs(word)
+
+ if not pairs:
+ return token
+
+ while True:
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
+ if bigram not in self.bpe_ranks:
+ break
+ first, second = bigram
+ new_word = []
+ i = 0
+ while i < len(word):
+ try:
+ j = word.index(first, i)
+ except ValueError:
+ new_word.extend(word[i:])
+ break
+ else:
+ new_word.extend(word[i:j])
+ i = j
+
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
+ new_word.append(first + second)
+ i += 2
+ else:
+ new_word.append(word[i])
+ i += 1
+ new_word = tuple(new_word)
+ word = new_word
+ if len(word) == 1:
+ break
+ else:
+ pairs = get_pairs(word)
+ word = "@@ ".join(word)
+ word = word[:-4]
+ self.cache[token] = word
+ return word
+
+ def _tokenize(self, text):
+ """Tokenize a string."""
+ split_tokens = []
+
+ words = re.findall(r"\S+\n?", text)
+
+ for token in words:
+ split_tokens.extend(list(self.bpe(token).split(" ")))
+ return split_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.decoder.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ out_string = " ".join(tokens).replace("@@ ", "").strip()
+ return out_string
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ out_merge_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file):
+ copyfile(self.merges_file, out_merge_file)
+
+ return out_vocab_file, out_merge_file
+
+ # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
+ # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
+ # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
+ # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
+ # return ''.join(tokens_generated_so_far)
+
+ def add_from_file(self, f):
+ """
+ Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
+ """
+ if isinstance(f, str):
+ try:
+ with open(f, "r", encoding="utf-8") as fd:
+ self.add_from_file(fd)
+ except FileNotFoundError as fnfe:
+ raise fnfe
+ except UnicodeError:
+ raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset")
+ return
+
+ lines = f.readlines()
+ for lineTmp in lines:
+ line = lineTmp.strip()
+ idx = line.rfind(" ")
+ if idx == -1:
+ raise ValueError("Incorrect dictionary format, expected ' '")
+ word = line[:idx]
+ self.encoder[word] = len(self.encoder)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..93c86eb081fa03c2bfe577900d0980096dbd96cd
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__init__.py
@@ -0,0 +1,170 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
+ "tokenization_roformer": ["RoFormerTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_roformer_fast"] = ["RoFormerTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_roformer"] = [
+ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "RoFormerForCausalLM",
+ "RoFormerForMaskedLM",
+ "RoFormerForMultipleChoice",
+ "RoFormerForQuestionAnswering",
+ "RoFormerForSequenceClassification",
+ "RoFormerForTokenClassification",
+ "RoFormerLayer",
+ "RoFormerModel",
+ "RoFormerPreTrainedModel",
+ "load_tf_weights_in_roformer",
+ ]
+
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_roformer"] = [
+ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFRoFormerForCausalLM",
+ "TFRoFormerForMaskedLM",
+ "TFRoFormerForMultipleChoice",
+ "TFRoFormerForQuestionAnswering",
+ "TFRoFormerForSequenceClassification",
+ "TFRoFormerForTokenClassification",
+ "TFRoFormerLayer",
+ "TFRoFormerModel",
+ "TFRoFormerPreTrainedModel",
+ ]
+
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_roformer"] = [
+ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "FlaxRoFormerForMaskedLM",
+ "FlaxRoFormerForMultipleChoice",
+ "FlaxRoFormerForQuestionAnswering",
+ "FlaxRoFormerForSequenceClassification",
+ "FlaxRoFormerForTokenClassification",
+ "FlaxRoFormerModel",
+ "FlaxRoFormerPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
+ from .tokenization_roformer import RoFormerTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_roformer_fast import RoFormerTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_roformer import (
+ ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ RoFormerForCausalLM,
+ RoFormerForMaskedLM,
+ RoFormerForMultipleChoice,
+ RoFormerForQuestionAnswering,
+ RoFormerForSequenceClassification,
+ RoFormerForTokenClassification,
+ RoFormerLayer,
+ RoFormerModel,
+ RoFormerPreTrainedModel,
+ load_tf_weights_in_roformer,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_roformer import (
+ TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFRoFormerForCausalLM,
+ TFRoFormerForMaskedLM,
+ TFRoFormerForMultipleChoice,
+ TFRoFormerForQuestionAnswering,
+ TFRoFormerForSequenceClassification,
+ TFRoFormerForTokenClassification,
+ TFRoFormerLayer,
+ TFRoFormerModel,
+ TFRoFormerPreTrainedModel,
+ )
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_roformer import (
+ FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ FlaxRoFormerForMaskedLM,
+ FlaxRoFormerForMultipleChoice,
+ FlaxRoFormerForQuestionAnswering,
+ FlaxRoFormerForSequenceClassification,
+ FlaxRoFormerForTokenClassification,
+ FlaxRoFormerModel,
+ FlaxRoFormerPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e575c06cf871a278ea20e4d199e5de16e785dac6
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/configuration_roformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/configuration_roformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7930c04c617022119c3de57afb3a2f39eb3849b2
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/configuration_roformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/convert_roformer_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/convert_roformer_original_tf_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..84cc0737bc7941c7bb51376d61de9171ef521301
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/convert_roformer_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/modeling_flax_roformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/modeling_flax_roformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2e557647038409c0f497acb51430989a84de2ed1
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/modeling_flax_roformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/modeling_roformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/modeling_roformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9c232482281fabecb42afa388c50a2c5ce699748
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/modeling_roformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/modeling_tf_roformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/modeling_tf_roformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0b2ca440a06358f402aaa4e6ef1862e411ddc8db
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/modeling_tf_roformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/tokenization_roformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/tokenization_roformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..049d850592f2f1b0f34f949697df731aa8be9d57
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/tokenization_roformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/tokenization_roformer_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/tokenization_roformer_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..72bfa8529dfbb15ac3c462dc622d08ea593a9138
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/tokenization_roformer_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/tokenization_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/tokenization_utils.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9fc495b50cb0c4e356301900993b9d76570c9a1a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/__pycache__/tokenization_utils.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/modeling_flax_roformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/modeling_flax_roformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..6e154b311d4d4672e6d49fbef2f9f5390e6b290c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/modeling_flax_roformer.py
@@ -0,0 +1,1080 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Flax RoFormer model."""
+
+from typing import Callable, Optional, Tuple
+
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+import numpy as np
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+
+from ...modeling_flax_outputs import (
+ FlaxBaseModelOutput,
+ FlaxMaskedLMOutput,
+ FlaxMultipleChoiceModelOutput,
+ FlaxQuestionAnsweringModelOutput,
+ FlaxSequenceClassifierOutput,
+ FlaxTokenClassifierOutput,
+)
+from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_roformer import RoFormerConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "junnyu/roformer_chinese_base"
+_CONFIG_FOR_DOC = "RoFormerConfig"
+
+
+ROFORMER_START_DOCSTRING = r"""
+
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
+
+ This model is also a
+ [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
+ a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
+ behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`RoFormerConfig`]): Model configuration class with all the parameters of the
+ model. Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
+ `jax.numpy.bfloat16` (on TPUs).
+
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
+ specified all the computation will be performed with the given `dtype`.
+
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
+ parameters.**
+
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
+ [`~FlaxPreTrainedModel.to_bf16`].
+"""
+
+ROFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`numpy.ndarray` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ head_mask (`numpy.ndarray` of shape `({0})`, `optional):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.marian.modeling_flax_marian.create_sinusoidal_positions
+def create_sinusoidal_positions(n_pos, dim):
+ position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
+ sentinel = dim // 2 + dim % 2
+ out = np.zeros_like(position_enc)
+ out[:, 0:sentinel] = np.sin(position_enc[:, 0::2])
+ out[:, sentinel:] = np.cos(position_enc[:, 1::2])
+
+ return jnp.array(out)
+
+
+class FlaxRoFormerEmbeddings(nn.Module):
+ """Construct the embeddings from word and token_type embeddings."""
+
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.word_embeddings = nn.Embed(
+ self.config.vocab_size,
+ self.config.hidden_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ )
+ self.token_type_embeddings = nn.Embed(
+ self.config.type_vocab_size,
+ self.config.hidden_size,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ )
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, input_ids, token_type_ids, attention_mask, deterministic: bool = True):
+ # Embed
+ inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
+ token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
+
+ # Sum all embeddings
+ hidden_states = inputs_embeds + token_type_embeddings
+
+ # Layer Norm
+ hidden_states = self.LayerNorm(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ return hidden_states
+
+
+class FlaxRoFormerSelfAttention(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self) -> None:
+ if self.config.hidden_size % self.config.num_attention_heads != 0:
+ raise ValueError(
+ "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
+ " : {self.config.num_attention_heads}"
+ )
+
+ self.query = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.key = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.value = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+
+ self.rotary_value = self.config.rotary_value
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ sinusoidal_pos,
+ layer_head_mask,
+ deterministic=True,
+ output_attentions: bool = False,
+ ):
+ head_dim = self.config.hidden_size // self.config.num_attention_heads
+
+ query_states = self.query(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+ value_states = self.value(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+ key_states = self.key(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+
+ if sinusoidal_pos is not None:
+ if self.rotary_value:
+ query_states, key_states, value_states = self.apply_rotary_position_embeddings(
+ sinusoidal_pos, query_states, key_states, value_states
+ )
+ else:
+ query_states, key_states = self.apply_rotary_position_embeddings(
+ sinusoidal_pos, query_states, key_states
+ )
+
+ # Convert the boolean attention mask to an attention bias.
+ if attention_mask is not None:
+ # attention mask in the form of attention bias
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
+ )
+ else:
+ attention_bias = None
+
+ dropout_rng = None
+ if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.config.attention_probs_dropout_prob,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ # Mask heads if we want to
+ if layer_head_mask is not None:
+ attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
+
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
+ return outputs
+
+ @staticmethod
+ def apply_rotary_position_embeddings(sinusoidal_pos, query_layer, key_layer, value_layer=None):
+ sin, cos = sinusoidal_pos.split(2, axis=-1)
+ sin_pos = jnp.stack([sin, sin], axis=-1).reshape(sinusoidal_pos.shape)
+ cos_pos = jnp.stack([cos, cos], axis=-1).reshape(sinusoidal_pos.shape)
+
+ def rotate_layer(layer, sin_pos, cos_pos):
+ rotate_half_layer = jnp.stack([-layer[..., 1::2], layer[..., ::2]], axis=-1).reshape(layer.shape)
+ rotary_matrix_cos = jnp.einsum("bslh,...sh->bslh", layer, cos_pos)
+ rotary_matrix_sin = jnp.einsum("bslh,...sh->bslh", rotate_half_layer, sin_pos)
+ return rotary_matrix_cos + rotary_matrix_sin
+
+ query_layer = rotate_layer(query_layer, sin_pos, cos_pos)
+ key_layer = rotate_layer(key_layer, sin_pos, cos_pos)
+ if value_layer is not None:
+ value_layer = rotate_layer(value_layer, sin_pos, cos_pos)
+ return query_layer, key_layer, value_layer
+ return query_layer, key_layer
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->RoFormer
+class FlaxRoFormerSelfOutput(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class FlaxRoFormerAttention(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.self = FlaxRoFormerSelfAttention(self.config, dtype=self.dtype)
+ self.output = FlaxRoFormerSelfOutput(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ sinusoidal_pos,
+ layer_head_mask,
+ deterministic=True,
+ output_attentions: bool = False,
+ ):
+ # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
+ # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
+ # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
+ attn_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ sinusoidal_pos,
+ layer_head_mask=layer_head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attn_output = attn_outputs[0]
+ hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_outputs[1],)
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->RoFormer
+class FlaxRoFormerIntermediate(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.intermediate_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.activation = ACT2FN[self.config.hidden_act]
+
+ def __call__(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->RoFormer
+class FlaxRoFormerOutput(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ dtype=self.dtype,
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ def __call__(self, hidden_states, attention_output, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.LayerNorm(hidden_states + attention_output)
+ return hidden_states
+
+
+class FlaxRoFormerLayer(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.attention = FlaxRoFormerAttention(self.config, dtype=self.dtype)
+ self.intermediate = FlaxRoFormerIntermediate(self.config, dtype=self.dtype)
+ self.output = FlaxRoFormerOutput(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ sinusiodal_pos,
+ layer_head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ ):
+ attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ sinusiodal_pos,
+ layer_head_mask=layer_head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+ attention_output = attention_outputs[0]
+
+ hidden_states = self.intermediate(attention_output)
+ hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attention_outputs[1],)
+ return outputs
+
+
+class FlaxRoFormerLayerCollection(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxRoFormerLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
+ ]
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ sinusoidal_pos,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+
+ # Check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ if head_mask.shape[0] != (len(self.layers)):
+ raise ValueError(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
+ f" {head_mask.shape[0]}."
+ )
+
+ for i, layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ layer_outputs = layer(
+ hidden_states,
+ attention_mask,
+ sinusoidal_pos,
+ layer_head_mask=head_mask[i] if head_mask is not None else None,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions += (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+class FlaxRoFormerEncoder(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.embed_positions = create_sinusoidal_positions(
+ self.config.max_position_embeddings, self.config.hidden_size // self.config.num_attention_heads
+ )
+ self.layer = FlaxRoFormerLayerCollection(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ sinusoidal_pos = self.embed_positions[: hidden_states.shape[1], :]
+
+ return self.layer(
+ hidden_states,
+ attention_mask,
+ sinusoidal_pos,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPredictionHeadTransform with Bert->RoFormer
+class FlaxRoFormerPredictionHeadTransform(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
+ self.activation = ACT2FN[self.config.hidden_act]
+ self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ def __call__(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return self.LayerNorm(hidden_states)
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLMPredictionHead with Bert->RoFormer
+class FlaxRoFormerLMPredictionHead(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32
+ bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
+
+ def setup(self):
+ self.transform = FlaxRoFormerPredictionHeadTransform(self.config, dtype=self.dtype)
+ self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
+ self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
+
+ def __call__(self, hidden_states, shared_embedding=None):
+ hidden_states = self.transform(hidden_states)
+
+ if shared_embedding is not None:
+ hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ hidden_states = self.decoder(hidden_states)
+
+ bias = jnp.asarray(self.bias, self.dtype)
+ hidden_states += bias
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOnlyMLMHead with Bert->RoFormer
+class FlaxRoFormerOnlyMLMHead(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.predictions = FlaxRoFormerLMPredictionHead(self.config, dtype=self.dtype)
+
+ def __call__(self, hidden_states, shared_embedding=None):
+ hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding)
+ return hidden_states
+
+
+class FlaxRoFormerClassificationHead(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.out_proj = nn.Dense(
+ self.config.num_labels,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+ self.activation = ACT2FN[self.config.hidden_act]
+
+ def __call__(self, hidden_states, deterministic=True):
+ hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS])
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = self.out_proj(hidden_states)
+ return hidden_states
+
+
+class FlaxRoFormerPreTrainedModel(FlaxPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = RoFormerConfig
+ base_model_prefix = "roformer"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: RoFormerConfig,
+ input_shape: Tuple = (1, 1),
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ token_type_ids = jnp.zeros_like(input_ids)
+ attention_mask = jnp.ones_like(input_ids)
+ head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(
+ rngs, input_ids, attention_mask, token_type_ids, head_mask, return_dict=False
+ )["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ token_type_ids=None,
+ head_mask=None,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ # init input tensors if not passed
+ if token_type_ids is None:
+ token_type_ids = jnp.zeros_like(input_ids)
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+
+ if head_mask is None:
+ head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ return self.module.apply(
+ {"params": params or self.params},
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ jnp.array(token_type_ids, dtype="i4"),
+ jnp.array(head_mask, dtype="i4"),
+ not train,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ rngs=rngs,
+ )
+
+
+class FlaxRoFormerModule(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.embeddings = FlaxRoFormerEmbeddings(self.config, dtype=self.dtype)
+ self.encoder = FlaxRoFormerEncoder(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ hidden_states = self.embeddings(input_ids, token_type_ids, attention_mask, deterministic=deterministic)
+ outputs = self.encoder(
+ hidden_states,
+ attention_mask,
+ head_mask=head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+
+ if not return_dict:
+ return (hidden_states,) + outputs[1:]
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare RoFormer Model transformer outputting raw hidden-states without any specific head on top.",
+ ROFORMER_START_DOCSTRING,
+)
+class FlaxRoFormerModel(FlaxRoFormerPreTrainedModel):
+ module_class = FlaxRoFormerModule
+
+
+append_call_sample_docstring(FlaxRoFormerModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
+
+
+class FlaxRoFormerForMaskedLMModule(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype)
+ self.cls = FlaxRoFormerOnlyMLMHead(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.roformer(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.roformer.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
+ else:
+ shared_embedding = None
+
+ # Compute the prediction scores
+ logits = self.cls(hidden_states, shared_embedding=shared_embedding)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxMaskedLMOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings("""RoFormer Model with a `language modeling` head on top.""", ROFORMER_START_DOCSTRING)
+class FlaxRoFormerForMaskedLM(FlaxRoFormerPreTrainedModel):
+ module_class = FlaxRoFormerForMaskedLMModule
+
+
+append_call_sample_docstring(
+ FlaxRoFormerForMaskedLM,
+ _CHECKPOINT_FOR_DOC,
+ FlaxMaskedLMOutput,
+ _CONFIG_FOR_DOC,
+ mask="",
+)
+
+
+class FlaxRoFormerForSequenceClassificationModule(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype)
+ self.classifier = FlaxRoFormerClassificationHead(config=self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.roformer(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output, deterministic=deterministic)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxSequenceClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class FlaxRoFormerForSequenceClassification(FlaxRoFormerPreTrainedModel):
+ module_class = FlaxRoFormerForSequenceClassificationModule
+
+
+append_call_sample_docstring(
+ FlaxRoFormerForSequenceClassification,
+ _CHECKPOINT_FOR_DOC,
+ FlaxSequenceClassifierOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxRoFormerForMultipleChoiceModule(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.classifier = nn.Dense(1, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ num_choices = input_ids.shape[1]
+ input_ids = input_ids.reshape(-1, input_ids.shape[-1])
+ attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1])
+ token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1])
+
+ # Model
+ outputs = self.roformer(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ # Equivalent to sequence_summary call in the PyTorch implementation
+ hidden_states = outputs[0]
+ pooled_output = hidden_states[:, -1]
+ pooled_output = self.dropout(pooled_output, deterministic=deterministic)
+
+ logits = self.classifier(pooled_output)
+
+ reshaped_logits = logits.reshape(-1, num_choices)
+
+ if not return_dict:
+ return (reshaped_logits,) + outputs[2:]
+
+ return FlaxMultipleChoiceModelOutput(
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class FlaxRoFormerForMultipleChoice(FlaxRoFormerPreTrainedModel):
+ module_class = FlaxRoFormerForMultipleChoiceModule
+
+
+overwrite_call_docstring(
+ FlaxRoFormerForMultipleChoice, ROFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+)
+append_call_sample_docstring(
+ FlaxRoFormerForMultipleChoice,
+ _CHECKPOINT_FOR_DOC,
+ FlaxMultipleChoiceModelOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxRoFormerForTokenClassificationModule(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype)
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+ self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.roformer(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ logits = self.classifier(hidden_states)
+
+ if not return_dict:
+ return (logits,) + outputs[1:]
+
+ return FlaxTokenClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class FlaxRoFormerForTokenClassification(FlaxRoFormerPreTrainedModel):
+ module_class = FlaxRoFormerForTokenClassificationModule
+
+
+append_call_sample_docstring(
+ FlaxRoFormerForTokenClassification,
+ _CHECKPOINT_FOR_DOC,
+ FlaxTokenClassifierOutput,
+ _CONFIG_FOR_DOC,
+)
+
+
+class FlaxRoFormerForQuestionAnsweringModule(nn.Module):
+ config: RoFormerConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype)
+ self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # Model
+ outputs = self.roformer(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ head_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+
+ logits = self.qa_outputs(hidden_states)
+ start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
+ start_logits = start_logits.squeeze(-1)
+ end_logits = end_logits.squeeze(-1)
+
+ if not return_dict:
+ return (start_logits, end_logits) + outputs[1:]
+
+ return FlaxQuestionAnsweringModelOutput(
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class FlaxRoFormerForQuestionAnswering(FlaxRoFormerPreTrainedModel):
+ module_class = FlaxRoFormerForQuestionAnsweringModule
+
+
+append_call_sample_docstring(
+ FlaxRoFormerForQuestionAnswering,
+ _CHECKPOINT_FOR_DOC,
+ FlaxQuestionAnsweringModelOutput,
+ _CONFIG_FOR_DOC,
+)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/modeling_roformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/modeling_roformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2a63221a8dc906cc90c5c1001d8f33d020d4ba9
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/modeling_roformer.py
@@ -0,0 +1,1565 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch RoFormer model."""
+
+
+import math
+import os
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ CausalLMOutputWithCrossAttentions,
+ MaskedLMOutput,
+ MultipleChoiceModelOutput,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel, SequenceSummary
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_roformer import RoFormerConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "junnyu/roformer_chinese_base"
+_CONFIG_FOR_DOC = "RoFormerConfig"
+
+
+from ..deprecated._archive_maps import ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->RoFormer
+class RoFormerSinusoidalPositionalEmbedding(nn.Embedding):
+ """This module produces sinusoidal positional embeddings of any length."""
+
+ def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
+ super().__init__(num_positions, embedding_dim)
+ self.weight = self._init_weight(self.weight)
+
+ @staticmethod
+ def _init_weight(out: nn.Parameter) -> nn.Parameter:
+ """
+ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
+ the 2nd half of the vector. [dim // 2:]
+ """
+ n_pos, dim = out.shape
+ position_enc = np.array(
+ [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
+ )
+ out.requires_grad = False # set early to avoid an error in pytorch-1.8+
+ sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
+ out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
+ out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
+ out.detach_()
+ return out
+
+ @torch.no_grad()
+ def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
+ bsz, seq_len = input_ids_shape[:2]
+ positions = torch.arange(
+ past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
+ )
+ return super().forward(positions)
+
+
+def load_tf_weights_in_roformer(model, config, tf_checkpoint_path):
+ """Load tf checkpoints in a pytorch model."""
+ try:
+ import re
+
+ import numpy as np
+ import tensorflow as tf
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_path = os.path.abspath(tf_checkpoint_path)
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
+ # Load weights from TF model
+ init_vars = tf.train.list_variables(tf_path)
+ names = []
+ arrays = []
+ for name, shape in init_vars:
+ logger.info(f"Loading TF weight {name} with shape {shape}")
+ array = tf.train.load_variable(tf_path, name)
+ names.append(name.replace("bert", "roformer"))
+ arrays.append(array)
+
+ for name, array in zip(names, arrays):
+ name = name.split("/")
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
+ # which are not required for using pretrained model
+ if any(
+ n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
+ for n in name
+ ):
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+ pointer = model
+ for m_name in name:
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
+ scope_names = re.split(r"_(\d+)", m_name)
+ else:
+ scope_names = [m_name]
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
+ pointer = getattr(pointer, "bias")
+ elif scope_names[0] == "output_weights":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "squad":
+ pointer = getattr(pointer, "classifier")
+ else:
+ try:
+ pointer = getattr(pointer, scope_names[0])
+ except AttributeError:
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+ if len(scope_names) >= 2:
+ num = int(scope_names[1])
+ pointer = pointer[num]
+ if m_name[-11:] == "_embeddings":
+ pointer = getattr(pointer, "weight")
+ elif m_name == "kernel":
+ array = np.transpose(array)
+ try:
+ if not pointer.shape == array.shape:
+ raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
+ except AssertionError as e:
+ e.args += (pointer.shape, array.shape)
+ raise
+ logger.info(f"Initialize PyTorch weight {name}")
+ pointer.data = torch.from_numpy(array)
+ return model
+
+
+class RoFormerEmbeddings(nn.Module):
+ """Construct the embeddings from word and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=inputs_embeds.device)
+
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class RoFormerSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ self.is_decoder = config.is_decoder
+ self.rotary_value = config.rotary_value
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ sinusoidal_pos=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ ):
+ mixed_query_layer = self.query(hidden_states)
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ if sinusoidal_pos is not None:
+ if self.rotary_value:
+ query_layer, key_layer, value_layer = self.apply_rotary_position_embeddings(
+ sinusoidal_pos, query_layer, key_layer, value_layer
+ )
+ else:
+ query_layer, key_layer = self.apply_rotary_position_embeddings(
+ sinusoidal_pos, query_layer, key_layer
+ )
+ if past_key_value is not None:
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in RoFormerModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+ @staticmethod
+ def apply_rotary_position_embeddings(sinusoidal_pos, query_layer, key_layer, value_layer=None):
+ # https://kexue.fm/archives/8265
+ # sin [batch_size, num_heads, sequence_length, embed_size_per_head//2]
+ # cos [batch_size, num_heads, sequence_length, embed_size_per_head//2]
+ sin, cos = sinusoidal_pos.chunk(2, dim=-1)
+ # sin [θ0,θ1,θ2......θd/2-1] -> sin_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
+ sin_pos = torch.stack([sin, sin], dim=-1).reshape_as(sinusoidal_pos)
+ # cos [θ0,θ1,θ2......θd/2-1] -> cos_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
+ cos_pos = torch.stack([cos, cos], dim=-1).reshape_as(sinusoidal_pos)
+ # rotate_half_query_layer [-q1,q0,-q3,q2......,-qd-1,qd-2]
+ rotate_half_query_layer = torch.stack([-query_layer[..., 1::2], query_layer[..., ::2]], dim=-1).reshape_as(
+ query_layer
+ )
+ query_layer = query_layer * cos_pos + rotate_half_query_layer * sin_pos
+ # rotate_half_key_layer [-k1,k0,-k3,k2......,-kd-1,kd-2]
+ rotate_half_key_layer = torch.stack([-key_layer[..., 1::2], key_layer[..., ::2]], dim=-1).reshape_as(key_layer)
+ key_layer = key_layer * cos_pos + rotate_half_key_layer * sin_pos
+ if value_layer is not None:
+ # rotate_half_value_layer [-v1,v0,-v3,v2......,-vd-1,vd-2]
+ rotate_half_value_layer = torch.stack([-value_layer[..., 1::2], value_layer[..., ::2]], dim=-1).reshape_as(
+ value_layer
+ )
+ value_layer = value_layer * cos_pos + rotate_half_value_layer * sin_pos
+ return query_layer, key_layer, value_layer
+ return query_layer, key_layer
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->RoFormer
+class RoFormerSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class RoFormerAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = RoFormerSelfAttention(config)
+ self.output = RoFormerSelfOutput(config)
+ self.pruned_heads = set()
+
+ # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ # End Copy
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ sinusoidal_pos=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ ):
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ sinusoidal_pos,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->RoFormer
+class RoFormerIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->RoFormer
+class RoFormerOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class RoFormerLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = RoFormerAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = RoFormerAttention(config)
+ self.intermediate = RoFormerIntermediate(config)
+ self.output = RoFormerOutput(config)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ sinusoidal_pos=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ ):
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ sinusoidal_pos,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention "
+ "layers by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ sinusoidal_pos,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class RoFormerEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.embed_positions = RoFormerSinusoidalPositionalEmbedding(
+ config.max_position_embeddings, config.hidden_size // config.num_attention_heads
+ )
+ self.layer = nn.ModuleList([RoFormerLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_values=None,
+ use_cache=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ # [sequence_length, embed_size_per_head] -> [batch_size, num_heads, sequence_length, embed_size_per_head]
+ sinusoidal_pos = self.embed_positions(hidden_states.shape[:-1], past_key_values_length)[None, None, :, :]
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ sinusoidal_pos,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ sinusoidal_pos,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class RoFormerPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.embedding_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+class RoFormerLMPredictionHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = RoFormerPredictionHeadTransform(config)
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False)
+
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->RoFormer
+class RoFormerOnlyMLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = RoFormerLMPredictionHead(config)
+
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
+ prediction_scores = self.predictions(sequence_output)
+ return prediction_scores
+
+
+class RoFormerPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = RoFormerConfig
+ load_tf_weights = load_tf_weights_in_roformer
+ base_model_prefix = "roformer"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, RoFormerSinusoidalPositionalEmbedding):
+ pass
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+ROFORMER_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`RoFormerConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ROFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare RoFormer Model transformer outputting raw hidden-states without any specific head on top.",
+ ROFORMER_START_DOCSTRING,
+)
+class RoFormerModel(RoFormerPreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+ """
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+ self.embeddings = RoFormerEmbeddings(config)
+
+ if config.embedding_size != config.hidden_size:
+ self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
+
+ self.encoder = RoFormerEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[BaseModelOutputWithPastAndCrossAttentions, Tuple[torch.Tensor]]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
+ )
+ if hasattr(self, "embeddings_project"):
+ embedding_output = self.embeddings_project(embedding_output)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings("""RoFormer Model with a `language modeling` head on top.""", ROFORMER_START_DOCSTRING)
+class RoFormerForMaskedLM(RoFormerPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if config.is_decoder:
+ logger.warning(
+ "If you want to use `RoFormerForMaskedLM` make sure `config.is_decoder=False` for "
+ "bi-directional self-attention."
+ )
+
+ self.roformer = RoFormerModel(config)
+ self.cls = RoFormerOnlyMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[MaskedLMOutput, Tuple[torch.Tensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roformer(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.cls(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+ effective_batch_size = input_shape[0]
+
+ # add a dummy token
+ assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
+ attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
+ dummy_token = torch.full(
+ (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
+ )
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask}
+
+
+@add_start_docstrings(
+ """RoFormer Model with a `language modeling` head on top for CLM fine-tuning.""", ROFORMER_START_DOCSTRING
+)
+class RoFormerForCausalLM(RoFormerPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `RoFormerForCausalLM` as a standalone, add `is_decoder=True.`")
+
+ self.roformer = RoFormerModel(config)
+ self.cls = RoFormerOnlyMLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[CausalLMOutputWithCrossAttentions, Tuple[torch.Tensor]]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, RoFormerForCausalLM, RoFormerConfig
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
+ >>> config = RoFormerConfig.from_pretrained("junnyu/roformer_chinese_base")
+ >>> config.is_decoder = True
+ >>> model = RoFormerForCausalLM.from_pretrained("junnyu/roformer_chinese_base", config=config)
+
+ >>> inputs = tokenizer("今天天气非常好。", return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roformer(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.cls(sequence_output)
+
+ lm_loss = None
+ if labels is not None:
+ # we are doing next-token prediction; shift prediction scores and input ids by one
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
+ labels = labels[:, 1:].contiguous()
+ loss_fct = CrossEntropyLoss()
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[1:]
+ return ((lm_loss,) + output) if lm_loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=lm_loss,
+ logits=prediction_scores,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_shape)
+
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
+
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ + layer_past[2:],
+ )
+ return reordered_past
+
+
+class RoFormerClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ self.config = config
+
+ def forward(self, features, **kwargs):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = ACT2FN[self.config.hidden_act](x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class RoFormerForSequenceClassification(RoFormerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.roformer = RoFormerModel(config)
+ self.classifier = RoFormerClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[SequenceClassifierOutput, Tuple[torch.Tensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roformer(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class RoFormerForMultipleChoice(RoFormerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.roformer = RoFormerModel(config)
+ self.sequence_summary = SequenceSummary(config)
+ self.classifier = nn.Linear(config.hidden_size, 1)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(
+ ROFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+ )
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[MultipleChoiceModelOutput, Tuple[torch.Tensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+ `input_ids` above)
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
+
+ inputs_embeds = (
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+ if inputs_embeds is not None
+ else None
+ )
+
+ outputs = self.roformer(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ pooled_output = self.sequence_summary(sequence_output)
+ logits = self.classifier(pooled_output)
+ reshaped_logits = logits.view(-1, num_choices)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(reshaped_logits, labels)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return MultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class RoFormerForTokenClassification(RoFormerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.roformer = RoFormerModel(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[TokenClassifierOutput, Tuple[torch.Tensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roformer(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class RoFormerForQuestionAnswering(RoFormerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+
+ config.num_labels = 2
+ self.num_labels = config.num_labels
+
+ self.roformer = RoFormerModel(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[QuestionAnsweringModelOutput, Tuple[torch.Tensor]]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.roformer(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1)
+ end_logits = end_logits.squeeze(-1)
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/modeling_tf_roformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/modeling_tf_roformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..3c1ba63ce1863cc3e9442efa538f4b491a6b324d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/modeling_tf_roformer.py
@@ -0,0 +1,1538 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 RoFormer model."""
+
+
+from __future__ import annotations
+
+import math
+from typing import Dict, Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutput,
+ TFBaseModelOutputWithPooling,
+ TFCausalLMOutput,
+ TFMaskedLMOutput,
+ TFMultipleChoiceModelOutput,
+ TFQuestionAnsweringModelOutput,
+ TFSequenceClassifierOutput,
+ TFTokenClassifierOutput,
+)
+from ...modeling_tf_utils import (
+ TFCausalLanguageModelingLoss,
+ TFMaskedLanguageModelingLoss,
+ TFModelInputType,
+ TFMultipleChoiceLoss,
+ TFPreTrainedModel,
+ TFQuestionAnsweringLoss,
+ TFSequenceClassificationLoss,
+ TFSequenceSummary,
+ TFTokenClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+)
+from .configuration_roformer import RoFormerConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "junnyu/roformer_chinese_base"
+_CONFIG_FOR_DOC = "RoFormerConfig"
+
+
+from ..deprecated._archive_maps import TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class TFRoFormerSinusoidalPositionalEmbedding(keras.layers.Layer):
+ """This module produces sinusoidal positional embeddings of any length."""
+
+ def __init__(self, num_positions: int, embedding_dim: int, **kwargs):
+ super().__init__(**kwargs)
+
+ if embedding_dim % 2 != 0:
+ raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported")
+
+ self.embedding_dim = embedding_dim
+ self.num_positions = num_positions
+
+ def build(self, input_shape: tf.TensorShape):
+ """
+ Build shared token embedding layer Shared weights logic adapted from
+ https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
+ """
+
+ weight = self._init_weight(self.num_positions, self.embedding_dim)
+
+ self.weight = self.add_weight(
+ name="embeddings",
+ shape=[self.num_positions, self.embedding_dim],
+ )
+ weight = tf.cast(weight, dtype=self.weight.dtype)
+
+ self.weight.assign(weight)
+
+ super().build(input_shape)
+
+ @staticmethod
+ def _init_weight(n_pos: int, dim: int):
+ """
+ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
+ the 2nd half of the vector. [dim // 2:]
+ """
+ position_enc = np.array(
+ [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
+ )
+ table = np.zeros_like(position_enc)
+ # index 0 is all zero
+ table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2])
+ table[:, dim // 2 :] = np.cos(position_enc[:, 1::2])
+ # convert to tensor
+ table = tf.convert_to_tensor(table)
+ tf.stop_gradient(table)
+ return table
+
+ def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0):
+ """Input is expected to be of size [bsz x seqlen]."""
+ bsz, seq_len = input_shape[:2]
+
+ positions = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range")
+ return tf.gather(self.weight, positions)
+
+
+class TFRoFormerEmbeddings(keras.layers.Layer):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config: RoFormerConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embedding_size = config.embedding_size
+ self.initializer_range = config.initializer_range
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+
+ def build(self, input_shape=None):
+ with tf.name_scope("word_embeddings"):
+ self.weight = self.add_weight(
+ name="weight",
+ shape=[self.config.vocab_size, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ with tf.name_scope("token_type_embeddings"):
+ self.token_type_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.config.type_vocab_size, self.embedding_size],
+ initializer=get_initializer(self.initializer_range),
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.embedding_size])
+
+ def call(
+ self,
+ input_ids: tf.Tensor = None,
+ token_type_ids: tf.Tensor = None,
+ inputs_embeds: tf.Tensor = None,
+ training: bool = False,
+ ) -> tf.Tensor:
+ """
+ Applies embedding based on inputs tensor.
+
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ assert not (input_ids is None and inputs_embeds is None)
+
+ if input_ids is not None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
+ final_embeddings = inputs_embeds + token_type_embeds
+ final_embeddings = self.LayerNorm(inputs=final_embeddings)
+ final_embeddings = self.dropout(inputs=final_embeddings, training=training)
+
+ return final_embeddings
+
+
+class TFRoFormerSelfAttention(keras.layers.Layer):
+ def __init__(self, config: RoFormerConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number "
+ f"of attention heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
+
+ self.query = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
+ )
+ self.key = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
+ )
+ self.value = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
+ )
+ self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
+ self.rotary_value = config.rotary_value
+ self.config = config
+
+ def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
+
+ # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
+ return tf.transpose(tensor, perm=[0, 2, 1, 3])
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ sinusoidal_pos: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ batch_size = shape_list(hidden_states)[0]
+ mixed_query_layer = self.query(inputs=hidden_states)
+ mixed_key_layer = self.key(inputs=hidden_states)
+ mixed_value_layer = self.value(inputs=hidden_states)
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
+ key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
+ value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
+
+ if sinusoidal_pos is not None:
+ if self.rotary_value:
+ query_layer, key_layer, value_layer = self.apply_rotary_position_embeddings(
+ sinusoidal_pos, query_layer, key_layer, value_layer
+ )
+ else:
+ query_layer, key_layer = self.apply_rotary_position_embeddings(sinusoidal_pos, query_layer, key_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ # (batch size, num_heads, seq_len_q, seq_len_k)
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
+ dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
+ attention_scores = tf.divide(attention_scores, dk)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in TFRoFormerModel call() function)
+ attention_scores = tf.add(attention_scores, attention_mask)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = stable_softmax(logits=attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(inputs=attention_probs, training=training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = tf.multiply(attention_probs, head_mask)
+
+ attention_output = tf.matmul(attention_probs, value_layer)
+ attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
+
+ # (batch_size, seq_len_q, all_head_size)
+ attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+
+ return outputs
+
+ @staticmethod
+ def apply_rotary_position_embeddings(sinusoidal_pos, query_layer, key_layer, value_layer=None):
+ # https://kexue.fm/archives/8265
+ # sin [batch_size, num_heads, sequence_length, embed_size_per_head//2]
+ # cos [batch_size, num_heads, sequence_length, embed_size_per_head//2]
+ sin, cos = tf.split(sinusoidal_pos, num_or_size_splits=2, axis=-1)
+ # sin [θ0,θ1,θ2......θd/2-1]-> sin_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
+ # cos [θ0,θ1,θ2......θd/2-1]-> cos_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
+ sin_pos = tf.repeat(sin, 2, axis=-1)
+ cos_pos = tf.repeat(cos, 2, axis=-1)
+ # rotate_half_query_layer [-q1,q0,-q3,q2......,-qd-1,qd-2]
+ rotate_half_query_layer = tf.stack([-query_layer[..., 1::2], query_layer[..., ::2]], axis=-1)
+ rotate_half_query_layer = tf.reshape(rotate_half_query_layer, shape_list(query_layer))
+ query_layer = query_layer * cos_pos + rotate_half_query_layer * sin_pos
+ # rotate_half_key_layer [-k1,k0,-k3,k2......,-kd-1,kd-2]
+ rotate_half_key_layer = tf.stack([-key_layer[..., 1::2], key_layer[..., ::2]], axis=-1)
+ rotate_half_key_layer = tf.reshape(rotate_half_key_layer, shape_list(key_layer))
+ key_layer = key_layer * cos_pos + rotate_half_key_layer * sin_pos
+ if value_layer is not None:
+ # rotate_half_value_layer [-v1,v0,-v3,v2......,-vd-1,vd-2]
+ rotate_half_value_layer = tf.stack([-value_layer[..., 1::2], value_layer[..., ::2]], axis=-1)
+ rotate_half_value_layer = tf.reshape(rotate_half_value_layer, shape_list(value_layer))
+ value_layer = value_layer * cos_pos + rotate_half_value_layer * sin_pos
+ return query_layer, key_layer, value_layer
+ return query_layer, key_layer
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query", None) is not None:
+ with tf.name_scope(self.query.name):
+ self.query.build([None, None, self.config.hidden_size])
+ if getattr(self, "key", None) is not None:
+ with tf.name_scope(self.key.name):
+ self.key.build([None, None, self.config.hidden_size])
+ if getattr(self, "value", None) is not None:
+ with tf.name_scope(self.value.name):
+ self.value.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->RoFormer
+class TFRoFormerSelfOutput(keras.layers.Layer):
+ def __init__(self, config: RoFormerConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFRoFormerAttention(keras.layers.Layer):
+ def __init__(self, config: RoFormerConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.self_attention = TFRoFormerSelfAttention(config, name="self")
+ self.dense_output = TFRoFormerSelfOutput(config, name="output")
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ def call(
+ self,
+ input_tensor: tf.Tensor,
+ attention_mask: tf.Tensor,
+ sinusoidal_pos: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ self_outputs = self.self_attention(
+ hidden_states=input_tensor,
+ attention_mask=attention_mask,
+ sinusoidal_pos=sinusoidal_pos,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = self.dense_output(
+ hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
+ )
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attention", None) is not None:
+ with tf.name_scope(self.self_attention.name):
+ self.self_attention.build(None)
+ if getattr(self, "dense_output", None) is not None:
+ with tf.name_scope(self.dense_output.name):
+ self.dense_output.build(None)
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->RoFormer
+class TFRoFormerIntermediate(keras.layers.Layer):
+ def __init__(self, config: RoFormerConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->RoFormer
+class TFRoFormerOutput(keras.layers.Layer):
+ def __init__(self, config: RoFormerConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFRoFormerLayer(keras.layers.Layer):
+ def __init__(self, config: RoFormerConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.attention = TFRoFormerAttention(config, name="attention")
+ self.intermediate = TFRoFormerIntermediate(config, name="intermediate")
+ self.roformer_output = TFRoFormerOutput(config, name="output")
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ sinusoidal_pos: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ attention_outputs = self.attention(
+ input_tensor=hidden_states,
+ attention_mask=attention_mask,
+ sinusoidal_pos=sinusoidal_pos,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = attention_outputs[0]
+ intermediate_output = self.intermediate(hidden_states=attention_output)
+ layer_output = self.roformer_output(
+ hidden_states=intermediate_output, input_tensor=attention_output, training=training
+ )
+ outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "roformer_output", None) is not None:
+ with tf.name_scope(self.roformer_output.name):
+ self.roformer_output.build(None)
+
+
+class TFRoFormerEncoder(keras.layers.Layer):
+ def __init__(self, config: RoFormerConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.embed_positions = TFRoFormerSinusoidalPositionalEmbedding(
+ config.max_position_embeddings,
+ config.hidden_size // config.num_attention_heads,
+ name="embed_positions",
+ )
+ self.layer = [TFRoFormerLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ output_hidden_states: bool,
+ return_dict: bool,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ # [sequence_length, embed_size_per_head] -> [batch_size, num_heads, sequence_length, embed_size_per_head]
+ sinusoidal_pos = self.embed_positions(shape_list(hidden_states)[:-1])[None, None, :, :]
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_outputs = layer_module(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ sinusoidal_pos=sinusoidal_pos,
+ head_mask=head_mask[i],
+ output_attentions=output_attentions,
+ training=training,
+ )
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
+
+ return TFBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embed_positions", None) is not None:
+ with tf.name_scope(self.embed_positions.name):
+ self.embed_positions.build(None)
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+class TFRoFormerPredictionHeadTransform(keras.layers.Layer):
+ def __init__(self, config: RoFormerConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.embedding_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.transform_act_fn = config.hidden_act
+
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(inputs=hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.embedding_size])
+
+
+class TFRoFormerLMPredictionHead(keras.layers.Layer):
+ def __init__(self, config: RoFormerConfig, input_embeddings: keras.layers.Layer, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.embedding_size = config.embedding_size
+
+ self.transform = TFRoFormerPredictionHeadTransform(config, name="transform")
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.input_embeddings = input_embeddings
+
+ def build(self, input_shape=None):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transform", None) is not None:
+ with tf.name_scope(self.transform.name):
+ self.transform.build(None)
+
+ def get_output_embeddings(self) -> keras.layers.Layer:
+ return self.input_embeddings
+
+ def set_output_embeddings(self, value: tf.Variable):
+ self.input_embeddings.weight = value
+ self.input_embeddings.vocab_size = shape_list(value)[0]
+
+ def get_bias(self) -> Dict[str, tf.Variable]:
+ return {"bias": self.bias}
+
+ def set_bias(self, value: tf.Variable):
+ self.bias = value["bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.transform(hidden_states=hidden_states)
+ seq_length = shape_list(hidden_states)[1]
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
+ hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
+
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->RoFormer
+class TFRoFormerMLMHead(keras.layers.Layer):
+ def __init__(self, config: RoFormerConfig, input_embeddings: keras.layers.Layer, **kwargs):
+ super().__init__(**kwargs)
+
+ self.predictions = TFRoFormerLMPredictionHead(config, input_embeddings, name="predictions")
+
+ def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
+ prediction_scores = self.predictions(hidden_states=sequence_output)
+
+ return prediction_scores
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "predictions", None) is not None:
+ with tf.name_scope(self.predictions.name):
+ self.predictions.build(None)
+
+
+@keras_serializable
+class TFRoFormerMainLayer(keras.layers.Layer):
+ config_class = RoFormerConfig
+
+ def __init__(self, config: RoFormerConfig, add_pooling_layer: bool = True, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+
+ self.embeddings = TFRoFormerEmbeddings(config, name="embeddings")
+ if config.embedding_size != config.hidden_size:
+ self.embeddings_project = keras.layers.Dense(config.hidden_size, name="embeddings_project")
+
+ self.encoder = TFRoFormerEncoder(config, name="encoder")
+
+ def get_input_embeddings(self) -> keras.layers.Layer:
+ return self.embeddings
+
+ def set_input_embeddings(self, value: tf.Variable):
+ self.embeddings.weight = value
+ self.embeddings.vocab_size = shape_list(value)[0]
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ raise NotImplementedError
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=input_shape, value=1)
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ training=training,
+ )
+ if hasattr(self, "embeddings_project"):
+ embedding_output = self.embeddings_project(embedding_output, training=training)
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
+ one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
+ ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
+ extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ if head_mask is not None:
+ raise NotImplementedError
+ else:
+ head_mask = [None] * self.config.num_hidden_layers
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return TFBaseModelOutput(
+ last_hidden_state=sequence_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "embeddings_project", None) is not None:
+ with tf.name_scope(self.embeddings_project.name):
+ self.embeddings_project.build([None, None, self.config.embedding_size])
+
+
+class TFRoFormerPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = RoFormerConfig
+ base_model_prefix = "roformer"
+
+
+ROFORMER_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Args:
+ config ([`RoFormerConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ROFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False``):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@add_start_docstrings(
+ "The bare RoFormer Model transformer outputing raw hidden-states without any specific head on top.",
+ ROFORMER_START_DOCSTRING,
+)
+class TFRoFormerModel(TFRoFormerPreTrainedModel):
+ def __init__(self, config: RoFormerConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.roformer = TFRoFormerMainLayer(config, name="roformer")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutputWithPooling,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ outputs = self.roformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roformer", None) is not None:
+ with tf.name_scope(self.roformer.name):
+ self.roformer.build(None)
+
+
+@add_start_docstrings("""RoFormer Model with a `language modeling` head on top.""", ROFORMER_START_DOCSTRING)
+class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingLoss):
+ def __init__(self, config: RoFormerConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ if config.is_decoder:
+ logger.warning(
+ "If you want to use `TFRoFormerForMaskedLM` make sure `config.is_decoder=False` for "
+ "bi-directional self-attention."
+ )
+
+ self.roformer = TFRoFormerMainLayer(config, name="roformer")
+ self.mlm = TFRoFormerMLMHead(config, input_embeddings=self.roformer.embeddings, name="mlm___cls")
+
+ def get_lm_head(self) -> keras.layers.Layer:
+ return self.mlm.predictions
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ """
+ outputs = self.roformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMaskedLMOutput(
+ loss=loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roformer", None) is not None:
+ with tf.name_scope(self.roformer.name):
+ self.roformer.build(None)
+ if getattr(self, "mlm", None) is not None:
+ with tf.name_scope(self.mlm.name):
+ self.mlm.build(None)
+
+
+@add_start_docstrings(
+ """RoFormer Model with a `language modeling` head on top for CLM fine-tuning.""", ROFORMER_START_DOCSTRING
+)
+class TFRoFormerForCausalLM(TFRoFormerPreTrainedModel, TFCausalLanguageModelingLoss):
+ def __init__(self, config: RoFormerConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `TFRoFormerForCausalLM` as a standalone, add `is_decoder=True.`")
+
+ self.roformer = TFRoFormerMainLayer(config, name="roformer")
+ self.mlm = TFRoFormerMLMHead(config, input_embeddings=self.roformer.embeddings, name="mlm___cls")
+
+ def get_lm_head(self) -> keras.layers.Layer:
+ return self.mlm.predictions
+
+ @unpack_inputs
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFCausalLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
+ config.vocab_size - 1]`.
+ """
+ outputs = self.roformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ logits = self.mlm(sequence_output=sequence_output, training=training)
+ loss = None
+
+ if labels is not None:
+ # shift labels to the left and cut last logit token
+ shifted_logits = logits[:, :-1]
+ labels = labels[:, 1:]
+ loss = self.hf_compute_loss(labels=labels, logits=shifted_logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFCausalLMOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roformer", None) is not None:
+ with tf.name_scope(self.roformer.name):
+ self.roformer.build(None)
+ if getattr(self, "mlm", None) is not None:
+ with tf.name_scope(self.mlm.name):
+ self.mlm.build(None)
+
+
+class TFRoFormerClassificationHead(keras.layers.Layer):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config: RoFormerConfig, *inputs, **kwargs):
+ super().__init__(*inputs, **kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.out_proj = keras.layers.Dense(
+ units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.classifier_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.classifier_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS])
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.classifier_act_fn(hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = self.out_proj(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks.
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class TFRoFormerForSequenceClassification(TFRoFormerPreTrainedModel, TFSequenceClassificationLoss):
+ def __init__(self, config: RoFormerConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+
+ self.roformer = TFRoFormerMainLayer(config, name="roformer")
+ self.classifier = TFRoFormerClassificationHead(config, name="classifier")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ outputs = self.roformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ logits = self.classifier(hidden_states=outputs[0], training=training)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roformer", None) is not None:
+ with tf.name_scope(self.roformer.name):
+ self.roformer.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build(None)
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+ softmax) e.g. for RocStories/SWAG tasks.
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLoss):
+ def __init__(self, config: RoFormerConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.roformer = TFRoFormerMainLayer(config, name="roformer")
+ self.sequence_summary = TFSequenceSummary(config, config.initializer_range, name="sequence_summary")
+ self.classifier = keras.layers.Dense(
+ units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(
+ ROFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+ )
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMultipleChoiceModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
+ where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
+ """
+ if input_ids is not None:
+ num_choices = shape_list(input_ids)[1]
+ seq_length = shape_list(input_ids)[2]
+ else:
+ num_choices = shape_list(inputs_embeds)[1]
+ seq_length = shape_list(inputs_embeds)[2]
+
+ flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None
+ flat_attention_mask = (
+ tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None
+ )
+ flat_token_type_ids = (
+ tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None
+ )
+ flat_inputs_embeds = (
+ tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]))
+ if inputs_embeds is not None
+ else None
+ )
+ outputs = self.roformer(
+ input_ids=flat_input_ids,
+ attention_mask=flat_attention_mask,
+ token_type_ids=flat_token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=flat_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ logits = self.sequence_summary(inputs=outputs[0], training=training)
+ logits = self.classifier(inputs=logits)
+ reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices))
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits)
+
+ if not return_dict:
+ output = (reshaped_logits,) + outputs[1:]
+
+ return ((loss,) + output) if loss is not None else output
+
+ return TFMultipleChoiceModelOutput(
+ loss=loss,
+ logits=reshaped_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roformer", None) is not None:
+ with tf.name_scope(self.roformer.name):
+ self.roformer.build(None)
+ if getattr(self, "sequence_summary", None) is not None:
+ with tf.name_scope(self.sequence_summary.name):
+ self.sequence_summary.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class TFRoFormerForTokenClassification(TFRoFormerPreTrainedModel, TFTokenClassificationLoss):
+ def __init__(self, config: RoFormerConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+
+ self.roformer = TFRoFormerMainLayer(config, name="roformer")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.classifier = keras.layers.Dense(
+ units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFTokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ outputs = self.roformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ sequence_output = self.dropout(inputs=sequence_output, training=training)
+ logits = self.classifier(inputs=sequence_output)
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFTokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roformer", None) is not None:
+ with tf.name_scope(self.roformer.name):
+ self.roformer.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ RoFormer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+ layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ ROFORMER_START_DOCSTRING,
+)
+class TFRoFormerForQuestionAnswering(TFRoFormerPreTrainedModel, TFQuestionAnsweringLoss):
+ def __init__(self, config: RoFormerConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+
+ self.roformer = TFRoFormerMainLayer(config, name="roformer")
+ self.qa_outputs = keras.layers.Dense(
+ units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFQuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ start_positions: np.ndarray | tf.Tensor | None = None,
+ end_positions: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
+ r"""
+ start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ outputs = self.roformer(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ logits = self.qa_outputs(inputs=sequence_output)
+ start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
+ start_logits = tf.squeeze(input=start_logits, axis=-1)
+ end_logits = tf.squeeze(input=end_logits, axis=-1)
+ loss = None
+
+ if start_positions is not None and end_positions is not None:
+ labels = {"start_position": start_positions, "end_position": end_positions}
+ loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFQuestionAnsweringModelOutput(
+ loss=loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "roformer", None) is not None:
+ with tf.name_scope(self.roformer.name):
+ self.roformer.build(None)
+ if getattr(self, "qa_outputs", None) is not None:
+ with tf.name_scope(self.qa_outputs.name):
+ self.qa_outputs.build([None, None, self.config.hidden_size])
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/tokenization_roformer_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/tokenization_roformer_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..1f073c03a545a880082553dcdb3d9bb07d2593e5
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/roformer/tokenization_roformer_fast.py
@@ -0,0 +1,176 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for RoFormer."""
+import json
+from typing import List, Optional, Tuple
+
+from tokenizers import normalizers
+from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
+
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+from .tokenization_roformer import RoFormerTokenizer
+from .tokenization_utils import JiebaPreTokenizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
+
+
+class RoFormerTokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a "fast" RoFormer tokenizer (backed by HuggingFace's *tokenizers* library).
+
+ [`RoFormerTokenizerFast`] is almost identical to [`BertTokenizerFast`] and runs end-to-end tokenization:
+ punctuation splitting and wordpiece. There are some difference between them when tokenizing Chinese.
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Example:
+
+ ```python
+ >>> from transformers import RoFormerTokenizerFast
+
+ >>> tokenizer = RoFormerTokenizerFast.from_pretrained("junnyu/roformer_chinese_base")
+ >>> tokenizer.tokenize("今天天气非常好。")
+ ['今', '天', '天', '气', '非常', '好', '。']
+ ```"""
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = RoFormerTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=True,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
+ if (
+ normalizer_state.get("lowercase", do_lower_case) != do_lower_case
+ or normalizer_state.get("strip_accents", strip_accents) != strip_accents
+ ):
+ normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
+ normalizer_state["lowercase"] = do_lower_case
+ normalizer_state["strip_accents"] = strip_accents
+ self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
+
+ # Make sure we correctly set the custom PreTokenizer
+ vocab = self.backend_tokenizer.get_vocab()
+ self.backend_tokenizer.pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab))
+
+ self.do_lower_case = do_lower_case
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["_tokenizer"].pre_tokenizer = BertPreTokenizer()
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+ vocab = self.__dict__["_tokenizer"].get_vocab()
+ self.__dict__["_tokenizer"].pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab))
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A RoFormer sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+
+ if token_ids_1 is not None:
+ output += token_ids_1 + [self.sep_token_id]
+
+ return output
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A RoFormer
+ sequence pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
+
+ def save_pretrained(
+ self,
+ save_directory,
+ legacy_format=None,
+ filename_prefix=None,
+ push_to_hub=False,
+ **kwargs,
+ ):
+ self.backend_tokenizer.pre_tokenizer = BertPreTokenizer()
+ return super().save_pretrained(save_directory, legacy_format, filename_prefix, push_to_hub, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d426ec93bf5859bc3ba040421c54ae4eefbbb32e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__init__.py
@@ -0,0 +1,121 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tf_available,
+ is_torch_available,
+ is_vision_available,
+)
+
+
+_import_structure = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["feature_extraction_vit"] = ["ViTFeatureExtractor"]
+ _import_structure["image_processing_vit"] = ["ViTImageProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_vit"] = [
+ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "ViTForImageClassification",
+ "ViTForMaskedImageModeling",
+ "ViTModel",
+ "ViTPreTrainedModel",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_vit"] = [
+ "TFViTForImageClassification",
+ "TFViTModel",
+ "TFViTPreTrainedModel",
+ ]
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_vit"] = [
+ "FlaxViTForImageClassification",
+ "FlaxViTModel",
+ "FlaxViTPreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .feature_extraction_vit import ViTFeatureExtractor
+ from .image_processing_vit import ViTImageProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_vit import (
+ VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ ViTForImageClassification,
+ ViTForMaskedImageModeling,
+ ViTModel,
+ ViTPreTrainedModel,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7a8550d38baea83095f8939c94478c9819de2592
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/configuration_vit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/configuration_vit.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..aee4854ecd2eca666d37bafc70b373aae09319b7
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/configuration_vit.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_dino_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_dino_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..72ddd889fcbb5bb02cfbe0efd22a77d498bca597
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_dino_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/image_processing_vit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/image_processing_vit.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..365cabc13a7a66010b58675fd1dfaeb330f45573
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/image_processing_vit.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_tf_vit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_tf_vit.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1e5b638a56121bf921f0c181b4f3408f217ed5f0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_tf_vit.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/configuration_vit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/configuration_vit.py
new file mode 100644
index 0000000000000000000000000000000000000000..4b505b5d9cbb6d22e2797de2d0767da31bc11857
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/configuration_vit.py
@@ -0,0 +1,141 @@
+# coding=utf-8
+# Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" ViT model configuration"""
+
+from collections import OrderedDict
+from typing import Mapping
+
+from packaging import version
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class ViTConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ViTModel`]. It is used to instantiate an ViT
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the ViT
+ [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image.
+ patch_size (`int`, *optional*, defaults to 16):
+ The size (resolution) of each patch.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ qkv_bias (`bool`, *optional*, defaults to `True`):
+ Whether to add a bias to the queries, keys and values.
+ encoder_stride (`int`, *optional*, defaults to 16):
+ Factor to increase the spatial resolution by in the decoder head for masked image modeling.
+
+ Example:
+
+ ```python
+ >>> from transformers import ViTConfig, ViTModel
+
+ >>> # Initializing a ViT vit-base-patch16-224 style configuration
+ >>> configuration = ViTConfig()
+
+ >>> # Initializing a model (with random weights) from the vit-base-patch16-224 style configuration
+ >>> model = ViTModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "vit"
+
+ def __init__(
+ self,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.0,
+ attention_probs_dropout_prob=0.0,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ image_size=224,
+ patch_size=16,
+ num_channels=3,
+ qkv_bias=True,
+ encoder_stride=16,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.qkv_bias = qkv_bias
+ self.encoder_stride = encoder_stride
+
+
+class ViTOnnxConfig(OnnxConfig):
+ torch_onnx_minimum_version = version.parse("1.11")
+
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ return OrderedDict(
+ [
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
+ ]
+ )
+
+ @property
+ def atol_for_validation(self) -> float:
+ return 1e-4
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..7eec823ad5d1d80a5a438693dbaee49189d7731f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py
@@ -0,0 +1,219 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert ViT checkpoints trained with the DINO method."""
+
+
+import argparse
+import json
+from pathlib import Path
+
+import requests
+import torch
+from huggingface_hub import hf_hub_download
+from PIL import Image
+
+from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+# here we list all keys to be renamed (original name on the left, our name on the right)
+def create_rename_keys(config, base_model=False):
+ rename_keys = []
+ for i in range(config.num_hidden_layers):
+ # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
+ rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight"))
+ rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias"))
+ rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight"))
+ rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias"))
+ rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight"))
+ rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias"))
+ rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias"))
+ rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias"))
+
+ # projection layer + position embeddings
+ rename_keys.extend(
+ [
+ ("cls_token", "vit.embeddings.cls_token"),
+ ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
+ ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
+ ("pos_embed", "vit.embeddings.position_embeddings"),
+ ]
+ )
+
+ if base_model:
+ # layernorm + pooler
+ rename_keys.extend(
+ [
+ ("norm.weight", "layernorm.weight"),
+ ("norm.bias", "layernorm.bias"),
+ ]
+ )
+
+ # if just the base model, we should remove "vit" from all keys that start with "vit"
+ rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys]
+ else:
+ # layernorm + classification head
+ rename_keys.extend(
+ [
+ ("norm.weight", "vit.layernorm.weight"),
+ ("norm.bias", "vit.layernorm.bias"),
+ ("head.weight", "classifier.weight"),
+ ("head.bias", "classifier.bias"),
+ ]
+ )
+
+ return rename_keys
+
+
+# we split up the matrix of each encoder layer into queries, keys and values
+def read_in_q_k_v(state_dict, config, base_model=False):
+ for i in range(config.num_hidden_layers):
+ if base_model:
+ prefix = ""
+ else:
+ prefix = "vit."
+ # read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
+ in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
+ in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
+ # next, add query, keys and values (in that order) to the state dict
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
+ : config.hidden_size, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
+ config.hidden_size : config.hidden_size * 2, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
+ config.hidden_size : config.hidden_size * 2
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
+ -config.hidden_size :, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
+
+
+def remove_classification_head_(state_dict):
+ ignore_keys = ["head.weight", "head.bias"]
+ for k in ignore_keys:
+ state_dict.pop(k, None)
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+# We will verify our results on an image of cute cats
+def prepare_img():
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ im = Image.open(requests.get(url, stream=True).raw)
+ return im
+
+
+@torch.no_grad()
+def convert_vit_checkpoint(model_name, pytorch_dump_folder_path, base_model=True):
+ """
+ Copy/paste/tweak model's weights to our ViT structure.
+ """
+
+ # define default ViT configuration
+ config = ViTConfig()
+ # patch_size
+ if model_name[-1] == "8":
+ config.patch_size = 8
+ # set labels if required
+ if not base_model:
+ config.num_labels = 1000
+ repo_id = "huggingface/label-files"
+ filename = "imagenet-1k-id2label.json"
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
+ id2label = {int(k): v for k, v in id2label.items()}
+ config.id2label = id2label
+ config.label2id = {v: k for k, v in id2label.items()}
+ # size of the architecture
+ if model_name in ["dino_vits8", "dino_vits16"]:
+ config.hidden_size = 384
+ config.intermediate_size = 1536
+ config.num_hidden_layers = 12
+ config.num_attention_heads = 6
+
+ # load original model from torch hub
+ original_model = torch.hub.load("facebookresearch/dino:main", model_name)
+ original_model.eval()
+
+ # load state_dict of original model, remove and rename some keys
+ state_dict = original_model.state_dict()
+ if base_model:
+ remove_classification_head_(state_dict)
+ rename_keys = create_rename_keys(config, base_model=base_model)
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+ read_in_q_k_v(state_dict, config, base_model)
+
+ # load HuggingFace model
+ if base_model:
+ model = ViTModel(config, add_pooling_layer=False).eval()
+ else:
+ model = ViTForImageClassification(config).eval()
+ model.load_state_dict(state_dict)
+
+ # Check outputs on an image, prepared by ViTImageProcessor
+ image_processor = ViTImageProcessor()
+ encoding = image_processor(images=prepare_img(), return_tensors="pt")
+ pixel_values = encoding["pixel_values"]
+ outputs = model(pixel_values)
+
+ if base_model:
+ final_hidden_state_cls_token = original_model(pixel_values)
+ assert torch.allclose(final_hidden_state_cls_token, outputs.last_hidden_state[:, 0, :], atol=1e-1)
+ else:
+ logits = original_model(pixel_values)
+ assert logits.shape == outputs.logits.shape
+ assert torch.allclose(logits, outputs.logits, atol=1e-3)
+
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--model_name",
+ default="dino_vitb16",
+ type=str,
+ help="Name of the model trained with DINO you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
+ )
+ parser.add_argument(
+ "--base_model",
+ action="store_true",
+ help="Whether to only convert the base model (no projection head weights).",
+ )
+
+ parser.set_defaults(base_model=True)
+ args = parser.parse_args()
+ convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..0ccd9b9f6685fe375955fdee7298c17cf308de86
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py
@@ -0,0 +1,255 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert ViT and non-distilled DeiT checkpoints from the timm library."""
+
+
+import argparse
+from pathlib import Path
+
+import requests
+import timm
+import torch
+from PIL import Image
+from timm.data import ImageNetInfo, infer_imagenet_subset
+
+from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+# here we list all keys to be renamed (original name on the left, our name on the right)
+def create_rename_keys(config, base_model=False):
+ rename_keys = []
+ for i in range(config.num_hidden_layers):
+ # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
+ rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight"))
+ rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias"))
+ rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight"))
+ rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias"))
+ rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight"))
+ rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias"))
+ rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias"))
+ rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight"))
+ rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias"))
+
+ # projection layer + position embeddings
+ rename_keys.extend(
+ [
+ ("cls_token", "vit.embeddings.cls_token"),
+ ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
+ ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
+ ("pos_embed", "vit.embeddings.position_embeddings"),
+ ]
+ )
+
+ if base_model:
+ # layernorm
+ rename_keys.extend(
+ [
+ ("norm.weight", "layernorm.weight"),
+ ("norm.bias", "layernorm.bias"),
+ ]
+ )
+
+ # if just the base model, we should remove "vit" from all keys that start with "vit"
+ rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys]
+ else:
+ # layernorm + classification head
+ rename_keys.extend(
+ [
+ ("norm.weight", "vit.layernorm.weight"),
+ ("norm.bias", "vit.layernorm.bias"),
+ ("head.weight", "classifier.weight"),
+ ("head.bias", "classifier.bias"),
+ ]
+ )
+
+ return rename_keys
+
+
+# we split up the matrix of each encoder layer into queries, keys and values
+def read_in_q_k_v(state_dict, config, base_model=False):
+ for i in range(config.num_hidden_layers):
+ if base_model:
+ prefix = ""
+ else:
+ prefix = "vit."
+ # read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
+ in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
+ in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
+ # next, add query, keys and values (in that order) to the state dict
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
+ : config.hidden_size, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
+ config.hidden_size : config.hidden_size * 2, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
+ config.hidden_size : config.hidden_size * 2
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
+ -config.hidden_size :, :
+ ]
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
+
+
+def remove_classification_head_(state_dict):
+ ignore_keys = ["head.weight", "head.bias"]
+ for k in ignore_keys:
+ state_dict.pop(k, None)
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+# We will verify our results on an image of cute cats
+def prepare_img():
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ im = Image.open(requests.get(url, stream=True).raw)
+ return im
+
+
+@torch.no_grad()
+def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path):
+ """
+ Copy/paste/tweak model's weights to our ViT structure.
+ """
+
+ # define default ViT configuration
+ config = ViTConfig()
+ base_model = False
+
+ # load original model from timm
+ timm_model = timm.create_model(vit_name, pretrained=True)
+ timm_model.eval()
+
+ # detect unsupported ViT models in transformers
+ # fc_norm is present
+ if not isinstance(getattr(timm_model, "fc_norm", None), torch.nn.Identity):
+ raise ValueError(f"{vit_name} is not supported in transformers because of the presence of fc_norm.")
+
+ # use of global average pooling in combination (or without) class token
+ if getattr(timm_model, "global_pool", None) == "avg":
+ raise ValueError(f"{vit_name} is not supported in transformers because of use of global average pooling.")
+
+ # CLIP style vit with norm_pre layer present
+ if "clip" in vit_name and not isinstance(getattr(timm_model, "norm_pre", None), torch.nn.Identity):
+ raise ValueError(
+ f"{vit_name} is not supported in transformers because it's a CLIP style ViT with norm_pre layer."
+ )
+
+ # SigLIP style vit with attn_pool layer present
+ if "siglip" in vit_name and getattr(timm_model, "global_pool", None) == "map":
+ raise ValueError(
+ f"{vit_name} is not supported in transformers because it's a SigLIP style ViT with attn_pool."
+ )
+
+ # use of layer scale in ViT model blocks
+ if not isinstance(getattr(timm_model.blocks[0], "ls1", None), torch.nn.Identity) or not isinstance(
+ getattr(timm_model.blocks[0], "ls2", None), torch.nn.Identity
+ ):
+ raise ValueError(f"{vit_name} is not supported in transformers because it uses a layer scale in its blocks.")
+
+ # Hybrid ResNet-ViTs
+ if not isinstance(timm_model.patch_embed, timm.layers.PatchEmbed):
+ raise ValueError(f"{vit_name} is not supported in transformers because it is a hybrid ResNet-ViT.")
+
+ # get patch size and image size from the patch embedding submodule
+ config.patch_size = timm_model.patch_embed.patch_size[0]
+ config.image_size = timm_model.patch_embed.img_size[0]
+
+ # retrieve architecture-specific parameters from the timm model
+ config.hidden_size = timm_model.embed_dim
+ config.intermediate_size = timm_model.blocks[0].mlp.fc1.out_features
+ config.num_hidden_layers = len(timm_model.blocks)
+ config.num_attention_heads = timm_model.blocks[0].attn.num_heads
+
+ # check whether the model has a classification head or not
+ if timm_model.num_classes != 0:
+ config.num_labels = timm_model.num_classes
+ # infer ImageNet subset from timm model
+ imagenet_subset = infer_imagenet_subset(timm_model)
+ dataset_info = ImageNetInfo(imagenet_subset)
+ config.id2label = {i: dataset_info.index_to_label_name(i) for i in range(dataset_info.num_classes())}
+ config.label2id = {v: k for k, v in config.id2label.items()}
+ else:
+ print(f"{vit_name} is going to be converted as a feature extractor only.")
+ base_model = True
+
+ # load state_dict of original model
+ state_dict = timm_model.state_dict()
+
+ # remove and rename some keys in the state dict
+ if base_model:
+ remove_classification_head_(state_dict)
+ rename_keys = create_rename_keys(config, base_model)
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+ read_in_q_k_v(state_dict, config, base_model)
+
+ # load HuggingFace model
+ if base_model:
+ model = ViTModel(config, add_pooling_layer=False).eval()
+ else:
+ model = ViTForImageClassification(config).eval()
+ model.load_state_dict(state_dict)
+
+ # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
+ if "deit" in vit_name:
+ image_processor = DeiTImageProcessor(size=config.image_size)
+ else:
+ image_processor = ViTImageProcessor(size=config.image_size)
+ encoding = image_processor(images=prepare_img(), return_tensors="pt")
+ pixel_values = encoding["pixel_values"]
+ outputs = model(pixel_values)
+
+ if base_model:
+ timm_pooled_output = timm_model.forward_features(pixel_values)
+ assert timm_pooled_output.shape == outputs.last_hidden_state.shape
+ assert torch.allclose(timm_pooled_output, outputs.last_hidden_state, atol=1e-1)
+ else:
+ timm_logits = timm_model(pixel_values)
+ assert timm_logits.shape == outputs.logits.shape
+ assert torch.allclose(timm_logits, outputs.logits, atol=1e-3)
+
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ print(f"Saving model {vit_name} to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--vit_name",
+ default="vit_base_patch16_224",
+ type=str,
+ help="Name of the ViT timm model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
+ )
+
+ args = parser.parse_args()
+ convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/feature_extraction_vit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/feature_extraction_vit.py
new file mode 100644
index 0000000000000000000000000000000000000000..54d47c0f3ad59b217b56d8522ca9a356dbc3c9db
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/feature_extraction_vit.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Feature extractor class for ViT."""
+
+import warnings
+
+from ...utils import logging
+from .image_processing_vit import ViTImageProcessor
+
+
+logger = logging.get_logger(__name__)
+
+
+class ViTFeatureExtractor(ViTImageProcessor):
+ def __init__(self, *args, **kwargs) -> None:
+ warnings.warn(
+ "The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
+ " use ViTImageProcessor instead.",
+ FutureWarning,
+ )
+ super().__init__(*args, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/image_processing_vit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/image_processing_vit.py
new file mode 100644
index 0000000000000000000000000000000000000000..4c7d8de714f72d996d69273eb83c20b4c685a115
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/image_processing_vit.py
@@ -0,0 +1,289 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for ViT."""
+
+from typing import Dict, List, Optional, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import resize, to_channel_dimension_format
+from ...image_utils import (
+ IMAGENET_STANDARD_MEAN,
+ IMAGENET_STANDARD_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+ validate_kwargs,
+ validate_preprocess_arguments,
+)
+from ...utils import TensorType, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class ViTImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a ViT image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
+ size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
+ size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
+ Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
+ method.
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
+ Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
+ `preprocess` method.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
+ parameter in the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
+ `preprocess` method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
+ method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Optional[Dict[str, int]] = None,
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ size = size if size is not None else {"height": 224, "width": 224}
+ size = get_size_dict(size)
+ self.do_resize = do_resize
+ self.do_rescale = do_rescale
+ self.do_normalize = do_normalize
+ self.size = size
+ self.resample = resample
+ self.rescale_factor = rescale_factor
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
+ self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
+ self._valid_processor_keys = [
+ "images",
+ "do_resize",
+ "size",
+ "resample",
+ "do_rescale",
+ "rescale_factor",
+ "do_normalize",
+ "image_mean",
+ "image_std",
+ "return_tensors",
+ "data_format",
+ "input_data_format",
+ ]
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize an image to `(size["height"], size["width"])`.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
+ `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
+ data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
+ image is used. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+
+ Returns:
+ `np.ndarray`: The resized image.
+ """
+ size = get_size_dict(size)
+ if "height" not in size or "width" not in size:
+ raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
+ output_size = (size["height"], size["width"])
+ return resize(
+ image,
+ size=output_size,
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ do_resize: Optional[bool] = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_rescale: Optional[bool] = None,
+ rescale_factor: Optional[float] = None,
+ do_normalize: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ):
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
+ resizing.
+ resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
+ `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
+ an effect if `do_resize` is set to `True`.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image values between [0 - 1].
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to use if `do_normalize` is set to `True`.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to use if `do_normalize` is set to `True`.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ resample = resample if resample is not None else self.resample
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+
+ size = size if size is not None else self.size
+ size_dict = get_size_dict(size)
+
+ images = make_list_of_images(images)
+
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+ validate_preprocess_arguments(
+ do_rescale=do_rescale,
+ rescale_factor=rescale_factor,
+ do_normalize=do_normalize,
+ image_mean=image_mean,
+ image_std=image_std,
+ do_resize=do_resize,
+ size=size,
+ resample=resample,
+ )
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if do_resize:
+ images = [
+ self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_rescale:
+ images = [
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_normalize:
+ images = [
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ images = [
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
+ ]
+
+ data = {"pixel_values": images}
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py
new file mode 100644
index 0000000000000000000000000000000000000000..586c8b62f6dad084cb3034c355e279908a6ba725
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py
@@ -0,0 +1,673 @@
+# coding=utf-8
+# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Optional, Tuple
+
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+
+from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling, FlaxSequenceClassifierOutput
+from ...modeling_flax_utils import (
+ ACT2FN,
+ FlaxPreTrainedModel,
+ append_replace_return_docstrings,
+ overwrite_call_docstring,
+)
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward
+from .configuration_vit import ViTConfig
+
+
+VIT_START_DOCSTRING = r"""
+
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
+
+ This model is also a
+ [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
+ a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
+ behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
+ `jax.numpy.bfloat16` (on TPUs).
+
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
+ specified all the computation will be performed with the given `dtype`.
+
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
+ parameters.**
+
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
+ [`~FlaxPreTrainedModel.to_bf16`].
+"""
+
+VIT_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
+ for details.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class FlaxViTPatchEmbeddings(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ image_size = self.config.image_size
+ patch_size = self.config.patch_size
+ num_patches = (image_size // patch_size) * (image_size // patch_size)
+ self.num_patches = num_patches
+ self.num_channels = self.config.num_channels
+ self.projection = nn.Conv(
+ self.config.hidden_size,
+ kernel_size=(patch_size, patch_size),
+ strides=(patch_size, patch_size),
+ padding="VALID",
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ )
+
+ def __call__(self, pixel_values):
+ num_channels = pixel_values.shape[-1]
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ embeddings = self.projection(pixel_values)
+ batch_size, _, _, channels = embeddings.shape
+ return jnp.reshape(embeddings, (batch_size, -1, channels))
+
+
+class FlaxViTEmbeddings(nn.Module):
+ """Construct the CLS token, position and patch embeddings."""
+
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.cls_token = self.param(
+ "cls_token",
+ jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"),
+ (1, 1, self.config.hidden_size),
+ )
+ self.patch_embeddings = FlaxViTPatchEmbeddings(self.config, dtype=self.dtype)
+ num_patches = self.patch_embeddings.num_patches
+ self.position_embeddings = self.param(
+ "position_embeddings",
+ jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"),
+ (1, num_patches + 1, self.config.hidden_size),
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, pixel_values, deterministic=True):
+ batch_size = pixel_values.shape[0]
+
+ embeddings = self.patch_embeddings(pixel_values)
+
+ cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size))
+ embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1)
+ embeddings = embeddings + self.position_embeddings
+ embeddings = self.dropout(embeddings, deterministic=deterministic)
+ return embeddings
+
+
+class FlaxViTSelfAttention(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ if self.config.hidden_size % self.config.num_attention_heads != 0:
+ raise ValueError(
+ "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`:"
+ " {self.config.num_attention_heads}"
+ )
+
+ self.query = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
+ ),
+ use_bias=self.config.qkv_bias,
+ )
+ self.key = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
+ ),
+ use_bias=self.config.qkv_bias,
+ )
+ self.value = nn.Dense(
+ self.config.hidden_size,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
+ ),
+ use_bias=self.config.qkv_bias,
+ )
+
+ def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False):
+ head_dim = self.config.hidden_size // self.config.num_attention_heads
+
+ query_states = self.query(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+ value_states = self.value(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+ key_states = self.key(hidden_states).reshape(
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
+ )
+
+ dropout_rng = None
+ if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.config.attention_probs_dropout_prob,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
+
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
+ return outputs
+
+
+class FlaxViTSelfOutput(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ dtype=self.dtype,
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ return hidden_states
+
+
+class FlaxViTAttention(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.attention = FlaxViTSelfAttention(self.config, dtype=self.dtype)
+ self.output = FlaxViTSelfOutput(self.config, dtype=self.dtype)
+
+ def __call__(self, hidden_states, deterministic=True, output_attentions: bool = False):
+ attn_outputs = self.attention(hidden_states, deterministic=deterministic, output_attentions=output_attentions)
+ attn_output = attn_outputs[0]
+ hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_outputs[1],)
+
+ return outputs
+
+
+class FlaxViTIntermediate(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.intermediate_size,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ dtype=self.dtype,
+ )
+ self.activation = ACT2FN[self.config.hidden_act]
+
+ def __call__(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+class FlaxViTOutput(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ dtype=self.dtype,
+ )
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
+
+ def __call__(self, hidden_states, attention_output, deterministic: bool = True):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
+ hidden_states = hidden_states + attention_output
+ return hidden_states
+
+
+class FlaxViTLayer(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.attention = FlaxViTAttention(self.config, dtype=self.dtype)
+ self.intermediate = FlaxViTIntermediate(self.config, dtype=self.dtype)
+ self.output = FlaxViTOutput(self.config, dtype=self.dtype)
+ self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+
+ def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False):
+ attention_outputs = self.attention(
+ self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ )
+
+ attention_output = attention_outputs[0]
+
+ # first residual connection
+ attention_output = attention_output + hidden_states
+
+ # in ViT, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(attention_output)
+
+ hidden_states = self.intermediate(layer_output)
+ hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attention_outputs[1],)
+ return outputs
+
+
+class FlaxViTLayerCollection(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxViTLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
+ ]
+
+ def __call__(
+ self,
+ hidden_states,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+
+ for i, layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ layer_outputs = layer(hidden_states, deterministic=deterministic, output_attentions=output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions += (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = (hidden_states,)
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+class FlaxViTEncoder(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layer = FlaxViTLayerCollection(self.config, dtype=self.dtype)
+
+ def __call__(
+ self,
+ hidden_states,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ return self.layer(
+ hidden_states,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+class FlaxViTPooler(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dense = nn.Dense(
+ self.config.hidden_size,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ dtype=self.dtype,
+ )
+
+ def __call__(self, hidden_states):
+ cls_hidden_state = hidden_states[:, 0]
+ cls_hidden_state = self.dense(cls_hidden_state)
+ return nn.tanh(cls_hidden_state)
+
+
+class FlaxViTPreTrainedModel(FlaxPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ViTConfig
+ base_model_prefix = "vit"
+ main_input_name = "pixel_values"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: ViTConfig,
+ input_shape=None,
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ if input_shape is None:
+ input_shape = (1, config.image_size, config.image_size, config.num_channels)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def __call__(
+ self,
+ pixel_values,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ return self.module.apply(
+ {"params": params or self.params},
+ jnp.array(pixel_values, dtype=jnp.float32),
+ not train,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ rngs=rngs,
+ )
+
+
+class FlaxViTModule(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ add_pooling_layer: bool = True
+
+ def setup(self):
+ self.embeddings = FlaxViTEmbeddings(self.config, dtype=self.dtype)
+ self.encoder = FlaxViTEncoder(self.config, dtype=self.dtype)
+ self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
+ self.pooler = FlaxViTPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None
+
+ def __call__(
+ self,
+ pixel_values,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ hidden_states = self.embeddings(pixel_values, deterministic=deterministic)
+
+ outputs = self.encoder(
+ hidden_states,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = outputs[0]
+ hidden_states = self.layernorm(hidden_states)
+ pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
+
+ if not return_dict:
+ # if pooled is None, don't return it
+ if pooled is None:
+ return (hidden_states,) + outputs[1:]
+ return (hidden_states, pooled) + outputs[1:]
+
+ return FlaxBaseModelOutputWithPooling(
+ last_hidden_state=hidden_states,
+ pooler_output=pooled,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
+ VIT_START_DOCSTRING,
+)
+class FlaxViTModel(FlaxViTPreTrainedModel):
+ module_class = FlaxViTModule
+
+
+FLAX_VISION_MODEL_DOCSTRING = """
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, FlaxViTModel
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
+ >>> model = FlaxViTModel.from_pretrained("google/vit-base-patch16-224-in21k")
+
+ >>> inputs = image_processor(images=image, return_tensors="np")
+ >>> outputs = model(**inputs)
+ >>> last_hidden_states = outputs.last_hidden_state
+ ```
+"""
+
+overwrite_call_docstring(FlaxViTModel, FLAX_VISION_MODEL_DOCSTRING)
+append_replace_return_docstrings(FlaxViTModel, output_type=FlaxBaseModelOutputWithPooling, config_class=ViTConfig)
+
+
+class FlaxViTForImageClassificationModule(nn.Module):
+ config: ViTConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.vit = FlaxViTModule(config=self.config, dtype=self.dtype, add_pooling_layer=False)
+ self.classifier = nn.Dense(
+ self.config.num_labels,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.variance_scaling(
+ self.config.initializer_range**2, "fan_in", "truncated_normal"
+ ),
+ )
+
+ def __call__(
+ self,
+ pixel_values=None,
+ deterministic: bool = True,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.vit(
+ pixel_values,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ logits = self.classifier(hidden_states[:, 0, :])
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return output
+
+ return FlaxSequenceClassifierOutput(
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
+ the [CLS] token) e.g. for ImageNet.
+ """,
+ VIT_START_DOCSTRING,
+)
+class FlaxViTForImageClassification(FlaxViTPreTrainedModel):
+ module_class = FlaxViTForImageClassificationModule
+
+
+FLAX_VISION_CLASSIF_DOCSTRING = """
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, FlaxViTForImageClassification
+ >>> from PIL import Image
+ >>> import jax
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
+ >>> model = FlaxViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
+
+ >>> inputs = image_processor(images=image, return_tensors="np")
+ >>> outputs = model(**inputs)
+ >>> logits = outputs.logits
+
+ >>> # model predicts one of the 1000 ImageNet classes
+ >>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
+ >>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])
+ ```
+"""
+
+overwrite_call_docstring(FlaxViTForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING)
+append_replace_return_docstrings(
+ FlaxViTForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=ViTConfig
+)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/modeling_tf_vit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/modeling_tf_vit.py
new file mode 100644
index 0000000000000000000000000000000000000000..ac5cf691e9f8a7ce537866c30c6d6004fd6e029f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/modeling_tf_vit.py
@@ -0,0 +1,905 @@
+# coding=utf-8
+# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 ViT model."""
+
+
+from __future__ import annotations
+
+import collections.abc
+import math
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
+from ...modeling_tf_utils import (
+ TFModelInputType,
+ TFPreTrainedModel,
+ TFSequenceClassificationLoss,
+ get_initializer,
+ keras,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import shape_list, stable_softmax
+from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_vit import ViTConfig
+
+
+logger = logging.get_logger(__name__)
+
+# General docstring
+_CONFIG_FOR_DOC = "ViTConfig"
+
+# Base docstring
+_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
+_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
+
+# Image classification docstring
+_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
+_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
+
+
+class TFViTEmbeddings(keras.layers.Layer):
+ """
+ Construct the CLS token, position and patch embeddings.
+
+ """
+
+ def __init__(self, config: ViTConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.patch_embeddings = TFViTPatchEmbeddings(config, name="patch_embeddings")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def build(self, input_shape=None):
+ num_patches = self.patch_embeddings.num_patches
+ self.cls_token = self.add_weight(
+ shape=(1, 1, self.config.hidden_size),
+ initializer=get_initializer(self.config.initializer_range),
+ trainable=True,
+ name="cls_token",
+ )
+ self.position_embeddings = self.add_weight(
+ shape=(1, num_patches + 1, self.config.hidden_size),
+ initializer=get_initializer(self.config.initializer_range),
+ trainable=True,
+ name="position_embeddings",
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "patch_embeddings", None) is not None:
+ with tf.name_scope(self.patch_embeddings.name):
+ self.patch_embeddings.build(None)
+
+ def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor:
+ """
+ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
+ resolution images.
+
+ Source:
+ https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
+ """
+
+ batch_size, seq_len, dim = shape_list(embeddings)
+ num_patches = seq_len - 1
+
+ _, num_positions, _ = shape_list(self.position_embeddings)
+ num_positions -= 1
+
+ if num_patches == num_positions and height == width:
+ return self.position_embeddings
+ class_pos_embed = self.position_embeddings[:, :1]
+ patch_pos_embed = self.position_embeddings[:, 1:]
+ h0 = height // self.config.patch_size
+ w0 = width // self.config.patch_size
+ patch_pos_embed = tf.image.resize(
+ images=tf.reshape(
+ patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
+ ),
+ size=(h0, w0),
+ method="bicubic",
+ )
+
+ shape = shape_list(patch_pos_embed)
+ assert h0 == shape[-3] and w0 == shape[-2]
+ patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim))
+ return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1)
+
+ def call(
+ self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
+ ) -> tf.Tensor:
+ batch_size, num_channels, height, width = shape_list(pixel_values)
+ embeddings = self.patch_embeddings(
+ pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, training=training
+ )
+
+ # add the [CLS] token to the embedded patch tokens
+ cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
+ embeddings = tf.concat((cls_tokens, embeddings), axis=1)
+
+ # add positional encoding to each token
+ if interpolate_pos_encoding:
+ embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
+ else:
+ embeddings = embeddings + self.position_embeddings
+
+ embeddings = self.dropout(embeddings, training=training)
+
+ return embeddings
+
+
+# Based on timm implementation, which can be found here:
+# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
+class TFViTPatchEmbeddings(keras.layers.Layer):
+ """
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
+ Transformer.
+ """
+
+ def __init__(self, config: ViTConfig, **kwargs):
+ super().__init__(**kwargs)
+ image_size, patch_size = config.image_size, config.patch_size
+ num_channels, hidden_size = config.num_channels, config.hidden_size
+
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_patches = num_patches
+ self.num_channels = num_channels
+ self.config = config
+
+ self.projection = keras.layers.Conv2D(
+ filters=hidden_size,
+ kernel_size=patch_size,
+ strides=patch_size,
+ padding="valid",
+ data_format="channels_last",
+ use_bias=True,
+ kernel_initializer=get_initializer(self.config.initializer_range),
+ bias_initializer="zeros",
+ name="projection",
+ )
+
+ def call(
+ self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
+ ) -> tf.Tensor:
+ batch_size, num_channels, height, width = shape_list(pixel_values)
+ if tf.executing_eagerly() and num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ )
+ if not interpolate_pos_encoding:
+ if tf.executing_eagerly():
+ if height != self.image_size[0] or width != self.image_size[1]:
+ raise ValueError(
+ f"Input image size ({height}*{width}) doesn't match model"
+ f" ({self.image_size[0]}*{self.image_size[1]})."
+ )
+
+ # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
+ # So change the input format from `NCHW` to `NHWC`.
+ # shape = (batch_size, in_height, in_width, in_channels=num_channels)
+ pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
+
+ projection = self.projection(pixel_values)
+
+ # Change the 2D spatial dimensions to a single temporal dimension.
+ # shape = (batch_size, num_patches, out_channels=embed_dim)
+ num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0])
+ embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1))
+
+ return embeddings
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "projection", None) is not None:
+ with tf.name_scope(self.projection.name):
+ self.projection.build([None, None, None, self.num_channels])
+
+
+class TFViTSelfAttention(keras.layers.Layer):
+ def __init__(self, config: ViTConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number "
+ f"of attention heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
+
+ self.query = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
+ )
+ self.key = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
+ )
+ self.value = keras.layers.Dense(
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
+ )
+ self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
+ self.config = config
+
+ def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
+
+ # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
+ return tf.transpose(tensor, perm=[0, 2, 1, 3])
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ batch_size = shape_list(hidden_states)[0]
+ mixed_query_layer = self.query(inputs=hidden_states)
+ mixed_key_layer = self.key(inputs=hidden_states)
+ mixed_value_layer = self.value(inputs=hidden_states)
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
+ key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
+ value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ # (batch size, num_heads, seq_len_q, seq_len_k)
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
+ dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
+ attention_scores = tf.divide(attention_scores, dk)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = stable_softmax(logits=attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(inputs=attention_probs, training=training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = tf.multiply(attention_probs, head_mask)
+
+ attention_output = tf.matmul(attention_probs, value_layer)
+ attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
+
+ # (batch_size, seq_len_q, all_head_size)
+ attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query", None) is not None:
+ with tf.name_scope(self.query.name):
+ self.query.build([None, None, self.config.hidden_size])
+ if getattr(self, "key", None) is not None:
+ with tf.name_scope(self.key.name):
+ self.key.build([None, None, self.config.hidden_size])
+ if getattr(self, "value", None) is not None:
+ with tf.name_scope(self.value.name):
+ self.value.build([None, None, self.config.hidden_size])
+
+
+class TFViTSelfOutput(keras.layers.Layer):
+ """
+ The residual connection is defined in TFViTLayer instead of here (as is the case with other models), due to the
+ layernorm applied before each block.
+ """
+
+ def __init__(self, config: ViTConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+class TFViTAttention(keras.layers.Layer):
+ def __init__(self, config: ViTConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.self_attention = TFViTSelfAttention(config, name="attention")
+ self.dense_output = TFViTSelfOutput(config, name="output")
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ def call(
+ self,
+ input_tensor: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ self_outputs = self.self_attention(
+ hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training
+ )
+ attention_output = self.dense_output(
+ hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
+ )
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attention", None) is not None:
+ with tf.name_scope(self.self_attention.name):
+ self.self_attention.build(None)
+ if getattr(self, "dense_output", None) is not None:
+ with tf.name_scope(self.dense_output.name):
+ self.dense_output.build(None)
+
+
+class TFViTIntermediate(keras.layers.Layer):
+ def __init__(self, config: ViTConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+class TFViTOutput(keras.layers.Layer):
+ def __init__(self, config: ViTConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
+ hidden_states = hidden_states + input_tensor
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+
+
+class TFViTLayer(keras.layers.Layer):
+ """This corresponds to the Block class in the timm implementation."""
+
+ def __init__(self, config: ViTConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.attention = TFViTAttention(config, name="attention")
+ self.intermediate = TFViTIntermediate(config, name="intermediate")
+ self.vit_output = TFViTOutput(config, name="output")
+
+ self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before")
+ self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after")
+ self.config = config
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ attention_outputs = self.attention(
+ # in ViT, layernorm is applied before self-attention
+ input_tensor=self.layernorm_before(inputs=hidden_states),
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ attention_output = attention_outputs[0]
+
+ # first residual connection
+ hidden_states = attention_output + hidden_states
+
+ # in ViT, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(inputs=hidden_states)
+
+ intermediate_output = self.intermediate(hidden_states=layer_output)
+
+ # second residual connection is done here
+ layer_output = self.vit_output(
+ hidden_states=intermediate_output, input_tensor=hidden_states, training=training
+ )
+ outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "vit_output", None) is not None:
+ with tf.name_scope(self.vit_output.name):
+ self.vit_output.build(None)
+ if getattr(self, "layernorm_before", None) is not None:
+ with tf.name_scope(self.layernorm_before.name):
+ self.layernorm_before.build([None, None, self.config.hidden_size])
+ if getattr(self, "layernorm_after", None) is not None:
+ with tf.name_scope(self.layernorm_after.name):
+ self.layernorm_after.build([None, None, self.config.hidden_size])
+
+
+class TFViTEncoder(keras.layers.Layer):
+ def __init__(self, config: ViTConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.layer = [TFViTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ head_mask: tf.Tensor,
+ output_attentions: bool,
+ output_hidden_states: bool,
+ return_dict: bool,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_outputs = layer_module(
+ hidden_states=hidden_states,
+ head_mask=head_mask[i],
+ output_attentions=output_attentions,
+ training=training,
+ )
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
+
+ return TFBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFViTMainLayer(keras.layers.Layer):
+ config_class = ViTConfig
+
+ def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+
+ self.embeddings = TFViTEmbeddings(config, name="embeddings")
+ self.encoder = TFViTEncoder(config, name="encoder")
+ self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
+ self.pooler = TFViTPooler(config, name="pooler") if add_pooling_layer else None
+
+ def get_input_embeddings(self) -> keras.layers.Layer:
+ return self.embeddings.patch_embeddings
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ raise NotImplementedError
+
+ @unpack_inputs
+ def call(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ embedding_output = self.embeddings(
+ pixel_values=pixel_values,
+ interpolate_pos_encoding=interpolate_pos_encoding,
+ training=training,
+ )
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ if head_mask is not None:
+ raise NotImplementedError
+ else:
+ head_mask = [None] * self.config.num_hidden_layers
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.layernorm(inputs=sequence_output)
+ pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return TFBaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "layernorm", None) is not None:
+ with tf.name_scope(self.layernorm.name):
+ self.layernorm.build([None, None, self.config.hidden_size])
+ if getattr(self, "pooler", None) is not None:
+ with tf.name_scope(self.pooler.name):
+ self.pooler.build(None)
+
+
+class TFViTPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ViTConfig
+ base_model_prefix = "vit"
+ main_input_name = "pixel_values"
+
+
+VIT_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Args:
+ config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+VIT_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
+ for details.
+
+ head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ interpolate_pos_encoding (`bool`, *optional*):
+ Whether to interpolate the pre-trained position encodings.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False``):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@add_start_docstrings(
+ "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
+ VIT_START_DOCSTRING,
+)
+class TFViTModel(TFViTPreTrainedModel):
+ def __init__(self, config: ViTConfig, *inputs, add_pooling_layer=True, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.vit = TFViTMainLayer(config, add_pooling_layer=add_pooling_layer, name="vit")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutputWithPooling,
+ config_class=_CONFIG_FOR_DOC,
+ modality="vision",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def call(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
+ outputs = self.vit(
+ pixel_values=pixel_values,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ interpolate_pos_encoding=interpolate_pos_encoding,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "vit", None) is not None:
+ with tf.name_scope(self.vit.name):
+ self.vit.build(None)
+
+
+class TFViTPooler(keras.layers.Layer):
+ def __init__(self, config: ViTConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(inputs=first_token_tensor)
+
+ return pooled_output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings(
+ """
+ ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
+ the [CLS] token) e.g. for ImageNet.
+
+
+
+ Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
+ setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
+ position embeddings to the higher resolution.
+
+
+ """,
+ VIT_START_DOCSTRING,
+)
+class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassificationLoss):
+ def __init__(self, config: ViTConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.num_labels = config.num_labels
+ self.vit = TFViTMainLayer(config, add_pooling_layer=False, name="vit")
+
+ # Classifier head
+ self.classifier = keras.layers.Dense(
+ units=config.num_labels,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="classifier",
+ )
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
+ output_type=TFSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
+ )
+ def call(
+ self,
+ pixel_values: TFModelInputType | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ outputs = self.vit(
+ pixel_values=pixel_values,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ interpolate_pos_encoding=interpolate_pos_encoding,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ logits = self.classifier(inputs=sequence_output[:, 0, :])
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "vit", None) is not None:
+ with tf.name_scope(self.vit.name):
+ self.vit.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ccdd1deaf4ca1ed4fe30e936c66f8109a4fafd6
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py
@@ -0,0 +1,838 @@
+# coding=utf-8
+# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch ViT model."""
+
+
+import collections.abc
+import math
+from typing import Dict, List, Optional, Set, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPooling,
+ ImageClassifierOutput,
+ MaskedImageModelingOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_vit import ViTConfig
+
+
+logger = logging.get_logger(__name__)
+
+# General docstring
+_CONFIG_FOR_DOC = "ViTConfig"
+
+# Base docstring
+_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
+_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
+
+# Image classification docstring
+_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
+_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
+
+
+from ..deprecated._archive_maps import VIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class ViTEmbeddings(nn.Module):
+ """
+ Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
+ """
+
+ def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None:
+ super().__init__()
+
+ self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
+ self.patch_embeddings = ViTPatchEmbeddings(config)
+ num_patches = self.patch_embeddings.num_patches
+ self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
+ """
+ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
+ resolution images.
+
+ Source:
+ https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
+ """
+
+ num_patches = embeddings.shape[1] - 1
+ num_positions = self.position_embeddings.shape[1] - 1
+ if num_patches == num_positions and height == width:
+ return self.position_embeddings
+ class_pos_embed = self.position_embeddings[:, 0]
+ patch_pos_embed = self.position_embeddings[:, 1:]
+ dim = embeddings.shape[-1]
+ h0 = height // self.config.patch_size
+ w0 = width // self.config.patch_size
+ # we add a small number to avoid floating point error in the interpolation
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
+ h0, w0 = h0 + 0.1, w0 + 0.1
+ patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
+ patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
+ patch_pos_embed = nn.functional.interpolate(
+ patch_pos_embed,
+ scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
+ mode="bicubic",
+ align_corners=False,
+ )
+ assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
+
+ def forward(
+ self,
+ pixel_values: torch.Tensor,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ interpolate_pos_encoding: bool = False,
+ ) -> torch.Tensor:
+ batch_size, num_channels, height, width = pixel_values.shape
+ embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
+
+ if bool_masked_pos is not None:
+ seq_length = embeddings.shape[1]
+ mask_tokens = self.mask_token.expand(batch_size, seq_length, -1)
+ # replace the masked visual tokens by mask_tokens
+ mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
+ embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
+
+ # add the [CLS] token to the embedded patch tokens
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1)
+ embeddings = torch.cat((cls_tokens, embeddings), dim=1)
+
+ # add positional encoding to each token
+ if interpolate_pos_encoding:
+ embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
+ else:
+ embeddings = embeddings + self.position_embeddings
+
+ embeddings = self.dropout(embeddings)
+
+ return embeddings
+
+
+class ViTPatchEmbeddings(nn.Module):
+ """
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
+ Transformer.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ image_size, patch_size = config.image_size, config.patch_size
+ num_channels, hidden_size = config.num_channels, config.hidden_size
+
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
+ self.image_size = image_size
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.num_patches = num_patches
+
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
+
+ def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
+ batch_size, num_channels, height, width = pixel_values.shape
+ if num_channels != self.num_channels:
+ raise ValueError(
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
+ f" Expected {self.num_channels} but got {num_channels}."
+ )
+ if not interpolate_pos_encoding:
+ if height != self.image_size[0] or width != self.image_size[1]:
+ raise ValueError(
+ f"Input image size ({height}*{width}) doesn't match model"
+ f" ({self.image_size[0]}*{self.image_size[1]})."
+ )
+ embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
+ return embeddings
+
+
+class ViTSelfAttention(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
+ f"heads {config.num_attention_heads}."
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ mixed_query_layer = self.query(hidden_states)
+
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ return outputs
+
+
+class ViTSelfOutput(nn.Module):
+ """
+ The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the
+ layernorm applied before each block.
+ """
+
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ return hidden_states
+
+
+class ViTAttention(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.attention = ViTSelfAttention(config)
+ self.output = ViTSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads: Set[int]) -> None:
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.attention.query = prune_linear_layer(self.attention.query, index)
+ self.attention.key = prune_linear_layer(self.attention.key, index)
+ self.attention.value = prune_linear_layer(self.attention.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ self_outputs = self.attention(hidden_states, head_mask, output_attentions)
+
+ attention_output = self.output(self_outputs[0], hidden_states)
+
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class ViTIntermediate(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+
+ return hidden_states
+
+
+class ViTOutput(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ hidden_states = hidden_states + input_tensor
+
+ return hidden_states
+
+
+class ViTLayer(nn.Module):
+ """This corresponds to the Block class in the timm implementation."""
+
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = ViTAttention(config)
+ self.intermediate = ViTIntermediate(config)
+ self.output = ViTOutput(config)
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
+ self_attention_outputs = self.attention(
+ self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
+ head_mask,
+ output_attentions=output_attentions,
+ )
+ attention_output = self_attention_outputs[0]
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ # first residual connection
+ hidden_states = attention_output + hidden_states
+
+ # in ViT, layernorm is also applied after self-attention
+ layer_output = self.layernorm_after(hidden_states)
+ layer_output = self.intermediate(layer_output)
+
+ # second residual connection is done here
+ layer_output = self.output(layer_output, hidden_states)
+
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+
+class ViTEncoder(nn.Module):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ) -> Union[tuple, BaseModelOutput]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ layer_head_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class ViTPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ViTConfig
+ base_model_prefix = "vit"
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["ViTEmbeddings", "ViTLayer"]
+
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
+ """Initialize the weights"""
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
+ # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
+ # `trunc_normal_cpu` not implemented in `half` issues
+ module.weight.data = nn.init.trunc_normal_(
+ module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
+ ).to(module.weight.dtype)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, ViTEmbeddings):
+ module.position_embeddings.data = nn.init.trunc_normal_(
+ module.position_embeddings.data.to(torch.float32),
+ mean=0.0,
+ std=self.config.initializer_range,
+ ).to(module.position_embeddings.dtype)
+
+ module.cls_token.data = nn.init.trunc_normal_(
+ module.cls_token.data.to(torch.float32),
+ mean=0.0,
+ std=self.config.initializer_range,
+ ).to(module.cls_token.dtype)
+
+
+VIT_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+VIT_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
+ for details.
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ interpolate_pos_encoding (`bool`, *optional*):
+ Whether to interpolate the pre-trained position encodings.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
+ VIT_START_DOCSTRING,
+)
+class ViTModel(ViTPreTrainedModel):
+ def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token)
+ self.encoder = ViTEncoder(config)
+
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.pooler = ViTPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> ViTPatchEmbeddings:
+ return self.embeddings.patch_embeddings
+
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPooling,
+ config_class=_CONFIG_FOR_DOC,
+ modality="vision",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
+ expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
+ if pixel_values.dtype != expected_dtype:
+ pixel_values = pixel_values.to(expected_dtype)
+
+ embedding_output = self.embeddings(
+ pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
+ )
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ sequence_output = self.layernorm(sequence_output)
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
+ return head_outputs + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+class ViTPooler(nn.Module):
+ def __init__(self, config: ViTConfig):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+@add_start_docstrings(
+ """ViT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886).
+
+
+
+ Note that we provide a script to pre-train this model on custom data in our [examples
+ directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
+
+
+ """,
+ VIT_START_DOCSTRING,
+)
+class ViTForMaskedImageModeling(ViTPreTrainedModel):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__(config)
+
+ self.vit = ViTModel(config, add_pooling_layer=False, use_mask_token=True)
+
+ self.decoder = nn.Sequential(
+ nn.Conv2d(
+ in_channels=config.hidden_size,
+ out_channels=config.encoder_stride**2 * config.num_channels,
+ kernel_size=1,
+ ),
+ nn.PixelShuffle(config.encoder_stride),
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, MaskedImageModelingOutput]:
+ r"""
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
+
+ Returns:
+
+ Examples:
+ ```python
+ >>> from transformers import AutoImageProcessor, ViTForMaskedImageModeling
+ >>> import torch
+ >>> from PIL import Image
+ >>> import requests
+
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
+ >>> model = ViTForMaskedImageModeling.from_pretrained("google/vit-base-patch16-224-in21k")
+
+ >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
+ >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
+ >>> # create random boolean mask of shape (batch_size, num_patches)
+ >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
+
+ >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
+ >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
+ >>> list(reconstructed_pixel_values.shape)
+ [1, 3, 224, 224]
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if bool_masked_pos is not None and (self.config.patch_size != self.config.encoder_stride):
+ raise ValueError(
+ "When `bool_masked_pos` is provided, `patch_size` must be equal to `encoder_stride` to ensure that "
+ "the reconstructed image has the same dimensions as the input. "
+ f"Got `patch_size` = {self.config.patch_size} and `encoder_stride` = {self.config.encoder_stride}."
+ )
+
+ outputs = self.vit(
+ pixel_values,
+ bool_masked_pos=bool_masked_pos,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ interpolate_pos_encoding=interpolate_pos_encoding,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ # Reshape to (batch_size, num_channels, height, width)
+ sequence_output = sequence_output[:, 1:]
+ batch_size, sequence_length, num_channels = sequence_output.shape
+ height = width = math.floor(sequence_length**0.5)
+ sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
+
+ # Reconstruct pixel values
+ reconstructed_pixel_values = self.decoder(sequence_output)
+
+ masked_im_loss = None
+ if bool_masked_pos is not None:
+ size = self.config.image_size // self.config.patch_size
+ bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
+ mask = (
+ bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
+ .repeat_interleave(self.config.patch_size, 2)
+ .unsqueeze(1)
+ .contiguous()
+ )
+ reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
+ masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
+
+ if not return_dict:
+ output = (reconstructed_pixel_values,) + outputs[1:]
+ return ((masked_im_loss,) + output) if masked_im_loss is not None else output
+
+ return MaskedImageModelingOutput(
+ loss=masked_im_loss,
+ reconstruction=reconstructed_pixel_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
+ the [CLS] token) e.g. for ImageNet.
+
+
+
+ Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
+ setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
+ position embeddings to the higher resolution.
+
+
+ """,
+ VIT_START_DOCSTRING,
+)
+class ViTForImageClassification(ViTPreTrainedModel):
+ def __init__(self, config: ViTConfig) -> None:
+ super().__init__(config)
+
+ self.num_labels = config.num_labels
+ self.vit = ViTModel(config, add_pooling_layer=False)
+
+ # Classifier head
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
+ output_type=ImageClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
+ )
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ interpolate_pos_encoding: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[tuple, ImageClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.vit(
+ pixel_values,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ interpolate_pos_encoding=interpolate_pos_encoding,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.classifier(sequence_output[:, 0, :])
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ImageClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )