applied-ai-018 commited on
Commit
2ca9976
·
verified ·
1 Parent(s): 7c06153

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/__init__.py +0 -0
  2. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/_archive_maps.py +0 -0
  3. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__init__.py +56 -0
  4. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/__init__.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/configuration_mctct.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/feature_extraction_mctct.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/modeling_mctct.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/processing_mctct.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/configuration_mctct.py +184 -0
  10. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/feature_extraction_mctct.py +288 -0
  11. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/modeling_mctct.py +792 -0
  12. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/processing_mctct.py +142 -0
  13. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__init__.py +45 -0
  14. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/__init__.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/configuration_mmbt.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/modeling_mmbt.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/configuration_mmbt.py +42 -0
  18. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/modeling_mmbt.py +408 -0
  19. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__init__.py +29 -0
  20. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__pycache__/__init__.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__pycache__/tokenization_tapex.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/tapex/tokenization_tapex.py +1467 -0
  23. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__init__.py +63 -0
  24. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/__init__.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/configuration_trajectory_transformer.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/modeling_trajectory_transformer.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/configuration_trajectory_transformer.py +155 -0
  29. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py +70 -0
  30. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/modeling_trajectory_transformer.py +606 -0
  31. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py +189 -0
  32. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py +121 -0
  33. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py +1122 -0
  34. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py +179 -0
  35. llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py +1295 -0
  36. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/__init__.py +82 -0
  37. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/__init__.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/configuration_ernie_m.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/modeling_ernie_m.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/tokenization_ernie_m.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/configuration_ernie_m.py +112 -0
  42. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/modeling_ernie_m.py +1058 -0
  43. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/tokenization_ernie_m.py +405 -0
  44. llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/__init__.py +107 -0
  45. llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/__pycache__/convert_fnet_original_flax_checkpoint_to_pytorch.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/__pycache__/modeling_fnet.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/__pycache__/tokenization_fnet.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/__pycache__/tokenization_fnet_fast.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/configuration_fnet.py +119 -0
  50. llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/convert_fnet_original_flax_checkpoint_to_pytorch.py +157 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/_archive_maps.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__init__.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
17
+
18
+
19
+ _import_structure = {
20
+ "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
21
+ "feature_extraction_mctct": ["MCTCTFeatureExtractor"],
22
+ "processing_mctct": ["MCTCTProcessor"],
23
+ }
24
+
25
+
26
+ try:
27
+ if not is_torch_available():
28
+ raise OptionalDependencyNotAvailable()
29
+ except OptionalDependencyNotAvailable:
30
+ pass
31
+ else:
32
+ _import_structure["modeling_mctct"] = [
33
+ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
34
+ "MCTCTForCTC",
35
+ "MCTCTModel",
36
+ "MCTCTPreTrainedModel",
37
+ ]
38
+
39
+
40
+ if TYPE_CHECKING:
41
+ from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
42
+ from .feature_extraction_mctct import MCTCTFeatureExtractor
43
+ from .processing_mctct import MCTCTProcessor
44
+
45
+ try:
46
+ if not is_torch_available():
47
+ raise OptionalDependencyNotAvailable()
48
+ except OptionalDependencyNotAvailable:
49
+ pass
50
+ else:
51
+ from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
52
+
53
+ else:
54
+ import sys
55
+
56
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/configuration_mctct.cpython-310.pyc ADDED
Binary file (7.88 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/feature_extraction_mctct.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/modeling_mctct.cpython-310.pyc ADDED
Binary file (22.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/__pycache__/processing_mctct.cpython-310.pyc ADDED
Binary file (4.82 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/configuration_mctct.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """M-CTC-T model configuration"""
16
+
17
+ from ....configuration_utils import PretrainedConfig
18
+ from ....utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ from .._archive_maps import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class MCTCTConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`MCTCTModel`]. It is used to instantiate an
30
+ M-CTC-T model according to the specified arguments, defining the model architecture. Instantiating a configuration
31
+ with the defaults will yield a similar configuration to that of the M-CTC-T
32
+ [speechbrain/m-ctc-t-large](https://huggingface.co/speechbrain/m-ctc-t-large) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 8065):
40
+ Vocabulary size of the M-CTC-T model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`MCTCTModel`].
42
+ hidden_size (`int`, *optional*, defaults to 1536):
43
+ Dimension of the encoder layers and the pooler layer.
44
+ num_hidden_layers (`int`, *optional*, defaults to 36):
45
+ Number of hidden layers in the Transformer encoder.
46
+ intermediate_size (`int`, *optional*, defaults to 6144):
47
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 4):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ attention_head_dim (`int`, *optional*, defaults to 384):
51
+ Dimensions of each attention head for each attention layer in the Transformer encoder.
52
+ max_position_embeddings (`int`, *optional*, defaults to 920):
53
+ The maximum sequence length that this model might ever be used with (after log-mel spectrogram extraction).
54
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
55
+ The epsilon used by the layer normalization layers.
56
+ layerdrop (`float`, *optional*, defaults to 0.3):
57
+ The probability of dropping an encoder layer during training. The default 0.3 value is used in the original
58
+ implementation.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
60
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
61
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.3):
65
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
66
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.3):
67
+ The dropout ratio for the attention probabilities.
68
+ pad_token_id (`int`, *optional*, defaults to 1):
69
+ The tokenizer index of the pad token.
70
+ bos_token_id (`int`, *optional*, defaults to 0):
71
+ The tokenizer index of the bos token.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ The tokenizer index of the eos token.
74
+ conv_glu_dim (`int`, *optional*, defaults to 1):
75
+ The dimension of the output of the `Conv1dSubsampler` layer in which GLU is applied on. Though the original
76
+ Flashlight code uses the value of 2, here it's adapted to 1 due to transposition differences.
77
+ conv_dropout (`int`, *optional*, defaults to 0.3):
78
+ The probability of randomly dropping the `Conv1dSubsampler` layer during training.
79
+ num_conv_layers (`int`, *optional*, defaults to 1):
80
+ Number of convolution layers before applying transformer encoder layers.
81
+ conv_kernel (`Sequence[int]`, *optional*, defaults to `(7,)`):
82
+ The kernel size of the 1D convolution applied before transformer layers. `len(conv_kernel)` must be equal
83
+ to `num_conv_layers`.
84
+ conv_stride (`Sequence[int]`, *optional*, defaults to `(3,)`):
85
+ The stride length of the 1D convolution applied before transformer layers. `len(conv_stride)` must be equal
86
+ to `num_conv_layers`.
87
+ input_feat_per_channel (`int`, *optional*, defaults to 80):
88
+ Feature dimensions of the channels of the input to the Conv1D layer.
89
+ input_channels (`int`, *optional*, defaults to 1):
90
+ Number of input channels of the input to the Conv1D layer.
91
+ conv_channels (`List[int]`, *optional*):
92
+ Channel sizes of intermediate Conv1D layers.
93
+ ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
94
+ Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
95
+ instance of [`MCTCTForCTC`].
96
+ ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
97
+ Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
98
+ occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
99
+ of [`MCTCTForCTC`].
100
+
101
+ Example:
102
+
103
+ ```python
104
+ >>> from transformers import MCTCTConfig, MCTCTModel
105
+
106
+ >>> # Initializing a M-CTC-T mctct-large style configuration
107
+ >>> configuration = MCTCTConfig()
108
+
109
+ >>> # Initializing a model (with random weights) from the mctct-large style configuration
110
+ >>> model = MCTCTModel(configuration)
111
+
112
+ >>> # Accessing the model configuration
113
+ >>> configuration = model.config
114
+ ```"""
115
+
116
+ model_type = "mctct"
117
+
118
+ def __init__(
119
+ self,
120
+ vocab_size=8065,
121
+ hidden_size=1536,
122
+ num_hidden_layers=36,
123
+ intermediate_size=6144,
124
+ num_attention_heads=4,
125
+ attention_head_dim=384,
126
+ max_position_embeddings=920,
127
+ layer_norm_eps=1e-5,
128
+ layerdrop=0.3,
129
+ hidden_act="relu",
130
+ initializer_range=0.02,
131
+ hidden_dropout_prob=0.3,
132
+ attention_probs_dropout_prob=0.3,
133
+ pad_token_id=1,
134
+ bos_token_id=0,
135
+ eos_token_id=2,
136
+ conv_glu_dim=1,
137
+ conv_dropout=0.3,
138
+ num_conv_layers=1,
139
+ conv_kernel=(7,),
140
+ conv_stride=(3,),
141
+ input_feat_per_channel=80,
142
+ input_channels=1,
143
+ conv_channels=None,
144
+ ctc_loss_reduction="sum",
145
+ ctc_zero_infinity=False,
146
+ **kwargs,
147
+ ):
148
+ super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
149
+ self.vocab_size = vocab_size
150
+ self.hidden_size = hidden_size
151
+ self.num_hidden_layers = num_hidden_layers
152
+ self.intermediate_size = intermediate_size
153
+ self.num_attention_heads = num_attention_heads
154
+ self.attention_head_dim = attention_head_dim
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.layer_norm_eps = layer_norm_eps
157
+ self.layerdrop = layerdrop
158
+ self.hidden_act = hidden_act
159
+ self.initializer_range = initializer_range
160
+ self.hidden_dropout_prob = hidden_dropout_prob
161
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
162
+ self.pad_token_id = pad_token_id
163
+ self.bos_token_id = bos_token_id
164
+ self.eos_token_id = eos_token_id
165
+ self.conv_glu_dim = conv_glu_dim
166
+ self.conv_dropout = conv_dropout
167
+ self.num_conv_layers = num_conv_layers
168
+ self.input_feat_per_channel = input_feat_per_channel
169
+ self.input_channels = input_channels
170
+ self.conv_channels = conv_channels
171
+ self.ctc_loss_reduction = ctc_loss_reduction
172
+ self.ctc_zero_infinity = ctc_zero_infinity
173
+
174
+ # prevents config testing fail with exporting to json
175
+ self.conv_kernel = list(conv_kernel)
176
+ self.conv_stride = list(conv_stride)
177
+
178
+ if len(self.conv_kernel) != self.num_conv_layers:
179
+ raise ValueError(
180
+ "Configuration for convolutional module is incorrect. "
181
+ "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` "
182
+ f"but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, "
183
+ f"`config.num_conv_layers = {self.num_conv_layers}`."
184
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/feature_extraction_mctct.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Feature extractor class for M-CTC-T
17
+ """
18
+
19
+ from typing import List, Optional, Union
20
+
21
+ import numpy as np
22
+
23
+ from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
24
+ from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
25
+ from ....feature_extraction_utils import BatchFeature
26
+ from ....file_utils import PaddingStrategy, TensorType
27
+ from ....utils import logging
28
+
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+
33
+ class MCTCTFeatureExtractor(SequenceFeatureExtractor):
34
+ r"""
35
+ Constructs a M-CTC-T feature extractor.
36
+
37
+ This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
38
+ most of the main methods. Users should refer to this superclass for more information regarding those methods. This
39
+ code has been adapted from Flashlight's C++ code. For more information about the implementation, one can refer to
40
+ this [notebook](https://colab.research.google.com/drive/1GLtINkkhzms-IsdcGy_-tVCkv0qNF-Gt#scrollTo=pMCRGMmUC_an)
41
+ that takes the user step-by-step in the implementation.
42
+
43
+ Args:
44
+ feature_size (`int`, defaults to 80):
45
+ The feature dimension of the extracted features. This is the number of mel_frequency
46
+ sampling_rate (`int`, defaults to 16000):
47
+ The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
48
+ padding_value (`float`, defaults to 0.0):
49
+ The value that is used to fill the padding values.
50
+ hop_length (`int`, defaults to 10):
51
+ Number of audio samples between windows. Otherwise referred to as "shift" in many papers.
52
+ win_length (`int`, defaults to 25):
53
+ Number of ms per window
54
+ win_function (`str`, defaults to `"hamming_window"`):
55
+ Name for the window function used for windowing, must be accessible via `torch.{win_function}`
56
+ frame_signal_scale (`float`, defaults to 32768.0):
57
+ Constant multiplied in creating the frames before applying DFT.
58
+ preemphasis_coeff (`float`, defaults to 0.97):
59
+ Constant multiplied in applying Pre-emphasis before DFT.
60
+ mel_floor (`float` defaults to 1.0):
61
+ Minimum value of mel frequency banks.
62
+ normalize_means (`bool`, *optional*, defaults to `True`):
63
+ Whether or not to zero-mean normalize the extracted features.
64
+ normalize_vars (`bool`, *optional*, defaults to `True`):
65
+ Whether or not to unit-variance normalize the extracted features.
66
+ """
67
+
68
+ model_input_names = ["input_features", "attention_mask"]
69
+
70
+ def __init__(
71
+ self,
72
+ feature_size=80,
73
+ sampling_rate=16000,
74
+ padding_value=0.0,
75
+ hop_length=10,
76
+ win_length=25,
77
+ win_function="hamming_window",
78
+ frame_signal_scale=32768.0,
79
+ preemphasis_coeff=0.97,
80
+ mel_floor=1.0,
81
+ normalize_means=True,
82
+ normalize_vars=True,
83
+ return_attention_mask=False,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
87
+
88
+ self.feature_size = feature_size
89
+ self.sampling_rate = sampling_rate
90
+ self.padding_value = padding_value
91
+ self.hop_length = hop_length
92
+ self.win_length = win_length
93
+ self.frame_signal_scale = frame_signal_scale
94
+ self.preemphasis_coeff = preemphasis_coeff
95
+ self.mel_floor = mel_floor
96
+ self.normalize_means = normalize_means
97
+ self.normalize_vars = normalize_vars
98
+ self.win_function = win_function
99
+ self.return_attention_mask = return_attention_mask
100
+
101
+ self.sample_size = win_length * sampling_rate // 1000
102
+ self.sample_stride = hop_length * sampling_rate // 1000
103
+
104
+ self.n_fft = optimal_fft_length(self.sample_size)
105
+ self.n_freqs = (self.n_fft // 2) + 1
106
+
107
+ def _extract_mfsc_features(self, one_waveform: np.array) -> np.ndarray:
108
+ """
109
+ Extracts MFSC Features for one waveform vector (unbatched). Adapted from Flashlight's C++ MFSC code.
110
+ """
111
+ if self.win_function == "hamming_window":
112
+ window = window_function(window_length=self.sample_size, name=self.win_function, periodic=False)
113
+ else:
114
+ window = window_function(window_length=self.sample_size, name=self.win_function)
115
+
116
+ fbanks = mel_filter_bank(
117
+ num_frequency_bins=self.n_freqs,
118
+ num_mel_filters=self.feature_size,
119
+ min_frequency=0.0,
120
+ max_frequency=self.sampling_rate / 2.0,
121
+ sampling_rate=self.sampling_rate,
122
+ )
123
+
124
+ msfc_features = spectrogram(
125
+ one_waveform * self.frame_signal_scale,
126
+ window=window,
127
+ frame_length=self.sample_size,
128
+ hop_length=self.sample_stride,
129
+ fft_length=self.n_fft,
130
+ center=False,
131
+ preemphasis=self.preemphasis_coeff,
132
+ mel_filters=fbanks,
133
+ mel_floor=self.mel_floor,
134
+ log_mel="log",
135
+ )
136
+ return msfc_features.T
137
+
138
+ def _normalize_one(self, x, input_length, padding_value):
139
+ # make sure we normalize float32 arrays
140
+ if self.normalize_means:
141
+ mean = x[:input_length].mean(axis=0)
142
+ x = np.subtract(x, mean)
143
+ if self.normalize_vars:
144
+ std = x[:input_length].std(axis=0)
145
+ x = np.divide(x, std)
146
+
147
+ if input_length < x.shape[0]:
148
+ x[input_length:] = padding_value
149
+
150
+ # make sure array is in float32
151
+ x = x.astype(np.float32)
152
+
153
+ return x
154
+
155
+ def normalize(
156
+ self, input_features: List[np.ndarray], attention_mask: Optional[np.ndarray] = None
157
+ ) -> List[np.ndarray]:
158
+ lengths = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features]
159
+ return [self._normalize_one(x, n, self.padding_value) for x, n in zip(input_features, lengths)]
160
+
161
+ def __call__(
162
+ self,
163
+ raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
164
+ padding: Union[bool, str, PaddingStrategy] = False,
165
+ max_length: Optional[int] = None,
166
+ truncation: bool = False,
167
+ pad_to_multiple_of: Optional[int] = None,
168
+ return_attention_mask: Optional[bool] = None,
169
+ return_tensors: Optional[Union[str, TensorType]] = None,
170
+ sampling_rate: Optional[int] = None,
171
+ **kwargs,
172
+ ) -> BatchFeature:
173
+ """
174
+ Main method to featurize and prepare for the model one or several sequence(s). sequences. It returns the
175
+ log-mel spectrogram of the input audio, as implemented in the original Flashlight MFSC feature extraction code.
176
+
177
+ Args:
178
+ raw_speech (`torch.Tensor`, `np.ndarray`, `List[float]`, `List[torch.Tensor]`, `List[np.ndarray]`, `List[List[float]]`):
179
+ The sequence or batch of sequences to be padded. Each sequence can be a tensor, a numpy array, a list
180
+ of float values, a list of tensors, a list of numpy arrays or a list of list of float values. Must be
181
+ mono channel audio, not stereo, i.e. single float per timestep.
182
+ padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
183
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
184
+ index) among:
185
+
186
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
187
+ sequence if provided).
188
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
189
+ acceptable input length for the model if that argument is not provided.
190
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
191
+ lengths).
192
+ max_length (`int`, *optional*):
193
+ Maximum length of the returned list and optionally padding length (see above).
194
+ truncation (`bool`):
195
+ Activates truncation to cut input sequences longer than *max_length* to *max_length*.
196
+ pad_to_multiple_of (`int`, *optional*):
197
+ If set will pad the sequence to a multiple of the provided value.
198
+
199
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
200
+ `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
201
+ return_attention_mask (`bool`, *optional*):
202
+ Whether to return the attention mask. If left to the default, will return the attention mask according
203
+ to the specific feature_extractor's default.
204
+
205
+ [What are attention masks?](../glossary#attention-mask)
206
+
207
+ return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
208
+ If set, will return tensors instead of list of python integers. Acceptable values are:
209
+
210
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
211
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
212
+ - `'np'`: Return Numpy `np.ndarray` objects.
213
+ sampling_rate (`int`, *optional*):
214
+ The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
215
+ `sampling_rate` at the forward call to prevent silent errors.
216
+ padding_value (`float`, defaults to 0.0):
217
+ """
218
+
219
+ if sampling_rate is not None:
220
+ if sampling_rate != self.sampling_rate:
221
+ raise ValueError(
222
+ f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
223
+ f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
224
+ f" {self.sampling_rate} and not {sampling_rate}."
225
+ )
226
+ else:
227
+ logger.warning(
228
+ "It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
229
+ "Failing to do so can result in silent errors that might be hard to debug."
230
+ )
231
+
232
+ is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
233
+ if is_batched_numpy and len(raw_speech.shape) > 2:
234
+ raise ValueError(f"Only mono-channel audio is supported for input to {self}")
235
+ is_batched = is_batched_numpy or (
236
+ isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
237
+ )
238
+
239
+ if is_batched:
240
+ raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
241
+ elif not is_batched and not isinstance(raw_speech, np.ndarray):
242
+ raw_speech = np.asarray(raw_speech, dtype=np.float32)
243
+ elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
244
+ raw_speech = raw_speech.astype(np.float32)
245
+
246
+ # always return batch
247
+ if not is_batched:
248
+ raw_speech = [raw_speech]
249
+
250
+ # extract fbank features
251
+ features = [self._extract_mfsc_features(one_waveform) for one_waveform in raw_speech]
252
+
253
+ # convert into correct format for padding
254
+ encoded_inputs = BatchFeature({"input_features": features})
255
+
256
+ padded_inputs = self.pad(
257
+ encoded_inputs,
258
+ padding=padding,
259
+ max_length=max_length,
260
+ truncation=truncation,
261
+ pad_to_multiple_of=pad_to_multiple_of,
262
+ return_attention_mask=True,
263
+ **kwargs,
264
+ )
265
+ # make sure list is in array format
266
+ input_features = padded_inputs.get("input_features")
267
+ if isinstance(input_features[0], list):
268
+ padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features]
269
+
270
+ attention_mask = padded_inputs.get("attention_mask")
271
+ if attention_mask is not None:
272
+ padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]
273
+
274
+ if self.normalize_means or self.normalize_vars:
275
+ attention_mask = (
276
+ np.array(attention_mask, dtype=np.int32)
277
+ if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD
278
+ and padding
279
+ else None
280
+ )
281
+ padded_inputs["input_features"] = self.normalize(
282
+ padded_inputs["input_features"], attention_mask=attention_mask
283
+ )
284
+
285
+ if return_tensors is not None:
286
+ padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
287
+
288
+ return padded_inputs
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/modeling_mctct.py ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch M-CTC-T model."""
16
+
17
+
18
+ import math
19
+ from typing import Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+
25
+ from ....activations import ACT2FN
26
+ from ....file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
27
+ from ....integrations.deepspeed import is_deepspeed_zero3_enabled
28
+ from ....modeling_attn_mask_utils import _prepare_4d_attention_mask
29
+ from ....modeling_outputs import BaseModelOutput, CausalLMOutput
30
+ from ....modeling_utils import (
31
+ PreTrainedModel,
32
+ apply_chunking_to_forward,
33
+ find_pruneable_heads_and_indices,
34
+ prune_linear_layer,
35
+ )
36
+ from ....utils import logging
37
+ from .configuration_mctct import MCTCTConfig
38
+
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+ _HIDDEN_STATES_START_POSITION = 1
43
+
44
+ _CONFIG_FOR_DOC = "MCTCTConfig"
45
+
46
+ # Base docstring
47
+ _CHECKPOINT_FOR_DOC = "speechbrain/m-ctc-t-large"
48
+ _EXPECTED_OUTPUT_SHAPE = [1, 195, 1536]
49
+
50
+ # CTC docstring
51
+ _CTC_EXPECTED_OUTPUT = '"Mr. Quilter is the apostle of the middle classes, and we\'re glad to welcome his gospel."'
52
+ _CTC_EXPECTED_LOSS = 1885.65
53
+
54
+
55
+ from .._archive_maps import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
56
+
57
+
58
+ class MCTCTConv1dSubsampler(nn.Module):
59
+ """
60
+ Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation
61
+ via gated linear units (https://arxiv.org/abs/1911.08460)
62
+ """
63
+
64
+ def __init__(self, config):
65
+ super().__init__()
66
+ self.config = config
67
+ self.glu_dim = config.conv_glu_dim
68
+
69
+ self.dropout = nn.Dropout(config.conv_dropout)
70
+
71
+ self.num_layers = config.num_conv_layers
72
+ self.in_channels = config.input_feat_per_channel * config.input_channels
73
+
74
+ if self.num_layers > 1:
75
+ if config.conv_channels is None:
76
+ raise ValueError(
77
+ "Need to specify `conv_channels` configuration in `MCTCTConfig` to use multiple convolution"
78
+ " layers."
79
+ )
80
+
81
+ self.mid_channels = config.conv_channels
82
+ else:
83
+ self.mid_channels = None
84
+
85
+ self.out_channels = config.hidden_size * 2 # considering GLU halving
86
+ self.kernel_size = config.conv_kernel
87
+ self.stride = config.conv_stride
88
+
89
+ # NOTE: MCTCT by construction only uses one convolution kernel. I've made this flexible to allow for
90
+ # multiple layers of convolutions, but not sure if this model definition should just restrict it
91
+ # to one layer. This becomes especially relevant when considering the padding like line 1 of forward().
92
+ self.conv_layers = nn.ModuleList(
93
+ nn.Conv1d(
94
+ self.in_channels if i == 0 else self.mid_channels[i],
95
+ self.mid_channels[i] if i < self.num_layers - 1 else self.out_channels,
96
+ kernel_size=k,
97
+ stride=self.stride[i],
98
+ padding="valid",
99
+ )
100
+ for i, k in enumerate(self.kernel_size)
101
+ )
102
+
103
+ def forward(self, input_features):
104
+ # NOTE: in reference to the NOTE in __init__, right now it just calculates padding as if
105
+ # there will be just one conv layer.
106
+ padding = sum([size // 2 for size in self.kernel_size]) # (7, 7) -> (3, 3)
107
+
108
+ input_features = torch.nn.functional.pad(input_features, (0, 0, padding, padding), "constant", 0)
109
+ hidden_states = input_features.transpose(1, 2).contiguous() # -> Batch x Frame x Time
110
+ for conv in self.conv_layers:
111
+ hidden_states = conv(hidden_states)
112
+ hidden_states = nn.functional.glu(hidden_states, dim=self.glu_dim)
113
+ hidden_states = self.dropout(hidden_states)
114
+
115
+ hidden_states = hidden_states.transpose(1, 2).contiguous() # -> Batch x Time x Frame
116
+ return hidden_states
117
+
118
+
119
+ class MCTCTEmbeddings(nn.Module):
120
+ """Construct the embeddings from word, position and token_type embeddings."""
121
+
122
+ def __init__(self, config):
123
+ super().__init__()
124
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
125
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
126
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
127
+
128
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
129
+ # any TensorFlow checkpoint file
130
+ # self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
131
+ self.LayerNorm = MCTCTLayerNorm()
132
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
133
+
134
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
135
+ self.register_buffer(
136
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
137
+ )
138
+ self.register_buffer(
139
+ "token_type_ids",
140
+ torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
141
+ persistent=False,
142
+ )
143
+
144
+ def forward(
145
+ self, input_features=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
146
+ ):
147
+ input_shape = input_features.size() if input_features is not None else inputs_embeds.size()[:-1]
148
+
149
+ seq_length = input_shape[1]
150
+
151
+ if position_ids is None:
152
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
153
+
154
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
155
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
156
+ # issue #5664
157
+ if token_type_ids is None:
158
+ if hasattr(self, "token_type_ids"):
159
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
160
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
161
+ token_type_ids = buffered_token_type_ids_expanded
162
+ else:
163
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
164
+
165
+ if inputs_embeds is None:
166
+ inputs_embeds = self.word_embeddings(input_features)
167
+
168
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
169
+
170
+ embeddings = inputs_embeds + token_type_embeddings
171
+
172
+ embeddings = self.LayerNorm(embeddings)
173
+ embeddings = self.dropout(embeddings)
174
+ return embeddings
175
+
176
+
177
+ class MCTCTSelfAttention(nn.Module):
178
+ def __init__(self, config):
179
+ super().__init__()
180
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
181
+ raise ValueError(
182
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
183
+ f"heads ({config.num_attention_heads})"
184
+ )
185
+
186
+ self.num_attention_heads = config.num_attention_heads
187
+ self.attention_head_size = config.attention_head_dim
188
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
189
+
190
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
191
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
192
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
193
+
194
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
195
+
196
+ self.max_position_embeddings = config.max_position_embeddings
197
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
198
+
199
+ self.is_decoder = config.is_decoder
200
+
201
+ def transpose_for_scores(self, x):
202
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
203
+ x = x.view(*new_x_shape)
204
+ return x.permute(0, 2, 1, 3)
205
+
206
+ def reshape_fortran(self, x, shape):
207
+ if len(x.shape) > 0:
208
+ x = x.permute(*reversed(range(len(x.shape))))
209
+ return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape))))
210
+
211
+ def relative_position_embedding_rotate(self, scores):
212
+ # NOTE: should re-evaluate whether this re-implementation was truly necessary
213
+ # or the reason why my complete re-haul worked was due to some other part
214
+ # of the code. Adding this and the reshape fortrain code seems very undesirable.
215
+ scores = scores.permute(0, 2, 3, 1) # e.g. [10, 1839, 14, 4]
216
+
217
+ batch, hidden_state, seq_len, heads = scores.shape
218
+
219
+ # e.g. [10, 1853, 14, 4]
220
+ scores = torch.cat((scores, torch.zeros((batch, seq_len, seq_len, heads), device=scores.device)), dim=1)
221
+
222
+ # e.g. [10, 25942, 1, 4]
223
+ scores = self.reshape_fortran(scores, [batch, (hidden_state + seq_len) * seq_len, 1, heads])
224
+
225
+ # e.g. [10, 25928, 1, 4]
226
+ scores = scores[:, : (seq_len + hidden_state - 1) * seq_len]
227
+
228
+ # e.g. [10, 1852, 14, 4]
229
+ scores = self.reshape_fortran(scores, [batch, hidden_state + seq_len - 1, seq_len, heads])
230
+
231
+ halfpoint = hidden_state // 2
232
+ scores = scores[:, halfpoint : halfpoint + seq_len].transpose(1, 2) # e.g. [10, 14, 14, 4]
233
+
234
+ return scores.permute(0, 3, 1, 2)
235
+
236
+ def forward(
237
+ self,
238
+ hidden_states,
239
+ attention_mask=None,
240
+ head_mask=None,
241
+ output_attentions=False,
242
+ ):
243
+ mixed_query_layer = self.query(hidden_states)
244
+ mixed_query_layer = mixed_query_layer / math.sqrt(self.attention_head_size)
245
+
246
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
247
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
248
+
249
+ query_layer = self.transpose_for_scores(mixed_query_layer)
250
+
251
+ # Take the dot product between "query" and "key" to get the raw attention scores.
252
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
253
+
254
+ # relative key position embeddings
255
+ positional_embedding = self.distance_embedding.weight
256
+ relative_position_scores = torch.einsum("lh, bche -> bcle", positional_embedding, query_layer.transpose(2, 3))
257
+
258
+ relative_position_scores = self.relative_position_embedding_rotate(relative_position_scores)
259
+ attention_scores = attention_scores + relative_position_scores
260
+
261
+ if attention_mask is not None:
262
+ # Apply the attention mask is (precomputed for all layers in MCTCTModel forward() function)
263
+ attention_scores = attention_scores + attention_mask
264
+
265
+ # Normalize the attention scores to probabilities.
266
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
267
+
268
+ # This is actually dropping out entire tokens to attend to, which might
269
+ # seem a bit unusual, but is taken from the original Transformer paper.
270
+ attention_probs = self.dropout(attention_probs)
271
+
272
+ # Mask heads if we want to
273
+ if head_mask is not None:
274
+ attention_probs = attention_probs * head_mask
275
+
276
+ context_layer = torch.matmul(attention_probs, value_layer)
277
+
278
+ context_layer = context_layer.permute(0, 2, 1, 3).flatten(start_dim=-2)
279
+
280
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
281
+
282
+ return outputs
283
+
284
+
285
+ class MCTCTLayerNorm(nn.Module):
286
+ def __init__(self):
287
+ super().__init__()
288
+ self.singleton_weight = nn.Parameter(torch.ones(1))
289
+ self.singleton_bias = nn.Parameter(torch.zeros(1))
290
+
291
+ def forward(self, hidden_states):
292
+ return (hidden_states * self.singleton_weight) + self.singleton_bias
293
+
294
+
295
+ class MCTCTSelfOutput(nn.Module):
296
+ def __init__(self, config):
297
+ super().__init__()
298
+ self.config = config
299
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
300
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
301
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
302
+
303
+ def forward(self, hidden_states, input_tensor):
304
+ hidden_states = self.dense(hidden_states)
305
+ hidden_states = self.dropout(hidden_states)
306
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
307
+ return hidden_states
308
+
309
+
310
+ class MCTCTAttention(nn.Module):
311
+ def __init__(self, config):
312
+ super().__init__()
313
+ self.self = MCTCTSelfAttention(config)
314
+ self.output = MCTCTSelfOutput(config)
315
+ self.pruned_heads = set()
316
+
317
+ def prune_heads(self, heads):
318
+ if len(heads) == 0:
319
+ return
320
+ heads, index = find_pruneable_heads_and_indices(
321
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
322
+ )
323
+
324
+ # Prune linear layers
325
+ self.self.query = prune_linear_layer(self.self.query, index)
326
+ self.self.key = prune_linear_layer(self.self.key, index)
327
+ self.self.value = prune_linear_layer(self.self.value, index)
328
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
329
+
330
+ # Update hyper params and store pruned heads
331
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
332
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
333
+ self.pruned_heads = self.pruned_heads.union(heads)
334
+
335
+ def forward(
336
+ self,
337
+ hidden_states,
338
+ attention_mask=None,
339
+ head_mask=None,
340
+ output_attentions=False,
341
+ ):
342
+ self_outputs = self.self(
343
+ hidden_states,
344
+ attention_mask,
345
+ head_mask,
346
+ output_attentions,
347
+ )
348
+ attention_output = self.output(self_outputs[0], hidden_states)
349
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
350
+
351
+ return outputs
352
+
353
+
354
+ class MCTCTIntermediate(nn.Module):
355
+ def __init__(self, config):
356
+ super().__init__()
357
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
358
+ if isinstance(config.hidden_act, str):
359
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
360
+ else:
361
+ self.intermediate_act_fn = config.hidden_act
362
+
363
+ def forward(self, hidden_states):
364
+ hidden_states = self.dense(hidden_states)
365
+ hidden_states = self.intermediate_act_fn(hidden_states)
366
+ return hidden_states
367
+
368
+
369
+ class MCTCTOutput(nn.Module):
370
+ def __init__(self, config):
371
+ super().__init__()
372
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
373
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
374
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
375
+
376
+ def forward(self, hidden_states, input_tensor):
377
+ hidden_states = self.dense(hidden_states)
378
+ hidden_states = self.dropout(hidden_states)
379
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
380
+ return hidden_states
381
+
382
+
383
+ class MCTCTLayer(nn.Module):
384
+ def __init__(self, config: MCTCTConfig):
385
+ super().__init__()
386
+
387
+ self.seq_len_dim = 1
388
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
389
+
390
+ self.intermediate = MCTCTIntermediate(config)
391
+ self.attention = MCTCTAttention(config)
392
+ self.is_decoder = config.is_decoder
393
+ self.output = MCTCTOutput(config)
394
+
395
+ def forward(
396
+ self,
397
+ hidden_states,
398
+ attention_mask=None,
399
+ head_mask=None,
400
+ output_attentions=False,
401
+ ):
402
+ self_attention_outputs = self.attention(
403
+ hidden_states, attention_mask, head_mask, output_attentions=output_attentions
404
+ )
405
+ attention_output = self_attention_outputs[0]
406
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
407
+
408
+ layer_output = apply_chunking_to_forward(
409
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
410
+ )
411
+
412
+ outputs = (layer_output,) + outputs
413
+
414
+ return outputs
415
+
416
+ def feed_forward_chunk(self, attention_output):
417
+ intermediate_output = self.intermediate(attention_output)
418
+ layer_output = self.output(intermediate_output, attention_output)
419
+ return layer_output
420
+
421
+
422
+ class MCTCTPreTrainedModel(PreTrainedModel):
423
+ """
424
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
425
+ models.
426
+ """
427
+
428
+ config_class = MCTCTConfig
429
+ base_model_prefix = "mctct"
430
+ main_input_name = "input_features"
431
+ supports_gradient_checkpointing = True
432
+
433
+ def _init_weights(self, module):
434
+ """Initialize the weights"""
435
+ std = self.config.initializer_range
436
+ if isinstance(module, nn.Linear):
437
+ # Slightly different from the TF version which uses truncated_normal for initialization
438
+ # cf https://github.com/pytorch/pytorch/pull/5617
439
+ module.weight.data.normal_(mean=0.0, std=std)
440
+ if module.bias is not None:
441
+ module.bias.data.zero_()
442
+ elif isinstance(module, nn.Embedding):
443
+ module.weight.data.normal_(mean=0.0, std=std)
444
+ if module.padding_idx is not None:
445
+ module.weight.data[module.padding_idx].zero_()
446
+ elif isinstance(module, nn.LayerNorm):
447
+ module.bias.data.zero_()
448
+ module.weight.data.fill_(1.0)
449
+ elif isinstance(module, MCTCTLayerNorm):
450
+ module.singleton_weight.data.fill_(1.0)
451
+ module.singleton_bias.data.zero_()
452
+ if isinstance(module, (nn.Linear, nn.Conv1d)):
453
+ module.weight.data.normal_(mean=0.0, std=std)
454
+ if module.bias is not None:
455
+ module.bias.data.zero_()
456
+
457
+ def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
458
+ """
459
+ Computes the output length of the convolutional layers
460
+ """
461
+ dilation = 1
462
+ for _, kernel_sz, stride in zip(
463
+ range(self.config.num_conv_layers), self.config.conv_kernel, self.config.conv_stride
464
+ ):
465
+ padding = kernel_sz // 2
466
+ input_lengths = input_lengths + 2 * padding - dilation * (kernel_sz - 1) - 1
467
+ input_lengths = torch.div(input_lengths, stride, rounding_mode="trunc") + 1
468
+
469
+ return input_lengths
470
+
471
+ def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask):
472
+ # generate creates 3D attention mask, because of the shape of input_features
473
+ # convert it to 2D if thats the case
474
+ if len(attention_mask.shape) > 2:
475
+ attention_mask = attention_mask[:, :, -1]
476
+
477
+ # subsampled_lengths = attention_mask.sum(-1)
478
+ subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1))
479
+ bsz = attention_mask.size()[0]
480
+ attention_mask = torch.zeros(
481
+ (bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
482
+ )
483
+
484
+ # these two operations makes sure that all values
485
+ # before the output lengths indices are attended to
486
+ attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1
487
+ attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long()
488
+ return attention_mask
489
+
490
+
491
+ MCTCT_START_DOCSTRING = r"""
492
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
493
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
494
+ behavior.
495
+
496
+ Parameters:
497
+ config ([`MCTCTConfig`]): Model configuration class with all the parameters of the model.
498
+ Initializing with a config file does not load the weights associated with the model, only the
499
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
500
+ """
501
+
502
+ MCTCT_INPUTS_DOCSTRING = r"""
503
+ Args:
504
+ input_features (`torch.LongTensor` of shape `({0})`):
505
+ Indices of input sequence tokens in the vocabulary.
506
+
507
+ Indices can be obtained using [`Wav2Vec2CTCTokenizer`]. See [`PreTrainedTokenizer.encode`] and
508
+ [`PreTrainedTokenizer.__call__`] for details.
509
+
510
+ [What are input IDs?](../glossary#input-ids)
511
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
512
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
513
+
514
+ - 1 for tokens that are **not masked**,
515
+ - 0 for tokens that are **masked**.
516
+
517
+ [What are attention masks?](../glossary#attention-mask)
518
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
519
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
520
+
521
+ - 1 indicates the head is **not masked**,
522
+ - 0 indicates the head is **masked**.
523
+ output_attentions (`bool`, *optional*):
524
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
525
+ tensors for more detail.
526
+ output_hidden_states (`bool`, *optional*):
527
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
528
+ more detail.
529
+ return_dict (`bool`, *optional*):
530
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
531
+ """
532
+
533
+
534
+ class MCTCTEncoder(MCTCTPreTrainedModel):
535
+ def __init__(self, config: MCTCTConfig):
536
+ super().__init__(config)
537
+ self.hidden_dropout_prob = config.hidden_dropout_prob
538
+
539
+ self.layer_norm = MCTCTLayerNorm()
540
+ self.conv = MCTCTConv1dSubsampler(config)
541
+ self.layers = nn.ModuleList([MCTCTLayer(config) for _ in range(config.num_hidden_layers)])
542
+
543
+ self.gradient_checkpointing = False
544
+
545
+ def forward(
546
+ self,
547
+ input_features: torch.Tensor,
548
+ attention_mask: torch.Tensor,
549
+ head_mask: torch.Tensor,
550
+ output_attentions: bool = False,
551
+ output_hidden_states: bool = False,
552
+ return_dict: bool = True,
553
+ ) -> Union[Tuple, BaseModelOutput]:
554
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
555
+ output_hidden_states = (
556
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
557
+ )
558
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
559
+
560
+ input_features = self.layer_norm(input_features)
561
+
562
+ inputs_embeds = self.conv(input_features)
563
+
564
+ # subsample attention mask if necessary
565
+ if attention_mask is not None:
566
+ attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask)
567
+
568
+ hidden_states = nn.functional.dropout(inputs_embeds, p=self.hidden_dropout_prob, training=self.training)
569
+
570
+ # expand attention_mask
571
+ if attention_mask is not None:
572
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
573
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
574
+
575
+ encoder_states = () if output_hidden_states else None
576
+ all_attentions = () if output_attentions else None
577
+
578
+ # check if head_mask has a correct number of layers specified if desired
579
+ if head_mask is not None:
580
+ if head_mask.size()[0] != len(self.layers):
581
+ raise ValueError(
582
+ f"The head_mask should be specified for {len(self.layers)} layers, "
583
+ f"but it is for {head_mask.size()[0]}."
584
+ )
585
+
586
+ deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
587
+ for idx, encoder_layer in enumerate(self.layers):
588
+ if output_hidden_states:
589
+ encoder_states = encoder_states + (hidden_states,)
590
+
591
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
592
+ dropout_probability = torch.rand([])
593
+
594
+ skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
595
+ if not skip_the_layer or deepspeed_zero3_is_enabled:
596
+ # under deepspeed zero3 all gpus must run in sync
597
+ if self.gradient_checkpointing and self.training:
598
+ layer_outputs = self._gradient_checkpointing_func(
599
+ encoder_layer.__call__,
600
+ hidden_states,
601
+ attention_mask,
602
+ (head_mask[idx] if head_mask is not None else None),
603
+ output_attentions,
604
+ )
605
+ else:
606
+ layer_outputs = encoder_layer(
607
+ hidden_states=hidden_states,
608
+ attention_mask=attention_mask,
609
+ output_attentions=output_attentions,
610
+ )
611
+
612
+ hidden_states = layer_outputs[0]
613
+
614
+ if skip_the_layer:
615
+ layer_outputs = (None, None)
616
+
617
+ if output_attentions:
618
+ all_attentions = all_attentions + (layer_outputs[1],)
619
+
620
+ if output_hidden_states:
621
+ encoder_states = encoder_states + (hidden_states,)
622
+
623
+ if not return_dict:
624
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
625
+ return BaseModelOutput(
626
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
627
+ )
628
+
629
+
630
+ @add_start_docstrings(
631
+ "The bare M-CTC-T Model transformer outputting raw hidden-states without any specific head on top.",
632
+ MCTCT_START_DOCSTRING,
633
+ )
634
+ class MCTCTModel(MCTCTPreTrainedModel):
635
+ def __init__(self, config):
636
+ super().__init__(config)
637
+ self.config = config
638
+
639
+ self.encoder = MCTCTEncoder(config)
640
+
641
+ # Initialize weights and apply final processing
642
+ self.post_init()
643
+
644
+ @add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
645
+ @add_code_sample_docstrings(
646
+ checkpoint=_CHECKPOINT_FOR_DOC,
647
+ output_type=BaseModelOutput,
648
+ config_class=_CONFIG_FOR_DOC,
649
+ modality="audio",
650
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
651
+ )
652
+ def forward(
653
+ self,
654
+ input_features: torch.Tensor,
655
+ attention_mask: Optional[torch.Tensor] = None,
656
+ head_mask: Optional[torch.Tensor] = None,
657
+ output_attentions: Optional[bool] = None,
658
+ output_hidden_states: Optional[bool] = None,
659
+ return_dict: Optional[bool] = None,
660
+ ) -> Union[Tuple, BaseModelOutput]:
661
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
662
+ output_hidden_states = (
663
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
664
+ )
665
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
666
+
667
+ if input_features is None:
668
+ raise ValueError("You have to specify input_features.")
669
+
670
+ encoder_outputs = self.encoder(
671
+ input_features,
672
+ attention_mask=attention_mask,
673
+ head_mask=head_mask,
674
+ output_attentions=output_attentions,
675
+ output_hidden_states=output_hidden_states,
676
+ return_dict=return_dict,
677
+ )
678
+ sequence_output = encoder_outputs[0]
679
+
680
+ if not return_dict:
681
+ return (sequence_output,) + encoder_outputs[1:]
682
+
683
+ return BaseModelOutput(
684
+ last_hidden_state=sequence_output,
685
+ hidden_states=encoder_outputs.hidden_states,
686
+ attentions=encoder_outputs.attentions,
687
+ )
688
+
689
+
690
+ @add_start_docstrings(
691
+ """MCTCT Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
692
+ MCTCT_START_DOCSTRING,
693
+ )
694
+ class MCTCTForCTC(MCTCTPreTrainedModel):
695
+ def __init__(self, config):
696
+ super().__init__(config)
697
+
698
+ self.mctct = MCTCTModel(config)
699
+
700
+ if config.vocab_size is None:
701
+ raise ValueError(
702
+ f"You are trying to instantiate {self.__class__} with a configuration that "
703
+ "does not define the vocabulary size of the language model head. Please "
704
+ "instantiate the model as follows: `MCTCTForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
705
+ "or define `vocab_size` of your model's configuration."
706
+ )
707
+ output_hidden_size = config.hidden_size
708
+
709
+ self.ctc_head = nn.Linear(output_hidden_size, config.vocab_size)
710
+
711
+ # Initialize weights and apply final processing
712
+ self.post_init()
713
+
714
+ @add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING)
715
+ @add_code_sample_docstrings(
716
+ checkpoint=_CHECKPOINT_FOR_DOC,
717
+ output_type=CausalLMOutput,
718
+ config_class=_CONFIG_FOR_DOC,
719
+ expected_output=_CTC_EXPECTED_OUTPUT,
720
+ expected_loss=_CTC_EXPECTED_LOSS,
721
+ )
722
+ def forward(
723
+ self,
724
+ input_features: torch.Tensor,
725
+ attention_mask: Optional[torch.Tensor] = None,
726
+ head_mask: Optional[torch.Tensor] = None,
727
+ output_attentions: Optional[bool] = None,
728
+ output_hidden_states: Optional[bool] = None,
729
+ return_dict: Optional[bool] = None,
730
+ labels: Optional[torch.LongTensor] = None,
731
+ ) -> Union[Tuple, CausalLMOutput]:
732
+ r"""
733
+ labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
734
+ Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
735
+ the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
736
+ All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
737
+ config.vocab_size - 1]`.
738
+ """
739
+
740
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
741
+ outputs = self.mctct(
742
+ input_features,
743
+ attention_mask=attention_mask,
744
+ head_mask=head_mask,
745
+ output_attentions=output_attentions,
746
+ output_hidden_states=output_hidden_states,
747
+ return_dict=return_dict,
748
+ )
749
+
750
+ hidden_states = outputs[0]
751
+
752
+ logits = self.ctc_head(hidden_states)
753
+
754
+ loss = None
755
+ if labels is not None:
756
+ if labels.max() >= self.config.vocab_size:
757
+ raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
758
+
759
+ # retrieve loss input_lengths from attention_mask
760
+ attention_mask = (
761
+ attention_mask
762
+ if attention_mask is not None
763
+ else torch.ones(input_features.shape[:-1], dtype=torch.long)
764
+ )
765
+ input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
766
+ # assuming that padded tokens are filled with -100
767
+ # when not being attended to
768
+ labels_mask = labels >= 0
769
+ target_lengths = labels_mask.sum(-1)
770
+ flattened_targets = labels.masked_select(labels_mask)
771
+
772
+ # ctc_loss doesn't support fp16
773
+ log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
774
+
775
+ with torch.backends.cudnn.flags(enabled=False):
776
+ loss = nn.functional.ctc_loss(
777
+ log_probs,
778
+ flattened_targets,
779
+ input_lengths,
780
+ target_lengths,
781
+ blank=self.config.pad_token_id,
782
+ reduction=self.config.ctc_loss_reduction,
783
+ zero_infinity=self.config.ctc_zero_infinity,
784
+ )
785
+
786
+ if not return_dict:
787
+ output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
788
+ return ((loss,) + output) if loss is not None else output
789
+
790
+ return CausalLMOutput(
791
+ loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
792
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mctct/processing_mctct.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Speech processor class for M-CTC-T
17
+ """
18
+ import warnings
19
+ from contextlib import contextmanager
20
+
21
+ from ....processing_utils import ProcessorMixin
22
+
23
+
24
+ class MCTCTProcessor(ProcessorMixin):
25
+ r"""
26
+ Constructs a MCTCT processor which wraps a MCTCT feature extractor and a MCTCT tokenizer into a single processor.
27
+
28
+ [`MCTCTProcessor`] offers all the functionalities of [`MCTCTFeatureExtractor`] and [`AutoTokenizer`]. See the
29
+ [`~MCTCTProcessor.__call__`] and [`~MCTCTProcessor.decode`] for more information.
30
+
31
+ Args:
32
+ feature_extractor (`MCTCTFeatureExtractor`):
33
+ An instance of [`MCTCTFeatureExtractor`]. The feature extractor is a required input.
34
+ tokenizer (`AutoTokenizer`):
35
+ An instance of [`AutoTokenizer`]. The tokenizer is a required input.
36
+ """
37
+
38
+ feature_extractor_class = "MCTCTFeatureExtractor"
39
+ tokenizer_class = "AutoTokenizer"
40
+
41
+ def __init__(self, feature_extractor, tokenizer):
42
+ super().__init__(feature_extractor, tokenizer)
43
+ self.current_processor = self.feature_extractor
44
+ self._in_target_context_manager = False
45
+
46
+ def __call__(self, *args, **kwargs):
47
+ """
48
+ When used in normal mode, this method forwards all its arguments to MCTCTFeatureExtractor's
49
+ [`~MCTCTFeatureExtractor.__call__`] and returns its output. If used in the context
50
+ [`~MCTCTProcessor.as_target_processor`] this method forwards all its arguments to AutoTokenizer's
51
+ [`~AutoTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information.
52
+ """
53
+ # For backward compatibility
54
+ if self._in_target_context_manager:
55
+ return self.current_processor(*args, **kwargs)
56
+
57
+ if "raw_speech" in kwargs:
58
+ warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
59
+ audio = kwargs.pop("raw_speech")
60
+ else:
61
+ audio = kwargs.pop("audio", None)
62
+ sampling_rate = kwargs.pop("sampling_rate", None)
63
+ text = kwargs.pop("text", None)
64
+ if len(args) > 0:
65
+ audio = args[0]
66
+ args = args[1:]
67
+
68
+ if audio is None and text is None:
69
+ raise ValueError("You need to specify either an `audio` or `text` input to process.")
70
+
71
+ if audio is not None:
72
+ inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
73
+ if text is not None:
74
+ encodings = self.tokenizer(text, **kwargs)
75
+
76
+ if text is None:
77
+ return inputs
78
+ elif audio is None:
79
+ return encodings
80
+ else:
81
+ inputs["labels"] = encodings["input_ids"]
82
+ return inputs
83
+
84
+ def batch_decode(self, *args, **kwargs):
85
+ """
86
+ This method forwards all its arguments to AutoTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
87
+ to the docstring of this method for more information.
88
+ """
89
+ return self.tokenizer.batch_decode(*args, **kwargs)
90
+
91
+ def pad(self, *args, **kwargs):
92
+ """
93
+ When used in normal mode, this method forwards all its arguments to MCTCTFeatureExtractor's
94
+ [`~MCTCTFeatureExtractor.pad`] and returns its output. If used in the context
95
+ [`~MCTCTProcessor.as_target_processor`] this method forwards all its arguments to PreTrainedTokenizer's
96
+ [`~PreTrainedTokenizer.pad`]. Please refer to the docstring of the above two methods for more information.
97
+ """
98
+ # For backward compatibility
99
+ if self._in_target_context_manager:
100
+ return self.current_processor.pad(*args, **kwargs)
101
+
102
+ input_features = kwargs.pop("input_features", None)
103
+ labels = kwargs.pop("labels", None)
104
+ if len(args) > 0:
105
+ input_features = args[0]
106
+ args = args[1:]
107
+
108
+ if input_features is not None:
109
+ input_features = self.feature_extractor.pad(input_features, *args, **kwargs)
110
+ if labels is not None:
111
+ labels = self.tokenizer.pad(labels, **kwargs)
112
+
113
+ if labels is None:
114
+ return input_features
115
+ elif input_features is None:
116
+ return labels
117
+ else:
118
+ input_features["labels"] = labels["input_ids"]
119
+ return input_features
120
+
121
+ def decode(self, *args, **kwargs):
122
+ """
123
+ This method forwards all its arguments to AutoTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
124
+ docstring of this method for more information.
125
+ """
126
+ return self.tokenizer.decode(*args, **kwargs)
127
+
128
+ @contextmanager
129
+ def as_target_processor(self):
130
+ """
131
+ Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning MCTCT.
132
+ """
133
+ warnings.warn(
134
+ "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
135
+ "labels by using the argument `text` of the regular `__call__` method (either in the same call as "
136
+ "your audio inputs, or in a separate call."
137
+ )
138
+ self._in_target_context_manager = True
139
+ self.current_processor = self.tokenizer
140
+ yield
141
+ self.current_processor = self.feature_extractor
142
+ self._in_target_context_manager = False
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__init__.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
18
+
19
+
20
+ _import_structure = {"configuration_mmbt": ["MMBTConfig"]}
21
+
22
+ try:
23
+ if not is_torch_available():
24
+ raise OptionalDependencyNotAvailable()
25
+ except OptionalDependencyNotAvailable:
26
+ pass
27
+ else:
28
+ _import_structure["modeling_mmbt"] = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]
29
+
30
+
31
+ if TYPE_CHECKING:
32
+ from .configuration_mmbt import MMBTConfig
33
+
34
+ try:
35
+ if not is_torch_available():
36
+ raise OptionalDependencyNotAvailable()
37
+ except OptionalDependencyNotAvailable:
38
+ pass
39
+ else:
40
+ from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
41
+
42
+ else:
43
+ import sys
44
+
45
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (811 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/configuration_mmbt.cpython-310.pyc ADDED
Binary file (1.33 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/modeling_mmbt.cpython-310.pyc ADDED
Binary file (14.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/configuration_mmbt.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) Facebook, Inc. and its affiliates.
3
+ # Copyright (c) HuggingFace Inc. team.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ MMBT configuration"""
17
+
18
+ from ....utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ class MMBTConfig(object):
25
+ """
26
+ This is the configuration class to store the configuration of a [`MMBTModel`]. It is used to instantiate a MMBT
27
+ model according to the specified arguments, defining the model architecture.
28
+
29
+ Args:
30
+ config ([`PreTrainedConfig`]):
31
+ Config of the underlying Transformer models. Its values are copied over to use a single config.
32
+ num_labels (`int`, *optional*):
33
+ Size of final Linear layer for classification.
34
+ modal_hidden_size (`int`, *optional*, defaults to 2048):
35
+ Embedding dimension of the non-text modality encoder.
36
+ """
37
+
38
+ def __init__(self, config, num_labels=None, modal_hidden_size=2048):
39
+ self.__dict__ = config.__dict__
40
+ self.modal_hidden_size = modal_hidden_size
41
+ if num_labels:
42
+ self.num_labels = num_labels
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/modeling_mmbt.py ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) Facebook, Inc. and its affiliates.
3
+ # Copyright (c) HuggingFace Inc. team.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch MMBT model."""
17
+
18
+
19
+ import torch
20
+ from torch import nn
21
+ from torch.nn import CrossEntropyLoss, MSELoss
22
+
23
+ from ....modeling_outputs import BaseModelOutputWithPooling, SequenceClassifierOutput
24
+ from ....modeling_utils import ModuleUtilsMixin
25
+ from ....utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ _CONFIG_FOR_DOC = "MMBTConfig"
31
+
32
+
33
+ class ModalEmbeddings(nn.Module):
34
+ """Generic Modal Embeddings which takes in an encoder, and a transformer embedding."""
35
+
36
+ def __init__(self, config, encoder, embeddings):
37
+ super().__init__()
38
+ self.config = config
39
+ self.encoder = encoder
40
+ self.proj_embeddings = nn.Linear(config.modal_hidden_size, config.hidden_size)
41
+ self.position_embeddings = embeddings.position_embeddings
42
+ self.token_type_embeddings = embeddings.token_type_embeddings
43
+ self.word_embeddings = embeddings.word_embeddings
44
+ self.LayerNorm = embeddings.LayerNorm
45
+ self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
46
+
47
+ def forward(self, input_modal, start_token=None, end_token=None, position_ids=None, token_type_ids=None):
48
+ token_embeddings = self.proj_embeddings(self.encoder(input_modal))
49
+ seq_length = token_embeddings.size(1)
50
+
51
+ if start_token is not None:
52
+ start_token_embeds = self.word_embeddings(start_token)
53
+ seq_length += 1
54
+ token_embeddings = torch.cat([start_token_embeds.unsqueeze(1), token_embeddings], dim=1)
55
+
56
+ if end_token is not None:
57
+ end_token_embeds = self.word_embeddings(end_token)
58
+ seq_length += 1
59
+ token_embeddings = torch.cat([token_embeddings, end_token_embeds.unsqueeze(1)], dim=1)
60
+
61
+ if position_ids is None:
62
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=input_modal.device)
63
+ position_ids = position_ids.unsqueeze(0).expand(input_modal.size(0), seq_length)
64
+
65
+ if token_type_ids is None:
66
+ token_type_ids = torch.zeros(
67
+ (input_modal.size(0), seq_length), dtype=torch.long, device=input_modal.device
68
+ )
69
+
70
+ position_embeddings = self.position_embeddings(position_ids)
71
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
72
+ embeddings = token_embeddings + position_embeddings + token_type_embeddings
73
+ embeddings = self.LayerNorm(embeddings)
74
+ embeddings = self.dropout(embeddings)
75
+ return embeddings
76
+
77
+
78
+ MMBT_START_DOCSTRING = r"""
79
+ MMBT model was proposed in [Supervised Multimodal Bitransformers for Classifying Images and
80
+ Text](https://github.com/facebookresearch/mmbt) by Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Davide Testuggine.
81
+ It's a supervised multimodal bitransformer model that fuses information from text and other image encoders, and
82
+ obtain state-of-the-art performance on various multimodal classification benchmark tasks.
83
+
84
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
85
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
86
+ etc.)
87
+
88
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
89
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
90
+ and behavior.
91
+
92
+ Parameters:
93
+ config ([`MMBTConfig`]): Model configuration class with all the parameters of the model.
94
+ Initializing with a config file does not load the weights associated with the model, only the
95
+ configuration.
96
+ transformer (`nn.Module`): A text transformer that is used by MMBT.
97
+ It should have embeddings, encoder, and pooler attributes.
98
+ encoder (`nn.Module`): Encoder for the second modality.
99
+ It should take in a batch of modal inputs and return k, n dimension embeddings.
100
+ """
101
+
102
+ MMBT_INPUTS_DOCSTRING = r"""
103
+ Args:
104
+ input_modal (`torch.FloatTensor` of shape `(batch_size, ***)`):
105
+ The other modality data. It will be the shape that the encoder for that type expects. e.g. With an Image
106
+ Encoder, the shape would be (batch_size, channels, height, width)
107
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
108
+ Indices of input sequence tokens in the vocabulary. It does not expect [CLS] token to be added as it's
109
+ appended to the end of other modality embeddings. Indices can be obtained using [`AutoTokenizer`]. See
110
+ [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
111
+
112
+ [What are input IDs?](../glossary#input-ids)
113
+ modal_start_tokens (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
114
+ Optional start token to be added to Other Modality Embedding. [CLS] Most commonly used for classification
115
+ tasks.
116
+ modal_end_tokens (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
117
+ Optional end token to be added to Other Modality Embedding. [SEP] Most commonly used.
118
+ attention_mask (*optional*) `torch.FloatTensor` of shape `(batch_size, sequence_length)`:
119
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
120
+
121
+ - 1 for tokens that are **not masked**,
122
+ - 0 for tokens that are **masked**.
123
+
124
+ [What are attention masks?](../glossary#attention-mask)
125
+ token_type_ids (*optional*) `torch.LongTensor` of shape `(batch_size, sequence_length)`:
126
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
127
+ 1]`:
128
+
129
+ - 0 corresponds to a *sentence A* token,
130
+ - 1 corresponds to a *sentence B* token.
131
+
132
+ [What are token type IDs?](../glossary#token-type-ids)
133
+ modal_token_type_ids (*optional*) `torch.LongTensor` of shape `(batch_size, modal_sequence_length)`:
134
+ Segment token indices to indicate different portions of the non-text modality. The embeddings from these
135
+ tokens will be summed with the respective token embeddings for the non-text modality.
136
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
137
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
138
+ config.max_position_embeddings - 1]`.
139
+
140
+ [What are position IDs?](../glossary#position-ids)
141
+ modal_position_ids (`torch.LongTensor` of shape `(batch_size, modal_sequence_length)`, *optional*):
142
+ Indices of positions of each input sequence tokens in the position embeddings for the non-text modality.
143
+ Selected in the range `[0, config.max_position_embeddings - 1]`.
144
+
145
+ [What are position IDs?](../glossary#position-ids)
146
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
147
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
148
+
149
+ - 1 indicates the head is **not masked**,
150
+ - 0 indicates the head is **masked**.
151
+
152
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, embedding_dim)`, *optional*):
153
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
154
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
155
+ model's internal embedding lookup matrix.
156
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
157
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
158
+ the model is configured as a decoder.
159
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
160
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
161
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
162
+
163
+ - 1 for tokens that are **not masked**,
164
+ - 0 for tokens that are **masked**.
165
+
166
+ output_attentions (`bool`, *optional*):
167
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
168
+ tensors for more detail.
169
+ output_hidden_states (`bool`, *optional*):
170
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
171
+ more detail.
172
+ return_dict (`bool`, *optional*):
173
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
174
+ """
175
+
176
+
177
+ @add_start_docstrings(
178
+ "The bare MMBT Model outputting raw hidden-states without any specific head on top.",
179
+ MMBT_START_DOCSTRING,
180
+ )
181
+ class MMBTModel(nn.Module, ModuleUtilsMixin):
182
+ def __init__(self, config, transformer, encoder):
183
+ super().__init__()
184
+ self.config = config
185
+ self.transformer = transformer
186
+ self.modal_encoder = ModalEmbeddings(config, encoder, transformer.embeddings)
187
+
188
+ @add_start_docstrings_to_model_forward(MMBT_INPUTS_DOCSTRING)
189
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
190
+ def forward(
191
+ self,
192
+ input_modal,
193
+ input_ids=None,
194
+ modal_start_tokens=None,
195
+ modal_end_tokens=None,
196
+ attention_mask=None,
197
+ token_type_ids=None,
198
+ modal_token_type_ids=None,
199
+ position_ids=None,
200
+ modal_position_ids=None,
201
+ head_mask=None,
202
+ inputs_embeds=None,
203
+ encoder_hidden_states=None,
204
+ encoder_attention_mask=None,
205
+ output_attentions=None,
206
+ output_hidden_states=None,
207
+ return_dict=None,
208
+ ):
209
+ r"""
210
+ Returns:
211
+
212
+ Examples:
213
+
214
+ ```python
215
+ # For example purposes. Not runnable.
216
+ transformer = BertModel.from_pretrained("google-bert/bert-base-uncased")
217
+ encoder = ImageEncoder(args)
218
+ mmbt = MMBTModel(config, transformer, encoder)
219
+ ```"""
220
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
221
+ output_hidden_states = (
222
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
223
+ )
224
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
225
+
226
+ if input_ids is not None and inputs_embeds is not None:
227
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
228
+ elif input_ids is not None:
229
+ input_txt_shape = input_ids.size()
230
+ elif inputs_embeds is not None:
231
+ input_txt_shape = inputs_embeds.size()[:-1]
232
+ else:
233
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
234
+
235
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
236
+
237
+ modal_embeddings = self.modal_encoder(
238
+ input_modal,
239
+ start_token=modal_start_tokens,
240
+ end_token=modal_end_tokens,
241
+ position_ids=modal_position_ids,
242
+ token_type_ids=modal_token_type_ids,
243
+ )
244
+
245
+ input_modal_shape = modal_embeddings.size()[:-1]
246
+
247
+ if token_type_ids is None:
248
+ token_type_ids = torch.ones(input_txt_shape, dtype=torch.long, device=device)
249
+
250
+ txt_embeddings = self.transformer.embeddings(
251
+ input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
252
+ )
253
+
254
+ embedding_output = torch.cat([modal_embeddings, txt_embeddings], 1)
255
+
256
+ input_shape = embedding_output.size()[:-1]
257
+
258
+ if attention_mask is None:
259
+ attention_mask = torch.ones(input_shape, device=device)
260
+ else:
261
+ attention_mask = torch.cat(
262
+ [torch.ones(input_modal_shape, device=device, dtype=torch.long), attention_mask], dim=1
263
+ )
264
+ if encoder_attention_mask is None:
265
+ encoder_attention_mask = torch.ones(input_shape, device=device)
266
+ else:
267
+ encoder_attention_mask = torch.cat(
268
+ [torch.ones(input_modal_shape, device=device), encoder_attention_mask], dim=1
269
+ )
270
+
271
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
272
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
273
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
274
+
275
+ encoder_outputs = self.transformer.encoder(
276
+ embedding_output,
277
+ attention_mask=extended_attention_mask,
278
+ head_mask=head_mask,
279
+ encoder_hidden_states=encoder_hidden_states,
280
+ encoder_attention_mask=encoder_extended_attention_mask,
281
+ output_attentions=output_attentions,
282
+ output_hidden_states=output_hidden_states,
283
+ return_dict=return_dict,
284
+ )
285
+
286
+ sequence_output = encoder_outputs[0]
287
+ pooled_output = self.transformer.pooler(sequence_output)
288
+
289
+ if not return_dict:
290
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
291
+
292
+ return BaseModelOutputWithPooling(
293
+ last_hidden_state=sequence_output,
294
+ pooler_output=pooled_output,
295
+ hidden_states=encoder_outputs.hidden_states,
296
+ attentions=encoder_outputs.attentions,
297
+ )
298
+
299
+ def get_input_embeddings(self):
300
+ return self.embeddings.word_embeddings
301
+
302
+ def set_input_embeddings(self, value):
303
+ self.embeddings.word_embeddings = value
304
+
305
+
306
+ @add_start_docstrings(
307
+ """
308
+ MMBT Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
309
+ """,
310
+ MMBT_START_DOCSTRING,
311
+ MMBT_INPUTS_DOCSTRING,
312
+ )
313
+ class MMBTForClassification(nn.Module):
314
+ r"""
315
+ **labels**: (*optional*) `torch.LongTensor` of shape `(batch_size,)`:
316
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
317
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
318
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
319
+
320
+ Returns: *Tuple* comprising various elements depending on the configuration (config) and inputs: **loss**:
321
+ (*optional*, returned when `labels` is provided) `torch.FloatTensor` of shape `(1,)`: Classification (or
322
+ regression if config.num_labels==1) loss. **logits**:
323
+ `torch.FloatTensor` of shape `(batch_size, config.num_labels)` Classification (or regression if
324
+ config.num_labels==1) scores (before SoftMax).
325
+ **hidden_states**: (*optional*, returned when `output_hidden_states=True`) list of `torch.FloatTensor` (one for
326
+ the output of each layer + the output of the embeddings) of shape `(batch_size, sequence_length, hidden_size)`:
327
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**:
328
+ (*optional*, returned when `output_attentions=True`) list of `torch.FloatTensor` (one for each layer) of shape
329
+ `(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used
330
+ to compute the weighted average in the self-attention heads.
331
+
332
+ Examples:
333
+
334
+ ```python
335
+ # For example purposes. Not runnable.
336
+ transformer = BertModel.from_pretrained("google-bert/bert-base-uncased")
337
+ encoder = ImageEncoder(args)
338
+ model = MMBTForClassification(config, transformer, encoder)
339
+ outputs = model(input_modal, input_ids, labels=labels)
340
+ loss, logits = outputs[:2]
341
+ ```"""
342
+
343
+ def __init__(self, config, transformer, encoder):
344
+ super().__init__()
345
+ self.num_labels = config.num_labels
346
+
347
+ self.mmbt = MMBTModel(config, transformer, encoder)
348
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
349
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
350
+
351
+ def forward(
352
+ self,
353
+ input_modal,
354
+ input_ids=None,
355
+ modal_start_tokens=None,
356
+ modal_end_tokens=None,
357
+ attention_mask=None,
358
+ token_type_ids=None,
359
+ modal_token_type_ids=None,
360
+ position_ids=None,
361
+ modal_position_ids=None,
362
+ head_mask=None,
363
+ inputs_embeds=None,
364
+ labels=None,
365
+ return_dict=None,
366
+ ):
367
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
368
+
369
+ outputs = self.mmbt(
370
+ input_modal=input_modal,
371
+ input_ids=input_ids,
372
+ modal_start_tokens=modal_start_tokens,
373
+ modal_end_tokens=modal_end_tokens,
374
+ attention_mask=attention_mask,
375
+ token_type_ids=token_type_ids,
376
+ modal_token_type_ids=modal_token_type_ids,
377
+ position_ids=position_ids,
378
+ modal_position_ids=modal_position_ids,
379
+ head_mask=head_mask,
380
+ inputs_embeds=inputs_embeds,
381
+ return_dict=return_dict,
382
+ )
383
+
384
+ pooled_output = outputs[1]
385
+
386
+ pooled_output = self.dropout(pooled_output)
387
+ logits = self.classifier(pooled_output)
388
+
389
+ loss = None
390
+ if labels is not None:
391
+ if self.num_labels == 1:
392
+ # We are doing regression
393
+ loss_fct = MSELoss()
394
+ loss = loss_fct(logits.view(-1), labels.view(-1))
395
+ else:
396
+ loss_fct = CrossEntropyLoss()
397
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
398
+
399
+ if not return_dict:
400
+ output = (logits,) + outputs[2:]
401
+ return ((loss,) + output) if loss is not None else output
402
+
403
+ return SequenceClassifierOutput(
404
+ loss=loss,
405
+ logits=logits,
406
+ hidden_states=outputs.hidden_states,
407
+ attentions=outputs.attentions,
408
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__init__.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ....utils import _LazyModule
17
+
18
+
19
+ _import_structure = {"tokenization_tapex": ["TapexTokenizer"]}
20
+
21
+
22
+ if TYPE_CHECKING:
23
+ from .tokenization_tapex import TapexTokenizer
24
+
25
+
26
+ else:
27
+ import sys
28
+
29
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (491 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__pycache__/tokenization_tapex.cpython-310.pyc ADDED
Binary file (41.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/tapex/tokenization_tapex.py ADDED
@@ -0,0 +1,1467 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for TAPEX."""
16
+
17
+ import json
18
+ import os
19
+ import random
20
+ from functools import lru_cache
21
+ from typing import Dict, List, Optional, Tuple, Union
22
+
23
+ import regex as re
24
+
25
+ from ....file_utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available
26
+ from ....tokenization_utils import AddedToken, PreTrainedTokenizer
27
+ from ....tokenization_utils_base import ENCODE_KWARGS_DOCSTRING, BatchEncoding, TextInput, TruncationStrategy
28
+ from ....utils import logging
29
+
30
+
31
+ if is_pandas_available():
32
+ import pandas as pd
33
+
34
+
35
+ logger = logging.get_logger(__name__)
36
+
37
+ VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
38
+
39
+
40
+ class TapexTruncationStrategy(ExplicitEnum):
41
+ """
42
+ Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE.
43
+ """
44
+
45
+ DROP_ROWS_TO_FIT = "drop_rows_to_fit"
46
+
47
+
48
+ TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
49
+ add_special_tokens (`bool`, *optional*, defaults to `True`):
50
+ Whether or not to encode the sequences with the special tokens relative to their model.
51
+ padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
52
+ Activates and controls padding. Accepts the following values:
53
+
54
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
55
+ sequence if provided).
56
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
57
+ acceptable input length for the model if that argument is not provided.
58
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
59
+ lengths).
60
+ truncation (`bool`, `str`, [`TapexTruncationStrategy`] or [`~tokenization_utils_base.TruncationStrategy`],
61
+ *optional*, defaults to `False`):
62
+
63
+ Activates and controls truncation. Accepts the following values:
64
+
65
+ - `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the
66
+ maximum acceptable input length for the model if that argument is not provided. This will truncate
67
+ row by row, removing rows from the table.
68
+ - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
69
+ to the maximum acceptable input length for the model if that argument is not provided. This will
70
+ truncate token by token, removing a token from the longest sequence in the pair if a pair of
71
+ sequences (or a batch of pairs) is provided.
72
+ - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
73
+ maximum acceptable input length for the model if that argument is not provided. This will only
74
+ truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
75
+ - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
76
+ maximum acceptable input length for the model if that argument is not provided. This will only
77
+ truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
78
+ - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
79
+ greater than the model maximum admissible input size).
80
+ max_length (`int`, *optional*):
81
+ Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to
82
+ `None`, this will use the predefined model maximum length if a maximum length is required by one of the
83
+ truncation/padding parameters. If the model has no specific maximum input length (like XLNet)
84
+ truncation/padding to a maximum length will be deactivated.
85
+ stride (`int`, *optional*, defaults to 0):
86
+ If set to a number along with `max_length`, the overflowing tokens returned when
87
+ `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
88
+ returned to provide some overlap between truncated and overflowing sequences. The value of this
89
+ argument defines the number of overlapping tokens.
90
+ pad_to_multiple_of (`int`, *optional*):
91
+ If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
92
+ the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
93
+ return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
94
+ If set, will return tensors instead of list of python integers. Acceptable values are:
95
+
96
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
97
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
98
+ - `'np'`: Return Numpy `np.ndarray` objects.
99
+ """
100
+
101
+
102
+ @lru_cache()
103
+ def bytes_to_unicode():
104
+ """
105
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
106
+ characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large #
107
+ of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset
108
+ you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe
109
+ vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
110
+ """
111
+ bs = (
112
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
113
+ )
114
+ cs = bs[:]
115
+ n = 0
116
+ for b in range(2**8):
117
+ if b not in bs:
118
+ bs.append(b)
119
+ cs.append(2**8 + n)
120
+ n += 1
121
+ cs = [chr(n) for n in cs]
122
+ return dict(zip(bs, cs))
123
+
124
+
125
+ def get_pairs(word):
126
+ """
127
+ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length
128
+ strings).
129
+ """
130
+ pairs = set()
131
+ prev_char = word[0]
132
+ for char in word[1:]:
133
+ pairs.add((prev_char, char))
134
+ prev_char = char
135
+ return pairs
136
+
137
+
138
+ class IndexedRowTableLinearize:
139
+ """
140
+ FORMAT: col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ...
141
+ """
142
+
143
+ def process_table(self, table_content: Dict):
144
+ """
145
+ Given a table, TableLinearize aims at converting it into a flatten sequence with special symbols.
146
+ """
147
+ assert "header" in table_content and "rows" in table_content, self.PROMPT_MESSAGE
148
+ # process header
149
+ table_str = self.process_header(table_content["header"]) + " "
150
+ # process rows
151
+ for i, row_example in enumerate(table_content["rows"]):
152
+ # NOTE: the row should start from row 1 instead of 0
153
+ table_str += self.process_row(row_example, row_index=i + 1) + " "
154
+ return table_str.strip()
155
+
156
+ def process_header(self, headers: List):
157
+ """
158
+ Given a list of headers, TableLinearize aims at converting it into a flatten sequence with special symbols.
159
+ """
160
+ return "col : " + " | ".join(headers)
161
+
162
+ def process_row(self, row: List, row_index: int):
163
+ """
164
+ Given a row, TableLinearize aims at converting it into a flatten sequence with special symbols.
165
+ """
166
+ row_str = ""
167
+ row_cell_values = []
168
+ for cell_value in row:
169
+ if isinstance(cell_value, int):
170
+ row_cell_values.append(str(cell_value))
171
+ else:
172
+ row_cell_values.append(cell_value)
173
+ row_str += " | ".join(row_cell_values)
174
+ return "row " + str(row_index) + " : " + row_str
175
+
176
+
177
+ class TapexTokenizer(PreTrainedTokenizer):
178
+ r"""
179
+ Construct a TAPEX tokenizer. Based on byte-level Byte-Pair-Encoding (BPE).
180
+
181
+ This tokenizer can be used to flatten one or more table(s) and concatenate them with one or more related sentences
182
+ to be used by TAPEX models. The format that the TAPEX tokenizer creates is the following:
183
+
184
+ sentence col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ...
185
+
186
+ The tokenizer supports a single table + single query, a single table and multiple queries (in which case the table
187
+ will be duplicated for every query), a single query and multiple tables (in which case the query will be duplicated
188
+ for every table), and multiple tables and queries. In other words, you can provide a batch of tables + questions to
189
+ the tokenizer for instance to prepare them for the model.
190
+
191
+ Tokenization itself is based on the BPE algorithm. It is identical to the one used by BART, RoBERTa and GPT-2.
192
+
193
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
194
+ this superclass for more information regarding those methods.
195
+
196
+ Args:
197
+ vocab_file (`str`):
198
+ Path to the vocabulary file.
199
+ merges_file (`str`):
200
+ Path to the merges file.
201
+ do_lower_case (`bool`, *optional*, defaults to `True`):
202
+ Whether or not to lowercase the input when tokenizing.
203
+ errors (`str`, *optional*, defaults to `"replace"`):
204
+ Paradigm to follow when decoding bytes to UTF-8. See
205
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
206
+ bos_token (`str`, *optional*, defaults to `"<s>"`):
207
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
208
+
209
+ <Tip>
210
+
211
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
212
+ sequence. The token used is the `cls_token`.
213
+
214
+ </Tip>
215
+
216
+ eos_token (`str`, *optional*, defaults to `"</s>"`):
217
+ The end of sequence token.
218
+
219
+ <Tip>
220
+
221
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
222
+ The token used is the `sep_token`.
223
+
224
+ </Tip>
225
+
226
+ sep_token (`str`, *optional*, defaults to `"</s>"`):
227
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
228
+ sequence classification or for a text and a question for question answering. It is also used as the last
229
+ token of a sequence built with special tokens.
230
+ cls_token (`str`, *optional*, defaults to `"<s>"`):
231
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
232
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
233
+ unk_token (`str`, *optional*, defaults to `"<unk>"`):
234
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
235
+ token instead.
236
+ pad_token (`str`, *optional*, defaults to `"<pad>"`):
237
+ The token used for padding, for example when batching sequences of different lengths.
238
+ mask_token (`str`, *optional*, defaults to `"<mask>"`):
239
+ The token used for masking values. This is the token used when training this model with masked language
240
+ modeling. This is the token which the model will try to predict.
241
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
242
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
243
+ other word. (BART tokenizer detect beginning of words by the preceding space).
244
+ max_cell_length (`int`, *optional*, defaults to 15):
245
+ Maximum number of characters per cell when linearizing a table. If this number is exceeded, truncation
246
+ takes place.
247
+ """
248
+
249
+ vocab_files_names = VOCAB_FILES_NAMES
250
+ model_input_names = ["input_ids", "attention_mask"]
251
+
252
+ def __init__(
253
+ self,
254
+ vocab_file,
255
+ merges_file,
256
+ do_lower_case=True,
257
+ errors="replace",
258
+ bos_token="<s>",
259
+ eos_token="</s>",
260
+ sep_token="</s>",
261
+ cls_token="<s>",
262
+ unk_token="<unk>",
263
+ pad_token="<pad>",
264
+ mask_token="<mask>",
265
+ add_prefix_space=False,
266
+ max_cell_length=15,
267
+ **kwargs,
268
+ ):
269
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
270
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
271
+ sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
272
+ cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
273
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
274
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
275
+
276
+ # Mask token behave like a normal word, i.e. include the space before it
277
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
278
+
279
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
280
+ self.encoder = json.load(vocab_handle)
281
+ self.decoder = {v: k for k, v in self.encoder.items()}
282
+ self.errors = errors # how to handle errors in decoding
283
+ self.byte_encoder = bytes_to_unicode()
284
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
285
+ with open(merges_file, encoding="utf-8") as merges_handle:
286
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
287
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
288
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
289
+ self.cache = {}
290
+ self.add_prefix_space = add_prefix_space
291
+ self.do_lower_case = do_lower_case
292
+
293
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
294
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
295
+
296
+ # additional properties
297
+
298
+ super().__init__(
299
+ vocab_file=vocab_file,
300
+ merges_file=merges_file,
301
+ do_lower_case=do_lower_case,
302
+ errors=errors,
303
+ bos_token=bos_token,
304
+ eos_token=eos_token,
305
+ unk_token=unk_token,
306
+ sep_token=sep_token,
307
+ cls_token=cls_token,
308
+ pad_token=pad_token,
309
+ mask_token=mask_token,
310
+ add_prefix_space=add_prefix_space,
311
+ max_cell_length=max_cell_length,
312
+ **kwargs,
313
+ )
314
+
315
+ self.max_cell_length = max_cell_length
316
+ self.table_linearize = IndexedRowTableLinearize()
317
+
318
+ def build_inputs_with_special_tokens(
319
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
320
+ ) -> List[int]:
321
+ """
322
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
323
+ adding special tokens. A TAPEX sequence has the following format:
324
+ - single sequence: `<s> X </s>`
325
+ - pair of sequences: `<s> A </s></s> B </s>`
326
+
327
+ Args:
328
+ token_ids_0 (`List[int]`):
329
+ List of IDs to which the special tokens will be added.
330
+ token_ids_1 (`List[int]`, *optional*):
331
+ Optional second list of IDs for sequence pairs.
332
+ Returns:
333
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
334
+ """
335
+ if token_ids_1 is None:
336
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
337
+ cls = [self.cls_token_id]
338
+ sep = [self.sep_token_id]
339
+ return cls + token_ids_0 + sep + sep + token_ids_1 + sep
340
+
341
+ def get_special_tokens_mask(
342
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
343
+ ) -> List[int]:
344
+ """
345
+ Args:
346
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
347
+ special tokens using the tokenizer `prepare_for_model` method.
348
+ token_ids_0 (`List[int]`):
349
+ List of IDs.
350
+ token_ids_1 (`List[int]`, *optional*):
351
+ Optional second list of IDs for sequence pairs.
352
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
353
+ Whether or not the token list is already formatted with special tokens for the model.
354
+ Returns:
355
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
356
+ """
357
+ if already_has_special_tokens:
358
+ return super().get_special_tokens_mask(
359
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
360
+ )
361
+
362
+ if token_ids_1 is None:
363
+ return [1] + ([0] * len(token_ids_0)) + [1]
364
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
365
+
366
+ def create_token_type_ids_from_sequences(
367
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
368
+ ) -> List[int]:
369
+ """
370
+ Args:
371
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. TAPEX does not:
372
+ make use of token type ids, therefore a list of zeros is returned.
373
+ token_ids_0 (`List[int]`):
374
+ List of IDs.
375
+ token_ids_1 (`List[int]`, *optional*):
376
+ Optional second list of IDs for sequence pairs.
377
+ Returns:
378
+ `List[int]`: List of zeros.
379
+ """
380
+ sep = [self.sep_token_id]
381
+ cls = [self.cls_token_id]
382
+
383
+ if token_ids_1 is None:
384
+ return len(cls + token_ids_0 + sep) * [0]
385
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
386
+
387
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
388
+ add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
389
+ if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
390
+ text = " " + text
391
+ return (text, kwargs)
392
+
393
+ @property
394
+ def vocab_size(self):
395
+ return len(self.encoder)
396
+
397
+ def get_vocab(self):
398
+ return dict(self.encoder, **self.added_tokens_encoder)
399
+
400
+ def bpe(self, token):
401
+ if token in self.cache:
402
+ return self.cache[token]
403
+ word = tuple(token)
404
+ pairs = get_pairs(word)
405
+
406
+ if not pairs:
407
+ return token
408
+
409
+ while True:
410
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
411
+ if bigram not in self.bpe_ranks:
412
+ break
413
+ first, second = bigram
414
+ new_word = []
415
+ i = 0
416
+ while i < len(word):
417
+ try:
418
+ j = word.index(first, i)
419
+ except ValueError:
420
+ new_word.extend(word[i:])
421
+ break
422
+ else:
423
+ new_word.extend(word[i:j])
424
+ i = j
425
+
426
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
427
+ new_word.append(first + second)
428
+ i += 2
429
+ else:
430
+ new_word.append(word[i])
431
+ i += 1
432
+ new_word = tuple(new_word)
433
+ word = new_word
434
+ if len(word) == 1:
435
+ break
436
+ else:
437
+ pairs = get_pairs(word)
438
+ word = " ".join(word)
439
+ self.cache[token] = word
440
+ return word
441
+
442
+ def _tokenize(self, text):
443
+ """Tokenize a string."""
444
+ bpe_tokens = []
445
+ for token in re.findall(self.pat, text):
446
+ token = "".join(
447
+ self.byte_encoder[b] for b in token.encode("utf-8")
448
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
449
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
450
+ return bpe_tokens
451
+
452
+ def _convert_token_to_id(self, token):
453
+ """Converts a token (str) in an id using the vocab."""
454
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
455
+
456
+ def _convert_id_to_token(self, index):
457
+ """Converts an index (integer) in a token (str) using the vocab."""
458
+ return self.decoder.get(index)
459
+
460
+ def convert_tokens_to_string(self, tokens):
461
+ """Converts a sequence of tokens (string) in a single string."""
462
+ text = "".join(tokens)
463
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
464
+ return text
465
+
466
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
467
+ if not os.path.isdir(save_directory):
468
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
469
+ return
470
+ vocab_file = os.path.join(
471
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
472
+ )
473
+ merge_file = os.path.join(
474
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
475
+ )
476
+
477
+ with open(vocab_file, "w", encoding="utf-8") as f:
478
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
479
+
480
+ index = 0
481
+ with open(merge_file, "w", encoding="utf-8") as writer:
482
+ writer.write("#version: 0.2\n")
483
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
484
+ if index != token_index:
485
+ logger.warning(
486
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
487
+ " Please check that the tokenizer is not corrupted!"
488
+ )
489
+ index = token_index
490
+ writer.write(" ".join(bpe_tokens) + "\n")
491
+ index += 1
492
+
493
+ return vocab_file, merge_file
494
+
495
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
496
+ def __call__(
497
+ self,
498
+ table: Union["pd.DataFrame", List["pd.DataFrame"]] = None,
499
+ query: Optional[Union[TextInput, List[TextInput]]] = None,
500
+ answer: Union[str, List[str]] = None,
501
+ add_special_tokens: bool = True,
502
+ padding: Union[bool, str, PaddingStrategy] = False,
503
+ truncation: Union[bool, str, TruncationStrategy] = None,
504
+ max_length: Optional[int] = None,
505
+ stride: int = 0,
506
+ pad_to_multiple_of: Optional[int] = None,
507
+ return_tensors: Optional[Union[str, TensorType]] = None,
508
+ return_token_type_ids: Optional[bool] = None,
509
+ return_attention_mask: Optional[bool] = None,
510
+ return_overflowing_tokens: bool = False,
511
+ return_special_tokens_mask: bool = False,
512
+ return_offsets_mapping: bool = False,
513
+ return_length: bool = False,
514
+ verbose: bool = True,
515
+ **kwargs,
516
+ ) -> BatchEncoding:
517
+ """
518
+ Main method to tokenize and prepare for the model one or several table-sequence pair(s).
519
+
520
+ Args:
521
+ table (`pd.DataFrame`, `List[pd.DataFrame]`):
522
+ Table(s) containing tabular data.
523
+ query (`str` or `List[str]`, *optional*):
524
+ Sentence or batch of sentences related to one or more table(s) to be encoded. Note that the number of
525
+ sentences must match the number of tables.
526
+ answer (`str` or `List[str]`, *optional*):
527
+ Optionally, the corresponding answer to the questions as supervision.
528
+ """
529
+
530
+ if table is not None:
531
+ return self.source_call_func(
532
+ table=table,
533
+ query=query,
534
+ answer=answer,
535
+ add_special_tokens=add_special_tokens,
536
+ padding=padding,
537
+ truncation=truncation,
538
+ max_length=max_length,
539
+ stride=stride,
540
+ pad_to_multiple_of=pad_to_multiple_of,
541
+ return_tensors=return_tensors,
542
+ return_token_type_ids=return_token_type_ids,
543
+ return_attention_mask=return_attention_mask,
544
+ return_overflowing_tokens=return_overflowing_tokens,
545
+ return_special_tokens_mask=return_special_tokens_mask,
546
+ return_offsets_mapping=return_offsets_mapping,
547
+ return_length=return_length,
548
+ verbose=verbose,
549
+ **kwargs,
550
+ )
551
+ elif answer is not None:
552
+ return self.target_call_func(
553
+ answer=answer,
554
+ add_special_tokens=add_special_tokens,
555
+ padding=padding,
556
+ truncation=truncation,
557
+ max_length=max_length,
558
+ stride=stride,
559
+ pad_to_multiple_of=pad_to_multiple_of,
560
+ return_tensors=return_tensors,
561
+ return_token_type_ids=return_token_type_ids,
562
+ return_attention_mask=return_attention_mask,
563
+ return_overflowing_tokens=return_overflowing_tokens,
564
+ return_special_tokens_mask=return_special_tokens_mask,
565
+ return_offsets_mapping=return_offsets_mapping,
566
+ return_length=return_length,
567
+ verbose=verbose,
568
+ **kwargs,
569
+ )
570
+ else:
571
+ raise ValueError("You need to provide either a `table` or an `answer`.")
572
+
573
+ def source_call_func(
574
+ self,
575
+ table: Union["pd.DataFrame", List["pd.DataFrame"]],
576
+ query: Optional[Union[TextInput, List[TextInput]]] = None,
577
+ answer: Union[str, List[str]] = None,
578
+ add_special_tokens: bool = True,
579
+ padding: Union[bool, str, PaddingStrategy] = False,
580
+ truncation: Union[bool, str, TruncationStrategy] = None,
581
+ max_length: Optional[int] = None,
582
+ stride: int = 0,
583
+ pad_to_multiple_of: Optional[int] = None,
584
+ return_tensors: Optional[Union[str, TensorType]] = None,
585
+ return_token_type_ids: Optional[bool] = None,
586
+ return_attention_mask: Optional[bool] = None,
587
+ return_overflowing_tokens: bool = False,
588
+ return_special_tokens_mask: bool = False,
589
+ return_offsets_mapping: bool = False,
590
+ return_length: bool = False,
591
+ verbose: bool = True,
592
+ **kwargs,
593
+ ) -> BatchEncoding:
594
+ # Input type checking for clearer error
595
+ valid_table = False
596
+ valid_query = False
597
+
598
+ # Check that table have a valid type
599
+ if isinstance(table, pd.DataFrame):
600
+ valid_table = True
601
+ elif isinstance(table, (list, tuple)) and isinstance(table[0], pd.DataFrame):
602
+ valid_table = True
603
+
604
+ # Check that query have a valid type
605
+ if query is None or isinstance(query, str):
606
+ valid_query = True
607
+ elif isinstance(query, (list, tuple)):
608
+ if len(query) == 0 or isinstance(query[0], str):
609
+ valid_query = True
610
+
611
+ if not valid_table:
612
+ raise ValueError(
613
+ "table input must of type `pd.DataFrame` (single example), `List[pd.DataFrame]` (batch of examples). "
614
+ )
615
+ if not valid_query:
616
+ raise ValueError("query input must of type `str` (single example), `List[str]` (batch of examples). ")
617
+ is_batched = isinstance(table, (list, tuple)) or isinstance(query, (list, tuple))
618
+
619
+ if is_batched:
620
+ return self.batch_encode_plus(
621
+ table=table,
622
+ query=query,
623
+ answer=answer,
624
+ add_special_tokens=add_special_tokens,
625
+ padding=padding,
626
+ truncation=truncation,
627
+ max_length=max_length,
628
+ pad_to_multiple_of=pad_to_multiple_of,
629
+ return_tensors=return_tensors,
630
+ return_token_type_ids=return_token_type_ids,
631
+ return_attention_mask=return_attention_mask,
632
+ return_overflowing_tokens=return_overflowing_tokens,
633
+ return_special_tokens_mask=return_special_tokens_mask,
634
+ return_offsets_mapping=return_offsets_mapping,
635
+ return_length=return_length,
636
+ verbose=verbose,
637
+ **kwargs,
638
+ )
639
+ else:
640
+ return self.encode_plus(
641
+ table=table,
642
+ query=query,
643
+ answer=answer,
644
+ add_special_tokens=add_special_tokens,
645
+ padding=padding,
646
+ truncation=truncation,
647
+ max_length=max_length,
648
+ pad_to_multiple_of=pad_to_multiple_of,
649
+ return_tensors=return_tensors,
650
+ return_token_type_ids=return_token_type_ids,
651
+ return_attention_mask=return_attention_mask,
652
+ return_overflowing_tokens=return_overflowing_tokens,
653
+ return_special_tokens_mask=return_special_tokens_mask,
654
+ return_offsets_mapping=return_offsets_mapping,
655
+ return_length=return_length,
656
+ verbose=verbose,
657
+ **kwargs,
658
+ )
659
+
660
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
661
+ def batch_encode_plus(
662
+ self,
663
+ table: Union["pd.DataFrame", List["pd.DataFrame"]],
664
+ query: Optional[List[TextInput]] = None,
665
+ answer: List[str] = None,
666
+ add_special_tokens: bool = True,
667
+ padding: Union[bool, str, PaddingStrategy] = False,
668
+ truncation: Union[bool, str] = None,
669
+ max_length: Optional[int] = None,
670
+ pad_to_multiple_of: Optional[int] = None,
671
+ return_tensors: Optional[Union[str, TensorType]] = None,
672
+ return_token_type_ids: Optional[bool] = None,
673
+ return_attention_mask: Optional[bool] = None,
674
+ return_overflowing_tokens: bool = False,
675
+ return_special_tokens_mask: bool = False,
676
+ return_offsets_mapping: bool = False,
677
+ return_length: bool = False,
678
+ verbose: bool = True,
679
+ **kwargs,
680
+ ) -> BatchEncoding:
681
+ """
682
+ <Tip warning={true}>
683
+
684
+ This method is deprecated, `__call__` should be used instead.
685
+
686
+ </Tip>
687
+ """
688
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
689
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
690
+ padding=padding,
691
+ truncation=truncation,
692
+ max_length=max_length,
693
+ pad_to_multiple_of=pad_to_multiple_of,
694
+ verbose=verbose,
695
+ **kwargs,
696
+ )
697
+
698
+ return self._batch_encode_plus(
699
+ table=table,
700
+ query=query,
701
+ answer=answer,
702
+ add_special_tokens=add_special_tokens,
703
+ padding_strategy=padding_strategy,
704
+ truncation_strategy=truncation_strategy,
705
+ max_length=max_length,
706
+ pad_to_multiple_of=pad_to_multiple_of,
707
+ return_tensors=return_tensors,
708
+ return_token_type_ids=return_token_type_ids,
709
+ return_attention_mask=return_attention_mask,
710
+ return_overflowing_tokens=return_overflowing_tokens,
711
+ return_special_tokens_mask=return_special_tokens_mask,
712
+ return_offsets_mapping=return_offsets_mapping,
713
+ return_length=return_length,
714
+ verbose=verbose,
715
+ **kwargs,
716
+ )
717
+
718
+ def _batch_encode_plus(
719
+ self,
720
+ table: Union["pd.DataFrame", List["pd.DataFrame"]],
721
+ query: Optional[List[TextInput]] = None,
722
+ answer: Optional[List[str]] = None,
723
+ add_special_tokens: bool = True,
724
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
725
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
726
+ max_length: Optional[int] = None,
727
+ stride: int = 0,
728
+ pad_to_multiple_of: Optional[int] = None,
729
+ return_tensors: Optional[Union[str, TensorType]] = None,
730
+ return_token_type_ids: Optional[bool] = None,
731
+ return_attention_mask: Optional[bool] = None,
732
+ return_overflowing_tokens: bool = False,
733
+ return_special_tokens_mask: bool = False,
734
+ return_offsets_mapping: bool = False,
735
+ return_length: bool = False,
736
+ verbose: bool = True,
737
+ **kwargs,
738
+ ) -> BatchEncoding:
739
+ if return_offsets_mapping:
740
+ raise NotImplementedError(
741
+ "return_offset_mapping is not available when using Python tokenizers. "
742
+ "To use this feature, change your tokenizer to one deriving from "
743
+ "transformers.PreTrainedTokenizerFast."
744
+ )
745
+
746
+ if isinstance(table, pd.DataFrame) and isinstance(query, (list, tuple)):
747
+ # single table, many queries case
748
+ # duplicate table for every query
749
+ table = [table] * len(query)
750
+ if isinstance(table, (list, tuple)) and isinstance(query, str):
751
+ # many tables, single query case
752
+ # duplicate query for every table
753
+ query = [query] * len(table)
754
+
755
+ batch_outputs = self._batch_prepare_for_model(
756
+ table=table,
757
+ query=query,
758
+ answer=answer,
759
+ add_special_tokens=add_special_tokens,
760
+ padding_strategy=padding_strategy,
761
+ truncation_strategy=truncation_strategy,
762
+ max_length=max_length,
763
+ stride=stride,
764
+ pad_to_multiple_of=pad_to_multiple_of,
765
+ return_attention_mask=return_attention_mask,
766
+ return_token_type_ids=return_token_type_ids,
767
+ return_overflowing_tokens=return_overflowing_tokens,
768
+ return_special_tokens_mask=return_special_tokens_mask,
769
+ return_length=return_length,
770
+ return_tensors=return_tensors,
771
+ verbose=verbose,
772
+ )
773
+
774
+ return BatchEncoding(batch_outputs)
775
+
776
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
777
+ def _batch_prepare_for_model(
778
+ self,
779
+ table: Union["pd.DataFrame", List["pd.DataFrame"]],
780
+ query: Optional[Union[TextInput, List[TextInput]]] = None,
781
+ answer: Optional[Union[str, List[str]]] = None,
782
+ add_special_tokens: bool = True,
783
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
784
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
785
+ max_length: Optional[int] = None,
786
+ stride: int = 0,
787
+ pad_to_multiple_of: Optional[int] = None,
788
+ return_tensors: Optional[str] = None,
789
+ return_token_type_ids: Optional[bool] = None,
790
+ return_attention_mask: Optional[bool] = None,
791
+ return_overflowing_tokens: bool = False,
792
+ return_special_tokens_mask: bool = False,
793
+ return_length: bool = False,
794
+ verbose: bool = True,
795
+ ) -> BatchEncoding:
796
+ """
797
+ This method adds special tokens, truncates sequences if overflowing while taking into account the special
798
+ tokens and manages a moving window (with user defined stride) for overflowing tokens.
799
+ """
800
+ batch_outputs = {}
801
+ if answer is None:
802
+ answer = [None] * len(table)
803
+ for _table, _query, _answer in zip(table, query, answer):
804
+ text = self.prepare_table_query(
805
+ _table, _query, _answer, truncation_strategy=truncation_strategy, max_length=max_length
806
+ )
807
+
808
+ if self.do_lower_case:
809
+ text = text.lower()
810
+
811
+ tokens = self.tokenize(text)
812
+ outputs = self.prepare_for_model(
813
+ ids=self.convert_tokens_to_ids(tokens),
814
+ add_special_tokens=add_special_tokens,
815
+ padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards
816
+ truncation=truncation_strategy.value,
817
+ max_length=max_length,
818
+ stride=stride,
819
+ pad_to_multiple_of=None, # we pad in batch afterwards
820
+ return_attention_mask=False, # we pad in batch afterwards
821
+ return_token_type_ids=return_token_type_ids,
822
+ return_overflowing_tokens=return_overflowing_tokens,
823
+ return_special_tokens_mask=return_special_tokens_mask,
824
+ return_length=return_length,
825
+ return_tensors=None, # We convert the whole batch to tensors at the end
826
+ prepend_batch_axis=False,
827
+ verbose=verbose,
828
+ )
829
+
830
+ for key, value in outputs.items():
831
+ if key not in batch_outputs:
832
+ batch_outputs[key] = []
833
+ batch_outputs[key].append(value)
834
+
835
+ batch_outputs = self.pad(
836
+ batch_outputs,
837
+ padding=padding_strategy.value,
838
+ max_length=max_length,
839
+ pad_to_multiple_of=pad_to_multiple_of,
840
+ return_attention_mask=return_attention_mask,
841
+ )
842
+
843
+ batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
844
+
845
+ return batch_outputs
846
+
847
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING)
848
+ def encode(
849
+ self,
850
+ table: "pd.DataFrame",
851
+ query: Optional[TextInput] = None,
852
+ answer: Optional[str] = None,
853
+ add_special_tokens: bool = True,
854
+ padding: Union[bool, str, PaddingStrategy] = False,
855
+ truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None,
856
+ max_length: Optional[int] = None,
857
+ return_tensors: Optional[Union[str, TensorType]] = None,
858
+ **kwargs,
859
+ ) -> List[int]:
860
+ """
861
+ Prepare a table, a string and possible answer for the model. This method does not return token type IDs,
862
+ attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build
863
+ your processing on your own, otherwise refer to `__call__`.
864
+ """
865
+ encoded_inputs = self.encode_plus(
866
+ table,
867
+ query=query,
868
+ answer=answer,
869
+ add_special_tokens=add_special_tokens,
870
+ padding=padding,
871
+ truncation=truncation,
872
+ max_length=max_length,
873
+ return_tensors=return_tensors,
874
+ **kwargs,
875
+ )
876
+
877
+ return encoded_inputs["input_ids"]
878
+
879
+ @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
880
+ def encode_plus(
881
+ self,
882
+ table: "pd.DataFrame",
883
+ query: Optional[TextInput] = None,
884
+ answer: Optional[str] = None,
885
+ add_special_tokens: bool = True,
886
+ padding: Union[bool, str, PaddingStrategy] = False,
887
+ truncation: Union[bool, str] = None,
888
+ max_length: Optional[int] = None,
889
+ pad_to_multiple_of: Optional[int] = None,
890
+ return_tensors: Optional[Union[str, TensorType]] = None,
891
+ return_token_type_ids: Optional[bool] = None,
892
+ return_attention_mask: Optional[bool] = None,
893
+ return_special_tokens_mask: bool = False,
894
+ return_offsets_mapping: bool = False,
895
+ return_length: bool = False,
896
+ verbose: bool = True,
897
+ **kwargs,
898
+ ) -> BatchEncoding:
899
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
900
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
901
+ padding=padding,
902
+ truncation=truncation,
903
+ max_length=max_length,
904
+ pad_to_multiple_of=pad_to_multiple_of,
905
+ verbose=verbose,
906
+ **kwargs,
907
+ )
908
+
909
+ return self._encode_plus(
910
+ table=table,
911
+ query=query,
912
+ answer=answer,
913
+ add_special_tokens=add_special_tokens,
914
+ padding_strategy=padding_strategy,
915
+ truncation_strategy=truncation_strategy,
916
+ max_length=max_length,
917
+ pad_to_multiple_of=pad_to_multiple_of,
918
+ return_tensors=return_tensors,
919
+ return_token_type_ids=return_token_type_ids,
920
+ return_attention_mask=return_attention_mask,
921
+ return_special_tokens_mask=return_special_tokens_mask,
922
+ return_offsets_mapping=return_offsets_mapping,
923
+ return_length=return_length,
924
+ verbose=verbose,
925
+ **kwargs,
926
+ )
927
+
928
+ def _encode_plus(
929
+ self,
930
+ table: "pd.DataFrame",
931
+ query: Optional[TextInput] = None,
932
+ answer: Optional[str] = None,
933
+ add_special_tokens: bool = True,
934
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
935
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
936
+ max_length: Optional[int] = None,
937
+ stride: int = 0,
938
+ pad_to_multiple_of: Optional[int] = None,
939
+ return_tensors: Optional[Union[str, TensorType]] = None,
940
+ return_token_type_ids: Optional[bool] = None,
941
+ return_attention_mask: Optional[bool] = None,
942
+ return_overflowing_tokens: bool = False,
943
+ return_special_tokens_mask: bool = False,
944
+ return_offsets_mapping: bool = False,
945
+ return_length: bool = False,
946
+ verbose: bool = True,
947
+ **kwargs,
948
+ ) -> BatchEncoding:
949
+ if return_offsets_mapping:
950
+ raise NotImplementedError(
951
+ "return_offset_mapping is not available when using Python tokenizers. "
952
+ "To use this feature, change your tokenizer to one deriving from "
953
+ "transformers.PreTrainedTokenizerFast. "
954
+ "More information on available tokenizers at "
955
+ "https://github.com/huggingface/transformers/pull/2674"
956
+ )
957
+
958
+ text = self.prepare_table_query(
959
+ table, query, answer, truncation_strategy=truncation_strategy, max_length=max_length
960
+ )
961
+
962
+ # if necessary, perform lower case
963
+ if self.do_lower_case:
964
+ text = text.lower()
965
+
966
+ tokens = self.tokenize(text)
967
+
968
+ return self.prepare_for_model(
969
+ ids=self.convert_tokens_to_ids(tokens),
970
+ add_special_tokens=add_special_tokens,
971
+ padding=padding_strategy.value,
972
+ truncation=truncation_strategy.value,
973
+ max_length=max_length,
974
+ stride=stride,
975
+ pad_to_multiple_of=pad_to_multiple_of,
976
+ return_tensors=return_tensors,
977
+ prepend_batch_axis=True,
978
+ return_attention_mask=return_attention_mask,
979
+ return_token_type_ids=return_token_type_ids,
980
+ return_overflowing_tokens=return_overflowing_tokens,
981
+ return_special_tokens_mask=return_special_tokens_mask,
982
+ return_length=return_length,
983
+ verbose=verbose,
984
+ )
985
+
986
+ def target_call_func(
987
+ self,
988
+ answer: Union[str, List[str]],
989
+ add_special_tokens: bool = True,
990
+ padding: Union[bool, str, PaddingStrategy] = False,
991
+ truncation: Union[bool, str, TruncationStrategy] = None,
992
+ max_length: Optional[int] = None,
993
+ stride: int = 0,
994
+ pad_to_multiple_of: Optional[int] = None,
995
+ return_tensors: Optional[Union[str, TensorType]] = None,
996
+ return_token_type_ids: Optional[bool] = None,
997
+ return_attention_mask: Optional[bool] = None,
998
+ return_overflowing_tokens: bool = False,
999
+ return_special_tokens_mask: bool = False,
1000
+ return_offsets_mapping: bool = False,
1001
+ return_length: bool = False,
1002
+ verbose: bool = True,
1003
+ **kwargs,
1004
+ ) -> BatchEncoding:
1005
+ """
1006
+ The method tokenizes and prepares the answer label for the model.
1007
+
1008
+ Args:
1009
+ answer (`str` or `List[str]`):
1010
+ Corresponding answer supervision to the queries for training the model.
1011
+ """
1012
+ is_batched = isinstance(answer, (list, tuple))
1013
+
1014
+ if is_batched:
1015
+ return self.target_batch_encode_plus(
1016
+ answer=answer,
1017
+ add_special_tokens=add_special_tokens,
1018
+ padding=padding,
1019
+ truncation=truncation,
1020
+ max_length=max_length,
1021
+ pad_to_multiple_of=pad_to_multiple_of,
1022
+ return_tensors=return_tensors,
1023
+ return_token_type_ids=return_token_type_ids,
1024
+ return_attention_mask=return_attention_mask,
1025
+ return_overflowing_tokens=return_overflowing_tokens,
1026
+ return_special_tokens_mask=return_special_tokens_mask,
1027
+ return_offsets_mapping=return_offsets_mapping,
1028
+ return_length=return_length,
1029
+ verbose=verbose,
1030
+ **kwargs,
1031
+ )
1032
+ else:
1033
+ return self.target_encode_plus(
1034
+ answer=answer,
1035
+ add_special_tokens=add_special_tokens,
1036
+ padding=padding,
1037
+ truncation=truncation,
1038
+ max_length=max_length,
1039
+ pad_to_multiple_of=pad_to_multiple_of,
1040
+ return_tensors=return_tensors,
1041
+ return_token_type_ids=return_token_type_ids,
1042
+ return_attention_mask=return_attention_mask,
1043
+ return_overflowing_tokens=return_overflowing_tokens,
1044
+ return_special_tokens_mask=return_special_tokens_mask,
1045
+ return_offsets_mapping=return_offsets_mapping,
1046
+ return_length=return_length,
1047
+ verbose=verbose,
1048
+ **kwargs,
1049
+ )
1050
+
1051
+ def target_batch_encode_plus(
1052
+ self,
1053
+ answer: List[str],
1054
+ add_special_tokens: bool = True,
1055
+ padding: Union[bool, str, PaddingStrategy] = False,
1056
+ truncation: Union[bool, str] = None,
1057
+ max_length: Optional[int] = None,
1058
+ pad_to_multiple_of: Optional[int] = None,
1059
+ return_tensors: Optional[Union[str, TensorType]] = None,
1060
+ return_token_type_ids: Optional[bool] = None,
1061
+ return_attention_mask: Optional[bool] = None,
1062
+ return_overflowing_tokens: bool = False,
1063
+ return_special_tokens_mask: bool = False,
1064
+ return_offsets_mapping: bool = False,
1065
+ return_length: bool = False,
1066
+ verbose: bool = True,
1067
+ **kwargs,
1068
+ ) -> BatchEncoding:
1069
+ """
1070
+ Prepare answer strings for the model.
1071
+
1072
+ Args:
1073
+ answer `List[str]`:
1074
+ Corresponding answer supervision to the queries for training the model.
1075
+ """
1076
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
1077
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
1078
+ padding=padding,
1079
+ truncation=truncation,
1080
+ max_length=max_length,
1081
+ pad_to_multiple_of=pad_to_multiple_of,
1082
+ verbose=verbose,
1083
+ **kwargs,
1084
+ )
1085
+
1086
+ return self._target_batch_encode_plus(
1087
+ answer=answer,
1088
+ add_special_tokens=add_special_tokens,
1089
+ padding_strategy=padding_strategy,
1090
+ truncation_strategy=truncation_strategy,
1091
+ max_length=max_length,
1092
+ pad_to_multiple_of=pad_to_multiple_of,
1093
+ return_tensors=return_tensors,
1094
+ return_token_type_ids=return_token_type_ids,
1095
+ return_attention_mask=return_attention_mask,
1096
+ return_overflowing_tokens=return_overflowing_tokens,
1097
+ return_special_tokens_mask=return_special_tokens_mask,
1098
+ return_offsets_mapping=return_offsets_mapping,
1099
+ return_length=return_length,
1100
+ verbose=verbose,
1101
+ **kwargs,
1102
+ )
1103
+
1104
+ def _target_batch_encode_plus(
1105
+ self,
1106
+ answer: List[str],
1107
+ add_special_tokens: bool = True,
1108
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
1109
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
1110
+ max_length: Optional[int] = None,
1111
+ stride: int = 0,
1112
+ pad_to_multiple_of: Optional[int] = None,
1113
+ return_tensors: Optional[Union[str, TensorType]] = None,
1114
+ return_token_type_ids: Optional[bool] = None,
1115
+ return_attention_mask: Optional[bool] = None,
1116
+ return_overflowing_tokens: bool = False,
1117
+ return_special_tokens_mask: bool = False,
1118
+ return_offsets_mapping: bool = False,
1119
+ return_length: bool = False,
1120
+ verbose: bool = True,
1121
+ **kwargs,
1122
+ ) -> BatchEncoding:
1123
+ batch_outputs = {}
1124
+ for text in answer:
1125
+ if self.do_lower_case:
1126
+ text = text.lower()
1127
+
1128
+ tokens = self.tokenize(text)
1129
+ outputs = self.prepare_for_model(
1130
+ ids=self.convert_tokens_to_ids(tokens),
1131
+ add_special_tokens=add_special_tokens,
1132
+ padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards
1133
+ truncation=truncation_strategy.value,
1134
+ max_length=max_length,
1135
+ stride=stride,
1136
+ pad_to_multiple_of=None, # we pad in batch afterwards
1137
+ return_attention_mask=False, # we pad in batch afterwards
1138
+ return_token_type_ids=return_token_type_ids,
1139
+ return_overflowing_tokens=return_overflowing_tokens,
1140
+ return_special_tokens_mask=return_special_tokens_mask,
1141
+ return_length=return_length,
1142
+ return_tensors=None, # We convert the whole batch to tensors at the end
1143
+ prepend_batch_axis=False,
1144
+ verbose=verbose,
1145
+ )
1146
+
1147
+ for key, value in outputs.items():
1148
+ if key not in batch_outputs:
1149
+ batch_outputs[key] = []
1150
+ batch_outputs[key].append(value)
1151
+
1152
+ batch_outputs = self.pad(
1153
+ batch_outputs,
1154
+ padding=padding_strategy.value,
1155
+ max_length=max_length,
1156
+ pad_to_multiple_of=pad_to_multiple_of,
1157
+ return_attention_mask=return_attention_mask,
1158
+ )
1159
+
1160
+ batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
1161
+
1162
+ return BatchEncoding(batch_outputs)
1163
+
1164
+ def target_encode(
1165
+ self,
1166
+ answer: str,
1167
+ add_special_tokens: bool = True,
1168
+ padding: Union[bool, str, PaddingStrategy] = False,
1169
+ truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None,
1170
+ max_length: Optional[int] = None,
1171
+ return_tensors: Optional[Union[str, TensorType]] = None,
1172
+ **kwargs,
1173
+ ) -> List[int]:
1174
+ """
1175
+ Prepare the answer string for the model. This method does not return token type IDs, attention masks, etc.
1176
+ which are necessary for the model to work correctly. Use this method if you want to build your processing on
1177
+ your own, otherwise refer to `__call__`.
1178
+
1179
+ Args:
1180
+ answer `str`:
1181
+ Corresponding answer supervision to the queries for training the model
1182
+ """
1183
+ encoded_outputs = self.target_encode_plus(
1184
+ answer=answer,
1185
+ add_special_tokens=add_special_tokens,
1186
+ padding=padding,
1187
+ truncation=truncation,
1188
+ max_length=max_length,
1189
+ return_tensors=return_tensors,
1190
+ **kwargs,
1191
+ )
1192
+
1193
+ return encoded_outputs["input_ids"]
1194
+
1195
+ def target_encode_plus(
1196
+ self,
1197
+ answer: str,
1198
+ add_special_tokens: bool = True,
1199
+ padding: Union[bool, str, PaddingStrategy] = False,
1200
+ truncation: Union[bool, str] = None,
1201
+ max_length: Optional[int] = None,
1202
+ pad_to_multiple_of: Optional[int] = None,
1203
+ return_tensors: Optional[Union[str, TensorType]] = None,
1204
+ return_token_type_ids: Optional[bool] = None,
1205
+ return_attention_mask: Optional[bool] = None,
1206
+ return_special_tokens_mask: bool = False,
1207
+ return_offsets_mapping: bool = False,
1208
+ return_length: bool = False,
1209
+ verbose: bool = True,
1210
+ **kwargs,
1211
+ ) -> BatchEncoding:
1212
+ """
1213
+ Prepare a answer string for the model.
1214
+
1215
+ Args:
1216
+ answer `str`:
1217
+ Corresponding answer supervision to the queries for training the model.
1218
+ """
1219
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
1220
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
1221
+ padding=padding,
1222
+ truncation=truncation,
1223
+ max_length=max_length,
1224
+ pad_to_multiple_of=pad_to_multiple_of,
1225
+ verbose=verbose,
1226
+ **kwargs,
1227
+ )
1228
+
1229
+ return self._target_encode_plus(
1230
+ answer=answer,
1231
+ add_special_tokens=add_special_tokens,
1232
+ padding_strategy=padding_strategy,
1233
+ truncation_strategy=truncation_strategy,
1234
+ max_length=max_length,
1235
+ pad_to_multiple_of=pad_to_multiple_of,
1236
+ return_tensors=return_tensors,
1237
+ return_token_type_ids=return_token_type_ids,
1238
+ return_attention_mask=return_attention_mask,
1239
+ return_special_tokens_mask=return_special_tokens_mask,
1240
+ return_offsets_mapping=return_offsets_mapping,
1241
+ return_length=return_length,
1242
+ verbose=verbose,
1243
+ **kwargs,
1244
+ )
1245
+
1246
+ def _target_encode_plus(
1247
+ self,
1248
+ answer: str,
1249
+ add_special_tokens: bool = True,
1250
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
1251
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
1252
+ max_length: Optional[int] = None,
1253
+ stride: int = 0,
1254
+ pad_to_multiple_of: Optional[int] = None,
1255
+ return_tensors: Optional[Union[str, TensorType]] = None,
1256
+ return_token_type_ids: Optional[bool] = None,
1257
+ return_attention_mask: Optional[bool] = None,
1258
+ return_overflowing_tokens: bool = False,
1259
+ return_special_tokens_mask: bool = False,
1260
+ return_offsets_mapping: bool = False,
1261
+ return_length: bool = False,
1262
+ verbose: bool = True,
1263
+ **kwargs,
1264
+ ) -> BatchEncoding:
1265
+ if return_offsets_mapping:
1266
+ raise NotImplementedError(
1267
+ "return_offset_mapping is not available when using Python tokenizers. "
1268
+ "To use this feature, change your tokenizer to one deriving from "
1269
+ "transformers.PreTrainedTokenizerFast. "
1270
+ "More information on available tokenizers at "
1271
+ "https://github.com/huggingface/transformers/pull/2674"
1272
+ )
1273
+
1274
+ text = answer
1275
+
1276
+ # if necessary, perform lower case
1277
+ if self.do_lower_case:
1278
+ text = text.lower()
1279
+
1280
+ tokens = self.tokenize(text)
1281
+
1282
+ return self.prepare_for_model(
1283
+ ids=self.convert_tokens_to_ids(tokens),
1284
+ add_special_tokens=add_special_tokens,
1285
+ padding=padding_strategy.value,
1286
+ truncation=truncation_strategy.value,
1287
+ max_length=max_length,
1288
+ stride=stride,
1289
+ pad_to_multiple_of=pad_to_multiple_of,
1290
+ return_tensors=return_tensors,
1291
+ prepend_batch_axis=True,
1292
+ return_attention_mask=return_attention_mask,
1293
+ return_token_type_ids=return_token_type_ids,
1294
+ return_overflowing_tokens=return_overflowing_tokens,
1295
+ return_special_tokens_mask=return_special_tokens_mask,
1296
+ return_length=return_length,
1297
+ verbose=verbose,
1298
+ )
1299
+
1300
+ def prepare_table_query(
1301
+ self,
1302
+ table,
1303
+ query,
1304
+ answer=None,
1305
+ truncation_strategy=Union[str, TruncationStrategy, TapexTruncationStrategy],
1306
+ max_length=None,
1307
+ ):
1308
+ """
1309
+ This method can be used to linearize a table and add a corresponding query.
1310
+
1311
+ Optionally, it also handles truncation of the table (cells).
1312
+
1313
+ An answer can be provided for more precise truncation.
1314
+ """
1315
+ if not table.empty:
1316
+ # step 1: create table dictionary
1317
+ table_content = {"header": list(table.columns), "rows": [list(row.values) for i, row in table.iterrows()]}
1318
+
1319
+ # step 2: modify table internally
1320
+ # always truncate table cells based on self.max_cell_length
1321
+ # optionally truncate rows if truncation_strategy is set to it
1322
+ self.truncate_table_cells(table_content, query, answer)
1323
+ if truncation_strategy == TapexTruncationStrategy.DROP_ROWS_TO_FIT:
1324
+ self.truncate_table_rows(table_content, query, answer, max_length=max_length)
1325
+
1326
+ # step 3: linearize table
1327
+ linear_table = self.table_linearize.process_table(table_content)
1328
+ else:
1329
+ linear_table = ""
1330
+
1331
+ if linear_table == "":
1332
+ logger.warning(
1333
+ "You provide an empty table, or all cells contain much tokens (e.g., >= 1024 tokens). "
1334
+ + f"Please carefully check the corresponding table with the query : {query}."
1335
+ )
1336
+ if query == "":
1337
+ logger.warning("You provide nothing to query with respect to the table.")
1338
+ # step 4: concatenate query with linear_table
1339
+ separator = " " if query and linear_table else ""
1340
+ joint_input = (query + separator + linear_table) if query else linear_table
1341
+
1342
+ return joint_input
1343
+
1344
+ def truncate_table_cells(self, table_content: Dict, question: str, answer: List):
1345
+ # TODO (Qian): is it possible to revert the original cell if it is in the final answer?
1346
+ cell_mapping = {}
1347
+ for row in table_content["rows"]:
1348
+ for i, cell in enumerate(row):
1349
+ truncate_cell = self.truncate_cell(cell)
1350
+ if truncate_cell is not None:
1351
+ cell_mapping[cell] = truncate_cell
1352
+ row[i] = truncate_cell
1353
+
1354
+ # modify the answer list
1355
+ if answer is not None:
1356
+ for i, case in enumerate(answer):
1357
+ if case in cell_mapping.keys():
1358
+ answer[i] = cell_mapping[case]
1359
+
1360
+ def truncate_cell(self, cell_value):
1361
+ # do not process on these cases
1362
+ if isinstance(cell_value, int) or isinstance(cell_value, float):
1363
+ return cell_value
1364
+ if cell_value.strip() != "":
1365
+ try_tokens = self.tokenize(cell_value)
1366
+ if len(try_tokens) >= self.max_cell_length:
1367
+ retain_tokens = try_tokens[: self.max_cell_length]
1368
+ retain_cell_value = self.convert_tokens_to_string(retain_tokens)
1369
+ return retain_cell_value
1370
+ else:
1371
+ return None
1372
+ else:
1373
+ return cell_value
1374
+
1375
+ def truncate_table_rows(
1376
+ self, table_content: Dict, question: str, answer: Optional[Union[str, List[str]]] = None, max_length=None
1377
+ ):
1378
+ """
1379
+ Args:
1380
+ table_content:
1381
+ {"header": xxx, "rows": xxx, "id" (Optionally): xxx}
1382
+
1383
+ question:
1384
+ natural language sentence
1385
+
1386
+ answer:
1387
+ if for training, is the supervision; otherwise will be empty
1388
+ """
1389
+ delete_ratio, remain_token_len = self.estimate_delete_ratio(table_content, question, max_length)
1390
+ # randomly delete unrelated rows
1391
+ self.delete_unrelated_rows(table_content, question, answer, delete_ratio)
1392
+ # guarantee the result < max_length
1393
+ maximum_keep_rows = 0
1394
+ for ind, row_example in enumerate(table_content["rows"]):
1395
+ value_string = self.table_linearize.process_row(row_example, ind + 1)
1396
+ value_token_len = len(self.tokenize(value_string))
1397
+ # over the size limit, and take action
1398
+ if value_token_len > remain_token_len:
1399
+ break
1400
+ remain_token_len -= value_token_len
1401
+ maximum_keep_rows += 1
1402
+ del table_content["rows"][maximum_keep_rows:]
1403
+
1404
+ def estimate_delete_ratio(self, table_content: Dict, question: str, max_length=None):
1405
+ if "header" not in table_content or "rows" not in table_content:
1406
+ raise ValueError("The table content should contain both 'header' and 'rows' keys.")
1407
+ # calculate the tokens of header, special tokens will only be pre-prepended into question
1408
+ question_tokens = self.tokenize(question, add_special_tokens=True)
1409
+ # calculate the tokens of header
1410
+ header_string = self.table_linearize.process_header(table_content["header"])
1411
+ header_tokens = self.tokenize(header_string, add_special_tokens=False)
1412
+ # split all cell values into tokens and see how many can be accommodated
1413
+ used_token_len = len(question_tokens) + len(header_tokens)
1414
+ # remaining token space for rows
1415
+ remain_token_len = max_length - used_token_len
1416
+
1417
+ value_string = ""
1418
+ for _, row_example in enumerate(table_content["rows"]):
1419
+ # use a general index to roughly estimate the overall token len
1420
+ value_string += self.table_linearize.process_row(row_example, 100) + " "
1421
+ value_token_len = len(self.tokenize(value_string))
1422
+
1423
+ if value_token_len < remain_token_len:
1424
+ # no row will be deleted
1425
+ return 0.0, remain_token_len
1426
+ else:
1427
+ # calc a roughly delete rate
1428
+ return 1.0 - remain_token_len / value_token_len, remain_token_len
1429
+
1430
+ def delete_unrelated_rows(self, table_content: Dict, question: str, answer: List, delete_ratio: float):
1431
+ """
1432
+ The argument answer is used only during training.
1433
+ """
1434
+ truncated_unrelated_indices = []
1435
+ related_indices = []
1436
+ if answer is None or len(answer) == 0:
1437
+ answer_set = set()
1438
+ else:
1439
+ answer_set = {ans_ex.lower() for ans_ex in answer}
1440
+ # add question key words into answer set
1441
+ if question is not None:
1442
+ answer_set.update(question.split())
1443
+ question_set = set(question.strip("?!.,").split(" "))
1444
+ row_max_len = len(table_content["rows"])
1445
+ for _row_idx, row in enumerate(table_content["rows"]):
1446
+ lower_row = {str(cell).lower() for cell in row}
1447
+ if len(lower_row & answer_set) == 0 and len(lower_row & question_set) == 0:
1448
+ truncated_unrelated_indices.append(_row_idx)
1449
+ else:
1450
+ # add neighbours to preserve information aggressively
1451
+ related_indices.extend([_row_idx - 2, _row_idx - 1, _row_idx, _row_idx + 1, _row_idx + 2])
1452
+
1453
+ # remove the neighbours
1454
+ truncated_unrelated_indices = [
1455
+ _row_idx for _row_idx in truncated_unrelated_indices if _row_idx not in related_indices
1456
+ ]
1457
+ # select some cases to drop
1458
+ drop_items = min(len(truncated_unrelated_indices), int(len(table_content["rows"]) * delete_ratio))
1459
+ drop_row_indices = random.choices(truncated_unrelated_indices, k=drop_items)
1460
+
1461
+ for _row_idx in reversed(range(row_max_len)):
1462
+ if _row_idx in drop_row_indices:
1463
+ del table_content["rows"][_row_idx]
1464
+
1465
+ # only when the drop ratio is too large, logging for warning.
1466
+ if "id" in table_content and len(drop_row_indices) > 0:
1467
+ logger.warning("Delete {:.2f} rows in table {}".format(len(drop_row_indices), table_content["id"]))
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__init__.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
17
+
18
+
19
+ _import_structure = {
20
+ "configuration_trajectory_transformer": [
21
+ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
22
+ "TrajectoryTransformerConfig",
23
+ ],
24
+ }
25
+
26
+ try:
27
+ if not is_torch_available():
28
+ raise OptionalDependencyNotAvailable()
29
+ except OptionalDependencyNotAvailable:
30
+ pass
31
+ else:
32
+ _import_structure["modeling_trajectory_transformer"] = [
33
+ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
34
+ "TrajectoryTransformerModel",
35
+ "TrajectoryTransformerPreTrainedModel",
36
+ "load_tf_weights_in_trajectory_transformer",
37
+ ]
38
+
39
+
40
+ if TYPE_CHECKING:
41
+ from .configuration_trajectory_transformer import (
42
+ TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
43
+ TrajectoryTransformerConfig,
44
+ )
45
+
46
+ try:
47
+ if not is_torch_available():
48
+ raise OptionalDependencyNotAvailable()
49
+ except OptionalDependencyNotAvailable:
50
+ pass
51
+ else:
52
+ from .modeling_trajectory_transformer import (
53
+ TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
54
+ TrajectoryTransformerModel,
55
+ TrajectoryTransformerPreTrainedModel,
56
+ load_tf_weights_in_trajectory_transformer,
57
+ )
58
+
59
+
60
+ else:
61
+ import sys
62
+
63
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/configuration_trajectory_transformer.cpython-310.pyc ADDED
Binary file (6.36 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc ADDED
Binary file (1.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/modeling_trajectory_transformer.cpython-310.pyc ADDED
Binary file (19 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/configuration_trajectory_transformer.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ TrajectoryTransformer model configuration"""
16
+
17
+ from ....configuration_utils import PretrainedConfig
18
+ from ....utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ from .._archive_maps import TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class TrajectoryTransformerConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`TrajectoryTransformerModel`]. It is used to
30
+ instantiate an TrajectoryTransformer model according to the specified arguments, defining the model architecture.
31
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the
32
+ TrajectoryTransformer
33
+ [CarlCochet/trajectory-transformer-halfcheetah-medium-v2](https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2)
34
+ architecture.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 100):
42
+ Vocabulary size of the TrajectoryTransformer model. Defines the number of different tokens that can be
43
+ represented by the `trajectories` passed when calling [`TrajectoryTransformerModel`]
44
+ action_weight (`int`, *optional*, defaults to 5):
45
+ Weight of the action in the loss function
46
+ reward_weight (`int`, *optional*, defaults to 1):
47
+ Weight of the reward in the loss function
48
+ value_weight (`int`, *optional*, defaults to 1):
49
+ Weight of the value in the loss function
50
+ block_size (`int`, *optional*, defaults to 249):
51
+ Size of the blocks in the trajectory transformer.
52
+ action_dim (`int`, *optional*, defaults to 6):
53
+ Dimension of the action space.
54
+ observation_dim (`int`, *optional*, defaults to 17):
55
+ Dimension of the observation space.
56
+ transition_dim (`int`, *optional*, defaults to 25):
57
+ Dimension of the transition space.
58
+ n_layer (`int`, *optional*, defaults to 4):
59
+ Number of hidden layers in the Transformer encoder.
60
+ n_head (`int`, *optional*, defaults to 4):
61
+ Number of attention heads for each attention layer in the Transformer encoder.
62
+ n_embd (`int`, *optional*, defaults to 128):
63
+ Dimensionality of the embeddings and hidden states.
64
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
65
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
66
+ embd_pdrop (`int`, *optional*, defaults to 0.1):
67
+ The dropout ratio for the embeddings.
68
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
69
+ The dropout ratio for the attention.
70
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
71
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
72
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
73
+ max_position_embeddings (`int`, *optional*, defaults to 512):
74
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
75
+ just in case (e.g., 512 or 1024 or 2048).
76
+ initializer_range (`float`, *optional*, defaults to 0.02):
77
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
78
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
79
+ The epsilon used by the layer normalization layers.
80
+ kaiming_initializer_range (`float, *optional*, defaults to 1):
81
+ A coefficient scaling the negative slope of the kaiming initializer rectifier for EinLinear layers.
82
+ use_cache (`bool`, *optional*, defaults to `True`):
83
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
84
+ relevant if `config.is_decoder=True`.
85
+ Example:
86
+
87
+ ```python
88
+ >>> from transformers import TrajectoryTransformerConfig, TrajectoryTransformerModel
89
+
90
+ >>> # Initializing a TrajectoryTransformer CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration
91
+ >>> configuration = TrajectoryTransformerConfig()
92
+
93
+ >>> # Initializing a model (with random weights) from the CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration
94
+ >>> model = TrajectoryTransformerModel(configuration)
95
+
96
+ >>> # Accessing the model configuration
97
+ >>> configuration = model.config
98
+ ```"""
99
+
100
+ model_type = "trajectory_transformer"
101
+ keys_to_ignore_at_inference = ["past_key_values"]
102
+ attribute_map = {
103
+ "hidden_size": "n_embd",
104
+ "num_attention_heads": "n_head",
105
+ "num_hidden_layers": "n_layer",
106
+ }
107
+
108
+ def __init__(
109
+ self,
110
+ vocab_size=100,
111
+ action_weight=5,
112
+ reward_weight=1,
113
+ value_weight=1,
114
+ block_size=249,
115
+ action_dim=6,
116
+ observation_dim=17,
117
+ transition_dim=25,
118
+ n_layer=4,
119
+ n_head=4,
120
+ n_embd=128,
121
+ embd_pdrop=0.1,
122
+ attn_pdrop=0.1,
123
+ resid_pdrop=0.1,
124
+ learning_rate=0.0006,
125
+ max_position_embeddings=512,
126
+ initializer_range=0.02,
127
+ layer_norm_eps=1e-12,
128
+ kaiming_initializer_range=1,
129
+ use_cache=True,
130
+ pad_token_id=1,
131
+ bos_token_id=50256,
132
+ eos_token_id=50256,
133
+ **kwargs,
134
+ ):
135
+ self.vocab_size = vocab_size
136
+ self.action_weight = action_weight
137
+ self.reward_weight = reward_weight
138
+ self.value_weight = value_weight
139
+ self.max_position_embeddings = max_position_embeddings
140
+ self.block_size = block_size
141
+ self.action_dim = action_dim
142
+ self.observation_dim = observation_dim
143
+ self.transition_dim = transition_dim
144
+ self.learning_rate = learning_rate
145
+ self.n_layer = n_layer
146
+ self.n_head = n_head
147
+ self.n_embd = n_embd
148
+ self.embd_pdrop = embd_pdrop
149
+ self.attn_pdrop = attn_pdrop
150
+ self.resid_pdrop = resid_pdrop
151
+ self.initializer_range = initializer_range
152
+ self.layer_norm_eps = layer_norm_eps
153
+ self.kaiming_initializer_range = kaiming_initializer_range
154
+ self.use_cache = use_cache
155
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ TrajectoryTransformer pytorch checkpoint conversion"""
16
+
17
+ import torch
18
+ import trajectory.utils as utils
19
+
20
+ from transformers import TrajectoryTransformerModel
21
+
22
+
23
+ class Parser(utils.Parser):
24
+ dataset: str = "halfcheetah-medium-expert-v2"
25
+ config: str = "config.offline"
26
+
27
+
28
+ def convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch(logbase, dataset, loadpath, epoch, device):
29
+ """Converting Sequential blocks to ModuleList"""
30
+
31
+ gpt, gpt_epoch = utils.load_model(logbase, dataset, loadpath, epoch=epoch, device=device)
32
+ trajectory_transformer = TrajectoryTransformerModel(gpt.config)
33
+
34
+ trajectory_transformer.tok_emb.load_state_dict(gpt.tok_emb.state_dict())
35
+ trajectory_transformer.pos_emb = gpt.pos_emb
36
+ trajectory_transformer.drop.load_state_dict(gpt.drop.state_dict())
37
+ trajectory_transformer.ln_f.load_state_dict(gpt.ln_f.state_dict())
38
+ trajectory_transformer.head.load_state_dict(gpt.head.state_dict())
39
+
40
+ for i, block in enumerate(gpt.blocks):
41
+ trajectory_transformer.blocks[i].ln1.load_state_dict(gpt.blocks[i].ln1.state_dict())
42
+ trajectory_transformer.blocks[i].ln2.load_state_dict(gpt.blocks[i].ln2.state_dict())
43
+ trajectory_transformer.blocks[i].attn.load_state_dict(gpt.blocks[i].attn.state_dict())
44
+
45
+ trajectory_transformer.blocks[i].l1.load_state_dict(gpt.blocks[i].mlp[0].state_dict())
46
+ trajectory_transformer.blocks[i].act.load_state_dict(gpt.blocks[i].mlp[1].state_dict())
47
+ trajectory_transformer.blocks[i].l2.load_state_dict(gpt.blocks[i].mlp[2].state_dict())
48
+ trajectory_transformer.blocks[i].drop.load_state_dict(gpt.blocks[i].mlp[3].state_dict())
49
+
50
+ torch.save(trajectory_transformer.state_dict(), "pytorch_model.bin")
51
+
52
+
53
+ if __name__ == "__main__":
54
+ """
55
+ To run this script you will need to install the original repository to run the original model. You can find it
56
+ here: https://github.com/jannerm/trajectory-transformer From this repository code you can also download the
57
+ original pytorch checkpoints.
58
+
59
+ Run with the command:
60
+
61
+ ```sh
62
+ >>> python convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py --dataset <dataset_name>
63
+ ... --gpt_loadpath <path_to_original_pytorch_checkpoint>
64
+ ```
65
+ """
66
+
67
+ args = Parser().parse_args("plan")
68
+ convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch(
69
+ args.logbase, args.dataset, args.gpt_loadpath, args.gpt_epoch, args.device
70
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/modeling_trajectory_transformer.py ADDED
@@ -0,0 +1,606 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch TrajectoryTransformer model."""
16
+
17
+ import math
18
+ import os
19
+ from dataclasses import dataclass
20
+ from typing import Optional, Tuple, Union
21
+
22
+ import numpy as np
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import functional as F
27
+
28
+ from ....modeling_utils import PreTrainedModel
29
+ from ....utils import (
30
+ ModelOutput,
31
+ add_start_docstrings,
32
+ add_start_docstrings_to_model_forward,
33
+ logging,
34
+ replace_return_docstrings,
35
+ )
36
+ from .configuration_trajectory_transformer import TrajectoryTransformerConfig
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CHECKPOINT_FOR_DOC = "CarlCochet/trajectory-transformer-halfcheetah-medium-v2"
42
+ _CONFIG_FOR_DOC = "TrajectoryTransformerConfig"
43
+
44
+
45
+ from .._archive_maps import TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
46
+
47
+
48
+ def load_tf_weights_in_trajectory_transformer(model, config, tf_checkpoint_path):
49
+ """Load tf checkpoints in a pytorch model."""
50
+ try:
51
+ import re
52
+
53
+ import numpy as np
54
+ import tensorflow as tf
55
+ except ImportError:
56
+ logger.error(
57
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
58
+ "https://www.tensorflow.org/install/ for installation instructions."
59
+ )
60
+ raise
61
+ tf_path = os.path.abspath(tf_checkpoint_path)
62
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
63
+ # Load weights from TF model
64
+ init_vars = tf.train.list_variables(tf_path)
65
+ names = []
66
+ arrays = []
67
+ for name, shape in init_vars:
68
+ logger.info(f"Loading TF weight {name} with shape {shape}")
69
+ array = tf.train.load_variable(tf_path, name)
70
+ names.append(name)
71
+ arrays.append(array)
72
+
73
+ for name, array in zip(names, arrays):
74
+ name = name.split("/")
75
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
76
+ # which are not required for using pretrained model
77
+ if any(
78
+ n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
79
+ for n in name
80
+ ):
81
+ logger.info(f"Skipping {'/'.join(name)}")
82
+ continue
83
+ pointer = model
84
+ for m_name in name:
85
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
86
+ scope_names = re.split(r"_(\d+)", m_name)
87
+ else:
88
+ scope_names = [m_name]
89
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
90
+ pointer = getattr(pointer, "weight")
91
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
92
+ pointer = getattr(pointer, "bias")
93
+ elif scope_names[0] == "output_weights":
94
+ pointer = getattr(pointer, "weight")
95
+ elif scope_names[0] == "squad":
96
+ pointer = getattr(pointer, "classifier")
97
+ else:
98
+ try:
99
+ pointer = getattr(pointer, scope_names[0])
100
+ except AttributeError:
101
+ logger.info(f"Skipping {'/'.join(name)}")
102
+ continue
103
+ if len(scope_names) >= 2:
104
+ num = int(scope_names[1])
105
+ pointer = pointer[num]
106
+ if m_name[-11:] == "_embeddings":
107
+ pointer = getattr(pointer, "weight")
108
+ elif m_name == "kernel":
109
+ array = np.transpose(array)
110
+ try:
111
+ if pointer.shape != array.shape:
112
+ raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
113
+ except AssertionError as e:
114
+ e.args += (pointer.shape, array.shape)
115
+ raise
116
+ logger.info(f"Initialize PyTorch weight {name}")
117
+ pointer.data = torch.from_numpy(array)
118
+ return model
119
+
120
+
121
+ @dataclass
122
+ class TrajectoryTransformerOutput(ModelOutput):
123
+ """
124
+ Base class for model's outputs that also contains a pooling of the last hidden states.
125
+
126
+ Args:
127
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
128
+ Language modeling loss.
129
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
130
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
131
+ past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
132
+ Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
133
+ sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the
134
+ attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
135
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
136
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
137
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
138
+ plus the initial embedding outputs.
139
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
140
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
141
+ sequence_length)`. GPT2Attentions weights after the attention softmax, used to compute the weighted average
142
+ in the self-attention heads.
143
+ """
144
+
145
+ loss: Optional[torch.FloatTensor] = None
146
+ logits: torch.FloatTensor = None
147
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
148
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
149
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
150
+
151
+
152
+ class TrajectoryTransformerPreTrainedModel(PreTrainedModel):
153
+ """
154
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
155
+ models.
156
+ """
157
+
158
+ config_class = TrajectoryTransformerConfig
159
+ load_tf_weights = load_tf_weights_in_trajectory_transformer
160
+ base_model_prefix = "trajectory_transformer"
161
+ main_input_name = "trajectories"
162
+ supports_gradient_checkpointing = True
163
+
164
+ def _init_weights(self, module):
165
+ if isinstance(module, (nn.Linear, nn.Embedding)):
166
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
167
+ if isinstance(module, nn.Linear) and module.bias is not None:
168
+ module.bias.data.zero_()
169
+ elif isinstance(module, nn.LayerNorm):
170
+ module.bias.data.zero_()
171
+ module.weight.data.fill_(1.0)
172
+ elif isinstance(module, EinLinear):
173
+ for i in range(module.n_models):
174
+ nn.init.kaiming_uniform_(module.weight[i], a=math.sqrt(5) / self.config.kaiming_initializer_range)
175
+ if module.bias is not None:
176
+ fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight[i])
177
+ bound = (1 / math.sqrt(fan_in)) * self.config.initializer_range
178
+ nn.init.uniform_(module.bias[i], -bound, bound)
179
+
180
+
181
+ TRAJECTORY_TRANSFORMER_START_DOCSTRING = r"""
182
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
183
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
184
+ behavior.
185
+
186
+ Parameters:
187
+ config ([`TrajectoryTransformerConfig`]): Model configuration class with all the parameters of the model.
188
+ Initializing with a config file does not load the weights associated with the model, only the
189
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
190
+ """
191
+
192
+ TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING = r"""
193
+ Args:
194
+ trajectories (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
195
+ Batch of trajectories, where a trajectory is a sequence of states, actions and rewards.
196
+ past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`, *optional*):
197
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
198
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
199
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
200
+ targets (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
201
+ Desired targets used to compute the loss.
202
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
203
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
204
+
205
+ - 1 for tokens that are **not masked**,
206
+ - 0 for tokens that are **masked**.
207
+
208
+ [What are attention masks?](../glossary#attention-mask)
209
+ use_cache (`bool`, *optional*):
210
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
211
+ `past_key_values`).
212
+ output_attentions (`bool`, *optional*):
213
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
214
+ tensors for more detail.
215
+ output_hidden_states (`bool`, *optional*):
216
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
217
+ more detail.
218
+ return_dict (`bool`, *optional*):
219
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
220
+ """
221
+
222
+
223
+ class EinLinear(nn.Module):
224
+ def __init__(self, n_models, in_features, out_features, bias):
225
+ super().__init__()
226
+ self.n_models = n_models
227
+ self.out_features = out_features
228
+ self.in_features = in_features
229
+ self.weight = nn.Parameter(torch.Tensor(n_models, out_features, in_features))
230
+ if bias:
231
+ self.bias = nn.Parameter(torch.Tensor(n_models, out_features))
232
+ else:
233
+ self.register_parameter("bias", None)
234
+
235
+ def reset_parameters(self):
236
+ for i in range(self.n_models):
237
+ nn.init.kaiming_uniform_(self.weight[i], a=math.sqrt(5))
238
+ if self.bias is not None:
239
+ fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[i])
240
+ bound = 1 / math.sqrt(fan_in)
241
+ nn.init.uniform_(self.bias[i], -bound, bound)
242
+
243
+ def forward(self, input):
244
+ """
245
+ Args:
246
+ input (`torch.FloatTensor` of shape `(B, n_models, input_dim)`):
247
+ The input to the layer.
248
+ """
249
+ # [ batch_size x n_models x output_dim ]
250
+ output = torch.einsum("eoi,bei->beo", self.weight, input)
251
+ if self.bias is not None:
252
+ raise RuntimeError()
253
+ return output
254
+
255
+
256
+ class CausalSelfAttention(nn.Module):
257
+ def __init__(self, config):
258
+ super().__init__()
259
+
260
+ if config.n_embd % config.n_head != 0:
261
+ raise ValueError(f"n_head ({config.n_head}) should be a divisor of n_embd ({config.n_embd})")
262
+
263
+ # key, query, value projections for all heads
264
+ self.key = nn.Linear(config.n_embd, config.n_embd)
265
+ self.query = nn.Linear(config.n_embd, config.n_embd)
266
+ self.value = nn.Linear(config.n_embd, config.n_embd)
267
+
268
+ # regularization
269
+ self.attn_drop = nn.Dropout(config.attn_pdrop)
270
+ self.resid_drop = nn.Dropout(config.resid_pdrop)
271
+
272
+ # output projection
273
+ self.proj = nn.Linear(config.n_embd, config.n_embd)
274
+
275
+ # causal mask to ensure that attention is only applied to the left in the input sequence
276
+ self.register_buffer(
277
+ "mask",
278
+ torch.tril(torch.ones(config.block_size, config.block_size)).view(
279
+ 1, 1, config.block_size, config.block_size
280
+ ),
281
+ persistent=False,
282
+ )
283
+
284
+ # mask previous value estimates
285
+ joined_dim = config.observation_dim + config.action_dim + 2
286
+ self.mask.squeeze()[:, joined_dim - 1 :: joined_dim] = 0
287
+
288
+ self.n_head = config.n_head
289
+
290
+ def forward(
291
+ self,
292
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
293
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
294
+ use_cache: Optional[bool] = False,
295
+ output_attentions: Optional[bool] = False,
296
+ ):
297
+ batch_size, sequence_length, embedding_dim = hidden_states.size()
298
+
299
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
300
+ # [ batch_size x n_heads x sequence_length x head_dim ]
301
+ key = (
302
+ self.key(hidden_states)
303
+ .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head)
304
+ .transpose(1, 2)
305
+ )
306
+ query = (
307
+ self.query(hidden_states)
308
+ .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head)
309
+ .transpose(1, 2)
310
+ )
311
+ value = (
312
+ self.value(hidden_states)
313
+ .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head)
314
+ .transpose(1, 2)
315
+ )
316
+
317
+ if layer_past is not None:
318
+ past_key, past_value = layer_past
319
+ key = torch.cat((past_key, key), dim=-2)
320
+ value = torch.cat((past_value, value), dim=-2)
321
+
322
+ if use_cache is True:
323
+ present = (key, value)
324
+ else:
325
+ present = None
326
+
327
+ # causal self-attention
328
+ # [ batch_size x n_heads x sequence_length x sequence_length ]
329
+ attn_weights = (torch.matmul(query, key.transpose(-2, -1))) * (1.0 / math.sqrt(key.size(-1)))
330
+ attn_weights = attn_weights.masked_fill(
331
+ self.mask[:, :, :sequence_length, :sequence_length] == 0, torch.finfo(attn_weights.dtype).min
332
+ )
333
+ attn_weights = F.softmax(attn_weights, dim=-1)
334
+ self._attn_map = attn_weights.clone()
335
+ attn_weights = self.attn_drop(attn_weights)
336
+
337
+ output = torch.matmul(attn_weights, value)
338
+ # [ batch_size x sequence_length x embedding_dim ]
339
+ # re-assemble all head outputs side by side
340
+ output = output.transpose(1, 2).contiguous().view(batch_size, sequence_length, embedding_dim)
341
+
342
+ # output projection
343
+ output = self.resid_drop(self.proj(output))
344
+
345
+ outputs = (output, present)
346
+ if output_attentions:
347
+ outputs += (attn_weights,)
348
+
349
+ return outputs
350
+
351
+
352
+ class Block(nn.Module):
353
+ def __init__(self, config):
354
+ super().__init__()
355
+ self.ln1 = nn.LayerNorm(config.n_embd)
356
+ self.ln2 = nn.LayerNorm(config.n_embd)
357
+ self.attn = CausalSelfAttention(config)
358
+
359
+ # MLP
360
+ self.l1 = nn.Linear(config.n_embd, 4 * config.n_embd)
361
+ self.act = nn.GELU()
362
+ self.l2 = nn.Linear(4 * config.n_embd, config.n_embd)
363
+ self.drop = nn.Dropout(config.resid_pdrop)
364
+
365
+ def forward(
366
+ self,
367
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
368
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
369
+ use_cache: Optional[bool] = False,
370
+ output_attentions: Optional[bool] = False,
371
+ ):
372
+ residual = hidden_states
373
+ hidden_states = self.ln1(hidden_states)
374
+
375
+ attn_outputs = self.attn(
376
+ hidden_states, layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions
377
+ )
378
+ attn_output = attn_outputs[0]
379
+ outputs = attn_outputs[1:]
380
+ hidden_states = attn_output + residual
381
+
382
+ residual = hidden_states
383
+ hidden_states = self.ln2(hidden_states)
384
+ hidden_states = self.l1(hidden_states)
385
+ hidden_states = self.act(hidden_states)
386
+ hidden_states = self.l2(hidden_states)
387
+ hidden_states = residual + self.drop(hidden_states)
388
+
389
+ if use_cache:
390
+ outputs = (hidden_states,) + outputs
391
+ else:
392
+ outputs = (hidden_states,) + outputs[1:]
393
+
394
+ return outputs
395
+
396
+
397
+ @add_start_docstrings(
398
+ "The bare TrajectoryTransformer Model transformer outputting raw hidden-states without any specific head on top.",
399
+ TRAJECTORY_TRANSFORMER_START_DOCSTRING,
400
+ )
401
+ class TrajectoryTransformerModel(TrajectoryTransformerPreTrainedModel):
402
+ """the full GPT language model, with a context size of block_size"""
403
+
404
+ def __init__(self, config):
405
+ super().__init__(config)
406
+
407
+ # input embedding stem (+1 for stop token)
408
+ self.tok_emb = nn.Embedding(config.vocab_size * config.transition_dim + 1, config.n_embd)
409
+
410
+ self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
411
+ self.drop = nn.Dropout(config.embd_pdrop)
412
+ # transformer
413
+ self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)])
414
+ # decoder head
415
+ self.ln_f = nn.LayerNorm(config.n_embd)
416
+ self.head = EinLinear(config.transition_dim, config.n_embd, config.vocab_size + 1, bias=False)
417
+
418
+ self.vocab_size = config.vocab_size
419
+ self.stop_token = config.vocab_size * config.transition_dim
420
+ self.block_size = config.block_size
421
+
422
+ self.observation_dim = config.observation_dim
423
+ self.action_dim = config.action_dim
424
+ self.transition_dim = config.transition_dim
425
+ self.embedding_dim = config.n_embd
426
+
427
+ self.action_weight = config.action_weight
428
+ self.reward_weight = config.reward_weight
429
+ self.value_weight = config.value_weight
430
+
431
+ self.gradient_checkpointing = False
432
+
433
+ self.post_init()
434
+
435
+ def get_block_size(self):
436
+ return self.block_size
437
+
438
+ def offset_tokens(self, trajectories):
439
+ _, sequence_length = trajectories.shape
440
+
441
+ n_states = int(np.ceil(sequence_length / self.transition_dim))
442
+
443
+ offsets = torch.arange(self.transition_dim) * self.vocab_size
444
+ offsets = offsets.repeat(n_states).to(trajectories.device)
445
+
446
+ offset_trajectories = trajectories + offsets[:sequence_length]
447
+ offset_trajectories[trajectories == self.vocab_size] = self.stop_token
448
+ return offset_trajectories
449
+
450
+ def pad_to_full_observation(self, hidden_states):
451
+ batch_size, sequence_length, _ = hidden_states.shape
452
+
453
+ n_pad = (self.transition_dim - sequence_length % self.transition_dim) % self.transition_dim
454
+ padding = torch.zeros(batch_size, n_pad, self.embedding_dim, device=hidden_states.device)
455
+
456
+ # [ batch_size x padded_sequence_length' x embedding_dim ]
457
+ hidden_states_pad = torch.cat([hidden_states, padding], dim=1)
458
+ hidden_states_pad = hidden_states_pad.view(-1, self.transition_dim, self.embedding_dim)
459
+
460
+ return hidden_states_pad, n_pad
461
+
462
+ @add_start_docstrings_to_model_forward(
463
+ TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")
464
+ )
465
+ @replace_return_docstrings(output_type=TrajectoryTransformerOutput, config_class=_CONFIG_FOR_DOC)
466
+ def forward(
467
+ self,
468
+ trajectories: Optional[torch.LongTensor] = None,
469
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
470
+ targets: Optional[torch.FloatTensor] = None,
471
+ attention_mask: Optional[torch.FloatTensor] = None,
472
+ use_cache: Optional[bool] = None,
473
+ output_attentions: Optional[bool] = None,
474
+ output_hidden_states: Optional[bool] = None,
475
+ return_dict: Optional[bool] = None,
476
+ ) -> Union[Tuple[torch.Tensor], TrajectoryTransformerOutput]:
477
+ r"""
478
+ Returns:
479
+
480
+ Examples:
481
+
482
+ ```python
483
+ >>> from transformers import TrajectoryTransformerModel
484
+ >>> import torch
485
+
486
+ >>> model = TrajectoryTransformerModel.from_pretrained(
487
+ ... "CarlCochet/trajectory-transformer-halfcheetah-medium-v2"
488
+ ... )
489
+ >>> model.to(device)
490
+ >>> model.eval()
491
+
492
+ >>> observations_dim, action_dim, batch_size = 17, 6, 256
493
+ >>> seq_length = observations_dim + action_dim + 1
494
+
495
+ >>> trajectories = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to(
496
+ ... device
497
+ ... )
498
+ >>> targets = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to(device)
499
+
500
+ >>> outputs = model(
501
+ ... trajectories,
502
+ ... targets=targets,
503
+ ... use_cache=True,
504
+ ... output_attentions=True,
505
+ ... output_hidden_states=True,
506
+ ... return_dict=True,
507
+ ... )
508
+ ```
509
+ """
510
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
511
+ output_hidden_states = (
512
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
513
+ )
514
+
515
+ if past_key_values is None:
516
+ past_key_values = tuple([None] * len(self.blocks))
517
+
518
+ batch_size, sequence_length = trajectories.size()
519
+
520
+ if sequence_length > self.block_size:
521
+ raise ValueError("Cannot forward, model block size is exhausted.")
522
+
523
+ offset_trajectories = self.offset_tokens(trajectories)
524
+ # [ batch_size x sequence_length x embedding_dim ]
525
+ # forward the GPT model
526
+ token_embeddings = self.tok_emb(offset_trajectories) # each index maps to a (learnable) vector
527
+ position_embeddings = self.pos_emb[:, :sequence_length, :] # each position maps to a (learnable) vector
528
+
529
+ hidden_states = self.drop(token_embeddings + position_embeddings)
530
+
531
+ if self.gradient_checkpointing and self.training:
532
+ if use_cache:
533
+ logger.warning_once(
534
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
535
+ )
536
+ use_cache = False
537
+
538
+ presents = () if use_cache else None
539
+ all_self_attentions = () if output_attentions else None
540
+ all_hidden_states = () if output_hidden_states else None
541
+
542
+ for i, (block, layer_past) in enumerate(zip(self.blocks, past_key_values)):
543
+ if output_hidden_states:
544
+ all_hidden_states = all_hidden_states + (hidden_states,)
545
+
546
+ if self.gradient_checkpointing and self.training:
547
+ outputs = self._gradient_checkpointing_func(
548
+ block.__call__,
549
+ hidden_states,
550
+ layer_past,
551
+ use_cache,
552
+ output_attentions,
553
+ )
554
+ else:
555
+ outputs = block(hidden_states, layer_past, use_cache, output_attentions)
556
+
557
+ hidden_states = outputs[0]
558
+ if use_cache is True:
559
+ presents = presents + (outputs[1],)
560
+
561
+ if output_attentions:
562
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
563
+
564
+ # [ batch_size x sequence_length x embedding_dim ]
565
+ hidden_state = self.ln_f(hidden_states)
566
+
567
+ if output_hidden_states:
568
+ all_hidden_states = all_hidden_states + (hidden_states,)
569
+
570
+ hidden_states_pad, n_pad = self.pad_to_full_observation(hidden_state)
571
+
572
+ logits = self.head(hidden_states_pad)
573
+ logits = logits.reshape(batch_size, sequence_length + n_pad, self.vocab_size + 1)
574
+ logits = logits[:, :sequence_length]
575
+
576
+ # if we are given some desired targets also calculate the loss
577
+ if targets is not None:
578
+ loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), targets.view(-1), reduction="none")
579
+ if self.action_weight != 1 or self.reward_weight != 1 or self.value_weight != 1:
580
+ # make weights
581
+ n_states = int(np.ceil(sequence_length / self.transition_dim))
582
+ weights = torch.cat(
583
+ [
584
+ torch.ones(self.observation_dim, device=trajectories.device),
585
+ torch.ones(self.action_dim, device=trajectories.device) * self.action_weight,
586
+ torch.ones(1, device=trajectories.device) * self.reward_weight,
587
+ torch.ones(1, device=trajectories.device) * self.value_weight,
588
+ ]
589
+ )
590
+ weights = weights.repeat(n_states)
591
+ weights = weights[1:].repeat(batch_size, 1)
592
+ loss = loss * weights.view(-1)
593
+ loss = (loss * attention_mask.view(-1)).mean()
594
+ else:
595
+ loss = None
596
+
597
+ if not return_dict:
598
+ return tuple(v for v in [loss, logits, presents, all_hidden_states, all_self_attentions] if v is not None)
599
+
600
+ return TrajectoryTransformerOutput(
601
+ loss=loss,
602
+ logits=logits,
603
+ past_key_values=presents,
604
+ hidden_states=all_hidden_states,
605
+ attentions=all_self_attentions,
606
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ Transformer XL configuration"""
17
+
18
+ from ....configuration_utils import PretrainedConfig
19
+ from ....utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ from .._archive_maps import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
26
+
27
+
28
+ class TransfoXLConfig(PretrainedConfig):
29
+ """
30
+ This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is
31
+ used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture.
32
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the TransfoXL
33
+ [transfo-xl/transfo-xl-wt103](https://huggingface.co/transfo-xl/transfo-xl-wt103) architecture.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 267735):
40
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`TransfoXLModel`] or [`TFTransfoXLModel`].
42
+ cutoffs (`List[int]`, *optional*, defaults to `[20000, 40000, 200000]`):
43
+ Cutoffs for the adaptive softmax.
44
+ d_model (`int`, *optional*, defaults to 1024):
45
+ Dimensionality of the model's hidden states.
46
+ d_embed (`int`, *optional*, defaults to 1024):
47
+ Dimensionality of the embeddings
48
+ n_head (`int`, *optional*, defaults to 16):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ d_head (`int`, *optional*, defaults to 64):
51
+ Dimensionality of the model's heads.
52
+ d_inner (`int`, *optional*, defaults to 4096):
53
+ Inner dimension in FF
54
+ div_val (`int`, *optional*, defaults to 4):
55
+ Divident value for adapative input and softmax
56
+ pre_lnorm (`boolean`, *optional*, defaults to `False`):
57
+ Whether or not to apply LayerNorm to the input instead of the output in the blocks.
58
+ n_layer (`int`, *optional*, defaults to 18):
59
+ Number of hidden layers in the Transformer encoder.
60
+ mem_len (`int`, *optional*, defaults to 1600):
61
+ Length of the retained previous heads.
62
+ clamp_len (`int`, *optional*, defaults to 1000):
63
+ Use the same pos embeddings after clamp_len.
64
+ same_length (`boolean`, *optional*, defaults to `True`):
65
+ Whether or not to use the same attn length for all tokens
66
+ proj_share_all_but_first (`boolean`, *optional*, defaults to `True`):
67
+ True to share all but first projs, False not to share.
68
+ attn_type (`int`, *optional*, defaults to 0):
69
+ Attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
70
+ sample_softmax (`int`, *optional*, defaults to -1):
71
+ Number of samples in the sampled softmax.
72
+ adaptive (`boolean`, *optional*, defaults to `True`):
73
+ Whether or not to use adaptive softmax.
74
+ dropout (`float`, *optional*, defaults to 0.1):
75
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
76
+ dropatt (`float`, *optional*, defaults to 0.0):
77
+ The dropout ratio for the attention probabilities.
78
+ untie_r (`boolean`, *optional*, defaults to `True`):
79
+ Whether ot not to untie relative position biases.
80
+ init (`str`, *optional*, defaults to `"normal"`):
81
+ Parameter initializer to use.
82
+ init_range (`float`, *optional*, defaults to 0.01):
83
+ Parameters initialized by U(-init_range, init_range).
84
+ proj_init_std (`float`, *optional*, defaults to 0.01):
85
+ Parameters initialized by N(0, init_std)
86
+ init_std (`float`, *optional*, defaults to 0.02):
87
+ Parameters initialized by N(0, init_std)
88
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
89
+ The epsilon to use in the layer normalization layers
90
+ eos_token_id (`int`, *optional*, defaults to 0):
91
+ End of stream token id.
92
+
93
+ Examples:
94
+
95
+ ```python
96
+ >>> from transformers import TransfoXLConfig, TransfoXLModel
97
+
98
+ >>> # Initializing a Transformer XL configuration
99
+ >>> configuration = TransfoXLConfig()
100
+
101
+ >>> # Initializing a model (with random weights) from the configuration
102
+ >>> model = TransfoXLModel(configuration)
103
+
104
+ >>> # Accessing the model configuration
105
+ >>> configuration = model.config
106
+ ```"""
107
+
108
+ model_type = "transfo-xl"
109
+ keys_to_ignore_at_inference = ["mems"]
110
+ attribute_map = {
111
+ "n_token": "vocab_size",
112
+ "hidden_size": "d_model",
113
+ "num_attention_heads": "n_head",
114
+ "num_hidden_layers": "n_layer",
115
+ }
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=267735,
120
+ cutoffs=[20000, 40000, 200000],
121
+ d_model=1024,
122
+ d_embed=1024,
123
+ n_head=16,
124
+ d_head=64,
125
+ d_inner=4096,
126
+ div_val=4,
127
+ pre_lnorm=False,
128
+ n_layer=18,
129
+ mem_len=1600,
130
+ clamp_len=1000,
131
+ same_length=True,
132
+ proj_share_all_but_first=True,
133
+ attn_type=0,
134
+ sample_softmax=-1,
135
+ adaptive=True,
136
+ dropout=0.1,
137
+ dropatt=0.0,
138
+ untie_r=True,
139
+ init="normal",
140
+ init_range=0.01,
141
+ proj_init_std=0.01,
142
+ init_std=0.02,
143
+ layer_norm_epsilon=1e-5,
144
+ eos_token_id=0,
145
+ **kwargs,
146
+ ):
147
+ self.vocab_size = vocab_size
148
+ self.cutoffs = []
149
+ self.cutoffs.extend(cutoffs)
150
+ if proj_share_all_but_first:
151
+ self.tie_projs = [False] + [True] * len(self.cutoffs)
152
+ else:
153
+ self.tie_projs = [False] + [False] * len(self.cutoffs)
154
+ self.d_model = d_model
155
+ self.d_embed = d_embed
156
+ self.d_head = d_head
157
+ self.d_inner = d_inner
158
+ self.div_val = div_val
159
+ self.pre_lnorm = pre_lnorm
160
+ self.n_layer = n_layer
161
+ self.n_head = n_head
162
+ self.mem_len = mem_len
163
+ self.same_length = same_length
164
+ self.attn_type = attn_type
165
+ self.clamp_len = clamp_len
166
+ self.sample_softmax = sample_softmax
167
+ self.adaptive = adaptive
168
+ self.dropout = dropout
169
+ self.dropatt = dropatt
170
+ self.untie_r = untie_r
171
+ self.init = init
172
+ self.init_range = init_range
173
+ self.proj_init_std = proj_init_std
174
+ self.init_std = init_std
175
+ self.layer_norm_epsilon = layer_norm_epsilon
176
+ super().__init__(eos_token_id=eos_token_id, **kwargs)
177
+
178
+ @property
179
+ def max_position_embeddings(self):
180
+ # Message copied from Transformer-XL documentation
181
+ logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.")
182
+ return -1
183
+
184
+ @max_position_embeddings.setter
185
+ def max_position_embeddings(self, value):
186
+ # Message copied from Transformer-XL documentation
187
+ raise NotImplementedError(
188
+ f"The model {self.model_type} is one of the few models that has no sequence length limit."
189
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert Transformer XL checkpoint and datasets."""
16
+
17
+
18
+ import argparse
19
+ import os
20
+ import pickle
21
+ import sys
22
+
23
+ import torch
24
+
25
+ from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
26
+ from transformers.models.deprecated.transfo_xl import tokenization_transfo_xl as data_utils
27
+ from transformers.models.deprecated.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
28
+ from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
29
+
30
+
31
+ logging.set_verbosity_info()
32
+
33
+ # We do this to be able to load python 2 datasets pickles
34
+ # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
35
+ data_utils.Vocab = data_utils.TransfoXLTokenizer
36
+ data_utils.Corpus = data_utils.TransfoXLCorpus
37
+ sys.modules["data_utils"] = data_utils
38
+ sys.modules["vocabulary"] = data_utils
39
+
40
+
41
+ def convert_transfo_xl_checkpoint_to_pytorch(
42
+ tf_checkpoint_path, transfo_xl_config_file, pytorch_dump_folder_path, transfo_xl_dataset_file
43
+ ):
44
+ if transfo_xl_dataset_file:
45
+ # Convert a pre-processed corpus (see original TensorFlow repo)
46
+ with open(transfo_xl_dataset_file, "rb") as fp:
47
+ corpus = pickle.load(fp, encoding="latin1")
48
+ # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
49
+ pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"]
50
+ print(f"Save vocabulary to {pytorch_vocab_dump_path}")
51
+ corpus_vocab_dict = corpus.vocab.__dict__
52
+ torch.save(corpus_vocab_dict, pytorch_vocab_dump_path)
53
+
54
+ corpus_dict_no_vocab = corpus.__dict__
55
+ corpus_dict_no_vocab.pop("vocab", None)
56
+ pytorch_dataset_dump_path = pytorch_dump_folder_path + "/" + CORPUS_NAME
57
+ print(f"Save dataset to {pytorch_dataset_dump_path}")
58
+ torch.save(corpus_dict_no_vocab, pytorch_dataset_dump_path)
59
+
60
+ if tf_checkpoint_path:
61
+ # Convert a pre-trained TensorFlow model
62
+ config_path = os.path.abspath(transfo_xl_config_file)
63
+ tf_path = os.path.abspath(tf_checkpoint_path)
64
+
65
+ print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.")
66
+ # Initialise PyTorch model
67
+ if transfo_xl_config_file == "":
68
+ config = TransfoXLConfig()
69
+ else:
70
+ config = TransfoXLConfig.from_json_file(transfo_xl_config_file)
71
+ print(f"Building PyTorch model from configuration: {config}")
72
+ model = TransfoXLLMHeadModel(config)
73
+
74
+ model = load_tf_weights_in_transfo_xl(model, config, tf_path)
75
+ # Save pytorch-model
76
+ pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME)
77
+ pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME)
78
+ print(f"Save PyTorch model to {os.path.abspath(pytorch_weights_dump_path)}")
79
+ torch.save(model.state_dict(), pytorch_weights_dump_path)
80
+ print(f"Save configuration file to {os.path.abspath(pytorch_config_dump_path)}")
81
+ with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
82
+ f.write(config.to_json_string())
83
+
84
+
85
+ if __name__ == "__main__":
86
+ parser = argparse.ArgumentParser()
87
+ parser.add_argument(
88
+ "--pytorch_dump_folder_path",
89
+ default=None,
90
+ type=str,
91
+ required=True,
92
+ help="Path to the folder to store the PyTorch model or dataset/vocab.",
93
+ )
94
+ parser.add_argument(
95
+ "--tf_checkpoint_path",
96
+ default="",
97
+ type=str,
98
+ help="An optional path to a TensorFlow checkpoint path to be converted.",
99
+ )
100
+ parser.add_argument(
101
+ "--transfo_xl_config_file",
102
+ default="",
103
+ type=str,
104
+ help=(
105
+ "An optional config json file corresponding to the pre-trained BERT model. \n"
106
+ "This specifies the model architecture."
107
+ ),
108
+ )
109
+ parser.add_argument(
110
+ "--transfo_xl_dataset_file",
111
+ default="",
112
+ type=str,
113
+ help="An optional dataset file to be converted in a vocabulary.",
114
+ )
115
+ args = parser.parse_args()
116
+ convert_transfo_xl_checkpoint_to_pytorch(
117
+ args.tf_checkpoint_path,
118
+ args.transfo_xl_config_file,
119
+ args.pytorch_dump_folder_path,
120
+ args.transfo_xl_dataset_file,
121
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py ADDED
@@ -0,0 +1,1122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ TF 2.0 Transformer XL model.
18
+ """
19
+
20
+ from __future__ import annotations
21
+
22
+ from dataclasses import dataclass
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import numpy as np
26
+ import tensorflow as tf
27
+
28
+ from ....modeling_tf_utils import (
29
+ TFModelInputType,
30
+ TFPreTrainedModel,
31
+ TFSequenceClassificationLoss,
32
+ get_initializer,
33
+ keras,
34
+ keras_serializable,
35
+ unpack_inputs,
36
+ )
37
+ from ....tf_utils import shape_list, stable_softmax
38
+ from ....utils import (
39
+ ModelOutput,
40
+ add_code_sample_docstrings,
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ logging,
44
+ )
45
+ from .configuration_transfo_xl import TransfoXLConfig
46
+ from .modeling_tf_transfo_xl_utilities import TFAdaptiveSoftmaxMask
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+ _CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103"
52
+ _CONFIG_FOR_DOC = "TransfoXLConfig"
53
+
54
+
55
+ from .._archive_maps import TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
56
+
57
+
58
+ class TFPositionalEmbedding(keras.layers.Layer):
59
+ def __init__(self, demb, **kwargs):
60
+ super().__init__(**kwargs)
61
+
62
+ self.inv_freq = 1 / (10000 ** (tf.range(0, demb, 2.0) / demb))
63
+
64
+ def call(self, pos_seq, bsz=None):
65
+ self.inv_freq = tf.cast(self.inv_freq, dtype=pos_seq.dtype)
66
+ sinusoid_inp = tf.einsum("i,j->ij", pos_seq, self.inv_freq)
67
+ pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
68
+
69
+ if bsz is not None:
70
+ return tf.tile(pos_emb[:, None, :], [1, bsz, 1])
71
+ else:
72
+ return pos_emb[:, None, :]
73
+
74
+
75
+ class TFPositionwiseFF(keras.layers.Layer):
76
+ def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5, init_std=0.02, **kwargs):
77
+ super().__init__(**kwargs)
78
+
79
+ self.d_model = d_model
80
+ self.d_inner = d_inner
81
+ self.dropout = dropout
82
+
83
+ self.layer_1 = keras.layers.Dense(
84
+ d_inner, kernel_initializer=get_initializer(init_std), activation=tf.nn.relu, name="CoreNet_._0"
85
+ )
86
+ self.drop_1 = keras.layers.Dropout(dropout)
87
+ self.layer_2 = keras.layers.Dense(d_model, kernel_initializer=get_initializer(init_std), name="CoreNet_._3")
88
+ self.drop_2 = keras.layers.Dropout(dropout)
89
+
90
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm")
91
+
92
+ self.pre_lnorm = pre_lnorm
93
+
94
+ def call(self, inp, training=False):
95
+ if self.pre_lnorm:
96
+ # layer normalization + positionwise feed-forward
97
+ core_out = self.layer_norm(inp)
98
+ core_out = self.layer_1(core_out)
99
+ core_out = self.drop_1(core_out, training=training)
100
+ core_out = self.layer_2(core_out)
101
+ core_out = self.drop_2(core_out, training=training)
102
+
103
+ # residual connection
104
+ output = core_out + inp
105
+ else:
106
+ # positionwise feed-forward
107
+ core_out = self.layer_1(inp)
108
+ core_out = self.drop_1(core_out, training=training)
109
+ core_out = self.layer_2(core_out)
110
+ core_out = self.drop_2(core_out, training=training)
111
+
112
+ # residual connection + layer normalization
113
+ output = self.layer_norm(inp + core_out)
114
+
115
+ return output
116
+
117
+
118
+ class TFRelPartialLearnableMultiHeadAttn(keras.layers.Layer):
119
+ def __init__(
120
+ self,
121
+ n_head,
122
+ d_model,
123
+ d_head,
124
+ dropout,
125
+ dropatt=0.0,
126
+ pre_lnorm=False,
127
+ r_r_bias=None,
128
+ r_w_bias=None,
129
+ layer_norm_epsilon=1e-5,
130
+ init_std=0.02,
131
+ output_attentions=False,
132
+ **kwargs,
133
+ ):
134
+ super().__init__(**kwargs)
135
+
136
+ self.n_head = n_head
137
+ self.d_model = d_model
138
+ self.d_head = d_head
139
+ self.dropout = dropout
140
+ self.output_attentions = output_attentions
141
+
142
+ self.qkv_net = keras.layers.Dense(
143
+ 3 * n_head * d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="qkv_net"
144
+ )
145
+
146
+ self.drop = keras.layers.Dropout(dropout)
147
+ self.dropatt = keras.layers.Dropout(dropatt)
148
+ self.o_net = keras.layers.Dense(
149
+ d_model, kernel_initializer=get_initializer(init_std), use_bias=False, name="o_net"
150
+ )
151
+
152
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm")
153
+
154
+ self.scale = 1 / (d_head**0.5)
155
+
156
+ self.pre_lnorm = pre_lnorm
157
+
158
+ if r_r_bias is not None and r_w_bias is not None: # Biases are shared
159
+ self.r_r_bias = r_r_bias
160
+ self.r_w_bias = r_w_bias
161
+ else:
162
+ self.r_r_bias = None
163
+ self.r_w_bias = None
164
+
165
+ self.r_net = keras.layers.Dense(
166
+ self.n_head * self.d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="r_net"
167
+ )
168
+
169
+ def build(self, input_shape):
170
+ if self.r_r_bias is None or self.r_w_bias is None: # Biases are not shared
171
+ self.r_r_bias = self.add_weight(
172
+ shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias"
173
+ )
174
+ self.r_w_bias = self.add_weight(
175
+ shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias"
176
+ )
177
+ super().build(input_shape)
178
+
179
+ def _rel_shift(self, x):
180
+ x_size = shape_list(x)
181
+
182
+ x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]])
183
+ x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]])
184
+ x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
185
+ x = tf.reshape(x, x_size)
186
+
187
+ return x
188
+
189
+ def call(self, w, r, attn_mask, mems, head_mask, output_attentions, training=False):
190
+ qlen, rlen, bsz = shape_list(w)[0], shape_list(r)[0], shape_list(w)[1]
191
+
192
+ if mems is not None:
193
+ mems = tf.cast(mems, dtype=w.dtype)
194
+ cat = tf.concat([mems, w], 0)
195
+ if self.pre_lnorm:
196
+ w_heads = self.qkv_net(self.layer_norm(cat))
197
+ else:
198
+ w_heads = self.qkv_net(cat)
199
+ r_head_k = self.r_net(r)
200
+
201
+ w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1)
202
+ w_head_q = w_head_q[-qlen:]
203
+ else:
204
+ if self.pre_lnorm:
205
+ w_heads = self.qkv_net(self.layer_norm(w))
206
+ else:
207
+ w_heads = self.qkv_net(w)
208
+ r_head_k = self.r_net(r)
209
+
210
+ w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1)
211
+
212
+ klen = shape_list(w_head_k)[0]
213
+
214
+ w_head_q = tf.reshape(w_head_q, (qlen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head
215
+ w_head_k = tf.reshape(w_head_k, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head
216
+ w_head_v = tf.reshape(w_head_v, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head
217
+
218
+ r_head_k = tf.reshape(r_head_k, (rlen, self.n_head, self.d_head)) # qlen x n_head x d_head
219
+
220
+ # compute attention score
221
+ rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head
222
+ AC = tf.einsum("ibnd,jbnd->ijbn", rw_head_q, w_head_k) # qlen x klen x bsz x n_head
223
+
224
+ rr_head_q = w_head_q + self.r_r_bias
225
+ BD = tf.einsum("ibnd,jnd->ijbn", rr_head_q, r_head_k) # qlen x klen x bsz x n_head
226
+ BD = self._rel_shift(BD)
227
+
228
+ # [qlen x klen x bsz x n_head]
229
+ attn_score = AC + BD
230
+ attn_score = attn_score * self.scale
231
+
232
+ # compute attention probability
233
+ if attn_mask is not None:
234
+ attn_mask_t = attn_mask[:, :, None, None]
235
+ attn_mask_t = tf.cast(attn_mask_t, dtype=attn_score.dtype)
236
+ attn_score = attn_score * (1.0 - attn_mask_t) - 1e30 * attn_mask_t
237
+
238
+ # [qlen x klen x bsz x n_head]
239
+ attn_prob = stable_softmax(attn_score, axis=1)
240
+ attn_prob = self.dropatt(attn_prob, training=training)
241
+
242
+ # Mask heads if we want to
243
+ if head_mask is not None:
244
+ attn_prob = attn_prob * head_mask
245
+
246
+ # compute attention vector
247
+ attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, w_head_v)
248
+
249
+ # [qlen x bsz x n_head x d_head]
250
+ attn_vec_sizes = shape_list(attn_vec)
251
+ attn_vec = tf.reshape(attn_vec, (attn_vec_sizes[0], attn_vec_sizes[1], self.n_head * self.d_head))
252
+
253
+ # linear projection
254
+ attn_out = self.o_net(attn_vec)
255
+ attn_out = self.drop(attn_out, training=training)
256
+
257
+ if self.pre_lnorm:
258
+ # residual connection
259
+ outputs = [w + attn_out]
260
+ else:
261
+ # residual connection + layer normalization
262
+ outputs = [self.layer_norm(w + attn_out)]
263
+
264
+ if output_attentions:
265
+ outputs.append(attn_prob)
266
+
267
+ return outputs
268
+
269
+
270
+ class TFRelPartialLearnableDecoderLayer(keras.layers.Layer):
271
+ def __init__(
272
+ self,
273
+ n_head,
274
+ d_model,
275
+ d_head,
276
+ d_inner,
277
+ dropout,
278
+ dropatt=0.0,
279
+ pre_lnorm=False,
280
+ r_w_bias=None,
281
+ r_r_bias=None,
282
+ layer_norm_epsilon=1e-5,
283
+ init_std=0.02,
284
+ output_attentions=False,
285
+ **kwargs,
286
+ ):
287
+ super().__init__(**kwargs)
288
+
289
+ self.dec_attn = TFRelPartialLearnableMultiHeadAttn(
290
+ n_head,
291
+ d_model,
292
+ d_head,
293
+ dropout,
294
+ dropatt=dropatt,
295
+ pre_lnorm=pre_lnorm,
296
+ r_w_bias=r_w_bias,
297
+ r_r_bias=r_r_bias,
298
+ init_std=init_std,
299
+ layer_norm_epsilon=layer_norm_epsilon,
300
+ output_attentions=output_attentions,
301
+ name="dec_attn",
302
+ )
303
+ self.pos_ff = TFPositionwiseFF(
304
+ d_model,
305
+ d_inner,
306
+ dropout,
307
+ pre_lnorm=pre_lnorm,
308
+ init_std=init_std,
309
+ layer_norm_epsilon=layer_norm_epsilon,
310
+ name="pos_ff",
311
+ )
312
+
313
+ def call(self, dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=False):
314
+ attn_outputs = self.dec_attn(dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=training)
315
+ ff_output = self.pos_ff(attn_outputs[0], training=training)
316
+
317
+ outputs = [ff_output] + attn_outputs[1:]
318
+
319
+ return outputs
320
+
321
+
322
+ class TFTransfoEmbeddings(keras.layers.Layer):
323
+ def __init__(self, vocab_size, emb_size, init_std, **kwargs):
324
+ super().__init__(**kwargs)
325
+
326
+ self.vocab_size = vocab_size
327
+ self.emb_size = emb_size
328
+ self.init_std = init_std
329
+
330
+ def build(self, input_shape):
331
+ self.weight = self.add_weight(
332
+ shape=(self.vocab_size, self.emb_size),
333
+ initializer=get_initializer(self.init_std),
334
+ name="embeddings",
335
+ )
336
+
337
+ super().build(input_shape)
338
+
339
+ def call(self, inputs):
340
+ return tf.gather(self.weight, inputs)
341
+
342
+
343
+ class TFAdaptiveEmbedding(keras.layers.Layer):
344
+ def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, init_std=0.02, sample_softmax=False, **kwargs):
345
+ super().__init__(**kwargs)
346
+
347
+ self.n_token = n_token
348
+ self.d_embed = d_embed
349
+ self.init_std = init_std
350
+
351
+ self.cutoffs = cutoffs + [n_token]
352
+ self.div_val = div_val
353
+ self.d_proj = d_proj
354
+
355
+ self.emb_scale = d_proj**0.5
356
+
357
+ self.cutoff_ends = [0] + self.cutoffs
358
+
359
+ self.emb_layers = []
360
+ self.emb_projs = []
361
+
362
+ if div_val == 1:
363
+ raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
364
+ else:
365
+ for i in range(len(self.cutoffs)):
366
+ l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
367
+ d_emb_i = d_embed // (div_val**i)
368
+ self.emb_layers.append(
369
+ TFTransfoEmbeddings(
370
+ r_idx - l_idx,
371
+ d_emb_i,
372
+ init_std,
373
+ name=f"emb_layers_._{i}",
374
+ )
375
+ )
376
+
377
+ def build(self, input_shape):
378
+ for i in range(len(self.cutoffs)):
379
+ d_emb_i = self.d_embed // (self.div_val**i)
380
+ self.emb_projs.append(
381
+ self.add_weight(
382
+ shape=(d_emb_i, self.d_proj),
383
+ initializer=get_initializer(self.init_std),
384
+ trainable=True,
385
+ name=f"emb_projs_._{i}",
386
+ )
387
+ )
388
+
389
+ super().build(input_shape)
390
+
391
+ def call(self, inp):
392
+ if self.div_val == 1:
393
+ raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
394
+ else:
395
+ inp_flat = tf.reshape(inp, (-1,))
396
+ emb_flat = tf.zeros([shape_list(inp_flat)[0], self.d_proj])
397
+ for i in range(len(self.cutoffs)):
398
+ l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
399
+
400
+ mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
401
+
402
+ inp_i = tf.boolean_mask(inp_flat, mask_i) - l_idx
403
+ emb_i = self.emb_layers[i](inp_i)
404
+ emb_i = tf.einsum("id,de->ie", emb_i, self.emb_projs[i])
405
+
406
+ mask_idx = tf.where(mask_i)
407
+ scatter = tf.scatter_nd(mask_idx, emb_i, shape_list(emb_flat))
408
+ emb_flat = tf.cast(emb_flat, dtype=scatter.dtype)
409
+ emb_flat += scatter
410
+
411
+ embed_shape = shape_list(inp) + [self.d_proj]
412
+ embed = tf.reshape(emb_flat, embed_shape)
413
+
414
+ embed *= self.emb_scale
415
+
416
+ return embed
417
+
418
+
419
+ @keras_serializable
420
+ class TFTransfoXLMainLayer(keras.layers.Layer):
421
+ config_class = TransfoXLConfig
422
+
423
+ def __init__(self, config, **kwargs):
424
+ super().__init__(**kwargs)
425
+
426
+ self.config = config
427
+ self.output_hidden_states = config.output_hidden_states
428
+ self.output_attentions = config.output_attentions
429
+ self.return_dict = config.use_return_dict
430
+
431
+ self.n_token = config.vocab_size
432
+
433
+ self.d_embed = config.d_embed
434
+ self.d_model = config.d_model
435
+ self.n_head = config.n_head
436
+ self.d_head = config.d_head
437
+ self.untie_r = config.untie_r
438
+
439
+ self.word_emb = TFAdaptiveEmbedding(
440
+ config.vocab_size,
441
+ config.d_embed,
442
+ config.d_model,
443
+ config.cutoffs,
444
+ div_val=config.div_val,
445
+ init_std=config.init_std,
446
+ name="word_emb",
447
+ )
448
+
449
+ self.drop = keras.layers.Dropout(config.dropout)
450
+
451
+ self.n_layer = config.n_layer
452
+ self.mem_len = config.mem_len
453
+ self.attn_type = config.attn_type
454
+
455
+ self.layers = []
456
+ if config.attn_type == 0: # the default attention
457
+ for i in range(config.n_layer):
458
+ self.layers.append(
459
+ TFRelPartialLearnableDecoderLayer(
460
+ config.n_head,
461
+ config.d_model,
462
+ config.d_head,
463
+ config.d_inner,
464
+ config.dropout,
465
+ dropatt=config.dropatt,
466
+ pre_lnorm=config.pre_lnorm,
467
+ r_w_bias=None if self.untie_r else self.r_w_bias,
468
+ r_r_bias=None if self.untie_r else self.r_r_bias,
469
+ layer_norm_epsilon=config.layer_norm_epsilon,
470
+ init_std=config.init_std,
471
+ output_attentions=self.output_attentions,
472
+ name=f"layers_._{i}",
473
+ )
474
+ )
475
+ else: # learnable embeddings and absolute embeddings
476
+ raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
477
+
478
+ self.same_length = config.same_length
479
+ self.clamp_len = config.clamp_len
480
+
481
+ if self.attn_type == 0: # default attention
482
+ self.pos_emb = TFPositionalEmbedding(self.d_model, name="pos_emb")
483
+ else: # learnable embeddings and absolute embeddings
484
+ raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
485
+
486
+ def build(self, input_shape):
487
+ if not self.untie_r:
488
+ self.r_w_bias = self.add_weight(
489
+ shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias"
490
+ )
491
+ self.r_r_bias = self.add_weight(
492
+ shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias"
493
+ )
494
+ super().build(input_shape)
495
+
496
+ def get_input_embeddings(self):
497
+ return self.word_emb
498
+
499
+ def set_input_embeddings(self, value):
500
+ raise NotImplementedError
501
+
502
+ def backward_compatible(self):
503
+ self.sample_softmax = -1
504
+
505
+ def reset_memory_length(self, mem_len):
506
+ self.mem_len = mem_len
507
+
508
+ def _prune_heads(self, heads):
509
+ raise NotImplementedError
510
+
511
+ def init_mems(self, bsz):
512
+ if self.mem_len > 0:
513
+ mems = []
514
+ for i in range(self.n_layer):
515
+ empty = tf.zeros([self.mem_len, bsz, self.d_model])
516
+ mems.append(empty)
517
+
518
+ return mems
519
+ else:
520
+ return None
521
+
522
+ def _update_mems(self, hids, mems, mlen, qlen):
523
+ # does not deal with None
524
+ if mems is None:
525
+ return None
526
+
527
+ # mems is not None
528
+ assert len(hids) == len(mems), "len(hids) != len(mems)"
529
+
530
+ # There are `mlen + qlen` steps that can be cached into mems
531
+ new_mems = []
532
+ end_idx = mlen + tf.math.maximum(0, qlen)
533
+ beg_idx = tf.math.maximum(0, end_idx - tf.convert_to_tensor(self.mem_len))
534
+ for i in range(len(hids)):
535
+ mems[i] = tf.cast(mems[i], dtype=hids[i].dtype)
536
+ cat = tf.concat([mems[i], hids[i]], axis=0)
537
+ tf.stop_gradient(cat)
538
+ new_mems.append(cat[beg_idx:end_idx])
539
+
540
+ return new_mems
541
+
542
+ @unpack_inputs
543
+ def call(
544
+ self,
545
+ input_ids: TFModelInputType | None = None,
546
+ mems: List[tf.Tensor] | None = None,
547
+ head_mask: np.ndarray | tf.Tensor | None = None,
548
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
549
+ output_attentions: Optional[bool] = None,
550
+ output_hidden_states: Optional[bool] = None,
551
+ return_dict: Optional[bool] = None,
552
+ labels: np.ndarray | tf.Tensor | None = None,
553
+ training: bool = False,
554
+ ):
555
+ # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
556
+ # so we transpose here from shape [bsz, len] to shape [len, bsz]
557
+ if input_ids is not None and inputs_embeds is not None:
558
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
559
+ elif input_ids is not None:
560
+ input_ids = tf.transpose(input_ids, perm=(1, 0))
561
+ qlen, bsz = shape_list(input_ids)
562
+ elif inputs_embeds is not None:
563
+ inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2))
564
+ qlen, bsz = shape_list(inputs_embeds)[:2]
565
+ else:
566
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
567
+
568
+ if mems is None:
569
+ mems = self.init_mems(bsz)
570
+
571
+ # Prepare head mask if needed
572
+ # 1.0 in head_mask indicate we keep the head
573
+ # attention_probs has shape bsz x n_heads x N x N
574
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
575
+ # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
576
+ if head_mask is not None:
577
+ raise NotImplementedError
578
+ else:
579
+ head_mask = [None] * self.n_layer
580
+
581
+ if inputs_embeds is not None:
582
+ word_emb = inputs_embeds
583
+ else:
584
+ word_emb = self.word_emb(input_ids)
585
+
586
+ mlen = shape_list(mems[0])[0] if mems is not None else 0
587
+ klen = mlen + qlen
588
+
589
+ # Compute decoder attention mask
590
+ all_ones = tf.ones([qlen, klen], dtype=tf.int32)
591
+ upper_mask = 1 - tf.linalg.band_part(tf.ones([qlen, klen], dtype=tf.int32), -1, mlen)
592
+ if self.same_length:
593
+ mask_len = klen - self.mem_len
594
+ mask_shift_len = qlen - tf.nn.relu(mask_len) # Lazy clamping of negatives to zero
595
+
596
+ # Use an indicator variable instead of a conditional to keep the compiler happy
597
+ lower_mask = tf.linalg.band_part(all_ones, -1, 0) - (
598
+ tf.linalg.band_part(all_ones, mask_shift_len - 1, 0) * tf.cast(mask_shift_len != 0, tf.int32)
599
+ )
600
+ dec_attn_mask = upper_mask + lower_mask
601
+ else:
602
+ dec_attn_mask = upper_mask
603
+
604
+ hids = []
605
+ attentions = [] if output_attentions else None
606
+ if self.attn_type == 0: # default
607
+ pos_seq = tf.range(klen - 1, -1, -1.0)
608
+ if self.clamp_len > 0:
609
+ pos_seq = tf.minimum(pos_seq, self.clamp_len)
610
+ pos_emb = self.pos_emb(pos_seq)
611
+
612
+ core_out = self.drop(word_emb, training=training)
613
+ pos_emb = self.drop(pos_emb, training=training)
614
+
615
+ for i, layer in enumerate(self.layers):
616
+ hids.append(core_out)
617
+ mems_i = None if mems is None else mems[i]
618
+ layer_outputs = layer(
619
+ core_out,
620
+ pos_emb,
621
+ dec_attn_mask,
622
+ mems_i,
623
+ head_mask[i],
624
+ output_attentions,
625
+ training=training,
626
+ )
627
+ core_out = layer_outputs[0]
628
+ if output_attentions:
629
+ attentions.append(layer_outputs[1])
630
+ else: # learnable embeddings and absolute embeddings
631
+ raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
632
+
633
+ core_out = self.drop(core_out, training=training)
634
+
635
+ new_mems = self._update_mems(hids, mems, mlen, qlen)
636
+
637
+ # We transpose back here to shape [bsz, len, hidden_dim]
638
+ core_out = tf.transpose(core_out, perm=(1, 0, 2))
639
+
640
+ if output_hidden_states:
641
+ # Transpose to library standard shape [bsz, len, hidden_dim] and add last layer
642
+ hids = tuple(tf.transpose(t, perm=(1, 0, 2)) for t in hids)
643
+ hids = hids + (core_out,)
644
+ else:
645
+ hids = None
646
+ if output_attentions:
647
+ # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
648
+ attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions)
649
+
650
+ if not return_dict:
651
+ return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None)
652
+
653
+ return TFTransfoXLModelOutput(
654
+ last_hidden_state=core_out,
655
+ mems=new_mems,
656
+ hidden_states=hids,
657
+ attentions=attentions,
658
+ )
659
+
660
+
661
+ class TFTransfoXLPreTrainedModel(TFPreTrainedModel):
662
+ """
663
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
664
+ models.
665
+ """
666
+
667
+ config_class = TransfoXLConfig
668
+ base_model_prefix = "transformer"
669
+
670
+
671
+ @dataclass
672
+ class TFTransfoXLModelOutput(ModelOutput):
673
+ """
674
+ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
675
+
676
+ Args:
677
+ last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
678
+ Sequence of hidden-states at the output of the last layer of the model.
679
+ mems (`List[tf.Tensor]` of length `config.n_layers`):
680
+ Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
681
+ input) to speed up sequential decoding. The token ids which have their past given to this model should not
682
+ be passed as input ids as they have already been computed.
683
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
684
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
685
+ `(batch_size, sequence_length, hidden_size)`.
686
+
687
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
688
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
689
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
690
+ sequence_length)`.
691
+
692
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
693
+ heads.
694
+ """
695
+
696
+ last_hidden_state: tf.Tensor = None
697
+ mems: List[tf.Tensor] = None
698
+ hidden_states: Tuple[tf.Tensor] | None = None
699
+ attentions: Tuple[tf.Tensor] | None = None
700
+
701
+
702
+ @dataclass
703
+ class TFTransfoXLLMHeadModelOutput(ModelOutput):
704
+ """
705
+ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
706
+
707
+ Args:
708
+ losses (`tf.Tensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided):
709
+ Language modeling losses (not reduced).
710
+ prediction_scores (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
711
+ Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax).
712
+ mems (`List[tf.Tensor]` of length `config.n_layers`):
713
+ Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
714
+ input) to speed up sequential decoding. The token ids which have their past given to this model should not
715
+ be passed as input ids as they have already been computed.
716
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
717
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
718
+ `(batch_size, sequence_length, hidden_size)`.
719
+
720
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
721
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
722
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
723
+ sequence_length)`.
724
+
725
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
726
+ heads.
727
+ """
728
+
729
+ prediction_scores: tf.Tensor = None
730
+ mems: List[tf.Tensor] = None
731
+ hidden_states: Tuple[tf.Tensor] | None = None
732
+ attentions: Tuple[tf.Tensor] | None = None
733
+
734
+
735
+ @dataclass
736
+ class TFTransfoXLSequenceClassifierOutputWithPast(ModelOutput):
737
+ """
738
+ Base class for outputs of sentence classification models.
739
+
740
+ Args:
741
+ loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
742
+ Classification (or regression if config.num_labels==1) loss.
743
+ logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
744
+ Classification (or regression if config.num_labels==1) scores (before SoftMax).
745
+ mems (`List[tf.Tensor]` of length `config.n_layers`):
746
+ Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
747
+ input) to speed up sequential decoding. The token ids which have their past given to this model should not
748
+ be passed as input ids as they have already been computed.
749
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
750
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
751
+ `(batch_size, sequence_length, hidden_size)`.
752
+
753
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
754
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
755
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
756
+ sequence_length)`.
757
+
758
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
759
+ heads.
760
+ """
761
+
762
+ loss: tf.Tensor | None = None
763
+ logits: tf.Tensor = None
764
+ mems: List[tf.Tensor] = None
765
+ hidden_states: Tuple[tf.Tensor] | None = None
766
+ attentions: Tuple[tf.Tensor] | None = None
767
+
768
+
769
+ TRANSFO_XL_START_DOCSTRING = r"""
770
+
771
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
772
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
773
+ etc.)
774
+
775
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
776
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
777
+ behavior.
778
+
779
+ <Tip>
780
+
781
+ TensorFlow models and layers in `transformers` accept two formats as input:
782
+
783
+ - having all inputs as keyword arguments (like PyTorch models), or
784
+ - having all inputs as a list, tuple or dict in the first positional argument.
785
+
786
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
787
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
788
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
789
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
790
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
791
+ positional argument:
792
+
793
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
794
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
795
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
796
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
797
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
798
+
799
+ Note that when creating models and layers with
800
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
801
+ about any of this, as you can just pass inputs like you would to any other Python function!
802
+
803
+ </Tip>
804
+
805
+ Parameters:
806
+ config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model.
807
+ Initializing with a config file does not load the weights associated with the model, only the
808
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
809
+ """
810
+
811
+ TRANSFO_XL_INPUTS_DOCSTRING = r"""
812
+ Args:
813
+ input_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`):
814
+ Indices of input sequence tokens in the vocabulary.
815
+
816
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
817
+ [`PreTrainedTokenizer.encode`] for details.
818
+
819
+ [What are input IDs?](../glossary#input-ids)
820
+ mems (`List[tf.Tensor]` of length `config.n_layers`):
821
+ Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
822
+ `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems
823
+ given to this model should not be passed as `input_ids` as they have already been computed.
824
+ head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
825
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
826
+
827
+ - 1 indicates the head is **not masked**,
828
+ - 0 indicates the head is **masked**.
829
+ inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
830
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
831
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
832
+ model's internal embedding lookup matrix.
833
+ output_attentions (`bool`, *optional*):
834
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
835
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
836
+ config will be used instead.
837
+ output_hidden_states (`bool`, *optional*):
838
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
839
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
840
+ used instead.
841
+ return_dict (`bool`, *optional*):
842
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
843
+ eager mode, in graph mode the value will always be set to True.
844
+ training (`bool`, *optional*, defaults to `False`):
845
+ Whether or not to use the model in training mode (some modules like dropout modules have different
846
+ behaviors between training and evaluation).
847
+ """
848
+
849
+
850
+ @add_start_docstrings(
851
+ "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
852
+ TRANSFO_XL_START_DOCSTRING,
853
+ )
854
+ class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
855
+ def __init__(self, config, *inputs, **kwargs):
856
+ super().__init__(config, *inputs, **kwargs)
857
+ self.transformer = TFTransfoXLMainLayer(config, name="transformer")
858
+
859
+ @unpack_inputs
860
+ @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
861
+ @add_code_sample_docstrings(
862
+ checkpoint=_CHECKPOINT_FOR_DOC,
863
+ output_type=TFTransfoXLModelOutput,
864
+ config_class=_CONFIG_FOR_DOC,
865
+ )
866
+ def call(
867
+ self,
868
+ input_ids: TFModelInputType | None = None,
869
+ mems: List[tf.Tensor] | None = None,
870
+ head_mask: np.ndarray | tf.Tensor | None = None,
871
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
872
+ output_attentions: bool | None = None,
873
+ output_hidden_states: bool | None = None,
874
+ return_dict: bool | None = None,
875
+ training: bool = False,
876
+ ) -> TFTransfoXLModelOutput | Tuple[tf.Tensor]:
877
+ outputs = self.transformer(
878
+ input_ids=input_ids,
879
+ mems=mems,
880
+ head_mask=head_mask,
881
+ inputs_embeds=inputs_embeds,
882
+ output_attentions=output_attentions,
883
+ output_hidden_states=output_hidden_states,
884
+ return_dict=return_dict,
885
+ training=training,
886
+ )
887
+
888
+ return outputs
889
+
890
+
891
+ @add_start_docstrings(
892
+ """
893
+ The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive
894
+ input embeddings)
895
+ """,
896
+ TRANSFO_XL_START_DOCSTRING,
897
+ )
898
+ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
899
+ def __init__(self, config):
900
+ super().__init__(config)
901
+ self.transformer = TFTransfoXLMainLayer(config, name="transformer")
902
+ self.sample_softmax = config.sample_softmax
903
+ assert self.sample_softmax <= 0, (
904
+ "Sampling from the softmax is not implemented yet. Please look at issue: #3310:"
905
+ " https://github.com/huggingface/transformers/issues/3310"
906
+ )
907
+
908
+ self.crit = TFAdaptiveSoftmaxMask(
909
+ config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, name="crit"
910
+ )
911
+
912
+ def _resize_token_embeddings(self, new_num_tokens):
913
+ raise NotImplementedError()
914
+
915
+ def get_output_embeddings(self):
916
+ """Double-check if you are using adaptive softmax."""
917
+ if len(self.crit.out_layers) > 0:
918
+ return self.crit.out_layers[-1]
919
+ return None
920
+
921
+ def reset_memory_length(self, mem_len):
922
+ self.transformer.reset_memory_length(mem_len)
923
+
924
+ def init_mems(self, bsz):
925
+ return self.transformer.init_mems(bsz)
926
+
927
+ @unpack_inputs
928
+ @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
929
+ @add_code_sample_docstrings(
930
+ checkpoint=_CHECKPOINT_FOR_DOC,
931
+ output_type=TFTransfoXLLMHeadModelOutput,
932
+ config_class=_CONFIG_FOR_DOC,
933
+ )
934
+ def call(
935
+ self,
936
+ input_ids: TFModelInputType | None = None,
937
+ mems: List[tf.Tensor] | None = None,
938
+ head_mask: np.ndarray | tf.Tensor | None = None,
939
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
940
+ output_attentions: bool | None = None,
941
+ output_hidden_states: bool | None = None,
942
+ return_dict: bool | None = None,
943
+ labels: np.ndarray | tf.Tensor | None = None,
944
+ training: bool = False,
945
+ ) -> TFTransfoXLLMHeadModelOutput | Tuple[tf.Tensor]:
946
+ if input_ids is not None:
947
+ bsz, tgt_len = shape_list(input_ids)[:2]
948
+ else:
949
+ bsz, tgt_len = shape_list(inputs_embeds)[:2]
950
+
951
+ transformer_outputs = self.transformer(
952
+ input_ids,
953
+ mems,
954
+ head_mask,
955
+ inputs_embeds,
956
+ output_attentions,
957
+ output_hidden_states,
958
+ return_dict,
959
+ training=training,
960
+ )
961
+
962
+ last_hidden = transformer_outputs[0]
963
+ pred_hid = last_hidden[:, -tgt_len:]
964
+
965
+ softmax_output = self.crit(pred_hid, labels, training=training)
966
+ prediction_scores = softmax_output if labels is None else ()
967
+
968
+ if not return_dict:
969
+ return (prediction_scores,) + transformer_outputs[1:]
970
+
971
+ return TFTransfoXLLMHeadModelOutput(
972
+ prediction_scores=prediction_scores,
973
+ mems=transformer_outputs.mems,
974
+ hidden_states=transformer_outputs.hidden_states,
975
+ attentions=transformer_outputs.attentions,
976
+ )
977
+
978
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs):
979
+ inputs = {}
980
+
981
+ # if past is defined in model kwargs then use it for faster decoding
982
+ if past_key_values:
983
+ input_ids = tf.expand_dims(input_ids[:, -1], axis=-1)
984
+ else:
985
+ input_ids = input_ids
986
+
987
+ return inputs
988
+
989
+ # Adapted from the torch tie_weights function
990
+ def tf_to_pt_weight_rename(self, tf_weight):
991
+ if self.config.tie_word_embeddings and "crit.out_layers" in tf_weight:
992
+ return tf_weight, tf_weight.replace("crit.out_layers", "transformer.word_emb.emb_layers")
993
+ elif self.config.tie_projs and "crit.out_projs" in tf_weight:
994
+ for i, tie_proj in enumerate(self.config.tie_projs):
995
+ if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
996
+ # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
997
+ return tf_weight, tf_weight.replace(f"crit.out_projs.{i}", "transformer.word_emb.emb_projs.0")
998
+ elif tie_proj and self.config.div_val != 1:
999
+ # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
1000
+ return tf_weight, tf_weight.replace("crit.out_projs", "transformer.word_emb.emb_projs")
1001
+ else:
1002
+ return (tf_weight,)
1003
+
1004
+
1005
+ @add_start_docstrings(
1006
+ """
1007
+ The Transfo XL Model transformer with a sequence classification head on top (linear layer).
1008
+
1009
+ [`TFTransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal
1010
+ models (e.g. GPT-1,GPT-2) do.
1011
+
1012
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1013
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1014
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1015
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1016
+ each row of the batch).
1017
+ """,
1018
+ TRANSFO_XL_START_DOCSTRING,
1019
+ )
1020
+ class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenceClassificationLoss):
1021
+ def __init__(self, config, *inputs, **kwargs):
1022
+ super().__init__(config, *inputs, **kwargs)
1023
+ self.num_labels = config.num_labels
1024
+ self.score = keras.layers.Dense(
1025
+ config.num_labels,
1026
+ kernel_initializer=get_initializer(config.init_range),
1027
+ name="score",
1028
+ use_bias=False,
1029
+ )
1030
+ self.transformer = TFTransfoXLMainLayer(config, name="transformer")
1031
+
1032
+ def get_output_embeddings(self):
1033
+ # Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too.
1034
+ logger.warning(
1035
+ "Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed "
1036
+ "in transformers v4.32."
1037
+ )
1038
+ return self.transformer.word_emb
1039
+
1040
+ @unpack_inputs
1041
+ @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
1042
+ @add_code_sample_docstrings(
1043
+ checkpoint=_CHECKPOINT_FOR_DOC,
1044
+ output_type=TFTransfoXLSequenceClassifierOutputWithPast,
1045
+ config_class=_CONFIG_FOR_DOC,
1046
+ )
1047
+ def call(
1048
+ self,
1049
+ input_ids: TFModelInputType | None = None,
1050
+ mems: List[tf.Tensor] | None = None,
1051
+ head_mask: np.ndarray | tf.Tensor | None = None,
1052
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
1053
+ output_attentions: Optional[bool] = None,
1054
+ output_hidden_states: Optional[bool] = None,
1055
+ return_dict: Optional[bool] = None,
1056
+ labels: np.ndarray | tf.Tensor | None = None,
1057
+ training: Optional[bool] = False,
1058
+ ) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]:
1059
+ r"""
1060
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1061
+ Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
1062
+ config.vocab_size - 1]`.
1063
+ """
1064
+ transformer_outputs = self.transformer(
1065
+ input_ids=input_ids,
1066
+ mems=mems,
1067
+ head_mask=head_mask,
1068
+ inputs_embeds=inputs_embeds,
1069
+ output_attentions=output_attentions,
1070
+ output_hidden_states=output_hidden_states,
1071
+ return_dict=return_dict,
1072
+ training=training,
1073
+ )
1074
+
1075
+ hidden_states = transformer_outputs[0]
1076
+ logits = self.score(hidden_states)
1077
+ in_logits = None
1078
+ if self.config.pad_token_id is None:
1079
+ sequence_lengths = -1
1080
+ else:
1081
+ if input_ids is not None:
1082
+ sequence_lengths = (
1083
+ tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1)
1084
+ - 1
1085
+ )
1086
+ sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1)
1087
+ in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
1088
+ else:
1089
+ sequence_lengths = -1
1090
+ logger.warning(
1091
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1092
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1093
+ )
1094
+ loss = None
1095
+
1096
+ if labels is not None:
1097
+ if input_ids is not None:
1098
+ batch_size, sequence_length = shape_list(input_ids)[:2]
1099
+ else:
1100
+ batch_size, sequence_length = shape_list(inputs_embeds)[:2]
1101
+ assert (
1102
+ self.config.pad_token_id is not None or batch_size == 1
1103
+ ), "Cannot handle batch sizes > 1 if no padding token is defined."
1104
+
1105
+ if not tf.is_tensor(sequence_lengths):
1106
+ in_logits = logits[0:batch_size, sequence_lengths]
1107
+
1108
+ loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels]))
1109
+
1110
+ pooled_logits = in_logits if in_logits is not None else logits
1111
+
1112
+ if not return_dict:
1113
+ output = (pooled_logits,) + transformer_outputs[1:]
1114
+ return ((loss,) + output) if loss is not None else output
1115
+
1116
+ return TFTransfoXLSequenceClassifierOutputWithPast(
1117
+ loss=loss,
1118
+ logits=pooled_logits,
1119
+ mems=transformer_outputs.mems,
1120
+ hidden_states=transformer_outputs.hidden_states,
1121
+ attentions=transformer_outputs.attentions,
1122
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ A TF 2.0 Adaptive Softmax for Transformer XL model.
18
+ """
19
+
20
+
21
+ import tensorflow as tf
22
+
23
+ from ....modeling_tf_utils import keras
24
+ from ....tf_utils import shape_list
25
+
26
+
27
+ class TFAdaptiveSoftmaxMask(keras.layers.Layer):
28
+ def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs):
29
+ super().__init__(**kwargs)
30
+
31
+ self.vocab_size = vocab_size
32
+ self.d_embed = d_embed
33
+ self.d_proj = d_proj
34
+
35
+ self.cutoffs = cutoffs + [vocab_size]
36
+ self.cutoff_ends = [0] + self.cutoffs
37
+ self.div_val = div_val
38
+
39
+ self.shortlist_size = self.cutoffs[0]
40
+ self.n_clusters = len(self.cutoffs) - 1
41
+ self.head_size = self.shortlist_size + self.n_clusters
42
+ self.keep_order = keep_order
43
+
44
+ self.out_layers = []
45
+ self.out_projs = []
46
+
47
+ def build(self, input_shape):
48
+ if self.n_clusters > 0:
49
+ self.cluster_weight = self.add_weight(
50
+ shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=True, name="cluster_weight"
51
+ )
52
+ self.cluster_bias = self.add_weight(
53
+ shape=(self.n_clusters,), initializer="zeros", trainable=True, name="cluster_bias"
54
+ )
55
+
56
+ if self.div_val == 1:
57
+ for i in range(len(self.cutoffs)):
58
+ if self.d_proj != self.d_embed:
59
+ weight = self.add_weight(
60
+ shape=(self.d_embed, self.d_proj),
61
+ initializer="zeros",
62
+ trainable=True,
63
+ name=f"out_projs_._{i}",
64
+ )
65
+ self.out_projs.append(weight)
66
+ else:
67
+ self.out_projs.append(None)
68
+ weight = self.add_weight(
69
+ shape=(self.vocab_size, self.d_embed),
70
+ initializer="zeros",
71
+ trainable=True,
72
+ name=f"out_layers_._{i}_._weight",
73
+ )
74
+ bias = self.add_weight(
75
+ shape=(self.vocab_size,),
76
+ initializer="zeros",
77
+ trainable=True,
78
+ name=f"out_layers_._{i}_._bias",
79
+ )
80
+ self.out_layers.append((weight, bias))
81
+ else:
82
+ for i in range(len(self.cutoffs)):
83
+ l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
84
+ d_emb_i = self.d_embed // (self.div_val**i)
85
+
86
+ weight = self.add_weight(
87
+ shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}"
88
+ )
89
+ self.out_projs.append(weight)
90
+ weight = self.add_weight(
91
+ shape=(r_idx - l_idx, d_emb_i),
92
+ initializer="zeros",
93
+ trainable=True,
94
+ name=f"out_layers_._{i}_._weight",
95
+ )
96
+ bias = self.add_weight(
97
+ shape=(r_idx - l_idx,),
98
+ initializer="zeros",
99
+ trainable=True,
100
+ name=f"out_layers_._{i}_._bias",
101
+ )
102
+ self.out_layers.append((weight, bias))
103
+ super().build(input_shape)
104
+
105
+ @staticmethod
106
+ def _logit(x, W, b, proj=None):
107
+ y = x
108
+ if proj is not None:
109
+ y = tf.einsum("ibd,ed->ibe", y, proj)
110
+ return tf.einsum("ibd,nd->ibn", y, W) + b
111
+
112
+ @staticmethod
113
+ def _gather_logprob(logprob, target):
114
+ lp_size = shape_list(logprob)
115
+ r = tf.range(lp_size[0], dtype=target.dtype)
116
+ idx = tf.stack([r, target], 1)
117
+ return tf.gather_nd(logprob, idx)
118
+
119
+ def call(self, hidden, target, return_mean=True, training=False):
120
+ head_logprob = 0
121
+ if self.n_clusters == 0:
122
+ output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0])
123
+ if target is not None:
124
+ loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output)
125
+ out = tf.nn.log_softmax(output, axis=-1)
126
+ else:
127
+ hidden_sizes = shape_list(hidden)
128
+ out = []
129
+ loss = tf.zeros(hidden_sizes[:2])
130
+ for i in range(len(self.cutoffs)):
131
+ l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
132
+ if target is not None:
133
+ mask = (target >= l_idx) & (target < r_idx)
134
+ mask_idx = tf.where(mask)
135
+ cur_target = tf.boolean_mask(target, mask) - l_idx
136
+
137
+ if self.div_val == 1:
138
+ cur_W = self.out_layers[0][0][l_idx:r_idx]
139
+ cur_b = self.out_layers[0][1][l_idx:r_idx]
140
+ else:
141
+ cur_W = self.out_layers[i][0]
142
+ cur_b = self.out_layers[i][1]
143
+
144
+ if i == 0:
145
+ cur_W = tf.concat([cur_W, self.cluster_weight], 0)
146
+ cur_b = tf.concat([cur_b, self.cluster_bias], 0)
147
+
148
+ head_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[0])
149
+ head_logprob = tf.nn.log_softmax(head_logit)
150
+ out.append(head_logprob[..., : self.cutoffs[0]])
151
+ if target is not None:
152
+ cur_head_logprob = tf.boolean_mask(head_logprob, mask)
153
+ cur_logprob = self._gather_logprob(cur_head_logprob, cur_target)
154
+ else:
155
+ tail_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[i])
156
+ tail_logprob = tf.nn.log_softmax(tail_logit)
157
+ cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster
158
+ logprob_i = head_logprob[..., cluster_prob_idx, None] + tail_logprob
159
+ out.append(logprob_i)
160
+ if target is not None:
161
+ cur_head_logprob = tf.boolean_mask(head_logprob, mask)
162
+ cur_tail_logprob = tf.boolean_mask(tail_logprob, mask)
163
+ cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target)
164
+ cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
165
+ if target is not None:
166
+ loss += tf.scatter_nd(mask_idx, -cur_logprob, shape_list(loss))
167
+ out = tf.concat(out, axis=-1)
168
+
169
+ if target is not None:
170
+ if return_mean:
171
+ loss = tf.reduce_mean(loss)
172
+ # Add the training-time loss value to the layer using `self.add_loss()`.
173
+ self.add_loss(loss)
174
+
175
+ # Log the loss as a metric (we could log arbitrary metrics,
176
+ # including different metrics for training and inference.
177
+ self.add_metric(loss, name=self.name, aggregation="mean" if return_mean else "")
178
+
179
+ return out
llmeval-env/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py ADDED
@@ -0,0 +1,1295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ PyTorch Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. In particular
18
+ https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
19
+ """
20
+ import warnings
21
+ from dataclasses import dataclass
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+
28
+ from ....modeling_utils import PreTrainedModel
29
+ from ....utils import (
30
+ ModelOutput,
31
+ add_code_sample_docstrings,
32
+ add_start_docstrings,
33
+ add_start_docstrings_to_model_forward,
34
+ logging,
35
+ )
36
+ from .configuration_transfo_xl import TransfoXLConfig
37
+ from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax
38
+
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+ _CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103"
43
+ _CONFIG_FOR_DOC = "TransfoXLConfig"
44
+
45
+
46
+ from .._archive_maps import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
47
+
48
+
49
+ def build_tf_to_pytorch_map(model, config):
50
+ """
51
+ A map of modules from TF to PyTorch. This time I use a map to keep the PyTorch model as identical to the original
52
+ PyTorch model as possible.
53
+ """
54
+ tf_to_pt_map = {}
55
+
56
+ if hasattr(model, "transformer"):
57
+ # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax
58
+ tf_to_pt_map.update(
59
+ {
60
+ "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight,
61
+ "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias,
62
+ }
63
+ )
64
+ for i, (out_l, proj_l, tie_proj) in enumerate(
65
+ zip(model.crit.out_layers, model.crit.out_projs, config.tie_projs)
66
+ ):
67
+ layer_str = f"transformer/adaptive_softmax/cutoff_{i}/"
68
+ if config.tie_word_embeddings:
69
+ tf_to_pt_map.update({layer_str + "b": out_l.bias})
70
+ else:
71
+ raise NotImplementedError
72
+ # I don't think this is implemented in the TF code
73
+ tf_to_pt_map.update({layer_str + "lookup_table": out_l.weight, layer_str + "b": out_l.bias})
74
+ if not tie_proj:
75
+ tf_to_pt_map.update({layer_str + "proj": proj_l})
76
+ # Now load the rest of the transformer
77
+ model = model.transformer
78
+
79
+ # Embeddings
80
+ for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)):
81
+ layer_str = f"transformer/adaptive_embed/cutoff_{i}/"
82
+ tf_to_pt_map.update({layer_str + "lookup_table": embed_l.weight, layer_str + "proj_W": proj_l})
83
+
84
+ # Transformer blocks
85
+ for i, b in enumerate(model.layers):
86
+ layer_str = f"transformer/layer_{i}/"
87
+ tf_to_pt_map.update(
88
+ {
89
+ layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight,
90
+ layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias,
91
+ layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight,
92
+ layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight,
93
+ layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight,
94
+ layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight,
95
+ layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias,
96
+ layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight,
97
+ layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias,
98
+ layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight,
99
+ layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias,
100
+ }
101
+ )
102
+
103
+ # Relative positioning biases
104
+ if config.untie_r:
105
+ r_r_list = []
106
+ r_w_list = []
107
+ for b in model.layers:
108
+ r_r_list.append(b.dec_attn.r_r_bias)
109
+ r_w_list.append(b.dec_attn.r_w_bias)
110
+ else:
111
+ r_r_list = [model.r_r_bias]
112
+ r_w_list = [model.r_w_bias]
113
+ tf_to_pt_map.update({"transformer/r_r_bias": r_r_list, "transformer/r_w_bias": r_w_list})
114
+ return tf_to_pt_map
115
+
116
+
117
+ def load_tf_weights_in_transfo_xl(model, config, tf_path):
118
+ """Load tf checkpoints in a pytorch model"""
119
+ try:
120
+ import numpy as np
121
+ import tensorflow as tf
122
+ except ImportError:
123
+ logger.error(
124
+ "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
125
+ "https://www.tensorflow.org/install/ for installation instructions."
126
+ )
127
+ raise
128
+ # Build TF to PyTorch weights loading map
129
+ tf_to_pt_map = build_tf_to_pytorch_map(model, config)
130
+
131
+ # Load weights from TF model
132
+ init_vars = tf.train.list_variables(tf_path)
133
+ tf_weights = {}
134
+ for name, shape in init_vars:
135
+ logger.info(f"Loading TF weight {name} with shape {shape}")
136
+ array = tf.train.load_variable(tf_path, name)
137
+ tf_weights[name] = array
138
+
139
+ for name, pointer in tf_to_pt_map.items():
140
+ assert name in tf_weights
141
+ array = tf_weights[name]
142
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
143
+ # which are not required for using pretrained model
144
+ if "kernel" in name or "proj" in name:
145
+ array = np.transpose(array)
146
+ if ("r_r_bias" in name or "r_w_bias" in name) and len(pointer) > 1:
147
+ # Here we will split the TF weights
148
+ assert len(pointer) == array.shape[0]
149
+ for i, p_i in enumerate(pointer):
150
+ arr_i = array[i, ...]
151
+ try:
152
+ assert p_i.shape == arr_i.shape
153
+ except AssertionError as e:
154
+ e.args += (p_i.shape, arr_i.shape)
155
+ raise
156
+ logger.info(f"Initialize PyTorch weight {name} for layer {i}")
157
+ p_i.data = torch.from_numpy(arr_i)
158
+ else:
159
+ try:
160
+ assert (
161
+ pointer.shape == array.shape
162
+ ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
163
+ except AssertionError as e:
164
+ e.args += (pointer.shape, array.shape)
165
+ raise
166
+ logger.info(f"Initialize PyTorch weight {name}")
167
+ pointer.data = torch.from_numpy(array)
168
+ tf_weights.pop(name, None)
169
+ tf_weights.pop(name + "/Adam", None)
170
+ tf_weights.pop(name + "/Adam_1", None)
171
+
172
+ logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
173
+ return model
174
+
175
+
176
+ class PositionalEmbedding(nn.Module):
177
+ def __init__(self, demb):
178
+ super().__init__()
179
+
180
+ self.demb = demb
181
+
182
+ inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
183
+ self.register_buffer("inv_freq", inv_freq)
184
+
185
+ def forward(self, pos_seq, bsz=None):
186
+ sinusoid_inp = torch.outer(pos_seq, self.inv_freq)
187
+ pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
188
+
189
+ if bsz is not None:
190
+ return pos_emb[:, None, :].expand(-1, bsz, -1)
191
+ else:
192
+ return pos_emb[:, None, :]
193
+
194
+
195
+ class PositionwiseFF(nn.Module):
196
+ def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5):
197
+ super().__init__()
198
+
199
+ self.d_model = d_model
200
+ self.d_inner = d_inner
201
+ self.dropout = dropout
202
+
203
+ self.CoreNet = nn.Sequential(
204
+ nn.Linear(d_model, d_inner),
205
+ nn.ReLU(inplace=True),
206
+ nn.Dropout(dropout),
207
+ nn.Linear(d_inner, d_model),
208
+ nn.Dropout(dropout),
209
+ )
210
+
211
+ self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)
212
+
213
+ self.pre_lnorm = pre_lnorm
214
+
215
+ def forward(self, inp):
216
+ if self.pre_lnorm:
217
+ # layer normalization + positionwise feed-forward
218
+ core_out = self.CoreNet(self.layer_norm(inp))
219
+
220
+ # residual connection
221
+ output = core_out + inp
222
+ else:
223
+ # positionwise feed-forward
224
+ core_out = self.CoreNet(inp)
225
+
226
+ # residual connection + layer normalization
227
+ output = self.layer_norm(inp + core_out)
228
+
229
+ return output
230
+
231
+
232
+ class RelPartialLearnableMultiHeadAttn(nn.Module):
233
+ def __init__(
234
+ self,
235
+ n_head,
236
+ d_model,
237
+ d_head,
238
+ dropout,
239
+ dropatt=0,
240
+ pre_lnorm=False,
241
+ r_r_bias=None,
242
+ r_w_bias=None,
243
+ layer_norm_epsilon=1e-5,
244
+ ):
245
+ super().__init__()
246
+
247
+ self.n_head = n_head
248
+ self.d_model = d_model
249
+ self.d_head = d_head
250
+ self.dropout = dropout
251
+
252
+ self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)
253
+
254
+ self.drop = nn.Dropout(dropout)
255
+ self.dropatt = nn.Dropout(dropatt)
256
+ self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)
257
+
258
+ self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)
259
+
260
+ self.scale = 1 / (d_head**0.5)
261
+
262
+ self.pre_lnorm = pre_lnorm
263
+
264
+ if r_r_bias is None or r_w_bias is None: # Biases are not shared
265
+ self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
266
+ self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
267
+ else:
268
+ self.r_r_bias = r_r_bias
269
+ self.r_w_bias = r_w_bias
270
+
271
+ self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)
272
+
273
+ def _rel_shift(self, x):
274
+ zero_pad_shape = (x.size(0), 1) + x.size()[2:]
275
+ zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
276
+ x_padded = torch.cat([zero_pad, x], dim=1)
277
+
278
+ x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:]
279
+ x_padded = x_padded.view(*x_padded_shape)
280
+
281
+ x = x_padded[1:].view_as(x)
282
+
283
+ return x
284
+
285
+ def forward(self, w, r, attn_mask=None, mems=None, head_mask=None, output_attentions=False):
286
+ qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)
287
+
288
+ if mems is not None:
289
+ cat = torch.cat([mems, w], 0)
290
+ if self.pre_lnorm:
291
+ w_heads = self.qkv_net(self.layer_norm(cat))
292
+ else:
293
+ w_heads = self.qkv_net(cat)
294
+ r_head_k = self.r_net(r)
295
+
296
+ w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
297
+ w_head_q = w_head_q[-qlen:]
298
+ else:
299
+ if self.pre_lnorm:
300
+ w_heads = self.qkv_net(self.layer_norm(w))
301
+ else:
302
+ w_heads = self.qkv_net(w)
303
+ r_head_k = self.r_net(r)
304
+
305
+ w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
306
+
307
+ klen = w_head_k.size(0)
308
+
309
+ w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
310
+ w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
311
+ w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
312
+
313
+ r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # qlen x n_head x d_head
314
+
315
+ # compute attention score
316
+ rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head
317
+ AC = torch.einsum("ibnd,jbnd->ijbn", (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head
318
+
319
+ rr_head_q = w_head_q + self.r_r_bias
320
+ BD = torch.einsum("ibnd,jnd->ijbn", (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head
321
+ BD = self._rel_shift(BD)
322
+
323
+ # [qlen x klen x bsz x n_head]
324
+ attn_score = AC + BD
325
+ attn_score.mul_(self.scale)
326
+
327
+ mask_value = torch.finfo(attn_score.dtype).min
328
+
329
+ # compute attention probability
330
+ if attn_mask is not None and torch.sum(attn_mask).item():
331
+ attn_mask = attn_mask == 1 # Switch to bool
332
+ if attn_mask.dim() == 2:
333
+ attn_score = (
334
+ attn_score.float().masked_fill(attn_mask[None, :, :, None], mask_value).type_as(attn_score)
335
+ )
336
+ elif attn_mask.dim() == 3:
337
+ attn_score = attn_score.float().masked_fill(attn_mask[:, :, :, None], mask_value).type_as(attn_score)
338
+
339
+ # [qlen x klen x bsz x n_head]
340
+ attn_prob = nn.functional.softmax(attn_score, dim=1)
341
+ attn_prob = self.dropatt(attn_prob)
342
+
343
+ # Mask heads if we want to
344
+ if head_mask is not None:
345
+ attn_prob = attn_prob * head_mask
346
+
347
+ # compute attention vector
348
+ attn_vec = torch.einsum("ijbn,jbnd->ibnd", (attn_prob, w_head_v))
349
+
350
+ # [qlen x bsz x n_head x d_head]
351
+ attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
352
+
353
+ # linear projection
354
+ attn_out = self.o_net(attn_vec)
355
+ attn_out = self.drop(attn_out)
356
+
357
+ if self.pre_lnorm:
358
+ # residual connection
359
+ outputs = [w + attn_out]
360
+ else:
361
+ # residual connection + layer normalization
362
+ outputs = [self.layer_norm(w + attn_out)]
363
+
364
+ if output_attentions:
365
+ outputs.append(attn_prob)
366
+
367
+ return outputs
368
+
369
+
370
+ class RelPartialLearnableDecoderLayer(nn.Module):
371
+ def __init__(self, n_head, d_model, d_head, d_inner, dropout, layer_norm_epsilon=1e-5, **kwargs):
372
+ super().__init__()
373
+
374
+ self.dec_attn = RelPartialLearnableMultiHeadAttn(
375
+ n_head, d_model, d_head, dropout, layer_norm_epsilon=layer_norm_epsilon, **kwargs
376
+ )
377
+ self.pos_ff = PositionwiseFF(
378
+ d_model, d_inner, dropout, pre_lnorm=kwargs.get("pre_lnorm"), layer_norm_epsilon=layer_norm_epsilon
379
+ )
380
+
381
+ def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None, output_attentions=False):
382
+ attn_outputs = self.dec_attn(
383
+ dec_inp,
384
+ r,
385
+ attn_mask=dec_attn_mask,
386
+ mems=mems,
387
+ head_mask=head_mask,
388
+ output_attentions=output_attentions,
389
+ )
390
+ ff_output = self.pos_ff(attn_outputs[0])
391
+
392
+ outputs = [ff_output] + attn_outputs[1:]
393
+
394
+ return outputs
395
+
396
+
397
+ class AdaptiveEmbedding(nn.Module):
398
+ def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, sample_softmax=False):
399
+ super().__init__()
400
+
401
+ self.n_token = n_token
402
+ self.d_embed = d_embed
403
+
404
+ self.cutoffs = cutoffs + [n_token]
405
+ self.div_val = div_val
406
+ self.d_proj = d_proj
407
+
408
+ self.emb_scale = d_proj**0.5
409
+
410
+ self.cutoff_ends = [0] + self.cutoffs
411
+
412
+ self.emb_layers = nn.ModuleList()
413
+ self.emb_projs = nn.ParameterList()
414
+ if div_val == 1:
415
+ self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0))
416
+ if d_proj != d_embed:
417
+ self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed)))
418
+ else:
419
+ for i in range(len(self.cutoffs)):
420
+ l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
421
+ d_emb_i = d_embed // (div_val**i)
422
+ self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i))
423
+ self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i)))
424
+
425
+ def forward(self, inp):
426
+ if self.div_val == 1:
427
+ embed = self.emb_layers[0](inp)
428
+ if self.d_proj != self.d_embed:
429
+ embed = nn.functional.linear(embed, self.emb_projs[0])
430
+ else:
431
+ param = next(self.parameters())
432
+ inp_flat = inp.view(-1)
433
+ emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device)
434
+ for i in range(len(self.cutoffs)):
435
+ l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
436
+
437
+ mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
438
+ indices_i = mask_i.nonzero().squeeze()
439
+
440
+ if indices_i.numel() == 0:
441
+ continue
442
+
443
+ inp_i = inp_flat.index_select(0, indices_i) - l_idx
444
+ emb_i = self.emb_layers[i](inp_i)
445
+ emb_i = nn.functional.linear(emb_i, self.emb_projs[i])
446
+
447
+ emb_flat.index_copy_(0, indices_i, emb_i)
448
+
449
+ embed_shape = inp.size() + (self.d_proj,)
450
+ embed = emb_flat.view(embed_shape)
451
+
452
+ embed.mul_(self.emb_scale)
453
+
454
+ return embed
455
+
456
+
457
+ class TransfoXLPreTrainedModel(PreTrainedModel):
458
+ """
459
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
460
+ models.
461
+ """
462
+
463
+ config_class = TransfoXLConfig
464
+ load_tf_weights = load_tf_weights_in_transfo_xl
465
+ base_model_prefix = "transformer"
466
+
467
+ def _init_weight(self, weight):
468
+ if self.config.init == "uniform":
469
+ nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
470
+ elif self.config.init == "normal":
471
+ nn.init.normal_(weight, 0.0, self.config.init_std)
472
+
473
+ def _init_bias(self, bias):
474
+ nn.init.constant_(bias, 0.0)
475
+
476
+ def _init_weights(self, m):
477
+ """Initialize the weights."""
478
+ classname = m.__class__.__name__
479
+ if classname.find("Linear") != -1:
480
+ if hasattr(m, "weight") and m.weight is not None:
481
+ self._init_weight(m.weight)
482
+ if hasattr(m, "bias") and m.bias is not None:
483
+ self._init_bias(m.bias)
484
+ elif classname.find("AdaptiveEmbedding") != -1:
485
+ if hasattr(m, "emb_projs"):
486
+ for i in range(len(m.emb_projs)):
487
+ if m.emb_projs[i] is not None:
488
+ nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
489
+ elif classname.find("Embedding") != -1:
490
+ if hasattr(m, "weight"):
491
+ self._init_weight(m.weight)
492
+ elif classname.find("ProjectedAdaptiveLogSoftmax") != -1:
493
+ if hasattr(m, "cluster_weight") and m.cluster_weight is not None:
494
+ self._init_weight(m.cluster_weight)
495
+ if hasattr(m, "cluster_bias") and m.cluster_bias is not None:
496
+ self._init_bias(m.cluster_bias)
497
+ if hasattr(m, "out_projs"):
498
+ for i in range(len(m.out_projs)):
499
+ if m.out_projs[i] is not None:
500
+ nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
501
+ elif classname.find("LayerNorm") != -1:
502
+ if hasattr(m, "weight"):
503
+ nn.init.normal_(m.weight, 1.0, self.config.init_std)
504
+ if hasattr(m, "bias") and m.bias is not None:
505
+ self._init_bias(m.bias)
506
+ else:
507
+ if hasattr(m, "r_emb"):
508
+ self._init_weight(m.r_emb)
509
+ if hasattr(m, "r_w_bias"):
510
+ self._init_weight(m.r_w_bias)
511
+ if hasattr(m, "r_r_bias"):
512
+ self._init_weight(m.r_r_bias)
513
+ if hasattr(m, "r_bias"):
514
+ self._init_bias(m.r_bias)
515
+
516
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, layer: Optional[int] = -1):
517
+ """
518
+ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. Take care of tying
519
+ weights embeddings afterwards if the model class has a *tie_weights()* method.
520
+
521
+ Arguments:
522
+ new_num_tokens: (*optional*) int:
523
+ New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at
524
+ the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and
525
+ just returns a pointer to the input tokens `torch.nn.Embeddings` Module of the model.
526
+ layer: (*optional*) int:
527
+ Layer of the *AdaptiveEmbedding* where the resizing should be done. Per default the last layer will be
528
+ resized. Be aware that when resizing other than the last layer, you have to ensure that the new
529
+ token(s) in the tokenizer are at the corresponding position.
530
+
531
+ Return: `torch.nn.Embeddings` Pointer to the input tokens Embeddings Module of the model
532
+ """
533
+ base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed
534
+
535
+ if new_num_tokens is None:
536
+ return self.get_input_embeddings()
537
+
538
+ new_num_tokens_layer, layer = self._get_new_num_tokens_layer(new_num_tokens, layer)
539
+ assert new_num_tokens_layer > 0, "The size of the new embedding layer cannot be 0 or less"
540
+ model_embeds = base_model._resize_token_embeddings(new_num_tokens_layer, layer)
541
+
542
+ # Update base model and current model config
543
+ self.config.vocab_size = new_num_tokens
544
+ base_model.vocab_size = new_num_tokens
545
+ base_model.n_token = new_num_tokens
546
+
547
+ new_embedding_shapes = self._get_embedding_shapes()
548
+ self._resize_cutoffs(new_num_tokens, new_num_tokens_layer, new_embedding_shapes, layer)
549
+
550
+ # Tie weights again if needed
551
+ self.tie_weights()
552
+
553
+ return model_embeds
554
+
555
+ def _get_new_num_tokens_layer(self, new_num_tokens, layer):
556
+ embeddings = self.get_input_embeddings()
557
+ if layer == -1:
558
+ layer = len(embeddings.emb_layers) - 1
559
+ assert 0 <= layer <= len(embeddings.emb_layers) - 1
560
+
561
+ new_num_tokens_layer = (
562
+ new_num_tokens
563
+ - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[:layer]])
564
+ - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[layer + 1 :]])
565
+ )
566
+ return new_num_tokens_layer, layer
567
+
568
+ def _get_embedding_shapes(self):
569
+ embeddings = self.get_input_embeddings()
570
+ return [emb.weight.shape[0] for emb in embeddings.emb_layers]
571
+
572
+ def _resize_token_embeddings(self, new_num_tokens, layer=-1):
573
+ embeddings = self.get_input_embeddings()
574
+ if new_num_tokens is None:
575
+ return embeddings
576
+ new_embeddings_layer = self._get_resized_embeddings(embeddings.emb_layers[layer], new_num_tokens)
577
+ embeddings.emb_layers[layer] = new_embeddings_layer
578
+
579
+ self.set_input_embeddings(embeddings)
580
+
581
+ return self.get_input_embeddings()
582
+
583
+ def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer):
584
+ embeddings = self.get_input_embeddings()
585
+
586
+ for i in range(layer, len(embeddings.cutoffs)):
587
+ embeddings.cutoffs[i] = sum(new_embedding_shapes[: i + 1])
588
+
589
+ embeddings.cutoff_ends = [0] + embeddings.cutoffs
590
+ embeddings.n_token = new_num_tokens
591
+
592
+ self.config.cutoffs = embeddings.cutoffs[:-1]
593
+
594
+ return embeddings.cutoffs
595
+
596
+
597
+ @dataclass
598
+ class TransfoXLModelOutput(ModelOutput):
599
+ """
600
+ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
601
+
602
+ Args:
603
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
604
+ Sequence of hidden-states at the output of the last layer of the model.
605
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
606
+ Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
607
+ input) to speed up sequential decoding. The token ids which have their past given to this model should not
608
+ be passed as input ids as they have already been computed.
609
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
610
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
611
+ shape `(batch_size, sequence_length, hidden_size)`.
612
+
613
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
614
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
615
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
616
+ sequence_length)`.
617
+
618
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
619
+ heads.
620
+ """
621
+
622
+ last_hidden_state: torch.FloatTensor
623
+ mems: List[torch.FloatTensor] = None
624
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
625
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
626
+
627
+
628
+ @dataclass
629
+ class TransfoXLSequenceClassifierOutputWithPast(ModelOutput):
630
+ """
631
+ Base class for outputs of sentence classification models.
632
+
633
+ Args:
634
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
635
+ Classification (or regression if config.num_labels==1) loss.
636
+ logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
637
+ Classification (or regression if config.num_labels==1) scores (before SoftMax).
638
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
639
+ Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
640
+ input) to speed up sequential decoding. The token ids which have their past given to this model should not
641
+ be passed as input ids as they have already been computed.
642
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
643
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
644
+ shape `(batch_size, sequence_length, hidden_size)`.
645
+
646
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
647
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
648
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
649
+ sequence_length)`.
650
+
651
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
652
+ heads.
653
+ """
654
+
655
+ loss: Optional[torch.FloatTensor] = None
656
+ logits: torch.FloatTensor = None
657
+ mems: List[torch.FloatTensor] = None
658
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
659
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
660
+
661
+
662
+ @dataclass
663
+ class TransfoXLLMHeadModelOutput(ModelOutput):
664
+ """
665
+ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
666
+
667
+ Args:
668
+ losses (`torch.FloatTensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided):
669
+ Language modeling losses (not reduced).
670
+ prediction_scores (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
671
+ Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax).
672
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
673
+ Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems`
674
+ input) to speed up sequential decoding. The token ids which have their past given to this model should not
675
+ be passed as input ids as they have already been computed.
676
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
677
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
678
+ shape `(batch_size, sequence_length, hidden_size)`.
679
+
680
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
681
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
682
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
683
+ sequence_length)`.
684
+
685
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
686
+ heads.
687
+ loss (`torch.FloatTensor` of shape `()`, *optional*, returned when `labels` is provided)
688
+ Reduced language modeling loss.
689
+ """
690
+
691
+ losses: Optional[torch.FloatTensor] = None
692
+ prediction_scores: torch.FloatTensor = None
693
+ mems: List[torch.FloatTensor] = None
694
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
695
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
696
+ loss: Optional[torch.FloatTensor] = None
697
+
698
+ @property
699
+ def logits(self):
700
+ # prediction scores are the output of the adaptive softmax, see
701
+ # the file `modeling_transfo_xl_utilities`. Since the adaptive
702
+ # softmax returns the log softmax value, `self.prediction_scores`
703
+ # are strictly speaking not exactly `logits`, but behave the same
704
+ # way logits do.
705
+ return self.prediction_scores
706
+
707
+
708
+ TRANSFO_XL_START_DOCSTRING = r"""
709
+
710
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
711
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
712
+ etc.)
713
+
714
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
715
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
716
+ and behavior.
717
+
718
+ Parameters:
719
+ config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model.
720
+ Initializing with a config file does not load the weights associated with the model, only the
721
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
722
+ """
723
+
724
+ TRANSFO_XL_INPUTS_DOCSTRING = r"""
725
+ Args:
726
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
727
+ Indices of input sequence tokens in the vocabulary.
728
+
729
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
730
+ [`PreTrainedTokenizer.__call__`] for details.
731
+
732
+ [What are input IDs?](../glossary#input-ids)
733
+ mems (`List[torch.FloatTensor]` of length `config.n_layers`):
734
+ Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
735
+ `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems
736
+ given to this model should not be passed as `input_ids` as they have already been computed.
737
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
738
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
739
+
740
+ - 1 indicates the head is **not masked**,
741
+ - 0 indicates the head is **masked**.
742
+
743
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
744
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
745
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
746
+ model's internal embedding lookup matrix.
747
+ output_attentions (`bool`, *optional*):
748
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
749
+ tensors for more detail.
750
+ output_hidden_states (`bool`, *optional*):
751
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
752
+ more detail.
753
+ return_dict (`bool`, *optional*):
754
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
755
+ """
756
+
757
+
758
+ @add_start_docstrings(
759
+ "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
760
+ TRANSFO_XL_START_DOCSTRING,
761
+ )
762
+ class TransfoXLModel(TransfoXLPreTrainedModel):
763
+ def __init__(self, config):
764
+ super().__init__(config)
765
+
766
+ self.n_token = config.vocab_size
767
+
768
+ self.d_embed = config.d_embed
769
+ self.d_model = config.d_model
770
+ self.n_head = config.n_head
771
+ self.d_head = config.d_head
772
+
773
+ self.word_emb = AdaptiveEmbedding(
774
+ config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val
775
+ )
776
+
777
+ self.drop = nn.Dropout(config.dropout)
778
+
779
+ self.n_layer = config.n_layer
780
+ self.mem_len = config.mem_len
781
+ self.attn_type = config.attn_type
782
+
783
+ if not config.untie_r:
784
+ self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
785
+ self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
786
+
787
+ self.layers = nn.ModuleList()
788
+ if config.attn_type == 0: # the default attention
789
+ for i in range(config.n_layer):
790
+ self.layers.append(
791
+ RelPartialLearnableDecoderLayer(
792
+ config.n_head,
793
+ config.d_model,
794
+ config.d_head,
795
+ config.d_inner,
796
+ config.dropout,
797
+ dropatt=config.dropatt,
798
+ pre_lnorm=config.pre_lnorm,
799
+ r_w_bias=None if config.untie_r else self.r_w_bias,
800
+ r_r_bias=None if config.untie_r else self.r_r_bias,
801
+ layer_norm_epsilon=config.layer_norm_epsilon,
802
+ )
803
+ )
804
+ else: # learnable embeddings and absolute embeddings are not used in our pretrained checkpoints
805
+ raise NotImplementedError # Removed them to avoid maintaining dead code
806
+
807
+ self.same_length = config.same_length
808
+ self.clamp_len = config.clamp_len
809
+
810
+ if self.attn_type == 0: # default attention
811
+ self.pos_emb = PositionalEmbedding(self.d_model)
812
+ else: # learnable embeddings and absolute embeddings
813
+ raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
814
+
815
+ # Initialize weights and apply final processing
816
+ self.post_init()
817
+
818
+ def get_input_embeddings(self):
819
+ return self.word_emb
820
+
821
+ def set_input_embeddings(self, new_embeddings):
822
+ self.word_emb = new_embeddings
823
+
824
+ def backward_compatible(self):
825
+ self.sample_softmax = -1
826
+
827
+ def reset_memory_length(self, mem_len):
828
+ self.mem_len = mem_len
829
+
830
+ def _prune_heads(self, heads):
831
+ logger.info("Head pruning is not implemented for Transformer-XL model")
832
+ pass
833
+
834
+ def init_mems(self, bsz):
835
+ if self.mem_len > 0:
836
+ mems = []
837
+ param = next(self.parameters())
838
+ for i in range(self.n_layer):
839
+ empty = torch.zeros(self.mem_len, bsz, self.config.d_model, dtype=param.dtype, device=param.device)
840
+ mems.append(empty)
841
+
842
+ return mems
843
+ else:
844
+ return None
845
+
846
+ def _update_mems(self, hids, mems, mlen, qlen):
847
+ # does not deal with None
848
+ if mems is None:
849
+ return None
850
+
851
+ # mems is not None
852
+ assert len(hids) == len(mems), "len(hids) != len(mems)"
853
+
854
+ # There are `mlen + qlen` steps that can be cached into mems
855
+ with torch.no_grad():
856
+ new_mems = []
857
+ end_idx = mlen + max(0, qlen)
858
+ beg_idx = max(0, end_idx - self.mem_len)
859
+ for i in range(len(hids)):
860
+ cat = torch.cat([mems[i], hids[i]], dim=0)
861
+ new_mems.append(cat[beg_idx:end_idx].detach())
862
+
863
+ return new_mems
864
+
865
+ @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
866
+ @add_code_sample_docstrings(
867
+ checkpoint=_CHECKPOINT_FOR_DOC,
868
+ output_type=TransfoXLModelOutput,
869
+ config_class=_CONFIG_FOR_DOC,
870
+ )
871
+ def forward(
872
+ self,
873
+ input_ids: Optional[torch.LongTensor] = None,
874
+ mems: Optional[List[torch.FloatTensor]] = None,
875
+ head_mask: Optional[torch.FloatTensor] = None,
876
+ inputs_embeds: Optional[torch.FloatTensor] = None,
877
+ output_attentions: Optional[bool] = None,
878
+ output_hidden_states: Optional[bool] = None,
879
+ return_dict: Optional[bool] = None,
880
+ ) -> Union[Tuple, TransfoXLModelOutput]:
881
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
882
+ output_hidden_states = (
883
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
884
+ )
885
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
886
+
887
+ # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
888
+ # so we transpose here from shape [bsz, len] to shape [len, bsz]
889
+ if input_ids is not None and inputs_embeds is not None:
890
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
891
+ elif input_ids is not None:
892
+ input_ids = input_ids.transpose(0, 1).contiguous()
893
+ qlen, bsz = input_ids.size()
894
+ elif inputs_embeds is not None:
895
+ inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
896
+ qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1]
897
+ else:
898
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
899
+
900
+ if mems is None:
901
+ mems = self.init_mems(bsz)
902
+
903
+ # Prepare head mask if needed
904
+ # 1.0 in head_mask indicate we keep the head
905
+ # attention_probs has shape bsz x n_heads x N x N
906
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
907
+ # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
908
+ if head_mask is not None:
909
+ if head_mask.dim() == 1:
910
+ head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
911
+ head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
912
+ elif head_mask.dim() == 2:
913
+ head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
914
+ head_mask = head_mask.to(
915
+ dtype=next(self.parameters()).dtype
916
+ ) # switch to float if need + fp16 compatibility
917
+ else:
918
+ head_mask = [None] * self.n_layer
919
+
920
+ if inputs_embeds is not None:
921
+ word_emb = inputs_embeds
922
+ else:
923
+ word_emb = self.word_emb(input_ids)
924
+
925
+ mlen = mems[0].size(0) if mems is not None else 0
926
+ klen = mlen + qlen
927
+ if self.same_length:
928
+ all_ones = word_emb.new_ones((qlen, klen), dtype=torch.bool)
929
+ mask_len = klen - self.mem_len
930
+ if mask_len > 0:
931
+ mask_shift_len = qlen - mask_len
932
+ else:
933
+ mask_shift_len = qlen
934
+ dec_attn_mask = (torch.triu(all_ones, 1 + mlen) + torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1
935
+ else:
936
+ dec_attn_mask = torch.triu(word_emb.new_ones((qlen, klen), dtype=torch.bool), diagonal=1 + mlen)[
937
+ :, :, None
938
+ ]
939
+
940
+ hids = []
941
+ attentions = [] if output_attentions else None
942
+ if self.attn_type == 0: # default
943
+ pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device, dtype=torch.int64).type_as(
944
+ dtype=word_emb.dtype
945
+ )
946
+ if self.clamp_len > 0:
947
+ pos_seq.clamp_(max=self.clamp_len)
948
+ pos_emb = self.pos_emb(pos_seq)
949
+
950
+ core_out = self.drop(word_emb)
951
+ pos_emb = self.drop(pos_emb)
952
+
953
+ for i, layer in enumerate(self.layers):
954
+ hids.append(core_out)
955
+ mems_i = None if mems is None else mems[i]
956
+ layer_outputs = layer(
957
+ core_out,
958
+ pos_emb,
959
+ dec_attn_mask=dec_attn_mask,
960
+ mems=mems_i,
961
+ head_mask=head_mask[i],
962
+ output_attentions=output_attentions,
963
+ )
964
+ core_out = layer_outputs[0]
965
+ if output_attentions:
966
+ attentions.append(layer_outputs[1])
967
+ else: # learnable embeddings and absolute embeddings
968
+ raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
969
+
970
+ core_out = self.drop(core_out)
971
+
972
+ new_mems = self._update_mems(hids, mems, mlen, qlen)
973
+
974
+ if output_hidden_states:
975
+ # Add last layer and transpose to library standard shape [bsz, len, hidden_dim]
976
+ hids.append(core_out)
977
+ hids = tuple(t.transpose(0, 1).contiguous() for t in hids)
978
+ else:
979
+ hids = None
980
+ if output_attentions:
981
+ # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
982
+ attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
983
+ # We transpose back here to shape [bsz, len, hidden_dim]
984
+ core_out = core_out.transpose(0, 1).contiguous()
985
+
986
+ if not return_dict:
987
+ return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None)
988
+
989
+ return TransfoXLModelOutput(
990
+ last_hidden_state=core_out,
991
+ mems=new_mems,
992
+ hidden_states=hids,
993
+ attentions=attentions,
994
+ )
995
+
996
+
997
+ @add_start_docstrings(
998
+ """
999
+ The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive
1000
+ input embeddings)
1001
+ """,
1002
+ TRANSFO_XL_START_DOCSTRING,
1003
+ )
1004
+ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
1005
+ _tied_weights_keys = [r"crit\.out_projs\.\d+", r"crit\.out_layers\.\d+\.weight"]
1006
+
1007
+ def __init__(self, config):
1008
+ super().__init__(config)
1009
+ self.transformer = TransfoXLModel(config)
1010
+ self.sample_softmax = config.sample_softmax
1011
+ self.trainer_compatible = getattr(config, "trainer_compatible", False)
1012
+
1013
+ if not self.trainer_compatible:
1014
+ warnings.warn(
1015
+ "The output of TransfoXL will be updated in v5 to support a single loss as first argument. In order "
1016
+ "to use that updated output, please specify `trainer_compatible=True` as your configuration"
1017
+ " attribute.",
1018
+ DeprecationWarning,
1019
+ )
1020
+
1021
+ assert self.sample_softmax <= 0, (
1022
+ "Sampling from the softmax is not implemented yet. Please look at issue: #3310:"
1023
+ " https://github.com/huggingface/transformers/issues/3310"
1024
+ )
1025
+
1026
+ self.crit = ProjectedAdaptiveLogSoftmax(
1027
+ config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val
1028
+ )
1029
+
1030
+ # Initialize weights and apply final processing
1031
+ self.post_init()
1032
+
1033
+ def tie_weights(self):
1034
+ """
1035
+ Run this to be sure output and input (adaptive) softmax weights are tied
1036
+ """
1037
+
1038
+ if self.config.tie_word_embeddings:
1039
+ for i in range(len(self.crit.out_layers)):
1040
+ self._tie_or_clone_weights(self.crit.out_layers[i], self.transformer.word_emb.emb_layers[i])
1041
+ if self.config.tie_projs:
1042
+ for i, tie_proj in enumerate(self.config.tie_projs):
1043
+ if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
1044
+ if self.config.torchscript:
1045
+ self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone())
1046
+ else:
1047
+ self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
1048
+ elif tie_proj and self.config.div_val != 1:
1049
+ if self.config.torchscript:
1050
+ self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone())
1051
+ else:
1052
+ self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
1053
+
1054
+ def reset_memory_length(self, mem_len):
1055
+ self.transformer.reset_memory_length(mem_len)
1056
+
1057
+ def init_mems(self, bsz):
1058
+ return self.transformer.init_mems(bsz)
1059
+
1060
+ @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
1061
+ @add_code_sample_docstrings(
1062
+ checkpoint=_CHECKPOINT_FOR_DOC,
1063
+ output_type=TransfoXLLMHeadModelOutput,
1064
+ config_class=_CONFIG_FOR_DOC,
1065
+ )
1066
+ def forward(
1067
+ self,
1068
+ input_ids: Optional[torch.LongTensor] = None,
1069
+ mems: Optional[List[torch.FloatTensor]] = None,
1070
+ head_mask: Optional[torch.FloatTensor] = None,
1071
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1072
+ labels: Optional[torch.LongTensor] = None,
1073
+ output_attentions: Optional[bool] = None,
1074
+ output_hidden_states: Optional[bool] = None,
1075
+ return_dict: Optional[bool] = None,
1076
+ ) -> Union[Tuple, TransfoXLLMHeadModelOutput]:
1077
+ r"""
1078
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1079
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1080
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1081
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1082
+ """
1083
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1084
+ if input_ids is not None:
1085
+ bsz, tgt_len = input_ids.size(0), input_ids.size(1)
1086
+ elif inputs_embeds is not None:
1087
+ bsz, tgt_len = inputs_embeds.size(0), inputs_embeds.size(1)
1088
+ else:
1089
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1090
+
1091
+ transformer_outputs = self.transformer(
1092
+ input_ids,
1093
+ mems=mems,
1094
+ head_mask=head_mask,
1095
+ inputs_embeds=inputs_embeds,
1096
+ output_attentions=output_attentions,
1097
+ output_hidden_states=output_hidden_states,
1098
+ return_dict=return_dict,
1099
+ )
1100
+
1101
+ last_hidden = transformer_outputs[0]
1102
+ pred_hid = last_hidden[:, -tgt_len:]
1103
+
1104
+ if labels is not None:
1105
+ # Prevents all labels being -100 and throwing an error
1106
+ # when backwarding the loss
1107
+ miss_valid_label = labels[0, 1:].sum() == (labels.size(1) - 1) * -100
1108
+ if miss_valid_label:
1109
+ # Sets an <EOS> token, just to prevent loss from being NaN
1110
+ labels[0, 1] = self.config.eos_token_id
1111
+
1112
+ softmax_output = self.crit(pred_hid, labels)
1113
+ prediction_scores = softmax_output.view(bsz, tgt_len, -1) if labels is None else ()
1114
+
1115
+ if labels is not None:
1116
+ losses = softmax_output.view(bsz, tgt_len - 1)
1117
+ # Avoids from incorporating padding (-100) tokens into loss value
1118
+ loss = losses[losses != 0].mean()
1119
+ else:
1120
+ losses, loss = None, None
1121
+
1122
+ if not return_dict:
1123
+ if self.trainer_compatible:
1124
+ output = (prediction_scores, losses) if losses is not None else (prediction_scores,)
1125
+ output += transformer_outputs[1:]
1126
+ return ((loss,) + output) if loss is not None else output
1127
+ else:
1128
+ output = (prediction_scores, *transformer_outputs[1:])
1129
+ output = ((losses,) + output) if losses is not None else output
1130
+ return (output + (loss,)) if loss is not None else output
1131
+
1132
+ return TransfoXLLMHeadModelOutput(
1133
+ loss=loss,
1134
+ prediction_scores=prediction_scores,
1135
+ losses=losses,
1136
+ mems=transformer_outputs.mems,
1137
+ hidden_states=transformer_outputs.hidden_states,
1138
+ attentions=transformer_outputs.attentions,
1139
+ )
1140
+
1141
+ def get_output_embeddings(self):
1142
+ """Double-check if you are using adaptive softmax."""
1143
+ if self.sample_softmax > 0:
1144
+ return self.out_layer
1145
+ else:
1146
+ return self.crit.out_layers[-1]
1147
+
1148
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs):
1149
+ inputs = {}
1150
+
1151
+ # if past is defined in model kwargs then use it for faster decoding
1152
+ if past_key_values:
1153
+ inputs["mems"] = past_key_values
1154
+ inputs["input_ids"] = input_ids[:, -1].unsqueeze(-1)
1155
+ else:
1156
+ inputs["input_ids"] = input_ids
1157
+
1158
+ return inputs
1159
+
1160
+ def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer):
1161
+ new_cutoffs = super()._resize_cutoffs(new_num_tokens, new_emb_size, new_embedding_shapes, layer)
1162
+
1163
+ self.crit.cutoffs = new_cutoffs
1164
+ self.crit.cutoff_ends = [0] + new_cutoffs
1165
+ self.crit.n_token = new_num_tokens
1166
+
1167
+ @staticmethod
1168
+ def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]:
1169
+ """
1170
+ This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or
1171
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every
1172
+ generation step.
1173
+ """
1174
+ return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems]
1175
+
1176
+
1177
+ @add_start_docstrings(
1178
+ """
1179
+ The Transformer-XL Model transformer with a sequence classification head on top (linear layer).
1180
+
1181
+ [`TransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal
1182
+ models (e.g. GPT-1) do.
1183
+
1184
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1185
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1186
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1187
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1188
+ each row of the batch).
1189
+ """,
1190
+ TRANSFO_XL_START_DOCSTRING,
1191
+ )
1192
+ class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel):
1193
+ def __init__(self, config):
1194
+ super().__init__(config)
1195
+ self.num_labels = config.num_labels
1196
+ self.transformer = TransfoXLModel(config)
1197
+ self.score = nn.Linear(config.d_embed, self.num_labels, bias=False)
1198
+ # Initialize weights and apply final processing
1199
+ self.post_init()
1200
+
1201
+ @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING)
1202
+ @add_code_sample_docstrings(
1203
+ checkpoint=_CHECKPOINT_FOR_DOC,
1204
+ output_type=TransfoXLSequenceClassifierOutputWithPast,
1205
+ config_class=_CONFIG_FOR_DOC,
1206
+ )
1207
+ def forward(
1208
+ self,
1209
+ input_ids: Optional[torch.LongTensor] = None,
1210
+ mems: Optional[List[torch.FloatTensor]] = None,
1211
+ head_mask: Optional[torch.FloatTensor] = None,
1212
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1213
+ labels: Optional[torch.LongTensor] = None,
1214
+ output_attentions: Optional[bool] = None,
1215
+ output_hidden_states: Optional[bool] = None,
1216
+ return_dict: Optional[bool] = None,
1217
+ ) -> Union[Tuple, TransfoXLSequenceClassifierOutputWithPast]:
1218
+ r"""
1219
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1220
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1221
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1222
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1223
+ """
1224
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1225
+
1226
+ transformer_outputs = self.transformer(
1227
+ input_ids,
1228
+ mems=mems,
1229
+ head_mask=head_mask,
1230
+ inputs_embeds=inputs_embeds,
1231
+ output_attentions=output_attentions,
1232
+ output_hidden_states=output_hidden_states,
1233
+ return_dict=return_dict,
1234
+ )
1235
+ hidden_states = transformer_outputs[0]
1236
+ logits = self.score(hidden_states)
1237
+
1238
+ if input_ids is not None:
1239
+ batch_size, sequence_length = input_ids.shape[:2]
1240
+ else:
1241
+ batch_size, sequence_length = inputs_embeds.shape[:2]
1242
+
1243
+ assert (
1244
+ self.config.pad_token_id is not None or batch_size == 1
1245
+ ), "Cannot handle batch sizes > 1 if no padding token is defined."
1246
+ if self.config.pad_token_id is None:
1247
+ sequence_lengths = -1
1248
+ else:
1249
+ if input_ids is not None:
1250
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1251
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1252
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1253
+ sequence_lengths = sequence_lengths.to(logits.device)
1254
+ else:
1255
+ sequence_lengths = -1
1256
+ logger.warning(
1257
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1258
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1259
+ )
1260
+
1261
+ pooled_logits = logits[range(batch_size), sequence_lengths]
1262
+
1263
+ loss = None
1264
+ if labels is not None:
1265
+ if self.config.problem_type is None:
1266
+ if self.num_labels == 1:
1267
+ self.config.problem_type = "regression"
1268
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1269
+ self.config.problem_type = "single_label_classification"
1270
+ else:
1271
+ self.config.problem_type = "multi_label_classification"
1272
+
1273
+ if self.config.problem_type == "regression":
1274
+ loss_fct = MSELoss()
1275
+ if self.num_labels == 1:
1276
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1277
+ else:
1278
+ loss = loss_fct(pooled_logits, labels)
1279
+ elif self.config.problem_type == "single_label_classification":
1280
+ loss_fct = CrossEntropyLoss()
1281
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1282
+ elif self.config.problem_type == "multi_label_classification":
1283
+ loss_fct = BCEWithLogitsLoss()
1284
+ loss = loss_fct(pooled_logits, labels)
1285
+ if not return_dict:
1286
+ output = (pooled_logits,) + transformer_outputs[1:]
1287
+ return ((loss,) + output) if loss is not None else output
1288
+
1289
+ return TransfoXLSequenceClassifierOutputWithPast(
1290
+ loss=loss,
1291
+ logits=pooled_logits,
1292
+ mems=transformer_outputs.mems,
1293
+ hidden_states=transformer_outputs.hidden_states,
1294
+ attentions=transformer_outputs.attentions,
1295
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/__init__.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace and Baidu Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ # rely on isort to merge the imports
17
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available
18
+
19
+
20
+ _import_structure = {
21
+ "configuration_ernie_m": ["ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieMConfig"],
22
+ }
23
+
24
+ try:
25
+ if not is_sentencepiece_available():
26
+ raise OptionalDependencyNotAvailable()
27
+ except OptionalDependencyNotAvailable:
28
+ pass
29
+ else:
30
+ _import_structure["tokenization_ernie_m"] = ["ErnieMTokenizer"]
31
+
32
+ try:
33
+ if not is_torch_available():
34
+ raise OptionalDependencyNotAvailable()
35
+ except OptionalDependencyNotAvailable:
36
+ pass
37
+ else:
38
+ _import_structure["modeling_ernie_m"] = [
39
+ "ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST",
40
+ "ErnieMForMultipleChoice",
41
+ "ErnieMForQuestionAnswering",
42
+ "ErnieMForSequenceClassification",
43
+ "ErnieMForTokenClassification",
44
+ "ErnieMModel",
45
+ "ErnieMPreTrainedModel",
46
+ "ErnieMForInformationExtraction",
47
+ ]
48
+
49
+
50
+ if TYPE_CHECKING:
51
+ from .configuration_ernie_m import ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieMConfig
52
+
53
+ try:
54
+ if not is_sentencepiece_available():
55
+ raise OptionalDependencyNotAvailable()
56
+ except OptionalDependencyNotAvailable:
57
+ pass
58
+ else:
59
+ from .tokenization_ernie_m import ErnieMTokenizer
60
+
61
+ try:
62
+ if not is_torch_available():
63
+ raise OptionalDependencyNotAvailable()
64
+ except OptionalDependencyNotAvailable:
65
+ pass
66
+ else:
67
+ from .modeling_ernie_m import (
68
+ ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST,
69
+ ErnieMForInformationExtraction,
70
+ ErnieMForMultipleChoice,
71
+ ErnieMForQuestionAnswering,
72
+ ErnieMForSequenceClassification,
73
+ ErnieMForTokenClassification,
74
+ ErnieMModel,
75
+ ErnieMPreTrainedModel,
76
+ )
77
+
78
+
79
+ else:
80
+ import sys
81
+
82
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.35 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/configuration_ernie_m.cpython-310.pyc ADDED
Binary file (5.25 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/modeling_ernie_m.cpython-310.pyc ADDED
Binary file (29.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/__pycache__/tokenization_ernie_m.cpython-310.pyc ADDED
Binary file (14.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/configuration_ernie_m.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ ErnieM model configuration"""
16
+ # Adapted from original paddlenlp repository.(https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/transformers/ernie_m/configuration.py)
17
+
18
+ from __future__ import annotations
19
+
20
+ from typing import Dict
21
+
22
+ from ...configuration_utils import PretrainedConfig
23
+ from ..deprecated._archive_maps import ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
24
+
25
+
26
+ class ErnieMConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`ErnieMModel`]. It is used to instantiate a
29
+ Ernie-M model according to the specified arguments, defining the model architecture. Instantiating a configuration
30
+ with the defaults will yield a similar configuration to that of the `Ernie-M`
31
+ [susnato/ernie-m-base_pytorch](https://huggingface.co/susnato/ernie-m-base_pytorch) architecture.
32
+
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 250002):
39
+ Vocabulary size of `inputs_ids` in [`ErnieMModel`]. Also is the vocab size of token embedding matrix.
40
+ Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling
41
+ [`ErnieMModel`].
42
+ hidden_size (`int`, *optional*, defaults to 768):
43
+ Dimensionality of the embedding layer, encoder layers and pooler layer.
44
+ num_hidden_layers (`int`, *optional*, defaults to 12):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 12):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ intermediate_size (`int`, *optional*, defaults to 3072):
49
+ Dimensionality of the feed-forward (ff) layer in the encoder. Input tensors to feed-forward layers are
50
+ firstly projected from hidden_size to intermediate_size, and then projected back to hidden_size. Typically
51
+ intermediate_size is larger than hidden_size.
52
+ hidden_act (`str`, *optional*, defaults to `"gelu"`):
53
+ The non-linear activation function in the feed-forward layer. `"gelu"`, `"relu"` and any other torch
54
+ supported activation functions are supported.
55
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
56
+ The dropout probability for all fully connected layers in the embeddings and encoder.
57
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
58
+ The dropout probability used in `MultiHeadAttention` in all encoder layers to drop some attention target.
59
+ max_position_embeddings (`int`, *optional*, defaults to 514):
60
+ The maximum value of the dimensionality of position encoding, which dictates the maximum supported length
61
+ of an input sequence.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the normal initializer for initializing all weight matrices. The index of padding
64
+ token in the token vocabulary.
65
+ pad_token_id (`int`, *optional*, defaults to 1):
66
+ Padding token id.
67
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
68
+ The epsilon used by the layer normalization layers.
69
+ classifier_dropout (`float`, *optional*):
70
+ The dropout ratio for the classification head.
71
+ act_dropout (`float`, *optional*, defaults to 0.0):
72
+ This dropout probability is used in `ErnieMEncoderLayer` after activation.
73
+
74
+ A normal_initializer initializes weight matrices as normal distributions. See
75
+ `ErnieMPretrainedModel._init_weights()` for how weights are initialized in `ErnieMModel`.
76
+ """
77
+
78
+ model_type = "ernie_m"
79
+ attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
80
+
81
+ def __init__(
82
+ self,
83
+ vocab_size: int = 250002,
84
+ hidden_size: int = 768,
85
+ num_hidden_layers: int = 12,
86
+ num_attention_heads: int = 12,
87
+ intermediate_size: int = 3072,
88
+ hidden_act: str = "gelu",
89
+ hidden_dropout_prob: float = 0.1,
90
+ attention_probs_dropout_prob: float = 0.1,
91
+ max_position_embeddings: int = 514,
92
+ initializer_range: float = 0.02,
93
+ pad_token_id: int = 1,
94
+ layer_norm_eps: float = 1e-05,
95
+ classifier_dropout=None,
96
+ act_dropout=0.0,
97
+ **kwargs,
98
+ ):
99
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
100
+ self.vocab_size = vocab_size
101
+ self.hidden_size = hidden_size
102
+ self.num_hidden_layers = num_hidden_layers
103
+ self.num_attention_heads = num_attention_heads
104
+ self.intermediate_size = intermediate_size
105
+ self.hidden_act = hidden_act
106
+ self.hidden_dropout_prob = hidden_dropout_prob
107
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
108
+ self.max_position_embeddings = max_position_embeddings
109
+ self.initializer_range = initializer_range
110
+ self.layer_norm_eps = layer_norm_eps
111
+ self.classifier_dropout = classifier_dropout
112
+ self.act_dropout = act_dropout
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/modeling_ernie_m.py ADDED
@@ -0,0 +1,1058 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch ErnieM model."""
16
+
17
+
18
+ import math
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn, tensor
24
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
25
+
26
+ from ...activations import ACT2FN
27
+ from ...modeling_outputs import (
28
+ BaseModelOutputWithPastAndCrossAttentions,
29
+ BaseModelOutputWithPoolingAndCrossAttentions,
30
+ MultipleChoiceModelOutput,
31
+ QuestionAnsweringModelOutput,
32
+ SequenceClassifierOutput,
33
+ TokenClassifierOutput,
34
+ )
35
+ from ...modeling_utils import PreTrainedModel
36
+ from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
37
+ from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
38
+ from .configuration_ernie_m import ErnieMConfig
39
+
40
+
41
+ logger = logging.get_logger(__name__)
42
+
43
+ _CHECKPOINT_FOR_DOC = "susnato/ernie-m-base_pytorch"
44
+ _CONFIG_FOR_DOC = "ErnieMConfig"
45
+ _TOKENIZER_FOR_DOC = "ErnieMTokenizer"
46
+
47
+
48
+ from ..deprecated._archive_maps import ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
49
+
50
+
51
+ # Adapted from paddlenlp.transformers.ernie_m.modeling.ErnieEmbeddings
52
+ class ErnieMEmbeddings(nn.Module):
53
+ """Construct the embeddings from word and position embeddings."""
54
+
55
+ def __init__(self, config):
56
+ super().__init__()
57
+ self.hidden_size = config.hidden_size
58
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
59
+ self.position_embeddings = nn.Embedding(
60
+ config.max_position_embeddings, config.hidden_size, padding_idx=config.pad_token_id
61
+ )
62
+ self.layer_norm = nn.LayerNorm(normalized_shape=config.hidden_size, eps=config.layer_norm_eps)
63
+ self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
64
+ self.padding_idx = config.pad_token_id
65
+
66
+ def forward(
67
+ self,
68
+ input_ids: Optional[torch.LongTensor] = None,
69
+ position_ids: Optional[torch.LongTensor] = None,
70
+ inputs_embeds: Optional[torch.LongTensor] = None,
71
+ past_key_values_length: int = 0,
72
+ ) -> torch.Tensor:
73
+ if inputs_embeds is None:
74
+ inputs_embeds = self.word_embeddings(input_ids)
75
+ if position_ids is None:
76
+ input_shape = inputs_embeds.size()[:-1]
77
+ ones = torch.ones(input_shape, dtype=torch.int64, device=inputs_embeds.device)
78
+ seq_length = torch.cumsum(ones, dim=1)
79
+ position_ids = seq_length - ones
80
+
81
+ if past_key_values_length > 0:
82
+ position_ids = position_ids + past_key_values_length
83
+ # to mimic paddlenlp implementation
84
+ position_ids += 2
85
+ position_embeddings = self.position_embeddings(position_ids)
86
+ embeddings = inputs_embeds + position_embeddings
87
+ embeddings = self.layer_norm(embeddings)
88
+ embeddings = self.dropout(embeddings)
89
+
90
+ return embeddings
91
+
92
+
93
+ # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ErnieM,self.value->self.v_proj,self.key->self.k_proj,self.query->self.q_proj
94
+ class ErnieMSelfAttention(nn.Module):
95
+ def __init__(self, config, position_embedding_type=None):
96
+ super().__init__()
97
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
98
+ raise ValueError(
99
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
100
+ f"heads ({config.num_attention_heads})"
101
+ )
102
+
103
+ self.num_attention_heads = config.num_attention_heads
104
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
105
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
106
+
107
+ self.q_proj = nn.Linear(config.hidden_size, self.all_head_size)
108
+ self.k_proj = nn.Linear(config.hidden_size, self.all_head_size)
109
+ self.v_proj = nn.Linear(config.hidden_size, self.all_head_size)
110
+
111
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
112
+ self.position_embedding_type = position_embedding_type or getattr(
113
+ config, "position_embedding_type", "absolute"
114
+ )
115
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
116
+ self.max_position_embeddings = config.max_position_embeddings
117
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
118
+
119
+ self.is_decoder = config.is_decoder
120
+
121
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
122
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
123
+ x = x.view(new_x_shape)
124
+ return x.permute(0, 2, 1, 3)
125
+
126
+ def forward(
127
+ self,
128
+ hidden_states: torch.Tensor,
129
+ attention_mask: Optional[torch.FloatTensor] = None,
130
+ head_mask: Optional[torch.FloatTensor] = None,
131
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
132
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
133
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
134
+ output_attentions: Optional[bool] = False,
135
+ ) -> Tuple[torch.Tensor]:
136
+ mixed_query_layer = self.q_proj(hidden_states)
137
+
138
+ # If this is instantiated as a cross-attention module, the keys
139
+ # and values come from an encoder; the attention mask needs to be
140
+ # such that the encoder's padding tokens are not attended to.
141
+ is_cross_attention = encoder_hidden_states is not None
142
+
143
+ if is_cross_attention and past_key_value is not None:
144
+ # reuse k,v, cross_attentions
145
+ key_layer = past_key_value[0]
146
+ value_layer = past_key_value[1]
147
+ attention_mask = encoder_attention_mask
148
+ elif is_cross_attention:
149
+ key_layer = self.transpose_for_scores(self.k_proj(encoder_hidden_states))
150
+ value_layer = self.transpose_for_scores(self.v_proj(encoder_hidden_states))
151
+ attention_mask = encoder_attention_mask
152
+ elif past_key_value is not None:
153
+ key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
154
+ value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
155
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
156
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
157
+ else:
158
+ key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
159
+ value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
160
+
161
+ query_layer = self.transpose_for_scores(mixed_query_layer)
162
+
163
+ use_cache = past_key_value is not None
164
+ if self.is_decoder:
165
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
166
+ # Further calls to cross_attention layer can then reuse all cross-attention
167
+ # key/value_states (first "if" case)
168
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
169
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
170
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
171
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
172
+ past_key_value = (key_layer, value_layer)
173
+
174
+ # Take the dot product between "query" and "key" to get the raw attention scores.
175
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
176
+
177
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
178
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
179
+ if use_cache:
180
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
181
+ -1, 1
182
+ )
183
+ else:
184
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
185
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
186
+ distance = position_ids_l - position_ids_r
187
+
188
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
189
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
190
+
191
+ if self.position_embedding_type == "relative_key":
192
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
193
+ attention_scores = attention_scores + relative_position_scores
194
+ elif self.position_embedding_type == "relative_key_query":
195
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
196
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
197
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
198
+
199
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
200
+ if attention_mask is not None:
201
+ # Apply the attention mask is (precomputed for all layers in ErnieMModel forward() function)
202
+ attention_scores = attention_scores + attention_mask
203
+
204
+ # Normalize the attention scores to probabilities.
205
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
206
+
207
+ # This is actually dropping out entire tokens to attend to, which might
208
+ # seem a bit unusual, but is taken from the original Transformer paper.
209
+ attention_probs = self.dropout(attention_probs)
210
+
211
+ # Mask heads if we want to
212
+ if head_mask is not None:
213
+ attention_probs = attention_probs * head_mask
214
+
215
+ context_layer = torch.matmul(attention_probs, value_layer)
216
+
217
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
218
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
219
+ context_layer = context_layer.view(new_context_layer_shape)
220
+
221
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
222
+
223
+ if self.is_decoder:
224
+ outputs = outputs + (past_key_value,)
225
+ return outputs
226
+
227
+
228
+ class ErnieMAttention(nn.Module):
229
+ def __init__(self, config, position_embedding_type=None):
230
+ super().__init__()
231
+ self.self_attn = ErnieMSelfAttention(config, position_embedding_type=position_embedding_type)
232
+ self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
233
+ self.pruned_heads = set()
234
+
235
+ def prune_heads(self, heads):
236
+ if len(heads) == 0:
237
+ return
238
+ heads, index = find_pruneable_heads_and_indices(
239
+ heads, self.self_attn.num_attention_heads, self.self_attn.attention_head_size, self.pruned_heads
240
+ )
241
+
242
+ # Prune linear layers
243
+ self.self_attn.q_proj = prune_linear_layer(self.self_attn.q_proj, index)
244
+ self.self_attn.k_proj = prune_linear_layer(self.self_attn.k_proj, index)
245
+ self.self_attn.v_proj = prune_linear_layer(self.self_attn.v_proj, index)
246
+ self.out_proj = prune_linear_layer(self.out_proj, index, dim=1)
247
+
248
+ # Update hyper params and store pruned heads
249
+ self.self_attn.num_attention_heads = self.self_attn.num_attention_heads - len(heads)
250
+ self.self_attn.all_head_size = self.self_attn.attention_head_size * self.self_attn.num_attention_heads
251
+ self.pruned_heads = self.pruned_heads.union(heads)
252
+
253
+ def forward(
254
+ self,
255
+ hidden_states: torch.Tensor,
256
+ attention_mask: Optional[torch.FloatTensor] = None,
257
+ head_mask: Optional[torch.FloatTensor] = None,
258
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
259
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
260
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
261
+ output_attentions: Optional[bool] = False,
262
+ ) -> Tuple[torch.Tensor]:
263
+ self_outputs = self.self_attn(
264
+ hidden_states,
265
+ attention_mask,
266
+ head_mask,
267
+ encoder_hidden_states,
268
+ encoder_attention_mask,
269
+ past_key_value,
270
+ output_attentions,
271
+ )
272
+ attention_output = self.out_proj(self_outputs[0])
273
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
274
+ return outputs
275
+
276
+
277
+ class ErnieMEncoderLayer(nn.Module):
278
+ def __init__(self, config):
279
+ super().__init__()
280
+ # to mimic paddlenlp implementation
281
+ dropout = 0.1 if config.hidden_dropout_prob is None else config.hidden_dropout_prob
282
+ act_dropout = config.hidden_dropout_prob if config.act_dropout is None else config.act_dropout
283
+
284
+ self.self_attn = ErnieMAttention(config)
285
+ self.linear1 = nn.Linear(config.hidden_size, config.intermediate_size)
286
+ self.dropout = nn.Dropout(act_dropout)
287
+ self.linear2 = nn.Linear(config.intermediate_size, config.hidden_size)
288
+ self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
289
+ self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
290
+ self.dropout1 = nn.Dropout(dropout)
291
+ self.dropout2 = nn.Dropout(dropout)
292
+ if isinstance(config.hidden_act, str):
293
+ self.activation = ACT2FN[config.hidden_act]
294
+ else:
295
+ self.activation = config.hidden_act
296
+
297
+ def forward(
298
+ self,
299
+ hidden_states: torch.Tensor,
300
+ attention_mask: Optional[torch.FloatTensor] = None,
301
+ head_mask: Optional[torch.FloatTensor] = None,
302
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
303
+ output_attentions: Optional[bool] = True,
304
+ ):
305
+ residual = hidden_states
306
+ if output_attentions:
307
+ hidden_states, attention_opt_weights = self.self_attn(
308
+ hidden_states=hidden_states,
309
+ attention_mask=attention_mask,
310
+ head_mask=head_mask,
311
+ past_key_value=past_key_value,
312
+ output_attentions=output_attentions,
313
+ )
314
+
315
+ else:
316
+ hidden_states = self.self_attn(
317
+ hidden_states=hidden_states,
318
+ attention_mask=attention_mask,
319
+ head_mask=head_mask,
320
+ past_key_value=past_key_value,
321
+ output_attentions=output_attentions,
322
+ )
323
+ hidden_states = residual + self.dropout1(hidden_states)
324
+ hidden_states = self.norm1(hidden_states)
325
+ residual = hidden_states
326
+
327
+ hidden_states = self.linear1(hidden_states)
328
+ hidden_states = self.activation(hidden_states)
329
+ hidden_states = self.dropout(hidden_states)
330
+ hidden_states = self.linear2(hidden_states)
331
+ hidden_states = residual + self.dropout2(hidden_states)
332
+ hidden_states = self.norm2(hidden_states)
333
+
334
+ if output_attentions:
335
+ return hidden_states, attention_opt_weights
336
+ else:
337
+ return hidden_states
338
+
339
+
340
+ class ErnieMEncoder(nn.Module):
341
+ def __init__(self, config):
342
+ super().__init__()
343
+ self.config = config
344
+ self.layers = nn.ModuleList([ErnieMEncoderLayer(config) for _ in range(config.num_hidden_layers)])
345
+
346
+ def forward(
347
+ self,
348
+ input_embeds: torch.Tensor,
349
+ attention_mask: Optional[torch.FloatTensor] = None,
350
+ head_mask: Optional[torch.FloatTensor] = None,
351
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
352
+ output_attentions: Optional[bool] = False,
353
+ output_hidden_states: Optional[bool] = False,
354
+ return_dict: Optional[bool] = True,
355
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
356
+ hidden_states = () if output_hidden_states else None
357
+ attentions = () if output_attentions else None
358
+
359
+ output = input_embeds
360
+ if output_hidden_states:
361
+ hidden_states = hidden_states + (output,)
362
+ for i, layer in enumerate(self.layers):
363
+ layer_head_mask = head_mask[i] if head_mask is not None else None
364
+ past_key_value = past_key_values[i] if past_key_values is not None else None
365
+
366
+ output, opt_attn_weights = layer(
367
+ hidden_states=output,
368
+ attention_mask=attention_mask,
369
+ head_mask=layer_head_mask,
370
+ past_key_value=past_key_value,
371
+ )
372
+
373
+ if output_hidden_states:
374
+ hidden_states = hidden_states + (output,)
375
+ if output_attentions:
376
+ attentions = attentions + (opt_attn_weights,)
377
+
378
+ last_hidden_state = output
379
+ if not return_dict:
380
+ return tuple(v for v in [last_hidden_state, hidden_states, attentions] if v is not None)
381
+
382
+ return BaseModelOutputWithPastAndCrossAttentions(
383
+ last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=attentions
384
+ )
385
+
386
+
387
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ErnieM
388
+ class ErnieMPooler(nn.Module):
389
+ def __init__(self, config):
390
+ super().__init__()
391
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
392
+ self.activation = nn.Tanh()
393
+
394
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
395
+ # We "pool" the model by simply taking the hidden state corresponding
396
+ # to the first token.
397
+ first_token_tensor = hidden_states[:, 0]
398
+ pooled_output = self.dense(first_token_tensor)
399
+ pooled_output = self.activation(pooled_output)
400
+ return pooled_output
401
+
402
+
403
+ class ErnieMPreTrainedModel(PreTrainedModel):
404
+ """
405
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
406
+ models.
407
+ """
408
+
409
+ config_class = ErnieMConfig
410
+ base_model_prefix = "ernie_m"
411
+
412
+ def _init_weights(self, module):
413
+ """Initialize the weights"""
414
+ if isinstance(module, nn.Linear):
415
+ # Slightly different from the TF version which uses truncated_normal for initialization
416
+ # cf https://github.com/pytorch/pytorch/pull/5617
417
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
418
+ if module.bias is not None:
419
+ module.bias.data.zero_()
420
+ elif isinstance(module, nn.Embedding):
421
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
422
+ if module.padding_idx is not None:
423
+ module.weight.data[module.padding_idx].zero_()
424
+ elif isinstance(module, nn.LayerNorm):
425
+ module.bias.data.zero_()
426
+ module.weight.data.fill_(1.0)
427
+
428
+
429
+ ERNIE_M_START_DOCSTRING = r"""
430
+
431
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
432
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
433
+ etc.)
434
+
435
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
436
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
437
+ behavior.
438
+
439
+ Parameters:
440
+ config ([`ErnieMConfig`]): Model configuration class with all the parameters of the model.
441
+ Initializing with a config file does not load the weights associated with the model, only the
442
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
443
+ """
444
+
445
+ ERNIE_M_INPUTS_DOCSTRING = r"""
446
+ Args:
447
+ input_ids (`torch.LongTensor` of shape `({0})`):
448
+ Indices of input sequence tokens in the vocabulary.
449
+
450
+ Indices can be obtained using [`ErnieMTokenizer`]. See [`PreTrainedTokenizer.encode`] and
451
+ [`PreTrainedTokenizer.__call__`] for details.
452
+
453
+ [What are input IDs?](../glossary#input-ids)
454
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
455
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
456
+
457
+ - 1 for tokens that are **not masked**,
458
+ - 0 for tokens that are **masked**.
459
+
460
+ [What are attention masks?](../glossary#attention-mask)
461
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
462
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
463
+ config.max_position_embeddings - 1]`.
464
+
465
+ [What are position IDs?](../glossary#position-ids)
466
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
467
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
468
+
469
+ - 1 indicates the head is **not masked**,
470
+ - 0 indicates the head is **masked**.
471
+
472
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
473
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
474
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
475
+ model's internal embedding lookup matrix.
476
+ output_attentions (`bool`, *optional*):
477
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
478
+ tensors for more detail.
479
+ output_hidden_states (`bool`, *optional*):
480
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
481
+ more detail.
482
+ return_dict (`bool`, *optional*):
483
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
484
+ """
485
+
486
+
487
+ @add_start_docstrings(
488
+ "The bare ErnieM Model transformer outputting raw hidden-states without any specific head on top.",
489
+ ERNIE_M_START_DOCSTRING,
490
+ )
491
+ class ErnieMModel(ErnieMPreTrainedModel):
492
+ def __init__(self, config, add_pooling_layer=True):
493
+ super(ErnieMModel, self).__init__(config)
494
+ self.initializer_range = config.initializer_range
495
+ self.embeddings = ErnieMEmbeddings(config)
496
+ self.encoder = ErnieMEncoder(config)
497
+ self.pooler = ErnieMPooler(config) if add_pooling_layer else None
498
+ self.post_init()
499
+
500
+ def get_input_embeddings(self):
501
+ return self.embeddings.word_embeddings
502
+
503
+ def set_input_embeddings(self, value):
504
+ self.embeddings.word_embeddings = value
505
+
506
+ def _prune_heads(self, heads_to_prune):
507
+ """
508
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
509
+ class PreTrainedModel
510
+ """
511
+ for layer, heads in heads_to_prune.items():
512
+ self.encoder.layers[layer].self_attn.prune_heads(heads)
513
+
514
+ @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
515
+ @add_code_sample_docstrings(
516
+ processor_class=_TOKENIZER_FOR_DOC,
517
+ checkpoint=_CHECKPOINT_FOR_DOC,
518
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
519
+ config_class=_CONFIG_FOR_DOC,
520
+ )
521
+ def forward(
522
+ self,
523
+ input_ids: Optional[tensor] = None,
524
+ position_ids: Optional[tensor] = None,
525
+ attention_mask: Optional[tensor] = None,
526
+ head_mask: Optional[tensor] = None,
527
+ inputs_embeds: Optional[tensor] = None,
528
+ past_key_values: Optional[Tuple[Tuple[tensor]]] = None,
529
+ use_cache: Optional[bool] = None,
530
+ output_hidden_states: Optional[bool] = None,
531
+ output_attentions: Optional[bool] = None,
532
+ return_dict: Optional[bool] = None,
533
+ ) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPoolingAndCrossAttentions]:
534
+ if input_ids is not None and inputs_embeds is not None:
535
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time.")
536
+
537
+ # init the default bool value
538
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
539
+ output_hidden_states = (
540
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
541
+ )
542
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
543
+
544
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
545
+
546
+ past_key_values_length = 0
547
+ if past_key_values is not None:
548
+ past_key_values_length = past_key_values[0][0].shape[2]
549
+
550
+ # Adapted from paddlenlp.transformers.ernie_m.ErnieMModel
551
+ if attention_mask is None:
552
+ attention_mask = (input_ids == self.config.pad_token_id).to(torch.float32)
553
+ attention_mask *= torch.finfo(attention_mask.dtype).min
554
+ if past_key_values is not None:
555
+ batch_size = past_key_values[0][0].shape[0]
556
+ past_mask = torch.zeros([batch_size, 1, 1, past_key_values_length], dtype=attention_mask.dtype)
557
+ attention_mask = torch.concat([past_mask, attention_mask], dim=-1)
558
+ # For 2D attention_mask from tokenizer
559
+ elif attention_mask.ndim == 2:
560
+ attention_mask = attention_mask.to(torch.float32)
561
+ attention_mask = 1.0 - attention_mask
562
+ attention_mask *= torch.finfo(attention_mask.dtype).min
563
+
564
+ extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
565
+
566
+ embedding_output = self.embeddings(
567
+ input_ids=input_ids,
568
+ position_ids=position_ids,
569
+ inputs_embeds=inputs_embeds,
570
+ past_key_values_length=past_key_values_length,
571
+ )
572
+ encoder_outputs = self.encoder(
573
+ embedding_output,
574
+ attention_mask=extended_attention_mask,
575
+ head_mask=head_mask,
576
+ past_key_values=past_key_values,
577
+ output_attentions=output_attentions,
578
+ output_hidden_states=output_hidden_states,
579
+ return_dict=return_dict,
580
+ )
581
+
582
+ if not return_dict:
583
+ sequence_output = encoder_outputs[0]
584
+ pooler_output = self.pooler(sequence_output) if self.pooler is not None else None
585
+ return (sequence_output, pooler_output) + encoder_outputs[1:]
586
+
587
+ sequence_output = encoder_outputs["last_hidden_state"]
588
+ pooler_output = self.pooler(sequence_output) if self.pooler is not None else None
589
+ hidden_states = None if not output_hidden_states else encoder_outputs["hidden_states"]
590
+ attentions = None if not output_attentions else encoder_outputs["attentions"]
591
+
592
+ return BaseModelOutputWithPoolingAndCrossAttentions(
593
+ last_hidden_state=sequence_output,
594
+ pooler_output=pooler_output,
595
+ hidden_states=hidden_states,
596
+ attentions=attentions,
597
+ )
598
+
599
+
600
+ @add_start_docstrings(
601
+ """ErnieM Model transformer with a sequence classification/regression head on top (a linear layer on top of
602
+ the pooled output) e.g. for GLUE tasks.""",
603
+ ERNIE_M_START_DOCSTRING,
604
+ )
605
+ class ErnieMForSequenceClassification(ErnieMPreTrainedModel):
606
+ # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->ErnieM,bert->ernie_m
607
+ def __init__(self, config):
608
+ super().__init__(config)
609
+ self.num_labels = config.num_labels
610
+ self.config = config
611
+
612
+ self.ernie_m = ErnieMModel(config)
613
+ classifier_dropout = (
614
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
615
+ )
616
+ self.dropout = nn.Dropout(classifier_dropout)
617
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
618
+
619
+ # Initialize weights and apply final processing
620
+ self.post_init()
621
+
622
+ @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
623
+ @add_code_sample_docstrings(
624
+ processor_class=_TOKENIZER_FOR_DOC,
625
+ checkpoint=_CHECKPOINT_FOR_DOC,
626
+ output_type=SequenceClassifierOutput,
627
+ config_class=_CONFIG_FOR_DOC,
628
+ )
629
+ def forward(
630
+ self,
631
+ input_ids: Optional[torch.Tensor] = None,
632
+ attention_mask: Optional[torch.Tensor] = None,
633
+ position_ids: Optional[torch.Tensor] = None,
634
+ head_mask: Optional[torch.Tensor] = None,
635
+ inputs_embeds: Optional[torch.Tensor] = None,
636
+ past_key_values: Optional[List[torch.Tensor]] = None,
637
+ use_cache: Optional[bool] = None,
638
+ output_hidden_states: Optional[bool] = None,
639
+ output_attentions: Optional[bool] = None,
640
+ return_dict: Optional[bool] = True,
641
+ labels: Optional[torch.Tensor] = None,
642
+ ) -> Union[Tuple[torch.FloatTensor], SequenceClassifierOutput]:
643
+ r"""
644
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
645
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
646
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
647
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
648
+ """
649
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
650
+
651
+ outputs = self.ernie_m(
652
+ input_ids,
653
+ attention_mask=attention_mask,
654
+ position_ids=position_ids,
655
+ head_mask=head_mask,
656
+ inputs_embeds=inputs_embeds,
657
+ past_key_values=past_key_values,
658
+ output_hidden_states=output_hidden_states,
659
+ output_attentions=output_attentions,
660
+ return_dict=return_dict,
661
+ )
662
+
663
+ pooled_output = outputs[1]
664
+
665
+ pooled_output = self.dropout(pooled_output)
666
+ logits = self.classifier(pooled_output)
667
+
668
+ loss = None
669
+ if labels is not None:
670
+ if self.config.problem_type is None:
671
+ if self.num_labels == 1:
672
+ self.config.problem_type = "regression"
673
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
674
+ self.config.problem_type = "single_label_classification"
675
+ else:
676
+ self.config.problem_type = "multi_label_classification"
677
+
678
+ if self.config.problem_type == "regression":
679
+ loss_fct = MSELoss()
680
+ if self.num_labels == 1:
681
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
682
+ else:
683
+ loss = loss_fct(logits, labels)
684
+ elif self.config.problem_type == "single_label_classification":
685
+ loss_fct = CrossEntropyLoss()
686
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
687
+ elif self.config.problem_type == "multi_label_classification":
688
+ loss_fct = BCEWithLogitsLoss()
689
+ loss = loss_fct(logits, labels)
690
+ if not return_dict:
691
+ output = (logits,) + outputs[2:]
692
+ return ((loss,) + output) if loss is not None else output
693
+
694
+ return SequenceClassifierOutput(
695
+ loss=loss,
696
+ logits=logits,
697
+ hidden_states=outputs.hidden_states,
698
+ attentions=outputs.attentions,
699
+ )
700
+
701
+
702
+ @add_start_docstrings(
703
+ """ErnieM Model with a multiple choice classification head on top (a linear layer on top of
704
+ the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""",
705
+ ERNIE_M_START_DOCSTRING,
706
+ )
707
+ class ErnieMForMultipleChoice(ErnieMPreTrainedModel):
708
+ # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->ErnieM,bert->ernie_m
709
+ def __init__(self, config):
710
+ super().__init__(config)
711
+
712
+ self.ernie_m = ErnieMModel(config)
713
+ classifier_dropout = (
714
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
715
+ )
716
+ self.dropout = nn.Dropout(classifier_dropout)
717
+ self.classifier = nn.Linear(config.hidden_size, 1)
718
+
719
+ # Initialize weights and apply final processing
720
+ self.post_init()
721
+
722
+ @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
723
+ @add_code_sample_docstrings(
724
+ checkpoint=_CHECKPOINT_FOR_DOC,
725
+ output_type=MultipleChoiceModelOutput,
726
+ config_class=_CONFIG_FOR_DOC,
727
+ )
728
+ def forward(
729
+ self,
730
+ input_ids: Optional[torch.Tensor] = None,
731
+ attention_mask: Optional[torch.Tensor] = None,
732
+ position_ids: Optional[torch.Tensor] = None,
733
+ head_mask: Optional[torch.Tensor] = None,
734
+ inputs_embeds: Optional[torch.Tensor] = None,
735
+ labels: Optional[torch.Tensor] = None,
736
+ output_attentions: Optional[bool] = None,
737
+ output_hidden_states: Optional[bool] = None,
738
+ return_dict: Optional[bool] = True,
739
+ ) -> Union[Tuple[torch.FloatTensor], MultipleChoiceModelOutput]:
740
+ r"""
741
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
742
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
743
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
744
+ `input_ids` above)
745
+ """
746
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
747
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
748
+
749
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
750
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
751
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
752
+ inputs_embeds = (
753
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
754
+ if inputs_embeds is not None
755
+ else None
756
+ )
757
+
758
+ outputs = self.ernie_m(
759
+ input_ids,
760
+ attention_mask=attention_mask,
761
+ position_ids=position_ids,
762
+ head_mask=head_mask,
763
+ inputs_embeds=inputs_embeds,
764
+ output_attentions=output_attentions,
765
+ output_hidden_states=output_hidden_states,
766
+ return_dict=return_dict,
767
+ )
768
+
769
+ pooled_output = outputs[1]
770
+
771
+ pooled_output = self.dropout(pooled_output)
772
+ logits = self.classifier(pooled_output)
773
+ reshaped_logits = logits.view(-1, num_choices)
774
+
775
+ loss = None
776
+ if labels is not None:
777
+ loss_fct = CrossEntropyLoss()
778
+ loss = loss_fct(reshaped_logits, labels)
779
+
780
+ if not return_dict:
781
+ output = (reshaped_logits,) + outputs[2:]
782
+ return ((loss,) + output) if loss is not None else output
783
+
784
+ return MultipleChoiceModelOutput(
785
+ loss=loss,
786
+ logits=reshaped_logits,
787
+ hidden_states=outputs.hidden_states,
788
+ attentions=outputs.attentions,
789
+ )
790
+
791
+
792
+ @add_start_docstrings(
793
+ """ErnieM Model with a token classification head on top (a linear layer on top of
794
+ the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""",
795
+ ERNIE_M_START_DOCSTRING,
796
+ )
797
+ class ErnieMForTokenClassification(ErnieMPreTrainedModel):
798
+ # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->ErnieM,bert->ernie_m
799
+ def __init__(self, config):
800
+ super().__init__(config)
801
+ self.num_labels = config.num_labels
802
+
803
+ self.ernie_m = ErnieMModel(config, add_pooling_layer=False)
804
+ classifier_dropout = (
805
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
806
+ )
807
+ self.dropout = nn.Dropout(classifier_dropout)
808
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
809
+
810
+ # Initialize weights and apply final processing
811
+ self.post_init()
812
+
813
+ @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
814
+ @add_code_sample_docstrings(
815
+ processor_class=_TOKENIZER_FOR_DOC,
816
+ checkpoint=_CHECKPOINT_FOR_DOC,
817
+ output_type=TokenClassifierOutput,
818
+ config_class=_CONFIG_FOR_DOC,
819
+ )
820
+ def forward(
821
+ self,
822
+ input_ids: Optional[torch.Tensor] = None,
823
+ attention_mask: Optional[torch.Tensor] = None,
824
+ position_ids: Optional[torch.Tensor] = None,
825
+ head_mask: Optional[torch.Tensor] = None,
826
+ inputs_embeds: Optional[torch.Tensor] = None,
827
+ past_key_values: Optional[List[torch.Tensor]] = None,
828
+ output_hidden_states: Optional[bool] = None,
829
+ output_attentions: Optional[bool] = None,
830
+ return_dict: Optional[bool] = True,
831
+ labels: Optional[torch.Tensor] = None,
832
+ ) -> Union[Tuple[torch.FloatTensor], TokenClassifierOutput]:
833
+ r"""
834
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
835
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
836
+ """
837
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
838
+
839
+ outputs = self.ernie_m(
840
+ input_ids,
841
+ attention_mask=attention_mask,
842
+ position_ids=position_ids,
843
+ head_mask=head_mask,
844
+ inputs_embeds=inputs_embeds,
845
+ past_key_values=past_key_values,
846
+ output_attentions=output_attentions,
847
+ output_hidden_states=output_hidden_states,
848
+ return_dict=return_dict,
849
+ )
850
+
851
+ sequence_output = outputs[0]
852
+
853
+ sequence_output = self.dropout(sequence_output)
854
+ logits = self.classifier(sequence_output)
855
+
856
+ loss = None
857
+ if labels is not None:
858
+ loss_fct = CrossEntropyLoss()
859
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
860
+
861
+ if not return_dict:
862
+ output = (logits,) + outputs[2:]
863
+ return ((loss,) + output) if loss is not None else output
864
+
865
+ return TokenClassifierOutput(
866
+ loss=loss,
867
+ logits=logits,
868
+ hidden_states=outputs.hidden_states,
869
+ attentions=outputs.attentions,
870
+ )
871
+
872
+
873
+ @add_start_docstrings(
874
+ """ErnieM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
875
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""",
876
+ ERNIE_M_START_DOCSTRING,
877
+ )
878
+ class ErnieMForQuestionAnswering(ErnieMPreTrainedModel):
879
+ # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->ErnieM,bert->ernie_m
880
+ def __init__(self, config):
881
+ super().__init__(config)
882
+ self.num_labels = config.num_labels
883
+
884
+ self.ernie_m = ErnieMModel(config, add_pooling_layer=False)
885
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
886
+
887
+ # Initialize weights and apply final processing
888
+ self.post_init()
889
+
890
+ @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
891
+ @add_code_sample_docstrings(
892
+ processor_class=_TOKENIZER_FOR_DOC,
893
+ checkpoint=_CHECKPOINT_FOR_DOC,
894
+ output_type=QuestionAnsweringModelOutput,
895
+ config_class=_CONFIG_FOR_DOC,
896
+ )
897
+ def forward(
898
+ self,
899
+ input_ids: Optional[torch.Tensor] = None,
900
+ attention_mask: Optional[torch.Tensor] = None,
901
+ position_ids: Optional[torch.Tensor] = None,
902
+ head_mask: Optional[torch.Tensor] = None,
903
+ inputs_embeds: Optional[torch.Tensor] = None,
904
+ start_positions: Optional[torch.Tensor] = None,
905
+ end_positions: Optional[torch.Tensor] = None,
906
+ output_attentions: Optional[bool] = None,
907
+ output_hidden_states: Optional[bool] = None,
908
+ return_dict: Optional[bool] = True,
909
+ ) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]:
910
+ r"""
911
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
912
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
913
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
914
+ are not taken into account for computing the loss.
915
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
916
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
917
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
918
+ are not taken into account for computing the loss.
919
+ """
920
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
921
+
922
+ outputs = self.ernie_m(
923
+ input_ids,
924
+ attention_mask=attention_mask,
925
+ position_ids=position_ids,
926
+ head_mask=head_mask,
927
+ inputs_embeds=inputs_embeds,
928
+ output_attentions=output_attentions,
929
+ output_hidden_states=output_hidden_states,
930
+ return_dict=return_dict,
931
+ )
932
+
933
+ sequence_output = outputs[0]
934
+
935
+ logits = self.qa_outputs(sequence_output)
936
+ start_logits, end_logits = logits.split(1, dim=-1)
937
+ start_logits = start_logits.squeeze(-1).contiguous()
938
+ end_logits = end_logits.squeeze(-1).contiguous()
939
+
940
+ total_loss = None
941
+ if start_positions is not None and end_positions is not None:
942
+ # If we are on multi-GPU, split add a dimension
943
+ if len(start_positions.size()) > 1:
944
+ start_positions = start_positions.squeeze(-1)
945
+ if len(end_positions.size()) > 1:
946
+ end_positions = end_positions.squeeze(-1)
947
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
948
+ ignored_index = start_logits.size(1)
949
+ start_positions = start_positions.clamp(0, ignored_index)
950
+ end_positions = end_positions.clamp(0, ignored_index)
951
+
952
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
953
+ start_loss = loss_fct(start_logits, start_positions)
954
+ end_loss = loss_fct(end_logits, end_positions)
955
+ total_loss = (start_loss + end_loss) / 2
956
+
957
+ if not return_dict:
958
+ output = (start_logits, end_logits) + outputs[2:]
959
+ return ((total_loss,) + output) if total_loss is not None else output
960
+
961
+ return QuestionAnsweringModelOutput(
962
+ loss=total_loss,
963
+ start_logits=start_logits,
964
+ end_logits=end_logits,
965
+ hidden_states=outputs.hidden_states,
966
+ attentions=outputs.attentions,
967
+ )
968
+
969
+
970
+ @add_start_docstrings(
971
+ """ErnieMForInformationExtraction is a Ernie-M Model with two linear layer on top of the hidden-states output to
972
+ compute `start_prob` and `end_prob`, designed for Universal Information Extraction.""",
973
+ ERNIE_M_START_DOCSTRING,
974
+ )
975
+ # Copied from paddlenlp.transformers.ernie_m.modeling.UIEM
976
+ class ErnieMForInformationExtraction(ErnieMPreTrainedModel):
977
+ def __init__(self, config):
978
+ super(ErnieMForInformationExtraction, self).__init__(config)
979
+ self.ernie_m = ErnieMModel(config)
980
+ self.linear_start = nn.Linear(config.hidden_size, 1)
981
+ self.linear_end = nn.Linear(config.hidden_size, 1)
982
+ self.sigmoid = nn.Sigmoid()
983
+ self.post_init()
984
+
985
+ @add_start_docstrings_to_model_forward(ERNIE_M_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
986
+ def forward(
987
+ self,
988
+ input_ids: Optional[torch.Tensor] = None,
989
+ attention_mask: Optional[torch.Tensor] = None,
990
+ position_ids: Optional[torch.Tensor] = None,
991
+ head_mask: Optional[torch.Tensor] = None,
992
+ inputs_embeds: Optional[torch.Tensor] = None,
993
+ start_positions: Optional[torch.Tensor] = None,
994
+ end_positions: Optional[torch.Tensor] = None,
995
+ output_attentions: Optional[bool] = None,
996
+ output_hidden_states: Optional[bool] = None,
997
+ return_dict: Optional[bool] = True,
998
+ ) -> Union[Tuple[torch.FloatTensor], QuestionAnsweringModelOutput]:
999
+ r"""
1000
+ start_positions (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1001
+ Labels for position (index) for computing the start_positions loss. Position outside of the sequence are
1002
+ not taken into account for computing the loss.
1003
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1004
+ Labels for position (index) for computing the end_positions loss. Position outside of the sequence are not
1005
+ taken into account for computing the loss.
1006
+ """
1007
+
1008
+ result = self.ernie_m(
1009
+ input_ids,
1010
+ attention_mask=attention_mask,
1011
+ position_ids=position_ids,
1012
+ head_mask=head_mask,
1013
+ inputs_embeds=inputs_embeds,
1014
+ output_attentions=output_attentions,
1015
+ output_hidden_states=output_hidden_states,
1016
+ return_dict=return_dict,
1017
+ )
1018
+ if return_dict:
1019
+ sequence_output = result.last_hidden_state
1020
+ elif not return_dict:
1021
+ sequence_output = result[0]
1022
+
1023
+ start_logits = self.linear_start(sequence_output)
1024
+ start_logits = start_logits.squeeze(-1)
1025
+ end_logits = self.linear_end(sequence_output)
1026
+ end_logits = end_logits.squeeze(-1)
1027
+
1028
+ total_loss = None
1029
+ if start_positions is not None and end_positions is not None:
1030
+ # If we are on multi-GPU, split add a dimension
1031
+ if len(start_positions.size()) > 1:
1032
+ start_positions = start_positions.squeeze(-1)
1033
+ if len(end_positions.size()) > 1:
1034
+ end_positions = end_positions.squeeze(-1)
1035
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1036
+ ignored_index = start_logits.size(1)
1037
+ start_positions = start_positions.clamp(0, ignored_index)
1038
+ end_positions = end_positions.clamp(0, ignored_index)
1039
+
1040
+ loss_fct = BCEWithLogitsLoss()
1041
+ start_loss = loss_fct(start_logits, start_positions)
1042
+ end_loss = loss_fct(end_logits, end_positions)
1043
+ total_loss = (start_loss + end_loss) / 2
1044
+
1045
+ if not return_dict:
1046
+ return tuple(
1047
+ i
1048
+ for i in [total_loss, start_logits, end_logits, result.hidden_states, result.attentions]
1049
+ if i is not None
1050
+ )
1051
+
1052
+ return QuestionAnsweringModelOutput(
1053
+ loss=total_loss,
1054
+ start_logits=start_logits,
1055
+ end_logits=end_logits,
1056
+ hidden_states=result.hidden_states,
1057
+ attentions=result.attentions,
1058
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie_m/tokenization_ernie_m.py ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for Ernie-M."""
16
+
17
+ import io
18
+ import os
19
+ import unicodedata
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+
24
+ from ...tokenization_utils import PreTrainedTokenizer
25
+ from ...utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ SPIECE_UNDERLINE = "▁"
31
+
32
+ VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
33
+
34
+ RESOURCE_FILES_NAMES = {
35
+ "sentencepiece_model_file": "sentencepiece.bpe.model",
36
+ "vocab_file": "vocab.txt",
37
+ }
38
+
39
+
40
+ # Adapted from paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer
41
+ class ErnieMTokenizer(PreTrainedTokenizer):
42
+ r"""
43
+ Constructs a Ernie-M tokenizer. It uses the `sentencepiece` tools to cut the words to sub-words.
44
+
45
+ Args:
46
+ sentencepiece_model_file (`str`):
47
+ The file path of sentencepiece model.
48
+ vocab_file (`str`, *optional*):
49
+ The file path of the vocabulary.
50
+ do_lower_case (`str`, *optional*, defaults to `True`):
51
+ Whether or not to lowercase the input when tokenizing.
52
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
53
+ A special token representing the `unknown (out-of-vocabulary)` token. An unknown token is set to be
54
+ `unk_token` inorder to be converted to an ID.
55
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
56
+ A special token separating two different sentences in the same input.
57
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
58
+ A special token used to make arrays of tokens the same size for batching purposes.
59
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
60
+ A special token used for sequence classification. It is the last token of the sequence when built with
61
+ special tokens.
62
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
63
+ A special token representing a masked token. This is the token used in the masked language modeling task
64
+ which the model tries to predict the original unmasked ones.
65
+ """
66
+
67
+ # Ernie-M model doesn't have token_type embedding.
68
+ model_input_names: List[str] = ["input_ids"]
69
+
70
+ vocab_files_names = VOCAB_FILES_NAMES
71
+ resource_files_names = RESOURCE_FILES_NAMES
72
+
73
+ def __init__(
74
+ self,
75
+ sentencepiece_model_ckpt,
76
+ vocab_file=None,
77
+ do_lower_case=False,
78
+ encoding="utf8",
79
+ unk_token="[UNK]",
80
+ sep_token="[SEP]",
81
+ pad_token="[PAD]",
82
+ cls_token="[CLS]",
83
+ mask_token="[MASK]",
84
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
85
+ **kwargs,
86
+ ) -> None:
87
+ # Mask token behave like a normal word, i.e. include the space before it and
88
+ # is included in the raw text, there should be a match in a non-normalized sentence.
89
+
90
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
91
+
92
+ self.do_lower_case = do_lower_case
93
+ self.sentencepiece_model_ckpt = sentencepiece_model_ckpt
94
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
95
+ self.sp_model.Load(sentencepiece_model_ckpt)
96
+
97
+ # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
98
+ if vocab_file is not None:
99
+ self.vocab = self.load_vocab(filepath=vocab_file)
100
+ else:
101
+ self.vocab = {self.sp_model.id_to_piece(id): id for id in range(self.sp_model.get_piece_size())}
102
+ self.reverse_vocab = {v: k for k, v in self.vocab.items()}
103
+
104
+ super().__init__(
105
+ do_lower_case=do_lower_case,
106
+ unk_token=unk_token,
107
+ sep_token=sep_token,
108
+ pad_token=pad_token,
109
+ cls_token=cls_token,
110
+ mask_token=mask_token,
111
+ vocab_file=vocab_file,
112
+ encoding=encoding,
113
+ sp_model_kwargs=self.sp_model_kwargs,
114
+ **kwargs,
115
+ )
116
+
117
+ def get_offset_mapping(self, text):
118
+ if text is None:
119
+ return None
120
+
121
+ split_tokens = self.tokenize(text)
122
+ normalized_text, char_mapping = "", []
123
+
124
+ for i, ch in enumerate(text):
125
+ if ch in self.SP_CHAR_MAPPING:
126
+ ch = self.SP_CHAR_MAPPING.get(ch)
127
+ else:
128
+ ch = unicodedata.normalize("NFKC", ch)
129
+ if self.is_whitespace(ch):
130
+ continue
131
+ normalized_text += ch
132
+ char_mapping.extend([i] * len(ch))
133
+
134
+ text, token_mapping, offset = normalized_text, [], 0
135
+
136
+ if self.do_lower_case:
137
+ text = text.lower()
138
+
139
+ for token in split_tokens:
140
+ if token[:1] == "▁":
141
+ token = token[1:]
142
+ start = text[offset:].index(token) + offset
143
+ end = start + len(token)
144
+
145
+ token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1))
146
+ offset = end
147
+ return token_mapping
148
+
149
+ @property
150
+ def vocab_size(self):
151
+ return len(self.vocab)
152
+
153
+ def get_vocab(self):
154
+ return dict(self.vocab, **self.added_tokens_encoder)
155
+
156
+ def __getstate__(self):
157
+ state = self.__dict__.copy()
158
+ state["sp_model"] = None
159
+ return state
160
+
161
+ def __setstate__(self, d):
162
+ self.__dict__ = d
163
+
164
+ # for backward compatibility
165
+ if not hasattr(self, "sp_model_kwargs"):
166
+ self.sp_model_kwargs = {}
167
+
168
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
169
+ self.sp_model.Load(self.sentencepiece_model_ckpt)
170
+
171
+ def clean_text(self, text):
172
+ """Performs invalid character removal and whitespace cleanup on text."""
173
+ return "".join((self.SP_CHAR_MAPPING.get(c, c) for c in text))
174
+
175
+ def _tokenize(self, text, enable_sampling=False, nbest_size=64, alpha=0.1):
176
+ """Tokenize a string."""
177
+
178
+ if self.sp_model_kwargs.get("enable_sampling") is True:
179
+ enable_sampling = True
180
+ if self.sp_model_kwargs.get("alpha") is not None:
181
+ alpha = self.sp_model_kwargs.get("alpha")
182
+ if self.sp_model_kwargs.get("nbest_size") is not None:
183
+ nbest_size = self.sp_model_kwargs.get("nbest_size")
184
+
185
+ if not enable_sampling:
186
+ pieces = self.sp_model.EncodeAsPieces(text)
187
+ else:
188
+ pieces = self.sp_model.SampleEncodeAsPieces(text, nbest_size, alpha)
189
+ new_pieces = []
190
+ for pi, piece in enumerate(pieces):
191
+ if piece == SPIECE_UNDERLINE:
192
+ if not pieces[pi + 1].startswith(SPIECE_UNDERLINE) and pi != 0:
193
+ new_pieces.append(SPIECE_UNDERLINE)
194
+ continue
195
+ else:
196
+ continue
197
+ lst_i = 0
198
+ for i, chunk in enumerate(piece):
199
+ if chunk == SPIECE_UNDERLINE:
200
+ continue
201
+ if self.is_ch_char(chunk) or self.is_punct(chunk):
202
+ if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
203
+ new_pieces.append(piece[lst_i:i])
204
+ new_pieces.append(chunk)
205
+ lst_i = i + 1
206
+ elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
207
+ if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
208
+ new_pieces.append(piece[lst_i:i])
209
+ lst_i = i
210
+ elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
211
+ if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
212
+ new_pieces.append(piece[lst_i:i])
213
+ lst_i = i
214
+ if len(piece) > lst_i:
215
+ new_pieces.append(piece[lst_i:])
216
+ return new_pieces
217
+
218
+ def convert_tokens_to_string(self, tokens):
219
+ """Converts a sequence of tokens (strings for sub-words) in a single string."""
220
+ out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
221
+ return out_string
222
+
223
+ def convert_ids_to_string(self, ids):
224
+ """
225
+ Converts a sequence of tokens (strings for sub-words) in a single string.
226
+ """
227
+ tokens = self.convert_ids_to_tokens(ids)
228
+ out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
229
+ return out_string
230
+
231
+ # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
232
+ def _convert_token_to_id(self, token):
233
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
234
+
235
+ # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
236
+ def _convert_id_to_token(self, index):
237
+ """Converts an index (integer) in a token (str) using the vocab."""
238
+ return self.reverse_vocab.get(index, self.unk_token)
239
+
240
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
241
+ r"""
242
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
243
+ adding special tokens. An ErnieM sequence has the following format:
244
+
245
+ - single sequence: `[CLS] X [SEP]`
246
+ - pair of sequences: `[CLS] A [SEP] [SEP] B [SEP]`
247
+
248
+ Args:
249
+ token_ids_0 (`List[int]`):
250
+ List of IDs to which the special tokens will be added.
251
+ token_ids_1 (`List[int]`, *optional*):
252
+ Optional second list of IDs for sequence pairs.
253
+ Returns:
254
+ `List[int]`: List of input_id with the appropriate special tokens.
255
+ """
256
+ if token_ids_1 is None:
257
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
258
+ _cls = [self.cls_token_id]
259
+ _sep = [self.sep_token_id]
260
+ return _cls + token_ids_0 + _sep + _sep + token_ids_1 + _sep
261
+
262
+ def build_offset_mapping_with_special_tokens(self, offset_mapping_0, offset_mapping_1=None):
263
+ r"""
264
+ Build offset map from a pair of offset map by concatenating and adding offsets of special tokens. An Ernie-M
265
+ offset_mapping has the following format:
266
+
267
+ - single sequence: `(0,0) X (0,0)`
268
+ - pair of sequences: `(0,0) A (0,0) (0,0) B (0,0)`
269
+
270
+ Args:
271
+ offset_mapping_ids_0 (`List[tuple]`):
272
+ List of char offsets to which the special tokens will be added.
273
+ offset_mapping_ids_1 (`List[tuple]`, *optional*):
274
+ Optional second list of wordpiece offsets for offset mapping pairs.
275
+ Returns:
276
+ `List[tuple]`: List of wordpiece offsets with the appropriate offsets of special tokens.
277
+ """
278
+ if offset_mapping_1 is None:
279
+ return [(0, 0)] + offset_mapping_0 + [(0, 0)]
280
+
281
+ return [(0, 0)] + offset_mapping_0 + [(0, 0), (0, 0)] + offset_mapping_1 + [(0, 0)]
282
+
283
+ def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
284
+ r"""
285
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
286
+ special tokens using the tokenizer `encode` method.
287
+
288
+ Args:
289
+ token_ids_0 (`List[int]`):
290
+ List of ids of the first sequence.
291
+ token_ids_1 (`List[int]`, *optional*):
292
+ Optional second list of IDs for sequence pairs.
293
+ already_has_special_tokens (`str`, *optional*, defaults to `False`):
294
+ Whether or not the token list is already formatted with special tokens for the model.
295
+ Returns:
296
+ `List[int]`:
297
+ The list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
298
+ """
299
+
300
+ if already_has_special_tokens:
301
+ if token_ids_1 is not None:
302
+ raise ValueError(
303
+ "You should not supply a second sequence if the provided sequence of "
304
+ "ids is already formatted with special tokens for the model."
305
+ )
306
+ return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0]
307
+
308
+ if token_ids_1 is not None:
309
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
310
+ return [1] + ([0] * len(token_ids_0)) + [1]
311
+
312
+ def create_token_type_ids_from_sequences(
313
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
314
+ ) -> List[int]:
315
+ """
316
+ Create the token type IDs corresponding to the sequences passed. [What are token type
317
+ IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of
318
+ building: those.
319
+
320
+ Args:
321
+ token_ids_0 (`List[int]`):
322
+ The first tokenized sequence.
323
+ token_ids_1 (`List[int]`, *optional*):
324
+ The second tokenized sequence.
325
+ Returns:
326
+ `List[int]`: The token type ids.
327
+ """
328
+ # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
329
+ if token_ids_1 is None:
330
+ # [CLS] X [SEP]
331
+ return (len(token_ids_0) + 2) * [0]
332
+
333
+ # [CLS] A [SEP] [SEP] B [SEP]
334
+ return [0] * (len(token_ids_0) + 1) + [1] * (len(token_ids_1) + 3)
335
+
336
+ def is_ch_char(self, char):
337
+ """
338
+ is_ch_char
339
+ """
340
+ if "\u4e00" <= char <= "\u9fff":
341
+ return True
342
+ return False
343
+
344
+ def is_alpha(self, char):
345
+ """
346
+ is_alpha
347
+ """
348
+ if ("a" <= char <= "z") or ("A" <= char <= "Z"):
349
+ return True
350
+ return False
351
+
352
+ def is_punct(self, char):
353
+ """
354
+ is_punct
355
+ """
356
+ if char in ",;:.?!~,;:。?!《》【】":
357
+ return True
358
+ return False
359
+
360
+ def is_whitespace(self, char):
361
+ """
362
+ is whitespace
363
+ """
364
+ if char == " " or char == "\t" or char == "\n" or char == "\r":
365
+ return True
366
+ if len(char) == 1:
367
+ cat = unicodedata.category(char)
368
+ if cat == "Zs":
369
+ return True
370
+ return False
371
+
372
+ def load_vocab(self, filepath):
373
+ token_to_idx = {}
374
+ with io.open(filepath, "r", encoding="utf-8") as f:
375
+ for index, line in enumerate(f):
376
+ token = line.rstrip("\n")
377
+ token_to_idx[token] = int(index)
378
+
379
+ return token_to_idx
380
+
381
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
382
+ index = 0
383
+ if os.path.isdir(save_directory):
384
+ vocab_file = os.path.join(
385
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
386
+ )
387
+ else:
388
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
389
+ with open(vocab_file, "w", encoding="utf-8") as writer:
390
+ for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
391
+ if index != token_index:
392
+ logger.warning(
393
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
394
+ " Please check that the vocabulary is not corrupted!"
395
+ )
396
+ index = token_index
397
+ writer.write(token + "\n")
398
+ index += 1
399
+
400
+ tokenizer_model_file = os.path.join(save_directory, "sentencepiece.bpe.model")
401
+ with open(tokenizer_model_file, "wb") as fi:
402
+ content_spiece_model = self.sp_model.serialized_model_proto()
403
+ fi.write(content_spiece_model)
404
+
405
+ return (vocab_file,)
llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/__init__.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2021 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_sentencepiece_available,
20
+ is_tokenizers_available,
21
+ is_torch_available,
22
+ )
23
+
24
+
25
+ _import_structure = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]}
26
+
27
+ try:
28
+ if not is_sentencepiece_available():
29
+ raise OptionalDependencyNotAvailable()
30
+ except OptionalDependencyNotAvailable:
31
+ pass
32
+ else:
33
+ _import_structure["tokenization_fnet"] = ["FNetTokenizer"]
34
+
35
+ try:
36
+ if not is_tokenizers_available():
37
+ raise OptionalDependencyNotAvailable()
38
+ except OptionalDependencyNotAvailable:
39
+ pass
40
+ else:
41
+ _import_structure["tokenization_fnet_fast"] = ["FNetTokenizerFast"]
42
+
43
+ try:
44
+ if not is_torch_available():
45
+ raise OptionalDependencyNotAvailable()
46
+ except OptionalDependencyNotAvailable:
47
+ pass
48
+ else:
49
+ _import_structure["modeling_fnet"] = [
50
+ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
51
+ "FNetForMaskedLM",
52
+ "FNetForMultipleChoice",
53
+ "FNetForNextSentencePrediction",
54
+ "FNetForPreTraining",
55
+ "FNetForQuestionAnswering",
56
+ "FNetForSequenceClassification",
57
+ "FNetForTokenClassification",
58
+ "FNetLayer",
59
+ "FNetModel",
60
+ "FNetPreTrainedModel",
61
+ ]
62
+
63
+
64
+ if TYPE_CHECKING:
65
+ from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
66
+
67
+ try:
68
+ if not is_sentencepiece_available():
69
+ raise OptionalDependencyNotAvailable()
70
+ except OptionalDependencyNotAvailable:
71
+ pass
72
+ else:
73
+ from .tokenization_fnet import FNetTokenizer
74
+
75
+ try:
76
+ if not is_tokenizers_available():
77
+ raise OptionalDependencyNotAvailable()
78
+ except OptionalDependencyNotAvailable:
79
+ pass
80
+ else:
81
+ from .tokenization_fnet_fast import FNetTokenizerFast
82
+
83
+ try:
84
+ if not is_torch_available():
85
+ raise OptionalDependencyNotAvailable()
86
+ except OptionalDependencyNotAvailable:
87
+ pass
88
+ else:
89
+ from .modeling_fnet import (
90
+ FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
91
+ FNetForMaskedLM,
92
+ FNetForMultipleChoice,
93
+ FNetForNextSentencePrediction,
94
+ FNetForPreTraining,
95
+ FNetForQuestionAnswering,
96
+ FNetForSequenceClassification,
97
+ FNetForTokenClassification,
98
+ FNetLayer,
99
+ FNetModel,
100
+ FNetPreTrainedModel,
101
+ )
102
+
103
+
104
+ else:
105
+ import sys
106
+
107
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/__pycache__/convert_fnet_original_flax_checkpoint_to_pytorch.cpython-310.pyc ADDED
Binary file (3.87 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/__pycache__/modeling_fnet.cpython-310.pyc ADDED
Binary file (35.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/__pycache__/tokenization_fnet.cpython-310.pyc ADDED
Binary file (12.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/__pycache__/tokenization_fnet_fast.cpython-310.pyc ADDED
Binary file (7.01 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/configuration_fnet.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ FNet model configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ from ..deprecated._archive_maps import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class FNetConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`FNetModel`]. It is used to instantiate an FNet
30
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
31
+ defaults will yield a similar configuration to that of the FNet
32
+ [google/fnet-base](https://huggingface.co/google/fnet-base) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 32000):
40
+ Vocabulary size of the FNet model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`FNetModel`] or [`TFFNetModel`].
42
+ hidden_size (`int`, *optional*, defaults to 768):
43
+ Dimension of the encoder layers and the pooler layer.
44
+ num_hidden_layers (`int`, *optional*, defaults to 12):
45
+ Number of hidden layers in the Transformer encoder.
46
+ intermediate_size (`int`, *optional*, defaults to 3072):
47
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
48
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
49
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
50
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
51
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
52
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
53
+ max_position_embeddings (`int`, *optional*, defaults to 512):
54
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
55
+ just in case (e.g., 512 or 1024 or 2048).
56
+ type_vocab_size (`int`, *optional*, defaults to 4):
57
+ The vocabulary size of the `token_type_ids` passed when calling [`FNetModel`] or [`TFFNetModel`].
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
61
+ The epsilon used by the layer normalization layers.
62
+ use_tpu_fourier_optimizations (`bool`, *optional*, defaults to `False`):
63
+ Determines whether to use TPU optimized FFTs. If `True`, the model will favor axis-wise FFTs transforms.
64
+ Set to `False` for GPU/CPU hardware, in which case n-dimensional FFTs are used.
65
+ tpu_short_seq_length (`int`, *optional*, defaults to 512):
66
+ The sequence length that is expected by the model when using TPUs. This will be used to initialize the DFT
67
+ matrix only when *use_tpu_fourier_optimizations* is set to `True` and the input sequence is shorter than or
68
+ equal to 4096 tokens.
69
+
70
+ Example:
71
+
72
+ ```python
73
+ >>> from transformers import FNetConfig, FNetModel
74
+
75
+ >>> # Initializing a FNet fnet-base style configuration
76
+ >>> configuration = FNetConfig()
77
+
78
+ >>> # Initializing a model (with random weights) from the fnet-base style configuration
79
+ >>> model = FNetModel(configuration)
80
+
81
+ >>> # Accessing the model configuration
82
+ >>> configuration = model.config
83
+ ```"""
84
+
85
+ model_type = "fnet"
86
+
87
+ def __init__(
88
+ self,
89
+ vocab_size=32000,
90
+ hidden_size=768,
91
+ num_hidden_layers=12,
92
+ intermediate_size=3072,
93
+ hidden_act="gelu_new",
94
+ hidden_dropout_prob=0.1,
95
+ max_position_embeddings=512,
96
+ type_vocab_size=4,
97
+ initializer_range=0.02,
98
+ layer_norm_eps=1e-12,
99
+ use_tpu_fourier_optimizations=False,
100
+ tpu_short_seq_length=512,
101
+ pad_token_id=3,
102
+ bos_token_id=1,
103
+ eos_token_id=2,
104
+ **kwargs,
105
+ ):
106
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
107
+
108
+ self.vocab_size = vocab_size
109
+ self.max_position_embeddings = max_position_embeddings
110
+ self.hidden_size = hidden_size
111
+ self.num_hidden_layers = num_hidden_layers
112
+ self.intermediate_size = intermediate_size
113
+ self.hidden_act = hidden_act
114
+ self.hidden_dropout_prob = hidden_dropout_prob
115
+ self.initializer_range = initializer_range
116
+ self.type_vocab_size = type_vocab_size
117
+ self.layer_norm_eps = layer_norm_eps
118
+ self.use_tpu_fourier_optimizations = use_tpu_fourier_optimizations
119
+ self.tpu_short_seq_length = tpu_short_seq_length
llmeval-env/lib/python3.10/site-packages/transformers/models/fnet/convert_fnet_original_flax_checkpoint_to_pytorch.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert FNet checkpoint."""
16
+
17
+
18
+ import argparse
19
+
20
+ import torch
21
+ from flax.training.checkpoints import restore_checkpoint
22
+
23
+ from transformers import FNetConfig, FNetForPreTraining
24
+ from transformers.utils import logging
25
+
26
+
27
+ logging.set_verbosity_info()
28
+
29
+
30
+ def convert_flax_checkpoint_to_pytorch(flax_checkpoint_path, fnet_config_file, save_path):
31
+ # Initialise PyTorch model
32
+ config = FNetConfig.from_json_file(fnet_config_file)
33
+ print(f"Building PyTorch model from configuration: {config}")
34
+ fnet_pretraining_model = FNetForPreTraining(config)
35
+
36
+ checkpoint_dict = restore_checkpoint(flax_checkpoint_path, None)
37
+ pretrained_model_params = checkpoint_dict["target"]
38
+
39
+ # Embeddings
40
+ # Position IDs
41
+ state_dict = fnet_pretraining_model.state_dict()
42
+
43
+ position_ids = state_dict["fnet.embeddings.position_ids"]
44
+ new_state_dict = {"fnet.embeddings.position_ids": position_ids}
45
+ # Embedding Layers
46
+ new_state_dict["fnet.embeddings.word_embeddings.weight"] = torch.tensor(
47
+ pretrained_model_params["encoder"]["embedder"]["word"]["embedding"]
48
+ )
49
+ new_state_dict["fnet.embeddings.position_embeddings.weight"] = torch.tensor(
50
+ pretrained_model_params["encoder"]["embedder"]["position"]["embedding"][0]
51
+ )
52
+ new_state_dict["fnet.embeddings.token_type_embeddings.weight"] = torch.tensor(
53
+ pretrained_model_params["encoder"]["embedder"]["type"]["embedding"]
54
+ )
55
+ new_state_dict["fnet.embeddings.projection.weight"] = torch.tensor(
56
+ pretrained_model_params["encoder"]["embedder"]["hidden_mapping_in"]["kernel"]
57
+ ).T
58
+ new_state_dict["fnet.embeddings.projection.bias"] = torch.tensor(
59
+ pretrained_model_params["encoder"]["embedder"]["hidden_mapping_in"]["bias"]
60
+ )
61
+ new_state_dict["fnet.embeddings.LayerNorm.weight"] = torch.tensor(
62
+ pretrained_model_params["encoder"]["embedder"]["layer_norm"]["scale"]
63
+ )
64
+ new_state_dict["fnet.embeddings.LayerNorm.bias"] = torch.tensor(
65
+ pretrained_model_params["encoder"]["embedder"]["layer_norm"]["bias"]
66
+ )
67
+
68
+ # Encoder Layers
69
+ for layer in range(config.num_hidden_layers):
70
+ new_state_dict[f"fnet.encoder.layer.{layer}.fourier.output.LayerNorm.weight"] = torch.tensor(
71
+ pretrained_model_params["encoder"][f"encoder_{layer}"]["mixing_layer_norm"]["scale"]
72
+ )
73
+ new_state_dict[f"fnet.encoder.layer.{layer}.fourier.output.LayerNorm.bias"] = torch.tensor(
74
+ pretrained_model_params["encoder"][f"encoder_{layer}"]["mixing_layer_norm"]["bias"]
75
+ )
76
+
77
+ new_state_dict[f"fnet.encoder.layer.{layer}.intermediate.dense.weight"] = torch.tensor(
78
+ pretrained_model_params["encoder"][f"feed_forward_{layer}"]["intermediate"]["kernel"]
79
+ ).T
80
+ new_state_dict[f"fnet.encoder.layer.{layer}.intermediate.dense.bias"] = torch.tensor(
81
+ pretrained_model_params["encoder"][f"feed_forward_{layer}"]["intermediate"]["bias"]
82
+ )
83
+
84
+ new_state_dict[f"fnet.encoder.layer.{layer}.output.dense.weight"] = torch.tensor(
85
+ pretrained_model_params["encoder"][f"feed_forward_{layer}"]["output"]["kernel"]
86
+ ).T
87
+ new_state_dict[f"fnet.encoder.layer.{layer}.output.dense.bias"] = torch.tensor(
88
+ pretrained_model_params["encoder"][f"feed_forward_{layer}"]["output"]["bias"]
89
+ )
90
+
91
+ new_state_dict[f"fnet.encoder.layer.{layer}.output.LayerNorm.weight"] = torch.tensor(
92
+ pretrained_model_params["encoder"][f"encoder_{layer}"]["output_layer_norm"]["scale"]
93
+ )
94
+ new_state_dict[f"fnet.encoder.layer.{layer}.output.LayerNorm.bias"] = torch.tensor(
95
+ pretrained_model_params["encoder"][f"encoder_{layer}"]["output_layer_norm"]["bias"]
96
+ )
97
+
98
+ # Pooler Layers
99
+ new_state_dict["fnet.pooler.dense.weight"] = torch.tensor(pretrained_model_params["encoder"]["pooler"]["kernel"]).T
100
+ new_state_dict["fnet.pooler.dense.bias"] = torch.tensor(pretrained_model_params["encoder"]["pooler"]["bias"])
101
+
102
+ # Masked LM Layers
103
+ new_state_dict["cls.predictions.transform.dense.weight"] = torch.tensor(
104
+ pretrained_model_params["predictions_dense"]["kernel"]
105
+ ).T
106
+ new_state_dict["cls.predictions.transform.dense.bias"] = torch.tensor(
107
+ pretrained_model_params["predictions_dense"]["bias"]
108
+ )
109
+ new_state_dict["cls.predictions.transform.LayerNorm.weight"] = torch.tensor(
110
+ pretrained_model_params["predictions_layer_norm"]["scale"]
111
+ )
112
+ new_state_dict["cls.predictions.transform.LayerNorm.bias"] = torch.tensor(
113
+ pretrained_model_params["predictions_layer_norm"]["bias"]
114
+ )
115
+ new_state_dict["cls.predictions.decoder.weight"] = torch.tensor(
116
+ pretrained_model_params["encoder"]["embedder"]["word"]["embedding"]
117
+ )
118
+ new_state_dict["cls.predictions.decoder.bias"] = torch.tensor(
119
+ pretrained_model_params["predictions_output"]["output_bias"]
120
+ )
121
+ new_state_dict["cls.predictions.bias"] = torch.tensor(pretrained_model_params["predictions_output"]["output_bias"])
122
+
123
+ # Seq Relationship Layers
124
+ new_state_dict["cls.seq_relationship.weight"] = torch.tensor(
125
+ pretrained_model_params["classification"]["output_kernel"]
126
+ )
127
+ new_state_dict["cls.seq_relationship.bias"] = torch.tensor(
128
+ pretrained_model_params["classification"]["output_bias"]
129
+ )
130
+
131
+ # Load State Dict
132
+ fnet_pretraining_model.load_state_dict(new_state_dict)
133
+
134
+ # Save PreTrained
135
+ print(f"Saving pretrained model to {save_path}")
136
+ fnet_pretraining_model.save_pretrained(save_path)
137
+
138
+
139
+ if __name__ == "__main__":
140
+ parser = argparse.ArgumentParser()
141
+ # Required parameters
142
+ parser.add_argument(
143
+ "--flax_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
144
+ )
145
+ parser.add_argument(
146
+ "--fnet_config_file",
147
+ default=None,
148
+ type=str,
149
+ required=True,
150
+ help=(
151
+ "The config json file corresponding to the pre-trained FNet model. \n"
152
+ "This specifies the model architecture."
153
+ ),
154
+ )
155
+ parser.add_argument("--save_path", default=None, type=str, required=True, help="Path to the output model.")
156
+ args = parser.parse_args()
157
+ convert_flax_checkpoint_to_pytorch(args.flax_checkpoint_path, args.fnet_config_file, args.save_path)