diff --git "a/llmeval-env/lib/python3.10/site-packages/transformers/models/luke/modeling_luke.py" "b/llmeval-env/lib/python3.10/site-packages/transformers/models/luke/modeling_luke.py" new file mode 100644--- /dev/null +++ "b/llmeval-env/lib/python3.10/site-packages/transformers/models/luke/modeling_luke.py" @@ -0,0 +1,2231 @@ +# coding=utf-8 +# Copyright Studio Ousia and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch LUKE model.""" + +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN, gelu +from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_luke import LukeConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "LukeConfig" +_CHECKPOINT_FOR_DOC = "studio-ousia/luke-base" + + +from ..deprecated._archive_maps import LUKE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class BaseLukeModelOutputWithPooling(BaseModelOutputWithPooling): + """ + Base class for outputs of the LUKE model. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`): + Sequence of entity hidden-states at the output of the last layer of the model. + pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + Last layer hidden-state of the first token of the sequence (classification token) further processed by a + Linear layer and a Tanh activation function. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each + layer plus the initial entity embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length + + entity_length, sequence_length + entity_length)`. Attentions weights after the attention softmax, used to + compute the weighted average in the self-attention heads. + """ + + entity_last_hidden_state: torch.FloatTensor = None + entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class BaseLukeModelOutput(BaseModelOutput): + """ + Base class for model's outputs, with potential hidden states and attentions. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`): + Sequence of entity hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each + layer plus the initial entity embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + entity_last_hidden_state: torch.FloatTensor = None + entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LukeMaskedLMOutput(ModelOutput): + """ + Base class for model's outputs, with potential hidden states and attentions. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + The sum of masked language modeling (MLM) loss and entity prediction loss. + mlm_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Masked language modeling (MLM) loss. + mep_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Masked entity prediction (MEP) loss. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + entity_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the entity prediction head (scores for each entity vocabulary token before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each + layer plus the initial entity embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + mlm_loss: Optional[torch.FloatTensor] = None + mep_loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + entity_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class EntityClassificationOutput(ModelOutput): + """ + Outputs of entity classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each + layer plus the initial entity embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class EntityPairClassificationOutput(ModelOutput): + """ + Outputs of entity pair classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each + layer plus the initial entity embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class EntitySpanClassificationOutput(ModelOutput): + """ + Outputs of entity span classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, entity_length, config.num_labels)`): + Classification scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each + layer plus the initial entity embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LukeSequenceClassifierOutput(ModelOutput): + """ + Outputs of sentence classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each + layer plus the initial entity embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LukeTokenClassifierOutput(ModelOutput): + """ + Base class for outputs of token classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): + Classification scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each + layer plus the initial entity embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LukeQuestionAnsweringModelOutput(ModelOutput): + """ + Outputs of question answering models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Span-start scores (before SoftMax). + end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Span-end scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each + layer plus the initial entity embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + start_logits: torch.FloatTensor = None + end_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LukeMultipleChoiceModelOutput(ModelOutput): + """ + Outputs of multiple choice models. + + Args: + loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided): + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): + *num_choices* is the second dimension of the input tensors. (see *input_ids* above). + + Classification scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each + layer plus the initial entity embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +class LukeEmbeddings(nn.Module): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # End copy + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + def forward( + self, + input_ids=None, + token_type_ids=None, + position_ids=None, + inputs_embeds=None, + ): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + position_embeddings = self.position_embeddings(position_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + position_embeddings + token_type_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +class LukeEntityEmbeddings(nn.Module): + def __init__(self, config: LukeConfig): + super().__init__() + self.config = config + + self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0) + if config.entity_emb_size != config.hidden_size: + self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False) + + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward( + self, entity_ids: torch.LongTensor, position_ids: torch.LongTensor, token_type_ids: torch.LongTensor = None + ): + if token_type_ids is None: + token_type_ids = torch.zeros_like(entity_ids) + + entity_embeddings = self.entity_embeddings(entity_ids) + if self.config.entity_emb_size != self.config.hidden_size: + entity_embeddings = self.entity_embedding_dense(entity_embeddings) + + position_embeddings = self.position_embeddings(position_ids.clamp(min=0)) + position_embedding_mask = (position_ids != -1).type_as(position_embeddings).unsqueeze(-1) + position_embeddings = position_embeddings * position_embedding_mask + position_embeddings = torch.sum(position_embeddings, dim=-2) + position_embeddings = position_embeddings / position_embedding_mask.sum(dim=-2).clamp(min=1e-7) + + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = entity_embeddings + position_embeddings + token_type_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + + return embeddings + + +class LukeSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.use_entity_aware_attention = config.use_entity_aware_attention + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + if self.use_entity_aware_attention: + self.w2e_query = nn.Linear(config.hidden_size, self.all_head_size) + self.e2w_query = nn.Linear(config.hidden_size, self.all_head_size) + self.e2e_query = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + word_hidden_states, + entity_hidden_states, + attention_mask=None, + head_mask=None, + output_attentions=False, + ): + word_size = word_hidden_states.size(1) + + if entity_hidden_states is None: + concat_hidden_states = word_hidden_states + else: + concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) + + key_layer = self.transpose_for_scores(self.key(concat_hidden_states)) + value_layer = self.transpose_for_scores(self.value(concat_hidden_states)) + + if self.use_entity_aware_attention and entity_hidden_states is not None: + # compute query vectors using word-word (w2w), word-entity (w2e), entity-word (e2w), entity-entity (e2e) + # query layers + w2w_query_layer = self.transpose_for_scores(self.query(word_hidden_states)) + w2e_query_layer = self.transpose_for_scores(self.w2e_query(word_hidden_states)) + e2w_query_layer = self.transpose_for_scores(self.e2w_query(entity_hidden_states)) + e2e_query_layer = self.transpose_for_scores(self.e2e_query(entity_hidden_states)) + + # compute w2w, w2e, e2w, and e2e key vectors used with the query vectors computed above + w2w_key_layer = key_layer[:, :, :word_size, :] + e2w_key_layer = key_layer[:, :, :word_size, :] + w2e_key_layer = key_layer[:, :, word_size:, :] + e2e_key_layer = key_layer[:, :, word_size:, :] + + # compute attention scores based on the dot product between the query and key vectors + w2w_attention_scores = torch.matmul(w2w_query_layer, w2w_key_layer.transpose(-1, -2)) + w2e_attention_scores = torch.matmul(w2e_query_layer, w2e_key_layer.transpose(-1, -2)) + e2w_attention_scores = torch.matmul(e2w_query_layer, e2w_key_layer.transpose(-1, -2)) + e2e_attention_scores = torch.matmul(e2e_query_layer, e2e_key_layer.transpose(-1, -2)) + + # combine attention scores to create the final attention score matrix + word_attention_scores = torch.cat([w2w_attention_scores, w2e_attention_scores], dim=3) + entity_attention_scores = torch.cat([e2w_attention_scores, e2e_attention_scores], dim=3) + attention_scores = torch.cat([word_attention_scores, entity_attention_scores], dim=2) + + else: + query_layer = self.transpose_for_scores(self.query(concat_hidden_states)) + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in LukeModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + output_word_hidden_states = context_layer[:, :word_size, :] + if entity_hidden_states is None: + output_entity_hidden_states = None + else: + output_entity_hidden_states = context_layer[:, word_size:, :] + + if output_attentions: + outputs = (output_word_hidden_states, output_entity_hidden_states, attention_probs) + else: + outputs = (output_word_hidden_states, output_entity_hidden_states) + + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class LukeSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class LukeAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.self = LukeSelfAttention(config) + self.output = LukeSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + raise NotImplementedError("LUKE does not support the pruning of attention heads") + + def forward( + self, + word_hidden_states, + entity_hidden_states, + attention_mask=None, + head_mask=None, + output_attentions=False, + ): + word_size = word_hidden_states.size(1) + self_outputs = self.self( + word_hidden_states, + entity_hidden_states, + attention_mask, + head_mask, + output_attentions, + ) + if entity_hidden_states is None: + concat_self_outputs = self_outputs[0] + concat_hidden_states = word_hidden_states + else: + concat_self_outputs = torch.cat(self_outputs[:2], dim=1) + concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) + + attention_output = self.output(concat_self_outputs, concat_hidden_states) + + word_attention_output = attention_output[:, :word_size, :] + if entity_hidden_states is None: + entity_attention_output = None + else: + entity_attention_output = attention_output[:, word_size:, :] + + # add attentions if we output them + outputs = (word_attention_output, entity_attention_output) + self_outputs[2:] + + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class LukeIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class LukeOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class LukeLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = LukeAttention(config) + self.intermediate = LukeIntermediate(config) + self.output = LukeOutput(config) + + def forward( + self, + word_hidden_states, + entity_hidden_states, + attention_mask=None, + head_mask=None, + output_attentions=False, + ): + word_size = word_hidden_states.size(1) + + self_attention_outputs = self.attention( + word_hidden_states, + entity_hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + ) + if entity_hidden_states is None: + concat_attention_output = self_attention_outputs[0] + else: + concat_attention_output = torch.cat(self_attention_outputs[:2], dim=1) + + outputs = self_attention_outputs[2:] # add self attentions if we output attention weights + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output + ) + word_layer_output = layer_output[:, :word_size, :] + if entity_hidden_states is None: + entity_layer_output = None + else: + entity_layer_output = layer_output[:, word_size:, :] + + outputs = (word_layer_output, entity_layer_output) + outputs + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class LukeEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + word_hidden_states, + entity_hidden_states, + attention_mask=None, + head_mask=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_word_hidden_states = () if output_hidden_states else None + all_entity_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) + all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + word_hidden_states, + entity_hidden_states, + attention_mask, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module( + word_hidden_states, + entity_hidden_states, + attention_mask, + layer_head_mask, + output_attentions, + ) + + word_hidden_states = layer_outputs[0] + + if entity_hidden_states is not None: + entity_hidden_states = layer_outputs[1] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) + all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + word_hidden_states, + all_word_hidden_states, + all_self_attentions, + entity_hidden_states, + all_entity_hidden_states, + ] + if v is not None + ) + return BaseLukeModelOutput( + last_hidden_state=word_hidden_states, + hidden_states=all_word_hidden_states, + attentions=all_self_attentions, + entity_last_hidden_state=entity_hidden_states, + entity_hidden_states=all_entity_hidden_states, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class LukePooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class EntityPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.entity_emb_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.entity_emb_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class EntityPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.transform = EntityPredictionHeadTransform(config) + self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False) + self.bias = nn.Parameter(torch.zeros(config.entity_vocab_size)) + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + self.bias + + return hidden_states + + +class LukePreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LukeConfig + base_model_prefix = "luke" + supports_gradient_checkpointing = True + _no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"] + + def _init_weights(self, module: nn.Module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + if module.embedding_dim == 1: # embedding for bias parameters + module.weight.data.zero_() + else: + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +LUKE_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`LukeConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LUKE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + + entity_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`): + Indices of entity tokens in the entity vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + entity_attention_mask (`torch.FloatTensor` of shape `(batch_size, entity_length)`, *optional*): + Mask to avoid performing attention on padding entity token indices. Mask values selected in `[0, 1]`: + + - 1 for entity tokens that are **not masked**, + - 0 for entity tokens that are **masked**. + + entity_token_type_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): + Segment token indices to indicate first and second portions of the entity token inputs. Indices are + selected in `[0, 1]`: + + - 0 corresponds to a *portion A* entity token, + - 1 corresponds to a *portion B* entity token. + + entity_position_ids (`torch.LongTensor` of shape `(batch_size, entity_length, max_mention_length)`, *optional*): + Indices of positions of each input entity in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare LUKE model transformer outputting raw hidden-states for both word tokens and entities without any" + " specific head on top.", + LUKE_START_DOCSTRING, +) +class LukeModel(LukePreTrainedModel): + def __init__(self, config: LukeConfig, add_pooling_layer: bool = True): + super().__init__(config) + self.config = config + + self.embeddings = LukeEmbeddings(config) + self.entity_embeddings = LukeEntityEmbeddings(config) + self.encoder = LukeEncoder(config) + + self.pooler = LukePooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def get_entity_embeddings(self): + return self.entity_embeddings.entity_embeddings + + def set_entity_embeddings(self, value): + self.entity_embeddings.entity_embeddings = value + + def _prune_heads(self, heads_to_prune): + raise NotImplementedError("LUKE does not support the pruning of attention heads") + + @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=BaseLukeModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + entity_ids: Optional[torch.LongTensor] = None, + entity_attention_mask: Optional[torch.FloatTensor] = None, + entity_token_type_ids: Optional[torch.LongTensor] = None, + entity_position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseLukeModelOutputWithPooling]: + r""" + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, LukeModel + + >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-base") + >>> model = LukeModel.from_pretrained("studio-ousia/luke-base") + # Compute the contextualized entity representation corresponding to the entity mention "Beyoncé" + + >>> text = "Beyoncé lives in Los Angeles." + >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" + + >>> encoding = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt") + >>> outputs = model(**encoding) + >>> word_last_hidden_state = outputs.last_hidden_state + >>> entity_last_hidden_state = outputs.entity_last_hidden_state + # Input Wikipedia entities to obtain enriched contextualized representations of word tokens + + >>> text = "Beyoncé lives in Los Angeles." + >>> entities = [ + ... "Beyoncé", + ... "Los Angeles", + ... ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles" + >>> entity_spans = [ + ... (0, 7), + ... (17, 28), + ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" + + >>> encoding = tokenizer( + ... text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt" + ... ) + >>> outputs = model(**encoding) + >>> word_last_hidden_state = outputs.last_hidden_state + >>> entity_last_hidden_state = outputs.entity_last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones((batch_size, seq_length), device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + if entity_ids is not None: + entity_seq_length = entity_ids.size(1) + if entity_attention_mask is None: + entity_attention_mask = torch.ones((batch_size, entity_seq_length), device=device) + if entity_token_type_ids is None: + entity_token_type_ids = torch.zeros((batch_size, entity_seq_length), dtype=torch.long, device=device) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + # First, compute word embeddings + word_embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + ) + + # Second, compute extended attention mask + extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask) + + # Third, compute entity embeddings and concatenate with word embeddings + if entity_ids is None: + entity_embedding_output = None + else: + entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids) + + # Fourth, send embeddings through the model + encoder_outputs = self.encoder( + word_embedding_output, + entity_embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + # Fifth, get the output. LukeModel outputs the same as BertModel, namely sequence_output of shape (batch_size, seq_len, hidden_size) + sequence_output = encoder_outputs[0] + + # Sixth, we compute the pooled_output, word_sequence_output and entity_sequence_output based on the sequence_output + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseLukeModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + entity_last_hidden_state=encoder_outputs.entity_last_hidden_state, + entity_hidden_states=encoder_outputs.entity_hidden_states, + ) + + def get_extended_attention_mask( + self, word_attention_mask: torch.LongTensor, entity_attention_mask: Optional[torch.LongTensor] + ): + """ + Makes broadcastable attention and causal masks so that future and masked tokens are ignored. + + Arguments: + word_attention_mask (`torch.LongTensor`): + Attention mask for word tokens with ones indicating tokens to attend to, zeros for tokens to ignore. + entity_attention_mask (`torch.LongTensor`, *optional*): + Attention mask for entity tokens with ones indicating tokens to attend to, zeros for tokens to ignore. + + Returns: + `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. + """ + attention_mask = word_attention_mask + if entity_attention_mask is not None: + attention_mask = torch.cat([attention_mask, entity_attention_mask], dim=-1) + + if attention_mask.dim() == 3: + extended_attention_mask = attention_mask[:, None, :, :] + elif attention_mask.dim() == 2: + extended_attention_mask = attention_mask[:, None, None, :] + else: + raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})") + + extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility + extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min + return extended_attention_mask + + +def create_position_ids_from_input_ids(input_ids, padding_idx): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask + return incremental_indices.long() + padding_idx + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead +class LukeLMHead(nn.Module): + """Roberta Head for masked language modeling.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.decoder = nn.Linear(config.hidden_size, config.vocab_size) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + self.decoder.bias = self.bias + + def forward(self, features, **kwargs): + x = self.dense(features) + x = gelu(x) + x = self.layer_norm(x) + + # project back to size of vocabulary with bias + x = self.decoder(x) + + return x + + def _tie_weights(self): + # To tie those two weights if they get disconnected (on TPU or when the bias is resized) + # For accelerate compatibility and to not break backward compatibility + if self.decoder.bias.device.type == "meta": + self.decoder.bias = self.bias + else: + self.bias = self.decoder.bias + + +@add_start_docstrings( + """ + The LUKE model with a language modeling head and entity prediction head on top for masked language modeling and + masked entity prediction. + """, + LUKE_START_DOCSTRING, +) +class LukeForMaskedLM(LukePreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight"] + + def __init__(self, config): + super().__init__(config) + + self.luke = LukeModel(config) + + self.lm_head = LukeLMHead(config) + self.entity_predictions = EntityPredictionHead(config) + + self.loss_fn = nn.CrossEntropyLoss() + + # Initialize weights and apply final processing + self.post_init() + + def tie_weights(self): + super().tie_weights() + self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings) + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=LukeMaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + entity_ids: Optional[torch.LongTensor] = None, + entity_attention_mask: Optional[torch.LongTensor] = None, + entity_token_type_ids: Optional[torch.LongTensor] = None, + entity_position_ids: Optional[torch.LongTensor] = None, + labels: Optional[torch.LongTensor] = None, + entity_labels: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LukeMaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + entity_labels (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + + Returns: + + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.luke( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + entity_ids=entity_ids, + entity_attention_mask=entity_attention_mask, + entity_token_type_ids=entity_token_type_ids, + entity_position_ids=entity_position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + loss = None + + mlm_loss = None + logits = self.lm_head(outputs.last_hidden_state) + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1)) + if loss is None: + loss = mlm_loss + + mep_loss = None + entity_logits = None + if outputs.entity_last_hidden_state is not None: + entity_logits = self.entity_predictions(outputs.entity_last_hidden_state) + if entity_labels is not None: + mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1)) + if loss is None: + loss = mep_loss + else: + loss = loss + mep_loss + + if not return_dict: + return tuple( + v + for v in [ + loss, + mlm_loss, + mep_loss, + logits, + entity_logits, + outputs.hidden_states, + outputs.entity_hidden_states, + outputs.attentions, + ] + if v is not None + ) + + return LukeMaskedLMOutput( + loss=loss, + mlm_loss=mlm_loss, + mep_loss=mep_loss, + logits=logits, + entity_logits=entity_logits, + hidden_states=outputs.hidden_states, + entity_hidden_states=outputs.entity_hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + The LUKE model with a classification head on top (a linear layer on top of the hidden state of the first entity + token) for entity classification tasks, such as Open Entity. + """, + LUKE_START_DOCSTRING, +) +class LukeForEntityClassification(LukePreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.luke = LukeModel(config) + + self.num_labels = config.num_labels + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=EntityClassificationOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + entity_ids: Optional[torch.LongTensor] = None, + entity_attention_mask: Optional[torch.FloatTensor] = None, + entity_token_type_ids: Optional[torch.LongTensor] = None, + entity_position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, EntityClassificationOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): + Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is + used for the single-label classification. In this case, labels should contain the indices that should be in + `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy + loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 + and 1 indicate false and true, respectively. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, LukeForEntityClassification + + >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") + >>> model = LukeForEntityClassification.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") + + >>> text = "Beyoncé lives in Los Angeles." + >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" + >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") + >>> outputs = model(**inputs) + >>> logits = outputs.logits + >>> predicted_class_idx = logits.argmax(-1).item() + >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) + Predicted class: person + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.luke( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + entity_ids=entity_ids, + entity_attention_mask=entity_attention_mask, + entity_token_type_ids=entity_token_type_ids, + entity_position_ids=entity_position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + feature_vector = outputs.entity_last_hidden_state[:, 0, :] + feature_vector = self.dropout(feature_vector) + logits = self.classifier(feature_vector) + + loss = None + if labels is not None: + # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary + # cross entropy is used otherwise. + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if labels.ndim == 1: + loss = nn.functional.cross_entropy(logits, labels) + else: + loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) + + if not return_dict: + return tuple( + v + for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] + if v is not None + ) + + return EntityClassificationOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + entity_hidden_states=outputs.entity_hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + The LUKE model with a classification head on top (a linear layer on top of the hidden states of the two entity + tokens) for entity pair classification tasks, such as TACRED. + """, + LUKE_START_DOCSTRING, +) +class LukeForEntityPairClassification(LukePreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.luke = LukeModel(config) + + self.num_labels = config.num_labels + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, False) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=EntityPairClassificationOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + entity_ids: Optional[torch.LongTensor] = None, + entity_attention_mask: Optional[torch.FloatTensor] = None, + entity_token_type_ids: Optional[torch.LongTensor] = None, + entity_position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, EntityPairClassificationOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): + Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is + used for the single-label classification. In this case, labels should contain the indices that should be in + `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy + loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 + and 1 indicate false and true, respectively. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, LukeForEntityPairClassification + + >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred") + >>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred") + + >>> text = "Beyoncé lives in Los Angeles." + >>> entity_spans = [ + ... (0, 7), + ... (17, 28), + ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" + >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") + >>> outputs = model(**inputs) + >>> logits = outputs.logits + >>> predicted_class_idx = logits.argmax(-1).item() + >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) + Predicted class: per:cities_of_residence + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.luke( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + entity_ids=entity_ids, + entity_attention_mask=entity_attention_mask, + entity_token_type_ids=entity_token_type_ids, + entity_position_ids=entity_position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + feature_vector = torch.cat( + [outputs.entity_last_hidden_state[:, 0, :], outputs.entity_last_hidden_state[:, 1, :]], dim=1 + ) + feature_vector = self.dropout(feature_vector) + logits = self.classifier(feature_vector) + + loss = None + if labels is not None: + # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary + # cross entropy is used otherwise. + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if labels.ndim == 1: + loss = nn.functional.cross_entropy(logits, labels) + else: + loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) + + if not return_dict: + return tuple( + v + for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] + if v is not None + ) + + return EntityPairClassificationOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + entity_hidden_states=outputs.entity_hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + The LUKE model with a span classification head on top (a linear layer on top of the hidden states output) for tasks + such as named entity recognition. + """, + LUKE_START_DOCSTRING, +) +class LukeForEntitySpanClassification(LukePreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.luke = LukeModel(config) + + self.num_labels = config.num_labels + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=EntitySpanClassificationOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + entity_ids: Optional[torch.LongTensor] = None, + entity_attention_mask: Optional[torch.LongTensor] = None, + entity_token_type_ids: Optional[torch.LongTensor] = None, + entity_position_ids: Optional[torch.LongTensor] = None, + entity_start_positions: Optional[torch.LongTensor] = None, + entity_end_positions: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, EntitySpanClassificationOutput]: + r""" + entity_start_positions (`torch.LongTensor`): + The start positions of entities in the word token sequence. + + entity_end_positions (`torch.LongTensor`): + The end positions of entities in the word token sequence. + + labels (`torch.LongTensor` of shape `(batch_size, entity_length)` or `(batch_size, entity_length, num_labels)`, *optional*): + Labels for computing the classification loss. If the shape is `(batch_size, entity_length)`, the cross + entropy loss is used for the single-label classification. In this case, labels should contain the indices + that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, entity_length, + num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, + labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, LukeForEntitySpanClassification + + >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") + >>> model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") + + >>> text = "Beyoncé lives in Los Angeles" + # List all possible entity spans in the text + + >>> word_start_positions = [0, 8, 14, 17, 21] # character-based start positions of word tokens + >>> word_end_positions = [7, 13, 16, 20, 28] # character-based end positions of word tokens + >>> entity_spans = [] + >>> for i, start_pos in enumerate(word_start_positions): + ... for end_pos in word_end_positions[i:]: + ... entity_spans.append((start_pos, end_pos)) + + >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") + >>> outputs = model(**inputs) + >>> logits = outputs.logits + >>> predicted_class_indices = logits.argmax(-1).squeeze().tolist() + >>> for span, predicted_class_idx in zip(entity_spans, predicted_class_indices): + ... if predicted_class_idx != 0: + ... print(text[span[0] : span[1]], model.config.id2label[predicted_class_idx]) + Beyoncé PER + Los Angeles LOC + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.luke( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + entity_ids=entity_ids, + entity_attention_mask=entity_attention_mask, + entity_token_type_ids=entity_token_type_ids, + entity_position_ids=entity_position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + hidden_size = outputs.last_hidden_state.size(-1) + + entity_start_positions = entity_start_positions.unsqueeze(-1).expand(-1, -1, hidden_size) + if entity_start_positions.device != outputs.last_hidden_state.device: + entity_start_positions = entity_start_positions.to(outputs.last_hidden_state.device) + start_states = torch.gather(outputs.last_hidden_state, -2, entity_start_positions) + + entity_end_positions = entity_end_positions.unsqueeze(-1).expand(-1, -1, hidden_size) + if entity_end_positions.device != outputs.last_hidden_state.device: + entity_end_positions = entity_end_positions.to(outputs.last_hidden_state.device) + end_states = torch.gather(outputs.last_hidden_state, -2, entity_end_positions) + + feature_vector = torch.cat([start_states, end_states, outputs.entity_last_hidden_state], dim=2) + + feature_vector = self.dropout(feature_vector) + logits = self.classifier(feature_vector) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + # When the number of dimension of `labels` is 2, cross entropy is used as the loss function. The binary + # cross entropy is used otherwise. + if labels.ndim == 2: + loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1)) + else: + loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) + + if not return_dict: + return tuple( + v + for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] + if v is not None + ) + + return EntitySpanClassificationOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + entity_hidden_states=outputs.entity_hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + The LUKE Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + LUKE_START_DOCSTRING, +) +class LukeForSequenceClassification(LukePreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.luke = LukeModel(config) + self.dropout = nn.Dropout( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=LukeSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + entity_ids: Optional[torch.LongTensor] = None, + entity_attention_mask: Optional[torch.FloatTensor] = None, + entity_token_type_ids: Optional[torch.LongTensor] = None, + entity_position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LukeSequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.luke( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + entity_ids=entity_ids, + entity_attention_mask=entity_attention_mask, + entity_token_type_ids=entity_token_type_ids, + entity_position_ids=entity_position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + pooled_output = outputs.pooler_output + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + return tuple( + v + for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] + if v is not None + ) + + return LukeSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + entity_hidden_states=outputs.entity_hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + The LUKE Model with a token classification head on top (a linear layer on top of the hidden-states output). To + solve Named-Entity Recognition (NER) task using LUKE, `LukeForEntitySpanClassification` is more suitable than this + class. + """, + LUKE_START_DOCSTRING, +) +class LukeForTokenClassification(LukePreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.luke = LukeModel(config, add_pooling_layer=False) + self.dropout = nn.Dropout( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=LukeTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + entity_ids: Optional[torch.LongTensor] = None, + entity_attention_mask: Optional[torch.FloatTensor] = None, + entity_token_type_ids: Optional[torch.LongTensor] = None, + entity_position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LukeTokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.luke( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + entity_ids=entity_ids, + entity_attention_mask=entity_attention_mask, + entity_token_type_ids=entity_token_type_ids, + entity_position_ids=entity_position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + sequence_output = outputs.last_hidden_state + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + return tuple( + v + for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] + if v is not None + ) + + return LukeTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + entity_hidden_states=outputs.entity_hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + The LUKE Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + LUKE_START_DOCSTRING, +) +class LukeForQuestionAnswering(LukePreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.num_labels = config.num_labels + + self.luke = LukeModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=LukeQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.FloatTensor] = None, + entity_ids: Optional[torch.LongTensor] = None, + entity_attention_mask: Optional[torch.FloatTensor] = None, + entity_token_type_ids: Optional[torch.LongTensor] = None, + entity_position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LukeQuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.luke( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + entity_ids=entity_ids, + entity_attention_mask=entity_attention_mask, + entity_token_type_ids=entity_token_type_ids, + entity_position_ids=entity_position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + sequence_output = outputs.last_hidden_state + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions.clamp_(0, ignored_index) + end_positions.clamp_(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + return tuple( + v + for v in [ + total_loss, + start_logits, + end_logits, + outputs.hidden_states, + outputs.entity_hidden_states, + outputs.attentions, + ] + if v is not None + ) + + return LukeQuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + entity_hidden_states=outputs.entity_hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + The LUKE Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + LUKE_START_DOCSTRING, +) +class LukeForMultipleChoice(LukePreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.luke = LukeModel(config) + self.dropout = nn.Dropout( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=LukeMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + entity_ids: Optional[torch.LongTensor] = None, + entity_attention_mask: Optional[torch.FloatTensor] = None, + entity_token_type_ids: Optional[torch.LongTensor] = None, + entity_position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LukeMultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + entity_ids = entity_ids.view(-1, entity_ids.size(-1)) if entity_ids is not None else None + entity_attention_mask = ( + entity_attention_mask.view(-1, entity_attention_mask.size(-1)) + if entity_attention_mask is not None + else None + ) + entity_token_type_ids = ( + entity_token_type_ids.view(-1, entity_token_type_ids.size(-1)) + if entity_token_type_ids is not None + else None + ) + entity_position_ids = ( + entity_position_ids.view(-1, entity_position_ids.size(-2), entity_position_ids.size(-1)) + if entity_position_ids is not None + else None + ) + + outputs = self.luke( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + entity_ids=entity_ids, + entity_attention_mask=entity_attention_mask, + entity_token_type_ids=entity_token_type_ids, + entity_position_ids=entity_position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + pooled_output = outputs.pooler_output + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(reshaped_logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + return tuple( + v + for v in [ + loss, + reshaped_logits, + outputs.hidden_states, + outputs.entity_hidden_states, + outputs.attentions, + ] + if v is not None + ) + + return LukeMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + entity_hidden_states=outputs.entity_hidden_states, + attentions=outputs.attentions, + )