Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/AUTHORS +7 -0
- env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/INSTALLER +1 -0
- env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/LICENSE +202 -0
- env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/METADATA +84 -0
- env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/RECORD +53 -0
- env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/WHEEL +5 -0
- env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/top_level.txt +1 -0
- env-llmeval/lib/python3.10/site-packages/dateutil/_version.py +4 -0
- env-llmeval/lib/python3.10/site-packages/dateutil/easter.py +89 -0
- env-llmeval/lib/python3.10/site-packages/dateutil/tzwin.py +2 -0
- env-llmeval/lib/python3.10/site-packages/dateutil/utils.py +71 -0
- env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/asyn.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/caching.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/conftest.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/registry.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/transaction.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/fsspec/parquet.py +549 -0
- env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/COPYING +28 -0
- env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/INSTALLER +1 -0
- env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/LICENSE +38 -0
- env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/METADATA +203 -0
- env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/RECORD +73 -0
- env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/WHEEL +5 -0
- env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/top_level.txt +2 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn.h +78 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_infer.h +658 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_infer_v8.h +658 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_train.h +540 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_train_v8.h +540 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_backend.h +608 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_infer.h +571 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_infer_v8.h +571 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_train.h +219 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_ops_infer.h +1183 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_ops_train.h +501 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_ops_train_v8.h +501 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_v8.h +78 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_version.h +109 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_version_v8.h +109 -0
- env-llmeval/lib/python3.10/site-packages/nvidia_cuda_cupti_cu12-12.1.105.dist-info/License.txt +1568 -0
- env-llmeval/lib/python3.10/site-packages/nvidia_cuda_cupti_cu12-12.1.105.dist-info/RECORD +50 -0
- env-llmeval/lib/python3.10/site-packages/nvidia_cuda_cupti_cu12-12.1.105.dist-info/WHEEL +5 -0
- env-llmeval/lib/python3.10/site-packages/nvidia_cuda_cupti_cu12-12.1.105.dist-info/top_level.txt +1 -0
- env-llmeval/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/INSTALLER +1 -0
- env-llmeval/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/License.txt +1568 -0
env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/AUTHORS
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is the list of Abseil authors for copyright purposes.
|
2 |
+
#
|
3 |
+
# This does not necessarily list everyone who has contributed code, since in
|
4 |
+
# some cases, their employer may be the copyright holder. To see the full list
|
5 |
+
# of contributors, see the revision history in source control.
|
6 |
+
|
7 |
+
Google Inc.
|
env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/METADATA
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: absl-py
|
3 |
+
Version: 2.1.0
|
4 |
+
Summary: Abseil Python Common Libraries, see https://github.com/abseil/abseil-py.
|
5 |
+
Home-page: https://github.com/abseil/abseil-py
|
6 |
+
Author: The Abseil Authors
|
7 |
+
License: Apache 2.0
|
8 |
+
Classifier: Programming Language :: Python
|
9 |
+
Classifier: Programming Language :: Python :: 3
|
10 |
+
Classifier: Programming Language :: Python :: 3.7
|
11 |
+
Classifier: Programming Language :: Python :: 3.8
|
12 |
+
Classifier: Programming Language :: Python :: 3.9
|
13 |
+
Classifier: Programming Language :: Python :: 3.10
|
14 |
+
Classifier: Programming Language :: Python :: 3.11
|
15 |
+
Classifier: Programming Language :: Python :: 3.12
|
16 |
+
Classifier: Intended Audience :: Developers
|
17 |
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
18 |
+
Classifier: License :: OSI Approved :: Apache Software License
|
19 |
+
Classifier: Operating System :: OS Independent
|
20 |
+
Requires-Python: >=3.7
|
21 |
+
Description-Content-Type: text/markdown
|
22 |
+
License-File: LICENSE
|
23 |
+
License-File: AUTHORS
|
24 |
+
|
25 |
+
# Abseil Python Common Libraries
|
26 |
+
|
27 |
+
This repository is a collection of Python library code for building Python
|
28 |
+
applications. The code is collected from Google's own Python code base, and has
|
29 |
+
been extensively tested and used in production.
|
30 |
+
|
31 |
+
## Features
|
32 |
+
|
33 |
+
* Simple application startup
|
34 |
+
* Distributed commandline flags system
|
35 |
+
* Custom logging module with additional features
|
36 |
+
* Testing utilities
|
37 |
+
|
38 |
+
## Getting Started
|
39 |
+
|
40 |
+
### Installation
|
41 |
+
|
42 |
+
To install the package, simply run:
|
43 |
+
|
44 |
+
```bash
|
45 |
+
pip install absl-py
|
46 |
+
```
|
47 |
+
|
48 |
+
Or install from source:
|
49 |
+
|
50 |
+
```bash
|
51 |
+
python setup.py install
|
52 |
+
```
|
53 |
+
|
54 |
+
### Running Tests
|
55 |
+
|
56 |
+
To run Abseil tests, you can clone the git repo and run
|
57 |
+
[bazel](https://bazel.build/):
|
58 |
+
|
59 |
+
```bash
|
60 |
+
git clone https://github.com/abseil/abseil-py.git
|
61 |
+
cd abseil-py
|
62 |
+
bazel test absl/...
|
63 |
+
```
|
64 |
+
|
65 |
+
### Example Code
|
66 |
+
|
67 |
+
Please refer to
|
68 |
+
[smoke_tests/sample_app.py](https://github.com/abseil/abseil-py/blob/main/smoke_tests/sample_app.py)
|
69 |
+
as an example to get started.
|
70 |
+
|
71 |
+
## Documentation
|
72 |
+
|
73 |
+
See the [Abseil Python Developer Guide](https://abseil.io/docs/python/).
|
74 |
+
|
75 |
+
## Future Releases
|
76 |
+
|
77 |
+
The current repository includes an initial set of libraries for early adoption.
|
78 |
+
More components and interoperability with Abseil C++ Common Libraries
|
79 |
+
will come in future releases.
|
80 |
+
|
81 |
+
## License
|
82 |
+
|
83 |
+
The Abseil Python library is licensed under the terms of the Apache
|
84 |
+
license. See [LICENSE](LICENSE) for more information.
|
env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/RECORD
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl/__init__.py,sha256=7cM57swk2T1Hc5wxmt-JpcaR6xfdPJyL_lyRqgODvuM,584
|
2 |
+
absl/__pycache__/__init__.cpython-310.pyc,,
|
3 |
+
absl/__pycache__/app.cpython-310.pyc,,
|
4 |
+
absl/__pycache__/command_name.cpython-310.pyc,,
|
5 |
+
absl/app.py,sha256=DQROJ_Ovex6w2_nr_s7AHgXQle951XmcVtlNrMjfSFA,15374
|
6 |
+
absl/app.pyi,sha256=DqRvFRos3oFk00lZJSKaHZuL_3-LnZl-ylg_VAXtPcc,1737
|
7 |
+
absl/command_name.py,sha256=C7CuwMMedDLUOX88Et92QZb2se__nU7txgpO-01amxg,2301
|
8 |
+
absl/flags/__init__.py,sha256=FgR_NxQG1xLA2ZxLU51HTrLWV5kbN9eSCI-47Z7D3WA,7728
|
9 |
+
absl/flags/__pycache__/__init__.cpython-310.pyc,,
|
10 |
+
absl/flags/__pycache__/_argument_parser.cpython-310.pyc,,
|
11 |
+
absl/flags/__pycache__/_defines.cpython-310.pyc,,
|
12 |
+
absl/flags/__pycache__/_exceptions.cpython-310.pyc,,
|
13 |
+
absl/flags/__pycache__/_flag.cpython-310.pyc,,
|
14 |
+
absl/flags/__pycache__/_flagvalues.cpython-310.pyc,,
|
15 |
+
absl/flags/__pycache__/_helpers.cpython-310.pyc,,
|
16 |
+
absl/flags/__pycache__/_validators.cpython-310.pyc,,
|
17 |
+
absl/flags/__pycache__/_validators_classes.cpython-310.pyc,,
|
18 |
+
absl/flags/__pycache__/argparse_flags.cpython-310.pyc,,
|
19 |
+
absl/flags/_argument_parser.py,sha256=TQFhT0OcQuRO_1GTJoUvYC1KU6wV9f4Lc7jQmajBGi0,20934
|
20 |
+
absl/flags/_defines.py,sha256=s_YA_tAHFU4wxrJqKLH5uMldTl1DtlUfSvgBbflXkQ8,52783
|
21 |
+
absl/flags/_exceptions.py,sha256=Lws7ZZrlLJG83VHuOB4Z4CNfcSoKX5pJnsNRCtp-dMw,3657
|
22 |
+
absl/flags/_flag.py,sha256=Sv_d7kDSZh-VNr4JGrBy4g7VxnbRspOOd5hO6wA94qk,19895
|
23 |
+
absl/flags/_flagvalues.py,sha256=Gferpr9yg8Ntc6ij9tPiChliYz5jYWfVJoKzAREwNFw,54127
|
24 |
+
absl/flags/_helpers.py,sha256=uWWeqbhc19kTXonfM7mNZT68ZakmJgu-v5IHeS9A9Xc,14081
|
25 |
+
absl/flags/_validators.py,sha256=_hpVwThXQhL6PFOA9-L2ZRI-7zLu2UxU_hRJJWXYoHw,14144
|
26 |
+
absl/flags/_validators_classes.py,sha256=KLBJhJAt8C18gy2Uq-q7bUFNS_AhPBlxlwGiNm5gWXU,6157
|
27 |
+
absl/flags/argparse_flags.py,sha256=57E1HFa40tvnQ3DQzY3x1qdBUIxtfTTYAYONT_k8HOI,14485
|
28 |
+
absl/logging/__init__.py,sha256=mzF3rusWjzLbuVdZI8SfPiIoqfWO9kBUhxVOvGZQTv4,42082
|
29 |
+
absl/logging/__init__.pyi,sha256=NPAna_9rrYTVNIHLXUbdvsAZcNlv4IJs9yNnL59mxr8,5794
|
30 |
+
absl/logging/__pycache__/__init__.cpython-310.pyc,,
|
31 |
+
absl/logging/__pycache__/converter.cpython-310.pyc,,
|
32 |
+
absl/logging/converter.py,sha256=eTucx1Ojix7YWMQUyWKzPRTrxGLuCkNsTmJa1GW6k94,6353
|
33 |
+
absl/testing/__init__.py,sha256=7cM57swk2T1Hc5wxmt-JpcaR6xfdPJyL_lyRqgODvuM,584
|
34 |
+
absl/testing/__pycache__/__init__.cpython-310.pyc,,
|
35 |
+
absl/testing/__pycache__/_bazelize_command.cpython-310.pyc,,
|
36 |
+
absl/testing/__pycache__/_pretty_print_reporter.cpython-310.pyc,,
|
37 |
+
absl/testing/__pycache__/absltest.cpython-310.pyc,,
|
38 |
+
absl/testing/__pycache__/flagsaver.cpython-310.pyc,,
|
39 |
+
absl/testing/__pycache__/parameterized.cpython-310.pyc,,
|
40 |
+
absl/testing/__pycache__/xml_reporter.cpython-310.pyc,,
|
41 |
+
absl/testing/_bazelize_command.py,sha256=R4rV4j5AOSp3PNkVQKP1I-SKYzQbXyeuiOT3d23cTLA,2302
|
42 |
+
absl/testing/_pretty_print_reporter.py,sha256=nL5qSsYWF6O_C6L9PexwFSPxs68Wc85RhdhRBN2AgTw,3140
|
43 |
+
absl/testing/absltest.py,sha256=sgb0TPgNP0_nLKcxrHBlifvUsgufnYURVR8Vau3f278,101119
|
44 |
+
absl/testing/flagsaver.py,sha256=514JmVdCn-P0jsTntskCtUfxrHyp3urLdn2bzDd991s,13392
|
45 |
+
absl/testing/parameterized.py,sha256=PT1P3X__WkFC_NyGWifUdJeqn-BM4JI3yy-1zsGaFEI,27807
|
46 |
+
absl/testing/xml_reporter.py,sha256=k_9cWhw01RGCQImGDciTa_RrBEEuPZ3IPD5IASoRwwM,21720
|
47 |
+
absl_py-2.1.0.dist-info/AUTHORS,sha256=YoLudsylaQg7W5mLn4FroQMuEnuNx8RpQrhkd_xvv6U,296
|
48 |
+
absl_py-2.1.0.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
49 |
+
absl_py-2.1.0.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
50 |
+
absl_py-2.1.0.dist-info/METADATA,sha256=CTp5OILgEjYv4Y7dpCHzW5QmM57hl-2i-AizwFlnRYA,2311
|
51 |
+
absl_py-2.1.0.dist-info/RECORD,,
|
52 |
+
absl_py-2.1.0.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
53 |
+
absl_py-2.1.0.dist-info/top_level.txt,sha256=0M_1z27Hi5Bsj1EhTfE_ajdJdFxeP_aw0xXnR4BXXhI,5
|
env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.42.0)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-any
|
5 |
+
|
env-llmeval/lib/python3.10/site-packages/absl_py-2.1.0.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
absl
|
env-llmeval/lib/python3.10/site-packages/dateutil/_version.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# file generated by setuptools_scm
|
2 |
+
# don't change, don't track in version control
|
3 |
+
__version__ = version = '2.9.0.post0'
|
4 |
+
__version_tuple__ = version_tuple = (2, 9, 0)
|
env-llmeval/lib/python3.10/site-packages/dateutil/easter.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
This module offers a generic Easter computing method for any given year, using
|
4 |
+
Western, Orthodox or Julian algorithms.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import datetime
|
8 |
+
|
9 |
+
__all__ = ["easter", "EASTER_JULIAN", "EASTER_ORTHODOX", "EASTER_WESTERN"]
|
10 |
+
|
11 |
+
EASTER_JULIAN = 1
|
12 |
+
EASTER_ORTHODOX = 2
|
13 |
+
EASTER_WESTERN = 3
|
14 |
+
|
15 |
+
|
16 |
+
def easter(year, method=EASTER_WESTERN):
|
17 |
+
"""
|
18 |
+
This method was ported from the work done by GM Arts,
|
19 |
+
on top of the algorithm by Claus Tondering, which was
|
20 |
+
based in part on the algorithm of Ouding (1940), as
|
21 |
+
quoted in "Explanatory Supplement to the Astronomical
|
22 |
+
Almanac", P. Kenneth Seidelmann, editor.
|
23 |
+
|
24 |
+
This algorithm implements three different Easter
|
25 |
+
calculation methods:
|
26 |
+
|
27 |
+
1. Original calculation in Julian calendar, valid in
|
28 |
+
dates after 326 AD
|
29 |
+
2. Original method, with date converted to Gregorian
|
30 |
+
calendar, valid in years 1583 to 4099
|
31 |
+
3. Revised method, in Gregorian calendar, valid in
|
32 |
+
years 1583 to 4099 as well
|
33 |
+
|
34 |
+
These methods are represented by the constants:
|
35 |
+
|
36 |
+
* ``EASTER_JULIAN = 1``
|
37 |
+
* ``EASTER_ORTHODOX = 2``
|
38 |
+
* ``EASTER_WESTERN = 3``
|
39 |
+
|
40 |
+
The default method is method 3.
|
41 |
+
|
42 |
+
More about the algorithm may be found at:
|
43 |
+
|
44 |
+
`GM Arts: Easter Algorithms <http://www.gmarts.org/index.php?go=415>`_
|
45 |
+
|
46 |
+
and
|
47 |
+
|
48 |
+
`The Calendar FAQ: Easter <https://www.tondering.dk/claus/cal/easter.php>`_
|
49 |
+
|
50 |
+
"""
|
51 |
+
|
52 |
+
if not (1 <= method <= 3):
|
53 |
+
raise ValueError("invalid method")
|
54 |
+
|
55 |
+
# g - Golden year - 1
|
56 |
+
# c - Century
|
57 |
+
# h - (23 - Epact) mod 30
|
58 |
+
# i - Number of days from March 21 to Paschal Full Moon
|
59 |
+
# j - Weekday for PFM (0=Sunday, etc)
|
60 |
+
# p - Number of days from March 21 to Sunday on or before PFM
|
61 |
+
# (-6 to 28 methods 1 & 3, to 56 for method 2)
|
62 |
+
# e - Extra days to add for method 2 (converting Julian
|
63 |
+
# date to Gregorian date)
|
64 |
+
|
65 |
+
y = year
|
66 |
+
g = y % 19
|
67 |
+
e = 0
|
68 |
+
if method < 3:
|
69 |
+
# Old method
|
70 |
+
i = (19*g + 15) % 30
|
71 |
+
j = (y + y//4 + i) % 7
|
72 |
+
if method == 2:
|
73 |
+
# Extra dates to convert Julian to Gregorian date
|
74 |
+
e = 10
|
75 |
+
if y > 1600:
|
76 |
+
e = e + y//100 - 16 - (y//100 - 16)//4
|
77 |
+
else:
|
78 |
+
# New method
|
79 |
+
c = y//100
|
80 |
+
h = (c - c//4 - (8*c + 13)//25 + 19*g + 15) % 30
|
81 |
+
i = h - (h//28)*(1 - (h//28)*(29//(h + 1))*((21 - g)//11))
|
82 |
+
j = (y + y//4 + i + 2 - c + c//4) % 7
|
83 |
+
|
84 |
+
# p can be from -6 to 56 corresponding to dates 22 March to 23 May
|
85 |
+
# (later dates apply to method 2, although 23 May never actually occurs)
|
86 |
+
p = i - j + e
|
87 |
+
d = 1 + (p + 27 + (p + 6)//40) % 31
|
88 |
+
m = 3 + (p + 26)//30
|
89 |
+
return datetime.date(int(y), int(m), int(d))
|
env-llmeval/lib/python3.10/site-packages/dateutil/tzwin.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# tzwin has moved to dateutil.tz.win
|
2 |
+
from .tz.win import *
|
env-llmeval/lib/python3.10/site-packages/dateutil/utils.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
This module offers general convenience and utility functions for dealing with
|
4 |
+
datetimes.
|
5 |
+
|
6 |
+
.. versionadded:: 2.7.0
|
7 |
+
"""
|
8 |
+
from __future__ import unicode_literals
|
9 |
+
|
10 |
+
from datetime import datetime, time
|
11 |
+
|
12 |
+
|
13 |
+
def today(tzinfo=None):
|
14 |
+
"""
|
15 |
+
Returns a :py:class:`datetime` representing the current day at midnight
|
16 |
+
|
17 |
+
:param tzinfo:
|
18 |
+
The time zone to attach (also used to determine the current day).
|
19 |
+
|
20 |
+
:return:
|
21 |
+
A :py:class:`datetime.datetime` object representing the current day
|
22 |
+
at midnight.
|
23 |
+
"""
|
24 |
+
|
25 |
+
dt = datetime.now(tzinfo)
|
26 |
+
return datetime.combine(dt.date(), time(0, tzinfo=tzinfo))
|
27 |
+
|
28 |
+
|
29 |
+
def default_tzinfo(dt, tzinfo):
|
30 |
+
"""
|
31 |
+
Sets the ``tzinfo`` parameter on naive datetimes only
|
32 |
+
|
33 |
+
This is useful for example when you are provided a datetime that may have
|
34 |
+
either an implicit or explicit time zone, such as when parsing a time zone
|
35 |
+
string.
|
36 |
+
|
37 |
+
.. doctest::
|
38 |
+
|
39 |
+
>>> from dateutil.tz import tzoffset
|
40 |
+
>>> from dateutil.parser import parse
|
41 |
+
>>> from dateutil.utils import default_tzinfo
|
42 |
+
>>> dflt_tz = tzoffset("EST", -18000)
|
43 |
+
>>> print(default_tzinfo(parse('2014-01-01 12:30 UTC'), dflt_tz))
|
44 |
+
2014-01-01 12:30:00+00:00
|
45 |
+
>>> print(default_tzinfo(parse('2014-01-01 12:30'), dflt_tz))
|
46 |
+
2014-01-01 12:30:00-05:00
|
47 |
+
|
48 |
+
:param dt:
|
49 |
+
The datetime on which to replace the time zone
|
50 |
+
|
51 |
+
:param tzinfo:
|
52 |
+
The :py:class:`datetime.tzinfo` subclass instance to assign to
|
53 |
+
``dt`` if (and only if) it is naive.
|
54 |
+
|
55 |
+
:return:
|
56 |
+
Returns an aware :py:class:`datetime.datetime`.
|
57 |
+
"""
|
58 |
+
if dt.tzinfo is not None:
|
59 |
+
return dt
|
60 |
+
else:
|
61 |
+
return dt.replace(tzinfo=tzinfo)
|
62 |
+
|
63 |
+
|
64 |
+
def within_delta(dt1, dt2, delta):
|
65 |
+
"""
|
66 |
+
Useful for comparing two datetimes that may have a negligible difference
|
67 |
+
to be considered equal.
|
68 |
+
"""
|
69 |
+
delta = abs(delta)
|
70 |
+
difference = dt1 - dt2
|
71 |
+
return -delta <= difference <= delta
|
env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.45 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/asyn.cpython-310.pyc
ADDED
Binary file (29.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/caching.cpython-310.pyc
ADDED
Binary file (22 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/registry.cpython-310.pyc
ADDED
Binary file (8.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/fsspec/__pycache__/transaction.cpython-310.pyc
ADDED
Binary file (3.14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/fsspec/parquet.py
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import json
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
from .core import url_to_fs
|
6 |
+
from .utils import merge_offset_ranges
|
7 |
+
|
8 |
+
# Parquet-Specific Utilities for fsspec
|
9 |
+
#
|
10 |
+
# Most of the functions defined in this module are NOT
|
11 |
+
# intended for public consumption. The only exception
|
12 |
+
# to this is `open_parquet_file`, which should be used
|
13 |
+
# place of `fs.open()` to open parquet-formatted files
|
14 |
+
# on remote file systems.
|
15 |
+
|
16 |
+
|
17 |
+
def open_parquet_file(
|
18 |
+
path,
|
19 |
+
mode="rb",
|
20 |
+
fs=None,
|
21 |
+
metadata=None,
|
22 |
+
columns=None,
|
23 |
+
row_groups=None,
|
24 |
+
storage_options=None,
|
25 |
+
strict=False,
|
26 |
+
engine="auto",
|
27 |
+
max_gap=64_000,
|
28 |
+
max_block=256_000_000,
|
29 |
+
footer_sample_size=1_000_000,
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
"""
|
33 |
+
Return a file-like object for a single Parquet file.
|
34 |
+
|
35 |
+
The specified parquet `engine` will be used to parse the
|
36 |
+
footer metadata, and determine the required byte ranges
|
37 |
+
from the file. The target path will then be opened with
|
38 |
+
the "parts" (`KnownPartsOfAFile`) caching strategy.
|
39 |
+
|
40 |
+
Note that this method is intended for usage with remote
|
41 |
+
file systems, and is unlikely to improve parquet-read
|
42 |
+
performance on local file systems.
|
43 |
+
|
44 |
+
Parameters
|
45 |
+
----------
|
46 |
+
path: str
|
47 |
+
Target file path.
|
48 |
+
mode: str, optional
|
49 |
+
Mode option to be passed through to `fs.open`. Default is "rb".
|
50 |
+
metadata: Any, optional
|
51 |
+
Parquet metadata object. Object type must be supported
|
52 |
+
by the backend parquet engine. For now, only the "fastparquet"
|
53 |
+
engine supports an explicit `ParquetFile` metadata object.
|
54 |
+
If a metadata object is supplied, the remote footer metadata
|
55 |
+
will not need to be transferred into local memory.
|
56 |
+
fs: AbstractFileSystem, optional
|
57 |
+
Filesystem object to use for opening the file. If nothing is
|
58 |
+
specified, an `AbstractFileSystem` object will be inferred.
|
59 |
+
engine : str, default "auto"
|
60 |
+
Parquet engine to use for metadata parsing. Allowed options
|
61 |
+
include "fastparquet", "pyarrow", and "auto". The specified
|
62 |
+
engine must be installed in the current environment. If
|
63 |
+
"auto" is specified, and both engines are installed,
|
64 |
+
"fastparquet" will take precedence over "pyarrow".
|
65 |
+
columns: list, optional
|
66 |
+
List of all column names that may be read from the file.
|
67 |
+
row_groups : list, optional
|
68 |
+
List of all row-groups that may be read from the file. This
|
69 |
+
may be a list of row-group indices (integers), or it may be
|
70 |
+
a list of `RowGroup` metadata objects (if the "fastparquet"
|
71 |
+
engine is used).
|
72 |
+
storage_options : dict, optional
|
73 |
+
Used to generate an `AbstractFileSystem` object if `fs` was
|
74 |
+
not specified.
|
75 |
+
strict : bool, optional
|
76 |
+
Whether the resulting `KnownPartsOfAFile` cache should
|
77 |
+
fetch reads that go beyond a known byte-range boundary.
|
78 |
+
If `False` (the default), any read that ends outside a
|
79 |
+
known part will be zero padded. Note that using
|
80 |
+
`strict=True` may be useful for debugging.
|
81 |
+
max_gap : int, optional
|
82 |
+
Neighboring byte ranges will only be merged when their
|
83 |
+
inter-range gap is <= `max_gap`. Default is 64KB.
|
84 |
+
max_block : int, optional
|
85 |
+
Neighboring byte ranges will only be merged when the size of
|
86 |
+
the aggregated range is <= `max_block`. Default is 256MB.
|
87 |
+
footer_sample_size : int, optional
|
88 |
+
Number of bytes to read from the end of the path to look
|
89 |
+
for the footer metadata. If the sampled bytes do not contain
|
90 |
+
the footer, a second read request will be required, and
|
91 |
+
performance will suffer. Default is 1MB.
|
92 |
+
**kwargs :
|
93 |
+
Optional key-word arguments to pass to `fs.open`
|
94 |
+
"""
|
95 |
+
|
96 |
+
# Make sure we have an `AbstractFileSystem` object
|
97 |
+
# to work with
|
98 |
+
if fs is None:
|
99 |
+
fs = url_to_fs(path, **(storage_options or {}))[0]
|
100 |
+
|
101 |
+
# For now, `columns == []` not supported. Just use
|
102 |
+
# default `open` command with `path` input
|
103 |
+
if columns is not None and len(columns) == 0:
|
104 |
+
return fs.open(path, mode=mode)
|
105 |
+
|
106 |
+
# Set the engine
|
107 |
+
engine = _set_engine(engine)
|
108 |
+
|
109 |
+
# Fetch the known byte ranges needed to read
|
110 |
+
# `columns` and/or `row_groups`
|
111 |
+
data = _get_parquet_byte_ranges(
|
112 |
+
[path],
|
113 |
+
fs,
|
114 |
+
metadata=metadata,
|
115 |
+
columns=columns,
|
116 |
+
row_groups=row_groups,
|
117 |
+
engine=engine,
|
118 |
+
max_gap=max_gap,
|
119 |
+
max_block=max_block,
|
120 |
+
footer_sample_size=footer_sample_size,
|
121 |
+
)
|
122 |
+
|
123 |
+
# Extract file name from `data`
|
124 |
+
fn = next(iter(data)) if data else path
|
125 |
+
|
126 |
+
# Call self.open with "parts" caching
|
127 |
+
options = kwargs.pop("cache_options", {}).copy()
|
128 |
+
return fs.open(
|
129 |
+
fn,
|
130 |
+
mode=mode,
|
131 |
+
cache_type="parts",
|
132 |
+
cache_options={
|
133 |
+
**options,
|
134 |
+
"data": data.get(fn, {}),
|
135 |
+
"strict": strict,
|
136 |
+
},
|
137 |
+
**kwargs,
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
def _get_parquet_byte_ranges(
|
142 |
+
paths,
|
143 |
+
fs,
|
144 |
+
metadata=None,
|
145 |
+
columns=None,
|
146 |
+
row_groups=None,
|
147 |
+
max_gap=64_000,
|
148 |
+
max_block=256_000_000,
|
149 |
+
footer_sample_size=1_000_000,
|
150 |
+
engine="auto",
|
151 |
+
):
|
152 |
+
"""Get a dictionary of the known byte ranges needed
|
153 |
+
to read a specific column/row-group selection from a
|
154 |
+
Parquet dataset. Each value in the output dictionary
|
155 |
+
is intended for use as the `data` argument for the
|
156 |
+
`KnownPartsOfAFile` caching strategy of a single path.
|
157 |
+
"""
|
158 |
+
|
159 |
+
# Set engine if necessary
|
160 |
+
if isinstance(engine, str):
|
161 |
+
engine = _set_engine(engine)
|
162 |
+
|
163 |
+
# Pass to specialized function if metadata is defined
|
164 |
+
if metadata is not None:
|
165 |
+
|
166 |
+
# Use the provided parquet metadata object
|
167 |
+
# to avoid transferring/parsing footer metadata
|
168 |
+
return _get_parquet_byte_ranges_from_metadata(
|
169 |
+
metadata,
|
170 |
+
fs,
|
171 |
+
engine,
|
172 |
+
columns=columns,
|
173 |
+
row_groups=row_groups,
|
174 |
+
max_gap=max_gap,
|
175 |
+
max_block=max_block,
|
176 |
+
)
|
177 |
+
|
178 |
+
# Get file sizes asynchronously
|
179 |
+
file_sizes = fs.sizes(paths)
|
180 |
+
|
181 |
+
# Populate global paths, starts, & ends
|
182 |
+
result = {}
|
183 |
+
data_paths = []
|
184 |
+
data_starts = []
|
185 |
+
data_ends = []
|
186 |
+
add_header_magic = True
|
187 |
+
if columns is None and row_groups is None:
|
188 |
+
# We are NOT selecting specific columns or row-groups.
|
189 |
+
#
|
190 |
+
# We can avoid sampling the footers, and just transfer
|
191 |
+
# all file data with cat_ranges
|
192 |
+
for i, path in enumerate(paths):
|
193 |
+
result[path] = {}
|
194 |
+
for b in range(0, file_sizes[i], max_block):
|
195 |
+
data_paths.append(path)
|
196 |
+
data_starts.append(b)
|
197 |
+
data_ends.append(min(b + max_block, file_sizes[i]))
|
198 |
+
add_header_magic = False # "Magic" should already be included
|
199 |
+
else:
|
200 |
+
# We ARE selecting specific columns or row-groups.
|
201 |
+
#
|
202 |
+
# Gather file footers.
|
203 |
+
# We just take the last `footer_sample_size` bytes of each
|
204 |
+
# file (or the entire file if it is smaller than that)
|
205 |
+
footer_starts = []
|
206 |
+
footer_ends = []
|
207 |
+
for i, path in enumerate(paths):
|
208 |
+
footer_ends.append(file_sizes[i])
|
209 |
+
sample_size = max(0, file_sizes[i] - footer_sample_size)
|
210 |
+
footer_starts.append(sample_size)
|
211 |
+
footer_samples = fs.cat_ranges(paths, footer_starts, footer_ends)
|
212 |
+
|
213 |
+
# Check our footer samples and re-sample if necessary.
|
214 |
+
missing_footer_starts = footer_starts.copy()
|
215 |
+
large_footer = 0
|
216 |
+
for i, path in enumerate(paths):
|
217 |
+
footer_size = int.from_bytes(footer_samples[i][-8:-4], "little")
|
218 |
+
real_footer_start = file_sizes[i] - (footer_size + 8)
|
219 |
+
if real_footer_start < footer_starts[i]:
|
220 |
+
missing_footer_starts[i] = real_footer_start
|
221 |
+
large_footer = max(large_footer, (footer_size + 8))
|
222 |
+
if large_footer:
|
223 |
+
warnings.warn(
|
224 |
+
f"Not enough data was used to sample the parquet footer. "
|
225 |
+
f"Try setting footer_sample_size >= {large_footer}."
|
226 |
+
)
|
227 |
+
for i, block in enumerate(
|
228 |
+
fs.cat_ranges(
|
229 |
+
paths,
|
230 |
+
missing_footer_starts,
|
231 |
+
footer_starts,
|
232 |
+
)
|
233 |
+
):
|
234 |
+
footer_samples[i] = block + footer_samples[i]
|
235 |
+
footer_starts[i] = missing_footer_starts[i]
|
236 |
+
|
237 |
+
# Calculate required byte ranges for each path
|
238 |
+
for i, path in enumerate(paths):
|
239 |
+
|
240 |
+
# Deal with small-file case.
|
241 |
+
# Just include all remaining bytes of the file
|
242 |
+
# in a single range.
|
243 |
+
if file_sizes[i] < max_block:
|
244 |
+
if footer_starts[i] > 0:
|
245 |
+
# Only need to transfer the data if the
|
246 |
+
# footer sample isn't already the whole file
|
247 |
+
data_paths.append(path)
|
248 |
+
data_starts.append(0)
|
249 |
+
data_ends.append(footer_starts[i])
|
250 |
+
continue
|
251 |
+
|
252 |
+
# Use "engine" to collect data byte ranges
|
253 |
+
path_data_starts, path_data_ends = engine._parquet_byte_ranges(
|
254 |
+
columns,
|
255 |
+
row_groups=row_groups,
|
256 |
+
footer=footer_samples[i],
|
257 |
+
footer_start=footer_starts[i],
|
258 |
+
)
|
259 |
+
|
260 |
+
data_paths += [path] * len(path_data_starts)
|
261 |
+
data_starts += path_data_starts
|
262 |
+
data_ends += path_data_ends
|
263 |
+
|
264 |
+
# Merge adjacent offset ranges
|
265 |
+
data_paths, data_starts, data_ends = merge_offset_ranges(
|
266 |
+
data_paths,
|
267 |
+
data_starts,
|
268 |
+
data_ends,
|
269 |
+
max_gap=max_gap,
|
270 |
+
max_block=max_block,
|
271 |
+
sort=False, # Should already be sorted
|
272 |
+
)
|
273 |
+
|
274 |
+
# Start by populating `result` with footer samples
|
275 |
+
for i, path in enumerate(paths):
|
276 |
+
result[path] = {(footer_starts[i], footer_ends[i]): footer_samples[i]}
|
277 |
+
|
278 |
+
# Transfer the data byte-ranges into local memory
|
279 |
+
_transfer_ranges(fs, result, data_paths, data_starts, data_ends)
|
280 |
+
|
281 |
+
# Add b"PAR1" to header if necessary
|
282 |
+
if add_header_magic:
|
283 |
+
_add_header_magic(result)
|
284 |
+
|
285 |
+
return result
|
286 |
+
|
287 |
+
|
288 |
+
def _get_parquet_byte_ranges_from_metadata(
|
289 |
+
metadata,
|
290 |
+
fs,
|
291 |
+
engine,
|
292 |
+
columns=None,
|
293 |
+
row_groups=None,
|
294 |
+
max_gap=64_000,
|
295 |
+
max_block=256_000_000,
|
296 |
+
):
|
297 |
+
"""Simplified version of `_get_parquet_byte_ranges` for
|
298 |
+
the case that an engine-specific `metadata` object is
|
299 |
+
provided, and the remote footer metadata does not need to
|
300 |
+
be transferred before calculating the required byte ranges.
|
301 |
+
"""
|
302 |
+
|
303 |
+
# Use "engine" to collect data byte ranges
|
304 |
+
data_paths, data_starts, data_ends = engine._parquet_byte_ranges(
|
305 |
+
columns,
|
306 |
+
row_groups=row_groups,
|
307 |
+
metadata=metadata,
|
308 |
+
)
|
309 |
+
|
310 |
+
# Merge adjacent offset ranges
|
311 |
+
data_paths, data_starts, data_ends = merge_offset_ranges(
|
312 |
+
data_paths,
|
313 |
+
data_starts,
|
314 |
+
data_ends,
|
315 |
+
max_gap=max_gap,
|
316 |
+
max_block=max_block,
|
317 |
+
sort=False, # Should be sorted
|
318 |
+
)
|
319 |
+
|
320 |
+
# Transfer the data byte-ranges into local memory
|
321 |
+
result = {fn: {} for fn in list(set(data_paths))}
|
322 |
+
_transfer_ranges(fs, result, data_paths, data_starts, data_ends)
|
323 |
+
|
324 |
+
# Add b"PAR1" to header
|
325 |
+
_add_header_magic(result)
|
326 |
+
|
327 |
+
return result
|
328 |
+
|
329 |
+
|
330 |
+
def _transfer_ranges(fs, blocks, paths, starts, ends):
|
331 |
+
# Use cat_ranges to gather the data byte_ranges
|
332 |
+
ranges = (paths, starts, ends)
|
333 |
+
for path, start, stop, data in zip(*ranges, fs.cat_ranges(*ranges)):
|
334 |
+
blocks[path][(start, stop)] = data
|
335 |
+
|
336 |
+
|
337 |
+
def _add_header_magic(data):
|
338 |
+
# Add b"PAR1" to file headers
|
339 |
+
for path in list(data.keys()):
|
340 |
+
add_magic = True
|
341 |
+
for k in data[path].keys():
|
342 |
+
if k[0] == 0 and k[1] >= 4:
|
343 |
+
add_magic = False
|
344 |
+
break
|
345 |
+
if add_magic:
|
346 |
+
data[path][(0, 4)] = b"PAR1"
|
347 |
+
|
348 |
+
|
349 |
+
def _set_engine(engine_str):
|
350 |
+
|
351 |
+
# Define a list of parquet engines to try
|
352 |
+
if engine_str == "auto":
|
353 |
+
try_engines = ("fastparquet", "pyarrow")
|
354 |
+
elif not isinstance(engine_str, str):
|
355 |
+
raise ValueError(
|
356 |
+
"Failed to set parquet engine! "
|
357 |
+
"Please pass 'fastparquet', 'pyarrow', or 'auto'"
|
358 |
+
)
|
359 |
+
elif engine_str not in ("fastparquet", "pyarrow"):
|
360 |
+
raise ValueError(f"{engine_str} engine not supported by `fsspec.parquet`")
|
361 |
+
else:
|
362 |
+
try_engines = [engine_str]
|
363 |
+
|
364 |
+
# Try importing the engines in `try_engines`,
|
365 |
+
# and choose the first one that succeeds
|
366 |
+
for engine in try_engines:
|
367 |
+
try:
|
368 |
+
if engine == "fastparquet":
|
369 |
+
return FastparquetEngine()
|
370 |
+
elif engine == "pyarrow":
|
371 |
+
return PyarrowEngine()
|
372 |
+
except ImportError:
|
373 |
+
pass
|
374 |
+
|
375 |
+
# Raise an error if a supported parquet engine
|
376 |
+
# was not found
|
377 |
+
raise ImportError(
|
378 |
+
f"The following parquet engines are not installed "
|
379 |
+
f"in your python environment: {try_engines}."
|
380 |
+
f"Please install 'fastparquert' or 'pyarrow' to "
|
381 |
+
f"utilize the `fsspec.parquet` module."
|
382 |
+
)
|
383 |
+
|
384 |
+
|
385 |
+
class FastparquetEngine:
|
386 |
+
|
387 |
+
# The purpose of the FastparquetEngine class is
|
388 |
+
# to check if fastparquet can be imported (on initialization)
|
389 |
+
# and to define a `_parquet_byte_ranges` method. In the
|
390 |
+
# future, this class may also be used to define other
|
391 |
+
# methods/logic that are specific to fastparquet.
|
392 |
+
|
393 |
+
def __init__(self):
|
394 |
+
import fastparquet as fp
|
395 |
+
|
396 |
+
self.fp = fp
|
397 |
+
|
398 |
+
def _row_group_filename(self, row_group, pf):
|
399 |
+
return pf.row_group_filename(row_group)
|
400 |
+
|
401 |
+
def _parquet_byte_ranges(
|
402 |
+
self,
|
403 |
+
columns,
|
404 |
+
row_groups=None,
|
405 |
+
metadata=None,
|
406 |
+
footer=None,
|
407 |
+
footer_start=None,
|
408 |
+
):
|
409 |
+
|
410 |
+
# Initialize offset ranges and define ParqetFile metadata
|
411 |
+
pf = metadata
|
412 |
+
data_paths, data_starts, data_ends = [], [], []
|
413 |
+
if pf is None:
|
414 |
+
pf = self.fp.ParquetFile(io.BytesIO(footer))
|
415 |
+
|
416 |
+
# Convert columns to a set and add any index columns
|
417 |
+
# specified in the pandas metadata (just in case)
|
418 |
+
column_set = None if columns is None else set(columns)
|
419 |
+
if column_set is not None and hasattr(pf, "pandas_metadata"):
|
420 |
+
md_index = [
|
421 |
+
ind
|
422 |
+
for ind in pf.pandas_metadata.get("index_columns", [])
|
423 |
+
# Ignore RangeIndex information
|
424 |
+
if not isinstance(ind, dict)
|
425 |
+
]
|
426 |
+
column_set |= set(md_index)
|
427 |
+
|
428 |
+
# Check if row_groups is a list of integers
|
429 |
+
# or a list of row-group metadata
|
430 |
+
if row_groups and not isinstance(row_groups[0], int):
|
431 |
+
# Input row_groups contains row-group metadata
|
432 |
+
row_group_indices = None
|
433 |
+
else:
|
434 |
+
# Input row_groups contains row-group indices
|
435 |
+
row_group_indices = row_groups
|
436 |
+
row_groups = pf.row_groups
|
437 |
+
|
438 |
+
# Loop through column chunks to add required byte ranges
|
439 |
+
for r, row_group in enumerate(row_groups):
|
440 |
+
# Skip this row-group if we are targeting
|
441 |
+
# specific row-groups
|
442 |
+
if row_group_indices is None or r in row_group_indices:
|
443 |
+
|
444 |
+
# Find the target parquet-file path for `row_group`
|
445 |
+
fn = self._row_group_filename(row_group, pf)
|
446 |
+
|
447 |
+
for column in row_group.columns:
|
448 |
+
name = column.meta_data.path_in_schema[0]
|
449 |
+
# Skip this column if we are targeting a
|
450 |
+
# specific columns
|
451 |
+
if column_set is None or name in column_set:
|
452 |
+
file_offset0 = column.meta_data.dictionary_page_offset
|
453 |
+
if file_offset0 is None:
|
454 |
+
file_offset0 = column.meta_data.data_page_offset
|
455 |
+
num_bytes = column.meta_data.total_compressed_size
|
456 |
+
if footer_start is None or file_offset0 < footer_start:
|
457 |
+
data_paths.append(fn)
|
458 |
+
data_starts.append(file_offset0)
|
459 |
+
data_ends.append(
|
460 |
+
min(
|
461 |
+
file_offset0 + num_bytes,
|
462 |
+
footer_start or (file_offset0 + num_bytes),
|
463 |
+
)
|
464 |
+
)
|
465 |
+
|
466 |
+
if metadata:
|
467 |
+
# The metadata in this call may map to multiple
|
468 |
+
# file paths. Need to include `data_paths`
|
469 |
+
return data_paths, data_starts, data_ends
|
470 |
+
return data_starts, data_ends
|
471 |
+
|
472 |
+
|
473 |
+
class PyarrowEngine:
|
474 |
+
|
475 |
+
# The purpose of the PyarrowEngine class is
|
476 |
+
# to check if pyarrow can be imported (on initialization)
|
477 |
+
# and to define a `_parquet_byte_ranges` method. In the
|
478 |
+
# future, this class may also be used to define other
|
479 |
+
# methods/logic that are specific to pyarrow.
|
480 |
+
|
481 |
+
def __init__(self):
|
482 |
+
import pyarrow.parquet as pq
|
483 |
+
|
484 |
+
self.pq = pq
|
485 |
+
|
486 |
+
def _row_group_filename(self, row_group, metadata):
|
487 |
+
raise NotImplementedError
|
488 |
+
|
489 |
+
def _parquet_byte_ranges(
|
490 |
+
self,
|
491 |
+
columns,
|
492 |
+
row_groups=None,
|
493 |
+
metadata=None,
|
494 |
+
footer=None,
|
495 |
+
footer_start=None,
|
496 |
+
):
|
497 |
+
|
498 |
+
if metadata is not None:
|
499 |
+
raise ValueError("metadata input not supported for PyarrowEngine")
|
500 |
+
|
501 |
+
data_starts, data_ends = [], []
|
502 |
+
md = self.pq.ParquetFile(io.BytesIO(footer)).metadata
|
503 |
+
|
504 |
+
# Convert columns to a set and add any index columns
|
505 |
+
# specified in the pandas metadata (just in case)
|
506 |
+
column_set = None if columns is None else set(columns)
|
507 |
+
if column_set is not None:
|
508 |
+
schema = md.schema.to_arrow_schema()
|
509 |
+
has_pandas_metadata = (
|
510 |
+
schema.metadata is not None and b"pandas" in schema.metadata
|
511 |
+
)
|
512 |
+
if has_pandas_metadata:
|
513 |
+
md_index = [
|
514 |
+
ind
|
515 |
+
for ind in json.loads(
|
516 |
+
schema.metadata[b"pandas"].decode("utf8")
|
517 |
+
).get("index_columns", [])
|
518 |
+
# Ignore RangeIndex information
|
519 |
+
if not isinstance(ind, dict)
|
520 |
+
]
|
521 |
+
column_set |= set(md_index)
|
522 |
+
|
523 |
+
# Loop through column chunks to add required byte ranges
|
524 |
+
for r in range(md.num_row_groups):
|
525 |
+
# Skip this row-group if we are targeting
|
526 |
+
# specific row-groups
|
527 |
+
if row_groups is None or r in row_groups:
|
528 |
+
row_group = md.row_group(r)
|
529 |
+
for c in range(row_group.num_columns):
|
530 |
+
column = row_group.column(c)
|
531 |
+
name = column.path_in_schema
|
532 |
+
# Skip this column if we are targeting a
|
533 |
+
# specific columns
|
534 |
+
split_name = name.split(".")[0]
|
535 |
+
if (
|
536 |
+
column_set is None
|
537 |
+
or name in column_set
|
538 |
+
or split_name in column_set
|
539 |
+
):
|
540 |
+
file_offset0 = column.dictionary_page_offset
|
541 |
+
if file_offset0 is None:
|
542 |
+
file_offset0 = column.data_page_offset
|
543 |
+
num_bytes = column.total_compressed_size
|
544 |
+
if file_offset0 < footer_start:
|
545 |
+
data_starts.append(file_offset0)
|
546 |
+
data_ends.append(
|
547 |
+
min(file_offset0 + num_bytes, footer_start)
|
548 |
+
)
|
549 |
+
return data_starts, data_ends
|
env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/COPYING
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2006-2008, R Oudkerk
|
2 |
+
|
3 |
+
All rights reserved.
|
4 |
+
|
5 |
+
Redistribution and use in source and binary forms, with or without
|
6 |
+
modification, are permitted provided that the following conditions
|
7 |
+
are met:
|
8 |
+
|
9 |
+
1. Redistributions of source code must retain the above copyright
|
10 |
+
notice, this list of conditions and the following disclaimer.
|
11 |
+
2. Redistributions in binary form must reproduce the above copyright
|
12 |
+
notice, this list of conditions and the following disclaimer in the
|
13 |
+
documentation and/or other materials provided with the distribution.
|
14 |
+
3. Neither the name of author nor the names of any contributors may be
|
15 |
+
used to endorse or promote products derived from this software
|
16 |
+
without specific prior written permission.
|
17 |
+
|
18 |
+
THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
|
19 |
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
20 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
21 |
+
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
22 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
23 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
24 |
+
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
25 |
+
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
26 |
+
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
27 |
+
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
28 |
+
SUCH DAMAGE.
|
env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/LICENSE
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2008-2016 California Institute of Technology.
|
2 |
+
Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
|
3 |
+
All rights reserved.
|
4 |
+
|
5 |
+
This software forks the python package "multiprocessing". Licence and
|
6 |
+
copyright information for multiprocessing can be found in "COPYING".
|
7 |
+
|
8 |
+
This software is available subject to the conditions and terms laid
|
9 |
+
out below. By downloading and using this software you are agreeing
|
10 |
+
to the following conditions.
|
11 |
+
|
12 |
+
Redistribution and use in source and binary forms, with or without
|
13 |
+
modification, are permitted provided that the following conditions
|
14 |
+
are met:
|
15 |
+
|
16 |
+
- Redistributions of source code must retain the above copyright
|
17 |
+
notice, this list of conditions and the following disclaimer.
|
18 |
+
|
19 |
+
- Redistributions in binary form must reproduce the above copyright
|
20 |
+
notice, this list of conditions and the following disclaimer in the
|
21 |
+
documentation and/or other materials provided with the distribution.
|
22 |
+
|
23 |
+
- Neither the names of the copyright holders nor the names of any of
|
24 |
+
the contributors may be used to endorse or promote products derived
|
25 |
+
from this software without specific prior written permission.
|
26 |
+
|
27 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
28 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
29 |
+
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
30 |
+
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
31 |
+
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
32 |
+
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
33 |
+
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
34 |
+
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
35 |
+
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
36 |
+
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
37 |
+
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
38 |
+
|
env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/METADATA
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: multiprocess
|
3 |
+
Version: 0.70.16
|
4 |
+
Summary: better multiprocessing and multithreading in Python
|
5 |
+
Home-page: https://github.com/uqfoundation/multiprocess
|
6 |
+
Download-URL: https://pypi.org/project/multiprocess/#files
|
7 |
+
Author: Mike McKerns
|
8 |
+
Author-email: [email protected]
|
9 |
+
Maintainer: Mike McKerns
|
10 |
+
Maintainer-email: [email protected]
|
11 |
+
License: BSD-3-Clause
|
12 |
+
Project-URL: Documentation, http://multiprocess.rtfd.io
|
13 |
+
Project-URL: Source Code, https://github.com/uqfoundation/multiprocess
|
14 |
+
Project-URL: Bug Tracker, https://github.com/uqfoundation/multiprocess/issues
|
15 |
+
Platform: Linux
|
16 |
+
Platform: Windows
|
17 |
+
Platform: Mac
|
18 |
+
Classifier: Development Status :: 5 - Production/Stable
|
19 |
+
Classifier: Intended Audience :: Developers
|
20 |
+
Classifier: Intended Audience :: Science/Research
|
21 |
+
Classifier: License :: OSI Approved :: BSD License
|
22 |
+
Classifier: Programming Language :: Python :: 3
|
23 |
+
Classifier: Programming Language :: Python :: 3.8
|
24 |
+
Classifier: Programming Language :: Python :: 3.9
|
25 |
+
Classifier: Programming Language :: Python :: 3.10
|
26 |
+
Classifier: Programming Language :: Python :: 3.11
|
27 |
+
Classifier: Programming Language :: Python :: 3.12
|
28 |
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
29 |
+
Classifier: Programming Language :: Python :: Implementation :: PyPy
|
30 |
+
Classifier: Topic :: Scientific/Engineering
|
31 |
+
Classifier: Topic :: Software Development
|
32 |
+
Requires-Python: >=3.8
|
33 |
+
License-File: LICENSE
|
34 |
+
License-File: COPYING
|
35 |
+
Requires-Dist: dill (>=0.3.8)
|
36 |
+
|
37 |
+
-----------------------------------------------------------------
|
38 |
+
multiprocess: better multiprocessing and multithreading in Python
|
39 |
+
-----------------------------------------------------------------
|
40 |
+
|
41 |
+
About Multiprocess
|
42 |
+
==================
|
43 |
+
|
44 |
+
``multiprocess`` is a fork of ``multiprocessing``. ``multiprocess`` extends ``multiprocessing`` to provide enhanced serialization, using `dill`. ``multiprocess`` leverages ``multiprocessing`` to support the spawning of processes using the API of the Python standard library's ``threading`` module. ``multiprocessing`` has been distributed as part of the standard library since Python 2.6.
|
45 |
+
|
46 |
+
``multiprocess`` is part of ``pathos``, a Python framework for heterogeneous computing.
|
47 |
+
``multiprocess`` is in active development, so any user feedback, bug reports, comments,
|
48 |
+
or suggestions are highly appreciated. A list of issues is located at https://github.com/uqfoundation/multiprocess/issues, with a legacy list maintained at https://uqfoundation.github.io/project/pathos/query.
|
49 |
+
|
50 |
+
|
51 |
+
Major Features
|
52 |
+
==============
|
53 |
+
|
54 |
+
``multiprocess`` enables:
|
55 |
+
|
56 |
+
- objects to be transferred between processes using pipes or multi-producer/multi-consumer queues
|
57 |
+
- objects to be shared between processes using a server process or (for simple data) shared memory
|
58 |
+
|
59 |
+
``multiprocess`` provides:
|
60 |
+
|
61 |
+
- equivalents of all the synchronization primitives in ``threading``
|
62 |
+
- a ``Pool`` class to facilitate submitting tasks to worker processes
|
63 |
+
- enhanced serialization, using ``dill``
|
64 |
+
|
65 |
+
|
66 |
+
Current Release
|
67 |
+
===============
|
68 |
+
|
69 |
+
The latest released version of ``multiprocess`` is available from:
|
70 |
+
|
71 |
+
https://pypi.org/project/multiprocess
|
72 |
+
|
73 |
+
``multiprocess`` is distributed under a 3-clause BSD license, and is a fork of ``multiprocessing``.
|
74 |
+
|
75 |
+
|
76 |
+
Development Version
|
77 |
+
===================
|
78 |
+
|
79 |
+
You can get the latest development version with all the shiny new features at:
|
80 |
+
|
81 |
+
https://github.com/uqfoundation
|
82 |
+
|
83 |
+
If you have a new contribution, please submit a pull request.
|
84 |
+
|
85 |
+
|
86 |
+
Installation
|
87 |
+
============
|
88 |
+
|
89 |
+
``multiprocess`` can be installed with ``pip``::
|
90 |
+
|
91 |
+
$ pip install multiprocess
|
92 |
+
|
93 |
+
For Python 2, a C compiler is required to build the included extension module from source. Python 3 and binary installs do not require a C compiler.
|
94 |
+
|
95 |
+
|
96 |
+
Requirements
|
97 |
+
============
|
98 |
+
|
99 |
+
``multiprocess`` requires:
|
100 |
+
|
101 |
+
- ``python`` (or ``pypy``), **>=3.8**
|
102 |
+
- ``setuptools``, **>=42**
|
103 |
+
- ``dill``, **>=0.3.8**
|
104 |
+
|
105 |
+
|
106 |
+
Basic Usage
|
107 |
+
===========
|
108 |
+
|
109 |
+
The ``multiprocess.Process`` class follows the API of ``threading.Thread``.
|
110 |
+
For example ::
|
111 |
+
|
112 |
+
from multiprocess import Process, Queue
|
113 |
+
|
114 |
+
def f(q):
|
115 |
+
q.put('hello world')
|
116 |
+
|
117 |
+
if __name__ == '__main__':
|
118 |
+
q = Queue()
|
119 |
+
p = Process(target=f, args=[q])
|
120 |
+
p.start()
|
121 |
+
print (q.get())
|
122 |
+
p.join()
|
123 |
+
|
124 |
+
Synchronization primitives like locks, semaphores and conditions are
|
125 |
+
available, for example ::
|
126 |
+
|
127 |
+
>>> from multiprocess import Condition
|
128 |
+
>>> c = Condition()
|
129 |
+
>>> print (c)
|
130 |
+
<Condition(<RLock(None, 0)>), 0>
|
131 |
+
>>> c.acquire()
|
132 |
+
True
|
133 |
+
>>> print (c)
|
134 |
+
<Condition(<RLock(MainProcess, 1)>), 0>
|
135 |
+
|
136 |
+
One can also use a manager to create shared objects either in shared
|
137 |
+
memory or in a server process, for example ::
|
138 |
+
|
139 |
+
>>> from multiprocess import Manager
|
140 |
+
>>> manager = Manager()
|
141 |
+
>>> l = manager.list(range(10))
|
142 |
+
>>> l.reverse()
|
143 |
+
>>> print (l)
|
144 |
+
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
|
145 |
+
>>> print (repr(l))
|
146 |
+
<Proxy[list] object at 0x00E1B3B0>
|
147 |
+
|
148 |
+
Tasks can be offloaded to a pool of worker processes in various ways,
|
149 |
+
for example ::
|
150 |
+
|
151 |
+
>>> from multiprocess import Pool
|
152 |
+
>>> def f(x): return x*x
|
153 |
+
...
|
154 |
+
>>> p = Pool(4)
|
155 |
+
>>> result = p.map_async(f, range(10))
|
156 |
+
>>> print (result.get(timeout=1))
|
157 |
+
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
|
158 |
+
|
159 |
+
When ``dill`` is installed, serialization is extended to most objects,
|
160 |
+
for example ::
|
161 |
+
|
162 |
+
>>> from multiprocess import Pool
|
163 |
+
>>> p = Pool(4)
|
164 |
+
>>> print (p.map(lambda x: (lambda y:y**2)(x) + x, xrange(10)))
|
165 |
+
[0, 2, 6, 12, 20, 30, 42, 56, 72, 90]
|
166 |
+
|
167 |
+
|
168 |
+
More Information
|
169 |
+
================
|
170 |
+
|
171 |
+
Probably the best way to get started is to look at the documentation at
|
172 |
+
http://multiprocess.rtfd.io. Also see ``multiprocess.tests`` for scripts that
|
173 |
+
demonstrate how ``multiprocess`` can be used to leverge multiple processes
|
174 |
+
to execute Python in parallel. You can run the test suite with
|
175 |
+
``python -m multiprocess.tests``. As ``multiprocess`` conforms to the
|
176 |
+
``multiprocessing`` interface, the examples and documentation found at
|
177 |
+
http://docs.python.org/library/multiprocessing.html also apply to
|
178 |
+
``multiprocess`` if one will ``import multiprocessing as multiprocess``.
|
179 |
+
See https://github.com/uqfoundation/multiprocess/tree/master/py3.12/examples
|
180 |
+
for a set of examples that demonstrate some basic use cases and benchmarking
|
181 |
+
for running Python code in parallel. Please feel free to submit a ticket on
|
182 |
+
github, or ask a question on stackoverflow (**@Mike McKerns**). If you would
|
183 |
+
like to share how you use ``multiprocess`` in your work, please send an email
|
184 |
+
(to **mmckerns at uqfoundation dot org**).
|
185 |
+
|
186 |
+
|
187 |
+
Citation
|
188 |
+
========
|
189 |
+
|
190 |
+
If you use ``multiprocess`` to do research that leads to publication, we ask that you
|
191 |
+
acknowledge use of ``multiprocess`` by citing the following in your publication::
|
192 |
+
|
193 |
+
M.M. McKerns, L. Strand, T. Sullivan, A. Fang, M.A.G. Aivazis,
|
194 |
+
"Building a framework for predictive science", Proceedings of
|
195 |
+
the 10th Python in Science Conference, 2011;
|
196 |
+
http://arxiv.org/pdf/1202.1056
|
197 |
+
|
198 |
+
Michael McKerns and Michael Aivazis,
|
199 |
+
"pathos: a framework for heterogeneous computing", 2010- ;
|
200 |
+
https://uqfoundation.github.io/project/pathos
|
201 |
+
|
202 |
+
Please see https://uqfoundation.github.io/project/pathos or
|
203 |
+
http://arxiv.org/pdf/1202.1056 for further information.
|
env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/RECORD
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_multiprocess/__init__.py,sha256=zX5_h36TGSL0brHRtBvCL5E59ccW7yjL79i-Y399ODM,321
|
2 |
+
_multiprocess/__pycache__/__init__.cpython-310.pyc,,
|
3 |
+
multiprocess-0.70.16.dist-info/COPYING,sha256=n3_yfLkw0sMgLuB-PS1hRvTeZ20GmjPaMWbJjNuoOpU,1493
|
4 |
+
multiprocess-0.70.16.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
5 |
+
multiprocess-0.70.16.dist-info/LICENSE,sha256=6XUJedJKg2dhI98BD3PMtVtZvRFT-oGczkOr5B4tEEA,1930
|
6 |
+
multiprocess-0.70.16.dist-info/METADATA,sha256=Sv2eH2CjjyjVYaryTKqHkbJTlxlVA-SbmziCgkBJeQ0,7151
|
7 |
+
multiprocess-0.70.16.dist-info/RECORD,,
|
8 |
+
multiprocess-0.70.16.dist-info/WHEEL,sha256=KxatxaZA14OswIJTdImHhiM2tdZgU-xLZEzs-sYveVc,94
|
9 |
+
multiprocess-0.70.16.dist-info/top_level.txt,sha256=qtJc8GNdvi6suNpISX0Myln9AXJBYrNuas1MCqRPPqg,27
|
10 |
+
multiprocess/__info__.py,sha256=84TUBn1oJMNpbVvXKs0lKyfLYaZvRr-ZVh1zHM9VeCY,7997
|
11 |
+
multiprocess/__init__.py,sha256=XWUBDGorUkDW04h64xe51pUV9N5gzvSDj3tNT2ekifw,1856
|
12 |
+
multiprocess/__pycache__/__info__.cpython-310.pyc,,
|
13 |
+
multiprocess/__pycache__/__init__.cpython-310.pyc,,
|
14 |
+
multiprocess/__pycache__/connection.cpython-310.pyc,,
|
15 |
+
multiprocess/__pycache__/context.cpython-310.pyc,,
|
16 |
+
multiprocess/__pycache__/forkserver.cpython-310.pyc,,
|
17 |
+
multiprocess/__pycache__/heap.cpython-310.pyc,,
|
18 |
+
multiprocess/__pycache__/managers.cpython-310.pyc,,
|
19 |
+
multiprocess/__pycache__/pool.cpython-310.pyc,,
|
20 |
+
multiprocess/__pycache__/popen_fork.cpython-310.pyc,,
|
21 |
+
multiprocess/__pycache__/popen_forkserver.cpython-310.pyc,,
|
22 |
+
multiprocess/__pycache__/popen_spawn_posix.cpython-310.pyc,,
|
23 |
+
multiprocess/__pycache__/popen_spawn_win32.cpython-310.pyc,,
|
24 |
+
multiprocess/__pycache__/process.cpython-310.pyc,,
|
25 |
+
multiprocess/__pycache__/queues.cpython-310.pyc,,
|
26 |
+
multiprocess/__pycache__/reduction.cpython-310.pyc,,
|
27 |
+
multiprocess/__pycache__/resource_sharer.cpython-310.pyc,,
|
28 |
+
multiprocess/__pycache__/resource_tracker.cpython-310.pyc,,
|
29 |
+
multiprocess/__pycache__/shared_memory.cpython-310.pyc,,
|
30 |
+
multiprocess/__pycache__/sharedctypes.cpython-310.pyc,,
|
31 |
+
multiprocess/__pycache__/spawn.cpython-310.pyc,,
|
32 |
+
multiprocess/__pycache__/synchronize.cpython-310.pyc,,
|
33 |
+
multiprocess/__pycache__/util.cpython-310.pyc,,
|
34 |
+
multiprocess/connection.py,sha256=TO9BbLVlLVjTjr0fP7lIumBgiLwaFVnpqMBgFG6iL9s,31843
|
35 |
+
multiprocess/context.py,sha256=2fYvgfnu3B8wj8UyNndHUHgeuVDoVxlkFFKryycstaU,11610
|
36 |
+
multiprocess/dummy/__init__.py,sha256=kSekDqD_NCy0FDg7XnxZSgW-Ldg1_iRr07sNwDajKpA,3061
|
37 |
+
multiprocess/dummy/__pycache__/__init__.cpython-310.pyc,,
|
38 |
+
multiprocess/dummy/__pycache__/connection.cpython-310.pyc,,
|
39 |
+
multiprocess/dummy/connection.py,sha256=1j3Rl5_enBM-_kMO6HDmum3kPAoFE4Zs485HV5H-V6s,1598
|
40 |
+
multiprocess/forkserver.py,sha256=hiltKfLImDYJyAcezNAgMDaQznB2LtYWgwre0QroLRg,12138
|
41 |
+
multiprocess/heap.py,sha256=9rt5u5m5rkhJNfDWiCLpYDoWIt0LbElmx52yMqk7phQ,11626
|
42 |
+
multiprocess/managers.py,sha256=Y5m_aCdLE4mSCuyVrwMWg5Nh9f4OdSHDlSajyOgyGao,47562
|
43 |
+
multiprocess/pool.py,sha256=FTmtfoqkuN8Dd48f5TgdkokoxYN75xcnR78Hw-bLSng,32759
|
44 |
+
multiprocess/popen_fork.py,sha256=Nvq5vVId24UfkOQxXhxZbcXuo8d6YMc409yRXAamTd0,2374
|
45 |
+
multiprocess/popen_forkserver.py,sha256=SrEbV8Wv0Uu_UegkaW-cayXRdjTGXr560Yyy90pj-yE,2227
|
46 |
+
multiprocess/popen_spawn_posix.py,sha256=l7XSWqR5UWiUSJh35qeSElLuNfUeEYwvH5HzKRnnyqg,2029
|
47 |
+
multiprocess/popen_spawn_win32.py,sha256=A9uvlPmhO8JBzNcEU_Gmix2Q_qYJW1NXZgXPwtN5Ao0,4011
|
48 |
+
multiprocess/process.py,sha256=GIIo2NiBsX1r_m0J1TcnbdeSulGLWHElRCuYRkkdgQ4,12083
|
49 |
+
multiprocess/queues.py,sha256=sgXCXnIOVrPScqI3lwRD9t3IshqIBMEksLtouPH9Nzc,12139
|
50 |
+
multiprocess/reduction.py,sha256=NQQ6KbDhmuAyaDeWaIarTZQokGPhcFda1poNnPm5uNc,9637
|
51 |
+
multiprocess/resource_sharer.py,sha256=nEApLhMQqd8KunfaNKl3n8vdeiCGPxKrSL1Ja0nNAEk,5132
|
52 |
+
multiprocess/resource_tracker.py,sha256=_D2iX4IWRe3dOwLoLjfCnXNbDAM4pRzA8qEMTcRfutw,9056
|
53 |
+
multiprocess/shared_memory.py,sha256=UTAecHECIOHElP9Tg6yURCo4pKZiLy65TkASjEXeGus,18458
|
54 |
+
multiprocess/sharedctypes.py,sha256=d-9SKRJHRlJJC331IxEoWOUXIeY9zxCbhWejXOmzGw0,6306
|
55 |
+
multiprocess/spawn.py,sha256=cgtV66HhV_yIVzvdblc8bVdSpem16Ks0BOFu_bV5PDQ,9293
|
56 |
+
multiprocess/synchronize.py,sha256=6q1ijwWyWLWLO8uUtaYT9MKepAYKfdzWPSEZGyJFP4s,11829
|
57 |
+
multiprocess/tests/__init__.py,sha256=k00IjwhAUV_O1bp81895vN1gLnFzBM3iM-QTn5VrQnU,199087
|
58 |
+
multiprocess/tests/__main__.py,sha256=RauIRQrO0HwRq_clLqbBk4gwo5Xw3-ASLuC029XaHeA,912
|
59 |
+
multiprocess/tests/__pycache__/__init__.cpython-310.pyc,,
|
60 |
+
multiprocess/tests/__pycache__/__main__.cpython-310.pyc,,
|
61 |
+
multiprocess/tests/__pycache__/mp_fork_bomb.cpython-310.pyc,,
|
62 |
+
multiprocess/tests/__pycache__/mp_preload.cpython-310.pyc,,
|
63 |
+
multiprocess/tests/__pycache__/test_multiprocessing_fork.cpython-310.pyc,,
|
64 |
+
multiprocess/tests/__pycache__/test_multiprocessing_forkserver.cpython-310.pyc,,
|
65 |
+
multiprocess/tests/__pycache__/test_multiprocessing_main_handling.cpython-310.pyc,,
|
66 |
+
multiprocess/tests/__pycache__/test_multiprocessing_spawn.cpython-310.pyc,,
|
67 |
+
multiprocess/tests/mp_fork_bomb.py,sha256=6ADOEzh1aXHZ21aOGoBPhKcgB5sj15G9tQVgSc6GrlY,448
|
68 |
+
multiprocess/tests/mp_preload.py,sha256=1-WvLFMaPoH-vZbpUaJvvZHFxTpA9tgmct2vblQy99M,365
|
69 |
+
multiprocess/tests/test_multiprocessing_fork.py,sha256=ue1SQLJFxm1oc_3F2gR_WRtt39jhaj0l_Ht6Y1MBmFo,476
|
70 |
+
multiprocess/tests/test_multiprocessing_forkserver.py,sha256=VFlUuZI60gyRbNxfHWDlgmy3zm-dPTldLWuKQZ8KObs,391
|
71 |
+
multiprocess/tests/test_multiprocessing_main_handling.py,sha256=mtmN0K-spqZCcZVNLf_HrhP186-knpY6eaoFonL1U4U,12018
|
72 |
+
multiprocess/tests/test_multiprocessing_spawn.py,sha256=2UAisJX58GZCbYuDFay_x97R9akhzzjIA4VuUUzITOY,276
|
73 |
+
multiprocess/util.py,sha256=OPI3CZ34BNwwwa7AqW-eGhnuSUsu-ozy2NRU8BYKuwg,14012
|
env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.37.1)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py310-none-any
|
5 |
+
|
env-llmeval/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/top_level.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_multiprocess
|
2 |
+
multiprocess
|
env-llmeval/lib/python3.10/site-packages/nvidia/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (177 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn.h
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/* cudnn : Neural Networks Library
|
51 |
+
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_H_)
|
55 |
+
#define CUDNN_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
#include "cudnn_ops_train.h"
|
63 |
+
#include "cudnn_adv_infer.h"
|
64 |
+
#include "cudnn_adv_train.h"
|
65 |
+
#include "cudnn_cnn_infer.h"
|
66 |
+
#include "cudnn_cnn_train.h"
|
67 |
+
|
68 |
+
#include "cudnn_backend.h"
|
69 |
+
|
70 |
+
#if defined(__cplusplus)
|
71 |
+
extern "C" {
|
72 |
+
#endif
|
73 |
+
|
74 |
+
#if defined(__cplusplus)
|
75 |
+
}
|
76 |
+
#endif
|
77 |
+
|
78 |
+
#endif /* CUDNN_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_infer.h
ADDED
@@ -0,0 +1,658 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/* cudnn_adv_infer : cuDNN's advanced and experimental features.
|
51 |
+
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_ADV_INFER_H_)
|
55 |
+
#define CUDNN_ADV_INFER_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
|
63 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
64 |
+
#define CUDNN_ADV_INFER_MAJOR 8
|
65 |
+
#define CUDNN_ADV_INFER_MINOR 9
|
66 |
+
#define CUDNN_ADV_INFER_PATCH 2
|
67 |
+
|
68 |
+
#if (CUDNN_ADV_INFER_MAJOR != CUDNN_MAJOR) || (CUDNN_ADV_INFER_MINOR != CUDNN_MINOR) || \
|
69 |
+
(CUDNN_ADV_INFER_PATCH != CUDNN_PATCHLEVEL)
|
70 |
+
#error Version mismatch in cuDNN ADV INFER!!!
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus)
|
74 |
+
extern "C" {
|
75 |
+
#endif
|
76 |
+
|
77 |
+
/* BASIC RNN API */
|
78 |
+
|
79 |
+
typedef enum {
|
80 |
+
CUDNN_FWD_MODE_INFERENCE = 0,
|
81 |
+
CUDNN_FWD_MODE_TRAINING = 1,
|
82 |
+
} cudnnForwardMode_t;
|
83 |
+
|
84 |
+
typedef enum {
|
85 |
+
CUDNN_RNN_RELU = 0, /* basic RNN cell type with ReLu activation */
|
86 |
+
CUDNN_RNN_TANH = 1, /* basic RNN cell type with tanh activation */
|
87 |
+
CUDNN_LSTM = 2, /* LSTM with optional recurrent projection and clipping */
|
88 |
+
CUDNN_GRU = 3, /* Using h' = tanh(r * Uh(t-1) + Wx) and h = (1 - z) * h' + z * h(t-1); */
|
89 |
+
} cudnnRNNMode_t;
|
90 |
+
|
91 |
+
typedef enum {
|
92 |
+
CUDNN_RNN_NO_BIAS = 0, /* rnn cell formulas do not use biases */
|
93 |
+
CUDNN_RNN_SINGLE_INP_BIAS = 1, /* rnn cell formulas use one input bias in input GEMM */
|
94 |
+
CUDNN_RNN_DOUBLE_BIAS = 2, /* default, rnn cell formulas use two bias vectors */
|
95 |
+
CUDNN_RNN_SINGLE_REC_BIAS = 3 /* rnn cell formulas use one recurrent bias in recurrent GEMM */
|
96 |
+
} cudnnRNNBiasMode_t;
|
97 |
+
|
98 |
+
typedef enum {
|
99 |
+
CUDNN_UNIDIRECTIONAL = 0, /* single direction network */
|
100 |
+
CUDNN_BIDIRECTIONAL = 1, /* output concatination at each layer */
|
101 |
+
} cudnnDirectionMode_t;
|
102 |
+
|
103 |
+
typedef enum {
|
104 |
+
CUDNN_LINEAR_INPUT = 0, /* adjustable weight matrix in first layer input GEMM */
|
105 |
+
CUDNN_SKIP_INPUT = 1, /* fixed identity matrix in the first layer input GEMM */
|
106 |
+
} cudnnRNNInputMode_t;
|
107 |
+
|
108 |
+
typedef enum {
|
109 |
+
CUDNN_RNN_CLIP_NONE = 0, /* disables LSTM cell clipping */
|
110 |
+
CUDNN_RNN_CLIP_MINMAX = 1, /* enables LSTM cell clipping */
|
111 |
+
} cudnnRNNClipMode_t;
|
112 |
+
|
113 |
+
typedef enum {
|
114 |
+
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED = 0, /* padded, outer stride from one time-step to the next */
|
115 |
+
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_PACKED = 1, /* sequence length sorted and packed as in basic RNN api */
|
116 |
+
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED = 2, /* padded, outer stride from one batch to the next */
|
117 |
+
} cudnnRNNDataLayout_t;
|
118 |
+
|
119 |
+
/* Legacy type for backward compatibility */
|
120 |
+
typedef unsigned cudnnRNNPaddingMode_t;
|
121 |
+
|
122 |
+
/* For auxFlags in cudnnSetRNNDescriptor_v8() and cudnnSetRNNPaddingMode() */
|
123 |
+
#define CUDNN_RNN_PADDED_IO_DISABLED 0
|
124 |
+
#define CUDNN_RNN_PADDED_IO_ENABLED (1U << 0)
|
125 |
+
|
126 |
+
struct cudnnRNNStruct;
|
127 |
+
typedef struct cudnnRNNStruct *cudnnRNNDescriptor_t;
|
128 |
+
|
129 |
+
struct cudnnPersistentRNNPlan;
|
130 |
+
typedef struct cudnnPersistentRNNPlan *cudnnPersistentRNNPlan_t;
|
131 |
+
|
132 |
+
struct cudnnRNNDataStruct;
|
133 |
+
typedef struct cudnnRNNDataStruct *cudnnRNNDataDescriptor_t;
|
134 |
+
|
135 |
+
cudnnStatus_t CUDNNWINAPI
|
136 |
+
cudnnCreateRNNDescriptor(cudnnRNNDescriptor_t *rnnDesc);
|
137 |
+
|
138 |
+
cudnnStatus_t CUDNNWINAPI
|
139 |
+
cudnnDestroyRNNDescriptor(cudnnRNNDescriptor_t rnnDesc);
|
140 |
+
|
141 |
+
cudnnStatus_t CUDNNWINAPI
|
142 |
+
cudnnSetRNNDescriptor_v8(cudnnRNNDescriptor_t rnnDesc,
|
143 |
+
cudnnRNNAlgo_t algo,
|
144 |
+
cudnnRNNMode_t cellMode,
|
145 |
+
cudnnRNNBiasMode_t biasMode,
|
146 |
+
cudnnDirectionMode_t dirMode,
|
147 |
+
cudnnRNNInputMode_t inputMode,
|
148 |
+
cudnnDataType_t dataType,
|
149 |
+
cudnnDataType_t mathPrec,
|
150 |
+
cudnnMathType_t mathType,
|
151 |
+
int32_t inputSize,
|
152 |
+
int32_t hiddenSize,
|
153 |
+
int32_t projSize,
|
154 |
+
int32_t numLayers,
|
155 |
+
cudnnDropoutDescriptor_t dropoutDesc,
|
156 |
+
uint32_t auxFlags);
|
157 |
+
|
158 |
+
cudnnStatus_t CUDNNWINAPI
|
159 |
+
cudnnGetRNNDescriptor_v8(cudnnRNNDescriptor_t rnnDesc,
|
160 |
+
cudnnRNNAlgo_t *algo,
|
161 |
+
cudnnRNNMode_t *cellMode,
|
162 |
+
cudnnRNNBiasMode_t *biasMode,
|
163 |
+
cudnnDirectionMode_t *dirMode,
|
164 |
+
cudnnRNNInputMode_t *inputMode,
|
165 |
+
cudnnDataType_t *dataType,
|
166 |
+
cudnnDataType_t *mathPrec,
|
167 |
+
cudnnMathType_t *mathType,
|
168 |
+
int32_t *inputSize,
|
169 |
+
int32_t *hiddenSize,
|
170 |
+
int32_t *projSize,
|
171 |
+
int32_t *numLayers,
|
172 |
+
cudnnDropoutDescriptor_t *dropoutDesc,
|
173 |
+
uint32_t *auxFlags);
|
174 |
+
|
175 |
+
/*
|
176 |
+
* mathPrec in cudnnSetRNNDescriptor_v6() specifies compute precision
|
177 |
+
* compute precision is further modified by cudnnSetRNNMatrixMathType()
|
178 |
+
* dataType in cudnnGetRNNParamsSize() and wDesc specify weight storage
|
179 |
+
* dropout is between RNN layers, not between recurrent steps
|
180 |
+
*/
|
181 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
182 |
+
cudnnSetRNNDescriptor_v6(cudnnHandle_t handle,
|
183 |
+
cudnnRNNDescriptor_t rnnDesc,
|
184 |
+
const int hiddenSize,
|
185 |
+
const int numLayers,
|
186 |
+
cudnnDropoutDescriptor_t dropoutDesc,
|
187 |
+
cudnnRNNInputMode_t inputMode,
|
188 |
+
cudnnDirectionMode_t direction,
|
189 |
+
cudnnRNNMode_t cellMode,
|
190 |
+
cudnnRNNAlgo_t algo,
|
191 |
+
cudnnDataType_t mathPrec);
|
192 |
+
|
193 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
194 |
+
cudnnGetRNNDescriptor_v6(cudnnHandle_t handle,
|
195 |
+
cudnnRNNDescriptor_t rnnDesc,
|
196 |
+
int *hiddenSize,
|
197 |
+
int *numLayers,
|
198 |
+
cudnnDropoutDescriptor_t *dropoutDesc,
|
199 |
+
cudnnRNNInputMode_t *inputMode,
|
200 |
+
cudnnDirectionMode_t *direction,
|
201 |
+
cudnnRNNMode_t *cellMode,
|
202 |
+
cudnnRNNAlgo_t *algo,
|
203 |
+
cudnnDataType_t *mathPrec);
|
204 |
+
|
205 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
206 |
+
cudnnSetRNNMatrixMathType(cudnnRNNDescriptor_t rnnDesc, cudnnMathType_t mType);
|
207 |
+
|
208 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
209 |
+
cudnnGetRNNMatrixMathType(cudnnRNNDescriptor_t rnnDesc, cudnnMathType_t *mType);
|
210 |
+
|
211 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
212 |
+
cudnnSetRNNBiasMode(cudnnRNNDescriptor_t rnnDesc, cudnnRNNBiasMode_t biasMode);
|
213 |
+
|
214 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
215 |
+
cudnnGetRNNBiasMode(cudnnRNNDescriptor_t rnnDesc, cudnnRNNBiasMode_t *biasMode);
|
216 |
+
|
217 |
+
cudnnStatus_t CUDNNWINAPI
|
218 |
+
cudnnRNNSetClip_v8(cudnnRNNDescriptor_t rnnDesc,
|
219 |
+
cudnnRNNClipMode_t clipMode,
|
220 |
+
cudnnNanPropagation_t clipNanOpt,
|
221 |
+
double lclip,
|
222 |
+
double rclip);
|
223 |
+
|
224 |
+
cudnnStatus_t CUDNNWINAPI
|
225 |
+
cudnnRNNGetClip_v8(cudnnRNNDescriptor_t rnnDesc,
|
226 |
+
cudnnRNNClipMode_t *clipMode,
|
227 |
+
cudnnNanPropagation_t *clipNanOpt,
|
228 |
+
double *lclip,
|
229 |
+
double *rclip);
|
230 |
+
|
231 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
232 |
+
cudnnRNNSetClip(cudnnHandle_t handle,
|
233 |
+
cudnnRNNDescriptor_t rnnDesc,
|
234 |
+
cudnnRNNClipMode_t clipMode,
|
235 |
+
cudnnNanPropagation_t clipNanOpt,
|
236 |
+
double lclip,
|
237 |
+
double rclip);
|
238 |
+
|
239 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
240 |
+
cudnnRNNGetClip(cudnnHandle_t handle,
|
241 |
+
cudnnRNNDescriptor_t rnnDesc,
|
242 |
+
cudnnRNNClipMode_t *clipMode,
|
243 |
+
cudnnNanPropagation_t *clipNanOpt,
|
244 |
+
double *lclip,
|
245 |
+
double *rclip);
|
246 |
+
|
247 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
248 |
+
cudnnSetRNNProjectionLayers(cudnnHandle_t handle,
|
249 |
+
cudnnRNNDescriptor_t rnnDesc,
|
250 |
+
const int recProjSize,
|
251 |
+
const int outProjSize);
|
252 |
+
|
253 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
254 |
+
cudnnGetRNNProjectionLayers(cudnnHandle_t handle,
|
255 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
256 |
+
int *recProjSize,
|
257 |
+
int *outProjSize);
|
258 |
+
|
259 |
+
/* Expensive. Creates the plan for the specific settings. */
|
260 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
261 |
+
cudnnCreatePersistentRNNPlan(cudnnRNNDescriptor_t rnnDesc,
|
262 |
+
const int minibatch,
|
263 |
+
const cudnnDataType_t dataType,
|
264 |
+
cudnnPersistentRNNPlan_t *plan);
|
265 |
+
|
266 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
267 |
+
cudnnDestroyPersistentRNNPlan(cudnnPersistentRNNPlan_t plan);
|
268 |
+
|
269 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
270 |
+
cudnnSetPersistentRNNPlan(cudnnRNNDescriptor_t rnnDesc, cudnnPersistentRNNPlan_t plan);
|
271 |
+
|
272 |
+
cudnnStatus_t CUDNNWINAPI
|
273 |
+
cudnnBuildRNNDynamic(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, int miniBatch);
|
274 |
+
|
275 |
+
/* dataType in weight descriptors and input descriptors is used to describe storage */
|
276 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
277 |
+
cudnnGetRNNWorkspaceSize(cudnnHandle_t handle,
|
278 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
279 |
+
const int seqLength,
|
280 |
+
const cudnnTensorDescriptor_t *xDesc,
|
281 |
+
size_t *sizeInBytes);
|
282 |
+
|
283 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
284 |
+
cudnnGetRNNTrainingReserveSize(cudnnHandle_t handle,
|
285 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
286 |
+
const int seqLength,
|
287 |
+
const cudnnTensorDescriptor_t *xDesc,
|
288 |
+
size_t *sizeInBytes);
|
289 |
+
|
290 |
+
cudnnStatus_t CUDNNWINAPI
|
291 |
+
cudnnGetRNNTempSpaceSizes(cudnnHandle_t handle,
|
292 |
+
cudnnRNNDescriptor_t rnnDesc,
|
293 |
+
cudnnForwardMode_t fwdMode,
|
294 |
+
cudnnRNNDataDescriptor_t xDesc,
|
295 |
+
size_t *workSpaceSize,
|
296 |
+
size_t *reserveSpaceSize);
|
297 |
+
|
298 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
299 |
+
cudnnGetRNNParamsSize(cudnnHandle_t handle,
|
300 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
301 |
+
const cudnnTensorDescriptor_t xDesc,
|
302 |
+
size_t *sizeInBytes,
|
303 |
+
cudnnDataType_t dataType);
|
304 |
+
|
305 |
+
cudnnStatus_t CUDNNWINAPI
|
306 |
+
cudnnGetRNNWeightSpaceSize(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, size_t *weightSpaceSize);
|
307 |
+
|
308 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
309 |
+
cudnnGetRNNLinLayerMatrixParams(cudnnHandle_t handle,
|
310 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
311 |
+
const int pseudoLayer,
|
312 |
+
const cudnnTensorDescriptor_t xDesc,
|
313 |
+
const cudnnFilterDescriptor_t wDesc,
|
314 |
+
const void *w,
|
315 |
+
const int linLayerID,
|
316 |
+
cudnnFilterDescriptor_t linLayerMatDesc,
|
317 |
+
void **linLayerMat);
|
318 |
+
|
319 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
320 |
+
cudnnGetRNNLinLayerBiasParams(cudnnHandle_t handle,
|
321 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
322 |
+
const int pseudoLayer,
|
323 |
+
const cudnnTensorDescriptor_t xDesc,
|
324 |
+
const cudnnFilterDescriptor_t wDesc,
|
325 |
+
const void *w,
|
326 |
+
const int linLayerID,
|
327 |
+
cudnnFilterDescriptor_t linLayerBiasDesc,
|
328 |
+
void **linLayerBias);
|
329 |
+
|
330 |
+
cudnnStatus_t CUDNNWINAPI
|
331 |
+
cudnnGetRNNWeightParams(cudnnHandle_t handle,
|
332 |
+
cudnnRNNDescriptor_t rnnDesc,
|
333 |
+
int32_t pseudoLayer,
|
334 |
+
size_t weightSpaceSize,
|
335 |
+
const void *weightSpace,
|
336 |
+
int32_t linLayerID,
|
337 |
+
cudnnTensorDescriptor_t mDesc,
|
338 |
+
void **mAddr,
|
339 |
+
cudnnTensorDescriptor_t bDesc,
|
340 |
+
void **bAddr);
|
341 |
+
|
342 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
343 |
+
cudnnRNNForwardInference(cudnnHandle_t handle,
|
344 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
345 |
+
const int seqLength,
|
346 |
+
const cudnnTensorDescriptor_t *xDesc,
|
347 |
+
const void *x,
|
348 |
+
const cudnnTensorDescriptor_t hxDesc,
|
349 |
+
const void *hx,
|
350 |
+
const cudnnTensorDescriptor_t cxDesc,
|
351 |
+
const void *cx,
|
352 |
+
const cudnnFilterDescriptor_t wDesc,
|
353 |
+
const void *w,
|
354 |
+
const cudnnTensorDescriptor_t *yDesc,
|
355 |
+
void *y,
|
356 |
+
const cudnnTensorDescriptor_t hyDesc,
|
357 |
+
void *hy,
|
358 |
+
const cudnnTensorDescriptor_t cyDesc,
|
359 |
+
void *cy,
|
360 |
+
void *workSpace,
|
361 |
+
size_t workSpaceSizeInBytes);
|
362 |
+
|
363 |
+
/* RNN EX API */
|
364 |
+
|
365 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
366 |
+
cudnnSetRNNPaddingMode(cudnnRNNDescriptor_t rnnDesc, unsigned paddingMode);
|
367 |
+
|
368 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
369 |
+
cudnnGetRNNPaddingMode(cudnnRNNDescriptor_t rnnDesc, unsigned *paddingMode);
|
370 |
+
|
371 |
+
cudnnStatus_t CUDNNWINAPI
|
372 |
+
cudnnCreateRNNDataDescriptor(cudnnRNNDataDescriptor_t *rnnDataDesc);
|
373 |
+
|
374 |
+
cudnnStatus_t CUDNNWINAPI
|
375 |
+
cudnnDestroyRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc);
|
376 |
+
|
377 |
+
cudnnStatus_t CUDNNWINAPI
|
378 |
+
cudnnSetRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc,
|
379 |
+
cudnnDataType_t dataType,
|
380 |
+
cudnnRNNDataLayout_t layout,
|
381 |
+
int maxSeqLength,
|
382 |
+
int batchSize,
|
383 |
+
int vectorSize,
|
384 |
+
const int seqLengthArray[], /* length of each sequence in the batch */
|
385 |
+
void *paddingFill); /* symbol for filling padding position in output */
|
386 |
+
|
387 |
+
cudnnStatus_t CUDNNWINAPI
|
388 |
+
cudnnGetRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc,
|
389 |
+
cudnnDataType_t *dataType,
|
390 |
+
cudnnRNNDataLayout_t *layout,
|
391 |
+
int *maxSeqLength,
|
392 |
+
int *batchSize,
|
393 |
+
int *vectorSize,
|
394 |
+
int arrayLengthRequested,
|
395 |
+
int seqLengthArray[],
|
396 |
+
void *paddingFill);
|
397 |
+
|
398 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
399 |
+
cudnnRNNForwardInferenceEx(cudnnHandle_t handle,
|
400 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
401 |
+
const cudnnRNNDataDescriptor_t xDesc,
|
402 |
+
const void *x,
|
403 |
+
const cudnnTensorDescriptor_t hxDesc,
|
404 |
+
const void *hx,
|
405 |
+
const cudnnTensorDescriptor_t cxDesc,
|
406 |
+
const void *cx,
|
407 |
+
const cudnnFilterDescriptor_t wDesc,
|
408 |
+
const void *w,
|
409 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
410 |
+
void *y,
|
411 |
+
const cudnnTensorDescriptor_t hyDesc,
|
412 |
+
void *hy,
|
413 |
+
const cudnnTensorDescriptor_t cyDesc,
|
414 |
+
void *cy,
|
415 |
+
const cudnnRNNDataDescriptor_t kDesc, /* reserved, should pass NULL */
|
416 |
+
const void *keys, /* reserved, should pass NULL */
|
417 |
+
const cudnnRNNDataDescriptor_t cDesc, /* reserved, should pass NULL */
|
418 |
+
void *cAttn, /* reserved, should pass NULL */
|
419 |
+
const cudnnRNNDataDescriptor_t iDesc, /* reserved, should pass NULL */
|
420 |
+
void *iAttn, /* reserved, should pass NULL */
|
421 |
+
const cudnnRNNDataDescriptor_t qDesc, /* reserved, should pass NULL */
|
422 |
+
void *queries, /* reserved, should pass NULL */
|
423 |
+
void *workSpace,
|
424 |
+
size_t workSpaceSizeInBytes);
|
425 |
+
|
426 |
+
cudnnStatus_t CUDNNWINAPI
|
427 |
+
cudnnRNNForward(cudnnHandle_t handle,
|
428 |
+
cudnnRNNDescriptor_t rnnDesc,
|
429 |
+
cudnnForwardMode_t fwdMode,
|
430 |
+
const int32_t devSeqLengths[],
|
431 |
+
cudnnRNNDataDescriptor_t xDesc,
|
432 |
+
const void *x,
|
433 |
+
cudnnRNNDataDescriptor_t yDesc,
|
434 |
+
void *y,
|
435 |
+
cudnnTensorDescriptor_t hDesc,
|
436 |
+
const void *hx,
|
437 |
+
void *hy,
|
438 |
+
cudnnTensorDescriptor_t cDesc,
|
439 |
+
const void *cx,
|
440 |
+
void *cy,
|
441 |
+
size_t weightSpaceSize,
|
442 |
+
const void *weightSpace,
|
443 |
+
size_t workSpaceSize,
|
444 |
+
void *workSpace,
|
445 |
+
size_t reserveSpaceSize,
|
446 |
+
void *reserveSpace);
|
447 |
+
|
448 |
+
/* RNN FIND API */
|
449 |
+
|
450 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
451 |
+
cudnnSetRNNAlgorithmDescriptor(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, cudnnAlgorithmDescriptor_t algoDesc);
|
452 |
+
|
453 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
454 |
+
cudnnGetRNNForwardInferenceAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
455 |
+
|
456 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
457 |
+
cudnnFindRNNForwardInferenceAlgorithmEx(cudnnHandle_t handle,
|
458 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
459 |
+
const int seqLength,
|
460 |
+
const cudnnTensorDescriptor_t *xDesc,
|
461 |
+
const void *x,
|
462 |
+
const cudnnTensorDescriptor_t hxDesc,
|
463 |
+
const void *hx,
|
464 |
+
const cudnnTensorDescriptor_t cxDesc,
|
465 |
+
const void *cx,
|
466 |
+
const cudnnFilterDescriptor_t wDesc,
|
467 |
+
const void *w,
|
468 |
+
const cudnnTensorDescriptor_t *yDesc,
|
469 |
+
void *y,
|
470 |
+
const cudnnTensorDescriptor_t hyDesc,
|
471 |
+
void *hy,
|
472 |
+
const cudnnTensorDescriptor_t cyDesc,
|
473 |
+
void *cy,
|
474 |
+
const float findIntensity,
|
475 |
+
const int requestedAlgoCount,
|
476 |
+
int *returnedAlgoCount,
|
477 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
478 |
+
void *workspace,
|
479 |
+
size_t workSpaceSizeInBytes);
|
480 |
+
|
481 |
+
/* Sequence data descriptor */
|
482 |
+
|
483 |
+
typedef enum {
|
484 |
+
CUDNN_SEQDATA_TIME_DIM = 0, /* index in time */
|
485 |
+
CUDNN_SEQDATA_BATCH_DIM = 1, /* index in batch */
|
486 |
+
CUDNN_SEQDATA_BEAM_DIM = 2, /* index in beam */
|
487 |
+
CUDNN_SEQDATA_VECT_DIM = 3 /* index in vector */
|
488 |
+
} cudnnSeqDataAxis_t;
|
489 |
+
|
490 |
+
struct cudnnSeqDataStruct;
|
491 |
+
typedef struct cudnnSeqDataStruct *cudnnSeqDataDescriptor_t;
|
492 |
+
|
493 |
+
#define CUDNN_SEQDATA_DIM_COUNT 4 /* dimension count */
|
494 |
+
|
495 |
+
cudnnStatus_t CUDNNWINAPI
|
496 |
+
cudnnCreateSeqDataDescriptor(cudnnSeqDataDescriptor_t *seqDataDesc);
|
497 |
+
|
498 |
+
cudnnStatus_t CUDNNWINAPI
|
499 |
+
cudnnDestroySeqDataDescriptor(cudnnSeqDataDescriptor_t seqDataDesc);
|
500 |
+
|
501 |
+
cudnnStatus_t CUDNNWINAPI
|
502 |
+
cudnnSetSeqDataDescriptor(cudnnSeqDataDescriptor_t seqDataDesc,
|
503 |
+
cudnnDataType_t dataType,
|
504 |
+
int nbDims,
|
505 |
+
const int dimA[],
|
506 |
+
const cudnnSeqDataAxis_t axes[],
|
507 |
+
size_t seqLengthArraySize,
|
508 |
+
const int seqLengthArray[],
|
509 |
+
void *paddingFill);
|
510 |
+
|
511 |
+
cudnnStatus_t CUDNNWINAPI
|
512 |
+
cudnnGetSeqDataDescriptor(const cudnnSeqDataDescriptor_t seqDataDesc,
|
513 |
+
cudnnDataType_t *dataType,
|
514 |
+
int *nbDims,
|
515 |
+
int nbDimsRequested,
|
516 |
+
int dimA[],
|
517 |
+
cudnnSeqDataAxis_t axes[],
|
518 |
+
size_t *seqLengthArraySize,
|
519 |
+
size_t seqLengthSizeRequested,
|
520 |
+
int seqLengthArray[],
|
521 |
+
void *paddingFill);
|
522 |
+
|
523 |
+
/* Multihead Attention */
|
524 |
+
|
525 |
+
/* Legacy type for backward compatibility */
|
526 |
+
typedef unsigned cudnnAttnQueryMap_t;
|
527 |
+
|
528 |
+
/*
|
529 |
+
* Multi-head attention options passed via 'attnMode' in cudnnSetAttnDescriptor().
|
530 |
+
* Use the bitwise OR operator to combine several settings listed below. Additional
|
531 |
+
* minor options can be added here w/o changing or introducing new API functions.
|
532 |
+
*/
|
533 |
+
#define CUDNN_ATTN_QUERYMAP_ALL_TO_ONE 0 /* multiple Q-s map to a single (K,V) set when beam size > 1 */
|
534 |
+
#define CUDNN_ATTN_QUERYMAP_ONE_TO_ONE (1U << 0) /* multiple Q-s map to multiple (K,V) sets when beam size > 1 */
|
535 |
+
#define CUDNN_ATTN_DISABLE_PROJ_BIASES 0 /* no biases in attention input and output projections */
|
536 |
+
#define CUDNN_ATTN_ENABLE_PROJ_BIASES (1U << 1) /* use biases in attention input and output projections */
|
537 |
+
|
538 |
+
struct cudnnAttnStruct;
|
539 |
+
typedef struct cudnnAttnStruct *cudnnAttnDescriptor_t;
|
540 |
+
|
541 |
+
cudnnStatus_t CUDNNWINAPI
|
542 |
+
cudnnCreateAttnDescriptor(cudnnAttnDescriptor_t *attnDesc);
|
543 |
+
|
544 |
+
cudnnStatus_t CUDNNWINAPI
|
545 |
+
cudnnDestroyAttnDescriptor(cudnnAttnDescriptor_t attnDesc);
|
546 |
+
|
547 |
+
cudnnStatus_t CUDNNWINAPI
|
548 |
+
cudnnSetAttnDescriptor(cudnnAttnDescriptor_t attnDesc,
|
549 |
+
unsigned attnMode,
|
550 |
+
int nHeads,
|
551 |
+
double smScaler,
|
552 |
+
cudnnDataType_t dataType,
|
553 |
+
cudnnDataType_t computePrec,
|
554 |
+
cudnnMathType_t mathType,
|
555 |
+
cudnnDropoutDescriptor_t attnDropoutDesc,
|
556 |
+
cudnnDropoutDescriptor_t postDropoutDesc,
|
557 |
+
int qSize,
|
558 |
+
int kSize,
|
559 |
+
int vSize,
|
560 |
+
int qProjSize,
|
561 |
+
int kProjSize,
|
562 |
+
int vProjSize,
|
563 |
+
int oProjSize,
|
564 |
+
int qoMaxSeqLength,
|
565 |
+
int kvMaxSeqLength,
|
566 |
+
int maxBatchSize,
|
567 |
+
int maxBeamSize);
|
568 |
+
|
569 |
+
cudnnStatus_t CUDNNWINAPI
|
570 |
+
cudnnGetAttnDescriptor(cudnnAttnDescriptor_t attnDesc,
|
571 |
+
unsigned *attnMode,
|
572 |
+
int *nHeads,
|
573 |
+
double *smScaler,
|
574 |
+
cudnnDataType_t *dataType,
|
575 |
+
cudnnDataType_t *computePrec,
|
576 |
+
cudnnMathType_t *mathType,
|
577 |
+
cudnnDropoutDescriptor_t *attnDropoutDesc,
|
578 |
+
cudnnDropoutDescriptor_t *postDropoutDesc,
|
579 |
+
int *qSize,
|
580 |
+
int *kSize,
|
581 |
+
int *vSize,
|
582 |
+
int *qProjSize,
|
583 |
+
int *kProjSize,
|
584 |
+
int *vProjSize,
|
585 |
+
int *oProjSize,
|
586 |
+
int *qoMaxSeqLength,
|
587 |
+
int *kvMaxSeqLength,
|
588 |
+
int *maxBatchSize,
|
589 |
+
int *maxBeamSize);
|
590 |
+
|
591 |
+
cudnnStatus_t CUDNNWINAPI
|
592 |
+
cudnnGetMultiHeadAttnBuffers(cudnnHandle_t handle,
|
593 |
+
const cudnnAttnDescriptor_t attnDesc,
|
594 |
+
size_t *weightSizeInBytes,
|
595 |
+
size_t *workSpaceSizeInBytes,
|
596 |
+
size_t *reserveSpaceSizeInBytes);
|
597 |
+
|
598 |
+
typedef enum {
|
599 |
+
CUDNN_MH_ATTN_Q_WEIGHTS = 0, /* input projection weights for 'queries' */
|
600 |
+
CUDNN_MH_ATTN_K_WEIGHTS = 1, /* input projection weights for 'keys' */
|
601 |
+
CUDNN_MH_ATTN_V_WEIGHTS = 2, /* input projection weights for 'values' */
|
602 |
+
CUDNN_MH_ATTN_O_WEIGHTS = 3, /* output projection weights */
|
603 |
+
CUDNN_MH_ATTN_Q_BIASES = 4, /* input projection bias tensor for 'queries' */
|
604 |
+
CUDNN_MH_ATTN_K_BIASES = 5, /* input projection bias for 'keys' */
|
605 |
+
CUDNN_MH_ATTN_V_BIASES = 6, /* input projection bias for 'values' */
|
606 |
+
CUDNN_MH_ATTN_O_BIASES = 7, /* output projection biases */
|
607 |
+
} cudnnMultiHeadAttnWeightKind_t;
|
608 |
+
|
609 |
+
#define CUDNN_ATTN_WKIND_COUNT 8 /* Number of attention weight/bias tensors */
|
610 |
+
|
611 |
+
cudnnStatus_t CUDNNWINAPI
|
612 |
+
cudnnGetMultiHeadAttnWeights(cudnnHandle_t handle,
|
613 |
+
const cudnnAttnDescriptor_t attnDesc,
|
614 |
+
cudnnMultiHeadAttnWeightKind_t wKind,
|
615 |
+
size_t weightSizeInBytes,
|
616 |
+
const void *weights,
|
617 |
+
cudnnTensorDescriptor_t wDesc,
|
618 |
+
void **wAddr);
|
619 |
+
|
620 |
+
cudnnStatus_t CUDNNWINAPI
|
621 |
+
cudnnMultiHeadAttnForward(cudnnHandle_t handle,
|
622 |
+
const cudnnAttnDescriptor_t attnDesc,
|
623 |
+
int currIdx,
|
624 |
+
const int loWinIdx[],
|
625 |
+
const int hiWinIdx[],
|
626 |
+
const int devSeqLengthsQO[],
|
627 |
+
const int devSeqLengthsKV[],
|
628 |
+
const cudnnSeqDataDescriptor_t qDesc,
|
629 |
+
const void *queries,
|
630 |
+
const void *residuals,
|
631 |
+
const cudnnSeqDataDescriptor_t kDesc,
|
632 |
+
const void *keys,
|
633 |
+
const cudnnSeqDataDescriptor_t vDesc,
|
634 |
+
const void *values,
|
635 |
+
const cudnnSeqDataDescriptor_t oDesc,
|
636 |
+
void *out,
|
637 |
+
size_t weightSizeInBytes,
|
638 |
+
const void *weights,
|
639 |
+
size_t workSpaceSizeInBytes,
|
640 |
+
void *workSpace,
|
641 |
+
size_t reserveSpaceSizeInBytes,
|
642 |
+
void *reserveSpace);
|
643 |
+
|
644 |
+
/*
|
645 |
+
* \brief Cross-library version checker.
|
646 |
+
* This function is implemented differently in each sub-library. Each sublib
|
647 |
+
* checks whether its own version matches that of its dependencies.
|
648 |
+
* \returns CUDNN_STATUS_SUCCESS if the version check passes,
|
649 |
+
* CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
|
650 |
+
*/
|
651 |
+
cudnnStatus_t CUDNNWINAPI
|
652 |
+
cudnnAdvInferVersionCheck(void);
|
653 |
+
|
654 |
+
#if defined(__cplusplus)
|
655 |
+
}
|
656 |
+
#endif
|
657 |
+
|
658 |
+
#endif /* CUDNN_ADV_INFER_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_infer_v8.h
ADDED
@@ -0,0 +1,658 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/* cudnn_adv_infer : cuDNN's advanced and experimental features.
|
51 |
+
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_ADV_INFER_H_)
|
55 |
+
#define CUDNN_ADV_INFER_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
|
63 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
64 |
+
#define CUDNN_ADV_INFER_MAJOR 8
|
65 |
+
#define CUDNN_ADV_INFER_MINOR 9
|
66 |
+
#define CUDNN_ADV_INFER_PATCH 2
|
67 |
+
|
68 |
+
#if (CUDNN_ADV_INFER_MAJOR != CUDNN_MAJOR) || (CUDNN_ADV_INFER_MINOR != CUDNN_MINOR) || \
|
69 |
+
(CUDNN_ADV_INFER_PATCH != CUDNN_PATCHLEVEL)
|
70 |
+
#error Version mismatch in cuDNN ADV INFER!!!
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus)
|
74 |
+
extern "C" {
|
75 |
+
#endif
|
76 |
+
|
77 |
+
/* BASIC RNN API */
|
78 |
+
|
79 |
+
typedef enum {
|
80 |
+
CUDNN_FWD_MODE_INFERENCE = 0,
|
81 |
+
CUDNN_FWD_MODE_TRAINING = 1,
|
82 |
+
} cudnnForwardMode_t;
|
83 |
+
|
84 |
+
typedef enum {
|
85 |
+
CUDNN_RNN_RELU = 0, /* basic RNN cell type with ReLu activation */
|
86 |
+
CUDNN_RNN_TANH = 1, /* basic RNN cell type with tanh activation */
|
87 |
+
CUDNN_LSTM = 2, /* LSTM with optional recurrent projection and clipping */
|
88 |
+
CUDNN_GRU = 3, /* Using h' = tanh(r * Uh(t-1) + Wx) and h = (1 - z) * h' + z * h(t-1); */
|
89 |
+
} cudnnRNNMode_t;
|
90 |
+
|
91 |
+
typedef enum {
|
92 |
+
CUDNN_RNN_NO_BIAS = 0, /* rnn cell formulas do not use biases */
|
93 |
+
CUDNN_RNN_SINGLE_INP_BIAS = 1, /* rnn cell formulas use one input bias in input GEMM */
|
94 |
+
CUDNN_RNN_DOUBLE_BIAS = 2, /* default, rnn cell formulas use two bias vectors */
|
95 |
+
CUDNN_RNN_SINGLE_REC_BIAS = 3 /* rnn cell formulas use one recurrent bias in recurrent GEMM */
|
96 |
+
} cudnnRNNBiasMode_t;
|
97 |
+
|
98 |
+
typedef enum {
|
99 |
+
CUDNN_UNIDIRECTIONAL = 0, /* single direction network */
|
100 |
+
CUDNN_BIDIRECTIONAL = 1, /* output concatination at each layer */
|
101 |
+
} cudnnDirectionMode_t;
|
102 |
+
|
103 |
+
typedef enum {
|
104 |
+
CUDNN_LINEAR_INPUT = 0, /* adjustable weight matrix in first layer input GEMM */
|
105 |
+
CUDNN_SKIP_INPUT = 1, /* fixed identity matrix in the first layer input GEMM */
|
106 |
+
} cudnnRNNInputMode_t;
|
107 |
+
|
108 |
+
typedef enum {
|
109 |
+
CUDNN_RNN_CLIP_NONE = 0, /* disables LSTM cell clipping */
|
110 |
+
CUDNN_RNN_CLIP_MINMAX = 1, /* enables LSTM cell clipping */
|
111 |
+
} cudnnRNNClipMode_t;
|
112 |
+
|
113 |
+
typedef enum {
|
114 |
+
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED = 0, /* padded, outer stride from one time-step to the next */
|
115 |
+
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_PACKED = 1, /* sequence length sorted and packed as in basic RNN api */
|
116 |
+
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED = 2, /* padded, outer stride from one batch to the next */
|
117 |
+
} cudnnRNNDataLayout_t;
|
118 |
+
|
119 |
+
/* Legacy type for backward compatibility */
|
120 |
+
typedef unsigned cudnnRNNPaddingMode_t;
|
121 |
+
|
122 |
+
/* For auxFlags in cudnnSetRNNDescriptor_v8() and cudnnSetRNNPaddingMode() */
|
123 |
+
#define CUDNN_RNN_PADDED_IO_DISABLED 0
|
124 |
+
#define CUDNN_RNN_PADDED_IO_ENABLED (1U << 0)
|
125 |
+
|
126 |
+
struct cudnnRNNStruct;
|
127 |
+
typedef struct cudnnRNNStruct *cudnnRNNDescriptor_t;
|
128 |
+
|
129 |
+
struct cudnnPersistentRNNPlan;
|
130 |
+
typedef struct cudnnPersistentRNNPlan *cudnnPersistentRNNPlan_t;
|
131 |
+
|
132 |
+
struct cudnnRNNDataStruct;
|
133 |
+
typedef struct cudnnRNNDataStruct *cudnnRNNDataDescriptor_t;
|
134 |
+
|
135 |
+
cudnnStatus_t CUDNNWINAPI
|
136 |
+
cudnnCreateRNNDescriptor(cudnnRNNDescriptor_t *rnnDesc);
|
137 |
+
|
138 |
+
cudnnStatus_t CUDNNWINAPI
|
139 |
+
cudnnDestroyRNNDescriptor(cudnnRNNDescriptor_t rnnDesc);
|
140 |
+
|
141 |
+
cudnnStatus_t CUDNNWINAPI
|
142 |
+
cudnnSetRNNDescriptor_v8(cudnnRNNDescriptor_t rnnDesc,
|
143 |
+
cudnnRNNAlgo_t algo,
|
144 |
+
cudnnRNNMode_t cellMode,
|
145 |
+
cudnnRNNBiasMode_t biasMode,
|
146 |
+
cudnnDirectionMode_t dirMode,
|
147 |
+
cudnnRNNInputMode_t inputMode,
|
148 |
+
cudnnDataType_t dataType,
|
149 |
+
cudnnDataType_t mathPrec,
|
150 |
+
cudnnMathType_t mathType,
|
151 |
+
int32_t inputSize,
|
152 |
+
int32_t hiddenSize,
|
153 |
+
int32_t projSize,
|
154 |
+
int32_t numLayers,
|
155 |
+
cudnnDropoutDescriptor_t dropoutDesc,
|
156 |
+
uint32_t auxFlags);
|
157 |
+
|
158 |
+
cudnnStatus_t CUDNNWINAPI
|
159 |
+
cudnnGetRNNDescriptor_v8(cudnnRNNDescriptor_t rnnDesc,
|
160 |
+
cudnnRNNAlgo_t *algo,
|
161 |
+
cudnnRNNMode_t *cellMode,
|
162 |
+
cudnnRNNBiasMode_t *biasMode,
|
163 |
+
cudnnDirectionMode_t *dirMode,
|
164 |
+
cudnnRNNInputMode_t *inputMode,
|
165 |
+
cudnnDataType_t *dataType,
|
166 |
+
cudnnDataType_t *mathPrec,
|
167 |
+
cudnnMathType_t *mathType,
|
168 |
+
int32_t *inputSize,
|
169 |
+
int32_t *hiddenSize,
|
170 |
+
int32_t *projSize,
|
171 |
+
int32_t *numLayers,
|
172 |
+
cudnnDropoutDescriptor_t *dropoutDesc,
|
173 |
+
uint32_t *auxFlags);
|
174 |
+
|
175 |
+
/*
|
176 |
+
* mathPrec in cudnnSetRNNDescriptor_v6() specifies compute precision
|
177 |
+
* compute precision is further modified by cudnnSetRNNMatrixMathType()
|
178 |
+
* dataType in cudnnGetRNNParamsSize() and wDesc specify weight storage
|
179 |
+
* dropout is between RNN layers, not between recurrent steps
|
180 |
+
*/
|
181 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
182 |
+
cudnnSetRNNDescriptor_v6(cudnnHandle_t handle,
|
183 |
+
cudnnRNNDescriptor_t rnnDesc,
|
184 |
+
const int hiddenSize,
|
185 |
+
const int numLayers,
|
186 |
+
cudnnDropoutDescriptor_t dropoutDesc,
|
187 |
+
cudnnRNNInputMode_t inputMode,
|
188 |
+
cudnnDirectionMode_t direction,
|
189 |
+
cudnnRNNMode_t cellMode,
|
190 |
+
cudnnRNNAlgo_t algo,
|
191 |
+
cudnnDataType_t mathPrec);
|
192 |
+
|
193 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
194 |
+
cudnnGetRNNDescriptor_v6(cudnnHandle_t handle,
|
195 |
+
cudnnRNNDescriptor_t rnnDesc,
|
196 |
+
int *hiddenSize,
|
197 |
+
int *numLayers,
|
198 |
+
cudnnDropoutDescriptor_t *dropoutDesc,
|
199 |
+
cudnnRNNInputMode_t *inputMode,
|
200 |
+
cudnnDirectionMode_t *direction,
|
201 |
+
cudnnRNNMode_t *cellMode,
|
202 |
+
cudnnRNNAlgo_t *algo,
|
203 |
+
cudnnDataType_t *mathPrec);
|
204 |
+
|
205 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
206 |
+
cudnnSetRNNMatrixMathType(cudnnRNNDescriptor_t rnnDesc, cudnnMathType_t mType);
|
207 |
+
|
208 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
209 |
+
cudnnGetRNNMatrixMathType(cudnnRNNDescriptor_t rnnDesc, cudnnMathType_t *mType);
|
210 |
+
|
211 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
212 |
+
cudnnSetRNNBiasMode(cudnnRNNDescriptor_t rnnDesc, cudnnRNNBiasMode_t biasMode);
|
213 |
+
|
214 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
215 |
+
cudnnGetRNNBiasMode(cudnnRNNDescriptor_t rnnDesc, cudnnRNNBiasMode_t *biasMode);
|
216 |
+
|
217 |
+
cudnnStatus_t CUDNNWINAPI
|
218 |
+
cudnnRNNSetClip_v8(cudnnRNNDescriptor_t rnnDesc,
|
219 |
+
cudnnRNNClipMode_t clipMode,
|
220 |
+
cudnnNanPropagation_t clipNanOpt,
|
221 |
+
double lclip,
|
222 |
+
double rclip);
|
223 |
+
|
224 |
+
cudnnStatus_t CUDNNWINAPI
|
225 |
+
cudnnRNNGetClip_v8(cudnnRNNDescriptor_t rnnDesc,
|
226 |
+
cudnnRNNClipMode_t *clipMode,
|
227 |
+
cudnnNanPropagation_t *clipNanOpt,
|
228 |
+
double *lclip,
|
229 |
+
double *rclip);
|
230 |
+
|
231 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
232 |
+
cudnnRNNSetClip(cudnnHandle_t handle,
|
233 |
+
cudnnRNNDescriptor_t rnnDesc,
|
234 |
+
cudnnRNNClipMode_t clipMode,
|
235 |
+
cudnnNanPropagation_t clipNanOpt,
|
236 |
+
double lclip,
|
237 |
+
double rclip);
|
238 |
+
|
239 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
240 |
+
cudnnRNNGetClip(cudnnHandle_t handle,
|
241 |
+
cudnnRNNDescriptor_t rnnDesc,
|
242 |
+
cudnnRNNClipMode_t *clipMode,
|
243 |
+
cudnnNanPropagation_t *clipNanOpt,
|
244 |
+
double *lclip,
|
245 |
+
double *rclip);
|
246 |
+
|
247 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
248 |
+
cudnnSetRNNProjectionLayers(cudnnHandle_t handle,
|
249 |
+
cudnnRNNDescriptor_t rnnDesc,
|
250 |
+
const int recProjSize,
|
251 |
+
const int outProjSize);
|
252 |
+
|
253 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
254 |
+
cudnnGetRNNProjectionLayers(cudnnHandle_t handle,
|
255 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
256 |
+
int *recProjSize,
|
257 |
+
int *outProjSize);
|
258 |
+
|
259 |
+
/* Expensive. Creates the plan for the specific settings. */
|
260 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
261 |
+
cudnnCreatePersistentRNNPlan(cudnnRNNDescriptor_t rnnDesc,
|
262 |
+
const int minibatch,
|
263 |
+
const cudnnDataType_t dataType,
|
264 |
+
cudnnPersistentRNNPlan_t *plan);
|
265 |
+
|
266 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
267 |
+
cudnnDestroyPersistentRNNPlan(cudnnPersistentRNNPlan_t plan);
|
268 |
+
|
269 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
270 |
+
cudnnSetPersistentRNNPlan(cudnnRNNDescriptor_t rnnDesc, cudnnPersistentRNNPlan_t plan);
|
271 |
+
|
272 |
+
cudnnStatus_t CUDNNWINAPI
|
273 |
+
cudnnBuildRNNDynamic(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, int miniBatch);
|
274 |
+
|
275 |
+
/* dataType in weight descriptors and input descriptors is used to describe storage */
|
276 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
277 |
+
cudnnGetRNNWorkspaceSize(cudnnHandle_t handle,
|
278 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
279 |
+
const int seqLength,
|
280 |
+
const cudnnTensorDescriptor_t *xDesc,
|
281 |
+
size_t *sizeInBytes);
|
282 |
+
|
283 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
284 |
+
cudnnGetRNNTrainingReserveSize(cudnnHandle_t handle,
|
285 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
286 |
+
const int seqLength,
|
287 |
+
const cudnnTensorDescriptor_t *xDesc,
|
288 |
+
size_t *sizeInBytes);
|
289 |
+
|
290 |
+
cudnnStatus_t CUDNNWINAPI
|
291 |
+
cudnnGetRNNTempSpaceSizes(cudnnHandle_t handle,
|
292 |
+
cudnnRNNDescriptor_t rnnDesc,
|
293 |
+
cudnnForwardMode_t fwdMode,
|
294 |
+
cudnnRNNDataDescriptor_t xDesc,
|
295 |
+
size_t *workSpaceSize,
|
296 |
+
size_t *reserveSpaceSize);
|
297 |
+
|
298 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
299 |
+
cudnnGetRNNParamsSize(cudnnHandle_t handle,
|
300 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
301 |
+
const cudnnTensorDescriptor_t xDesc,
|
302 |
+
size_t *sizeInBytes,
|
303 |
+
cudnnDataType_t dataType);
|
304 |
+
|
305 |
+
cudnnStatus_t CUDNNWINAPI
|
306 |
+
cudnnGetRNNWeightSpaceSize(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, size_t *weightSpaceSize);
|
307 |
+
|
308 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
309 |
+
cudnnGetRNNLinLayerMatrixParams(cudnnHandle_t handle,
|
310 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
311 |
+
const int pseudoLayer,
|
312 |
+
const cudnnTensorDescriptor_t xDesc,
|
313 |
+
const cudnnFilterDescriptor_t wDesc,
|
314 |
+
const void *w,
|
315 |
+
const int linLayerID,
|
316 |
+
cudnnFilterDescriptor_t linLayerMatDesc,
|
317 |
+
void **linLayerMat);
|
318 |
+
|
319 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
320 |
+
cudnnGetRNNLinLayerBiasParams(cudnnHandle_t handle,
|
321 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
322 |
+
const int pseudoLayer,
|
323 |
+
const cudnnTensorDescriptor_t xDesc,
|
324 |
+
const cudnnFilterDescriptor_t wDesc,
|
325 |
+
const void *w,
|
326 |
+
const int linLayerID,
|
327 |
+
cudnnFilterDescriptor_t linLayerBiasDesc,
|
328 |
+
void **linLayerBias);
|
329 |
+
|
330 |
+
cudnnStatus_t CUDNNWINAPI
|
331 |
+
cudnnGetRNNWeightParams(cudnnHandle_t handle,
|
332 |
+
cudnnRNNDescriptor_t rnnDesc,
|
333 |
+
int32_t pseudoLayer,
|
334 |
+
size_t weightSpaceSize,
|
335 |
+
const void *weightSpace,
|
336 |
+
int32_t linLayerID,
|
337 |
+
cudnnTensorDescriptor_t mDesc,
|
338 |
+
void **mAddr,
|
339 |
+
cudnnTensorDescriptor_t bDesc,
|
340 |
+
void **bAddr);
|
341 |
+
|
342 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
343 |
+
cudnnRNNForwardInference(cudnnHandle_t handle,
|
344 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
345 |
+
const int seqLength,
|
346 |
+
const cudnnTensorDescriptor_t *xDesc,
|
347 |
+
const void *x,
|
348 |
+
const cudnnTensorDescriptor_t hxDesc,
|
349 |
+
const void *hx,
|
350 |
+
const cudnnTensorDescriptor_t cxDesc,
|
351 |
+
const void *cx,
|
352 |
+
const cudnnFilterDescriptor_t wDesc,
|
353 |
+
const void *w,
|
354 |
+
const cudnnTensorDescriptor_t *yDesc,
|
355 |
+
void *y,
|
356 |
+
const cudnnTensorDescriptor_t hyDesc,
|
357 |
+
void *hy,
|
358 |
+
const cudnnTensorDescriptor_t cyDesc,
|
359 |
+
void *cy,
|
360 |
+
void *workSpace,
|
361 |
+
size_t workSpaceSizeInBytes);
|
362 |
+
|
363 |
+
/* RNN EX API */
|
364 |
+
|
365 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
366 |
+
cudnnSetRNNPaddingMode(cudnnRNNDescriptor_t rnnDesc, unsigned paddingMode);
|
367 |
+
|
368 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
369 |
+
cudnnGetRNNPaddingMode(cudnnRNNDescriptor_t rnnDesc, unsigned *paddingMode);
|
370 |
+
|
371 |
+
cudnnStatus_t CUDNNWINAPI
|
372 |
+
cudnnCreateRNNDataDescriptor(cudnnRNNDataDescriptor_t *rnnDataDesc);
|
373 |
+
|
374 |
+
cudnnStatus_t CUDNNWINAPI
|
375 |
+
cudnnDestroyRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc);
|
376 |
+
|
377 |
+
cudnnStatus_t CUDNNWINAPI
|
378 |
+
cudnnSetRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc,
|
379 |
+
cudnnDataType_t dataType,
|
380 |
+
cudnnRNNDataLayout_t layout,
|
381 |
+
int maxSeqLength,
|
382 |
+
int batchSize,
|
383 |
+
int vectorSize,
|
384 |
+
const int seqLengthArray[], /* length of each sequence in the batch */
|
385 |
+
void *paddingFill); /* symbol for filling padding position in output */
|
386 |
+
|
387 |
+
cudnnStatus_t CUDNNWINAPI
|
388 |
+
cudnnGetRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc,
|
389 |
+
cudnnDataType_t *dataType,
|
390 |
+
cudnnRNNDataLayout_t *layout,
|
391 |
+
int *maxSeqLength,
|
392 |
+
int *batchSize,
|
393 |
+
int *vectorSize,
|
394 |
+
int arrayLengthRequested,
|
395 |
+
int seqLengthArray[],
|
396 |
+
void *paddingFill);
|
397 |
+
|
398 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
399 |
+
cudnnRNNForwardInferenceEx(cudnnHandle_t handle,
|
400 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
401 |
+
const cudnnRNNDataDescriptor_t xDesc,
|
402 |
+
const void *x,
|
403 |
+
const cudnnTensorDescriptor_t hxDesc,
|
404 |
+
const void *hx,
|
405 |
+
const cudnnTensorDescriptor_t cxDesc,
|
406 |
+
const void *cx,
|
407 |
+
const cudnnFilterDescriptor_t wDesc,
|
408 |
+
const void *w,
|
409 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
410 |
+
void *y,
|
411 |
+
const cudnnTensorDescriptor_t hyDesc,
|
412 |
+
void *hy,
|
413 |
+
const cudnnTensorDescriptor_t cyDesc,
|
414 |
+
void *cy,
|
415 |
+
const cudnnRNNDataDescriptor_t kDesc, /* reserved, should pass NULL */
|
416 |
+
const void *keys, /* reserved, should pass NULL */
|
417 |
+
const cudnnRNNDataDescriptor_t cDesc, /* reserved, should pass NULL */
|
418 |
+
void *cAttn, /* reserved, should pass NULL */
|
419 |
+
const cudnnRNNDataDescriptor_t iDesc, /* reserved, should pass NULL */
|
420 |
+
void *iAttn, /* reserved, should pass NULL */
|
421 |
+
const cudnnRNNDataDescriptor_t qDesc, /* reserved, should pass NULL */
|
422 |
+
void *queries, /* reserved, should pass NULL */
|
423 |
+
void *workSpace,
|
424 |
+
size_t workSpaceSizeInBytes);
|
425 |
+
|
426 |
+
cudnnStatus_t CUDNNWINAPI
|
427 |
+
cudnnRNNForward(cudnnHandle_t handle,
|
428 |
+
cudnnRNNDescriptor_t rnnDesc,
|
429 |
+
cudnnForwardMode_t fwdMode,
|
430 |
+
const int32_t devSeqLengths[],
|
431 |
+
cudnnRNNDataDescriptor_t xDesc,
|
432 |
+
const void *x,
|
433 |
+
cudnnRNNDataDescriptor_t yDesc,
|
434 |
+
void *y,
|
435 |
+
cudnnTensorDescriptor_t hDesc,
|
436 |
+
const void *hx,
|
437 |
+
void *hy,
|
438 |
+
cudnnTensorDescriptor_t cDesc,
|
439 |
+
const void *cx,
|
440 |
+
void *cy,
|
441 |
+
size_t weightSpaceSize,
|
442 |
+
const void *weightSpace,
|
443 |
+
size_t workSpaceSize,
|
444 |
+
void *workSpace,
|
445 |
+
size_t reserveSpaceSize,
|
446 |
+
void *reserveSpace);
|
447 |
+
|
448 |
+
/* RNN FIND API */
|
449 |
+
|
450 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
451 |
+
cudnnSetRNNAlgorithmDescriptor(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, cudnnAlgorithmDescriptor_t algoDesc);
|
452 |
+
|
453 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
454 |
+
cudnnGetRNNForwardInferenceAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
455 |
+
|
456 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
457 |
+
cudnnFindRNNForwardInferenceAlgorithmEx(cudnnHandle_t handle,
|
458 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
459 |
+
const int seqLength,
|
460 |
+
const cudnnTensorDescriptor_t *xDesc,
|
461 |
+
const void *x,
|
462 |
+
const cudnnTensorDescriptor_t hxDesc,
|
463 |
+
const void *hx,
|
464 |
+
const cudnnTensorDescriptor_t cxDesc,
|
465 |
+
const void *cx,
|
466 |
+
const cudnnFilterDescriptor_t wDesc,
|
467 |
+
const void *w,
|
468 |
+
const cudnnTensorDescriptor_t *yDesc,
|
469 |
+
void *y,
|
470 |
+
const cudnnTensorDescriptor_t hyDesc,
|
471 |
+
void *hy,
|
472 |
+
const cudnnTensorDescriptor_t cyDesc,
|
473 |
+
void *cy,
|
474 |
+
const float findIntensity,
|
475 |
+
const int requestedAlgoCount,
|
476 |
+
int *returnedAlgoCount,
|
477 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
478 |
+
void *workspace,
|
479 |
+
size_t workSpaceSizeInBytes);
|
480 |
+
|
481 |
+
/* Sequence data descriptor */
|
482 |
+
|
483 |
+
typedef enum {
|
484 |
+
CUDNN_SEQDATA_TIME_DIM = 0, /* index in time */
|
485 |
+
CUDNN_SEQDATA_BATCH_DIM = 1, /* index in batch */
|
486 |
+
CUDNN_SEQDATA_BEAM_DIM = 2, /* index in beam */
|
487 |
+
CUDNN_SEQDATA_VECT_DIM = 3 /* index in vector */
|
488 |
+
} cudnnSeqDataAxis_t;
|
489 |
+
|
490 |
+
struct cudnnSeqDataStruct;
|
491 |
+
typedef struct cudnnSeqDataStruct *cudnnSeqDataDescriptor_t;
|
492 |
+
|
493 |
+
#define CUDNN_SEQDATA_DIM_COUNT 4 /* dimension count */
|
494 |
+
|
495 |
+
cudnnStatus_t CUDNNWINAPI
|
496 |
+
cudnnCreateSeqDataDescriptor(cudnnSeqDataDescriptor_t *seqDataDesc);
|
497 |
+
|
498 |
+
cudnnStatus_t CUDNNWINAPI
|
499 |
+
cudnnDestroySeqDataDescriptor(cudnnSeqDataDescriptor_t seqDataDesc);
|
500 |
+
|
501 |
+
cudnnStatus_t CUDNNWINAPI
|
502 |
+
cudnnSetSeqDataDescriptor(cudnnSeqDataDescriptor_t seqDataDesc,
|
503 |
+
cudnnDataType_t dataType,
|
504 |
+
int nbDims,
|
505 |
+
const int dimA[],
|
506 |
+
const cudnnSeqDataAxis_t axes[],
|
507 |
+
size_t seqLengthArraySize,
|
508 |
+
const int seqLengthArray[],
|
509 |
+
void *paddingFill);
|
510 |
+
|
511 |
+
cudnnStatus_t CUDNNWINAPI
|
512 |
+
cudnnGetSeqDataDescriptor(const cudnnSeqDataDescriptor_t seqDataDesc,
|
513 |
+
cudnnDataType_t *dataType,
|
514 |
+
int *nbDims,
|
515 |
+
int nbDimsRequested,
|
516 |
+
int dimA[],
|
517 |
+
cudnnSeqDataAxis_t axes[],
|
518 |
+
size_t *seqLengthArraySize,
|
519 |
+
size_t seqLengthSizeRequested,
|
520 |
+
int seqLengthArray[],
|
521 |
+
void *paddingFill);
|
522 |
+
|
523 |
+
/* Multihead Attention */
|
524 |
+
|
525 |
+
/* Legacy type for backward compatibility */
|
526 |
+
typedef unsigned cudnnAttnQueryMap_t;
|
527 |
+
|
528 |
+
/*
|
529 |
+
* Multi-head attention options passed via 'attnMode' in cudnnSetAttnDescriptor().
|
530 |
+
* Use the bitwise OR operator to combine several settings listed below. Additional
|
531 |
+
* minor options can be added here w/o changing or introducing new API functions.
|
532 |
+
*/
|
533 |
+
#define CUDNN_ATTN_QUERYMAP_ALL_TO_ONE 0 /* multiple Q-s map to a single (K,V) set when beam size > 1 */
|
534 |
+
#define CUDNN_ATTN_QUERYMAP_ONE_TO_ONE (1U << 0) /* multiple Q-s map to multiple (K,V) sets when beam size > 1 */
|
535 |
+
#define CUDNN_ATTN_DISABLE_PROJ_BIASES 0 /* no biases in attention input and output projections */
|
536 |
+
#define CUDNN_ATTN_ENABLE_PROJ_BIASES (1U << 1) /* use biases in attention input and output projections */
|
537 |
+
|
538 |
+
struct cudnnAttnStruct;
|
539 |
+
typedef struct cudnnAttnStruct *cudnnAttnDescriptor_t;
|
540 |
+
|
541 |
+
cudnnStatus_t CUDNNWINAPI
|
542 |
+
cudnnCreateAttnDescriptor(cudnnAttnDescriptor_t *attnDesc);
|
543 |
+
|
544 |
+
cudnnStatus_t CUDNNWINAPI
|
545 |
+
cudnnDestroyAttnDescriptor(cudnnAttnDescriptor_t attnDesc);
|
546 |
+
|
547 |
+
cudnnStatus_t CUDNNWINAPI
|
548 |
+
cudnnSetAttnDescriptor(cudnnAttnDescriptor_t attnDesc,
|
549 |
+
unsigned attnMode,
|
550 |
+
int nHeads,
|
551 |
+
double smScaler,
|
552 |
+
cudnnDataType_t dataType,
|
553 |
+
cudnnDataType_t computePrec,
|
554 |
+
cudnnMathType_t mathType,
|
555 |
+
cudnnDropoutDescriptor_t attnDropoutDesc,
|
556 |
+
cudnnDropoutDescriptor_t postDropoutDesc,
|
557 |
+
int qSize,
|
558 |
+
int kSize,
|
559 |
+
int vSize,
|
560 |
+
int qProjSize,
|
561 |
+
int kProjSize,
|
562 |
+
int vProjSize,
|
563 |
+
int oProjSize,
|
564 |
+
int qoMaxSeqLength,
|
565 |
+
int kvMaxSeqLength,
|
566 |
+
int maxBatchSize,
|
567 |
+
int maxBeamSize);
|
568 |
+
|
569 |
+
cudnnStatus_t CUDNNWINAPI
|
570 |
+
cudnnGetAttnDescriptor(cudnnAttnDescriptor_t attnDesc,
|
571 |
+
unsigned *attnMode,
|
572 |
+
int *nHeads,
|
573 |
+
double *smScaler,
|
574 |
+
cudnnDataType_t *dataType,
|
575 |
+
cudnnDataType_t *computePrec,
|
576 |
+
cudnnMathType_t *mathType,
|
577 |
+
cudnnDropoutDescriptor_t *attnDropoutDesc,
|
578 |
+
cudnnDropoutDescriptor_t *postDropoutDesc,
|
579 |
+
int *qSize,
|
580 |
+
int *kSize,
|
581 |
+
int *vSize,
|
582 |
+
int *qProjSize,
|
583 |
+
int *kProjSize,
|
584 |
+
int *vProjSize,
|
585 |
+
int *oProjSize,
|
586 |
+
int *qoMaxSeqLength,
|
587 |
+
int *kvMaxSeqLength,
|
588 |
+
int *maxBatchSize,
|
589 |
+
int *maxBeamSize);
|
590 |
+
|
591 |
+
cudnnStatus_t CUDNNWINAPI
|
592 |
+
cudnnGetMultiHeadAttnBuffers(cudnnHandle_t handle,
|
593 |
+
const cudnnAttnDescriptor_t attnDesc,
|
594 |
+
size_t *weightSizeInBytes,
|
595 |
+
size_t *workSpaceSizeInBytes,
|
596 |
+
size_t *reserveSpaceSizeInBytes);
|
597 |
+
|
598 |
+
typedef enum {
|
599 |
+
CUDNN_MH_ATTN_Q_WEIGHTS = 0, /* input projection weights for 'queries' */
|
600 |
+
CUDNN_MH_ATTN_K_WEIGHTS = 1, /* input projection weights for 'keys' */
|
601 |
+
CUDNN_MH_ATTN_V_WEIGHTS = 2, /* input projection weights for 'values' */
|
602 |
+
CUDNN_MH_ATTN_O_WEIGHTS = 3, /* output projection weights */
|
603 |
+
CUDNN_MH_ATTN_Q_BIASES = 4, /* input projection bias tensor for 'queries' */
|
604 |
+
CUDNN_MH_ATTN_K_BIASES = 5, /* input projection bias for 'keys' */
|
605 |
+
CUDNN_MH_ATTN_V_BIASES = 6, /* input projection bias for 'values' */
|
606 |
+
CUDNN_MH_ATTN_O_BIASES = 7, /* output projection biases */
|
607 |
+
} cudnnMultiHeadAttnWeightKind_t;
|
608 |
+
|
609 |
+
#define CUDNN_ATTN_WKIND_COUNT 8 /* Number of attention weight/bias tensors */
|
610 |
+
|
611 |
+
cudnnStatus_t CUDNNWINAPI
|
612 |
+
cudnnGetMultiHeadAttnWeights(cudnnHandle_t handle,
|
613 |
+
const cudnnAttnDescriptor_t attnDesc,
|
614 |
+
cudnnMultiHeadAttnWeightKind_t wKind,
|
615 |
+
size_t weightSizeInBytes,
|
616 |
+
const void *weights,
|
617 |
+
cudnnTensorDescriptor_t wDesc,
|
618 |
+
void **wAddr);
|
619 |
+
|
620 |
+
cudnnStatus_t CUDNNWINAPI
|
621 |
+
cudnnMultiHeadAttnForward(cudnnHandle_t handle,
|
622 |
+
const cudnnAttnDescriptor_t attnDesc,
|
623 |
+
int currIdx,
|
624 |
+
const int loWinIdx[],
|
625 |
+
const int hiWinIdx[],
|
626 |
+
const int devSeqLengthsQO[],
|
627 |
+
const int devSeqLengthsKV[],
|
628 |
+
const cudnnSeqDataDescriptor_t qDesc,
|
629 |
+
const void *queries,
|
630 |
+
const void *residuals,
|
631 |
+
const cudnnSeqDataDescriptor_t kDesc,
|
632 |
+
const void *keys,
|
633 |
+
const cudnnSeqDataDescriptor_t vDesc,
|
634 |
+
const void *values,
|
635 |
+
const cudnnSeqDataDescriptor_t oDesc,
|
636 |
+
void *out,
|
637 |
+
size_t weightSizeInBytes,
|
638 |
+
const void *weights,
|
639 |
+
size_t workSpaceSizeInBytes,
|
640 |
+
void *workSpace,
|
641 |
+
size_t reserveSpaceSizeInBytes,
|
642 |
+
void *reserveSpace);
|
643 |
+
|
644 |
+
/*
|
645 |
+
* \brief Cross-library version checker.
|
646 |
+
* This function is implemented differently in each sub-library. Each sublib
|
647 |
+
* checks whether its own version matches that of its dependencies.
|
648 |
+
* \returns CUDNN_STATUS_SUCCESS if the version check passes,
|
649 |
+
* CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
|
650 |
+
*/
|
651 |
+
cudnnStatus_t CUDNNWINAPI
|
652 |
+
cudnnAdvInferVersionCheck(void);
|
653 |
+
|
654 |
+
#if defined(__cplusplus)
|
655 |
+
}
|
656 |
+
#endif
|
657 |
+
|
658 |
+
#endif /* CUDNN_ADV_INFER_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_train.h
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/* cudnn_adv_train : cuDNN's advanced and experimental features.
|
51 |
+
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_ADV_TRAIN_H_)
|
55 |
+
#define CUDNN_ADV_TRAIN_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
#include "cudnn_ops_train.h"
|
63 |
+
#include "cudnn_adv_infer.h"
|
64 |
+
|
65 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
66 |
+
#define CUDNN_ADV_TRAIN_MAJOR 8
|
67 |
+
#define CUDNN_ADV_TRAIN_MINOR 9
|
68 |
+
#define CUDNN_ADV_TRAIN_PATCH 2
|
69 |
+
|
70 |
+
#if (CUDNN_ADV_TRAIN_MAJOR != CUDNN_MAJOR) || (CUDNN_ADV_TRAIN_MINOR != CUDNN_MINOR) || \
|
71 |
+
(CUDNN_ADV_TRAIN_PATCH != CUDNN_PATCHLEVEL)
|
72 |
+
#error Version mismatch in cuDNN ADV TRAIN!!!
|
73 |
+
#endif
|
74 |
+
|
75 |
+
#if defined(__cplusplus)
|
76 |
+
extern "C" {
|
77 |
+
#endif
|
78 |
+
|
79 |
+
typedef enum {
|
80 |
+
CUDNN_WGRAD_MODE_ADD = 0, /* add partial gradients to wgrad output buffers */
|
81 |
+
CUDNN_WGRAD_MODE_SET = 1, /* write partial gradients to wgrad output buffers */
|
82 |
+
} cudnnWgradMode_t;
|
83 |
+
|
84 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
85 |
+
cudnnRNNForwardTraining(cudnnHandle_t handle,
|
86 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
87 |
+
const int seqLength,
|
88 |
+
const cudnnTensorDescriptor_t *xDesc,
|
89 |
+
const void *x,
|
90 |
+
const cudnnTensorDescriptor_t hxDesc,
|
91 |
+
const void *hx,
|
92 |
+
const cudnnTensorDescriptor_t cxDesc,
|
93 |
+
const void *cx,
|
94 |
+
const cudnnFilterDescriptor_t wDesc,
|
95 |
+
const void *w,
|
96 |
+
const cudnnTensorDescriptor_t *yDesc,
|
97 |
+
void *y,
|
98 |
+
const cudnnTensorDescriptor_t hyDesc,
|
99 |
+
void *hy,
|
100 |
+
const cudnnTensorDescriptor_t cyDesc,
|
101 |
+
void *cy,
|
102 |
+
void *workSpace,
|
103 |
+
size_t workSpaceSizeInBytes,
|
104 |
+
void *reserveSpace,
|
105 |
+
size_t reserveSpaceSizeInBytes);
|
106 |
+
|
107 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
108 |
+
cudnnRNNBackwardData(cudnnHandle_t handle,
|
109 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
110 |
+
const int seqLength,
|
111 |
+
const cudnnTensorDescriptor_t *yDesc,
|
112 |
+
const void *y,
|
113 |
+
const cudnnTensorDescriptor_t *dyDesc,
|
114 |
+
const void *dy,
|
115 |
+
const cudnnTensorDescriptor_t dhyDesc,
|
116 |
+
const void *dhy,
|
117 |
+
const cudnnTensorDescriptor_t dcyDesc,
|
118 |
+
const void *dcy,
|
119 |
+
const cudnnFilterDescriptor_t wDesc,
|
120 |
+
const void *w,
|
121 |
+
const cudnnTensorDescriptor_t hxDesc,
|
122 |
+
const void *hx,
|
123 |
+
const cudnnTensorDescriptor_t cxDesc,
|
124 |
+
const void *cx,
|
125 |
+
const cudnnTensorDescriptor_t *dxDesc,
|
126 |
+
void *dx,
|
127 |
+
const cudnnTensorDescriptor_t dhxDesc,
|
128 |
+
void *dhx,
|
129 |
+
const cudnnTensorDescriptor_t dcxDesc,
|
130 |
+
void *dcx,
|
131 |
+
void *workSpace,
|
132 |
+
size_t workSpaceSizeInBytes,
|
133 |
+
void *reserveSpace,
|
134 |
+
size_t reserveSpaceSizeInBytes);
|
135 |
+
|
136 |
+
cudnnStatus_t CUDNNWINAPI
|
137 |
+
cudnnRNNBackwardData_v8(cudnnHandle_t handle,
|
138 |
+
cudnnRNNDescriptor_t rnnDesc,
|
139 |
+
const int32_t devSeqLengths[],
|
140 |
+
cudnnRNNDataDescriptor_t yDesc,
|
141 |
+
const void *y,
|
142 |
+
const void *dy,
|
143 |
+
cudnnRNNDataDescriptor_t xDesc,
|
144 |
+
void *dx,
|
145 |
+
cudnnTensorDescriptor_t hDesc,
|
146 |
+
const void *hx,
|
147 |
+
const void *dhy,
|
148 |
+
void *dhx,
|
149 |
+
cudnnTensorDescriptor_t cDesc,
|
150 |
+
const void *cx,
|
151 |
+
const void *dcy,
|
152 |
+
void *dcx,
|
153 |
+
size_t weightSpaceSize,
|
154 |
+
const void *weightSpace,
|
155 |
+
size_t workSpaceSize,
|
156 |
+
void *workSpace,
|
157 |
+
size_t reserveSpaceSize,
|
158 |
+
void *reserveSpace);
|
159 |
+
|
160 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
161 |
+
cudnnRNNBackwardWeights(cudnnHandle_t handle,
|
162 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
163 |
+
const int seqLength,
|
164 |
+
const cudnnTensorDescriptor_t *xDesc,
|
165 |
+
const void *x,
|
166 |
+
const cudnnTensorDescriptor_t hxDesc,
|
167 |
+
const void *hx,
|
168 |
+
const cudnnTensorDescriptor_t *yDesc,
|
169 |
+
const void *y,
|
170 |
+
const void *workSpace,
|
171 |
+
size_t workSpaceSizeInBytes,
|
172 |
+
const cudnnFilterDescriptor_t dwDesc,
|
173 |
+
void *dw,
|
174 |
+
const void *reserveSpace,
|
175 |
+
size_t reserveSpaceSizeInBytes);
|
176 |
+
|
177 |
+
cudnnStatus_t CUDNNWINAPI
|
178 |
+
cudnnRNNBackwardWeights_v8(cudnnHandle_t handle,
|
179 |
+
cudnnRNNDescriptor_t rnnDesc,
|
180 |
+
cudnnWgradMode_t addGrad,
|
181 |
+
const int32_t devSeqLengths[],
|
182 |
+
cudnnRNNDataDescriptor_t xDesc,
|
183 |
+
const void *x,
|
184 |
+
cudnnTensorDescriptor_t hDesc,
|
185 |
+
const void *hx,
|
186 |
+
cudnnRNNDataDescriptor_t yDesc,
|
187 |
+
const void *y,
|
188 |
+
size_t weightSpaceSize,
|
189 |
+
void *dweightSpace,
|
190 |
+
size_t workSpaceSize,
|
191 |
+
void *workSpace,
|
192 |
+
size_t reserveSpaceSize,
|
193 |
+
void *reserveSpace);
|
194 |
+
|
195 |
+
/* RNN EX API */
|
196 |
+
|
197 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
198 |
+
cudnnRNNForwardTrainingEx(cudnnHandle_t handle,
|
199 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
200 |
+
const cudnnRNNDataDescriptor_t xDesc,
|
201 |
+
const void *x,
|
202 |
+
const cudnnTensorDescriptor_t hxDesc,
|
203 |
+
const void *hx,
|
204 |
+
const cudnnTensorDescriptor_t cxDesc,
|
205 |
+
const void *cx,
|
206 |
+
const cudnnFilterDescriptor_t wDesc,
|
207 |
+
const void *w,
|
208 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
209 |
+
void *y,
|
210 |
+
const cudnnTensorDescriptor_t hyDesc,
|
211 |
+
void *hy,
|
212 |
+
const cudnnTensorDescriptor_t cyDesc,
|
213 |
+
void *cy,
|
214 |
+
const cudnnRNNDataDescriptor_t kDesc, /* reserved, should pass NULL */
|
215 |
+
const void *keys, /* reserved, should pass NULL */
|
216 |
+
const cudnnRNNDataDescriptor_t cDesc, /* reserved, should pass NULL */
|
217 |
+
void *cAttn, /* reserved, should pass NULL */
|
218 |
+
const cudnnRNNDataDescriptor_t iDesc, /* reserved, should pass NULL */
|
219 |
+
void *iAttn, /* reserved, should pass NULL */
|
220 |
+
const cudnnRNNDataDescriptor_t qDesc, /* reserved, should pass NULL */
|
221 |
+
void *queries, /* reserved, should pass NULL */
|
222 |
+
void *workSpace,
|
223 |
+
size_t workSpaceSizeInBytes,
|
224 |
+
void *reserveSpace,
|
225 |
+
size_t reserveSpaceSizeInBytes);
|
226 |
+
|
227 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
228 |
+
cudnnRNNBackwardDataEx(cudnnHandle_t handle,
|
229 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
230 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
231 |
+
const void *y,
|
232 |
+
const cudnnRNNDataDescriptor_t dyDesc,
|
233 |
+
const void *dy,
|
234 |
+
const cudnnRNNDataDescriptor_t dcDesc, /* reserved, should pass NULL */
|
235 |
+
const void *dcAttn, /* reserved, should pass NULL */
|
236 |
+
const cudnnTensorDescriptor_t dhyDesc,
|
237 |
+
const void *dhy,
|
238 |
+
const cudnnTensorDescriptor_t dcyDesc,
|
239 |
+
const void *dcy,
|
240 |
+
const cudnnFilterDescriptor_t wDesc,
|
241 |
+
const void *w,
|
242 |
+
const cudnnTensorDescriptor_t hxDesc,
|
243 |
+
const void *hx,
|
244 |
+
const cudnnTensorDescriptor_t cxDesc,
|
245 |
+
const void *cx,
|
246 |
+
const cudnnRNNDataDescriptor_t dxDesc,
|
247 |
+
void *dx,
|
248 |
+
const cudnnTensorDescriptor_t dhxDesc,
|
249 |
+
void *dhx,
|
250 |
+
const cudnnTensorDescriptor_t dcxDesc,
|
251 |
+
void *dcx,
|
252 |
+
const cudnnRNNDataDescriptor_t dkDesc, /* reserved, should pass NULL */
|
253 |
+
void *dkeys, /* reserved, should pass NULL */
|
254 |
+
void *workSpace,
|
255 |
+
size_t workSpaceSizeInBytes,
|
256 |
+
void *reserveSpace,
|
257 |
+
size_t reserveSpaceSizeInBytes);
|
258 |
+
|
259 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
260 |
+
cudnnRNNBackwardWeightsEx(cudnnHandle_t handle,
|
261 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
262 |
+
const cudnnRNNDataDescriptor_t xDesc,
|
263 |
+
const void *x,
|
264 |
+
const cudnnTensorDescriptor_t hxDesc,
|
265 |
+
const void *hx,
|
266 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
267 |
+
const void *y,
|
268 |
+
void *workSpace,
|
269 |
+
size_t workSpaceSizeInBytes,
|
270 |
+
const cudnnFilterDescriptor_t dwDesc,
|
271 |
+
void *dw,
|
272 |
+
void *reserveSpace,
|
273 |
+
size_t reserveSpaceSizeInBytes);
|
274 |
+
|
275 |
+
/* RNN FIND API */
|
276 |
+
|
277 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
278 |
+
cudnnGetRNNForwardTrainingAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
279 |
+
|
280 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
281 |
+
cudnnFindRNNForwardTrainingAlgorithmEx(cudnnHandle_t handle,
|
282 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
283 |
+
const int seqLength,
|
284 |
+
const cudnnTensorDescriptor_t *xDesc,
|
285 |
+
const void *x,
|
286 |
+
const cudnnTensorDescriptor_t hxDesc,
|
287 |
+
const void *hx,
|
288 |
+
const cudnnTensorDescriptor_t cxDesc,
|
289 |
+
const void *cx,
|
290 |
+
const cudnnFilterDescriptor_t wDesc,
|
291 |
+
const void *w,
|
292 |
+
const cudnnTensorDescriptor_t *yDesc,
|
293 |
+
void *y,
|
294 |
+
const cudnnTensorDescriptor_t hyDesc,
|
295 |
+
void *hy,
|
296 |
+
const cudnnTensorDescriptor_t cyDesc,
|
297 |
+
void *cy,
|
298 |
+
const float findIntensity,
|
299 |
+
const int requestedAlgoCount,
|
300 |
+
int *returnedAlgoCount,
|
301 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
302 |
+
void *workspace,
|
303 |
+
size_t workSpaceSizeInBytes,
|
304 |
+
void *reserveSpace,
|
305 |
+
size_t reserveSpaceSizeInBytes);
|
306 |
+
|
307 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
308 |
+
cudnnGetRNNBackwardDataAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
309 |
+
|
310 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
311 |
+
cudnnFindRNNBackwardDataAlgorithmEx(cudnnHandle_t handle,
|
312 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
313 |
+
const int seqLength,
|
314 |
+
const cudnnTensorDescriptor_t *yDesc,
|
315 |
+
const void *y,
|
316 |
+
const cudnnTensorDescriptor_t *dyDesc,
|
317 |
+
const void *dy,
|
318 |
+
const cudnnTensorDescriptor_t dhyDesc,
|
319 |
+
const void *dhy,
|
320 |
+
const cudnnTensorDescriptor_t dcyDesc,
|
321 |
+
const void *dcy,
|
322 |
+
const cudnnFilterDescriptor_t wDesc,
|
323 |
+
const void *w,
|
324 |
+
const cudnnTensorDescriptor_t hxDesc,
|
325 |
+
const void *hx,
|
326 |
+
const cudnnTensorDescriptor_t cxDesc,
|
327 |
+
const void *cx,
|
328 |
+
const cudnnTensorDescriptor_t *dxDesc,
|
329 |
+
void *dx,
|
330 |
+
const cudnnTensorDescriptor_t dhxDesc,
|
331 |
+
void *dhx,
|
332 |
+
const cudnnTensorDescriptor_t dcxDesc,
|
333 |
+
void *dcx,
|
334 |
+
const float findIntensity,
|
335 |
+
const int requestedAlgoCount,
|
336 |
+
int *returnedAlgoCount,
|
337 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
338 |
+
void *workspace,
|
339 |
+
size_t workSpaceSizeInBytes,
|
340 |
+
void *reserveSpace,
|
341 |
+
size_t reserveSpaceSizeInBytes);
|
342 |
+
|
343 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
344 |
+
cudnnGetRNNBackwardWeightsAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
345 |
+
|
346 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
347 |
+
cudnnFindRNNBackwardWeightsAlgorithmEx(cudnnHandle_t handle,
|
348 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
349 |
+
const int seqLength,
|
350 |
+
const cudnnTensorDescriptor_t *xDesc,
|
351 |
+
const void *x,
|
352 |
+
const cudnnTensorDescriptor_t hxDesc,
|
353 |
+
const void *hx,
|
354 |
+
const cudnnTensorDescriptor_t *yDesc,
|
355 |
+
const void *y,
|
356 |
+
const float findIntensity,
|
357 |
+
const int requestedAlgoCount,
|
358 |
+
int *returnedAlgoCount,
|
359 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
360 |
+
const void *workspace,
|
361 |
+
size_t workSpaceSizeInBytes,
|
362 |
+
const cudnnFilterDescriptor_t dwDesc,
|
363 |
+
void *dw,
|
364 |
+
const void *reserveSpace,
|
365 |
+
size_t reserveSpaceSizeInBytes);
|
366 |
+
|
367 |
+
cudnnStatus_t CUDNNWINAPI
|
368 |
+
cudnnMultiHeadAttnBackwardData(cudnnHandle_t handle,
|
369 |
+
const cudnnAttnDescriptor_t attnDesc,
|
370 |
+
const int loWinIdx[],
|
371 |
+
const int hiWinIdx[],
|
372 |
+
const int devSeqLengthsDQDO[],
|
373 |
+
const int devSeqLengthsDKDV[],
|
374 |
+
const cudnnSeqDataDescriptor_t doDesc,
|
375 |
+
const void *dout,
|
376 |
+
const cudnnSeqDataDescriptor_t dqDesc,
|
377 |
+
void *dqueries,
|
378 |
+
const void *queries,
|
379 |
+
const cudnnSeqDataDescriptor_t dkDesc,
|
380 |
+
void *dkeys,
|
381 |
+
const void *keys,
|
382 |
+
const cudnnSeqDataDescriptor_t dvDesc,
|
383 |
+
void *dvalues,
|
384 |
+
const void *values,
|
385 |
+
size_t weightSizeInBytes,
|
386 |
+
const void *weights,
|
387 |
+
size_t workSpaceSizeInBytes,
|
388 |
+
void *workSpace,
|
389 |
+
size_t reserveSpaceSizeInBytes,
|
390 |
+
void *reserveSpace);
|
391 |
+
|
392 |
+
cudnnStatus_t CUDNNWINAPI
|
393 |
+
cudnnMultiHeadAttnBackwardWeights(cudnnHandle_t handle,
|
394 |
+
const cudnnAttnDescriptor_t attnDesc,
|
395 |
+
cudnnWgradMode_t addGrad,
|
396 |
+
const cudnnSeqDataDescriptor_t qDesc,
|
397 |
+
const void *queries,
|
398 |
+
const cudnnSeqDataDescriptor_t kDesc,
|
399 |
+
const void *keys,
|
400 |
+
const cudnnSeqDataDescriptor_t vDesc,
|
401 |
+
const void *values,
|
402 |
+
const cudnnSeqDataDescriptor_t doDesc,
|
403 |
+
const void *dout,
|
404 |
+
size_t weightSizeInBytes,
|
405 |
+
const void *weights,
|
406 |
+
void *dweights,
|
407 |
+
size_t workSpaceSizeInBytes,
|
408 |
+
void *workSpace,
|
409 |
+
size_t reserveSpaceSizeInBytes,
|
410 |
+
void *reserveSpace);
|
411 |
+
|
412 |
+
/*
|
413 |
+
* CTC (Connectionist Temporal Classification) loss descriptor create/destory/set/get functions
|
414 |
+
*/
|
415 |
+
/* Input normalization mode for loss function */
|
416 |
+
typedef enum {
|
417 |
+
CUDNN_LOSS_NORMALIZATION_NONE = 0,
|
418 |
+
CUDNN_LOSS_NORMALIZATION_SOFTMAX = 1,
|
419 |
+
} cudnnLossNormalizationMode_t;
|
420 |
+
|
421 |
+
cudnnStatus_t CUDNNWINAPI
|
422 |
+
cudnnCreateCTCLossDescriptor(cudnnCTCLossDescriptor_t *ctcLossDesc);
|
423 |
+
|
424 |
+
cudnnStatus_t CUDNNWINAPI
|
425 |
+
cudnnSetCTCLossDescriptor(cudnnCTCLossDescriptor_t ctcLossDesc, cudnnDataType_t compType);
|
426 |
+
|
427 |
+
cudnnStatus_t CUDNNWINAPI
|
428 |
+
cudnnSetCTCLossDescriptorEx(cudnnCTCLossDescriptor_t ctcLossDesc,
|
429 |
+
cudnnDataType_t compType,
|
430 |
+
cudnnLossNormalizationMode_t normMode,
|
431 |
+
cudnnNanPropagation_t gradMode);
|
432 |
+
|
433 |
+
cudnnStatus_t CUDNNWINAPI
|
434 |
+
cudnnSetCTCLossDescriptor_v8(cudnnCTCLossDescriptor_t ctcLossDesc,
|
435 |
+
cudnnDataType_t compType,
|
436 |
+
cudnnLossNormalizationMode_t normMode,
|
437 |
+
cudnnNanPropagation_t gradMode,
|
438 |
+
int maxLabelLength);
|
439 |
+
|
440 |
+
cudnnStatus_t CUDNNWINAPI
|
441 |
+
cudnnGetCTCLossDescriptor(cudnnCTCLossDescriptor_t ctcLossDesc, cudnnDataType_t *compType);
|
442 |
+
|
443 |
+
cudnnStatus_t CUDNNWINAPI
|
444 |
+
cudnnGetCTCLossDescriptorEx(cudnnCTCLossDescriptor_t ctcLossDesc,
|
445 |
+
cudnnDataType_t *compType,
|
446 |
+
cudnnLossNormalizationMode_t *normMode,
|
447 |
+
cudnnNanPropagation_t *gradMode);
|
448 |
+
|
449 |
+
cudnnStatus_t CUDNNWINAPI
|
450 |
+
cudnnGetCTCLossDescriptor_v8(cudnnCTCLossDescriptor_t ctcLossDesc,
|
451 |
+
cudnnDataType_t *compType,
|
452 |
+
cudnnLossNormalizationMode_t *normMode,
|
453 |
+
cudnnNanPropagation_t *gradMode,
|
454 |
+
int *maxLabelLength);
|
455 |
+
|
456 |
+
cudnnStatus_t CUDNNWINAPI
|
457 |
+
cudnnDestroyCTCLossDescriptor(cudnnCTCLossDescriptor_t ctcLossDesc);
|
458 |
+
|
459 |
+
/* return the ctc costs and gradients, given the probabilities and labels */
|
460 |
+
cudnnStatus_t CUDNNWINAPI
|
461 |
+
cudnnCTCLoss(
|
462 |
+
cudnnHandle_t handle,
|
463 |
+
const cudnnTensorDescriptor_t
|
464 |
+
probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the timing steps, N is the
|
465 |
+
mini batch size, A is the alphabet size) */
|
466 |
+
const void *probs, /* probabilities after softmax, in GPU memory */
|
467 |
+
const int hostLabels[], /* labels, in CPU memory */
|
468 |
+
const int hostLabelLengths[], /* the length of each label, in CPU memory */
|
469 |
+
const int hostInputLengths[], /* the lengths of timing steps in each batch, in CPU memory */
|
470 |
+
void *costs, /* the returned costs of CTC, in GPU memory */
|
471 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the dimensions are T,N,A */
|
472 |
+
void *gradients, /* the returned CTC gradients, in GPU memory, to compute costs only, set it to NULL */
|
473 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
474 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
475 |
+
void *workspace, /* pointer to the workspace, in GPU memory */
|
476 |
+
size_t workSpaceSizeInBytes); /* size of the workspace */
|
477 |
+
|
478 |
+
/* return the ctc costs and gradients, given the probabilities and labels */
|
479 |
+
cudnnStatus_t CUDNNWINAPI
|
480 |
+
cudnnCTCLoss_v8(
|
481 |
+
cudnnHandle_t handle,
|
482 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
483 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
484 |
+
const cudnnTensorDescriptor_t
|
485 |
+
probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the timing steps, N is the
|
486 |
+
mini batch size, A is the alphabet size) */
|
487 |
+
const void *probs, /* probabilities after softmax, in GPU memory */
|
488 |
+
const int labels[], /* labels, in GPU memory */
|
489 |
+
const int labelLengths[], /* the length of each label, in GPU memory */
|
490 |
+
const int inputLengths[], /* the lengths of timing steps in each batch, in GPU memory */
|
491 |
+
void *costs, /* the returned costs of CTC, in GPU memory */
|
492 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the dimensions are T,N,A */
|
493 |
+
void *gradients, /* the returned CTC gradients, in GPU memory, to compute costs only, set it to NULL */
|
494 |
+
size_t workSpaceSizeInBytes, /* size of the workspace */
|
495 |
+
void *workspace); /* pointer to the workspace, in GPU memory */
|
496 |
+
|
497 |
+
/* return the workspace size needed for ctc */
|
498 |
+
cudnnStatus_t CUDNNWINAPI
|
499 |
+
cudnnGetCTCLossWorkspaceSize(
|
500 |
+
cudnnHandle_t handle,
|
501 |
+
const cudnnTensorDescriptor_t probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the
|
502 |
+
timing steps, N is the mini batch size, A is the alphabet size) */
|
503 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the
|
504 |
+
dimensions are T,N,A. To compute costs
|
505 |
+
only, set it to NULL */
|
506 |
+
const int *labels, /* labels, in CPU memory */
|
507 |
+
const int *labelLengths, /* the length of each label, in CPU memory */
|
508 |
+
const int *inputLengths, /* the lengths of timing steps in each batch, in CPU memory */
|
509 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
510 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
511 |
+
size_t *sizeInBytes); /* pointer to the returned workspace size */
|
512 |
+
|
513 |
+
/* return the workspace size needed for ctc */
|
514 |
+
cudnnStatus_t CUDNNWINAPI
|
515 |
+
cudnnGetCTCLossWorkspaceSize_v8(
|
516 |
+
cudnnHandle_t handle,
|
517 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
518 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
519 |
+
const cudnnTensorDescriptor_t probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the
|
520 |
+
timing steps, N is the mini batch size, A is the alphabet size) */
|
521 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the
|
522 |
+
dimensions are T,N,A. To compute costs
|
523 |
+
only, set it to NULL */
|
524 |
+
size_t *sizeInBytes); /* pointer to the returned workspace size */
|
525 |
+
|
526 |
+
/*
|
527 |
+
* \brief Cross-library version checker.
|
528 |
+
* This function is implemented differently in each sub-library. Each sublib
|
529 |
+
* checks whether its own version matches that of its dependencies.
|
530 |
+
* \returns CUDNN_STATUS_SUCCESS if the version check passes,
|
531 |
+
* CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
|
532 |
+
*/
|
533 |
+
cudnnStatus_t CUDNNWINAPI
|
534 |
+
cudnnAdvTrainVersionCheck(void);
|
535 |
+
|
536 |
+
#if defined(__cplusplus)
|
537 |
+
}
|
538 |
+
#endif
|
539 |
+
|
540 |
+
#endif /* CUDNN_ADV_TRAIN_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_train_v8.h
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/* cudnn_adv_train : cuDNN's advanced and experimental features.
|
51 |
+
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_ADV_TRAIN_H_)
|
55 |
+
#define CUDNN_ADV_TRAIN_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
#include "cudnn_ops_train.h"
|
63 |
+
#include "cudnn_adv_infer.h"
|
64 |
+
|
65 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
66 |
+
#define CUDNN_ADV_TRAIN_MAJOR 8
|
67 |
+
#define CUDNN_ADV_TRAIN_MINOR 9
|
68 |
+
#define CUDNN_ADV_TRAIN_PATCH 2
|
69 |
+
|
70 |
+
#if (CUDNN_ADV_TRAIN_MAJOR != CUDNN_MAJOR) || (CUDNN_ADV_TRAIN_MINOR != CUDNN_MINOR) || \
|
71 |
+
(CUDNN_ADV_TRAIN_PATCH != CUDNN_PATCHLEVEL)
|
72 |
+
#error Version mismatch in cuDNN ADV TRAIN!!!
|
73 |
+
#endif
|
74 |
+
|
75 |
+
#if defined(__cplusplus)
|
76 |
+
extern "C" {
|
77 |
+
#endif
|
78 |
+
|
79 |
+
typedef enum {
|
80 |
+
CUDNN_WGRAD_MODE_ADD = 0, /* add partial gradients to wgrad output buffers */
|
81 |
+
CUDNN_WGRAD_MODE_SET = 1, /* write partial gradients to wgrad output buffers */
|
82 |
+
} cudnnWgradMode_t;
|
83 |
+
|
84 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
85 |
+
cudnnRNNForwardTraining(cudnnHandle_t handle,
|
86 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
87 |
+
const int seqLength,
|
88 |
+
const cudnnTensorDescriptor_t *xDesc,
|
89 |
+
const void *x,
|
90 |
+
const cudnnTensorDescriptor_t hxDesc,
|
91 |
+
const void *hx,
|
92 |
+
const cudnnTensorDescriptor_t cxDesc,
|
93 |
+
const void *cx,
|
94 |
+
const cudnnFilterDescriptor_t wDesc,
|
95 |
+
const void *w,
|
96 |
+
const cudnnTensorDescriptor_t *yDesc,
|
97 |
+
void *y,
|
98 |
+
const cudnnTensorDescriptor_t hyDesc,
|
99 |
+
void *hy,
|
100 |
+
const cudnnTensorDescriptor_t cyDesc,
|
101 |
+
void *cy,
|
102 |
+
void *workSpace,
|
103 |
+
size_t workSpaceSizeInBytes,
|
104 |
+
void *reserveSpace,
|
105 |
+
size_t reserveSpaceSizeInBytes);
|
106 |
+
|
107 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
108 |
+
cudnnRNNBackwardData(cudnnHandle_t handle,
|
109 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
110 |
+
const int seqLength,
|
111 |
+
const cudnnTensorDescriptor_t *yDesc,
|
112 |
+
const void *y,
|
113 |
+
const cudnnTensorDescriptor_t *dyDesc,
|
114 |
+
const void *dy,
|
115 |
+
const cudnnTensorDescriptor_t dhyDesc,
|
116 |
+
const void *dhy,
|
117 |
+
const cudnnTensorDescriptor_t dcyDesc,
|
118 |
+
const void *dcy,
|
119 |
+
const cudnnFilterDescriptor_t wDesc,
|
120 |
+
const void *w,
|
121 |
+
const cudnnTensorDescriptor_t hxDesc,
|
122 |
+
const void *hx,
|
123 |
+
const cudnnTensorDescriptor_t cxDesc,
|
124 |
+
const void *cx,
|
125 |
+
const cudnnTensorDescriptor_t *dxDesc,
|
126 |
+
void *dx,
|
127 |
+
const cudnnTensorDescriptor_t dhxDesc,
|
128 |
+
void *dhx,
|
129 |
+
const cudnnTensorDescriptor_t dcxDesc,
|
130 |
+
void *dcx,
|
131 |
+
void *workSpace,
|
132 |
+
size_t workSpaceSizeInBytes,
|
133 |
+
void *reserveSpace,
|
134 |
+
size_t reserveSpaceSizeInBytes);
|
135 |
+
|
136 |
+
cudnnStatus_t CUDNNWINAPI
|
137 |
+
cudnnRNNBackwardData_v8(cudnnHandle_t handle,
|
138 |
+
cudnnRNNDescriptor_t rnnDesc,
|
139 |
+
const int32_t devSeqLengths[],
|
140 |
+
cudnnRNNDataDescriptor_t yDesc,
|
141 |
+
const void *y,
|
142 |
+
const void *dy,
|
143 |
+
cudnnRNNDataDescriptor_t xDesc,
|
144 |
+
void *dx,
|
145 |
+
cudnnTensorDescriptor_t hDesc,
|
146 |
+
const void *hx,
|
147 |
+
const void *dhy,
|
148 |
+
void *dhx,
|
149 |
+
cudnnTensorDescriptor_t cDesc,
|
150 |
+
const void *cx,
|
151 |
+
const void *dcy,
|
152 |
+
void *dcx,
|
153 |
+
size_t weightSpaceSize,
|
154 |
+
const void *weightSpace,
|
155 |
+
size_t workSpaceSize,
|
156 |
+
void *workSpace,
|
157 |
+
size_t reserveSpaceSize,
|
158 |
+
void *reserveSpace);
|
159 |
+
|
160 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
161 |
+
cudnnRNNBackwardWeights(cudnnHandle_t handle,
|
162 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
163 |
+
const int seqLength,
|
164 |
+
const cudnnTensorDescriptor_t *xDesc,
|
165 |
+
const void *x,
|
166 |
+
const cudnnTensorDescriptor_t hxDesc,
|
167 |
+
const void *hx,
|
168 |
+
const cudnnTensorDescriptor_t *yDesc,
|
169 |
+
const void *y,
|
170 |
+
const void *workSpace,
|
171 |
+
size_t workSpaceSizeInBytes,
|
172 |
+
const cudnnFilterDescriptor_t dwDesc,
|
173 |
+
void *dw,
|
174 |
+
const void *reserveSpace,
|
175 |
+
size_t reserveSpaceSizeInBytes);
|
176 |
+
|
177 |
+
cudnnStatus_t CUDNNWINAPI
|
178 |
+
cudnnRNNBackwardWeights_v8(cudnnHandle_t handle,
|
179 |
+
cudnnRNNDescriptor_t rnnDesc,
|
180 |
+
cudnnWgradMode_t addGrad,
|
181 |
+
const int32_t devSeqLengths[],
|
182 |
+
cudnnRNNDataDescriptor_t xDesc,
|
183 |
+
const void *x,
|
184 |
+
cudnnTensorDescriptor_t hDesc,
|
185 |
+
const void *hx,
|
186 |
+
cudnnRNNDataDescriptor_t yDesc,
|
187 |
+
const void *y,
|
188 |
+
size_t weightSpaceSize,
|
189 |
+
void *dweightSpace,
|
190 |
+
size_t workSpaceSize,
|
191 |
+
void *workSpace,
|
192 |
+
size_t reserveSpaceSize,
|
193 |
+
void *reserveSpace);
|
194 |
+
|
195 |
+
/* RNN EX API */
|
196 |
+
|
197 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
198 |
+
cudnnRNNForwardTrainingEx(cudnnHandle_t handle,
|
199 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
200 |
+
const cudnnRNNDataDescriptor_t xDesc,
|
201 |
+
const void *x,
|
202 |
+
const cudnnTensorDescriptor_t hxDesc,
|
203 |
+
const void *hx,
|
204 |
+
const cudnnTensorDescriptor_t cxDesc,
|
205 |
+
const void *cx,
|
206 |
+
const cudnnFilterDescriptor_t wDesc,
|
207 |
+
const void *w,
|
208 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
209 |
+
void *y,
|
210 |
+
const cudnnTensorDescriptor_t hyDesc,
|
211 |
+
void *hy,
|
212 |
+
const cudnnTensorDescriptor_t cyDesc,
|
213 |
+
void *cy,
|
214 |
+
const cudnnRNNDataDescriptor_t kDesc, /* reserved, should pass NULL */
|
215 |
+
const void *keys, /* reserved, should pass NULL */
|
216 |
+
const cudnnRNNDataDescriptor_t cDesc, /* reserved, should pass NULL */
|
217 |
+
void *cAttn, /* reserved, should pass NULL */
|
218 |
+
const cudnnRNNDataDescriptor_t iDesc, /* reserved, should pass NULL */
|
219 |
+
void *iAttn, /* reserved, should pass NULL */
|
220 |
+
const cudnnRNNDataDescriptor_t qDesc, /* reserved, should pass NULL */
|
221 |
+
void *queries, /* reserved, should pass NULL */
|
222 |
+
void *workSpace,
|
223 |
+
size_t workSpaceSizeInBytes,
|
224 |
+
void *reserveSpace,
|
225 |
+
size_t reserveSpaceSizeInBytes);
|
226 |
+
|
227 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
228 |
+
cudnnRNNBackwardDataEx(cudnnHandle_t handle,
|
229 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
230 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
231 |
+
const void *y,
|
232 |
+
const cudnnRNNDataDescriptor_t dyDesc,
|
233 |
+
const void *dy,
|
234 |
+
const cudnnRNNDataDescriptor_t dcDesc, /* reserved, should pass NULL */
|
235 |
+
const void *dcAttn, /* reserved, should pass NULL */
|
236 |
+
const cudnnTensorDescriptor_t dhyDesc,
|
237 |
+
const void *dhy,
|
238 |
+
const cudnnTensorDescriptor_t dcyDesc,
|
239 |
+
const void *dcy,
|
240 |
+
const cudnnFilterDescriptor_t wDesc,
|
241 |
+
const void *w,
|
242 |
+
const cudnnTensorDescriptor_t hxDesc,
|
243 |
+
const void *hx,
|
244 |
+
const cudnnTensorDescriptor_t cxDesc,
|
245 |
+
const void *cx,
|
246 |
+
const cudnnRNNDataDescriptor_t dxDesc,
|
247 |
+
void *dx,
|
248 |
+
const cudnnTensorDescriptor_t dhxDesc,
|
249 |
+
void *dhx,
|
250 |
+
const cudnnTensorDescriptor_t dcxDesc,
|
251 |
+
void *dcx,
|
252 |
+
const cudnnRNNDataDescriptor_t dkDesc, /* reserved, should pass NULL */
|
253 |
+
void *dkeys, /* reserved, should pass NULL */
|
254 |
+
void *workSpace,
|
255 |
+
size_t workSpaceSizeInBytes,
|
256 |
+
void *reserveSpace,
|
257 |
+
size_t reserveSpaceSizeInBytes);
|
258 |
+
|
259 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
260 |
+
cudnnRNNBackwardWeightsEx(cudnnHandle_t handle,
|
261 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
262 |
+
const cudnnRNNDataDescriptor_t xDesc,
|
263 |
+
const void *x,
|
264 |
+
const cudnnTensorDescriptor_t hxDesc,
|
265 |
+
const void *hx,
|
266 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
267 |
+
const void *y,
|
268 |
+
void *workSpace,
|
269 |
+
size_t workSpaceSizeInBytes,
|
270 |
+
const cudnnFilterDescriptor_t dwDesc,
|
271 |
+
void *dw,
|
272 |
+
void *reserveSpace,
|
273 |
+
size_t reserveSpaceSizeInBytes);
|
274 |
+
|
275 |
+
/* RNN FIND API */
|
276 |
+
|
277 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
278 |
+
cudnnGetRNNForwardTrainingAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
279 |
+
|
280 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
281 |
+
cudnnFindRNNForwardTrainingAlgorithmEx(cudnnHandle_t handle,
|
282 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
283 |
+
const int seqLength,
|
284 |
+
const cudnnTensorDescriptor_t *xDesc,
|
285 |
+
const void *x,
|
286 |
+
const cudnnTensorDescriptor_t hxDesc,
|
287 |
+
const void *hx,
|
288 |
+
const cudnnTensorDescriptor_t cxDesc,
|
289 |
+
const void *cx,
|
290 |
+
const cudnnFilterDescriptor_t wDesc,
|
291 |
+
const void *w,
|
292 |
+
const cudnnTensorDescriptor_t *yDesc,
|
293 |
+
void *y,
|
294 |
+
const cudnnTensorDescriptor_t hyDesc,
|
295 |
+
void *hy,
|
296 |
+
const cudnnTensorDescriptor_t cyDesc,
|
297 |
+
void *cy,
|
298 |
+
const float findIntensity,
|
299 |
+
const int requestedAlgoCount,
|
300 |
+
int *returnedAlgoCount,
|
301 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
302 |
+
void *workspace,
|
303 |
+
size_t workSpaceSizeInBytes,
|
304 |
+
void *reserveSpace,
|
305 |
+
size_t reserveSpaceSizeInBytes);
|
306 |
+
|
307 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
308 |
+
cudnnGetRNNBackwardDataAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
309 |
+
|
310 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
311 |
+
cudnnFindRNNBackwardDataAlgorithmEx(cudnnHandle_t handle,
|
312 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
313 |
+
const int seqLength,
|
314 |
+
const cudnnTensorDescriptor_t *yDesc,
|
315 |
+
const void *y,
|
316 |
+
const cudnnTensorDescriptor_t *dyDesc,
|
317 |
+
const void *dy,
|
318 |
+
const cudnnTensorDescriptor_t dhyDesc,
|
319 |
+
const void *dhy,
|
320 |
+
const cudnnTensorDescriptor_t dcyDesc,
|
321 |
+
const void *dcy,
|
322 |
+
const cudnnFilterDescriptor_t wDesc,
|
323 |
+
const void *w,
|
324 |
+
const cudnnTensorDescriptor_t hxDesc,
|
325 |
+
const void *hx,
|
326 |
+
const cudnnTensorDescriptor_t cxDesc,
|
327 |
+
const void *cx,
|
328 |
+
const cudnnTensorDescriptor_t *dxDesc,
|
329 |
+
void *dx,
|
330 |
+
const cudnnTensorDescriptor_t dhxDesc,
|
331 |
+
void *dhx,
|
332 |
+
const cudnnTensorDescriptor_t dcxDesc,
|
333 |
+
void *dcx,
|
334 |
+
const float findIntensity,
|
335 |
+
const int requestedAlgoCount,
|
336 |
+
int *returnedAlgoCount,
|
337 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
338 |
+
void *workspace,
|
339 |
+
size_t workSpaceSizeInBytes,
|
340 |
+
void *reserveSpace,
|
341 |
+
size_t reserveSpaceSizeInBytes);
|
342 |
+
|
343 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
344 |
+
cudnnGetRNNBackwardWeightsAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
345 |
+
|
346 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
347 |
+
cudnnFindRNNBackwardWeightsAlgorithmEx(cudnnHandle_t handle,
|
348 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
349 |
+
const int seqLength,
|
350 |
+
const cudnnTensorDescriptor_t *xDesc,
|
351 |
+
const void *x,
|
352 |
+
const cudnnTensorDescriptor_t hxDesc,
|
353 |
+
const void *hx,
|
354 |
+
const cudnnTensorDescriptor_t *yDesc,
|
355 |
+
const void *y,
|
356 |
+
const float findIntensity,
|
357 |
+
const int requestedAlgoCount,
|
358 |
+
int *returnedAlgoCount,
|
359 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
360 |
+
const void *workspace,
|
361 |
+
size_t workSpaceSizeInBytes,
|
362 |
+
const cudnnFilterDescriptor_t dwDesc,
|
363 |
+
void *dw,
|
364 |
+
const void *reserveSpace,
|
365 |
+
size_t reserveSpaceSizeInBytes);
|
366 |
+
|
367 |
+
cudnnStatus_t CUDNNWINAPI
|
368 |
+
cudnnMultiHeadAttnBackwardData(cudnnHandle_t handle,
|
369 |
+
const cudnnAttnDescriptor_t attnDesc,
|
370 |
+
const int loWinIdx[],
|
371 |
+
const int hiWinIdx[],
|
372 |
+
const int devSeqLengthsDQDO[],
|
373 |
+
const int devSeqLengthsDKDV[],
|
374 |
+
const cudnnSeqDataDescriptor_t doDesc,
|
375 |
+
const void *dout,
|
376 |
+
const cudnnSeqDataDescriptor_t dqDesc,
|
377 |
+
void *dqueries,
|
378 |
+
const void *queries,
|
379 |
+
const cudnnSeqDataDescriptor_t dkDesc,
|
380 |
+
void *dkeys,
|
381 |
+
const void *keys,
|
382 |
+
const cudnnSeqDataDescriptor_t dvDesc,
|
383 |
+
void *dvalues,
|
384 |
+
const void *values,
|
385 |
+
size_t weightSizeInBytes,
|
386 |
+
const void *weights,
|
387 |
+
size_t workSpaceSizeInBytes,
|
388 |
+
void *workSpace,
|
389 |
+
size_t reserveSpaceSizeInBytes,
|
390 |
+
void *reserveSpace);
|
391 |
+
|
392 |
+
cudnnStatus_t CUDNNWINAPI
|
393 |
+
cudnnMultiHeadAttnBackwardWeights(cudnnHandle_t handle,
|
394 |
+
const cudnnAttnDescriptor_t attnDesc,
|
395 |
+
cudnnWgradMode_t addGrad,
|
396 |
+
const cudnnSeqDataDescriptor_t qDesc,
|
397 |
+
const void *queries,
|
398 |
+
const cudnnSeqDataDescriptor_t kDesc,
|
399 |
+
const void *keys,
|
400 |
+
const cudnnSeqDataDescriptor_t vDesc,
|
401 |
+
const void *values,
|
402 |
+
const cudnnSeqDataDescriptor_t doDesc,
|
403 |
+
const void *dout,
|
404 |
+
size_t weightSizeInBytes,
|
405 |
+
const void *weights,
|
406 |
+
void *dweights,
|
407 |
+
size_t workSpaceSizeInBytes,
|
408 |
+
void *workSpace,
|
409 |
+
size_t reserveSpaceSizeInBytes,
|
410 |
+
void *reserveSpace);
|
411 |
+
|
412 |
+
/*
|
413 |
+
* CTC (Connectionist Temporal Classification) loss descriptor create/destory/set/get functions
|
414 |
+
*/
|
415 |
+
/* Input normalization mode for loss function */
|
416 |
+
typedef enum {
|
417 |
+
CUDNN_LOSS_NORMALIZATION_NONE = 0,
|
418 |
+
CUDNN_LOSS_NORMALIZATION_SOFTMAX = 1,
|
419 |
+
} cudnnLossNormalizationMode_t;
|
420 |
+
|
421 |
+
cudnnStatus_t CUDNNWINAPI
|
422 |
+
cudnnCreateCTCLossDescriptor(cudnnCTCLossDescriptor_t *ctcLossDesc);
|
423 |
+
|
424 |
+
cudnnStatus_t CUDNNWINAPI
|
425 |
+
cudnnSetCTCLossDescriptor(cudnnCTCLossDescriptor_t ctcLossDesc, cudnnDataType_t compType);
|
426 |
+
|
427 |
+
cudnnStatus_t CUDNNWINAPI
|
428 |
+
cudnnSetCTCLossDescriptorEx(cudnnCTCLossDescriptor_t ctcLossDesc,
|
429 |
+
cudnnDataType_t compType,
|
430 |
+
cudnnLossNormalizationMode_t normMode,
|
431 |
+
cudnnNanPropagation_t gradMode);
|
432 |
+
|
433 |
+
cudnnStatus_t CUDNNWINAPI
|
434 |
+
cudnnSetCTCLossDescriptor_v8(cudnnCTCLossDescriptor_t ctcLossDesc,
|
435 |
+
cudnnDataType_t compType,
|
436 |
+
cudnnLossNormalizationMode_t normMode,
|
437 |
+
cudnnNanPropagation_t gradMode,
|
438 |
+
int maxLabelLength);
|
439 |
+
|
440 |
+
cudnnStatus_t CUDNNWINAPI
|
441 |
+
cudnnGetCTCLossDescriptor(cudnnCTCLossDescriptor_t ctcLossDesc, cudnnDataType_t *compType);
|
442 |
+
|
443 |
+
cudnnStatus_t CUDNNWINAPI
|
444 |
+
cudnnGetCTCLossDescriptorEx(cudnnCTCLossDescriptor_t ctcLossDesc,
|
445 |
+
cudnnDataType_t *compType,
|
446 |
+
cudnnLossNormalizationMode_t *normMode,
|
447 |
+
cudnnNanPropagation_t *gradMode);
|
448 |
+
|
449 |
+
cudnnStatus_t CUDNNWINAPI
|
450 |
+
cudnnGetCTCLossDescriptor_v8(cudnnCTCLossDescriptor_t ctcLossDesc,
|
451 |
+
cudnnDataType_t *compType,
|
452 |
+
cudnnLossNormalizationMode_t *normMode,
|
453 |
+
cudnnNanPropagation_t *gradMode,
|
454 |
+
int *maxLabelLength);
|
455 |
+
|
456 |
+
cudnnStatus_t CUDNNWINAPI
|
457 |
+
cudnnDestroyCTCLossDescriptor(cudnnCTCLossDescriptor_t ctcLossDesc);
|
458 |
+
|
459 |
+
/* return the ctc costs and gradients, given the probabilities and labels */
|
460 |
+
cudnnStatus_t CUDNNWINAPI
|
461 |
+
cudnnCTCLoss(
|
462 |
+
cudnnHandle_t handle,
|
463 |
+
const cudnnTensorDescriptor_t
|
464 |
+
probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the timing steps, N is the
|
465 |
+
mini batch size, A is the alphabet size) */
|
466 |
+
const void *probs, /* probabilities after softmax, in GPU memory */
|
467 |
+
const int hostLabels[], /* labels, in CPU memory */
|
468 |
+
const int hostLabelLengths[], /* the length of each label, in CPU memory */
|
469 |
+
const int hostInputLengths[], /* the lengths of timing steps in each batch, in CPU memory */
|
470 |
+
void *costs, /* the returned costs of CTC, in GPU memory */
|
471 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the dimensions are T,N,A */
|
472 |
+
void *gradients, /* the returned CTC gradients, in GPU memory, to compute costs only, set it to NULL */
|
473 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
474 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
475 |
+
void *workspace, /* pointer to the workspace, in GPU memory */
|
476 |
+
size_t workSpaceSizeInBytes); /* size of the workspace */
|
477 |
+
|
478 |
+
/* return the ctc costs and gradients, given the probabilities and labels */
|
479 |
+
cudnnStatus_t CUDNNWINAPI
|
480 |
+
cudnnCTCLoss_v8(
|
481 |
+
cudnnHandle_t handle,
|
482 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
483 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
484 |
+
const cudnnTensorDescriptor_t
|
485 |
+
probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the timing steps, N is the
|
486 |
+
mini batch size, A is the alphabet size) */
|
487 |
+
const void *probs, /* probabilities after softmax, in GPU memory */
|
488 |
+
const int labels[], /* labels, in GPU memory */
|
489 |
+
const int labelLengths[], /* the length of each label, in GPU memory */
|
490 |
+
const int inputLengths[], /* the lengths of timing steps in each batch, in GPU memory */
|
491 |
+
void *costs, /* the returned costs of CTC, in GPU memory */
|
492 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the dimensions are T,N,A */
|
493 |
+
void *gradients, /* the returned CTC gradients, in GPU memory, to compute costs only, set it to NULL */
|
494 |
+
size_t workSpaceSizeInBytes, /* size of the workspace */
|
495 |
+
void *workspace); /* pointer to the workspace, in GPU memory */
|
496 |
+
|
497 |
+
/* return the workspace size needed for ctc */
|
498 |
+
cudnnStatus_t CUDNNWINAPI
|
499 |
+
cudnnGetCTCLossWorkspaceSize(
|
500 |
+
cudnnHandle_t handle,
|
501 |
+
const cudnnTensorDescriptor_t probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the
|
502 |
+
timing steps, N is the mini batch size, A is the alphabet size) */
|
503 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the
|
504 |
+
dimensions are T,N,A. To compute costs
|
505 |
+
only, set it to NULL */
|
506 |
+
const int *labels, /* labels, in CPU memory */
|
507 |
+
const int *labelLengths, /* the length of each label, in CPU memory */
|
508 |
+
const int *inputLengths, /* the lengths of timing steps in each batch, in CPU memory */
|
509 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
510 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
511 |
+
size_t *sizeInBytes); /* pointer to the returned workspace size */
|
512 |
+
|
513 |
+
/* return the workspace size needed for ctc */
|
514 |
+
cudnnStatus_t CUDNNWINAPI
|
515 |
+
cudnnGetCTCLossWorkspaceSize_v8(
|
516 |
+
cudnnHandle_t handle,
|
517 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
518 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
519 |
+
const cudnnTensorDescriptor_t probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the
|
520 |
+
timing steps, N is the mini batch size, A is the alphabet size) */
|
521 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the
|
522 |
+
dimensions are T,N,A. To compute costs
|
523 |
+
only, set it to NULL */
|
524 |
+
size_t *sizeInBytes); /* pointer to the returned workspace size */
|
525 |
+
|
526 |
+
/*
|
527 |
+
* \brief Cross-library version checker.
|
528 |
+
* This function is implemented differently in each sub-library. Each sublib
|
529 |
+
* checks whether its own version matches that of its dependencies.
|
530 |
+
* \returns CUDNN_STATUS_SUCCESS if the version check passes,
|
531 |
+
* CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
|
532 |
+
*/
|
533 |
+
cudnnStatus_t CUDNNWINAPI
|
534 |
+
cudnnAdvTrainVersionCheck(void);
|
535 |
+
|
536 |
+
#if defined(__cplusplus)
|
537 |
+
}
|
538 |
+
#endif
|
539 |
+
|
540 |
+
#endif /* CUDNN_ADV_TRAIN_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_backend.h
ADDED
@@ -0,0 +1,608 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
#ifndef _CUDNN_BACKEND_H_
|
51 |
+
#define _CUDNN_BACKEND_H_
|
52 |
+
|
53 |
+
/*
|
54 |
+
* The content in this header file is under development to be included in cudnn.h in the future
|
55 |
+
* Production code should have all include of this header file remove.
|
56 |
+
*/
|
57 |
+
|
58 |
+
#include "cudnn_ops_infer.h"
|
59 |
+
#include "cudnn_cnn_infer.h"
|
60 |
+
|
61 |
+
/* NOTE: definition in extern "C" to be copied later to public header */
|
62 |
+
#if defined(__cplusplus)
|
63 |
+
extern "C" {
|
64 |
+
#endif
|
65 |
+
|
66 |
+
typedef void *cudnnBackendDescriptor_t;
|
67 |
+
|
68 |
+
typedef struct cudnnFractionStruct {
|
69 |
+
int64_t numerator;
|
70 |
+
int64_t denominator;
|
71 |
+
} cudnnFraction_t;
|
72 |
+
|
73 |
+
typedef enum {
|
74 |
+
CUDNN_POINTWISE_ADD = 0,
|
75 |
+
CUDNN_POINTWISE_ADD_SQUARE = 5,
|
76 |
+
CUDNN_POINTWISE_DIV = 6,
|
77 |
+
CUDNN_POINTWISE_MAX = 3,
|
78 |
+
CUDNN_POINTWISE_MIN = 2,
|
79 |
+
CUDNN_POINTWISE_MOD = 7,
|
80 |
+
CUDNN_POINTWISE_MUL = 1,
|
81 |
+
CUDNN_POINTWISE_POW = 8,
|
82 |
+
CUDNN_POINTWISE_SUB = 9,
|
83 |
+
|
84 |
+
CUDNN_POINTWISE_ABS = 10,
|
85 |
+
CUDNN_POINTWISE_CEIL = 11,
|
86 |
+
CUDNN_POINTWISE_COS = 12,
|
87 |
+
CUDNN_POINTWISE_EXP = 13,
|
88 |
+
CUDNN_POINTWISE_FLOOR = 14,
|
89 |
+
CUDNN_POINTWISE_LOG = 15,
|
90 |
+
CUDNN_POINTWISE_NEG = 16,
|
91 |
+
CUDNN_POINTWISE_RSQRT = 17,
|
92 |
+
CUDNN_POINTWISE_SIN = 18,
|
93 |
+
CUDNN_POINTWISE_SQRT = 4,
|
94 |
+
CUDNN_POINTWISE_TAN = 19,
|
95 |
+
CUDNN_POINTWISE_ERF = 20,
|
96 |
+
CUDNN_POINTWISE_IDENTITY = 21,
|
97 |
+
CUDNN_POINTWISE_RECIPROCAL = 22,
|
98 |
+
|
99 |
+
CUDNN_POINTWISE_RELU_FWD = 100,
|
100 |
+
CUDNN_POINTWISE_TANH_FWD = 101,
|
101 |
+
CUDNN_POINTWISE_SIGMOID_FWD = 102,
|
102 |
+
CUDNN_POINTWISE_ELU_FWD = 103,
|
103 |
+
CUDNN_POINTWISE_GELU_FWD = 104,
|
104 |
+
CUDNN_POINTWISE_SOFTPLUS_FWD = 105,
|
105 |
+
CUDNN_POINTWISE_SWISH_FWD = 106,
|
106 |
+
CUDNN_POINTWISE_GELU_APPROX_TANH_FWD = 107,
|
107 |
+
|
108 |
+
CUDNN_POINTWISE_RELU_BWD = 200,
|
109 |
+
CUDNN_POINTWISE_TANH_BWD = 201,
|
110 |
+
CUDNN_POINTWISE_SIGMOID_BWD = 202,
|
111 |
+
CUDNN_POINTWISE_ELU_BWD = 203,
|
112 |
+
CUDNN_POINTWISE_GELU_BWD = 204,
|
113 |
+
CUDNN_POINTWISE_SOFTPLUS_BWD = 205,
|
114 |
+
CUDNN_POINTWISE_SWISH_BWD = 206,
|
115 |
+
CUDNN_POINTWISE_GELU_APPROX_TANH_BWD = 207,
|
116 |
+
|
117 |
+
CUDNN_POINTWISE_CMP_EQ = 300,
|
118 |
+
CUDNN_POINTWISE_CMP_NEQ = 301,
|
119 |
+
CUDNN_POINTWISE_CMP_GT = 302,
|
120 |
+
CUDNN_POINTWISE_CMP_GE = 303,
|
121 |
+
CUDNN_POINTWISE_CMP_LT = 304,
|
122 |
+
CUDNN_POINTWISE_CMP_LE = 305,
|
123 |
+
|
124 |
+
CUDNN_POINTWISE_LOGICAL_AND = 400,
|
125 |
+
CUDNN_POINTWISE_LOGICAL_OR = 401,
|
126 |
+
CUDNN_POINTWISE_LOGICAL_NOT = 402,
|
127 |
+
|
128 |
+
CUDNN_POINTWISE_GEN_INDEX = 501,
|
129 |
+
|
130 |
+
CUDNN_POINTWISE_BINARY_SELECT = 601,
|
131 |
+
} cudnnPointwiseMode_t;
|
132 |
+
|
133 |
+
typedef enum {
|
134 |
+
CUDNN_RESAMPLE_NEAREST = 0,
|
135 |
+
CUDNN_RESAMPLE_BILINEAR = 1,
|
136 |
+
CUDNN_RESAMPLE_AVGPOOL = 2,
|
137 |
+
CUDNN_RESAMPLE_AVGPOOL_INCLUDE_PADDING = 2,
|
138 |
+
CUDNN_RESAMPLE_AVGPOOL_EXCLUDE_PADDING = 4,
|
139 |
+
CUDNN_RESAMPLE_MAXPOOL = 3,
|
140 |
+
} cudnnResampleMode_t;
|
141 |
+
|
142 |
+
typedef enum {
|
143 |
+
CUDNN_SIGNAL_SET = 0,
|
144 |
+
CUDNN_SIGNAL_WAIT = 1,
|
145 |
+
} cudnnSignalMode_t;
|
146 |
+
|
147 |
+
typedef enum {
|
148 |
+
CUDNN_GENSTATS_SUM_SQSUM = 0,
|
149 |
+
} cudnnGenStatsMode_t;
|
150 |
+
|
151 |
+
typedef enum {
|
152 |
+
CUDNN_BN_FINALIZE_STATISTICS_TRAINING = 0,
|
153 |
+
CUDNN_BN_FINALIZE_STATISTICS_INFERENCE = 1,
|
154 |
+
} cudnnBnFinalizeStatsMode_t;
|
155 |
+
|
156 |
+
typedef enum {
|
157 |
+
CUDNN_RNG_DISTRIBUTION_BERNOULLI,
|
158 |
+
CUDNN_RNG_DISTRIBUTION_UNIFORM,
|
159 |
+
CUDNN_RNG_DISTRIBUTION_NORMAL,
|
160 |
+
} cudnnRngDistribution_t;
|
161 |
+
|
162 |
+
typedef enum {
|
163 |
+
CUDNN_ATTR_POINTWISE_MODE = 0,
|
164 |
+
CUDNN_ATTR_POINTWISE_MATH_PREC = 1,
|
165 |
+
CUDNN_ATTR_POINTWISE_NAN_PROPAGATION = 2,
|
166 |
+
CUDNN_ATTR_POINTWISE_RELU_LOWER_CLIP = 3,
|
167 |
+
CUDNN_ATTR_POINTWISE_RELU_UPPER_CLIP = 4,
|
168 |
+
CUDNN_ATTR_POINTWISE_RELU_LOWER_CLIP_SLOPE = 5,
|
169 |
+
CUDNN_ATTR_POINTWISE_ELU_ALPHA = 6,
|
170 |
+
CUDNN_ATTR_POINTWISE_SOFTPLUS_BETA = 7,
|
171 |
+
CUDNN_ATTR_POINTWISE_SWISH_BETA = 8,
|
172 |
+
CUDNN_ATTR_POINTWISE_AXIS = 9,
|
173 |
+
|
174 |
+
CUDNN_ATTR_CONVOLUTION_COMP_TYPE = 100,
|
175 |
+
CUDNN_ATTR_CONVOLUTION_CONV_MODE = 101,
|
176 |
+
CUDNN_ATTR_CONVOLUTION_DILATIONS = 102,
|
177 |
+
CUDNN_ATTR_CONVOLUTION_FILTER_STRIDES = 103,
|
178 |
+
CUDNN_ATTR_CONVOLUTION_POST_PADDINGS = 104,
|
179 |
+
CUDNN_ATTR_CONVOLUTION_PRE_PADDINGS = 105,
|
180 |
+
CUDNN_ATTR_CONVOLUTION_SPATIAL_DIMS = 106,
|
181 |
+
|
182 |
+
CUDNN_ATTR_ENGINEHEUR_MODE = 200,
|
183 |
+
CUDNN_ATTR_ENGINEHEUR_OPERATION_GRAPH = 201,
|
184 |
+
CUDNN_ATTR_ENGINEHEUR_RESULTS = 202,
|
185 |
+
|
186 |
+
CUDNN_ATTR_ENGINECFG_ENGINE = 300,
|
187 |
+
CUDNN_ATTR_ENGINECFG_INTERMEDIATE_INFO = 301,
|
188 |
+
CUDNN_ATTR_ENGINECFG_KNOB_CHOICES = 302,
|
189 |
+
|
190 |
+
CUDNN_ATTR_EXECUTION_PLAN_HANDLE = 400,
|
191 |
+
CUDNN_ATTR_EXECUTION_PLAN_ENGINE_CONFIG = 401,
|
192 |
+
CUDNN_ATTR_EXECUTION_PLAN_WORKSPACE_SIZE = 402,
|
193 |
+
CUDNN_ATTR_EXECUTION_PLAN_COMPUTED_INTERMEDIATE_UIDS = 403,
|
194 |
+
CUDNN_ATTR_EXECUTION_PLAN_RUN_ONLY_INTERMEDIATE_UIDS = 404,
|
195 |
+
CUDNN_ATTR_EXECUTION_PLAN_JSON_REPRESENTATION = 405,
|
196 |
+
|
197 |
+
CUDNN_ATTR_INTERMEDIATE_INFO_UNIQUE_ID = 500,
|
198 |
+
CUDNN_ATTR_INTERMEDIATE_INFO_SIZE = 501,
|
199 |
+
CUDNN_ATTR_INTERMEDIATE_INFO_DEPENDENT_DATA_UIDS = 502,
|
200 |
+
CUDNN_ATTR_INTERMEDIATE_INFO_DEPENDENT_ATTRIBUTES = 503,
|
201 |
+
|
202 |
+
CUDNN_ATTR_KNOB_CHOICE_KNOB_TYPE = 600,
|
203 |
+
CUDNN_ATTR_KNOB_CHOICE_KNOB_VALUE = 601,
|
204 |
+
|
205 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_ALPHA = 700,
|
206 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_BETA = 701,
|
207 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_CONV_DESC = 702,
|
208 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_W = 703,
|
209 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_X = 704,
|
210 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_Y = 705,
|
211 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_ALPHA = 706,
|
212 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_BETA = 707,
|
213 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_CONV_DESC = 708,
|
214 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_W = 709,
|
215 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_DX = 710,
|
216 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_DY = 711,
|
217 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_ALPHA = 712,
|
218 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_BETA = 713,
|
219 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_CONV_DESC = 714,
|
220 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_DW = 715,
|
221 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_X = 716,
|
222 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_DY = 717,
|
223 |
+
|
224 |
+
CUDNN_ATTR_OPERATION_POINTWISE_PW_DESCRIPTOR = 750,
|
225 |
+
CUDNN_ATTR_OPERATION_POINTWISE_XDESC = 751,
|
226 |
+
CUDNN_ATTR_OPERATION_POINTWISE_BDESC = 752,
|
227 |
+
CUDNN_ATTR_OPERATION_POINTWISE_YDESC = 753,
|
228 |
+
CUDNN_ATTR_OPERATION_POINTWISE_ALPHA1 = 754,
|
229 |
+
CUDNN_ATTR_OPERATION_POINTWISE_ALPHA2 = 755,
|
230 |
+
CUDNN_ATTR_OPERATION_POINTWISE_DXDESC = 756,
|
231 |
+
CUDNN_ATTR_OPERATION_POINTWISE_DYDESC = 757,
|
232 |
+
CUDNN_ATTR_OPERATION_POINTWISE_TDESC = 758,
|
233 |
+
|
234 |
+
CUDNN_ATTR_OPERATION_GENSTATS_MODE = 770,
|
235 |
+
CUDNN_ATTR_OPERATION_GENSTATS_MATH_PREC = 771,
|
236 |
+
CUDNN_ATTR_OPERATION_GENSTATS_XDESC = 772,
|
237 |
+
CUDNN_ATTR_OPERATION_GENSTATS_SUMDESC = 773,
|
238 |
+
CUDNN_ATTR_OPERATION_GENSTATS_SQSUMDESC = 774,
|
239 |
+
|
240 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_STATS_MODE = 780,
|
241 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_MATH_PREC = 781,
|
242 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_Y_SUM_DESC = 782,
|
243 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_Y_SQ_SUM_DESC = 783,
|
244 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_SCALE_DESC = 784,
|
245 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_BIAS_DESC = 785,
|
246 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_PREV_RUNNING_MEAN_DESC = 786,
|
247 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_PREV_RUNNING_VAR_DESC = 787,
|
248 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_UPDATED_RUNNING_MEAN_DESC = 788,
|
249 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_UPDATED_RUNNING_VAR_DESC = 789,
|
250 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_SAVED_MEAN_DESC = 790,
|
251 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_SAVED_INV_STD_DESC = 791,
|
252 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_EQ_SCALE_DESC = 792,
|
253 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_EQ_BIAS_DESC = 793,
|
254 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_ACCUM_COUNT_DESC = 794,
|
255 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_EPSILON_DESC = 795,
|
256 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_EXP_AVERATE_FACTOR_DESC = 796,
|
257 |
+
|
258 |
+
CUDNN_ATTR_OPERATIONGRAPH_HANDLE = 800,
|
259 |
+
CUDNN_ATTR_OPERATIONGRAPH_OPS = 801,
|
260 |
+
CUDNN_ATTR_OPERATIONGRAPH_ENGINE_GLOBAL_COUNT = 802,
|
261 |
+
|
262 |
+
CUDNN_ATTR_TENSOR_BYTE_ALIGNMENT = 900,
|
263 |
+
CUDNN_ATTR_TENSOR_DATA_TYPE = 901,
|
264 |
+
CUDNN_ATTR_TENSOR_DIMENSIONS = 902,
|
265 |
+
CUDNN_ATTR_TENSOR_STRIDES = 903,
|
266 |
+
CUDNN_ATTR_TENSOR_VECTOR_COUNT = 904,
|
267 |
+
CUDNN_ATTR_TENSOR_VECTORIZED_DIMENSION = 905,
|
268 |
+
CUDNN_ATTR_TENSOR_UNIQUE_ID = 906,
|
269 |
+
CUDNN_ATTR_TENSOR_IS_VIRTUAL = 907,
|
270 |
+
CUDNN_ATTR_TENSOR_IS_BY_VALUE = 908,
|
271 |
+
CUDNN_ATTR_TENSOR_REORDERING_MODE = 909,
|
272 |
+
CUDNN_ATTR_TENSOR_RAGGED_OFFSET_DESC = 913,
|
273 |
+
|
274 |
+
CUDNN_ATTR_VARIANT_PACK_UNIQUE_IDS = 1000,
|
275 |
+
CUDNN_ATTR_VARIANT_PACK_DATA_POINTERS = 1001,
|
276 |
+
CUDNN_ATTR_VARIANT_PACK_INTERMEDIATES = 1002,
|
277 |
+
CUDNN_ATTR_VARIANT_PACK_WORKSPACE = 1003,
|
278 |
+
|
279 |
+
CUDNN_ATTR_LAYOUT_INFO_TENSOR_UID = 1100,
|
280 |
+
CUDNN_ATTR_LAYOUT_INFO_TYPES = 1101,
|
281 |
+
|
282 |
+
CUDNN_ATTR_KNOB_INFO_TYPE = 1200,
|
283 |
+
CUDNN_ATTR_KNOB_INFO_MAXIMUM_VALUE = 1201,
|
284 |
+
CUDNN_ATTR_KNOB_INFO_MINIMUM_VALUE = 1202,
|
285 |
+
CUDNN_ATTR_KNOB_INFO_STRIDE = 1203,
|
286 |
+
|
287 |
+
CUDNN_ATTR_ENGINE_OPERATION_GRAPH = 1300,
|
288 |
+
CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 1301,
|
289 |
+
CUDNN_ATTR_ENGINE_KNOB_INFO = 1302,
|
290 |
+
CUDNN_ATTR_ENGINE_NUMERICAL_NOTE = 1303,
|
291 |
+
CUDNN_ATTR_ENGINE_LAYOUT_INFO = 1304,
|
292 |
+
CUDNN_ATTR_ENGINE_BEHAVIOR_NOTE = 1305,
|
293 |
+
|
294 |
+
CUDNN_ATTR_MATMUL_COMP_TYPE = 1500,
|
295 |
+
CUDNN_ATTR_MATMUL_PADDING_VALUE = 1503,
|
296 |
+
|
297 |
+
CUDNN_ATTR_OPERATION_MATMUL_ADESC = 1520,
|
298 |
+
CUDNN_ATTR_OPERATION_MATMUL_BDESC = 1521,
|
299 |
+
CUDNN_ATTR_OPERATION_MATMUL_CDESC = 1522,
|
300 |
+
CUDNN_ATTR_OPERATION_MATMUL_DESC = 1523,
|
301 |
+
CUDNN_ATTR_OPERATION_MATMUL_IRREGULARLY_STRIDED_BATCH_COUNT = 1524,
|
302 |
+
CUDNN_ATTR_OPERATION_MATMUL_GEMM_M_OVERRIDE_DESC = 1525,
|
303 |
+
CUDNN_ATTR_OPERATION_MATMUL_GEMM_N_OVERRIDE_DESC = 1526,
|
304 |
+
CUDNN_ATTR_OPERATION_MATMUL_GEMM_K_OVERRIDE_DESC = 1527,
|
305 |
+
|
306 |
+
CUDNN_ATTR_REDUCTION_OPERATOR = 1600,
|
307 |
+
CUDNN_ATTR_REDUCTION_COMP_TYPE = 1601,
|
308 |
+
|
309 |
+
CUDNN_ATTR_OPERATION_REDUCTION_XDESC = 1610,
|
310 |
+
CUDNN_ATTR_OPERATION_REDUCTION_YDESC = 1611,
|
311 |
+
CUDNN_ATTR_OPERATION_REDUCTION_DESC = 1612,
|
312 |
+
|
313 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_MATH_PREC = 1620,
|
314 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_MEAN_DESC = 1621,
|
315 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_INVSTD_DESC = 1622,
|
316 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_BN_SCALE_DESC = 1623,
|
317 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_X_DESC = 1624,
|
318 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_DY_DESC = 1625,
|
319 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_DBN_SCALE_DESC = 1626,
|
320 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_DBN_BIAS_DESC = 1627,
|
321 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_EQ_DY_SCALE_DESC = 1628,
|
322 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_EQ_X_SCALE_DESC = 1629,
|
323 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_EQ_BIAS = 1630,
|
324 |
+
|
325 |
+
CUDNN_ATTR_RESAMPLE_MODE = 1700,
|
326 |
+
CUDNN_ATTR_RESAMPLE_COMP_TYPE = 1701,
|
327 |
+
CUDNN_ATTR_RESAMPLE_SPATIAL_DIMS = 1702,
|
328 |
+
CUDNN_ATTR_RESAMPLE_POST_PADDINGS = 1703,
|
329 |
+
CUDNN_ATTR_RESAMPLE_PRE_PADDINGS = 1704,
|
330 |
+
CUDNN_ATTR_RESAMPLE_STRIDES = 1705,
|
331 |
+
CUDNN_ATTR_RESAMPLE_WINDOW_DIMS = 1706,
|
332 |
+
CUDNN_ATTR_RESAMPLE_NAN_PROPAGATION = 1707,
|
333 |
+
CUDNN_ATTR_RESAMPLE_PADDING_MODE = 1708,
|
334 |
+
|
335 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_XDESC = 1710,
|
336 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_YDESC = 1711,
|
337 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_IDXDESC = 1712,
|
338 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_ALPHA = 1713,
|
339 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_BETA = 1714,
|
340 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_DESC = 1716,
|
341 |
+
|
342 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_DXDESC = 1720,
|
343 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_DYDESC = 1721,
|
344 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_IDXDESC = 1722,
|
345 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_ALPHA = 1723,
|
346 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_BETA = 1724,
|
347 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_DESC = 1725,
|
348 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_XDESC = 1726,
|
349 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_YDESC = 1727,
|
350 |
+
|
351 |
+
CUDNN_ATTR_OPERATION_CONCAT_AXIS = 1800,
|
352 |
+
CUDNN_ATTR_OPERATION_CONCAT_INPUT_DESCS = 1801,
|
353 |
+
CUDNN_ATTR_OPERATION_CONCAT_INPLACE_INDEX = 1802,
|
354 |
+
CUDNN_ATTR_OPERATION_CONCAT_OUTPUT_DESC = 1803,
|
355 |
+
|
356 |
+
CUDNN_ATTR_OPERATION_SIGNAL_MODE = 1900,
|
357 |
+
CUDNN_ATTR_OPERATION_SIGNAL_FLAGDESC = 1901,
|
358 |
+
CUDNN_ATTR_OPERATION_SIGNAL_VALUE = 1902,
|
359 |
+
CUDNN_ATTR_OPERATION_SIGNAL_XDESC = 1903,
|
360 |
+
CUDNN_ATTR_OPERATION_SIGNAL_YDESC = 1904,
|
361 |
+
|
362 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_MODE = 2000,
|
363 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_PHASE = 2001,
|
364 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_XDESC = 2002,
|
365 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_MEAN_DESC = 2003,
|
366 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_INV_VARIANCE_DESC = 2004,
|
367 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_SCALE_DESC = 2005,
|
368 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_BIAS_DESC = 2006,
|
369 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_EPSILON_DESC = 2007,
|
370 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_EXP_AVG_FACTOR_DESC = 2008,
|
371 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_INPUT_RUNNING_MEAN_DESC = 2009,
|
372 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_INPUT_RUNNING_VAR_DESC = 2010,
|
373 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_OUTPUT_RUNNING_MEAN_DESC = 2011,
|
374 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_OUTPUT_RUNNING_VAR_DESC = 2012,
|
375 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_YDESC = 2013,
|
376 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_PEER_STAT_DESCS = 2014,
|
377 |
+
|
378 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_MODE = 2100,
|
379 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_XDESC = 2101,
|
380 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_MEAN_DESC = 2102,
|
381 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_INV_VARIANCE_DESC = 2103,
|
382 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_DYDESC = 2104,
|
383 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_SCALE_DESC = 2105,
|
384 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_EPSILON_DESC = 2106,
|
385 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_DSCALE_DESC = 2107,
|
386 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_DBIAS_DESC = 2108,
|
387 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_DXDESC = 2109,
|
388 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_PEER_STAT_DESCS = 2110,
|
389 |
+
|
390 |
+
CUDNN_ATTR_OPERATION_RESHAPE_XDESC = 2200,
|
391 |
+
CUDNN_ATTR_OPERATION_RESHAPE_YDESC = 2201,
|
392 |
+
|
393 |
+
CUDNN_ATTR_RNG_DISTRIBUTION = 2300,
|
394 |
+
CUDNN_ATTR_RNG_NORMAL_DIST_MEAN = 2301,
|
395 |
+
CUDNN_ATTR_RNG_NORMAL_DIST_STANDARD_DEVIATION = 2302,
|
396 |
+
CUDNN_ATTR_RNG_UNIFORM_DIST_MAXIMUM = 2303,
|
397 |
+
CUDNN_ATTR_RNG_UNIFORM_DIST_MINIMUM = 2304,
|
398 |
+
CUDNN_ATTR_RNG_BERNOULLI_DIST_PROBABILITY = 2305,
|
399 |
+
|
400 |
+
CUDNN_ATTR_OPERATION_RNG_YDESC = 2310,
|
401 |
+
CUDNN_ATTR_OPERATION_RNG_SEED = 2311,
|
402 |
+
CUDNN_ATTR_OPERATION_RNG_DESC = 2312,
|
403 |
+
CUDNN_ATTR_OPERATION_RNG_OFFSET_DESC = 2313,
|
404 |
+
|
405 |
+
} cudnnBackendAttributeName_t;
|
406 |
+
|
407 |
+
typedef enum {
|
408 |
+
CUDNN_TYPE_HANDLE = 0,
|
409 |
+
CUDNN_TYPE_DATA_TYPE,
|
410 |
+
CUDNN_TYPE_BOOLEAN,
|
411 |
+
CUDNN_TYPE_INT64,
|
412 |
+
CUDNN_TYPE_FLOAT,
|
413 |
+
CUDNN_TYPE_DOUBLE,
|
414 |
+
CUDNN_TYPE_VOID_PTR,
|
415 |
+
CUDNN_TYPE_CONVOLUTION_MODE,
|
416 |
+
CUDNN_TYPE_HEUR_MODE,
|
417 |
+
CUDNN_TYPE_KNOB_TYPE,
|
418 |
+
CUDNN_TYPE_NAN_PROPOGATION,
|
419 |
+
CUDNN_TYPE_NUMERICAL_NOTE,
|
420 |
+
CUDNN_TYPE_LAYOUT_TYPE,
|
421 |
+
CUDNN_TYPE_ATTRIB_NAME,
|
422 |
+
CUDNN_TYPE_POINTWISE_MODE,
|
423 |
+
CUDNN_TYPE_BACKEND_DESCRIPTOR,
|
424 |
+
CUDNN_TYPE_GENSTATS_MODE,
|
425 |
+
CUDNN_TYPE_BN_FINALIZE_STATS_MODE,
|
426 |
+
CUDNN_TYPE_REDUCTION_OPERATOR_TYPE,
|
427 |
+
CUDNN_TYPE_BEHAVIOR_NOTE,
|
428 |
+
CUDNN_TYPE_TENSOR_REORDERING_MODE,
|
429 |
+
CUDNN_TYPE_RESAMPLE_MODE,
|
430 |
+
CUDNN_TYPE_PADDING_MODE,
|
431 |
+
CUDNN_TYPE_INT32,
|
432 |
+
CUDNN_TYPE_CHAR,
|
433 |
+
CUDNN_TYPE_SIGNAL_MODE,
|
434 |
+
CUDNN_TYPE_FRACTION,
|
435 |
+
CUDNN_TYPE_NORM_MODE,
|
436 |
+
CUDNN_TYPE_NORM_FWD_PHASE,
|
437 |
+
CUDNN_TYPE_RNG_DISTRIBUTION
|
438 |
+
} cudnnBackendAttributeType_t;
|
439 |
+
|
440 |
+
typedef enum {
|
441 |
+
CUDNN_BACKEND_POINTWISE_DESCRIPTOR = 0,
|
442 |
+
CUDNN_BACKEND_CONVOLUTION_DESCRIPTOR,
|
443 |
+
CUDNN_BACKEND_ENGINE_DESCRIPTOR,
|
444 |
+
CUDNN_BACKEND_ENGINECFG_DESCRIPTOR,
|
445 |
+
CUDNN_BACKEND_ENGINEHEUR_DESCRIPTOR,
|
446 |
+
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR,
|
447 |
+
CUDNN_BACKEND_INTERMEDIATE_INFO_DESCRIPTOR,
|
448 |
+
CUDNN_BACKEND_KNOB_CHOICE_DESCRIPTOR,
|
449 |
+
CUDNN_BACKEND_KNOB_INFO_DESCRIPTOR,
|
450 |
+
CUDNN_BACKEND_LAYOUT_INFO_DESCRIPTOR,
|
451 |
+
CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR,
|
452 |
+
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR,
|
453 |
+
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR,
|
454 |
+
CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR,
|
455 |
+
CUDNN_BACKEND_OPERATION_GEN_STATS_DESCRIPTOR,
|
456 |
+
CUDNN_BACKEND_OPERATIONGRAPH_DESCRIPTOR,
|
457 |
+
CUDNN_BACKEND_VARIANT_PACK_DESCRIPTOR,
|
458 |
+
CUDNN_BACKEND_TENSOR_DESCRIPTOR,
|
459 |
+
CUDNN_BACKEND_MATMUL_DESCRIPTOR,
|
460 |
+
CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR,
|
461 |
+
CUDNN_BACKEND_OPERATION_BN_FINALIZE_STATISTICS_DESCRIPTOR,
|
462 |
+
CUDNN_BACKEND_REDUCTION_DESCRIPTOR,
|
463 |
+
CUDNN_BACKEND_OPERATION_REDUCTION_DESCRIPTOR,
|
464 |
+
CUDNN_BACKEND_OPERATION_BN_BWD_WEIGHTS_DESCRIPTOR,
|
465 |
+
CUDNN_BACKEND_RESAMPLE_DESCRIPTOR,
|
466 |
+
CUDNN_BACKEND_OPERATION_RESAMPLE_FWD_DESCRIPTOR,
|
467 |
+
CUDNN_BACKEND_OPERATION_RESAMPLE_BWD_DESCRIPTOR,
|
468 |
+
CUDNN_BACKEND_OPERATION_CONCAT_DESCRIPTOR,
|
469 |
+
CUDNN_BACKEND_OPERATION_SIGNAL_DESCRIPTOR,
|
470 |
+
CUDNN_BACKEND_OPERATION_NORM_FORWARD_DESCRIPTOR,
|
471 |
+
CUDNN_BACKEND_OPERATION_NORM_BACKWARD_DESCRIPTOR,
|
472 |
+
CUDNN_BACKEND_OPERATION_RESHAPE_DESCRIPTOR,
|
473 |
+
CUDNN_BACKEND_RNG_DESCRIPTOR,
|
474 |
+
CUDNN_BACKEND_OPERATION_RNG_DESCRIPTOR
|
475 |
+
} cudnnBackendDescriptorType_t;
|
476 |
+
|
477 |
+
typedef enum {
|
478 |
+
CUDNN_NUMERICAL_NOTE_TENSOR_CORE = 0,
|
479 |
+
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS,
|
480 |
+
CUDNN_NUMERICAL_NOTE_REDUCED_PRECISION_REDUCTION,
|
481 |
+
CUDNN_NUMERICAL_NOTE_FFT,
|
482 |
+
CUDNN_NUMERICAL_NOTE_NONDETERMINISTIC,
|
483 |
+
CUDNN_NUMERICAL_NOTE_WINOGRAD,
|
484 |
+
CUDNN_NUMERICAL_NOTE_WINOGRAD_TILE_4x4,
|
485 |
+
CUDNN_NUMERICAL_NOTE_WINOGRAD_TILE_6x6,
|
486 |
+
CUDNN_NUMERICAL_NOTE_WINOGRAD_TILE_13x13,
|
487 |
+
CUDNN_NUMERICAL_NOTE_TYPE_COUNT,
|
488 |
+
} cudnnBackendNumericalNote_t;
|
489 |
+
|
490 |
+
typedef enum {
|
491 |
+
CUDNN_BEHAVIOR_NOTE_RUNTIME_COMPILATION = 0,
|
492 |
+
CUDNN_BEHAVIOR_NOTE_REQUIRES_FILTER_INT8x32_REORDER = 1,
|
493 |
+
CUDNN_BEHAVIOR_NOTE_REQUIRES_BIAS_INT8x32_REORDER = 2,
|
494 |
+
CUDNN_BEHAVIOR_NOTE_TYPE_COUNT,
|
495 |
+
} cudnnBackendBehaviorNote_t;
|
496 |
+
|
497 |
+
typedef enum {
|
498 |
+
CUDNN_KNOB_TYPE_SPLIT_K = 0,
|
499 |
+
CUDNN_KNOB_TYPE_SWIZZLE = 1,
|
500 |
+
CUDNN_KNOB_TYPE_TILE_SIZE = 2,
|
501 |
+
CUDNN_KNOB_TYPE_USE_TEX = 3,
|
502 |
+
CUDNN_KNOB_TYPE_EDGE = 4,
|
503 |
+
CUDNN_KNOB_TYPE_KBLOCK = 5,
|
504 |
+
CUDNN_KNOB_TYPE_LDGA = 6,
|
505 |
+
CUDNN_KNOB_TYPE_LDGB = 7,
|
506 |
+
CUDNN_KNOB_TYPE_CHUNK_K = 8,
|
507 |
+
CUDNN_KNOB_TYPE_SPLIT_H = 9,
|
508 |
+
CUDNN_KNOB_TYPE_WINO_TILE = 10,
|
509 |
+
CUDNN_KNOB_TYPE_MULTIPLY = 11,
|
510 |
+
CUDNN_KNOB_TYPE_SPLIT_K_BUF = 12,
|
511 |
+
CUDNN_KNOB_TYPE_TILEK = 13,
|
512 |
+
CUDNN_KNOB_TYPE_STAGES = 14,
|
513 |
+
CUDNN_KNOB_TYPE_REDUCTION_MODE = 15,
|
514 |
+
CUDNN_KNOB_TYPE_CTA_SPLIT_K_MODE = 16,
|
515 |
+
CUDNN_KNOB_TYPE_SPLIT_K_SLC = 17,
|
516 |
+
CUDNN_KNOB_TYPE_IDX_MODE = 18,
|
517 |
+
CUDNN_KNOB_TYPE_SLICED = 19,
|
518 |
+
CUDNN_KNOB_TYPE_SPLIT_RS = 20,
|
519 |
+
CUDNN_KNOB_TYPE_SINGLEBUFFER = 21,
|
520 |
+
CUDNN_KNOB_TYPE_LDGC = 22,
|
521 |
+
CUDNN_KNOB_TYPE_SPECFILT = 23,
|
522 |
+
CUDNN_KNOB_TYPE_KERNEL_CFG = 24,
|
523 |
+
CUDNN_KNOB_TYPE_WORKSPACE = 25,
|
524 |
+
CUDNN_KNOB_TYPE_TILE_CGA = 26,
|
525 |
+
CUDNN_KNOB_TYPE_TILE_CGA_M = 27,
|
526 |
+
CUDNN_KNOB_TYPE_TILE_CGA_N = 28,
|
527 |
+
CUDNN_KNOB_TYPE_BLOCK_SIZE = 29,
|
528 |
+
CUDNN_KNOB_TYPE_OCCUPANCY = 30,
|
529 |
+
CUDNN_KNOB_TYPE_ARRAY_SIZE_PER_THREAD = 31,
|
530 |
+
CUDNN_KNOB_TYPE_NUM_C_PER_BLOCK = 32,
|
531 |
+
CUDNN_KNOB_TYPE_COUNTS,
|
532 |
+
} cudnnBackendKnobType_t;
|
533 |
+
|
534 |
+
typedef enum {
|
535 |
+
CUDNN_LAYOUT_TYPE_PREFERRED_NCHW = 0,
|
536 |
+
CUDNN_LAYOUT_TYPE_PREFERRED_NHWC = 1,
|
537 |
+
CUDNN_LAYOUT_TYPE_PREFERRED_PAD4CK = 2,
|
538 |
+
CUDNN_LAYOUT_TYPE_PREFERRED_PAD8CK = 3,
|
539 |
+
CUDNN_LAYOUT_TYPE_COUNT = 4,
|
540 |
+
} cudnnBackendLayoutType_t;
|
541 |
+
|
542 |
+
typedef enum {
|
543 |
+
CUDNN_HEUR_MODE_INSTANT = 0,
|
544 |
+
CUDNN_HEUR_MODE_B = 1,
|
545 |
+
CUDNN_HEUR_MODE_FALLBACK = 2,
|
546 |
+
CUDNN_HEUR_MODE_A = 3,
|
547 |
+
CUDNN_HEUR_MODES_COUNT = 4,
|
548 |
+
} cudnnBackendHeurMode_t;
|
549 |
+
|
550 |
+
typedef enum {
|
551 |
+
CUDNN_TENSOR_REORDERING_NONE = 0,
|
552 |
+
CUDNN_TENSOR_REORDERING_INT8x32 = 1,
|
553 |
+
CUDNN_TENSOR_REORDERING_F16x16 = 2,
|
554 |
+
} cudnnBackendTensorReordering_t;
|
555 |
+
|
556 |
+
typedef enum {
|
557 |
+
CUDNN_ZERO_PAD = 0,
|
558 |
+
CUDNN_NEG_INF_PAD = 1,
|
559 |
+
CUDNN_EDGE_VAL_PAD = 2,
|
560 |
+
} cudnnPaddingMode_t;
|
561 |
+
|
562 |
+
typedef enum {
|
563 |
+
CUDNN_LAYER_NORM = 0,
|
564 |
+
CUDNN_INSTANCE_NORM = 1,
|
565 |
+
CUDNN_BATCH_NORM = 2,
|
566 |
+
CUDNN_GROUP_NORM = 3,
|
567 |
+
} cudnnBackendNormMode_t;
|
568 |
+
|
569 |
+
typedef enum {
|
570 |
+
CUDNN_NORM_FWD_INFERENCE = 0,
|
571 |
+
CUDNN_NORM_FWD_TRAINING = 1,
|
572 |
+
} cudnnBackendNormFwdPhase_t;
|
573 |
+
|
574 |
+
cudnnStatus_t CUDNNWINAPI
|
575 |
+
cudnnBackendCreateDescriptor(cudnnBackendDescriptorType_t descriptorType, cudnnBackendDescriptor_t *descriptor);
|
576 |
+
|
577 |
+
cudnnStatus_t CUDNNWINAPI
|
578 |
+
cudnnBackendDestroyDescriptor(cudnnBackendDescriptor_t descriptor);
|
579 |
+
|
580 |
+
cudnnStatus_t CUDNNWINAPI
|
581 |
+
cudnnBackendInitialize(cudnnBackendDescriptor_t descriptor);
|
582 |
+
|
583 |
+
cudnnStatus_t CUDNNWINAPI
|
584 |
+
cudnnBackendFinalize(cudnnBackendDescriptor_t descriptor);
|
585 |
+
|
586 |
+
cudnnStatus_t CUDNNWINAPI
|
587 |
+
cudnnBackendSetAttribute(cudnnBackendDescriptor_t descriptor,
|
588 |
+
cudnnBackendAttributeName_t attributeName,
|
589 |
+
cudnnBackendAttributeType_t attributeType,
|
590 |
+
int64_t elementCount,
|
591 |
+
const void *arrayOfElements);
|
592 |
+
|
593 |
+
cudnnStatus_t CUDNNWINAPI
|
594 |
+
cudnnBackendGetAttribute(cudnnBackendDescriptor_t const descriptor,
|
595 |
+
cudnnBackendAttributeName_t attributeName,
|
596 |
+
cudnnBackendAttributeType_t attributeType,
|
597 |
+
int64_t requestedElementCount,
|
598 |
+
int64_t *elementCount,
|
599 |
+
void *arrayOfElements);
|
600 |
+
|
601 |
+
cudnnStatus_t CUDNNWINAPI
|
602 |
+
cudnnBackendExecute(cudnnHandle_t handle, cudnnBackendDescriptor_t executionPlan, cudnnBackendDescriptor_t variantPack);
|
603 |
+
|
604 |
+
#if defined(__cplusplus)
|
605 |
+
}
|
606 |
+
#endif
|
607 |
+
|
608 |
+
#endif /* _CUDNN_BACKEND_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_infer.h
ADDED
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/*
|
51 |
+
* cudnn_cnn_infer : cuDNN's basic definitions and inference CNN functions.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_CNN_INFER_H_)
|
55 |
+
#define CUDNN_CNN_INFER_H_
|
56 |
+
|
57 |
+
#pragma once
|
58 |
+
#include <cuda_runtime.h>
|
59 |
+
#include <stdint.h>
|
60 |
+
|
61 |
+
#include "cudnn_version.h"
|
62 |
+
#include "cudnn_ops_infer.h"
|
63 |
+
|
64 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
65 |
+
#define CUDNN_CNN_INFER_MAJOR 8
|
66 |
+
#define CUDNN_CNN_INFER_MINOR 9
|
67 |
+
#define CUDNN_CNN_INFER_PATCH 2
|
68 |
+
|
69 |
+
#if (CUDNN_CNN_INFER_MAJOR != CUDNN_MAJOR) || (CUDNN_CNN_INFER_MINOR != CUDNN_MINOR) || \
|
70 |
+
(CUDNN_CNN_INFER_PATCH != CUDNN_PATCHLEVEL)
|
71 |
+
#error Version mismatch in cuDNN CNN INFER!!!
|
72 |
+
#endif
|
73 |
+
|
74 |
+
#if defined(__cplusplus)
|
75 |
+
extern "C" {
|
76 |
+
#endif
|
77 |
+
|
78 |
+
typedef struct cudnnConvolutionStruct *cudnnConvolutionDescriptor_t;
|
79 |
+
|
80 |
+
/*
|
81 |
+
* convolution mode
|
82 |
+
*/
|
83 |
+
typedef enum { CUDNN_CONVOLUTION = 0, CUDNN_CROSS_CORRELATION = 1 } cudnnConvolutionMode_t;
|
84 |
+
|
85 |
+
/*
|
86 |
+
* CUDNN Reorder
|
87 |
+
*/
|
88 |
+
typedef enum {
|
89 |
+
CUDNN_DEFAULT_REORDER = 0,
|
90 |
+
CUDNN_NO_REORDER = 1,
|
91 |
+
} cudnnReorderType_t;
|
92 |
+
|
93 |
+
typedef struct cudnnConvolutionFwdAlgoPerfStruct {
|
94 |
+
cudnnConvolutionFwdAlgo_t algo;
|
95 |
+
cudnnStatus_t status;
|
96 |
+
float time;
|
97 |
+
size_t memory;
|
98 |
+
cudnnDeterminism_t determinism;
|
99 |
+
cudnnMathType_t mathType;
|
100 |
+
int reserved[3];
|
101 |
+
} cudnnConvolutionFwdAlgoPerf_t;
|
102 |
+
|
103 |
+
/* Create an instance of convolution descriptor */
|
104 |
+
cudnnStatus_t CUDNNWINAPI
|
105 |
+
cudnnCreateConvolutionDescriptor(cudnnConvolutionDescriptor_t *convDesc);
|
106 |
+
|
107 |
+
/* Destroy an instance of convolution descriptor */
|
108 |
+
cudnnStatus_t CUDNNWINAPI
|
109 |
+
cudnnDestroyConvolutionDescriptor(cudnnConvolutionDescriptor_t convDesc);
|
110 |
+
|
111 |
+
cudnnStatus_t CUDNNWINAPI
|
112 |
+
cudnnSetConvolutionMathType(cudnnConvolutionDescriptor_t convDesc, cudnnMathType_t mathType);
|
113 |
+
|
114 |
+
cudnnStatus_t CUDNNWINAPI
|
115 |
+
cudnnGetConvolutionMathType(cudnnConvolutionDescriptor_t convDesc, cudnnMathType_t *mathType);
|
116 |
+
|
117 |
+
cudnnStatus_t CUDNNWINAPI
|
118 |
+
cudnnSetConvolutionGroupCount(cudnnConvolutionDescriptor_t convDesc, int groupCount);
|
119 |
+
|
120 |
+
cudnnStatus_t CUDNNWINAPI
|
121 |
+
cudnnGetConvolutionGroupCount(cudnnConvolutionDescriptor_t convDesc, int *groupCount);
|
122 |
+
|
123 |
+
cudnnStatus_t CUDNNWINAPI
|
124 |
+
cudnnSetConvolutionReorderType(cudnnConvolutionDescriptor_t convDesc, cudnnReorderType_t reorderType);
|
125 |
+
|
126 |
+
cudnnStatus_t CUDNNWINAPI
|
127 |
+
cudnnGetConvolutionReorderType(cudnnConvolutionDescriptor_t convDesc, cudnnReorderType_t *reorderType);
|
128 |
+
|
129 |
+
cudnnStatus_t CUDNNWINAPI
|
130 |
+
cudnnSetConvolution2dDescriptor(cudnnConvolutionDescriptor_t convDesc,
|
131 |
+
int pad_h, /* zero-padding height */
|
132 |
+
int pad_w, /* zero-padding width */
|
133 |
+
int u, /* vertical filter stride */
|
134 |
+
int v, /* horizontal filter stride */
|
135 |
+
int dilation_h, /* filter dilation in the vertical dimension */
|
136 |
+
int dilation_w, /* filter dilation in the horizontal dimension */
|
137 |
+
cudnnConvolutionMode_t mode,
|
138 |
+
cudnnDataType_t computeType);
|
139 |
+
|
140 |
+
cudnnStatus_t CUDNNWINAPI
|
141 |
+
cudnnGetConvolution2dDescriptor(const cudnnConvolutionDescriptor_t convDesc,
|
142 |
+
int *pad_h, /* zero-padding height */
|
143 |
+
int *pad_w, /* zero-padding width */
|
144 |
+
int *u, /* vertical filter stride */
|
145 |
+
int *v, /* horizontal filter stride */
|
146 |
+
int *dilation_h, /* filter dilation in the vertical dimension */
|
147 |
+
int *dilation_w, /* filter dilation in the horizontal dimension */
|
148 |
+
cudnnConvolutionMode_t *mode,
|
149 |
+
cudnnDataType_t *computeType);
|
150 |
+
|
151 |
+
cudnnStatus_t CUDNNWINAPI
|
152 |
+
cudnnSetConvolutionNdDescriptor(cudnnConvolutionDescriptor_t convDesc,
|
153 |
+
int arrayLength, /* nbDims-2 size */
|
154 |
+
const int padA[],
|
155 |
+
const int filterStrideA[],
|
156 |
+
const int dilationA[],
|
157 |
+
cudnnConvolutionMode_t mode,
|
158 |
+
cudnnDataType_t computeType); /* convolution data type */
|
159 |
+
|
160 |
+
/* Helper function to return the dimensions of the output tensor given a convolution descriptor */
|
161 |
+
cudnnStatus_t CUDNNWINAPI
|
162 |
+
cudnnGetConvolutionNdDescriptor(const cudnnConvolutionDescriptor_t convDesc,
|
163 |
+
int arrayLengthRequested,
|
164 |
+
int *arrayLength,
|
165 |
+
int padA[],
|
166 |
+
int strideA[],
|
167 |
+
int dilationA[],
|
168 |
+
cudnnConvolutionMode_t *mode,
|
169 |
+
cudnnDataType_t *computeType); /* convolution data type */
|
170 |
+
|
171 |
+
cudnnStatus_t CUDNNWINAPI
|
172 |
+
cudnnGetConvolution2dForwardOutputDim(const cudnnConvolutionDescriptor_t convDesc,
|
173 |
+
const cudnnTensorDescriptor_t inputTensorDesc,
|
174 |
+
const cudnnFilterDescriptor_t filterDesc,
|
175 |
+
int *n,
|
176 |
+
int *c,
|
177 |
+
int *h,
|
178 |
+
int *w);
|
179 |
+
|
180 |
+
/* Helper function to return the dimensions of the output tensor given a convolution descriptor */
|
181 |
+
cudnnStatus_t CUDNNWINAPI
|
182 |
+
cudnnGetConvolutionNdForwardOutputDim(const cudnnConvolutionDescriptor_t convDesc,
|
183 |
+
const cudnnTensorDescriptor_t inputTensorDesc,
|
184 |
+
const cudnnFilterDescriptor_t filterDesc,
|
185 |
+
int nbDims,
|
186 |
+
int tensorOuputDimA[]);
|
187 |
+
|
188 |
+
/* helper function to provide the convolution forward algo that fit best the requirement */
|
189 |
+
cudnnStatus_t CUDNNWINAPI
|
190 |
+
cudnnGetConvolutionForwardAlgorithmMaxCount(cudnnHandle_t handle, int *count);
|
191 |
+
|
192 |
+
cudnnStatus_t CUDNNWINAPI
|
193 |
+
cudnnGetConvolutionForwardAlgorithm_v7(cudnnHandle_t handle,
|
194 |
+
const cudnnTensorDescriptor_t srcDesc,
|
195 |
+
const cudnnFilterDescriptor_t filterDesc,
|
196 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
197 |
+
const cudnnTensorDescriptor_t destDesc,
|
198 |
+
const int requestedAlgoCount,
|
199 |
+
int *returnedAlgoCount,
|
200 |
+
cudnnConvolutionFwdAlgoPerf_t *perfResults);
|
201 |
+
|
202 |
+
cudnnStatus_t CUDNNWINAPI
|
203 |
+
cudnnFindConvolutionForwardAlgorithm(cudnnHandle_t handle,
|
204 |
+
const cudnnTensorDescriptor_t xDesc,
|
205 |
+
const cudnnFilterDescriptor_t wDesc,
|
206 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
207 |
+
const cudnnTensorDescriptor_t yDesc,
|
208 |
+
const int requestedAlgoCount,
|
209 |
+
int *returnedAlgoCount,
|
210 |
+
cudnnConvolutionFwdAlgoPerf_t *perfResults);
|
211 |
+
|
212 |
+
cudnnStatus_t CUDNNWINAPI
|
213 |
+
cudnnFindConvolutionForwardAlgorithmEx(cudnnHandle_t handle,
|
214 |
+
const cudnnTensorDescriptor_t xDesc,
|
215 |
+
const void *x,
|
216 |
+
const cudnnFilterDescriptor_t wDesc,
|
217 |
+
const void *w,
|
218 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
219 |
+
const cudnnTensorDescriptor_t yDesc,
|
220 |
+
void *y,
|
221 |
+
const int requestedAlgoCount,
|
222 |
+
int *returnedAlgoCount,
|
223 |
+
cudnnConvolutionFwdAlgoPerf_t *perfResults,
|
224 |
+
void *workSpace,
|
225 |
+
size_t workSpaceSizeInBytes);
|
226 |
+
|
227 |
+
cudnnStatus_t CUDNNWINAPI
|
228 |
+
cudnnIm2Col(cudnnHandle_t handle,
|
229 |
+
const cudnnTensorDescriptor_t xDesc,
|
230 |
+
const void *x,
|
231 |
+
const cudnnFilterDescriptor_t wDesc,
|
232 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
233 |
+
void *colBuffer);
|
234 |
+
|
235 |
+
cudnnStatus_t CUDNNWINAPI
|
236 |
+
cudnnReorderFilterAndBias(cudnnHandle_t handle,
|
237 |
+
const cudnnFilterDescriptor_t filterDesc,
|
238 |
+
cudnnReorderType_t reorderType,
|
239 |
+
const void *filterData,
|
240 |
+
void *reorderedFilterData,
|
241 |
+
int reorderBias,
|
242 |
+
const void *biasData,
|
243 |
+
void *reorderedBiasData);
|
244 |
+
|
245 |
+
/* Helper function to return the minimum size of the workspace to be passed to the convolution given an algo*/
|
246 |
+
cudnnStatus_t CUDNNWINAPI
|
247 |
+
cudnnGetConvolutionForwardWorkspaceSize(cudnnHandle_t handle,
|
248 |
+
const cudnnTensorDescriptor_t xDesc,
|
249 |
+
const cudnnFilterDescriptor_t wDesc,
|
250 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
251 |
+
const cudnnTensorDescriptor_t yDesc,
|
252 |
+
cudnnConvolutionFwdAlgo_t algo,
|
253 |
+
size_t *sizeInBytes);
|
254 |
+
|
255 |
+
/* Convolution functions: All of the form "output = alpha * Op(inputs) + beta * output" */
|
256 |
+
|
257 |
+
/* Function to perform the forward pass for batch convolution */
|
258 |
+
cudnnStatus_t CUDNNWINAPI
|
259 |
+
cudnnConvolutionForward(cudnnHandle_t handle,
|
260 |
+
const void *alpha,
|
261 |
+
const cudnnTensorDescriptor_t xDesc,
|
262 |
+
const void *x,
|
263 |
+
const cudnnFilterDescriptor_t wDesc,
|
264 |
+
const void *w,
|
265 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
266 |
+
cudnnConvolutionFwdAlgo_t algo,
|
267 |
+
void *workSpace,
|
268 |
+
size_t workSpaceSizeInBytes,
|
269 |
+
const void *beta,
|
270 |
+
const cudnnTensorDescriptor_t yDesc,
|
271 |
+
void *y);
|
272 |
+
|
273 |
+
/* Fused conv/bias/activation operation : y = Act( alpha1 * conv(x) + alpha2 * z + bias ) */
|
274 |
+
cudnnStatus_t CUDNNWINAPI
|
275 |
+
cudnnConvolutionBiasActivationForward(cudnnHandle_t handle,
|
276 |
+
const void *alpha1,
|
277 |
+
const cudnnTensorDescriptor_t xDesc,
|
278 |
+
const void *x,
|
279 |
+
const cudnnFilterDescriptor_t wDesc,
|
280 |
+
const void *w,
|
281 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
282 |
+
cudnnConvolutionFwdAlgo_t algo,
|
283 |
+
void *workSpace,
|
284 |
+
size_t workSpaceSizeInBytes,
|
285 |
+
const void *alpha2,
|
286 |
+
const cudnnTensorDescriptor_t zDesc,
|
287 |
+
const void *z,
|
288 |
+
const cudnnTensorDescriptor_t biasDesc,
|
289 |
+
const void *bias,
|
290 |
+
const cudnnActivationDescriptor_t activationDesc,
|
291 |
+
const cudnnTensorDescriptor_t yDesc,
|
292 |
+
void *y);
|
293 |
+
|
294 |
+
/* helper function to provide the convolution backward data algo that fit best the requirement */
|
295 |
+
|
296 |
+
typedef struct cudnnConvolutionBwdDataAlgoPerfStruct {
|
297 |
+
cudnnConvolutionBwdDataAlgo_t algo;
|
298 |
+
cudnnStatus_t status;
|
299 |
+
float time;
|
300 |
+
size_t memory;
|
301 |
+
cudnnDeterminism_t determinism;
|
302 |
+
cudnnMathType_t mathType;
|
303 |
+
int reserved[3];
|
304 |
+
} cudnnConvolutionBwdDataAlgoPerf_t;
|
305 |
+
|
306 |
+
cudnnStatus_t CUDNNWINAPI
|
307 |
+
cudnnGetConvolutionBackwardDataAlgorithmMaxCount(cudnnHandle_t handle, int *count);
|
308 |
+
|
309 |
+
cudnnStatus_t CUDNNWINAPI
|
310 |
+
cudnnFindConvolutionBackwardDataAlgorithm(cudnnHandle_t handle,
|
311 |
+
const cudnnFilterDescriptor_t wDesc,
|
312 |
+
const cudnnTensorDescriptor_t dyDesc,
|
313 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
314 |
+
const cudnnTensorDescriptor_t dxDesc,
|
315 |
+
const int requestedAlgoCount,
|
316 |
+
int *returnedAlgoCount,
|
317 |
+
cudnnConvolutionBwdDataAlgoPerf_t *perfResults);
|
318 |
+
|
319 |
+
cudnnStatus_t CUDNNWINAPI
|
320 |
+
cudnnFindConvolutionBackwardDataAlgorithmEx(cudnnHandle_t handle,
|
321 |
+
const cudnnFilterDescriptor_t wDesc,
|
322 |
+
const void *w,
|
323 |
+
const cudnnTensorDescriptor_t dyDesc,
|
324 |
+
const void *dy,
|
325 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
326 |
+
const cudnnTensorDescriptor_t dxDesc,
|
327 |
+
void *dx,
|
328 |
+
const int requestedAlgoCount,
|
329 |
+
int *returnedAlgoCount,
|
330 |
+
cudnnConvolutionBwdDataAlgoPerf_t *perfResults,
|
331 |
+
void *workSpace,
|
332 |
+
size_t workSpaceSizeInBytes);
|
333 |
+
|
334 |
+
cudnnStatus_t CUDNNWINAPI
|
335 |
+
cudnnGetConvolutionBackwardDataAlgorithm_v7(cudnnHandle_t handle,
|
336 |
+
const cudnnFilterDescriptor_t filterDesc,
|
337 |
+
const cudnnTensorDescriptor_t diffDesc,
|
338 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
339 |
+
const cudnnTensorDescriptor_t gradDesc,
|
340 |
+
const int requestedAlgoCount,
|
341 |
+
int *returnedAlgoCount,
|
342 |
+
cudnnConvolutionBwdDataAlgoPerf_t *perfResults);
|
343 |
+
|
344 |
+
/*
|
345 |
+
* convolution algorithm (which requires potentially some workspace)
|
346 |
+
*/
|
347 |
+
|
348 |
+
/* Helper function to return the minimum size of the workspace to be passed to the convolution given an algo*/
|
349 |
+
cudnnStatus_t CUDNNWINAPI
|
350 |
+
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnnHandle_t handle,
|
351 |
+
const cudnnFilterDescriptor_t wDesc,
|
352 |
+
const cudnnTensorDescriptor_t dyDesc,
|
353 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
354 |
+
const cudnnTensorDescriptor_t dxDesc,
|
355 |
+
cudnnConvolutionBwdDataAlgo_t algo,
|
356 |
+
size_t *sizeInBytes);
|
357 |
+
|
358 |
+
cudnnStatus_t CUDNNWINAPI
|
359 |
+
cudnnConvolutionBackwardData(cudnnHandle_t handle,
|
360 |
+
const void *alpha,
|
361 |
+
const cudnnFilterDescriptor_t wDesc,
|
362 |
+
const void *w,
|
363 |
+
const cudnnTensorDescriptor_t dyDesc,
|
364 |
+
const void *dy,
|
365 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
366 |
+
cudnnConvolutionBwdDataAlgo_t algo,
|
367 |
+
void *workSpace,
|
368 |
+
size_t workSpaceSizeInBytes,
|
369 |
+
const void *beta,
|
370 |
+
const cudnnTensorDescriptor_t dxDesc,
|
371 |
+
void *dx);
|
372 |
+
|
373 |
+
/* Helper function to calculate folding descriptors for dgrad */
|
374 |
+
cudnnStatus_t CUDNNWINAPI
|
375 |
+
cudnnGetFoldedConvBackwardDataDescriptors(const cudnnHandle_t handle,
|
376 |
+
const cudnnFilterDescriptor_t filterDesc,
|
377 |
+
const cudnnTensorDescriptor_t diffDesc,
|
378 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
379 |
+
const cudnnTensorDescriptor_t gradDesc,
|
380 |
+
const cudnnTensorFormat_t transformFormat,
|
381 |
+
cudnnFilterDescriptor_t foldedFilterDesc,
|
382 |
+
cudnnTensorDescriptor_t paddedDiffDesc,
|
383 |
+
cudnnConvolutionDescriptor_t foldedConvDesc,
|
384 |
+
cudnnTensorDescriptor_t foldedGradDesc,
|
385 |
+
cudnnTensorTransformDescriptor_t filterFoldTransDesc,
|
386 |
+
cudnnTensorTransformDescriptor_t diffPadTransDesc,
|
387 |
+
cudnnTensorTransformDescriptor_t gradFoldTransDesc,
|
388 |
+
cudnnTensorTransformDescriptor_t gradUnfoldTransDesc);
|
389 |
+
|
390 |
+
/* cudnnFusedOps... */
|
391 |
+
struct cudnnFusedOpsConstParamStruct;
|
392 |
+
typedef struct cudnnFusedOpsConstParamStruct *cudnnFusedOpsConstParamPack_t;
|
393 |
+
|
394 |
+
struct cudnnFusedOpsVariantParamStruct;
|
395 |
+
typedef struct cudnnFusedOpsVariantParamStruct *cudnnFusedOpsVariantParamPack_t;
|
396 |
+
|
397 |
+
struct cudnnFusedOpsPlanStruct;
|
398 |
+
typedef struct cudnnFusedOpsPlanStruct *cudnnFusedOpsPlan_t;
|
399 |
+
|
400 |
+
typedef enum {
|
401 |
+
/* each op in [ ] can be disabled by passing NULL ptr */
|
402 |
+
/* [per channel scale], [per channel bias], [activation], convolution, [generate BN stats] */
|
403 |
+
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS = 0,
|
404 |
+
/* [per channel scale], [per channel bias], [activation], convolutionBackwardWeights */
|
405 |
+
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD = 1,
|
406 |
+
/* utility for BN training in BN-conv fusion */
|
407 |
+
/* computes the equivalent scale and bias from ySum ySqSum and learned scale, bias */
|
408 |
+
/* optionally update running stats and generate saved stats */
|
409 |
+
CUDNN_FUSED_BN_FINALIZE_STATISTICS_TRAINING = 2,
|
410 |
+
/* utility for BN inference in BN-conv fusion */
|
411 |
+
/* computes the equivalent scale and bias from learned running stats and learned scale, bias */
|
412 |
+
CUDNN_FUSED_BN_FINALIZE_STATISTICS_INFERENCE = 3,
|
413 |
+
/* reserved for future use: convolution, [per channel scale], [per channel bias], [residual add], [activation] */
|
414 |
+
CUDNN_FUSED_CONV_SCALE_BIAS_ADD_ACTIVATION = 4,
|
415 |
+
/* reserved for future use: [per channel scale], [per channel bias], [residual add], activation, bitmask */
|
416 |
+
CUDNN_FUSED_SCALE_BIAS_ADD_ACTIVATION_GEN_BITMASK = 5,
|
417 |
+
/* reserved for future use */
|
418 |
+
CUDNN_FUSED_DACTIVATION_FORK_DBATCHNORM = 6,
|
419 |
+
} cudnnFusedOps_t;
|
420 |
+
|
421 |
+
typedef enum {
|
422 |
+
/* set XDESC: pass previously initialized cudnnTensorDescriptor_t */
|
423 |
+
/* get XDESC: pass previously created cudnnTensorDescriptor_t */
|
424 |
+
CUDNN_PARAM_XDESC = 0,
|
425 |
+
/* set/get XDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
426 |
+
CUDNN_PARAM_XDATA_PLACEHOLDER = 1,
|
427 |
+
/* set/get BN_MODE: pass cudnnBatchNormMode_t* */
|
428 |
+
CUDNN_PARAM_BN_MODE = 2,
|
429 |
+
/* set CUDNN_PARAM_BN_EQSCALEBIAS_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
430 |
+
/* get CUDNN_PARAM_BN_EQSCALEBIAS_DESC: pass previously created cudnnTensorDescriptor_t */
|
431 |
+
CUDNN_PARAM_BN_EQSCALEBIAS_DESC = 3,
|
432 |
+
/* set/get BN_EQSCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
433 |
+
CUDNN_PARAM_BN_EQSCALE_PLACEHOLDER = 4,
|
434 |
+
/* set/get BN_EQBIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
435 |
+
CUDNN_PARAM_BN_EQBIAS_PLACEHOLDER = 5,
|
436 |
+
/* set ACTIVATION_DESC: pass previously initialized cudnnActivationDescriptor_t */
|
437 |
+
/* get ACTIVATION_DESC: pass previously created cudnnActivationDescriptor_t */
|
438 |
+
CUDNN_PARAM_ACTIVATION_DESC = 6,
|
439 |
+
/* set CONV_DESC: pass previously initialized cudnnConvolutionDescriptor_t */
|
440 |
+
/* get CONV_DESC: pass previously created cudnnConvolutionDescriptor_t */
|
441 |
+
CUDNN_PARAM_CONV_DESC = 7,
|
442 |
+
/* set WDESC: pass previously initialized cudnnFilterDescriptor_t */
|
443 |
+
/* get WDESC: pass previously created cudnnFilterDescriptor_t */
|
444 |
+
CUDNN_PARAM_WDESC = 8,
|
445 |
+
/* set/get WDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
446 |
+
CUDNN_PARAM_WDATA_PLACEHOLDER = 9,
|
447 |
+
/* set DWDESC: pass previously initialized cudnnFilterDescriptor_t */
|
448 |
+
/* get DWDESC: pass previously created cudnnFilterDescriptor_t */
|
449 |
+
CUDNN_PARAM_DWDESC = 10,
|
450 |
+
/* set/get DWDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
451 |
+
CUDNN_PARAM_DWDATA_PLACEHOLDER = 11,
|
452 |
+
/* set YDESC: pass previously initialized cudnnTensorDescriptor_t */
|
453 |
+
/* get YDESC: pass previously created cudnnTensorDescriptor_t */
|
454 |
+
CUDNN_PARAM_YDESC = 12,
|
455 |
+
/* set/get YDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
456 |
+
CUDNN_PARAM_YDATA_PLACEHOLDER = 13,
|
457 |
+
/* set DYDESC: pass previously initialized cudnnTensorDescriptor_t */
|
458 |
+
/* get DYDESC: pass previously created cudnnTensorDescriptor_t */
|
459 |
+
CUDNN_PARAM_DYDESC = 14,
|
460 |
+
/* set/get DYDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
461 |
+
CUDNN_PARAM_DYDATA_PLACEHOLDER = 15,
|
462 |
+
/* set YSTATS_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
463 |
+
/* get YSTATS_DESC: pass previously created cudnnTensorDescriptor_t */
|
464 |
+
CUDNN_PARAM_YSTATS_DESC = 16,
|
465 |
+
/* set/get YSUM_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
466 |
+
CUDNN_PARAM_YSUM_PLACEHOLDER = 17,
|
467 |
+
/* set/get YSQSUM_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
468 |
+
CUDNN_PARAM_YSQSUM_PLACEHOLDER = 18,
|
469 |
+
/* set CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
470 |
+
/* get CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC: pass previously created cudnnTensorDescriptor_t */
|
471 |
+
CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC = 19,
|
472 |
+
/* set/get CUDNN_PARAM_BN_SCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
473 |
+
CUDNN_PARAM_BN_SCALE_PLACEHOLDER = 20,
|
474 |
+
/* set/get CUDNN_PARAM_BN_BIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
475 |
+
CUDNN_PARAM_BN_BIAS_PLACEHOLDER = 21,
|
476 |
+
/* set/get CUDNN_PARAM_BN_SAVED_MEAN_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
477 |
+
CUDNN_PARAM_BN_SAVED_MEAN_PLACEHOLDER = 22,
|
478 |
+
/* set/get CUDNN_PARAM_BN_SAVED_INVSTD_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
479 |
+
CUDNN_PARAM_BN_SAVED_INVSTD_PLACEHOLDER = 23,
|
480 |
+
/* set/get CUDNN_PARAM_BN_RUNNING_MEAN_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
481 |
+
CUDNN_PARAM_BN_RUNNING_MEAN_PLACEHOLDER = 24,
|
482 |
+
/* set/get CUDNN_PARAM_BN_RUNNING_VAR_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
483 |
+
CUDNN_PARAM_BN_RUNNING_VAR_PLACEHOLDER = 25,
|
484 |
+
|
485 |
+
/* set ZDESC: pass previously initialized cudnnTensorDescriptor_t */
|
486 |
+
/* get ZDESC: pass previously created cudnnTensorDescriptor_t */
|
487 |
+
CUDNN_PARAM_ZDESC = 26,
|
488 |
+
/* set/get ZDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
489 |
+
CUDNN_PARAM_ZDATA_PLACEHOLDER = 27,
|
490 |
+
/* set BN_Z_EQSCALEBIAS_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
491 |
+
/* get BN_Z_EQSCALEBIAS_DESC: pass previously created cudnnTensorDescriptor_t */
|
492 |
+
CUDNN_PARAM_BN_Z_EQSCALEBIAS_DESC = 28,
|
493 |
+
/* set/get BN_Z_EQSCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
494 |
+
CUDNN_PARAM_BN_Z_EQSCALE_PLACEHOLDER = 29,
|
495 |
+
/* set/get BN_Z_EQBIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
496 |
+
CUDNN_PARAM_BN_Z_EQBIAS_PLACEHOLDER = 30,
|
497 |
+
|
498 |
+
/* set ACTIVATION_BITMASK_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
499 |
+
/* get ACTIVATION_BITMASK_DESC: pass previously created cudnnTensorDescriptor_t */
|
500 |
+
CUDNN_PARAM_ACTIVATION_BITMASK_DESC = 31,
|
501 |
+
/* set/get ACTIVATION_BITMASK_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
502 |
+
CUDNN_PARAM_ACTIVATION_BITMASK_PLACEHOLDER = 32,
|
503 |
+
|
504 |
+
/* set DXDESC: pass previously initialized cudnnTensorDescriptor_t */
|
505 |
+
/* get DXDESC: pass previously created cudnnTensorDescriptor_t */
|
506 |
+
CUDNN_PARAM_DXDESC = 33,
|
507 |
+
/* set/get DXDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
508 |
+
CUDNN_PARAM_DXDATA_PLACEHOLDER = 34,
|
509 |
+
/* set DZDESC: pass previously initialized cudnnTensorDescriptor_t */
|
510 |
+
/* get DZDESC: pass previously created cudnnTensorDescriptor_t */
|
511 |
+
CUDNN_PARAM_DZDESC = 35,
|
512 |
+
/* set/get DZDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
513 |
+
CUDNN_PARAM_DZDATA_PLACEHOLDER = 36,
|
514 |
+
/* set/get CUDNN_PARAM_BN_DSCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
515 |
+
CUDNN_PARAM_BN_DSCALE_PLACEHOLDER = 37,
|
516 |
+
/* set/get CUDNN_PARAM_BN_DBIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
517 |
+
CUDNN_PARAM_BN_DBIAS_PLACEHOLDER = 38,
|
518 |
+
} cudnnFusedOpsConstParamLabel_t;
|
519 |
+
|
520 |
+
typedef enum {
|
521 |
+
CUDNN_PTR_NULL = 0,
|
522 |
+
CUDNN_PTR_ELEM_ALIGNED = 1,
|
523 |
+
CUDNN_PTR_16B_ALIGNED = 2,
|
524 |
+
} cudnnFusedOpsPointerPlaceHolder_t;
|
525 |
+
|
526 |
+
typedef enum {
|
527 |
+
/* set: pass void* pointing to dev memory */
|
528 |
+
/* get: pass void** pointing to host memory */
|
529 |
+
CUDNN_PTR_XDATA = 0,
|
530 |
+
CUDNN_PTR_BN_EQSCALE = 1,
|
531 |
+
CUDNN_PTR_BN_EQBIAS = 2,
|
532 |
+
CUDNN_PTR_WDATA = 3,
|
533 |
+
CUDNN_PTR_DWDATA = 4,
|
534 |
+
CUDNN_PTR_YDATA = 5,
|
535 |
+
CUDNN_PTR_DYDATA = 6,
|
536 |
+
CUDNN_PTR_YSUM = 7,
|
537 |
+
CUDNN_PTR_YSQSUM = 8,
|
538 |
+
CUDNN_PTR_WORKSPACE = 9,
|
539 |
+
CUDNN_PTR_BN_SCALE = 10,
|
540 |
+
CUDNN_PTR_BN_BIAS = 11,
|
541 |
+
CUDNN_PTR_BN_SAVED_MEAN = 12,
|
542 |
+
CUDNN_PTR_BN_SAVED_INVSTD = 13,
|
543 |
+
CUDNN_PTR_BN_RUNNING_MEAN = 14,
|
544 |
+
CUDNN_PTR_BN_RUNNING_VAR = 15,
|
545 |
+
CUDNN_PTR_ZDATA = 16,
|
546 |
+
CUDNN_PTR_BN_Z_EQSCALE = 17,
|
547 |
+
CUDNN_PTR_BN_Z_EQBIAS = 18,
|
548 |
+
CUDNN_PTR_ACTIVATION_BITMASK = 19,
|
549 |
+
CUDNN_PTR_DXDATA = 20,
|
550 |
+
CUDNN_PTR_DZDATA = 21,
|
551 |
+
CUDNN_PTR_BN_DSCALE = 22,
|
552 |
+
CUDNN_PTR_BN_DBIAS = 23,
|
553 |
+
|
554 |
+
/* set/get: pass size_t* pointing to host memory */
|
555 |
+
CUDNN_SCALAR_SIZE_T_WORKSPACE_SIZE_IN_BYTES = 100,
|
556 |
+
/* set/get: pass int64_t* pointing to host memory */
|
557 |
+
CUDNN_SCALAR_INT64_T_BN_ACCUMULATION_COUNT = 101,
|
558 |
+
/* set/get: pass double* pointing to host memory */
|
559 |
+
CUDNN_SCALAR_DOUBLE_BN_EXP_AVG_FACTOR = 102,
|
560 |
+
/* set/get: pass double* pointing to host memory */
|
561 |
+
CUDNN_SCALAR_DOUBLE_BN_EPSILON = 103,
|
562 |
+
} cudnnFusedOpsVariantParamLabel_t;
|
563 |
+
|
564 |
+
cudnnStatus_t CUDNNWINAPI
|
565 |
+
cudnnCnnInferVersionCheck(void);
|
566 |
+
|
567 |
+
#if defined(__cplusplus)
|
568 |
+
}
|
569 |
+
#endif
|
570 |
+
|
571 |
+
#endif /* CUDNN_CNN_INFER_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_infer_v8.h
ADDED
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/*
|
51 |
+
* cudnn_cnn_infer : cuDNN's basic definitions and inference CNN functions.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_CNN_INFER_H_)
|
55 |
+
#define CUDNN_CNN_INFER_H_
|
56 |
+
|
57 |
+
#pragma once
|
58 |
+
#include <cuda_runtime.h>
|
59 |
+
#include <stdint.h>
|
60 |
+
|
61 |
+
#include "cudnn_version.h"
|
62 |
+
#include "cudnn_ops_infer.h"
|
63 |
+
|
64 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
65 |
+
#define CUDNN_CNN_INFER_MAJOR 8
|
66 |
+
#define CUDNN_CNN_INFER_MINOR 9
|
67 |
+
#define CUDNN_CNN_INFER_PATCH 2
|
68 |
+
|
69 |
+
#if (CUDNN_CNN_INFER_MAJOR != CUDNN_MAJOR) || (CUDNN_CNN_INFER_MINOR != CUDNN_MINOR) || \
|
70 |
+
(CUDNN_CNN_INFER_PATCH != CUDNN_PATCHLEVEL)
|
71 |
+
#error Version mismatch in cuDNN CNN INFER!!!
|
72 |
+
#endif
|
73 |
+
|
74 |
+
#if defined(__cplusplus)
|
75 |
+
extern "C" {
|
76 |
+
#endif
|
77 |
+
|
78 |
+
typedef struct cudnnConvolutionStruct *cudnnConvolutionDescriptor_t;
|
79 |
+
|
80 |
+
/*
|
81 |
+
* convolution mode
|
82 |
+
*/
|
83 |
+
typedef enum { CUDNN_CONVOLUTION = 0, CUDNN_CROSS_CORRELATION = 1 } cudnnConvolutionMode_t;
|
84 |
+
|
85 |
+
/*
|
86 |
+
* CUDNN Reorder
|
87 |
+
*/
|
88 |
+
typedef enum {
|
89 |
+
CUDNN_DEFAULT_REORDER = 0,
|
90 |
+
CUDNN_NO_REORDER = 1,
|
91 |
+
} cudnnReorderType_t;
|
92 |
+
|
93 |
+
typedef struct cudnnConvolutionFwdAlgoPerfStruct {
|
94 |
+
cudnnConvolutionFwdAlgo_t algo;
|
95 |
+
cudnnStatus_t status;
|
96 |
+
float time;
|
97 |
+
size_t memory;
|
98 |
+
cudnnDeterminism_t determinism;
|
99 |
+
cudnnMathType_t mathType;
|
100 |
+
int reserved[3];
|
101 |
+
} cudnnConvolutionFwdAlgoPerf_t;
|
102 |
+
|
103 |
+
/* Create an instance of convolution descriptor */
|
104 |
+
cudnnStatus_t CUDNNWINAPI
|
105 |
+
cudnnCreateConvolutionDescriptor(cudnnConvolutionDescriptor_t *convDesc);
|
106 |
+
|
107 |
+
/* Destroy an instance of convolution descriptor */
|
108 |
+
cudnnStatus_t CUDNNWINAPI
|
109 |
+
cudnnDestroyConvolutionDescriptor(cudnnConvolutionDescriptor_t convDesc);
|
110 |
+
|
111 |
+
cudnnStatus_t CUDNNWINAPI
|
112 |
+
cudnnSetConvolutionMathType(cudnnConvolutionDescriptor_t convDesc, cudnnMathType_t mathType);
|
113 |
+
|
114 |
+
cudnnStatus_t CUDNNWINAPI
|
115 |
+
cudnnGetConvolutionMathType(cudnnConvolutionDescriptor_t convDesc, cudnnMathType_t *mathType);
|
116 |
+
|
117 |
+
cudnnStatus_t CUDNNWINAPI
|
118 |
+
cudnnSetConvolutionGroupCount(cudnnConvolutionDescriptor_t convDesc, int groupCount);
|
119 |
+
|
120 |
+
cudnnStatus_t CUDNNWINAPI
|
121 |
+
cudnnGetConvolutionGroupCount(cudnnConvolutionDescriptor_t convDesc, int *groupCount);
|
122 |
+
|
123 |
+
cudnnStatus_t CUDNNWINAPI
|
124 |
+
cudnnSetConvolutionReorderType(cudnnConvolutionDescriptor_t convDesc, cudnnReorderType_t reorderType);
|
125 |
+
|
126 |
+
cudnnStatus_t CUDNNWINAPI
|
127 |
+
cudnnGetConvolutionReorderType(cudnnConvolutionDescriptor_t convDesc, cudnnReorderType_t *reorderType);
|
128 |
+
|
129 |
+
cudnnStatus_t CUDNNWINAPI
|
130 |
+
cudnnSetConvolution2dDescriptor(cudnnConvolutionDescriptor_t convDesc,
|
131 |
+
int pad_h, /* zero-padding height */
|
132 |
+
int pad_w, /* zero-padding width */
|
133 |
+
int u, /* vertical filter stride */
|
134 |
+
int v, /* horizontal filter stride */
|
135 |
+
int dilation_h, /* filter dilation in the vertical dimension */
|
136 |
+
int dilation_w, /* filter dilation in the horizontal dimension */
|
137 |
+
cudnnConvolutionMode_t mode,
|
138 |
+
cudnnDataType_t computeType);
|
139 |
+
|
140 |
+
cudnnStatus_t CUDNNWINAPI
|
141 |
+
cudnnGetConvolution2dDescriptor(const cudnnConvolutionDescriptor_t convDesc,
|
142 |
+
int *pad_h, /* zero-padding height */
|
143 |
+
int *pad_w, /* zero-padding width */
|
144 |
+
int *u, /* vertical filter stride */
|
145 |
+
int *v, /* horizontal filter stride */
|
146 |
+
int *dilation_h, /* filter dilation in the vertical dimension */
|
147 |
+
int *dilation_w, /* filter dilation in the horizontal dimension */
|
148 |
+
cudnnConvolutionMode_t *mode,
|
149 |
+
cudnnDataType_t *computeType);
|
150 |
+
|
151 |
+
cudnnStatus_t CUDNNWINAPI
|
152 |
+
cudnnSetConvolutionNdDescriptor(cudnnConvolutionDescriptor_t convDesc,
|
153 |
+
int arrayLength, /* nbDims-2 size */
|
154 |
+
const int padA[],
|
155 |
+
const int filterStrideA[],
|
156 |
+
const int dilationA[],
|
157 |
+
cudnnConvolutionMode_t mode,
|
158 |
+
cudnnDataType_t computeType); /* convolution data type */
|
159 |
+
|
160 |
+
/* Helper function to return the dimensions of the output tensor given a convolution descriptor */
|
161 |
+
cudnnStatus_t CUDNNWINAPI
|
162 |
+
cudnnGetConvolutionNdDescriptor(const cudnnConvolutionDescriptor_t convDesc,
|
163 |
+
int arrayLengthRequested,
|
164 |
+
int *arrayLength,
|
165 |
+
int padA[],
|
166 |
+
int strideA[],
|
167 |
+
int dilationA[],
|
168 |
+
cudnnConvolutionMode_t *mode,
|
169 |
+
cudnnDataType_t *computeType); /* convolution data type */
|
170 |
+
|
171 |
+
cudnnStatus_t CUDNNWINAPI
|
172 |
+
cudnnGetConvolution2dForwardOutputDim(const cudnnConvolutionDescriptor_t convDesc,
|
173 |
+
const cudnnTensorDescriptor_t inputTensorDesc,
|
174 |
+
const cudnnFilterDescriptor_t filterDesc,
|
175 |
+
int *n,
|
176 |
+
int *c,
|
177 |
+
int *h,
|
178 |
+
int *w);
|
179 |
+
|
180 |
+
/* Helper function to return the dimensions of the output tensor given a convolution descriptor */
|
181 |
+
cudnnStatus_t CUDNNWINAPI
|
182 |
+
cudnnGetConvolutionNdForwardOutputDim(const cudnnConvolutionDescriptor_t convDesc,
|
183 |
+
const cudnnTensorDescriptor_t inputTensorDesc,
|
184 |
+
const cudnnFilterDescriptor_t filterDesc,
|
185 |
+
int nbDims,
|
186 |
+
int tensorOuputDimA[]);
|
187 |
+
|
188 |
+
/* helper function to provide the convolution forward algo that fit best the requirement */
|
189 |
+
cudnnStatus_t CUDNNWINAPI
|
190 |
+
cudnnGetConvolutionForwardAlgorithmMaxCount(cudnnHandle_t handle, int *count);
|
191 |
+
|
192 |
+
cudnnStatus_t CUDNNWINAPI
|
193 |
+
cudnnGetConvolutionForwardAlgorithm_v7(cudnnHandle_t handle,
|
194 |
+
const cudnnTensorDescriptor_t srcDesc,
|
195 |
+
const cudnnFilterDescriptor_t filterDesc,
|
196 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
197 |
+
const cudnnTensorDescriptor_t destDesc,
|
198 |
+
const int requestedAlgoCount,
|
199 |
+
int *returnedAlgoCount,
|
200 |
+
cudnnConvolutionFwdAlgoPerf_t *perfResults);
|
201 |
+
|
202 |
+
cudnnStatus_t CUDNNWINAPI
|
203 |
+
cudnnFindConvolutionForwardAlgorithm(cudnnHandle_t handle,
|
204 |
+
const cudnnTensorDescriptor_t xDesc,
|
205 |
+
const cudnnFilterDescriptor_t wDesc,
|
206 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
207 |
+
const cudnnTensorDescriptor_t yDesc,
|
208 |
+
const int requestedAlgoCount,
|
209 |
+
int *returnedAlgoCount,
|
210 |
+
cudnnConvolutionFwdAlgoPerf_t *perfResults);
|
211 |
+
|
212 |
+
cudnnStatus_t CUDNNWINAPI
|
213 |
+
cudnnFindConvolutionForwardAlgorithmEx(cudnnHandle_t handle,
|
214 |
+
const cudnnTensorDescriptor_t xDesc,
|
215 |
+
const void *x,
|
216 |
+
const cudnnFilterDescriptor_t wDesc,
|
217 |
+
const void *w,
|
218 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
219 |
+
const cudnnTensorDescriptor_t yDesc,
|
220 |
+
void *y,
|
221 |
+
const int requestedAlgoCount,
|
222 |
+
int *returnedAlgoCount,
|
223 |
+
cudnnConvolutionFwdAlgoPerf_t *perfResults,
|
224 |
+
void *workSpace,
|
225 |
+
size_t workSpaceSizeInBytes);
|
226 |
+
|
227 |
+
cudnnStatus_t CUDNNWINAPI
|
228 |
+
cudnnIm2Col(cudnnHandle_t handle,
|
229 |
+
const cudnnTensorDescriptor_t xDesc,
|
230 |
+
const void *x,
|
231 |
+
const cudnnFilterDescriptor_t wDesc,
|
232 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
233 |
+
void *colBuffer);
|
234 |
+
|
235 |
+
cudnnStatus_t CUDNNWINAPI
|
236 |
+
cudnnReorderFilterAndBias(cudnnHandle_t handle,
|
237 |
+
const cudnnFilterDescriptor_t filterDesc,
|
238 |
+
cudnnReorderType_t reorderType,
|
239 |
+
const void *filterData,
|
240 |
+
void *reorderedFilterData,
|
241 |
+
int reorderBias,
|
242 |
+
const void *biasData,
|
243 |
+
void *reorderedBiasData);
|
244 |
+
|
245 |
+
/* Helper function to return the minimum size of the workspace to be passed to the convolution given an algo*/
|
246 |
+
cudnnStatus_t CUDNNWINAPI
|
247 |
+
cudnnGetConvolutionForwardWorkspaceSize(cudnnHandle_t handle,
|
248 |
+
const cudnnTensorDescriptor_t xDesc,
|
249 |
+
const cudnnFilterDescriptor_t wDesc,
|
250 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
251 |
+
const cudnnTensorDescriptor_t yDesc,
|
252 |
+
cudnnConvolutionFwdAlgo_t algo,
|
253 |
+
size_t *sizeInBytes);
|
254 |
+
|
255 |
+
/* Convolution functions: All of the form "output = alpha * Op(inputs) + beta * output" */
|
256 |
+
|
257 |
+
/* Function to perform the forward pass for batch convolution */
|
258 |
+
cudnnStatus_t CUDNNWINAPI
|
259 |
+
cudnnConvolutionForward(cudnnHandle_t handle,
|
260 |
+
const void *alpha,
|
261 |
+
const cudnnTensorDescriptor_t xDesc,
|
262 |
+
const void *x,
|
263 |
+
const cudnnFilterDescriptor_t wDesc,
|
264 |
+
const void *w,
|
265 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
266 |
+
cudnnConvolutionFwdAlgo_t algo,
|
267 |
+
void *workSpace,
|
268 |
+
size_t workSpaceSizeInBytes,
|
269 |
+
const void *beta,
|
270 |
+
const cudnnTensorDescriptor_t yDesc,
|
271 |
+
void *y);
|
272 |
+
|
273 |
+
/* Fused conv/bias/activation operation : y = Act( alpha1 * conv(x) + alpha2 * z + bias ) */
|
274 |
+
cudnnStatus_t CUDNNWINAPI
|
275 |
+
cudnnConvolutionBiasActivationForward(cudnnHandle_t handle,
|
276 |
+
const void *alpha1,
|
277 |
+
const cudnnTensorDescriptor_t xDesc,
|
278 |
+
const void *x,
|
279 |
+
const cudnnFilterDescriptor_t wDesc,
|
280 |
+
const void *w,
|
281 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
282 |
+
cudnnConvolutionFwdAlgo_t algo,
|
283 |
+
void *workSpace,
|
284 |
+
size_t workSpaceSizeInBytes,
|
285 |
+
const void *alpha2,
|
286 |
+
const cudnnTensorDescriptor_t zDesc,
|
287 |
+
const void *z,
|
288 |
+
const cudnnTensorDescriptor_t biasDesc,
|
289 |
+
const void *bias,
|
290 |
+
const cudnnActivationDescriptor_t activationDesc,
|
291 |
+
const cudnnTensorDescriptor_t yDesc,
|
292 |
+
void *y);
|
293 |
+
|
294 |
+
/* helper function to provide the convolution backward data algo that fit best the requirement */
|
295 |
+
|
296 |
+
typedef struct cudnnConvolutionBwdDataAlgoPerfStruct {
|
297 |
+
cudnnConvolutionBwdDataAlgo_t algo;
|
298 |
+
cudnnStatus_t status;
|
299 |
+
float time;
|
300 |
+
size_t memory;
|
301 |
+
cudnnDeterminism_t determinism;
|
302 |
+
cudnnMathType_t mathType;
|
303 |
+
int reserved[3];
|
304 |
+
} cudnnConvolutionBwdDataAlgoPerf_t;
|
305 |
+
|
306 |
+
cudnnStatus_t CUDNNWINAPI
|
307 |
+
cudnnGetConvolutionBackwardDataAlgorithmMaxCount(cudnnHandle_t handle, int *count);
|
308 |
+
|
309 |
+
cudnnStatus_t CUDNNWINAPI
|
310 |
+
cudnnFindConvolutionBackwardDataAlgorithm(cudnnHandle_t handle,
|
311 |
+
const cudnnFilterDescriptor_t wDesc,
|
312 |
+
const cudnnTensorDescriptor_t dyDesc,
|
313 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
314 |
+
const cudnnTensorDescriptor_t dxDesc,
|
315 |
+
const int requestedAlgoCount,
|
316 |
+
int *returnedAlgoCount,
|
317 |
+
cudnnConvolutionBwdDataAlgoPerf_t *perfResults);
|
318 |
+
|
319 |
+
cudnnStatus_t CUDNNWINAPI
|
320 |
+
cudnnFindConvolutionBackwardDataAlgorithmEx(cudnnHandle_t handle,
|
321 |
+
const cudnnFilterDescriptor_t wDesc,
|
322 |
+
const void *w,
|
323 |
+
const cudnnTensorDescriptor_t dyDesc,
|
324 |
+
const void *dy,
|
325 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
326 |
+
const cudnnTensorDescriptor_t dxDesc,
|
327 |
+
void *dx,
|
328 |
+
const int requestedAlgoCount,
|
329 |
+
int *returnedAlgoCount,
|
330 |
+
cudnnConvolutionBwdDataAlgoPerf_t *perfResults,
|
331 |
+
void *workSpace,
|
332 |
+
size_t workSpaceSizeInBytes);
|
333 |
+
|
334 |
+
cudnnStatus_t CUDNNWINAPI
|
335 |
+
cudnnGetConvolutionBackwardDataAlgorithm_v7(cudnnHandle_t handle,
|
336 |
+
const cudnnFilterDescriptor_t filterDesc,
|
337 |
+
const cudnnTensorDescriptor_t diffDesc,
|
338 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
339 |
+
const cudnnTensorDescriptor_t gradDesc,
|
340 |
+
const int requestedAlgoCount,
|
341 |
+
int *returnedAlgoCount,
|
342 |
+
cudnnConvolutionBwdDataAlgoPerf_t *perfResults);
|
343 |
+
|
344 |
+
/*
|
345 |
+
* convolution algorithm (which requires potentially some workspace)
|
346 |
+
*/
|
347 |
+
|
348 |
+
/* Helper function to return the minimum size of the workspace to be passed to the convolution given an algo*/
|
349 |
+
cudnnStatus_t CUDNNWINAPI
|
350 |
+
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnnHandle_t handle,
|
351 |
+
const cudnnFilterDescriptor_t wDesc,
|
352 |
+
const cudnnTensorDescriptor_t dyDesc,
|
353 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
354 |
+
const cudnnTensorDescriptor_t dxDesc,
|
355 |
+
cudnnConvolutionBwdDataAlgo_t algo,
|
356 |
+
size_t *sizeInBytes);
|
357 |
+
|
358 |
+
cudnnStatus_t CUDNNWINAPI
|
359 |
+
cudnnConvolutionBackwardData(cudnnHandle_t handle,
|
360 |
+
const void *alpha,
|
361 |
+
const cudnnFilterDescriptor_t wDesc,
|
362 |
+
const void *w,
|
363 |
+
const cudnnTensorDescriptor_t dyDesc,
|
364 |
+
const void *dy,
|
365 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
366 |
+
cudnnConvolutionBwdDataAlgo_t algo,
|
367 |
+
void *workSpace,
|
368 |
+
size_t workSpaceSizeInBytes,
|
369 |
+
const void *beta,
|
370 |
+
const cudnnTensorDescriptor_t dxDesc,
|
371 |
+
void *dx);
|
372 |
+
|
373 |
+
/* Helper function to calculate folding descriptors for dgrad */
|
374 |
+
cudnnStatus_t CUDNNWINAPI
|
375 |
+
cudnnGetFoldedConvBackwardDataDescriptors(const cudnnHandle_t handle,
|
376 |
+
const cudnnFilterDescriptor_t filterDesc,
|
377 |
+
const cudnnTensorDescriptor_t diffDesc,
|
378 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
379 |
+
const cudnnTensorDescriptor_t gradDesc,
|
380 |
+
const cudnnTensorFormat_t transformFormat,
|
381 |
+
cudnnFilterDescriptor_t foldedFilterDesc,
|
382 |
+
cudnnTensorDescriptor_t paddedDiffDesc,
|
383 |
+
cudnnConvolutionDescriptor_t foldedConvDesc,
|
384 |
+
cudnnTensorDescriptor_t foldedGradDesc,
|
385 |
+
cudnnTensorTransformDescriptor_t filterFoldTransDesc,
|
386 |
+
cudnnTensorTransformDescriptor_t diffPadTransDesc,
|
387 |
+
cudnnTensorTransformDescriptor_t gradFoldTransDesc,
|
388 |
+
cudnnTensorTransformDescriptor_t gradUnfoldTransDesc);
|
389 |
+
|
390 |
+
/* cudnnFusedOps... */
|
391 |
+
struct cudnnFusedOpsConstParamStruct;
|
392 |
+
typedef struct cudnnFusedOpsConstParamStruct *cudnnFusedOpsConstParamPack_t;
|
393 |
+
|
394 |
+
struct cudnnFusedOpsVariantParamStruct;
|
395 |
+
typedef struct cudnnFusedOpsVariantParamStruct *cudnnFusedOpsVariantParamPack_t;
|
396 |
+
|
397 |
+
struct cudnnFusedOpsPlanStruct;
|
398 |
+
typedef struct cudnnFusedOpsPlanStruct *cudnnFusedOpsPlan_t;
|
399 |
+
|
400 |
+
typedef enum {
|
401 |
+
/* each op in [ ] can be disabled by passing NULL ptr */
|
402 |
+
/* [per channel scale], [per channel bias], [activation], convolution, [generate BN stats] */
|
403 |
+
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS = 0,
|
404 |
+
/* [per channel scale], [per channel bias], [activation], convolutionBackwardWeights */
|
405 |
+
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD = 1,
|
406 |
+
/* utility for BN training in BN-conv fusion */
|
407 |
+
/* computes the equivalent scale and bias from ySum ySqSum and learned scale, bias */
|
408 |
+
/* optionally update running stats and generate saved stats */
|
409 |
+
CUDNN_FUSED_BN_FINALIZE_STATISTICS_TRAINING = 2,
|
410 |
+
/* utility for BN inference in BN-conv fusion */
|
411 |
+
/* computes the equivalent scale and bias from learned running stats and learned scale, bias */
|
412 |
+
CUDNN_FUSED_BN_FINALIZE_STATISTICS_INFERENCE = 3,
|
413 |
+
/* reserved for future use: convolution, [per channel scale], [per channel bias], [residual add], [activation] */
|
414 |
+
CUDNN_FUSED_CONV_SCALE_BIAS_ADD_ACTIVATION = 4,
|
415 |
+
/* reserved for future use: [per channel scale], [per channel bias], [residual add], activation, bitmask */
|
416 |
+
CUDNN_FUSED_SCALE_BIAS_ADD_ACTIVATION_GEN_BITMASK = 5,
|
417 |
+
/* reserved for future use */
|
418 |
+
CUDNN_FUSED_DACTIVATION_FORK_DBATCHNORM = 6,
|
419 |
+
} cudnnFusedOps_t;
|
420 |
+
|
421 |
+
typedef enum {
|
422 |
+
/* set XDESC: pass previously initialized cudnnTensorDescriptor_t */
|
423 |
+
/* get XDESC: pass previously created cudnnTensorDescriptor_t */
|
424 |
+
CUDNN_PARAM_XDESC = 0,
|
425 |
+
/* set/get XDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
426 |
+
CUDNN_PARAM_XDATA_PLACEHOLDER = 1,
|
427 |
+
/* set/get BN_MODE: pass cudnnBatchNormMode_t* */
|
428 |
+
CUDNN_PARAM_BN_MODE = 2,
|
429 |
+
/* set CUDNN_PARAM_BN_EQSCALEBIAS_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
430 |
+
/* get CUDNN_PARAM_BN_EQSCALEBIAS_DESC: pass previously created cudnnTensorDescriptor_t */
|
431 |
+
CUDNN_PARAM_BN_EQSCALEBIAS_DESC = 3,
|
432 |
+
/* set/get BN_EQSCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
433 |
+
CUDNN_PARAM_BN_EQSCALE_PLACEHOLDER = 4,
|
434 |
+
/* set/get BN_EQBIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
435 |
+
CUDNN_PARAM_BN_EQBIAS_PLACEHOLDER = 5,
|
436 |
+
/* set ACTIVATION_DESC: pass previously initialized cudnnActivationDescriptor_t */
|
437 |
+
/* get ACTIVATION_DESC: pass previously created cudnnActivationDescriptor_t */
|
438 |
+
CUDNN_PARAM_ACTIVATION_DESC = 6,
|
439 |
+
/* set CONV_DESC: pass previously initialized cudnnConvolutionDescriptor_t */
|
440 |
+
/* get CONV_DESC: pass previously created cudnnConvolutionDescriptor_t */
|
441 |
+
CUDNN_PARAM_CONV_DESC = 7,
|
442 |
+
/* set WDESC: pass previously initialized cudnnFilterDescriptor_t */
|
443 |
+
/* get WDESC: pass previously created cudnnFilterDescriptor_t */
|
444 |
+
CUDNN_PARAM_WDESC = 8,
|
445 |
+
/* set/get WDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
446 |
+
CUDNN_PARAM_WDATA_PLACEHOLDER = 9,
|
447 |
+
/* set DWDESC: pass previously initialized cudnnFilterDescriptor_t */
|
448 |
+
/* get DWDESC: pass previously created cudnnFilterDescriptor_t */
|
449 |
+
CUDNN_PARAM_DWDESC = 10,
|
450 |
+
/* set/get DWDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
451 |
+
CUDNN_PARAM_DWDATA_PLACEHOLDER = 11,
|
452 |
+
/* set YDESC: pass previously initialized cudnnTensorDescriptor_t */
|
453 |
+
/* get YDESC: pass previously created cudnnTensorDescriptor_t */
|
454 |
+
CUDNN_PARAM_YDESC = 12,
|
455 |
+
/* set/get YDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
456 |
+
CUDNN_PARAM_YDATA_PLACEHOLDER = 13,
|
457 |
+
/* set DYDESC: pass previously initialized cudnnTensorDescriptor_t */
|
458 |
+
/* get DYDESC: pass previously created cudnnTensorDescriptor_t */
|
459 |
+
CUDNN_PARAM_DYDESC = 14,
|
460 |
+
/* set/get DYDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
461 |
+
CUDNN_PARAM_DYDATA_PLACEHOLDER = 15,
|
462 |
+
/* set YSTATS_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
463 |
+
/* get YSTATS_DESC: pass previously created cudnnTensorDescriptor_t */
|
464 |
+
CUDNN_PARAM_YSTATS_DESC = 16,
|
465 |
+
/* set/get YSUM_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
466 |
+
CUDNN_PARAM_YSUM_PLACEHOLDER = 17,
|
467 |
+
/* set/get YSQSUM_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
468 |
+
CUDNN_PARAM_YSQSUM_PLACEHOLDER = 18,
|
469 |
+
/* set CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
470 |
+
/* get CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC: pass previously created cudnnTensorDescriptor_t */
|
471 |
+
CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC = 19,
|
472 |
+
/* set/get CUDNN_PARAM_BN_SCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
473 |
+
CUDNN_PARAM_BN_SCALE_PLACEHOLDER = 20,
|
474 |
+
/* set/get CUDNN_PARAM_BN_BIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
475 |
+
CUDNN_PARAM_BN_BIAS_PLACEHOLDER = 21,
|
476 |
+
/* set/get CUDNN_PARAM_BN_SAVED_MEAN_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
477 |
+
CUDNN_PARAM_BN_SAVED_MEAN_PLACEHOLDER = 22,
|
478 |
+
/* set/get CUDNN_PARAM_BN_SAVED_INVSTD_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
479 |
+
CUDNN_PARAM_BN_SAVED_INVSTD_PLACEHOLDER = 23,
|
480 |
+
/* set/get CUDNN_PARAM_BN_RUNNING_MEAN_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
481 |
+
CUDNN_PARAM_BN_RUNNING_MEAN_PLACEHOLDER = 24,
|
482 |
+
/* set/get CUDNN_PARAM_BN_RUNNING_VAR_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
483 |
+
CUDNN_PARAM_BN_RUNNING_VAR_PLACEHOLDER = 25,
|
484 |
+
|
485 |
+
/* set ZDESC: pass previously initialized cudnnTensorDescriptor_t */
|
486 |
+
/* get ZDESC: pass previously created cudnnTensorDescriptor_t */
|
487 |
+
CUDNN_PARAM_ZDESC = 26,
|
488 |
+
/* set/get ZDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
489 |
+
CUDNN_PARAM_ZDATA_PLACEHOLDER = 27,
|
490 |
+
/* set BN_Z_EQSCALEBIAS_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
491 |
+
/* get BN_Z_EQSCALEBIAS_DESC: pass previously created cudnnTensorDescriptor_t */
|
492 |
+
CUDNN_PARAM_BN_Z_EQSCALEBIAS_DESC = 28,
|
493 |
+
/* set/get BN_Z_EQSCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
494 |
+
CUDNN_PARAM_BN_Z_EQSCALE_PLACEHOLDER = 29,
|
495 |
+
/* set/get BN_Z_EQBIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
496 |
+
CUDNN_PARAM_BN_Z_EQBIAS_PLACEHOLDER = 30,
|
497 |
+
|
498 |
+
/* set ACTIVATION_BITMASK_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
499 |
+
/* get ACTIVATION_BITMASK_DESC: pass previously created cudnnTensorDescriptor_t */
|
500 |
+
CUDNN_PARAM_ACTIVATION_BITMASK_DESC = 31,
|
501 |
+
/* set/get ACTIVATION_BITMASK_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
502 |
+
CUDNN_PARAM_ACTIVATION_BITMASK_PLACEHOLDER = 32,
|
503 |
+
|
504 |
+
/* set DXDESC: pass previously initialized cudnnTensorDescriptor_t */
|
505 |
+
/* get DXDESC: pass previously created cudnnTensorDescriptor_t */
|
506 |
+
CUDNN_PARAM_DXDESC = 33,
|
507 |
+
/* set/get DXDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
508 |
+
CUDNN_PARAM_DXDATA_PLACEHOLDER = 34,
|
509 |
+
/* set DZDESC: pass previously initialized cudnnTensorDescriptor_t */
|
510 |
+
/* get DZDESC: pass previously created cudnnTensorDescriptor_t */
|
511 |
+
CUDNN_PARAM_DZDESC = 35,
|
512 |
+
/* set/get DZDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
513 |
+
CUDNN_PARAM_DZDATA_PLACEHOLDER = 36,
|
514 |
+
/* set/get CUDNN_PARAM_BN_DSCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
515 |
+
CUDNN_PARAM_BN_DSCALE_PLACEHOLDER = 37,
|
516 |
+
/* set/get CUDNN_PARAM_BN_DBIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
517 |
+
CUDNN_PARAM_BN_DBIAS_PLACEHOLDER = 38,
|
518 |
+
} cudnnFusedOpsConstParamLabel_t;
|
519 |
+
|
520 |
+
typedef enum {
|
521 |
+
CUDNN_PTR_NULL = 0,
|
522 |
+
CUDNN_PTR_ELEM_ALIGNED = 1,
|
523 |
+
CUDNN_PTR_16B_ALIGNED = 2,
|
524 |
+
} cudnnFusedOpsPointerPlaceHolder_t;
|
525 |
+
|
526 |
+
typedef enum {
|
527 |
+
/* set: pass void* pointing to dev memory */
|
528 |
+
/* get: pass void** pointing to host memory */
|
529 |
+
CUDNN_PTR_XDATA = 0,
|
530 |
+
CUDNN_PTR_BN_EQSCALE = 1,
|
531 |
+
CUDNN_PTR_BN_EQBIAS = 2,
|
532 |
+
CUDNN_PTR_WDATA = 3,
|
533 |
+
CUDNN_PTR_DWDATA = 4,
|
534 |
+
CUDNN_PTR_YDATA = 5,
|
535 |
+
CUDNN_PTR_DYDATA = 6,
|
536 |
+
CUDNN_PTR_YSUM = 7,
|
537 |
+
CUDNN_PTR_YSQSUM = 8,
|
538 |
+
CUDNN_PTR_WORKSPACE = 9,
|
539 |
+
CUDNN_PTR_BN_SCALE = 10,
|
540 |
+
CUDNN_PTR_BN_BIAS = 11,
|
541 |
+
CUDNN_PTR_BN_SAVED_MEAN = 12,
|
542 |
+
CUDNN_PTR_BN_SAVED_INVSTD = 13,
|
543 |
+
CUDNN_PTR_BN_RUNNING_MEAN = 14,
|
544 |
+
CUDNN_PTR_BN_RUNNING_VAR = 15,
|
545 |
+
CUDNN_PTR_ZDATA = 16,
|
546 |
+
CUDNN_PTR_BN_Z_EQSCALE = 17,
|
547 |
+
CUDNN_PTR_BN_Z_EQBIAS = 18,
|
548 |
+
CUDNN_PTR_ACTIVATION_BITMASK = 19,
|
549 |
+
CUDNN_PTR_DXDATA = 20,
|
550 |
+
CUDNN_PTR_DZDATA = 21,
|
551 |
+
CUDNN_PTR_BN_DSCALE = 22,
|
552 |
+
CUDNN_PTR_BN_DBIAS = 23,
|
553 |
+
|
554 |
+
/* set/get: pass size_t* pointing to host memory */
|
555 |
+
CUDNN_SCALAR_SIZE_T_WORKSPACE_SIZE_IN_BYTES = 100,
|
556 |
+
/* set/get: pass int64_t* pointing to host memory */
|
557 |
+
CUDNN_SCALAR_INT64_T_BN_ACCUMULATION_COUNT = 101,
|
558 |
+
/* set/get: pass double* pointing to host memory */
|
559 |
+
CUDNN_SCALAR_DOUBLE_BN_EXP_AVG_FACTOR = 102,
|
560 |
+
/* set/get: pass double* pointing to host memory */
|
561 |
+
CUDNN_SCALAR_DOUBLE_BN_EPSILON = 103,
|
562 |
+
} cudnnFusedOpsVariantParamLabel_t;
|
563 |
+
|
564 |
+
cudnnStatus_t CUDNNWINAPI
|
565 |
+
cudnnCnnInferVersionCheck(void);
|
566 |
+
|
567 |
+
#if defined(__cplusplus)
|
568 |
+
}
|
569 |
+
#endif
|
570 |
+
|
571 |
+
#endif /* CUDNN_CNN_INFER_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_train.h
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/*
|
51 |
+
* cudnn_cnn_train : cuDNN's basic definitions and inference CNN functions.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#pragma once
|
55 |
+
#include <cuda_runtime.h>
|
56 |
+
#include <stdint.h>
|
57 |
+
|
58 |
+
#include "cudnn_version.h"
|
59 |
+
#include "cudnn_ops_infer.h"
|
60 |
+
#include "cudnn_ops_train.h"
|
61 |
+
#include "cudnn_cnn_infer.h"
|
62 |
+
|
63 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
64 |
+
#define CUDNN_CNN_TRAIN_MAJOR 8
|
65 |
+
#define CUDNN_CNN_TRAIN_MINOR 9
|
66 |
+
#define CUDNN_CNN_TRAIN_PATCH 2
|
67 |
+
|
68 |
+
#if (CUDNN_CNN_TRAIN_MAJOR != CUDNN_MAJOR) || (CUDNN_CNN_TRAIN_MINOR != CUDNN_MINOR) || \
|
69 |
+
(CUDNN_CNN_TRAIN_PATCH != CUDNN_PATCHLEVEL)
|
70 |
+
#error Version mismatch in cuDNN CNN INFER!!!
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus)
|
74 |
+
extern "C" {
|
75 |
+
#endif
|
76 |
+
|
77 |
+
/* helper function to provide the convolution backward filter algo that fit best the requirement */
|
78 |
+
|
79 |
+
typedef struct cudnnConvolutionBwdFilterAlgoPerfStruct {
|
80 |
+
cudnnConvolutionBwdFilterAlgo_t algo;
|
81 |
+
cudnnStatus_t status;
|
82 |
+
float time;
|
83 |
+
size_t memory;
|
84 |
+
cudnnDeterminism_t determinism;
|
85 |
+
cudnnMathType_t mathType;
|
86 |
+
int reserved[3];
|
87 |
+
} cudnnConvolutionBwdFilterAlgoPerf_t;
|
88 |
+
|
89 |
+
cudnnStatus_t CUDNNWINAPI
|
90 |
+
cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(cudnnHandle_t handle, int *count);
|
91 |
+
|
92 |
+
cudnnStatus_t CUDNNWINAPI
|
93 |
+
cudnnFindConvolutionBackwardFilterAlgorithm(cudnnHandle_t handle,
|
94 |
+
const cudnnTensorDescriptor_t xDesc,
|
95 |
+
const cudnnTensorDescriptor_t dyDesc,
|
96 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
97 |
+
const cudnnFilterDescriptor_t dwDesc,
|
98 |
+
const int requestedAlgoCount,
|
99 |
+
int *returnedAlgoCount,
|
100 |
+
cudnnConvolutionBwdFilterAlgoPerf_t *perfResults);
|
101 |
+
|
102 |
+
cudnnStatus_t CUDNNWINAPI
|
103 |
+
cudnnFindConvolutionBackwardFilterAlgorithmEx(cudnnHandle_t handle,
|
104 |
+
const cudnnTensorDescriptor_t xDesc,
|
105 |
+
const void *x,
|
106 |
+
const cudnnTensorDescriptor_t dyDesc,
|
107 |
+
const void *y,
|
108 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
109 |
+
const cudnnFilterDescriptor_t dwDesc,
|
110 |
+
void *dw,
|
111 |
+
const int requestedAlgoCount,
|
112 |
+
int *returnedAlgoCount,
|
113 |
+
cudnnConvolutionBwdFilterAlgoPerf_t *perfResults,
|
114 |
+
void *workSpace,
|
115 |
+
size_t workSpaceSizeInBytes);
|
116 |
+
|
117 |
+
cudnnStatus_t CUDNNWINAPI
|
118 |
+
cudnnGetConvolutionBackwardFilterAlgorithm_v7(cudnnHandle_t handle,
|
119 |
+
const cudnnTensorDescriptor_t srcDesc,
|
120 |
+
const cudnnTensorDescriptor_t diffDesc,
|
121 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
122 |
+
const cudnnFilterDescriptor_t gradDesc,
|
123 |
+
const int requestedAlgoCount,
|
124 |
+
int *returnedAlgoCount,
|
125 |
+
cudnnConvolutionBwdFilterAlgoPerf_t *perfResults);
|
126 |
+
|
127 |
+
/*
|
128 |
+
* convolution algorithm (which requires potentially some workspace)
|
129 |
+
*/
|
130 |
+
|
131 |
+
/* Helper function to return the minimum size of the workspace to be passed to the convolution given an algo*/
|
132 |
+
cudnnStatus_t CUDNNWINAPI
|
133 |
+
cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnnHandle_t handle,
|
134 |
+
const cudnnTensorDescriptor_t xDesc,
|
135 |
+
const cudnnTensorDescriptor_t dyDesc,
|
136 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
137 |
+
const cudnnFilterDescriptor_t gradDesc,
|
138 |
+
cudnnConvolutionBwdFilterAlgo_t algo,
|
139 |
+
size_t *sizeInBytes);
|
140 |
+
|
141 |
+
cudnnStatus_t CUDNNWINAPI
|
142 |
+
cudnnConvolutionBackwardFilter(cudnnHandle_t handle,
|
143 |
+
const void *alpha,
|
144 |
+
const cudnnTensorDescriptor_t xDesc,
|
145 |
+
const void *x,
|
146 |
+
const cudnnTensorDescriptor_t dyDesc,
|
147 |
+
const void *dy,
|
148 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
149 |
+
cudnnConvolutionBwdFilterAlgo_t algo,
|
150 |
+
void *workSpace,
|
151 |
+
size_t workSpaceSizeInBytes,
|
152 |
+
const void *beta,
|
153 |
+
const cudnnFilterDescriptor_t dwDesc,
|
154 |
+
void *dw);
|
155 |
+
|
156 |
+
/* Function to compute the bias gradient for batch convolution */
|
157 |
+
cudnnStatus_t CUDNNWINAPI
|
158 |
+
cudnnConvolutionBackwardBias(cudnnHandle_t handle,
|
159 |
+
const void *alpha,
|
160 |
+
const cudnnTensorDescriptor_t dyDesc,
|
161 |
+
const void *dy,
|
162 |
+
const void *beta,
|
163 |
+
const cudnnTensorDescriptor_t dbDesc,
|
164 |
+
void *db);
|
165 |
+
|
166 |
+
cudnnStatus_t CUDNNWINAPI
|
167 |
+
cudnnCreateFusedOpsConstParamPack(cudnnFusedOpsConstParamPack_t *constPack, cudnnFusedOps_t ops);
|
168 |
+
|
169 |
+
cudnnStatus_t CUDNNWINAPI
|
170 |
+
cudnnDestroyFusedOpsConstParamPack(cudnnFusedOpsConstParamPack_t constPack);
|
171 |
+
|
172 |
+
cudnnStatus_t CUDNNWINAPI
|
173 |
+
cudnnSetFusedOpsConstParamPackAttribute(cudnnFusedOpsConstParamPack_t constPack,
|
174 |
+
cudnnFusedOpsConstParamLabel_t paramLabel,
|
175 |
+
const void *param);
|
176 |
+
|
177 |
+
cudnnStatus_t CUDNNWINAPI
|
178 |
+
cudnnGetFusedOpsConstParamPackAttribute(const cudnnFusedOpsConstParamPack_t constPack,
|
179 |
+
cudnnFusedOpsConstParamLabel_t paramLabel,
|
180 |
+
void *param,
|
181 |
+
int *isNULL);
|
182 |
+
|
183 |
+
cudnnStatus_t CUDNNWINAPI
|
184 |
+
cudnnCreateFusedOpsVariantParamPack(cudnnFusedOpsVariantParamPack_t *varPack, cudnnFusedOps_t ops);
|
185 |
+
|
186 |
+
cudnnStatus_t CUDNNWINAPI
|
187 |
+
cudnnDestroyFusedOpsVariantParamPack(cudnnFusedOpsVariantParamPack_t varPack);
|
188 |
+
|
189 |
+
cudnnStatus_t CUDNNWINAPI
|
190 |
+
cudnnSetFusedOpsVariantParamPackAttribute(cudnnFusedOpsVariantParamPack_t varPack,
|
191 |
+
cudnnFusedOpsVariantParamLabel_t paramLabel,
|
192 |
+
void *ptr);
|
193 |
+
|
194 |
+
cudnnStatus_t CUDNNWINAPI
|
195 |
+
cudnnGetFusedOpsVariantParamPackAttribute(const cudnnFusedOpsVariantParamPack_t varPack,
|
196 |
+
cudnnFusedOpsVariantParamLabel_t paramLabel,
|
197 |
+
void *ptr);
|
198 |
+
|
199 |
+
cudnnStatus_t CUDNNWINAPI
|
200 |
+
cudnnCreateFusedOpsPlan(cudnnFusedOpsPlan_t *plan, cudnnFusedOps_t ops);
|
201 |
+
|
202 |
+
cudnnStatus_t CUDNNWINAPI
|
203 |
+
cudnnDestroyFusedOpsPlan(cudnnFusedOpsPlan_t plan);
|
204 |
+
|
205 |
+
cudnnStatus_t CUDNNWINAPI
|
206 |
+
cudnnMakeFusedOpsPlan(cudnnHandle_t handle,
|
207 |
+
cudnnFusedOpsPlan_t plan,
|
208 |
+
const cudnnFusedOpsConstParamPack_t constPack,
|
209 |
+
size_t *workspaceSizeInBytes);
|
210 |
+
|
211 |
+
cudnnStatus_t CUDNNWINAPI
|
212 |
+
cudnnFusedOpsExecute(cudnnHandle_t handle, const cudnnFusedOpsPlan_t plan, cudnnFusedOpsVariantParamPack_t varPack);
|
213 |
+
|
214 |
+
cudnnStatus_t CUDNNWINAPI
|
215 |
+
cudnnCnnTrainVersionCheck(void);
|
216 |
+
|
217 |
+
#if defined(__cplusplus)
|
218 |
+
}
|
219 |
+
#endif
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_ops_infer.h
ADDED
@@ -0,0 +1,1183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/*
|
51 |
+
* cudnn_ops_infer : cuDNN's basic definitions and inference operations.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_OPS_INFER_H_)
|
55 |
+
#define CUDNN_OPS_INFER_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
|
62 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
63 |
+
#define CUDNN_OPS_INFER_MAJOR 8
|
64 |
+
#define CUDNN_OPS_INFER_MINOR 9
|
65 |
+
#define CUDNN_OPS_INFER_PATCH 2
|
66 |
+
|
67 |
+
#if (CUDNN_OPS_INFER_MAJOR != CUDNN_MAJOR) || (CUDNN_OPS_INFER_MINOR != CUDNN_MINOR) || \
|
68 |
+
(CUDNN_OPS_INFER_PATCH != CUDNN_PATCHLEVEL)
|
69 |
+
#error Version mismatch in cuDNN OPS INFER!!!
|
70 |
+
#endif
|
71 |
+
|
72 |
+
#ifndef CUDNNWINAPI
|
73 |
+
#ifdef _WIN32
|
74 |
+
#define CUDNNWINAPI __stdcall
|
75 |
+
#else
|
76 |
+
#define CUDNNWINAPI
|
77 |
+
#endif
|
78 |
+
#endif
|
79 |
+
|
80 |
+
/* Warnings for deprecated API-s are enabled using the CUDNN_WARN_DEPRECATED macro */
|
81 |
+
#if defined(CUDNN_WARN_DEPRECATED) && (defined(__GNUC__) || defined(__clang__))
|
82 |
+
/* GCC, Intel C/C++, Cray C/C++, CLANG, IBM XL C/C++ little endian */
|
83 |
+
#define CUDNN_DEPRECATED __attribute__((deprecated))
|
84 |
+
#elif defined(CUDNN_WARN_DEPRECATED) && defined(_MSC_VER)
|
85 |
+
/* Microsoft Visual C++ */
|
86 |
+
#define CUDNN_DEPRECATED __declspec(deprecated)
|
87 |
+
#elif defined(CUDNN_WARN_DEPRECATED) && (__cplusplus >= 201402L)
|
88 |
+
/* C++14 compilers */
|
89 |
+
#define CUDNN_DEPRECATED [[deprecated]]
|
90 |
+
#else
|
91 |
+
/* No support for the deprecated attribute */
|
92 |
+
#define CUDNN_DEPRECATED
|
93 |
+
#endif
|
94 |
+
|
95 |
+
#if defined(__cplusplus)
|
96 |
+
extern "C" {
|
97 |
+
#endif
|
98 |
+
|
99 |
+
struct cudnnContext;
|
100 |
+
typedef struct cudnnContext *cudnnHandle_t;
|
101 |
+
|
102 |
+
size_t CUDNNWINAPI
|
103 |
+
cudnnGetVersion(void);
|
104 |
+
|
105 |
+
size_t CUDNNWINAPI
|
106 |
+
cudnnGetMaxDeviceVersion(void);
|
107 |
+
|
108 |
+
/* Returns CUDA Runtime version statically linked against cudnn */
|
109 |
+
size_t CUDNNWINAPI
|
110 |
+
cudnnGetCudartVersion(void);
|
111 |
+
|
112 |
+
/*
|
113 |
+
* CUDNN return codes
|
114 |
+
*/
|
115 |
+
typedef enum {
|
116 |
+
CUDNN_STATUS_SUCCESS = 0,
|
117 |
+
CUDNN_STATUS_NOT_INITIALIZED = 1,
|
118 |
+
CUDNN_STATUS_ALLOC_FAILED = 2,
|
119 |
+
CUDNN_STATUS_BAD_PARAM = 3,
|
120 |
+
CUDNN_STATUS_INTERNAL_ERROR = 4,
|
121 |
+
CUDNN_STATUS_INVALID_VALUE = 5,
|
122 |
+
CUDNN_STATUS_ARCH_MISMATCH = 6,
|
123 |
+
CUDNN_STATUS_MAPPING_ERROR = 7,
|
124 |
+
CUDNN_STATUS_EXECUTION_FAILED = 8,
|
125 |
+
CUDNN_STATUS_NOT_SUPPORTED = 9,
|
126 |
+
CUDNN_STATUS_LICENSE_ERROR = 10,
|
127 |
+
CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING = 11,
|
128 |
+
CUDNN_STATUS_RUNTIME_IN_PROGRESS = 12,
|
129 |
+
CUDNN_STATUS_RUNTIME_FP_OVERFLOW = 13,
|
130 |
+
CUDNN_STATUS_VERSION_MISMATCH = 14,
|
131 |
+
} cudnnStatus_t;
|
132 |
+
|
133 |
+
/* human-readable error messages */
|
134 |
+
const char *CUDNNWINAPI
|
135 |
+
cudnnGetErrorString(cudnnStatus_t status);
|
136 |
+
|
137 |
+
/* Forward definition in this version only */
|
138 |
+
typedef struct cudnnRuntimeTag_t cudnnRuntimeTag_t;
|
139 |
+
|
140 |
+
typedef enum {
|
141 |
+
CUDNN_ERRQUERY_RAWCODE = 0,
|
142 |
+
CUDNN_ERRQUERY_NONBLOCKING = 1,
|
143 |
+
CUDNN_ERRQUERY_BLOCKING = 2,
|
144 |
+
} cudnnErrQueryMode_t;
|
145 |
+
|
146 |
+
cudnnStatus_t CUDNNWINAPI
|
147 |
+
cudnnQueryRuntimeError(cudnnHandle_t handle, cudnnStatus_t *rstatus, cudnnErrQueryMode_t mode, cudnnRuntimeTag_t *tag);
|
148 |
+
|
149 |
+
#ifndef __LIBRARY_TYPES_H__
|
150 |
+
|
151 |
+
typedef enum libraryPropertyType_t { MAJOR_VERSION, MINOR_VERSION, PATCH_LEVEL } libraryPropertyType;
|
152 |
+
|
153 |
+
#endif
|
154 |
+
|
155 |
+
cudnnStatus_t CUDNNWINAPI
|
156 |
+
cudnnGetProperty(libraryPropertyType type, int *value);
|
157 |
+
|
158 |
+
cudnnStatus_t CUDNNWINAPI
|
159 |
+
cudnnCreate(cudnnHandle_t *handle);
|
160 |
+
cudnnStatus_t CUDNNWINAPI
|
161 |
+
cudnnDestroy(cudnnHandle_t handle);
|
162 |
+
cudnnStatus_t CUDNNWINAPI
|
163 |
+
cudnnSetStream(cudnnHandle_t handle, cudaStream_t streamId);
|
164 |
+
cudnnStatus_t CUDNNWINAPI
|
165 |
+
cudnnGetStream(cudnnHandle_t handle, cudaStream_t *streamId);
|
166 |
+
|
167 |
+
/* Data structures to represent Image/Filter and the Neural Network Layer */
|
168 |
+
typedef struct cudnnTensorStruct *cudnnTensorDescriptor_t;
|
169 |
+
typedef struct cudnnPoolingStruct *cudnnPoolingDescriptor_t;
|
170 |
+
typedef struct cudnnFilterStruct *cudnnFilterDescriptor_t;
|
171 |
+
typedef struct cudnnLRNStruct *cudnnLRNDescriptor_t;
|
172 |
+
typedef struct cudnnActivationStruct *cudnnActivationDescriptor_t;
|
173 |
+
typedef struct cudnnSpatialTransformerStruct *cudnnSpatialTransformerDescriptor_t;
|
174 |
+
typedef struct cudnnOpTensorStruct *cudnnOpTensorDescriptor_t;
|
175 |
+
typedef struct cudnnReduceTensorStruct *cudnnReduceTensorDescriptor_t;
|
176 |
+
typedef struct cudnnCTCLossStruct *cudnnCTCLossDescriptor_t;
|
177 |
+
typedef struct cudnnTensorTransformStruct *cudnnTensorTransformDescriptor_t;
|
178 |
+
/*
|
179 |
+
* CUDNN data type
|
180 |
+
*/
|
181 |
+
typedef enum {
|
182 |
+
CUDNN_DATA_FLOAT = 0,
|
183 |
+
CUDNN_DATA_DOUBLE = 1,
|
184 |
+
CUDNN_DATA_HALF = 2,
|
185 |
+
CUDNN_DATA_INT8 = 3,
|
186 |
+
CUDNN_DATA_INT32 = 4,
|
187 |
+
CUDNN_DATA_INT8x4 = 5,
|
188 |
+
CUDNN_DATA_UINT8 = 6,
|
189 |
+
CUDNN_DATA_UINT8x4 = 7,
|
190 |
+
CUDNN_DATA_INT8x32 = 8,
|
191 |
+
CUDNN_DATA_BFLOAT16 = 9,
|
192 |
+
CUDNN_DATA_INT64 = 10,
|
193 |
+
CUDNN_DATA_BOOLEAN = 11,
|
194 |
+
CUDNN_DATA_FP8_E4M3 = 12,
|
195 |
+
CUDNN_DATA_FP8_E5M2 = 13,
|
196 |
+
CUDNN_DATA_FAST_FLOAT_FOR_FP8 = 14,
|
197 |
+
} cudnnDataType_t;
|
198 |
+
|
199 |
+
/*
|
200 |
+
* CUDNN math type
|
201 |
+
*/
|
202 |
+
typedef enum {
|
203 |
+
CUDNN_DEFAULT_MATH = 0,
|
204 |
+
CUDNN_TENSOR_OP_MATH = 1,
|
205 |
+
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION = 2,
|
206 |
+
CUDNN_FMA_MATH = 3,
|
207 |
+
} cudnnMathType_t;
|
208 |
+
|
209 |
+
/*
|
210 |
+
* CUDNN propagate Nan
|
211 |
+
*/
|
212 |
+
typedef enum {
|
213 |
+
CUDNN_NOT_PROPAGATE_NAN = 0,
|
214 |
+
CUDNN_PROPAGATE_NAN = 1,
|
215 |
+
} cudnnNanPropagation_t;
|
216 |
+
|
217 |
+
/*
|
218 |
+
* CUDNN Determinism
|
219 |
+
*/
|
220 |
+
typedef enum {
|
221 |
+
CUDNN_NON_DETERMINISTIC = 0,
|
222 |
+
CUDNN_DETERMINISTIC = 1,
|
223 |
+
} cudnnDeterminism_t;
|
224 |
+
|
225 |
+
/* Maximum supported number of tensor dimensions */
|
226 |
+
#define CUDNN_DIM_MAX 8
|
227 |
+
|
228 |
+
/* Create an instance of a generic Tensor descriptor */
|
229 |
+
cudnnStatus_t CUDNNWINAPI
|
230 |
+
cudnnCreateTensorDescriptor(cudnnTensorDescriptor_t *tensorDesc);
|
231 |
+
|
232 |
+
typedef enum {
|
233 |
+
CUDNN_TENSOR_NCHW = 0, /* row major (wStride = 1, hStride = w) */
|
234 |
+
CUDNN_TENSOR_NHWC = 1, /* feature maps interleaved ( cStride = 1 )*/
|
235 |
+
CUDNN_TENSOR_NCHW_VECT_C = 2, /* each image point is vector of element of C, vector length in data type */
|
236 |
+
} cudnnTensorFormat_t;
|
237 |
+
|
238 |
+
cudnnStatus_t CUDNNWINAPI
|
239 |
+
cudnnSetTensor4dDescriptor(cudnnTensorDescriptor_t tensorDesc,
|
240 |
+
cudnnTensorFormat_t format,
|
241 |
+
cudnnDataType_t dataType, /* image data type */
|
242 |
+
int n, /* number of inputs (batch size) */
|
243 |
+
int c, /* number of input feature maps */
|
244 |
+
int h, /* height of input section */
|
245 |
+
int w); /* width of input section */
|
246 |
+
|
247 |
+
cudnnStatus_t CUDNNWINAPI
|
248 |
+
cudnnSetTensor4dDescriptorEx(cudnnTensorDescriptor_t tensorDesc,
|
249 |
+
cudnnDataType_t dataType, /* image data type */
|
250 |
+
int n, /* number of inputs (batch size) */
|
251 |
+
int c, /* number of input feature maps */
|
252 |
+
int h, /* height of input section */
|
253 |
+
int w, /* width of input section */
|
254 |
+
int nStride,
|
255 |
+
int cStride,
|
256 |
+
int hStride,
|
257 |
+
int wStride);
|
258 |
+
|
259 |
+
cudnnStatus_t CUDNNWINAPI
|
260 |
+
cudnnGetTensor4dDescriptor(const cudnnTensorDescriptor_t tensorDesc,
|
261 |
+
cudnnDataType_t *dataType, /* image data type */
|
262 |
+
int *n, /* number of inputs (batch size) */
|
263 |
+
int *c, /* number of input feature maps */
|
264 |
+
int *h, /* height of input section */
|
265 |
+
int *w, /* width of input section */
|
266 |
+
int *nStride,
|
267 |
+
int *cStride,
|
268 |
+
int *hStride,
|
269 |
+
int *wStride);
|
270 |
+
|
271 |
+
cudnnStatus_t CUDNNWINAPI
|
272 |
+
cudnnSetTensorNdDescriptor(cudnnTensorDescriptor_t tensorDesc,
|
273 |
+
cudnnDataType_t dataType,
|
274 |
+
int nbDims,
|
275 |
+
const int dimA[],
|
276 |
+
const int strideA[]);
|
277 |
+
|
278 |
+
cudnnStatus_t CUDNNWINAPI
|
279 |
+
cudnnSetTensorNdDescriptorEx(cudnnTensorDescriptor_t tensorDesc,
|
280 |
+
cudnnTensorFormat_t format,
|
281 |
+
cudnnDataType_t dataType,
|
282 |
+
int nbDims,
|
283 |
+
const int dimA[]);
|
284 |
+
|
285 |
+
cudnnStatus_t CUDNNWINAPI
|
286 |
+
cudnnGetTensorNdDescriptor(const cudnnTensorDescriptor_t tensorDesc,
|
287 |
+
int nbDimsRequested,
|
288 |
+
cudnnDataType_t *dataType,
|
289 |
+
int *nbDims,
|
290 |
+
int dimA[],
|
291 |
+
int strideA[]);
|
292 |
+
|
293 |
+
cudnnStatus_t CUDNNWINAPI
|
294 |
+
cudnnGetTensorSizeInBytes(const cudnnTensorDescriptor_t tensorDesc, size_t *size);
|
295 |
+
|
296 |
+
/* PixelOffset( n, c, h, w ) = n *input_stride + c * feature_stride + h * h_stride + w * w_stride
|
297 |
+
|
298 |
+
1)Example of all images in row major order one batch of features after the other (with an optional padding on row)
|
299 |
+
input_stride : c x h x h_stride
|
300 |
+
feature_stride : h x h_stride
|
301 |
+
h_stride : >= w ( h_stride = w if no padding)
|
302 |
+
w_stride : 1
|
303 |
+
|
304 |
+
|
305 |
+
2)Example of all images in row major with features maps interleaved
|
306 |
+
input_stride : c x h x h_stride
|
307 |
+
feature_stride : 1
|
308 |
+
h_stride : w x c
|
309 |
+
w_stride : c
|
310 |
+
|
311 |
+
3)Example of all images in column major order one batch of features after the other (with optional padding on column)
|
312 |
+
input_stride : c x w x w_stride
|
313 |
+
feature_stride : w x w_stride
|
314 |
+
h_stride : 1
|
315 |
+
w_stride : >= h
|
316 |
+
|
317 |
+
*/
|
318 |
+
|
319 |
+
/* Destroy an instance of Tensor4d descriptor */
|
320 |
+
cudnnStatus_t CUDNNWINAPI
|
321 |
+
cudnnDestroyTensorDescriptor(cudnnTensorDescriptor_t tensorDesc);
|
322 |
+
|
323 |
+
/* Fold/unfold transforms */
|
324 |
+
typedef enum {
|
325 |
+
CUDNN_TRANSFORM_FOLD = 0U,
|
326 |
+
CUDNN_TRANSFORM_UNFOLD = 1U,
|
327 |
+
} cudnnFoldingDirection_t;
|
328 |
+
|
329 |
+
/** Create a destination descriptor for cudnnTransformTensor */
|
330 |
+
cudnnStatus_t CUDNNWINAPI
|
331 |
+
cudnnInitTransformDest(const cudnnTensorTransformDescriptor_t transformDesc,
|
332 |
+
const cudnnTensorDescriptor_t srcDesc,
|
333 |
+
cudnnTensorDescriptor_t destDesc,
|
334 |
+
size_t *destSizeInBytes);
|
335 |
+
|
336 |
+
/** Create an empty tensor transform descriptor */
|
337 |
+
cudnnStatus_t CUDNNWINAPI
|
338 |
+
cudnnCreateTensorTransformDescriptor(cudnnTensorTransformDescriptor_t *transformDesc);
|
339 |
+
|
340 |
+
/** Initialize a previously created tensor transform descriptor. */
|
341 |
+
cudnnStatus_t CUDNNWINAPI
|
342 |
+
cudnnSetTensorTransformDescriptor(cudnnTensorTransformDescriptor_t transformDesc,
|
343 |
+
const uint32_t nbDims,
|
344 |
+
const cudnnTensorFormat_t destFormat,
|
345 |
+
const int32_t padBeforeA[],
|
346 |
+
const int32_t padAfterA[],
|
347 |
+
const uint32_t foldA[],
|
348 |
+
const cudnnFoldingDirection_t direction);
|
349 |
+
|
350 |
+
/**
|
351 |
+
* Retrieves the values stored in a previously initialized tensor transform
|
352 |
+
* descriptor.
|
353 |
+
*/
|
354 |
+
cudnnStatus_t CUDNNWINAPI
|
355 |
+
cudnnGetTensorTransformDescriptor(cudnnTensorTransformDescriptor_t transformDesc,
|
356 |
+
uint32_t nbDimsRequested,
|
357 |
+
cudnnTensorFormat_t *destFormat,
|
358 |
+
int32_t padBeforeA[],
|
359 |
+
int32_t padAfterA[],
|
360 |
+
uint32_t foldA[],
|
361 |
+
cudnnFoldingDirection_t *direction);
|
362 |
+
|
363 |
+
/**
|
364 |
+
* Destroys a previously created tensor transform descriptor.
|
365 |
+
*/
|
366 |
+
cudnnStatus_t CUDNNWINAPI
|
367 |
+
cudnnDestroyTensorTransformDescriptor(cudnnTensorTransformDescriptor_t transformDesc);
|
368 |
+
|
369 |
+
/* Tensor layout conversion helper (y = alpha * x + beta * y) */
|
370 |
+
cudnnStatus_t CUDNNWINAPI
|
371 |
+
cudnnTransformTensor(cudnnHandle_t handle,
|
372 |
+
const void *alpha,
|
373 |
+
const cudnnTensorDescriptor_t xDesc,
|
374 |
+
const void *x,
|
375 |
+
const void *beta,
|
376 |
+
const cudnnTensorDescriptor_t yDesc,
|
377 |
+
void *y);
|
378 |
+
|
379 |
+
cudnnStatus_t CUDNNWINAPI
|
380 |
+
cudnnTransformTensorEx(cudnnHandle_t handle,
|
381 |
+
const cudnnTensorTransformDescriptor_t transDesc,
|
382 |
+
const void *alpha,
|
383 |
+
const cudnnTensorDescriptor_t srcDesc,
|
384 |
+
const void *srcData,
|
385 |
+
const void *beta,
|
386 |
+
const cudnnTensorDescriptor_t destDesc,
|
387 |
+
void *destData);
|
388 |
+
|
389 |
+
/* Tensor Bias addition : C = alpha * A + beta * C */
|
390 |
+
cudnnStatus_t CUDNNWINAPI
|
391 |
+
cudnnAddTensor(cudnnHandle_t handle,
|
392 |
+
const void *alpha,
|
393 |
+
const cudnnTensorDescriptor_t aDesc,
|
394 |
+
const void *A,
|
395 |
+
const void *beta,
|
396 |
+
const cudnnTensorDescriptor_t cDesc,
|
397 |
+
void *C);
|
398 |
+
|
399 |
+
/*
|
400 |
+
* CUDNN OpTensor op type
|
401 |
+
*/
|
402 |
+
typedef enum {
|
403 |
+
CUDNN_OP_TENSOR_ADD = 0,
|
404 |
+
CUDNN_OP_TENSOR_MUL = 1,
|
405 |
+
CUDNN_OP_TENSOR_MIN = 2,
|
406 |
+
CUDNN_OP_TENSOR_MAX = 3,
|
407 |
+
CUDNN_OP_TENSOR_SQRT = 4,
|
408 |
+
CUDNN_OP_TENSOR_NOT = 5,
|
409 |
+
} cudnnOpTensorOp_t;
|
410 |
+
|
411 |
+
cudnnStatus_t CUDNNWINAPI
|
412 |
+
cudnnCreateOpTensorDescriptor(cudnnOpTensorDescriptor_t *opTensorDesc);
|
413 |
+
|
414 |
+
cudnnStatus_t CUDNNWINAPI
|
415 |
+
cudnnSetOpTensorDescriptor(cudnnOpTensorDescriptor_t opTensorDesc,
|
416 |
+
cudnnOpTensorOp_t opTensorOp,
|
417 |
+
cudnnDataType_t opTensorCompType,
|
418 |
+
cudnnNanPropagation_t opTensorNanOpt);
|
419 |
+
|
420 |
+
cudnnStatus_t CUDNNWINAPI
|
421 |
+
cudnnGetOpTensorDescriptor(const cudnnOpTensorDescriptor_t opTensorDesc,
|
422 |
+
cudnnOpTensorOp_t *opTensorOp,
|
423 |
+
cudnnDataType_t *opTensorCompType,
|
424 |
+
cudnnNanPropagation_t *opTensorNanOpt);
|
425 |
+
|
426 |
+
cudnnStatus_t CUDNNWINAPI
|
427 |
+
cudnnDestroyOpTensorDescriptor(cudnnOpTensorDescriptor_t opTensorDesc);
|
428 |
+
|
429 |
+
/* Tensor operation : C = op( alpha1 * A, alpha2 * B ) + beta * C */
|
430 |
+
/* B tensor is ignored for CUDNN_OP_TENSOR_SQRT, CUDNN_OP_TENSOR_NOT. */
|
431 |
+
cudnnStatus_t CUDNNWINAPI
|
432 |
+
cudnnOpTensor(cudnnHandle_t handle,
|
433 |
+
const cudnnOpTensorDescriptor_t opTensorDesc,
|
434 |
+
const void *alpha1,
|
435 |
+
const cudnnTensorDescriptor_t aDesc,
|
436 |
+
const void *A,
|
437 |
+
const void *alpha2,
|
438 |
+
const cudnnTensorDescriptor_t bDesc,
|
439 |
+
const void *B,
|
440 |
+
const void *beta,
|
441 |
+
const cudnnTensorDescriptor_t cDesc,
|
442 |
+
void *C);
|
443 |
+
|
444 |
+
/*
|
445 |
+
* CUDNN ReduceTensor op type
|
446 |
+
*/
|
447 |
+
typedef enum {
|
448 |
+
CUDNN_REDUCE_TENSOR_ADD = 0,
|
449 |
+
CUDNN_REDUCE_TENSOR_MUL = 1,
|
450 |
+
CUDNN_REDUCE_TENSOR_MIN = 2,
|
451 |
+
CUDNN_REDUCE_TENSOR_MAX = 3,
|
452 |
+
CUDNN_REDUCE_TENSOR_AMAX = 4,
|
453 |
+
CUDNN_REDUCE_TENSOR_AVG = 5,
|
454 |
+
CUDNN_REDUCE_TENSOR_NORM1 = 6,
|
455 |
+
CUDNN_REDUCE_TENSOR_NORM2 = 7,
|
456 |
+
CUDNN_REDUCE_TENSOR_MUL_NO_ZEROS = 8,
|
457 |
+
} cudnnReduceTensorOp_t;
|
458 |
+
|
459 |
+
/*
|
460 |
+
* CUDNN ReduceTensor indices type
|
461 |
+
*/
|
462 |
+
typedef enum {
|
463 |
+
CUDNN_REDUCE_TENSOR_NO_INDICES = 0,
|
464 |
+
CUDNN_REDUCE_TENSOR_FLATTENED_INDICES = 1,
|
465 |
+
} cudnnReduceTensorIndices_t;
|
466 |
+
|
467 |
+
/*
|
468 |
+
* CUDNN tensor indices type size (all unsigned)
|
469 |
+
* Currently not supported, default is 32 bit unsigned.
|
470 |
+
*/
|
471 |
+
typedef enum {
|
472 |
+
CUDNN_32BIT_INDICES = 0,
|
473 |
+
CUDNN_64BIT_INDICES = 1,
|
474 |
+
CUDNN_16BIT_INDICES = 2,
|
475 |
+
CUDNN_8BIT_INDICES = 3,
|
476 |
+
} cudnnIndicesType_t;
|
477 |
+
|
478 |
+
cudnnStatus_t CUDNNWINAPI
|
479 |
+
cudnnCreateReduceTensorDescriptor(cudnnReduceTensorDescriptor_t *reduceTensorDesc);
|
480 |
+
|
481 |
+
cudnnStatus_t CUDNNWINAPI
|
482 |
+
cudnnSetReduceTensorDescriptor(cudnnReduceTensorDescriptor_t reduceTensorDesc,
|
483 |
+
cudnnReduceTensorOp_t reduceTensorOp,
|
484 |
+
cudnnDataType_t reduceTensorCompType,
|
485 |
+
cudnnNanPropagation_t reduceTensorNanOpt,
|
486 |
+
cudnnReduceTensorIndices_t reduceTensorIndices,
|
487 |
+
cudnnIndicesType_t reduceTensorIndicesType);
|
488 |
+
|
489 |
+
cudnnStatus_t CUDNNWINAPI
|
490 |
+
cudnnGetReduceTensorDescriptor(const cudnnReduceTensorDescriptor_t reduceTensorDesc,
|
491 |
+
cudnnReduceTensorOp_t *reduceTensorOp,
|
492 |
+
cudnnDataType_t *reduceTensorCompType,
|
493 |
+
cudnnNanPropagation_t *reduceTensorNanOpt,
|
494 |
+
cudnnReduceTensorIndices_t *reduceTensorIndices,
|
495 |
+
cudnnIndicesType_t *reduceTensorIndicesType);
|
496 |
+
|
497 |
+
cudnnStatus_t CUDNNWINAPI
|
498 |
+
cudnnDestroyReduceTensorDescriptor(cudnnReduceTensorDescriptor_t reduceTensorDesc);
|
499 |
+
|
500 |
+
/* Helper function to return the minimum size of the index space to be passed to the reduction given the input and
|
501 |
+
* output tensors */
|
502 |
+
cudnnStatus_t CUDNNWINAPI
|
503 |
+
cudnnGetReductionIndicesSize(cudnnHandle_t handle,
|
504 |
+
const cudnnReduceTensorDescriptor_t reduceTensorDesc,
|
505 |
+
const cudnnTensorDescriptor_t aDesc,
|
506 |
+
const cudnnTensorDescriptor_t cDesc,
|
507 |
+
size_t *sizeInBytes);
|
508 |
+
|
509 |
+
/* Helper function to return the minimum size of the workspace to be passed to the reduction given the input and output
|
510 |
+
* tensors */
|
511 |
+
cudnnStatus_t CUDNNWINAPI
|
512 |
+
cudnnGetReductionWorkspaceSize(cudnnHandle_t handle,
|
513 |
+
const cudnnReduceTensorDescriptor_t reduceTensorDesc,
|
514 |
+
const cudnnTensorDescriptor_t aDesc,
|
515 |
+
const cudnnTensorDescriptor_t cDesc,
|
516 |
+
size_t *sizeInBytes);
|
517 |
+
|
518 |
+
/* Tensor operation : C = reduce op( alpha * A ) + beta * C */
|
519 |
+
/* The NaN propagation enum applies to only the min and max reduce ops; the other reduce ops propagate NaN as usual. */
|
520 |
+
/* The indices space is ignored for reduce ops other than min or max. */
|
521 |
+
cudnnStatus_t CUDNNWINAPI
|
522 |
+
cudnnReduceTensor(cudnnHandle_t handle,
|
523 |
+
const cudnnReduceTensorDescriptor_t reduceTensorDesc,
|
524 |
+
void *indices,
|
525 |
+
size_t indicesSizeInBytes,
|
526 |
+
void *workspace,
|
527 |
+
size_t workspaceSizeInBytes,
|
528 |
+
const void *alpha,
|
529 |
+
const cudnnTensorDescriptor_t aDesc,
|
530 |
+
const void *A,
|
531 |
+
const void *beta,
|
532 |
+
const cudnnTensorDescriptor_t cDesc,
|
533 |
+
void *C);
|
534 |
+
|
535 |
+
/* Set all values of a tensor to a given value : y[i] = value[0] */
|
536 |
+
cudnnStatus_t CUDNNWINAPI
|
537 |
+
cudnnSetTensor(cudnnHandle_t handle, const cudnnTensorDescriptor_t yDesc, void *y, const void *valuePtr);
|
538 |
+
|
539 |
+
/* Scale all values of a tensor by a given factor : y[i] = alpha * y[i] */
|
540 |
+
cudnnStatus_t CUDNNWINAPI
|
541 |
+
cudnnScaleTensor(cudnnHandle_t handle, const cudnnTensorDescriptor_t yDesc, void *y, const void *alpha);
|
542 |
+
|
543 |
+
/* Create an instance of FilterStruct */
|
544 |
+
cudnnStatus_t CUDNNWINAPI
|
545 |
+
cudnnCreateFilterDescriptor(cudnnFilterDescriptor_t *filterDesc);
|
546 |
+
|
547 |
+
cudnnStatus_t CUDNNWINAPI
|
548 |
+
cudnnSetFilter4dDescriptor(cudnnFilterDescriptor_t filterDesc,
|
549 |
+
cudnnDataType_t dataType, /* image data type */
|
550 |
+
cudnnTensorFormat_t format,
|
551 |
+
int k, /* number of output feature maps */
|
552 |
+
int c, /* number of input feature maps */
|
553 |
+
int h, /* height of each input filter */
|
554 |
+
int w); /* width of each input filter */
|
555 |
+
|
556 |
+
cudnnStatus_t CUDNNWINAPI
|
557 |
+
cudnnGetFilter4dDescriptor(const cudnnFilterDescriptor_t filterDesc,
|
558 |
+
cudnnDataType_t *dataType, /* image data type */
|
559 |
+
cudnnTensorFormat_t *format,
|
560 |
+
int *k, /* number of output feature maps */
|
561 |
+
int *c, /* number of input feature maps */
|
562 |
+
int *h, /* height of each input filter */
|
563 |
+
int *w); /* width of each input filter */
|
564 |
+
|
565 |
+
cudnnStatus_t CUDNNWINAPI
|
566 |
+
cudnnSetFilterNdDescriptor(cudnnFilterDescriptor_t filterDesc,
|
567 |
+
cudnnDataType_t dataType, /* image data type */
|
568 |
+
cudnnTensorFormat_t format,
|
569 |
+
int nbDims,
|
570 |
+
const int filterDimA[]);
|
571 |
+
|
572 |
+
cudnnStatus_t CUDNNWINAPI
|
573 |
+
cudnnGetFilterNdDescriptor(const cudnnFilterDescriptor_t filterDesc,
|
574 |
+
int nbDimsRequested,
|
575 |
+
cudnnDataType_t *dataType, /* image data type */
|
576 |
+
cudnnTensorFormat_t *format,
|
577 |
+
int *nbDims,
|
578 |
+
int filterDimA[]);
|
579 |
+
cudnnStatus_t CUDNNWINAPI
|
580 |
+
cudnnGetFilterSizeInBytes(const cudnnFilterDescriptor_t filterDesc, size_t *size);
|
581 |
+
|
582 |
+
cudnnStatus_t CUDNNWINAPI
|
583 |
+
cudnnTransformFilter(cudnnHandle_t handle,
|
584 |
+
const cudnnTensorTransformDescriptor_t transDesc,
|
585 |
+
const void *alpha,
|
586 |
+
const cudnnFilterDescriptor_t srcDesc,
|
587 |
+
const void *srcData,
|
588 |
+
const void *beta,
|
589 |
+
const cudnnFilterDescriptor_t destDesc,
|
590 |
+
void *destData);
|
591 |
+
|
592 |
+
cudnnStatus_t CUDNNWINAPI
|
593 |
+
cudnnDestroyFilterDescriptor(cudnnFilterDescriptor_t filterDesc);
|
594 |
+
|
595 |
+
/*
|
596 |
+
* softmax algorithm
|
597 |
+
*/
|
598 |
+
typedef enum {
|
599 |
+
CUDNN_SOFTMAX_FAST = 0, /* straightforward implementation */
|
600 |
+
CUDNN_SOFTMAX_ACCURATE = 1, /* subtract max from every point to avoid overflow */
|
601 |
+
CUDNN_SOFTMAX_LOG = 2
|
602 |
+
} cudnnSoftmaxAlgorithm_t;
|
603 |
+
|
604 |
+
typedef enum {
|
605 |
+
CUDNN_SOFTMAX_MODE_INSTANCE = 0, /* compute the softmax over all C, H, W for each N */
|
606 |
+
CUDNN_SOFTMAX_MODE_CHANNEL = 1 /* compute the softmax over all C for each H, W, N */
|
607 |
+
} cudnnSoftmaxMode_t;
|
608 |
+
|
609 |
+
/* Softmax functions: All of the form "output = alpha * Op(inputs) + beta * output" */
|
610 |
+
|
611 |
+
/* Function to perform forward softmax */
|
612 |
+
cudnnStatus_t CUDNNWINAPI
|
613 |
+
cudnnSoftmaxForward(cudnnHandle_t handle,
|
614 |
+
cudnnSoftmaxAlgorithm_t algo,
|
615 |
+
cudnnSoftmaxMode_t mode,
|
616 |
+
const void *alpha,
|
617 |
+
const cudnnTensorDescriptor_t xDesc,
|
618 |
+
const void *x,
|
619 |
+
const void *beta,
|
620 |
+
const cudnnTensorDescriptor_t yDesc,
|
621 |
+
void *y);
|
622 |
+
|
623 |
+
/*
|
624 |
+
* pooling mode
|
625 |
+
*/
|
626 |
+
typedef enum {
|
627 |
+
CUDNN_POOLING_MAX = 0,
|
628 |
+
CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING = 1, /* count for average includes padded values */
|
629 |
+
CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING = 2, /* count for average does not include padded values */
|
630 |
+
CUDNN_POOLING_MAX_DETERMINISTIC = 3
|
631 |
+
} cudnnPoolingMode_t;
|
632 |
+
|
633 |
+
/* Create an instance of pooling descriptor */
|
634 |
+
cudnnStatus_t CUDNNWINAPI
|
635 |
+
cudnnCreatePoolingDescriptor(cudnnPoolingDescriptor_t *poolingDesc);
|
636 |
+
|
637 |
+
cudnnStatus_t CUDNNWINAPI
|
638 |
+
cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t poolingDesc,
|
639 |
+
cudnnPoolingMode_t mode,
|
640 |
+
cudnnNanPropagation_t maxpoolingNanOpt,
|
641 |
+
int windowHeight,
|
642 |
+
int windowWidth,
|
643 |
+
int verticalPadding,
|
644 |
+
int horizontalPadding,
|
645 |
+
int verticalStride,
|
646 |
+
int horizontalStride);
|
647 |
+
|
648 |
+
cudnnStatus_t CUDNNWINAPI
|
649 |
+
cudnnGetPooling2dDescriptor(const cudnnPoolingDescriptor_t poolingDesc,
|
650 |
+
cudnnPoolingMode_t *mode,
|
651 |
+
cudnnNanPropagation_t *maxpoolingNanOpt,
|
652 |
+
int *windowHeight,
|
653 |
+
int *windowWidth,
|
654 |
+
int *verticalPadding,
|
655 |
+
int *horizontalPadding,
|
656 |
+
int *verticalStride,
|
657 |
+
int *horizontalStride);
|
658 |
+
|
659 |
+
cudnnStatus_t CUDNNWINAPI
|
660 |
+
cudnnSetPoolingNdDescriptor(cudnnPoolingDescriptor_t poolingDesc,
|
661 |
+
const cudnnPoolingMode_t mode,
|
662 |
+
const cudnnNanPropagation_t maxpoolingNanOpt,
|
663 |
+
int nbDims,
|
664 |
+
const int windowDimA[],
|
665 |
+
const int paddingA[],
|
666 |
+
const int strideA[]);
|
667 |
+
|
668 |
+
cudnnStatus_t CUDNNWINAPI
|
669 |
+
cudnnGetPoolingNdDescriptor(const cudnnPoolingDescriptor_t poolingDesc,
|
670 |
+
int nbDimsRequested,
|
671 |
+
cudnnPoolingMode_t *mode,
|
672 |
+
cudnnNanPropagation_t *maxpoolingNanOpt,
|
673 |
+
int *nbDims,
|
674 |
+
int windowDimA[],
|
675 |
+
int paddingA[],
|
676 |
+
int strideA[]);
|
677 |
+
|
678 |
+
cudnnStatus_t CUDNNWINAPI
|
679 |
+
cudnnGetPoolingNdForwardOutputDim(const cudnnPoolingDescriptor_t poolingDesc,
|
680 |
+
const cudnnTensorDescriptor_t inputTensorDesc,
|
681 |
+
int nbDims,
|
682 |
+
int outputTensorDimA[]);
|
683 |
+
|
684 |
+
cudnnStatus_t CUDNNWINAPI
|
685 |
+
cudnnGetPooling2dForwardOutputDim(const cudnnPoolingDescriptor_t poolingDesc,
|
686 |
+
const cudnnTensorDescriptor_t inputTensorDesc,
|
687 |
+
int *n,
|
688 |
+
int *c,
|
689 |
+
int *h,
|
690 |
+
int *w);
|
691 |
+
|
692 |
+
/* Destroy an instance of pooling descriptor */
|
693 |
+
cudnnStatus_t CUDNNWINAPI
|
694 |
+
cudnnDestroyPoolingDescriptor(cudnnPoolingDescriptor_t poolingDesc);
|
695 |
+
|
696 |
+
/* Pooling functions: All of the form "output = alpha * Op(inputs) + beta * output" */
|
697 |
+
|
698 |
+
/* Function to perform forward pooling */
|
699 |
+
cudnnStatus_t CUDNNWINAPI
|
700 |
+
cudnnPoolingForward(cudnnHandle_t handle,
|
701 |
+
const cudnnPoolingDescriptor_t poolingDesc,
|
702 |
+
const void *alpha,
|
703 |
+
const cudnnTensorDescriptor_t xDesc,
|
704 |
+
const void *x,
|
705 |
+
const void *beta,
|
706 |
+
const cudnnTensorDescriptor_t yDesc,
|
707 |
+
void *y);
|
708 |
+
|
709 |
+
/*
|
710 |
+
* activation mode
|
711 |
+
*/
|
712 |
+
typedef enum {
|
713 |
+
CUDNN_ACTIVATION_SIGMOID = 0,
|
714 |
+
CUDNN_ACTIVATION_RELU = 1,
|
715 |
+
CUDNN_ACTIVATION_TANH = 2,
|
716 |
+
CUDNN_ACTIVATION_CLIPPED_RELU = 3,
|
717 |
+
CUDNN_ACTIVATION_ELU = 4,
|
718 |
+
CUDNN_ACTIVATION_IDENTITY = 5,
|
719 |
+
CUDNN_ACTIVATION_SWISH = 6
|
720 |
+
} cudnnActivationMode_t;
|
721 |
+
|
722 |
+
/* Activation functions: All of the form "output = alpha * Op(inputs) + beta * output" */
|
723 |
+
cudnnStatus_t CUDNNWINAPI
|
724 |
+
cudnnCreateActivationDescriptor(cudnnActivationDescriptor_t *activationDesc);
|
725 |
+
|
726 |
+
cudnnStatus_t CUDNNWINAPI
|
727 |
+
cudnnSetActivationDescriptor(cudnnActivationDescriptor_t activationDesc,
|
728 |
+
cudnnActivationMode_t mode,
|
729 |
+
cudnnNanPropagation_t reluNanOpt,
|
730 |
+
double coef); /* ceiling for clipped RELU, alpha for ELU */
|
731 |
+
|
732 |
+
cudnnStatus_t CUDNNWINAPI
|
733 |
+
cudnnGetActivationDescriptor(const cudnnActivationDescriptor_t activationDesc,
|
734 |
+
cudnnActivationMode_t *mode,
|
735 |
+
cudnnNanPropagation_t *reluNanOpt,
|
736 |
+
double *coef); /* ceiling for clipped RELU, alpha for ELU */
|
737 |
+
|
738 |
+
cudnnStatus_t CUDNNWINAPI
|
739 |
+
cudnnSetActivationDescriptorSwishBeta(cudnnActivationDescriptor_t activationDesc, double swish_beta);
|
740 |
+
|
741 |
+
cudnnStatus_t CUDNNWINAPI
|
742 |
+
cudnnGetActivationDescriptorSwishBeta(cudnnActivationDescriptor_t activationDesc, double *swish_beta);
|
743 |
+
|
744 |
+
cudnnStatus_t CUDNNWINAPI
|
745 |
+
cudnnDestroyActivationDescriptor(cudnnActivationDescriptor_t activationDesc);
|
746 |
+
|
747 |
+
/* Function to perform forward activation */
|
748 |
+
cudnnStatus_t CUDNNWINAPI
|
749 |
+
cudnnActivationForward(cudnnHandle_t handle,
|
750 |
+
cudnnActivationDescriptor_t activationDesc,
|
751 |
+
const void *alpha,
|
752 |
+
const cudnnTensorDescriptor_t xDesc,
|
753 |
+
const void *x,
|
754 |
+
const void *beta,
|
755 |
+
const cudnnTensorDescriptor_t yDesc,
|
756 |
+
void *y);
|
757 |
+
|
758 |
+
/*
|
759 |
+
* Create an instance of LRN (Local Response Normalization) descriptor
|
760 |
+
* Uses lrnN=5, lrnAlpha=1e-4, lrnBeta=0.75, lrnK=2.0 as defaults from Krizhevsky'12 ImageNet paper
|
761 |
+
*/
|
762 |
+
cudnnStatus_t CUDNNWINAPI
|
763 |
+
cudnnCreateLRNDescriptor(cudnnLRNDescriptor_t *normDesc);
|
764 |
+
|
765 |
+
#define CUDNN_LRN_MIN_N 1 /* minimum allowed lrnN */
|
766 |
+
#define CUDNN_LRN_MAX_N 16 /* maximum allowed lrnN */
|
767 |
+
#define CUDNN_LRN_MIN_K 1e-5 /* minimum allowed lrnK */
|
768 |
+
#define CUDNN_LRN_MIN_BETA 0.01 /* minimum allowed lrnBeta */
|
769 |
+
|
770 |
+
/* LRN layer mode */
|
771 |
+
typedef enum {
|
772 |
+
CUDNN_LRN_CROSS_CHANNEL_DIM1 = 0, /* Normalize across tensor's dimA[1] dimension */
|
773 |
+
} cudnnLRNMode_t;
|
774 |
+
|
775 |
+
/*
|
776 |
+
* Uses a window [center-lookBehind, center+lookAhead], where
|
777 |
+
* lookBehind = floor( (lrnN-1)/2 ), lookAhead = lrnN-lookBehind-1.
|
778 |
+
* Values of double parameters cast to tensor data type.
|
779 |
+
*/
|
780 |
+
cudnnStatus_t CUDNNWINAPI
|
781 |
+
cudnnSetLRNDescriptor(cudnnLRNDescriptor_t normDesc, unsigned lrnN, double lrnAlpha, double lrnBeta, double lrnK);
|
782 |
+
/*
|
783 |
+
* Retrieve the settings currently stored in an LRN layer descriptor
|
784 |
+
* Any of the provided pointers can be NULL (no corresponding value will be returned)
|
785 |
+
*/
|
786 |
+
cudnnStatus_t CUDNNWINAPI
|
787 |
+
cudnnGetLRNDescriptor(cudnnLRNDescriptor_t normDesc, unsigned *lrnN, double *lrnAlpha, double *lrnBeta, double *lrnK);
|
788 |
+
|
789 |
+
/* Destroy an instance of LRN descriptor */
|
790 |
+
cudnnStatus_t CUDNNWINAPI
|
791 |
+
cudnnDestroyLRNDescriptor(cudnnLRNDescriptor_t lrnDesc);
|
792 |
+
|
793 |
+
/* LRN functions: output = alpha * normalize(x) + beta * old_y */
|
794 |
+
|
795 |
+
/* LRN cross-channel forward computation. Double parameters cast to tensor data type */
|
796 |
+
cudnnStatus_t CUDNNWINAPI
|
797 |
+
cudnnLRNCrossChannelForward(cudnnHandle_t handle,
|
798 |
+
cudnnLRNDescriptor_t normDesc,
|
799 |
+
cudnnLRNMode_t lrnMode,
|
800 |
+
const void *alpha,
|
801 |
+
const cudnnTensorDescriptor_t xDesc,
|
802 |
+
const void *x,
|
803 |
+
const void *beta,
|
804 |
+
const cudnnTensorDescriptor_t yDesc,
|
805 |
+
void *y);
|
806 |
+
|
807 |
+
typedef enum {
|
808 |
+
CUDNN_DIVNORM_PRECOMPUTED_MEANS = 0,
|
809 |
+
} cudnnDivNormMode_t;
|
810 |
+
|
811 |
+
/* LCN/divisive normalization functions: y = alpha * normalize(x) + beta * y */
|
812 |
+
cudnnStatus_t CUDNNWINAPI
|
813 |
+
cudnnDivisiveNormalizationForward(cudnnHandle_t handle,
|
814 |
+
cudnnLRNDescriptor_t normDesc,
|
815 |
+
cudnnDivNormMode_t mode,
|
816 |
+
const void *alpha,
|
817 |
+
const cudnnTensorDescriptor_t xDesc, /* same desc for means, temp, temp2 */
|
818 |
+
const void *x,
|
819 |
+
const void *means, /* if NULL, means are assumed to be zero */
|
820 |
+
void *temp,
|
821 |
+
void *temp2,
|
822 |
+
const void *beta,
|
823 |
+
const cudnnTensorDescriptor_t yDesc,
|
824 |
+
void *y);
|
825 |
+
|
826 |
+
typedef enum {
|
827 |
+
/* bnScale, bnBias tensor dims are 1xCxHxWx.. (one value per CHW...-slice, normalized over N slice) */
|
828 |
+
CUDNN_BATCHNORM_PER_ACTIVATION = 0,
|
829 |
+
|
830 |
+
/* bnScale, bnBias tensor dims are 1xCx1x1 (one value per C-dim normalized over Nx1xHxW subtensors) */
|
831 |
+
CUDNN_BATCHNORM_SPATIAL = 1,
|
832 |
+
|
833 |
+
/*
|
834 |
+
* bnScale, bnBias tensor dims are 1xCx1x1 (one value per C-dim normalized over Nx1xHxW subtensors).
|
835 |
+
* May be faster than CUDNN_BATCHNORM_SPATIAL but imposes some limits on the range of values
|
836 |
+
*/
|
837 |
+
CUDNN_BATCHNORM_SPATIAL_PERSISTENT = 2,
|
838 |
+
} cudnnBatchNormMode_t;
|
839 |
+
|
840 |
+
#define CUDNN_BN_MIN_EPSILON 0.0 /* Minimum epsilon allowed to be used in the Batch Normalization formula */
|
841 |
+
|
842 |
+
/*
|
843 |
+
* Derives a tensor descriptor from layer data descriptor for BatchNormalization
|
844 |
+
* scale, invVariance, bnBias, bnScale tensors. Use this tensor desc for
|
845 |
+
* bnScaleBiasMeanVarDesc and bnScaleBiasDiffDesc in Batch Normalization forward and backward functions.
|
846 |
+
*/
|
847 |
+
cudnnStatus_t CUDNNWINAPI
|
848 |
+
cudnnDeriveBNTensorDescriptor(cudnnTensorDescriptor_t derivedBnDesc,
|
849 |
+
const cudnnTensorDescriptor_t xDesc,
|
850 |
+
cudnnBatchNormMode_t mode);
|
851 |
+
|
852 |
+
typedef enum {
|
853 |
+
CUDNN_BATCHNORM_OPS_BN = 0, /* do batch normalization only */
|
854 |
+
CUDNN_BATCHNORM_OPS_BN_ACTIVATION = 1, /* do batchNorm, then activation */
|
855 |
+
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION = 2, /* do batchNorm, then elemWiseAdd, then activation */
|
856 |
+
} cudnnBatchNormOps_t;
|
857 |
+
|
858 |
+
/*
|
859 |
+
* Performs Batch Normalization during Inference:
|
860 |
+
* y[i] = bnScale[k]*(x[i]-estimatedMean[k])/sqrt(epsilon+estimatedVariance[k]) + bnBias[k]
|
861 |
+
* with bnScale, bnBias, runningMean, runningInvVariance tensors indexed
|
862 |
+
* according to spatial or per-activation mode. Refer to cudnnBatchNormalizationForwardTraining
|
863 |
+
* above for notes on function arguments.
|
864 |
+
*/
|
865 |
+
cudnnStatus_t CUDNNWINAPI
|
866 |
+
cudnnBatchNormalizationForwardInference(cudnnHandle_t handle,
|
867 |
+
cudnnBatchNormMode_t mode,
|
868 |
+
const void *alpha, /* alpha[0] = result blend factor */
|
869 |
+
const void *beta, /* beta[0] = dest layer blend factor */
|
870 |
+
const cudnnTensorDescriptor_t xDesc,
|
871 |
+
const void *x, /* NxCxHxW */
|
872 |
+
const cudnnTensorDescriptor_t yDesc,
|
873 |
+
void *y, /* NxCxHxW */
|
874 |
+
const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
|
875 |
+
const void *bnScale,
|
876 |
+
const void *bnBias,
|
877 |
+
const void *estimatedMean,
|
878 |
+
const void *estimatedVariance,
|
879 |
+
double epsilon);
|
880 |
+
|
881 |
+
typedef enum {
|
882 |
+
/* bnScale, bnBias tensor dims are 1xCxHxWx.. (one value per CHW...-slice, normalized over N slice) */
|
883 |
+
CUDNN_NORM_PER_ACTIVATION = 0,
|
884 |
+
|
885 |
+
/* bnScale, bnBias tensor dims are 1xCx1x1 (one value per C-dim normalized over Nx1xHxW subtensors) */
|
886 |
+
CUDNN_NORM_PER_CHANNEL = 1,
|
887 |
+
} cudnnNormMode_t;
|
888 |
+
|
889 |
+
typedef enum { CUDNN_NORM_ALGO_STANDARD = 0, CUDNN_NORM_ALGO_PERSIST = 1 } cudnnNormAlgo_t;
|
890 |
+
|
891 |
+
/*
|
892 |
+
* Derives a tensor descriptor from layer data descriptor for Normalization
|
893 |
+
* scale, invVariance, bnBias, bnScale tensors. Use this tensor desc for
|
894 |
+
* normScaleBiasMeanVarDesc and normScaleBiasDiffDesc in Normalization forward and backward functions.
|
895 |
+
*/
|
896 |
+
cudnnStatus_t CUDNNWINAPI
|
897 |
+
cudnnDeriveNormTensorDescriptor(cudnnTensorDescriptor_t derivedNormScaleBiasDesc,
|
898 |
+
cudnnTensorDescriptor_t derivedNormMeanVarDesc,
|
899 |
+
const cudnnTensorDescriptor_t xDesc,
|
900 |
+
cudnnNormMode_t mode,
|
901 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
902 |
+
|
903 |
+
typedef enum {
|
904 |
+
CUDNN_NORM_OPS_NORM = 0, /* do normalization only */
|
905 |
+
CUDNN_NORM_OPS_NORM_ACTIVATION = 1, /* do Norm, then activation */
|
906 |
+
CUDNN_NORM_OPS_NORM_ADD_ACTIVATION = 2, /* do Norm, then elemWiseAdd, then activation */
|
907 |
+
} cudnnNormOps_t;
|
908 |
+
|
909 |
+
/*
|
910 |
+
* Performs Normalization during Inference:
|
911 |
+
* y[i] = normScale[k]*(x[i]-estimatedMean[k])/sqrt(epsilon+estimatedVariance[k]) + normBias[k]
|
912 |
+
* with normScale, normBias, runningMean, runningInvVariance tensors indexed
|
913 |
+
* according to per-channel or per-activation mode. Refer to cudnnNormalizationForwardTraining
|
914 |
+
* above for notes on function arguments.
|
915 |
+
*/
|
916 |
+
cudnnStatus_t CUDNNWINAPI
|
917 |
+
cudnnNormalizationForwardInference(cudnnHandle_t handle,
|
918 |
+
cudnnNormMode_t mode,
|
919 |
+
cudnnNormOps_t normOps,
|
920 |
+
cudnnNormAlgo_t algo,
|
921 |
+
const void *alpha, /* alpha[0] = result blend factor */
|
922 |
+
const void *beta, /* beta[0] = dest layer blend factor */
|
923 |
+
const cudnnTensorDescriptor_t xDesc,
|
924 |
+
const void *x, /* NxCxHxW */
|
925 |
+
const cudnnTensorDescriptor_t normScaleBiasDesc,
|
926 |
+
const void *normScale,
|
927 |
+
const void *normBias,
|
928 |
+
const cudnnTensorDescriptor_t normMeanVarDesc,
|
929 |
+
const void *estimatedMean,
|
930 |
+
const void *estimatedVariance,
|
931 |
+
const cudnnTensorDescriptor_t zDesc,
|
932 |
+
const void *z,
|
933 |
+
cudnnActivationDescriptor_t activationDesc,
|
934 |
+
const cudnnTensorDescriptor_t yDesc,
|
935 |
+
void *y, /* NxCxHxW */
|
936 |
+
double epsilon,
|
937 |
+
int groupCnt); /* Place hold for future work*/
|
938 |
+
|
939 |
+
/* APIs for spatial transformer network*/
|
940 |
+
typedef enum {
|
941 |
+
CUDNN_SAMPLER_BILINEAR = 0,
|
942 |
+
} cudnnSamplerType_t;
|
943 |
+
|
944 |
+
cudnnStatus_t CUDNNWINAPI
|
945 |
+
cudnnCreateSpatialTransformerDescriptor(cudnnSpatialTransformerDescriptor_t *stDesc);
|
946 |
+
|
947 |
+
cudnnStatus_t CUDNNWINAPI
|
948 |
+
cudnnSetSpatialTransformerNdDescriptor(cudnnSpatialTransformerDescriptor_t stDesc,
|
949 |
+
cudnnSamplerType_t samplerType,
|
950 |
+
cudnnDataType_t dataType,
|
951 |
+
const int nbDims,
|
952 |
+
const int dimA[]);
|
953 |
+
|
954 |
+
cudnnStatus_t CUDNNWINAPI
|
955 |
+
cudnnDestroySpatialTransformerDescriptor(cudnnSpatialTransformerDescriptor_t stDesc);
|
956 |
+
|
957 |
+
cudnnStatus_t CUDNNWINAPI
|
958 |
+
cudnnSpatialTfGridGeneratorForward(cudnnHandle_t handle,
|
959 |
+
const cudnnSpatialTransformerDescriptor_t stDesc,
|
960 |
+
const void *theta,
|
961 |
+
void *grid);
|
962 |
+
|
963 |
+
cudnnStatus_t CUDNNWINAPI
|
964 |
+
cudnnSpatialTfSamplerForward(cudnnHandle_t handle,
|
965 |
+
cudnnSpatialTransformerDescriptor_t stDesc,
|
966 |
+
const void *alpha,
|
967 |
+
const cudnnTensorDescriptor_t xDesc,
|
968 |
+
const void *x,
|
969 |
+
const void *grid,
|
970 |
+
const void *beta,
|
971 |
+
cudnnTensorDescriptor_t yDesc,
|
972 |
+
void *y);
|
973 |
+
|
974 |
+
typedef struct cudnnDropoutStruct *cudnnDropoutDescriptor_t;
|
975 |
+
|
976 |
+
cudnnStatus_t CUDNNWINAPI
|
977 |
+
cudnnCreateDropoutDescriptor(cudnnDropoutDescriptor_t *dropoutDesc);
|
978 |
+
|
979 |
+
cudnnStatus_t CUDNNWINAPI
|
980 |
+
cudnnDestroyDropoutDescriptor(cudnnDropoutDescriptor_t dropoutDesc);
|
981 |
+
|
982 |
+
/*helper function to determine size of the states to be passed to cudnnSetDropoutDescriptor */
|
983 |
+
cudnnStatus_t CUDNNWINAPI
|
984 |
+
cudnnDropoutGetStatesSize(cudnnHandle_t handle, size_t *sizeInBytes);
|
985 |
+
|
986 |
+
/*helper function to determine size of the reserve space to be passed to dropout forward/backward calls */
|
987 |
+
cudnnStatus_t CUDNNWINAPI
|
988 |
+
cudnnDropoutGetReserveSpaceSize(cudnnTensorDescriptor_t xdesc, size_t *sizeInBytes);
|
989 |
+
|
990 |
+
cudnnStatus_t CUDNNWINAPI
|
991 |
+
cudnnSetDropoutDescriptor(cudnnDropoutDescriptor_t dropoutDesc,
|
992 |
+
cudnnHandle_t handle,
|
993 |
+
float dropout,
|
994 |
+
void *states,
|
995 |
+
size_t stateSizeInBytes,
|
996 |
+
unsigned long long seed);
|
997 |
+
|
998 |
+
/* Restores the dropout descriptor to a previously saved-off state */
|
999 |
+
cudnnStatus_t CUDNNWINAPI
|
1000 |
+
cudnnRestoreDropoutDescriptor(cudnnDropoutDescriptor_t dropoutDesc,
|
1001 |
+
cudnnHandle_t handle,
|
1002 |
+
float dropout,
|
1003 |
+
void *states,
|
1004 |
+
size_t stateSizeInBytes,
|
1005 |
+
unsigned long long seed);
|
1006 |
+
|
1007 |
+
cudnnStatus_t CUDNNWINAPI
|
1008 |
+
cudnnGetDropoutDescriptor(cudnnDropoutDescriptor_t dropoutDesc,
|
1009 |
+
cudnnHandle_t handle,
|
1010 |
+
float *dropout,
|
1011 |
+
void **states,
|
1012 |
+
unsigned long long *seed);
|
1013 |
+
|
1014 |
+
cudnnStatus_t CUDNNWINAPI
|
1015 |
+
cudnnDropoutForward(cudnnHandle_t handle,
|
1016 |
+
const cudnnDropoutDescriptor_t dropoutDesc,
|
1017 |
+
const cudnnTensorDescriptor_t xdesc,
|
1018 |
+
const void *x,
|
1019 |
+
const cudnnTensorDescriptor_t ydesc,
|
1020 |
+
void *y,
|
1021 |
+
void *reserveSpace,
|
1022 |
+
size_t reserveSpaceSizeInBytes);
|
1023 |
+
|
1024 |
+
/* TODO: remove */
|
1025 |
+
|
1026 |
+
typedef struct cudnnAlgorithmStruct *cudnnAlgorithmDescriptor_t;
|
1027 |
+
typedef struct cudnnAlgorithmPerformanceStruct *cudnnAlgorithmPerformance_t;
|
1028 |
+
|
1029 |
+
/* TODO: move these enums out to the appropriate submodule */
|
1030 |
+
typedef enum {
|
1031 |
+
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM = 0,
|
1032 |
+
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM = 1,
|
1033 |
+
CUDNN_CONVOLUTION_FWD_ALGO_GEMM = 2,
|
1034 |
+
CUDNN_CONVOLUTION_FWD_ALGO_DIRECT = 3,
|
1035 |
+
CUDNN_CONVOLUTION_FWD_ALGO_FFT = 4,
|
1036 |
+
CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING = 5,
|
1037 |
+
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD = 6,
|
1038 |
+
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED = 7,
|
1039 |
+
CUDNN_CONVOLUTION_FWD_ALGO_COUNT = 8
|
1040 |
+
} cudnnConvolutionFwdAlgo_t;
|
1041 |
+
|
1042 |
+
typedef enum {
|
1043 |
+
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 = 0, /* non-deterministic */
|
1044 |
+
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 = 1,
|
1045 |
+
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT = 2,
|
1046 |
+
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3 = 3, /* non-deterministic */
|
1047 |
+
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD = 4, /* not implemented */
|
1048 |
+
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED = 5,
|
1049 |
+
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING = 6,
|
1050 |
+
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT = 7
|
1051 |
+
} cudnnConvolutionBwdFilterAlgo_t;
|
1052 |
+
|
1053 |
+
typedef enum {
|
1054 |
+
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 = 0, /* non-deterministic */
|
1055 |
+
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 = 1,
|
1056 |
+
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT = 2,
|
1057 |
+
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING = 3,
|
1058 |
+
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD = 4,
|
1059 |
+
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED = 5,
|
1060 |
+
CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT = 6
|
1061 |
+
} cudnnConvolutionBwdDataAlgo_t;
|
1062 |
+
|
1063 |
+
typedef enum {
|
1064 |
+
CUDNN_RNN_ALGO_STANDARD = 0,
|
1065 |
+
CUDNN_RNN_ALGO_PERSIST_STATIC = 1,
|
1066 |
+
CUDNN_RNN_ALGO_PERSIST_DYNAMIC = 2,
|
1067 |
+
CUDNN_RNN_ALGO_PERSIST_STATIC_SMALL_H = 3,
|
1068 |
+
CUDNN_RNN_ALGO_COUNT = 4,
|
1069 |
+
} cudnnRNNAlgo_t;
|
1070 |
+
|
1071 |
+
typedef enum { CUDNN_CTC_LOSS_ALGO_DETERMINISTIC = 0, CUDNN_CTC_LOSS_ALGO_NON_DETERMINISTIC = 1 } cudnnCTCLossAlgo_t;
|
1072 |
+
|
1073 |
+
/* TODO: remove */
|
1074 |
+
typedef struct cudnnAlgorithmUnionStruct {
|
1075 |
+
union Algorithm {
|
1076 |
+
cudnnConvolutionFwdAlgo_t convFwdAlgo;
|
1077 |
+
cudnnConvolutionBwdFilterAlgo_t convBwdFilterAlgo;
|
1078 |
+
cudnnConvolutionBwdDataAlgo_t convBwdDataAlgo;
|
1079 |
+
cudnnRNNAlgo_t RNNAlgo;
|
1080 |
+
cudnnCTCLossAlgo_t CTCLossAlgo;
|
1081 |
+
} algo;
|
1082 |
+
} cudnnAlgorithm_t;
|
1083 |
+
|
1084 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1085 |
+
cudnnCreateAlgorithmDescriptor(cudnnAlgorithmDescriptor_t *algoDesc);
|
1086 |
+
|
1087 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1088 |
+
cudnnSetAlgorithmDescriptor(cudnnAlgorithmDescriptor_t algoDesc, cudnnAlgorithm_t algorithm);
|
1089 |
+
|
1090 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1091 |
+
cudnnGetAlgorithmDescriptor(const cudnnAlgorithmDescriptor_t algoDesc, cudnnAlgorithm_t *algorithm);
|
1092 |
+
|
1093 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1094 |
+
cudnnCopyAlgorithmDescriptor(const cudnnAlgorithmDescriptor_t src, cudnnAlgorithmDescriptor_t dest);
|
1095 |
+
|
1096 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1097 |
+
cudnnDestroyAlgorithmDescriptor(cudnnAlgorithmDescriptor_t algoDesc);
|
1098 |
+
|
1099 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1100 |
+
cudnnCreateAlgorithmPerformance(cudnnAlgorithmPerformance_t *algoPerf, int numberToCreate);
|
1101 |
+
|
1102 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1103 |
+
cudnnSetAlgorithmPerformance(cudnnAlgorithmPerformance_t algoPerf,
|
1104 |
+
cudnnAlgorithmDescriptor_t algoDesc,
|
1105 |
+
cudnnStatus_t status,
|
1106 |
+
float time,
|
1107 |
+
size_t memory);
|
1108 |
+
|
1109 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1110 |
+
cudnnGetAlgorithmPerformance(const cudnnAlgorithmPerformance_t algoPerf,
|
1111 |
+
cudnnAlgorithmDescriptor_t *algoDesc,
|
1112 |
+
cudnnStatus_t *status,
|
1113 |
+
float *time,
|
1114 |
+
size_t *memory);
|
1115 |
+
|
1116 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1117 |
+
cudnnDestroyAlgorithmPerformance(cudnnAlgorithmPerformance_t *algoPerf, int numberToDestroy);
|
1118 |
+
|
1119 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1120 |
+
cudnnGetAlgorithmSpaceSize(cudnnHandle_t handle, cudnnAlgorithmDescriptor_t algoDesc, size_t *algoSpaceSizeInBytes);
|
1121 |
+
|
1122 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1123 |
+
cudnnSaveAlgorithm(cudnnHandle_t handle,
|
1124 |
+
cudnnAlgorithmDescriptor_t algoDesc,
|
1125 |
+
void *algoSpace,
|
1126 |
+
size_t algoSpaceSizeInBytes);
|
1127 |
+
|
1128 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
1129 |
+
cudnnRestoreAlgorithm(cudnnHandle_t handle,
|
1130 |
+
void *algoSpace,
|
1131 |
+
size_t algoSpaceSizeInBytes,
|
1132 |
+
cudnnAlgorithmDescriptor_t algoDesc);
|
1133 |
+
|
1134 |
+
typedef enum {
|
1135 |
+
CUDNN_SEV_FATAL = 0,
|
1136 |
+
CUDNN_SEV_ERROR = 1,
|
1137 |
+
CUDNN_SEV_WARNING = 2,
|
1138 |
+
CUDNN_SEV_INFO = 3,
|
1139 |
+
} cudnnSeverity_t;
|
1140 |
+
|
1141 |
+
/* Message masks to be used with cudnnSetCallback() */
|
1142 |
+
#define CUDNN_SEV_ERROR_EN (1U << CUDNN_SEV_ERROR)
|
1143 |
+
#define CUDNN_SEV_WARNING_EN (1U << CUDNN_SEV_WARNING)
|
1144 |
+
#define CUDNN_SEV_INFO_EN (1U << CUDNN_SEV_INFO)
|
1145 |
+
|
1146 |
+
/* struct containing useful informaiton for each API call */
|
1147 |
+
typedef struct cudnnDebugStruct {
|
1148 |
+
unsigned cudnn_version;
|
1149 |
+
cudnnStatus_t cudnnStatus;
|
1150 |
+
unsigned time_sec; /* epoch time in seconds */
|
1151 |
+
unsigned time_usec; /* microseconds part of epoch time */
|
1152 |
+
unsigned time_delta; /* time since start in seconds */
|
1153 |
+
cudnnHandle_t handle; /* cudnn handle */
|
1154 |
+
cudaStream_t stream; /* cuda stream ID */
|
1155 |
+
unsigned long long pid; /* process ID */
|
1156 |
+
unsigned long long tid; /* thread ID */
|
1157 |
+
int cudaDeviceId; /* CUDA device ID */
|
1158 |
+
int reserved[15]; /* reserved for future use */
|
1159 |
+
} cudnnDebug_t;
|
1160 |
+
|
1161 |
+
typedef void (*cudnnCallback_t)(cudnnSeverity_t sev, void *udata, const cudnnDebug_t *dbg, const char *msg);
|
1162 |
+
|
1163 |
+
cudnnStatus_t CUDNNWINAPI
|
1164 |
+
cudnnSetCallback(unsigned mask, void *udata, cudnnCallback_t fptr);
|
1165 |
+
|
1166 |
+
cudnnStatus_t CUDNNWINAPI
|
1167 |
+
cudnnGetCallback(unsigned *mask, void **udata, cudnnCallback_t *fptr);
|
1168 |
+
|
1169 |
+
/*
|
1170 |
+
* \brief Cross-library version checker.
|
1171 |
+
* This function is implemented differently in each sub-library. Each sublib
|
1172 |
+
* checks whether its own version matches that of its dependencies.
|
1173 |
+
* \returns CUDNN_STATUS_SUCCESS if the version check passes,
|
1174 |
+
* CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
|
1175 |
+
*/
|
1176 |
+
cudnnStatus_t CUDNNWINAPI
|
1177 |
+
cudnnOpsInferVersionCheck(void);
|
1178 |
+
|
1179 |
+
#if defined(__cplusplus)
|
1180 |
+
}
|
1181 |
+
#endif
|
1182 |
+
|
1183 |
+
#endif /* CUDNN_OPS_INFER_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_ops_train.h
ADDED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/*
|
51 |
+
* cudnn_ops_train : cuDNN's basic training operations and algorithms.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_OPS_TRAIN_H_)
|
55 |
+
#define CUDNN_OPS_TRAIN_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
|
63 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
64 |
+
#define CUDNN_OPS_TRAIN_MAJOR 8
|
65 |
+
#define CUDNN_OPS_TRAIN_MINOR 9
|
66 |
+
#define CUDNN_OPS_TRAIN_PATCH 2
|
67 |
+
|
68 |
+
#if (CUDNN_OPS_TRAIN_MAJOR != CUDNN_MAJOR) || (CUDNN_OPS_TRAIN_MINOR != CUDNN_MINOR) || \
|
69 |
+
(CUDNN_OPS_TRAIN_PATCH != CUDNN_PATCHLEVEL)
|
70 |
+
#error Version mismatch in cuDNN OPS TRAIN!!!
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus)
|
74 |
+
extern "C" {
|
75 |
+
#endif
|
76 |
+
|
77 |
+
/* Function to perform backward softmax */
|
78 |
+
cudnnStatus_t CUDNNWINAPI
|
79 |
+
cudnnSoftmaxBackward(cudnnHandle_t handle,
|
80 |
+
cudnnSoftmaxAlgorithm_t algo,
|
81 |
+
cudnnSoftmaxMode_t mode,
|
82 |
+
const void *alpha,
|
83 |
+
const cudnnTensorDescriptor_t yDesc,
|
84 |
+
const void *y,
|
85 |
+
const cudnnTensorDescriptor_t dyDesc,
|
86 |
+
const void *dy,
|
87 |
+
const void *beta,
|
88 |
+
const cudnnTensorDescriptor_t dxDesc,
|
89 |
+
void *dx);
|
90 |
+
|
91 |
+
/* Function to perform backward pooling */
|
92 |
+
cudnnStatus_t CUDNNWINAPI
|
93 |
+
cudnnPoolingBackward(cudnnHandle_t handle,
|
94 |
+
const cudnnPoolingDescriptor_t poolingDesc,
|
95 |
+
const void *alpha,
|
96 |
+
const cudnnTensorDescriptor_t yDesc,
|
97 |
+
const void *y,
|
98 |
+
const cudnnTensorDescriptor_t dyDesc,
|
99 |
+
const void *dy,
|
100 |
+
const cudnnTensorDescriptor_t xDesc,
|
101 |
+
const void *x,
|
102 |
+
const void *beta,
|
103 |
+
const cudnnTensorDescriptor_t dxDesc,
|
104 |
+
void *dx);
|
105 |
+
|
106 |
+
/* Function to perform backward activation */
|
107 |
+
cudnnStatus_t CUDNNWINAPI
|
108 |
+
cudnnActivationBackward(cudnnHandle_t handle,
|
109 |
+
cudnnActivationDescriptor_t activationDesc,
|
110 |
+
const void *alpha,
|
111 |
+
const cudnnTensorDescriptor_t yDesc,
|
112 |
+
const void *y,
|
113 |
+
const cudnnTensorDescriptor_t dyDesc,
|
114 |
+
const void *dy,
|
115 |
+
const cudnnTensorDescriptor_t xDesc,
|
116 |
+
const void *x,
|
117 |
+
const void *beta,
|
118 |
+
const cudnnTensorDescriptor_t dxDesc,
|
119 |
+
void *dx);
|
120 |
+
|
121 |
+
/* LRN cross-channel backward computation. Double parameters cast to tensor data type */
|
122 |
+
cudnnStatus_t CUDNNWINAPI
|
123 |
+
cudnnLRNCrossChannelBackward(cudnnHandle_t handle,
|
124 |
+
cudnnLRNDescriptor_t normDesc,
|
125 |
+
cudnnLRNMode_t lrnMode,
|
126 |
+
const void *alpha,
|
127 |
+
const cudnnTensorDescriptor_t yDesc,
|
128 |
+
const void *y,
|
129 |
+
const cudnnTensorDescriptor_t dyDesc,
|
130 |
+
const void *dy,
|
131 |
+
const cudnnTensorDescriptor_t xDesc,
|
132 |
+
const void *x,
|
133 |
+
const void *beta,
|
134 |
+
const cudnnTensorDescriptor_t dxDesc,
|
135 |
+
void *dx);
|
136 |
+
|
137 |
+
cudnnStatus_t CUDNNWINAPI
|
138 |
+
cudnnDivisiveNormalizationBackward(cudnnHandle_t handle,
|
139 |
+
cudnnLRNDescriptor_t normDesc,
|
140 |
+
cudnnDivNormMode_t mode,
|
141 |
+
const void *alpha,
|
142 |
+
const cudnnTensorDescriptor_t xDesc, /* same desc for x, means, dy, temp, temp2 */
|
143 |
+
const void *x,
|
144 |
+
const void *means, /* if NULL, means are assumed to be zero */
|
145 |
+
const void *dy,
|
146 |
+
void *temp,
|
147 |
+
void *temp2,
|
148 |
+
const void *beta,
|
149 |
+
const cudnnTensorDescriptor_t dXdMeansDesc, /* same desc for dx, dMeans */
|
150 |
+
void *dx, /* output x differential */
|
151 |
+
void *dMeans); /* output means differential, can be NULL */
|
152 |
+
|
153 |
+
cudnnStatus_t CUDNNWINAPI
|
154 |
+
cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(cudnnHandle_t handle,
|
155 |
+
cudnnBatchNormMode_t mode,
|
156 |
+
cudnnBatchNormOps_t bnOps,
|
157 |
+
const cudnnTensorDescriptor_t xDesc,
|
158 |
+
const cudnnTensorDescriptor_t zDesc,
|
159 |
+
const cudnnTensorDescriptor_t yDesc,
|
160 |
+
const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
|
161 |
+
const cudnnActivationDescriptor_t activationDesc,
|
162 |
+
size_t *sizeInBytes);
|
163 |
+
|
164 |
+
cudnnStatus_t CUDNNWINAPI
|
165 |
+
cudnnGetBatchNormalizationBackwardExWorkspaceSize(cudnnHandle_t handle,
|
166 |
+
cudnnBatchNormMode_t mode,
|
167 |
+
cudnnBatchNormOps_t bnOps,
|
168 |
+
const cudnnTensorDescriptor_t xDesc,
|
169 |
+
const cudnnTensorDescriptor_t yDesc,
|
170 |
+
const cudnnTensorDescriptor_t dyDesc,
|
171 |
+
const cudnnTensorDescriptor_t dzDesc,
|
172 |
+
const cudnnTensorDescriptor_t dxDesc,
|
173 |
+
const cudnnTensorDescriptor_t dBnScaleBiasDesc,
|
174 |
+
const cudnnActivationDescriptor_t activationDesc,
|
175 |
+
size_t *sizeInBytes);
|
176 |
+
|
177 |
+
cudnnStatus_t CUDNNWINAPI
|
178 |
+
cudnnGetBatchNormalizationTrainingExReserveSpaceSize(cudnnHandle_t handle,
|
179 |
+
cudnnBatchNormMode_t mode,
|
180 |
+
cudnnBatchNormOps_t bnOps,
|
181 |
+
const cudnnActivationDescriptor_t activationDesc,
|
182 |
+
const cudnnTensorDescriptor_t xDesc,
|
183 |
+
size_t *sizeInBytes);
|
184 |
+
|
185 |
+
/* Computes y = BN(x). Also accumulates moving averages of mean and inverse variances */
|
186 |
+
cudnnStatus_t CUDNNWINAPI
|
187 |
+
cudnnBatchNormalizationForwardTraining(
|
188 |
+
cudnnHandle_t handle,
|
189 |
+
cudnnBatchNormMode_t mode,
|
190 |
+
|
191 |
+
const void *alpha, /* alpha[0] = result blend factor */
|
192 |
+
const void *beta, /* beta[0] = dest layer blend factor */
|
193 |
+
|
194 |
+
const cudnnTensorDescriptor_t xDesc,
|
195 |
+
const void *x, /* NxCxHxW */
|
196 |
+
const cudnnTensorDescriptor_t yDesc,
|
197 |
+
void *y, /* NxCxHxW */
|
198 |
+
|
199 |
+
/* Shared desc for the next 6 tensors in the argument list.
|
200 |
+
Data type to be set as follows:
|
201 |
+
type = (typeOf(x) == double) ? double : float
|
202 |
+
Dimensions for this descriptor depend on normalization mode
|
203 |
+
- Spatial Normalization : tensors are expected to have dims 1xCx1x1
|
204 |
+
(normalization is performed across NxHxW)
|
205 |
+
- Per-Activation Normalization : tensors are expected to have dims of 1xCxHxW
|
206 |
+
(normalization is performed across N) */
|
207 |
+
const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
|
208 |
+
|
209 |
+
/* 'Gamma' and 'Beta' respectively in Ioffe and Szegedy's paper's notation */
|
210 |
+
const void *bnScale,
|
211 |
+
const void *bnBias,
|
212 |
+
|
213 |
+
/* MUST use factor=1 in the very first call of a complete training cycle.
|
214 |
+
Use a factor=1/(1+n) at N-th call to the function to get
|
215 |
+
Cumulative Moving Average (CMA) behavior
|
216 |
+
CMA[n] = (x[1]+...+x[n])/n
|
217 |
+
Since CMA[n+1] = (n*CMA[n]+x[n+1])/(n+1) =
|
218 |
+
((n+1)*CMA[n]-CMA[n])/(n+1) + x[n+1]/(n+1) =
|
219 |
+
CMA[n]*(1-1/(n+1)) + x[n+1]*1/(n+1) */
|
220 |
+
double exponentialAverageFactor,
|
221 |
+
|
222 |
+
/* Used in Training phase only.
|
223 |
+
runningMean = newMean*factor + runningMean*(1-factor) */
|
224 |
+
void *resultRunningMean,
|
225 |
+
/* Output in training mode, input in inference. Is the moving average
|
226 |
+
of variance[x] (factor is applied in the same way as for runningMean) */
|
227 |
+
void *resultRunningVariance,
|
228 |
+
|
229 |
+
/* Has to be >= CUDNN_BN_MIN_EPSILON. Should be the same in forward and backward functions. */
|
230 |
+
double epsilon,
|
231 |
+
|
232 |
+
/* Optionally save intermediate results from the forward pass here
|
233 |
+
- can be reused to speed up backward pass. NULL if unused */
|
234 |
+
void *resultSaveMean,
|
235 |
+
void *resultSaveInvVariance);
|
236 |
+
|
237 |
+
/* Computes y = relu(BN(x) + z). Also accumulates moving averages of mean and inverse variances */
|
238 |
+
cudnnStatus_t CUDNNWINAPI
|
239 |
+
cudnnBatchNormalizationForwardTrainingEx(
|
240 |
+
cudnnHandle_t handle,
|
241 |
+
cudnnBatchNormMode_t mode,
|
242 |
+
cudnnBatchNormOps_t bnOps,
|
243 |
+
|
244 |
+
const void *alpha, /* alpha[0] = result blend factor */
|
245 |
+
const void *beta, /* beta[0] = dest layer blend factor */
|
246 |
+
|
247 |
+
const cudnnTensorDescriptor_t xDesc,
|
248 |
+
const void *xData,
|
249 |
+
const cudnnTensorDescriptor_t zDesc,
|
250 |
+
const void *zData,
|
251 |
+
const cudnnTensorDescriptor_t yDesc,
|
252 |
+
void *yData,
|
253 |
+
|
254 |
+
const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
|
255 |
+
const void *bnScale,
|
256 |
+
const void *bnBias,
|
257 |
+
|
258 |
+
double exponentialAverageFactor,
|
259 |
+
void *resultRunningMean,
|
260 |
+
void *resultRunningVariance,
|
261 |
+
|
262 |
+
/* Has to be >= CUDNN_BN_MIN_EPSILON. Should be the same in forward and backward functions. */
|
263 |
+
double epsilon,
|
264 |
+
|
265 |
+
/* Optionally save intermediate results from the forward pass here
|
266 |
+
- can be reused to speed up backward pass. NULL if unused */
|
267 |
+
void *resultSaveMean,
|
268 |
+
void *resultSaveInvVariance,
|
269 |
+
|
270 |
+
cudnnActivationDescriptor_t activationDesc,
|
271 |
+
void *workspace,
|
272 |
+
size_t workSpaceSizeInBytes,
|
273 |
+
void *reserveSpace,
|
274 |
+
size_t reserveSpaceSizeInBytes);
|
275 |
+
|
276 |
+
/* Performs backward pass of Batch Normalization layer. Returns x gradient,
|
277 |
+
* bnScale gradient and bnBias gradient */
|
278 |
+
cudnnStatus_t CUDNNWINAPI
|
279 |
+
cudnnBatchNormalizationBackward(cudnnHandle_t handle,
|
280 |
+
cudnnBatchNormMode_t mode,
|
281 |
+
const void *alphaDataDiff,
|
282 |
+
const void *betaDataDiff,
|
283 |
+
const void *alphaParamDiff,
|
284 |
+
const void *betaParamDiff,
|
285 |
+
const cudnnTensorDescriptor_t xDesc, /* same desc for x, dx, dy */
|
286 |
+
const void *x,
|
287 |
+
const cudnnTensorDescriptor_t dyDesc,
|
288 |
+
const void *dy,
|
289 |
+
const cudnnTensorDescriptor_t dxDesc,
|
290 |
+
void *dx,
|
291 |
+
/* Shared tensor desc for the 4 tensors below */
|
292 |
+
const cudnnTensorDescriptor_t dBnScaleBiasDesc,
|
293 |
+
const void *bnScale, /* bnBias doesn't affect backpropagation */
|
294 |
+
/* scale and bias diff are not backpropagated below this layer */
|
295 |
+
void *dBnScaleResult,
|
296 |
+
void *dBnBiasResult,
|
297 |
+
/* Same epsilon as forward pass */
|
298 |
+
double epsilon,
|
299 |
+
|
300 |
+
/* Optionally cached intermediate results from
|
301 |
+
forward pass */
|
302 |
+
const void *savedMean,
|
303 |
+
const void *savedInvVariance);
|
304 |
+
|
305 |
+
cudnnStatus_t CUDNNWINAPI
|
306 |
+
cudnnBatchNormalizationBackwardEx(cudnnHandle_t handle,
|
307 |
+
cudnnBatchNormMode_t mode,
|
308 |
+
cudnnBatchNormOps_t bnOps,
|
309 |
+
|
310 |
+
const void *alphaDataDiff,
|
311 |
+
const void *betaDataDiff,
|
312 |
+
const void *alphaParamDiff,
|
313 |
+
const void *betaParamDiff,
|
314 |
+
const cudnnTensorDescriptor_t xDesc,
|
315 |
+
const void *xData,
|
316 |
+
const cudnnTensorDescriptor_t yDesc,
|
317 |
+
const void *yData,
|
318 |
+
const cudnnTensorDescriptor_t dyDesc,
|
319 |
+
const void *dyData,
|
320 |
+
const cudnnTensorDescriptor_t dzDesc,
|
321 |
+
void *dzData,
|
322 |
+
const cudnnTensorDescriptor_t dxDesc,
|
323 |
+
void *dxData,
|
324 |
+
|
325 |
+
/* Shared tensor desc for the 4 tensors below */
|
326 |
+
const cudnnTensorDescriptor_t dBnScaleBiasDesc,
|
327 |
+
const void *bnScaleData,
|
328 |
+
const void *bnBiasData, /* needed if there is activation */
|
329 |
+
void *dBnScaleData,
|
330 |
+
void *dBnBiasData,
|
331 |
+
double epsilon, /* Same epsilon as forward pass */
|
332 |
+
|
333 |
+
/* Optionally cached intermediate results from
|
334 |
+
forward pass */
|
335 |
+
const void *savedMean,
|
336 |
+
const void *savedInvVariance,
|
337 |
+
cudnnActivationDescriptor_t activationDesc,
|
338 |
+
void *workSpace,
|
339 |
+
size_t workSpaceSizeInBytes,
|
340 |
+
void *reserveSpace,
|
341 |
+
size_t reserveSpaceSizeInBytes);
|
342 |
+
|
343 |
+
cudnnStatus_t CUDNNWINAPI
|
344 |
+
cudnnGetNormalizationForwardTrainingWorkspaceSize(cudnnHandle_t handle,
|
345 |
+
cudnnNormMode_t mode,
|
346 |
+
cudnnNormOps_t normOps,
|
347 |
+
cudnnNormAlgo_t algo,
|
348 |
+
const cudnnTensorDescriptor_t xDesc,
|
349 |
+
const cudnnTensorDescriptor_t zDesc,
|
350 |
+
const cudnnTensorDescriptor_t yDesc,
|
351 |
+
const cudnnTensorDescriptor_t normScaleBiasDesc,
|
352 |
+
const cudnnActivationDescriptor_t activationDesc,
|
353 |
+
const cudnnTensorDescriptor_t normMeanVarDesc,
|
354 |
+
size_t *sizeInBytes,
|
355 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
356 |
+
|
357 |
+
cudnnStatus_t CUDNNWINAPI
|
358 |
+
cudnnGetNormalizationBackwardWorkspaceSize(cudnnHandle_t handle,
|
359 |
+
cudnnNormMode_t mode,
|
360 |
+
cudnnNormOps_t normOps,
|
361 |
+
cudnnNormAlgo_t algo,
|
362 |
+
const cudnnTensorDescriptor_t xDesc,
|
363 |
+
const cudnnTensorDescriptor_t yDesc,
|
364 |
+
const cudnnTensorDescriptor_t dyDesc,
|
365 |
+
const cudnnTensorDescriptor_t dzDesc,
|
366 |
+
const cudnnTensorDescriptor_t dxDesc,
|
367 |
+
const cudnnTensorDescriptor_t dNormScaleBiasDesc,
|
368 |
+
const cudnnActivationDescriptor_t activationDesc,
|
369 |
+
const cudnnTensorDescriptor_t normMeanVarDesc,
|
370 |
+
size_t *sizeInBytes,
|
371 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
372 |
+
|
373 |
+
cudnnStatus_t CUDNNWINAPI
|
374 |
+
cudnnGetNormalizationTrainingReserveSpaceSize(cudnnHandle_t handle,
|
375 |
+
cudnnNormMode_t mode,
|
376 |
+
cudnnNormOps_t normOps,
|
377 |
+
cudnnNormAlgo_t algo,
|
378 |
+
const cudnnActivationDescriptor_t activationDesc,
|
379 |
+
const cudnnTensorDescriptor_t xDesc,
|
380 |
+
size_t *sizeInBytes,
|
381 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
382 |
+
|
383 |
+
/* Computes y = relu(Norm(x) + z). Also accumulates moving averages of mean and inverse variances */
|
384 |
+
cudnnStatus_t CUDNNWINAPI
|
385 |
+
cudnnNormalizationForwardTraining(cudnnHandle_t handle,
|
386 |
+
cudnnNormMode_t mode,
|
387 |
+
cudnnNormOps_t normOps,
|
388 |
+
cudnnNormAlgo_t algo,
|
389 |
+
const void *alpha, /* alpha[0] = result blend factor */
|
390 |
+
const void *beta, /* beta[0] = dest layer blend factor */
|
391 |
+
const cudnnTensorDescriptor_t xDesc,
|
392 |
+
const void *xData,
|
393 |
+
const cudnnTensorDescriptor_t normScaleBiasDesc,
|
394 |
+
const void *normScale,
|
395 |
+
const void *normBias,
|
396 |
+
double exponentialAverageFactor,
|
397 |
+
const cudnnTensorDescriptor_t normMeanVarDesc,
|
398 |
+
void *resultRunningMean,
|
399 |
+
void *resultRunningVariance,
|
400 |
+
/* Has to be >= 0. Should be the same in forward and backward functions. */
|
401 |
+
double epsilon,
|
402 |
+
/* Optionally save intermediate results from the forward pass here
|
403 |
+
- can be reused to speed up backward pass. NULL if unused */
|
404 |
+
void *resultSaveMean,
|
405 |
+
void *resultSaveInvVariance,
|
406 |
+
cudnnActivationDescriptor_t activationDesc,
|
407 |
+
const cudnnTensorDescriptor_t zDesc,
|
408 |
+
const void *zData,
|
409 |
+
const cudnnTensorDescriptor_t yDesc,
|
410 |
+
void *yData,
|
411 |
+
void *workspace,
|
412 |
+
size_t workSpaceSizeInBytes,
|
413 |
+
void *reserveSpace,
|
414 |
+
size_t reserveSpaceSizeInBytes,
|
415 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
416 |
+
|
417 |
+
cudnnStatus_t CUDNNWINAPI
|
418 |
+
cudnnNormalizationBackward(cudnnHandle_t handle,
|
419 |
+
cudnnNormMode_t mode,
|
420 |
+
cudnnNormOps_t normOps,
|
421 |
+
cudnnNormAlgo_t algo,
|
422 |
+
const void *alphaDataDiff,
|
423 |
+
const void *betaDataDiff,
|
424 |
+
const void *alphaParamDiff,
|
425 |
+
const void *betaParamDiff,
|
426 |
+
const cudnnTensorDescriptor_t xDesc,
|
427 |
+
const void *xData,
|
428 |
+
const cudnnTensorDescriptor_t yDesc,
|
429 |
+
const void *yData,
|
430 |
+
const cudnnTensorDescriptor_t dyDesc,
|
431 |
+
const void *dyData,
|
432 |
+
const cudnnTensorDescriptor_t dzDesc,
|
433 |
+
void *dzData,
|
434 |
+
const cudnnTensorDescriptor_t dxDesc,
|
435 |
+
void *dxData,
|
436 |
+
/* Shared tensor desc for the 4 tensors below */
|
437 |
+
const cudnnTensorDescriptor_t dNormScaleBiasDesc,
|
438 |
+
const void *normScaleData,
|
439 |
+
const void *normBiasData, /* needed if there is activation */
|
440 |
+
void *dNormScaleData,
|
441 |
+
void *dNormBiasData,
|
442 |
+
double epsilon, /* Same epsilon as forward pass */
|
443 |
+
const cudnnTensorDescriptor_t normMeanVarDesc,
|
444 |
+
/* Optionally cached intermediate results from
|
445 |
+
forward pass */
|
446 |
+
const void *savedMean,
|
447 |
+
const void *savedInvVariance,
|
448 |
+
cudnnActivationDescriptor_t activationDesc,
|
449 |
+
void *workSpace,
|
450 |
+
size_t workSpaceSizeInBytes,
|
451 |
+
void *reserveSpace,
|
452 |
+
size_t reserveSpaceSizeInBytes,
|
453 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
454 |
+
|
455 |
+
cudnnStatus_t CUDNNWINAPI
|
456 |
+
cudnnSpatialTfGridGeneratorBackward(cudnnHandle_t handle,
|
457 |
+
const cudnnSpatialTransformerDescriptor_t stDesc,
|
458 |
+
const void *dgrid,
|
459 |
+
void *dtheta);
|
460 |
+
|
461 |
+
cudnnStatus_t CUDNNWINAPI
|
462 |
+
cudnnSpatialTfSamplerBackward(cudnnHandle_t handle,
|
463 |
+
cudnnSpatialTransformerDescriptor_t stDesc,
|
464 |
+
const void *alpha,
|
465 |
+
const cudnnTensorDescriptor_t xDesc,
|
466 |
+
const void *x,
|
467 |
+
const void *beta,
|
468 |
+
const cudnnTensorDescriptor_t dxDesc,
|
469 |
+
void *dx,
|
470 |
+
const void *alphaDgrid,
|
471 |
+
const cudnnTensorDescriptor_t dyDesc,
|
472 |
+
const void *dy,
|
473 |
+
const void *grid,
|
474 |
+
const void *betaDgrid,
|
475 |
+
void *dgrid);
|
476 |
+
|
477 |
+
cudnnStatus_t CUDNNWINAPI
|
478 |
+
cudnnDropoutBackward(cudnnHandle_t handle,
|
479 |
+
const cudnnDropoutDescriptor_t dropoutDesc,
|
480 |
+
const cudnnTensorDescriptor_t dydesc,
|
481 |
+
const void *dy,
|
482 |
+
const cudnnTensorDescriptor_t dxdesc,
|
483 |
+
void *dx,
|
484 |
+
void *reserveSpace,
|
485 |
+
size_t reserveSpaceSizeInBytes);
|
486 |
+
|
487 |
+
/*
|
488 |
+
* \brief Cross-library version checker.
|
489 |
+
* This function is implemented differently in each sub-library. Each sublib
|
490 |
+
* checks whether its own version matches that of its dependencies.
|
491 |
+
* \returns CUDNN_STATUS_SUCCESS if the version check passes,
|
492 |
+
* CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
|
493 |
+
*/
|
494 |
+
cudnnStatus_t CUDNNWINAPI
|
495 |
+
cudnnOpsTrainVersionCheck(void);
|
496 |
+
|
497 |
+
#if defined(__cplusplus)
|
498 |
+
}
|
499 |
+
#endif
|
500 |
+
|
501 |
+
#endif /* CUDNN_OPS_TRAIN_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_ops_train_v8.h
ADDED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/*
|
51 |
+
* cudnn_ops_train : cuDNN's basic training operations and algorithms.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_OPS_TRAIN_H_)
|
55 |
+
#define CUDNN_OPS_TRAIN_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
|
63 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
64 |
+
#define CUDNN_OPS_TRAIN_MAJOR 8
|
65 |
+
#define CUDNN_OPS_TRAIN_MINOR 9
|
66 |
+
#define CUDNN_OPS_TRAIN_PATCH 2
|
67 |
+
|
68 |
+
#if (CUDNN_OPS_TRAIN_MAJOR != CUDNN_MAJOR) || (CUDNN_OPS_TRAIN_MINOR != CUDNN_MINOR) || \
|
69 |
+
(CUDNN_OPS_TRAIN_PATCH != CUDNN_PATCHLEVEL)
|
70 |
+
#error Version mismatch in cuDNN OPS TRAIN!!!
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus)
|
74 |
+
extern "C" {
|
75 |
+
#endif
|
76 |
+
|
77 |
+
/* Function to perform backward softmax */
|
78 |
+
cudnnStatus_t CUDNNWINAPI
|
79 |
+
cudnnSoftmaxBackward(cudnnHandle_t handle,
|
80 |
+
cudnnSoftmaxAlgorithm_t algo,
|
81 |
+
cudnnSoftmaxMode_t mode,
|
82 |
+
const void *alpha,
|
83 |
+
const cudnnTensorDescriptor_t yDesc,
|
84 |
+
const void *y,
|
85 |
+
const cudnnTensorDescriptor_t dyDesc,
|
86 |
+
const void *dy,
|
87 |
+
const void *beta,
|
88 |
+
const cudnnTensorDescriptor_t dxDesc,
|
89 |
+
void *dx);
|
90 |
+
|
91 |
+
/* Function to perform backward pooling */
|
92 |
+
cudnnStatus_t CUDNNWINAPI
|
93 |
+
cudnnPoolingBackward(cudnnHandle_t handle,
|
94 |
+
const cudnnPoolingDescriptor_t poolingDesc,
|
95 |
+
const void *alpha,
|
96 |
+
const cudnnTensorDescriptor_t yDesc,
|
97 |
+
const void *y,
|
98 |
+
const cudnnTensorDescriptor_t dyDesc,
|
99 |
+
const void *dy,
|
100 |
+
const cudnnTensorDescriptor_t xDesc,
|
101 |
+
const void *x,
|
102 |
+
const void *beta,
|
103 |
+
const cudnnTensorDescriptor_t dxDesc,
|
104 |
+
void *dx);
|
105 |
+
|
106 |
+
/* Function to perform backward activation */
|
107 |
+
cudnnStatus_t CUDNNWINAPI
|
108 |
+
cudnnActivationBackward(cudnnHandle_t handle,
|
109 |
+
cudnnActivationDescriptor_t activationDesc,
|
110 |
+
const void *alpha,
|
111 |
+
const cudnnTensorDescriptor_t yDesc,
|
112 |
+
const void *y,
|
113 |
+
const cudnnTensorDescriptor_t dyDesc,
|
114 |
+
const void *dy,
|
115 |
+
const cudnnTensorDescriptor_t xDesc,
|
116 |
+
const void *x,
|
117 |
+
const void *beta,
|
118 |
+
const cudnnTensorDescriptor_t dxDesc,
|
119 |
+
void *dx);
|
120 |
+
|
121 |
+
/* LRN cross-channel backward computation. Double parameters cast to tensor data type */
|
122 |
+
cudnnStatus_t CUDNNWINAPI
|
123 |
+
cudnnLRNCrossChannelBackward(cudnnHandle_t handle,
|
124 |
+
cudnnLRNDescriptor_t normDesc,
|
125 |
+
cudnnLRNMode_t lrnMode,
|
126 |
+
const void *alpha,
|
127 |
+
const cudnnTensorDescriptor_t yDesc,
|
128 |
+
const void *y,
|
129 |
+
const cudnnTensorDescriptor_t dyDesc,
|
130 |
+
const void *dy,
|
131 |
+
const cudnnTensorDescriptor_t xDesc,
|
132 |
+
const void *x,
|
133 |
+
const void *beta,
|
134 |
+
const cudnnTensorDescriptor_t dxDesc,
|
135 |
+
void *dx);
|
136 |
+
|
137 |
+
cudnnStatus_t CUDNNWINAPI
|
138 |
+
cudnnDivisiveNormalizationBackward(cudnnHandle_t handle,
|
139 |
+
cudnnLRNDescriptor_t normDesc,
|
140 |
+
cudnnDivNormMode_t mode,
|
141 |
+
const void *alpha,
|
142 |
+
const cudnnTensorDescriptor_t xDesc, /* same desc for x, means, dy, temp, temp2 */
|
143 |
+
const void *x,
|
144 |
+
const void *means, /* if NULL, means are assumed to be zero */
|
145 |
+
const void *dy,
|
146 |
+
void *temp,
|
147 |
+
void *temp2,
|
148 |
+
const void *beta,
|
149 |
+
const cudnnTensorDescriptor_t dXdMeansDesc, /* same desc for dx, dMeans */
|
150 |
+
void *dx, /* output x differential */
|
151 |
+
void *dMeans); /* output means differential, can be NULL */
|
152 |
+
|
153 |
+
cudnnStatus_t CUDNNWINAPI
|
154 |
+
cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(cudnnHandle_t handle,
|
155 |
+
cudnnBatchNormMode_t mode,
|
156 |
+
cudnnBatchNormOps_t bnOps,
|
157 |
+
const cudnnTensorDescriptor_t xDesc,
|
158 |
+
const cudnnTensorDescriptor_t zDesc,
|
159 |
+
const cudnnTensorDescriptor_t yDesc,
|
160 |
+
const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
|
161 |
+
const cudnnActivationDescriptor_t activationDesc,
|
162 |
+
size_t *sizeInBytes);
|
163 |
+
|
164 |
+
cudnnStatus_t CUDNNWINAPI
|
165 |
+
cudnnGetBatchNormalizationBackwardExWorkspaceSize(cudnnHandle_t handle,
|
166 |
+
cudnnBatchNormMode_t mode,
|
167 |
+
cudnnBatchNormOps_t bnOps,
|
168 |
+
const cudnnTensorDescriptor_t xDesc,
|
169 |
+
const cudnnTensorDescriptor_t yDesc,
|
170 |
+
const cudnnTensorDescriptor_t dyDesc,
|
171 |
+
const cudnnTensorDescriptor_t dzDesc,
|
172 |
+
const cudnnTensorDescriptor_t dxDesc,
|
173 |
+
const cudnnTensorDescriptor_t dBnScaleBiasDesc,
|
174 |
+
const cudnnActivationDescriptor_t activationDesc,
|
175 |
+
size_t *sizeInBytes);
|
176 |
+
|
177 |
+
cudnnStatus_t CUDNNWINAPI
|
178 |
+
cudnnGetBatchNormalizationTrainingExReserveSpaceSize(cudnnHandle_t handle,
|
179 |
+
cudnnBatchNormMode_t mode,
|
180 |
+
cudnnBatchNormOps_t bnOps,
|
181 |
+
const cudnnActivationDescriptor_t activationDesc,
|
182 |
+
const cudnnTensorDescriptor_t xDesc,
|
183 |
+
size_t *sizeInBytes);
|
184 |
+
|
185 |
+
/* Computes y = BN(x). Also accumulates moving averages of mean and inverse variances */
|
186 |
+
cudnnStatus_t CUDNNWINAPI
|
187 |
+
cudnnBatchNormalizationForwardTraining(
|
188 |
+
cudnnHandle_t handle,
|
189 |
+
cudnnBatchNormMode_t mode,
|
190 |
+
|
191 |
+
const void *alpha, /* alpha[0] = result blend factor */
|
192 |
+
const void *beta, /* beta[0] = dest layer blend factor */
|
193 |
+
|
194 |
+
const cudnnTensorDescriptor_t xDesc,
|
195 |
+
const void *x, /* NxCxHxW */
|
196 |
+
const cudnnTensorDescriptor_t yDesc,
|
197 |
+
void *y, /* NxCxHxW */
|
198 |
+
|
199 |
+
/* Shared desc for the next 6 tensors in the argument list.
|
200 |
+
Data type to be set as follows:
|
201 |
+
type = (typeOf(x) == double) ? double : float
|
202 |
+
Dimensions for this descriptor depend on normalization mode
|
203 |
+
- Spatial Normalization : tensors are expected to have dims 1xCx1x1
|
204 |
+
(normalization is performed across NxHxW)
|
205 |
+
- Per-Activation Normalization : tensors are expected to have dims of 1xCxHxW
|
206 |
+
(normalization is performed across N) */
|
207 |
+
const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
|
208 |
+
|
209 |
+
/* 'Gamma' and 'Beta' respectively in Ioffe and Szegedy's paper's notation */
|
210 |
+
const void *bnScale,
|
211 |
+
const void *bnBias,
|
212 |
+
|
213 |
+
/* MUST use factor=1 in the very first call of a complete training cycle.
|
214 |
+
Use a factor=1/(1+n) at N-th call to the function to get
|
215 |
+
Cumulative Moving Average (CMA) behavior
|
216 |
+
CMA[n] = (x[1]+...+x[n])/n
|
217 |
+
Since CMA[n+1] = (n*CMA[n]+x[n+1])/(n+1) =
|
218 |
+
((n+1)*CMA[n]-CMA[n])/(n+1) + x[n+1]/(n+1) =
|
219 |
+
CMA[n]*(1-1/(n+1)) + x[n+1]*1/(n+1) */
|
220 |
+
double exponentialAverageFactor,
|
221 |
+
|
222 |
+
/* Used in Training phase only.
|
223 |
+
runningMean = newMean*factor + runningMean*(1-factor) */
|
224 |
+
void *resultRunningMean,
|
225 |
+
/* Output in training mode, input in inference. Is the moving average
|
226 |
+
of variance[x] (factor is applied in the same way as for runningMean) */
|
227 |
+
void *resultRunningVariance,
|
228 |
+
|
229 |
+
/* Has to be >= CUDNN_BN_MIN_EPSILON. Should be the same in forward and backward functions. */
|
230 |
+
double epsilon,
|
231 |
+
|
232 |
+
/* Optionally save intermediate results from the forward pass here
|
233 |
+
- can be reused to speed up backward pass. NULL if unused */
|
234 |
+
void *resultSaveMean,
|
235 |
+
void *resultSaveInvVariance);
|
236 |
+
|
237 |
+
/* Computes y = relu(BN(x) + z). Also accumulates moving averages of mean and inverse variances */
|
238 |
+
cudnnStatus_t CUDNNWINAPI
|
239 |
+
cudnnBatchNormalizationForwardTrainingEx(
|
240 |
+
cudnnHandle_t handle,
|
241 |
+
cudnnBatchNormMode_t mode,
|
242 |
+
cudnnBatchNormOps_t bnOps,
|
243 |
+
|
244 |
+
const void *alpha, /* alpha[0] = result blend factor */
|
245 |
+
const void *beta, /* beta[0] = dest layer blend factor */
|
246 |
+
|
247 |
+
const cudnnTensorDescriptor_t xDesc,
|
248 |
+
const void *xData,
|
249 |
+
const cudnnTensorDescriptor_t zDesc,
|
250 |
+
const void *zData,
|
251 |
+
const cudnnTensorDescriptor_t yDesc,
|
252 |
+
void *yData,
|
253 |
+
|
254 |
+
const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
|
255 |
+
const void *bnScale,
|
256 |
+
const void *bnBias,
|
257 |
+
|
258 |
+
double exponentialAverageFactor,
|
259 |
+
void *resultRunningMean,
|
260 |
+
void *resultRunningVariance,
|
261 |
+
|
262 |
+
/* Has to be >= CUDNN_BN_MIN_EPSILON. Should be the same in forward and backward functions. */
|
263 |
+
double epsilon,
|
264 |
+
|
265 |
+
/* Optionally save intermediate results from the forward pass here
|
266 |
+
- can be reused to speed up backward pass. NULL if unused */
|
267 |
+
void *resultSaveMean,
|
268 |
+
void *resultSaveInvVariance,
|
269 |
+
|
270 |
+
cudnnActivationDescriptor_t activationDesc,
|
271 |
+
void *workspace,
|
272 |
+
size_t workSpaceSizeInBytes,
|
273 |
+
void *reserveSpace,
|
274 |
+
size_t reserveSpaceSizeInBytes);
|
275 |
+
|
276 |
+
/* Performs backward pass of Batch Normalization layer. Returns x gradient,
|
277 |
+
* bnScale gradient and bnBias gradient */
|
278 |
+
cudnnStatus_t CUDNNWINAPI
|
279 |
+
cudnnBatchNormalizationBackward(cudnnHandle_t handle,
|
280 |
+
cudnnBatchNormMode_t mode,
|
281 |
+
const void *alphaDataDiff,
|
282 |
+
const void *betaDataDiff,
|
283 |
+
const void *alphaParamDiff,
|
284 |
+
const void *betaParamDiff,
|
285 |
+
const cudnnTensorDescriptor_t xDesc, /* same desc for x, dx, dy */
|
286 |
+
const void *x,
|
287 |
+
const cudnnTensorDescriptor_t dyDesc,
|
288 |
+
const void *dy,
|
289 |
+
const cudnnTensorDescriptor_t dxDesc,
|
290 |
+
void *dx,
|
291 |
+
/* Shared tensor desc for the 4 tensors below */
|
292 |
+
const cudnnTensorDescriptor_t dBnScaleBiasDesc,
|
293 |
+
const void *bnScale, /* bnBias doesn't affect backpropagation */
|
294 |
+
/* scale and bias diff are not backpropagated below this layer */
|
295 |
+
void *dBnScaleResult,
|
296 |
+
void *dBnBiasResult,
|
297 |
+
/* Same epsilon as forward pass */
|
298 |
+
double epsilon,
|
299 |
+
|
300 |
+
/* Optionally cached intermediate results from
|
301 |
+
forward pass */
|
302 |
+
const void *savedMean,
|
303 |
+
const void *savedInvVariance);
|
304 |
+
|
305 |
+
cudnnStatus_t CUDNNWINAPI
|
306 |
+
cudnnBatchNormalizationBackwardEx(cudnnHandle_t handle,
|
307 |
+
cudnnBatchNormMode_t mode,
|
308 |
+
cudnnBatchNormOps_t bnOps,
|
309 |
+
|
310 |
+
const void *alphaDataDiff,
|
311 |
+
const void *betaDataDiff,
|
312 |
+
const void *alphaParamDiff,
|
313 |
+
const void *betaParamDiff,
|
314 |
+
const cudnnTensorDescriptor_t xDesc,
|
315 |
+
const void *xData,
|
316 |
+
const cudnnTensorDescriptor_t yDesc,
|
317 |
+
const void *yData,
|
318 |
+
const cudnnTensorDescriptor_t dyDesc,
|
319 |
+
const void *dyData,
|
320 |
+
const cudnnTensorDescriptor_t dzDesc,
|
321 |
+
void *dzData,
|
322 |
+
const cudnnTensorDescriptor_t dxDesc,
|
323 |
+
void *dxData,
|
324 |
+
|
325 |
+
/* Shared tensor desc for the 4 tensors below */
|
326 |
+
const cudnnTensorDescriptor_t dBnScaleBiasDesc,
|
327 |
+
const void *bnScaleData,
|
328 |
+
const void *bnBiasData, /* needed if there is activation */
|
329 |
+
void *dBnScaleData,
|
330 |
+
void *dBnBiasData,
|
331 |
+
double epsilon, /* Same epsilon as forward pass */
|
332 |
+
|
333 |
+
/* Optionally cached intermediate results from
|
334 |
+
forward pass */
|
335 |
+
const void *savedMean,
|
336 |
+
const void *savedInvVariance,
|
337 |
+
cudnnActivationDescriptor_t activationDesc,
|
338 |
+
void *workSpace,
|
339 |
+
size_t workSpaceSizeInBytes,
|
340 |
+
void *reserveSpace,
|
341 |
+
size_t reserveSpaceSizeInBytes);
|
342 |
+
|
343 |
+
cudnnStatus_t CUDNNWINAPI
|
344 |
+
cudnnGetNormalizationForwardTrainingWorkspaceSize(cudnnHandle_t handle,
|
345 |
+
cudnnNormMode_t mode,
|
346 |
+
cudnnNormOps_t normOps,
|
347 |
+
cudnnNormAlgo_t algo,
|
348 |
+
const cudnnTensorDescriptor_t xDesc,
|
349 |
+
const cudnnTensorDescriptor_t zDesc,
|
350 |
+
const cudnnTensorDescriptor_t yDesc,
|
351 |
+
const cudnnTensorDescriptor_t normScaleBiasDesc,
|
352 |
+
const cudnnActivationDescriptor_t activationDesc,
|
353 |
+
const cudnnTensorDescriptor_t normMeanVarDesc,
|
354 |
+
size_t *sizeInBytes,
|
355 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
356 |
+
|
357 |
+
cudnnStatus_t CUDNNWINAPI
|
358 |
+
cudnnGetNormalizationBackwardWorkspaceSize(cudnnHandle_t handle,
|
359 |
+
cudnnNormMode_t mode,
|
360 |
+
cudnnNormOps_t normOps,
|
361 |
+
cudnnNormAlgo_t algo,
|
362 |
+
const cudnnTensorDescriptor_t xDesc,
|
363 |
+
const cudnnTensorDescriptor_t yDesc,
|
364 |
+
const cudnnTensorDescriptor_t dyDesc,
|
365 |
+
const cudnnTensorDescriptor_t dzDesc,
|
366 |
+
const cudnnTensorDescriptor_t dxDesc,
|
367 |
+
const cudnnTensorDescriptor_t dNormScaleBiasDesc,
|
368 |
+
const cudnnActivationDescriptor_t activationDesc,
|
369 |
+
const cudnnTensorDescriptor_t normMeanVarDesc,
|
370 |
+
size_t *sizeInBytes,
|
371 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
372 |
+
|
373 |
+
cudnnStatus_t CUDNNWINAPI
|
374 |
+
cudnnGetNormalizationTrainingReserveSpaceSize(cudnnHandle_t handle,
|
375 |
+
cudnnNormMode_t mode,
|
376 |
+
cudnnNormOps_t normOps,
|
377 |
+
cudnnNormAlgo_t algo,
|
378 |
+
const cudnnActivationDescriptor_t activationDesc,
|
379 |
+
const cudnnTensorDescriptor_t xDesc,
|
380 |
+
size_t *sizeInBytes,
|
381 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
382 |
+
|
383 |
+
/* Computes y = relu(Norm(x) + z). Also accumulates moving averages of mean and inverse variances */
|
384 |
+
cudnnStatus_t CUDNNWINAPI
|
385 |
+
cudnnNormalizationForwardTraining(cudnnHandle_t handle,
|
386 |
+
cudnnNormMode_t mode,
|
387 |
+
cudnnNormOps_t normOps,
|
388 |
+
cudnnNormAlgo_t algo,
|
389 |
+
const void *alpha, /* alpha[0] = result blend factor */
|
390 |
+
const void *beta, /* beta[0] = dest layer blend factor */
|
391 |
+
const cudnnTensorDescriptor_t xDesc,
|
392 |
+
const void *xData,
|
393 |
+
const cudnnTensorDescriptor_t normScaleBiasDesc,
|
394 |
+
const void *normScale,
|
395 |
+
const void *normBias,
|
396 |
+
double exponentialAverageFactor,
|
397 |
+
const cudnnTensorDescriptor_t normMeanVarDesc,
|
398 |
+
void *resultRunningMean,
|
399 |
+
void *resultRunningVariance,
|
400 |
+
/* Has to be >= 0. Should be the same in forward and backward functions. */
|
401 |
+
double epsilon,
|
402 |
+
/* Optionally save intermediate results from the forward pass here
|
403 |
+
- can be reused to speed up backward pass. NULL if unused */
|
404 |
+
void *resultSaveMean,
|
405 |
+
void *resultSaveInvVariance,
|
406 |
+
cudnnActivationDescriptor_t activationDesc,
|
407 |
+
const cudnnTensorDescriptor_t zDesc,
|
408 |
+
const void *zData,
|
409 |
+
const cudnnTensorDescriptor_t yDesc,
|
410 |
+
void *yData,
|
411 |
+
void *workspace,
|
412 |
+
size_t workSpaceSizeInBytes,
|
413 |
+
void *reserveSpace,
|
414 |
+
size_t reserveSpaceSizeInBytes,
|
415 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
416 |
+
|
417 |
+
cudnnStatus_t CUDNNWINAPI
|
418 |
+
cudnnNormalizationBackward(cudnnHandle_t handle,
|
419 |
+
cudnnNormMode_t mode,
|
420 |
+
cudnnNormOps_t normOps,
|
421 |
+
cudnnNormAlgo_t algo,
|
422 |
+
const void *alphaDataDiff,
|
423 |
+
const void *betaDataDiff,
|
424 |
+
const void *alphaParamDiff,
|
425 |
+
const void *betaParamDiff,
|
426 |
+
const cudnnTensorDescriptor_t xDesc,
|
427 |
+
const void *xData,
|
428 |
+
const cudnnTensorDescriptor_t yDesc,
|
429 |
+
const void *yData,
|
430 |
+
const cudnnTensorDescriptor_t dyDesc,
|
431 |
+
const void *dyData,
|
432 |
+
const cudnnTensorDescriptor_t dzDesc,
|
433 |
+
void *dzData,
|
434 |
+
const cudnnTensorDescriptor_t dxDesc,
|
435 |
+
void *dxData,
|
436 |
+
/* Shared tensor desc for the 4 tensors below */
|
437 |
+
const cudnnTensorDescriptor_t dNormScaleBiasDesc,
|
438 |
+
const void *normScaleData,
|
439 |
+
const void *normBiasData, /* needed if there is activation */
|
440 |
+
void *dNormScaleData,
|
441 |
+
void *dNormBiasData,
|
442 |
+
double epsilon, /* Same epsilon as forward pass */
|
443 |
+
const cudnnTensorDescriptor_t normMeanVarDesc,
|
444 |
+
/* Optionally cached intermediate results from
|
445 |
+
forward pass */
|
446 |
+
const void *savedMean,
|
447 |
+
const void *savedInvVariance,
|
448 |
+
cudnnActivationDescriptor_t activationDesc,
|
449 |
+
void *workSpace,
|
450 |
+
size_t workSpaceSizeInBytes,
|
451 |
+
void *reserveSpace,
|
452 |
+
size_t reserveSpaceSizeInBytes,
|
453 |
+
int groupCnt); /* Place hold for future work, should be set to 1 now*/
|
454 |
+
|
455 |
+
cudnnStatus_t CUDNNWINAPI
|
456 |
+
cudnnSpatialTfGridGeneratorBackward(cudnnHandle_t handle,
|
457 |
+
const cudnnSpatialTransformerDescriptor_t stDesc,
|
458 |
+
const void *dgrid,
|
459 |
+
void *dtheta);
|
460 |
+
|
461 |
+
cudnnStatus_t CUDNNWINAPI
|
462 |
+
cudnnSpatialTfSamplerBackward(cudnnHandle_t handle,
|
463 |
+
cudnnSpatialTransformerDescriptor_t stDesc,
|
464 |
+
const void *alpha,
|
465 |
+
const cudnnTensorDescriptor_t xDesc,
|
466 |
+
const void *x,
|
467 |
+
const void *beta,
|
468 |
+
const cudnnTensorDescriptor_t dxDesc,
|
469 |
+
void *dx,
|
470 |
+
const void *alphaDgrid,
|
471 |
+
const cudnnTensorDescriptor_t dyDesc,
|
472 |
+
const void *dy,
|
473 |
+
const void *grid,
|
474 |
+
const void *betaDgrid,
|
475 |
+
void *dgrid);
|
476 |
+
|
477 |
+
cudnnStatus_t CUDNNWINAPI
|
478 |
+
cudnnDropoutBackward(cudnnHandle_t handle,
|
479 |
+
const cudnnDropoutDescriptor_t dropoutDesc,
|
480 |
+
const cudnnTensorDescriptor_t dydesc,
|
481 |
+
const void *dy,
|
482 |
+
const cudnnTensorDescriptor_t dxdesc,
|
483 |
+
void *dx,
|
484 |
+
void *reserveSpace,
|
485 |
+
size_t reserveSpaceSizeInBytes);
|
486 |
+
|
487 |
+
/*
|
488 |
+
* \brief Cross-library version checker.
|
489 |
+
* This function is implemented differently in each sub-library. Each sublib
|
490 |
+
* checks whether its own version matches that of its dependencies.
|
491 |
+
* \returns CUDNN_STATUS_SUCCESS if the version check passes,
|
492 |
+
* CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
|
493 |
+
*/
|
494 |
+
cudnnStatus_t CUDNNWINAPI
|
495 |
+
cudnnOpsTrainVersionCheck(void);
|
496 |
+
|
497 |
+
#if defined(__cplusplus)
|
498 |
+
}
|
499 |
+
#endif
|
500 |
+
|
501 |
+
#endif /* CUDNN_OPS_TRAIN_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_v8.h
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/* cudnn : Neural Networks Library
|
51 |
+
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_H_)
|
55 |
+
#define CUDNN_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
#include "cudnn_ops_train.h"
|
63 |
+
#include "cudnn_adv_infer.h"
|
64 |
+
#include "cudnn_adv_train.h"
|
65 |
+
#include "cudnn_cnn_infer.h"
|
66 |
+
#include "cudnn_cnn_train.h"
|
67 |
+
|
68 |
+
#include "cudnn_backend.h"
|
69 |
+
|
70 |
+
#if defined(__cplusplus)
|
71 |
+
extern "C" {
|
72 |
+
#endif
|
73 |
+
|
74 |
+
#if defined(__cplusplus)
|
75 |
+
}
|
76 |
+
#endif
|
77 |
+
|
78 |
+
#endif /* CUDNN_H_ */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_version.h
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/**
|
51 |
+
* \file: The master cuDNN version file.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#ifndef CUDNN_VERSION_H_
|
55 |
+
#define CUDNN_VERSION_H_
|
56 |
+
|
57 |
+
#define CUDNN_MAJOR 8
|
58 |
+
#define CUDNN_MINOR 9
|
59 |
+
#define CUDNN_PATCHLEVEL 2
|
60 |
+
|
61 |
+
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
|
62 |
+
|
63 |
+
/* cannot use constexpr here since this is a C-only file */
|
64 |
+
/* Below is the max SM version this cuDNN library is aware of and supports natively */
|
65 |
+
|
66 |
+
#define CUDNN_MAX_SM_MAJOR_NUMBER 9
|
67 |
+
#define CUDNN_MAX_SM_MINOR_NUMBER 0
|
68 |
+
#define CUDNN_MAX_DEVICE_VERSION (CUDNN_MAX_SM_MAJOR_NUMBER * 100 + CUDNN_MAX_SM_MINOR_NUMBER * 10)
|
69 |
+
|
70 |
+
/* Here are constants for each of the SM Architectures we support to use in code where device version checks must be
|
71 |
+
* made */
|
72 |
+
|
73 |
+
/* MAXWELL SM 50 52 53 */
|
74 |
+
#define CUDNN_SM_50 500
|
75 |
+
#define CUDNN_SM_52 520
|
76 |
+
#define CUDNN_SM_53 530
|
77 |
+
|
78 |
+
/* PASCAL SM 60 61 62 */
|
79 |
+
#define CUDNN_SM_60 600
|
80 |
+
#define CUDNN_SM_61 610
|
81 |
+
#define CUDNN_SM_62 620
|
82 |
+
|
83 |
+
/* VOLTA SM 70 72 */
|
84 |
+
#define CUDNN_SM_70 700
|
85 |
+
#define CUDNN_SM_72 720
|
86 |
+
|
87 |
+
/* TURING SM 75 */
|
88 |
+
#define CUDNN_SM_75 750
|
89 |
+
|
90 |
+
/* AMPERE SM 80 86 87 */
|
91 |
+
#define CUDNN_SM_80 800
|
92 |
+
#define CUDNN_SM_86 860
|
93 |
+
#define CUDNN_SM_87 870
|
94 |
+
|
95 |
+
/* ADA LOVELACE SM 89 */
|
96 |
+
#define CUDNN_SM_89 890
|
97 |
+
|
98 |
+
/* HOPPER SM 90 */
|
99 |
+
#define CUDNN_SM_90 900
|
100 |
+
|
101 |
+
/* END MARKER for last known version.
|
102 |
+
* This can be replaced after support for 1000 is added
|
103 |
+
*/
|
104 |
+
#define CUDNN_SM_9X_END 999
|
105 |
+
|
106 |
+
/* This is the minimum version we support devices below this will return CUDNN_STATUS_ARCH_MISMATCH */
|
107 |
+
#define CUDNN_MIN_DEVICE_VERSION CUDNN_SM_50
|
108 |
+
|
109 |
+
#endif /* CUDNN_VERSION_H */
|
env-llmeval/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_version_v8.h
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/**
|
51 |
+
* \file: The master cuDNN version file.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#ifndef CUDNN_VERSION_H_
|
55 |
+
#define CUDNN_VERSION_H_
|
56 |
+
|
57 |
+
#define CUDNN_MAJOR 8
|
58 |
+
#define CUDNN_MINOR 9
|
59 |
+
#define CUDNN_PATCHLEVEL 2
|
60 |
+
|
61 |
+
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
|
62 |
+
|
63 |
+
/* cannot use constexpr here since this is a C-only file */
|
64 |
+
/* Below is the max SM version this cuDNN library is aware of and supports natively */
|
65 |
+
|
66 |
+
#define CUDNN_MAX_SM_MAJOR_NUMBER 9
|
67 |
+
#define CUDNN_MAX_SM_MINOR_NUMBER 0
|
68 |
+
#define CUDNN_MAX_DEVICE_VERSION (CUDNN_MAX_SM_MAJOR_NUMBER * 100 + CUDNN_MAX_SM_MINOR_NUMBER * 10)
|
69 |
+
|
70 |
+
/* Here are constants for each of the SM Architectures we support to use in code where device version checks must be
|
71 |
+
* made */
|
72 |
+
|
73 |
+
/* MAXWELL SM 50 52 53 */
|
74 |
+
#define CUDNN_SM_50 500
|
75 |
+
#define CUDNN_SM_52 520
|
76 |
+
#define CUDNN_SM_53 530
|
77 |
+
|
78 |
+
/* PASCAL SM 60 61 62 */
|
79 |
+
#define CUDNN_SM_60 600
|
80 |
+
#define CUDNN_SM_61 610
|
81 |
+
#define CUDNN_SM_62 620
|
82 |
+
|
83 |
+
/* VOLTA SM 70 72 */
|
84 |
+
#define CUDNN_SM_70 700
|
85 |
+
#define CUDNN_SM_72 720
|
86 |
+
|
87 |
+
/* TURING SM 75 */
|
88 |
+
#define CUDNN_SM_75 750
|
89 |
+
|
90 |
+
/* AMPERE SM 80 86 87 */
|
91 |
+
#define CUDNN_SM_80 800
|
92 |
+
#define CUDNN_SM_86 860
|
93 |
+
#define CUDNN_SM_87 870
|
94 |
+
|
95 |
+
/* ADA LOVELACE SM 89 */
|
96 |
+
#define CUDNN_SM_89 890
|
97 |
+
|
98 |
+
/* HOPPER SM 90 */
|
99 |
+
#define CUDNN_SM_90 900
|
100 |
+
|
101 |
+
/* END MARKER for last known version.
|
102 |
+
* This can be replaced after support for 1000 is added
|
103 |
+
*/
|
104 |
+
#define CUDNN_SM_9X_END 999
|
105 |
+
|
106 |
+
/* This is the minimum version we support devices below this will return CUDNN_STATUS_ARCH_MISMATCH */
|
107 |
+
#define CUDNN_MIN_DEVICE_VERSION CUDNN_SM_50
|
108 |
+
|
109 |
+
#endif /* CUDNN_VERSION_H */
|
env-llmeval/lib/python3.10/site-packages/nvidia_cuda_cupti_cu12-12.1.105.dist-info/License.txt
ADDED
@@ -0,0 +1,1568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
End User License Agreement
|
2 |
+
--------------------------
|
3 |
+
|
4 |
+
|
5 |
+
Preface
|
6 |
+
-------
|
7 |
+
|
8 |
+
The Software License Agreement in Chapter 1 and the Supplement
|
9 |
+
in Chapter 2 contain license terms and conditions that govern
|
10 |
+
the use of NVIDIA software. By accepting this agreement, you
|
11 |
+
agree to comply with all the terms and conditions applicable
|
12 |
+
to the product(s) included herein.
|
13 |
+
|
14 |
+
|
15 |
+
NVIDIA Driver
|
16 |
+
|
17 |
+
|
18 |
+
Description
|
19 |
+
|
20 |
+
This package contains the operating system driver and
|
21 |
+
fundamental system software components for NVIDIA GPUs.
|
22 |
+
|
23 |
+
|
24 |
+
NVIDIA CUDA Toolkit
|
25 |
+
|
26 |
+
|
27 |
+
Description
|
28 |
+
|
29 |
+
The NVIDIA CUDA Toolkit provides command-line and graphical
|
30 |
+
tools for building, debugging and optimizing the performance
|
31 |
+
of applications accelerated by NVIDIA GPUs, runtime and math
|
32 |
+
libraries, and documentation including programming guides,
|
33 |
+
user manuals, and API references.
|
34 |
+
|
35 |
+
|
36 |
+
Default Install Location of CUDA Toolkit
|
37 |
+
|
38 |
+
Windows platform:
|
39 |
+
|
40 |
+
%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v#.#
|
41 |
+
|
42 |
+
Linux platform:
|
43 |
+
|
44 |
+
/usr/local/cuda-#.#
|
45 |
+
|
46 |
+
Mac platform:
|
47 |
+
|
48 |
+
/Developer/NVIDIA/CUDA-#.#
|
49 |
+
|
50 |
+
|
51 |
+
NVIDIA CUDA Samples
|
52 |
+
|
53 |
+
|
54 |
+
Description
|
55 |
+
|
56 |
+
This package includes over 100+ CUDA examples that demonstrate
|
57 |
+
various CUDA programming principles, and efficient CUDA
|
58 |
+
implementation of algorithms in specific application domains.
|
59 |
+
|
60 |
+
|
61 |
+
Default Install Location of CUDA Samples
|
62 |
+
|
63 |
+
Windows platform:
|
64 |
+
|
65 |
+
%ProgramData%\NVIDIA Corporation\CUDA Samples\v#.#
|
66 |
+
|
67 |
+
Linux platform:
|
68 |
+
|
69 |
+
/usr/local/cuda-#.#/samples
|
70 |
+
|
71 |
+
and
|
72 |
+
|
73 |
+
$HOME/NVIDIA_CUDA-#.#_Samples
|
74 |
+
|
75 |
+
Mac platform:
|
76 |
+
|
77 |
+
/Developer/NVIDIA/CUDA-#.#/samples
|
78 |
+
|
79 |
+
|
80 |
+
NVIDIA Nsight Visual Studio Edition (Windows only)
|
81 |
+
|
82 |
+
|
83 |
+
Description
|
84 |
+
|
85 |
+
NVIDIA Nsight Development Platform, Visual Studio Edition is a
|
86 |
+
development environment integrated into Microsoft Visual
|
87 |
+
Studio that provides tools for debugging, profiling, analyzing
|
88 |
+
and optimizing your GPU computing and graphics applications.
|
89 |
+
|
90 |
+
|
91 |
+
Default Install Location of Nsight Visual Studio Edition
|
92 |
+
|
93 |
+
Windows platform:
|
94 |
+
|
95 |
+
%ProgramFiles(x86)%\NVIDIA Corporation\Nsight Visual Studio Edition #.#
|
96 |
+
|
97 |
+
|
98 |
+
1. License Agreement for NVIDIA Software Development Kits
|
99 |
+
---------------------------------------------------------
|
100 |
+
|
101 |
+
|
102 |
+
Release Date: July 26, 2018
|
103 |
+
---------------------------
|
104 |
+
|
105 |
+
|
106 |
+
Important NoticeRead before downloading, installing,
|
107 |
+
copying or using the licensed software:
|
108 |
+
-------------------------------------------------------
|
109 |
+
|
110 |
+
This license agreement, including exhibits attached
|
111 |
+
("Agreement”) is a legal agreement between you and NVIDIA
|
112 |
+
Corporation ("NVIDIA") and governs your use of a NVIDIA
|
113 |
+
software development kit (“SDK”).
|
114 |
+
|
115 |
+
Each SDK has its own set of software and materials, but here
|
116 |
+
is a description of the types of items that may be included in
|
117 |
+
a SDK: source code, header files, APIs, data sets and assets
|
118 |
+
(examples include images, textures, models, scenes, videos,
|
119 |
+
native API input/output files), binary software, sample code,
|
120 |
+
libraries, utility programs, programming code and
|
121 |
+
documentation.
|
122 |
+
|
123 |
+
This Agreement can be accepted only by an adult of legal age
|
124 |
+
of majority in the country in which the SDK is used.
|
125 |
+
|
126 |
+
If you are entering into this Agreement on behalf of a company
|
127 |
+
or other legal entity, you represent that you have the legal
|
128 |
+
authority to bind the entity to this Agreement, in which case
|
129 |
+
“you” will mean the entity you represent.
|
130 |
+
|
131 |
+
If you don’t have the required age or authority to accept
|
132 |
+
this Agreement, or if you don’t accept all the terms and
|
133 |
+
conditions of this Agreement, do not download, install or use
|
134 |
+
the SDK.
|
135 |
+
|
136 |
+
You agree to use the SDK only for purposes that are permitted
|
137 |
+
by (a) this Agreement, and (b) any applicable law, regulation
|
138 |
+
or generally accepted practices or guidelines in the relevant
|
139 |
+
jurisdictions.
|
140 |
+
|
141 |
+
|
142 |
+
1.1. License
|
143 |
+
|
144 |
+
|
145 |
+
1.1.1. License Grant
|
146 |
+
|
147 |
+
Subject to the terms of this Agreement, NVIDIA hereby grants
|
148 |
+
you a non-exclusive, non-transferable license, without the
|
149 |
+
right to sublicense (except as expressly provided in this
|
150 |
+
Agreement) to:
|
151 |
+
|
152 |
+
1. Install and use the SDK,
|
153 |
+
|
154 |
+
2. Modify and create derivative works of sample source code
|
155 |
+
delivered in the SDK, and
|
156 |
+
|
157 |
+
3. Distribute those portions of the SDK that are identified
|
158 |
+
in this Agreement as distributable, as incorporated in
|
159 |
+
object code format into a software application that meets
|
160 |
+
the distribution requirements indicated in this Agreement.
|
161 |
+
|
162 |
+
|
163 |
+
1.1.2. Distribution Requirements
|
164 |
+
|
165 |
+
These are the distribution requirements for you to exercise
|
166 |
+
the distribution grant:
|
167 |
+
|
168 |
+
1. Your application must have material additional
|
169 |
+
functionality, beyond the included portions of the SDK.
|
170 |
+
|
171 |
+
2. The distributable portions of the SDK shall only be
|
172 |
+
accessed by your application.
|
173 |
+
|
174 |
+
3. The following notice shall be included in modifications
|
175 |
+
and derivative works of sample source code distributed:
|
176 |
+
“This software contains source code provided by NVIDIA
|
177 |
+
Corporation.”
|
178 |
+
|
179 |
+
4. Unless a developer tool is identified in this Agreement
|
180 |
+
as distributable, it is delivered for your internal use
|
181 |
+
only.
|
182 |
+
|
183 |
+
5. The terms under which you distribute your application
|
184 |
+
must be consistent with the terms of this Agreement,
|
185 |
+
including (without limitation) terms relating to the
|
186 |
+
license grant and license restrictions and protection of
|
187 |
+
NVIDIA’s intellectual property rights. Additionally, you
|
188 |
+
agree that you will protect the privacy, security and
|
189 |
+
legal rights of your application users.
|
190 |
+
|
191 |
+
6. You agree to notify NVIDIA in writing of any known or
|
192 |
+
suspected distribution or use of the SDK not in compliance
|
193 |
+
with the requirements of this Agreement, and to enforce
|
194 |
+
the terms of your agreements with respect to distributed
|
195 |
+
SDK.
|
196 |
+
|
197 |
+
|
198 |
+
1.1.3. Authorized Users
|
199 |
+
|
200 |
+
You may allow employees and contractors of your entity or of
|
201 |
+
your subsidiary(ies) to access and use the SDK from your
|
202 |
+
secure network to perform work on your behalf.
|
203 |
+
|
204 |
+
If you are an academic institution you may allow users
|
205 |
+
enrolled or employed by the academic institution to access and
|
206 |
+
use the SDK from your secure network.
|
207 |
+
|
208 |
+
You are responsible for the compliance with the terms of this
|
209 |
+
Agreement by your authorized users. If you become aware that
|
210 |
+
your authorized users didn’t follow the terms of this
|
211 |
+
Agreement, you agree to take reasonable steps to resolve the
|
212 |
+
non-compliance and prevent new occurrences.
|
213 |
+
|
214 |
+
|
215 |
+
1.1.4. Pre-Release SDK
|
216 |
+
|
217 |
+
The SDK versions identified as alpha, beta, preview or
|
218 |
+
otherwise as pre-release, may not be fully functional, may
|
219 |
+
contain errors or design flaws, and may have reduced or
|
220 |
+
different security, privacy, accessibility, availability, and
|
221 |
+
reliability standards relative to commercial versions of
|
222 |
+
NVIDIA software and materials. Use of a pre-release SDK may
|
223 |
+
result in unexpected results, loss of data, project delays or
|
224 |
+
other unpredictable damage or loss.
|
225 |
+
|
226 |
+
You may use a pre-release SDK at your own risk, understanding
|
227 |
+
that pre-release SDKs are not intended for use in production
|
228 |
+
or business-critical systems.
|
229 |
+
|
230 |
+
NVIDIA may choose not to make available a commercial version
|
231 |
+
of any pre-release SDK. NVIDIA may also choose to abandon
|
232 |
+
development and terminate the availability of a pre-release
|
233 |
+
SDK at any time without liability.
|
234 |
+
|
235 |
+
|
236 |
+
1.1.5. Updates
|
237 |
+
|
238 |
+
NVIDIA may, at its option, make available patches, workarounds
|
239 |
+
or other updates to this SDK. Unless the updates are provided
|
240 |
+
with their separate governing terms, they are deemed part of
|
241 |
+
the SDK licensed to you as provided in this Agreement. You
|
242 |
+
agree that the form and content of the SDK that NVIDIA
|
243 |
+
provides may change without prior notice to you. While NVIDIA
|
244 |
+
generally maintains compatibility between versions, NVIDIA may
|
245 |
+
in some cases make changes that introduce incompatibilities in
|
246 |
+
future versions of the SDK.
|
247 |
+
|
248 |
+
|
249 |
+
1.1.6. Third Party Licenses
|
250 |
+
|
251 |
+
The SDK may come bundled with, or otherwise include or be
|
252 |
+
distributed with, third party software licensed by a NVIDIA
|
253 |
+
supplier and/or open source software provided under an open
|
254 |
+
source license. Use of third party software is subject to the
|
255 |
+
third-party license terms, or in the absence of third party
|
256 |
+
terms, the terms of this Agreement. Copyright to third party
|
257 |
+
software is held by the copyright holders indicated in the
|
258 |
+
third-party software or license.
|
259 |
+
|
260 |
+
|
261 |
+
1.1.7. Reservation of Rights
|
262 |
+
|
263 |
+
NVIDIA reserves all rights, title, and interest in and to the
|
264 |
+
SDK, not expressly granted to you under this Agreement.
|
265 |
+
|
266 |
+
|
267 |
+
1.2. Limitations
|
268 |
+
|
269 |
+
The following license limitations apply to your use of the
|
270 |
+
SDK:
|
271 |
+
|
272 |
+
1. You may not reverse engineer, decompile or disassemble,
|
273 |
+
or remove copyright or other proprietary notices from any
|
274 |
+
portion of the SDK or copies of the SDK.
|
275 |
+
|
276 |
+
2. Except as expressly provided in this Agreement, you may
|
277 |
+
not copy, sell, rent, sublicense, transfer, distribute,
|
278 |
+
modify, or create derivative works of any portion of the
|
279 |
+
SDK. For clarity, you may not distribute or sublicense the
|
280 |
+
SDK as a stand-alone product.
|
281 |
+
|
282 |
+
3. Unless you have an agreement with NVIDIA for this
|
283 |
+
purpose, you may not indicate that an application created
|
284 |
+
with the SDK is sponsored or endorsed by NVIDIA.
|
285 |
+
|
286 |
+
4. You may not bypass, disable, or circumvent any
|
287 |
+
encryption, security, digital rights management or
|
288 |
+
authentication mechanism in the SDK.
|
289 |
+
|
290 |
+
5. You may not use the SDK in any manner that would cause it
|
291 |
+
to become subject to an open source software license. As
|
292 |
+
examples, licenses that require as a condition of use,
|
293 |
+
modification, and/or distribution that the SDK be:
|
294 |
+
|
295 |
+
a. Disclosed or distributed in source code form;
|
296 |
+
|
297 |
+
b. Licensed for the purpose of making derivative works;
|
298 |
+
or
|
299 |
+
|
300 |
+
c. Redistributable at no charge.
|
301 |
+
|
302 |
+
6. Unless you have an agreement with NVIDIA for this
|
303 |
+
purpose, you may not use the SDK with any system or
|
304 |
+
application where the use or failure of the system or
|
305 |
+
application can reasonably be expected to threaten or
|
306 |
+
result in personal injury, death, or catastrophic loss.
|
307 |
+
Examples include use in avionics, navigation, military,
|
308 |
+
medical, life support or other life critical applications.
|
309 |
+
NVIDIA does not design, test or manufacture the SDK for
|
310 |
+
these critical uses and NVIDIA shall not be liable to you
|
311 |
+
or any third party, in whole or in part, for any claims or
|
312 |
+
damages arising from such uses.
|
313 |
+
|
314 |
+
7. You agree to defend, indemnify and hold harmless NVIDIA
|
315 |
+
and its affiliates, and their respective employees,
|
316 |
+
contractors, agents, officers and directors, from and
|
317 |
+
against any and all claims, damages, obligations, losses,
|
318 |
+
liabilities, costs or debt, fines, restitutions and
|
319 |
+
expenses (including but not limited to attorney’s fees
|
320 |
+
and costs incident to establishing the right of
|
321 |
+
indemnification) arising out of or related to your use of
|
322 |
+
the SDK outside of the scope of this Agreement, or not in
|
323 |
+
compliance with its terms.
|
324 |
+
|
325 |
+
|
326 |
+
1.3. Ownership
|
327 |
+
|
328 |
+
1. NVIDIA or its licensors hold all rights, title and
|
329 |
+
interest in and to the SDK and its modifications and
|
330 |
+
derivative works, including their respective intellectual
|
331 |
+
property rights, subject to your rights described in this
|
332 |
+
section. This SDK may include software and materials from
|
333 |
+
NVIDIA’s licensors, and these licensors are intended
|
334 |
+
third party beneficiaries that may enforce this Agreement
|
335 |
+
with respect to their intellectual property rights.
|
336 |
+
|
337 |
+
2. You hold all rights, title and interest in and to your
|
338 |
+
applications and your derivative works of the sample
|
339 |
+
source code delivered in the SDK, including their
|
340 |
+
respective intellectual property rights, subject to
|
341 |
+
NVIDIA’s rights described in this section.
|
342 |
+
|
343 |
+
3. You may, but don’t have to, provide to NVIDIA
|
344 |
+
suggestions, feature requests or other feedback regarding
|
345 |
+
the SDK, including possible enhancements or modifications
|
346 |
+
to the SDK. For any feedback that you voluntarily provide,
|
347 |
+
you hereby grant NVIDIA and its affiliates a perpetual,
|
348 |
+
non-exclusive, worldwide, irrevocable license to use,
|
349 |
+
reproduce, modify, license, sublicense (through multiple
|
350 |
+
tiers of sublicensees), and distribute (through multiple
|
351 |
+
tiers of distributors) it without the payment of any
|
352 |
+
royalties or fees to you. NVIDIA will use feedback at its
|
353 |
+
choice. NVIDIA is constantly looking for ways to improve
|
354 |
+
its products, so you may send feedback to NVIDIA through
|
355 |
+
the developer portal at https://developer.nvidia.com.
|
356 |
+
|
357 |
+
|
358 |
+
1.4. No Warranties
|
359 |
+
|
360 |
+
THE SDK IS PROVIDED BY NVIDIA “AS IS” AND “WITH ALL
|
361 |
+
FAULTS.” TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND
|
362 |
+
ITS AFFILIATES EXPRESSLY DISCLAIM ALL WARRANTIES OF ANY KIND
|
363 |
+
OR NATURE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
|
364 |
+
BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
|
365 |
+
FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, OR THE
|
366 |
+
ABSENCE OF ANY DEFECTS THEREIN, WHETHER LATENT OR PATENT. NO
|
367 |
+
WARRANTY IS MADE ON THE BASIS OF TRADE USAGE, COURSE OF
|
368 |
+
DEALING OR COURSE OF TRADE.
|
369 |
+
|
370 |
+
|
371 |
+
1.5. Limitation of Liability
|
372 |
+
|
373 |
+
TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND ITS
|
374 |
+
AFFILIATES SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
|
375 |
+
PUNITIVE OR CONSEQUENTIAL DAMAGES, OR ANY LOST PROFITS, LOSS
|
376 |
+
OF USE, LOSS OF DATA OR LOSS OF GOODWILL, OR THE COSTS OF
|
377 |
+
PROCURING SUBSTITUTE PRODUCTS, ARISING OUT OF OR IN CONNECTION
|
378 |
+
WITH THIS AGREEMENT OR THE USE OR PERFORMANCE OF THE SDK,
|
379 |
+
WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON BREACH
|
380 |
+
OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE),
|
381 |
+
PRODUCT LIABILITY OR ANY OTHER CAUSE OF ACTION OR THEORY OF
|
382 |
+
LIABILITY. IN NO EVENT WILL NVIDIA’S AND ITS AFFILIATES
|
383 |
+
TOTAL CUMULATIVE LIABILITY UNDER OR ARISING OUT OF THIS
|
384 |
+
AGREEMENT EXCEED US$10.00. THE NATURE OF THE LIABILITY OR THE
|
385 |
+
NUMBER OF CLAIMS OR SUITS SHALL NOT ENLARGE OR EXTEND THIS
|
386 |
+
LIMIT.
|
387 |
+
|
388 |
+
These exclusions and limitations of liability shall apply
|
389 |
+
regardless if NVIDIA or its affiliates have been advised of
|
390 |
+
the possibility of such damages, and regardless of whether a
|
391 |
+
remedy fails its essential purpose. These exclusions and
|
392 |
+
limitations of liability form an essential basis of the
|
393 |
+
bargain between the parties, and, absent any of these
|
394 |
+
exclusions or limitations of liability, the provisions of this
|
395 |
+
Agreement, including, without limitation, the economic terms,
|
396 |
+
would be substantially different.
|
397 |
+
|
398 |
+
|
399 |
+
1.6. Termination
|
400 |
+
|
401 |
+
1. This Agreement will continue to apply until terminated by
|
402 |
+
either you or NVIDIA as described below.
|
403 |
+
|
404 |
+
2. If you want to terminate this Agreement, you may do so by
|
405 |
+
stopping to use the SDK.
|
406 |
+
|
407 |
+
3. NVIDIA may, at any time, terminate this Agreement if:
|
408 |
+
|
409 |
+
a. (i) you fail to comply with any term of this
|
410 |
+
Agreement and the non-compliance is not fixed within
|
411 |
+
thirty (30) days following notice from NVIDIA (or
|
412 |
+
immediately if you violate NVIDIA’s intellectual
|
413 |
+
property rights);
|
414 |
+
|
415 |
+
b. (ii) you commence or participate in any legal
|
416 |
+
proceeding against NVIDIA with respect to the SDK; or
|
417 |
+
|
418 |
+
c. (iii) NVIDIA decides to no longer provide the SDK in
|
419 |
+
a country or, in NVIDIA’s sole discretion, the
|
420 |
+
continued use of it is no longer commercially viable.
|
421 |
+
|
422 |
+
4. Upon any termination of this Agreement, you agree to
|
423 |
+
promptly discontinue use of the SDK and destroy all copies
|
424 |
+
in your possession or control. Your prior distributions in
|
425 |
+
accordance with this Agreement are not affected by the
|
426 |
+
termination of this Agreement. Upon written request, you
|
427 |
+
will certify in writing that you have complied with your
|
428 |
+
commitments under this section. Upon any termination of
|
429 |
+
this Agreement all provisions survive except for the
|
430 |
+
license grant provisions.
|
431 |
+
|
432 |
+
|
433 |
+
1.7. General
|
434 |
+
|
435 |
+
If you wish to assign this Agreement or your rights and
|
436 |
+
obligations, including by merger, consolidation, dissolution
|
437 |
+
or operation of law, contact NVIDIA to ask for permission. Any
|
438 |
+
attempted assignment not approved by NVIDIA in writing shall
|
439 |
+
be void and of no effect. NVIDIA may assign, delegate or
|
440 |
+
transfer this Agreement and its rights and obligations, and if
|
441 |
+
to a non-affiliate you will be notified.
|
442 |
+
|
443 |
+
You agree to cooperate with NVIDIA and provide reasonably
|
444 |
+
requested information to verify your compliance with this
|
445 |
+
Agreement.
|
446 |
+
|
447 |
+
This Agreement will be governed in all respects by the laws of
|
448 |
+
the United States and of the State of Delaware as those laws
|
449 |
+
are applied to contracts entered into and performed entirely
|
450 |
+
within Delaware by Delaware residents, without regard to the
|
451 |
+
conflicts of laws principles. The United Nations Convention on
|
452 |
+
Contracts for the International Sale of Goods is specifically
|
453 |
+
disclaimed. You agree to all terms of this Agreement in the
|
454 |
+
English language.
|
455 |
+
|
456 |
+
The state or federal courts residing in Santa Clara County,
|
457 |
+
California shall have exclusive jurisdiction over any dispute
|
458 |
+
or claim arising out of this Agreement. Notwithstanding this,
|
459 |
+
you agree that NVIDIA shall still be allowed to apply for
|
460 |
+
injunctive remedies or an equivalent type of urgent legal
|
461 |
+
relief in any jurisdiction.
|
462 |
+
|
463 |
+
If any court of competent jurisdiction determines that any
|
464 |
+
provision of this Agreement is illegal, invalid or
|
465 |
+
unenforceable, such provision will be construed as limited to
|
466 |
+
the extent necessary to be consistent with and fully
|
467 |
+
enforceable under the law and the remaining provisions will
|
468 |
+
remain in full force and effect. Unless otherwise specified,
|
469 |
+
remedies are cumulative.
|
470 |
+
|
471 |
+
Each party acknowledges and agrees that the other is an
|
472 |
+
independent contractor in the performance of this Agreement.
|
473 |
+
|
474 |
+
The SDK has been developed entirely at private expense and is
|
475 |
+
“commercial items” consisting of “commercial computer
|
476 |
+
software” and “commercial computer software
|
477 |
+
documentation” provided with RESTRICTED RIGHTS. Use,
|
478 |
+
duplication or disclosure by the U.S. Government or a U.S.
|
479 |
+
Government subcontractor is subject to the restrictions in
|
480 |
+
this Agreement pursuant to DFARS 227.7202-3(a) or as set forth
|
481 |
+
in subparagraphs (c)(1) and (2) of the Commercial Computer
|
482 |
+
Software - Restricted Rights clause at FAR 52.227-19, as
|
483 |
+
applicable. Contractor/manufacturer is NVIDIA, 2788 San Tomas
|
484 |
+
Expressway, Santa Clara, CA 95051.
|
485 |
+
|
486 |
+
The SDK is subject to United States export laws and
|
487 |
+
regulations. You agree that you will not ship, transfer or
|
488 |
+
export the SDK into any country, or use the SDK in any manner,
|
489 |
+
prohibited by the United States Bureau of Industry and
|
490 |
+
Security or economic sanctions regulations administered by the
|
491 |
+
U.S. Department of Treasury’s Office of Foreign Assets
|
492 |
+
Control (OFAC), or any applicable export laws, restrictions or
|
493 |
+
regulations. These laws include restrictions on destinations,
|
494 |
+
end users and end use. By accepting this Agreement, you
|
495 |
+
confirm that you are not a resident or citizen of any country
|
496 |
+
currently embargoed by the U.S. and that you are not otherwise
|
497 |
+
prohibited from receiving the SDK.
|
498 |
+
|
499 |
+
Any notice delivered by NVIDIA to you under this Agreement
|
500 |
+
will be delivered via mail, email or fax. You agree that any
|
501 |
+
notices that NVIDIA sends you electronically will satisfy any
|
502 |
+
legal communication requirements. Please direct your legal
|
503 |
+
notices or other correspondence to NVIDIA Corporation, 2788
|
504 |
+
San Tomas Expressway, Santa Clara, California 95051, United
|
505 |
+
States of America, Attention: Legal Department.
|
506 |
+
|
507 |
+
This Agreement and any exhibits incorporated into this
|
508 |
+
Agreement constitute the entire agreement of the parties with
|
509 |
+
respect to the subject matter of this Agreement and supersede
|
510 |
+
all prior negotiations or documentation exchanged between the
|
511 |
+
parties relating to this SDK license. Any additional and/or
|
512 |
+
conflicting terms on documents issued by you are null, void,
|
513 |
+
and invalid. Any amendment or waiver under this Agreement
|
514 |
+
shall be in writing and signed by representatives of both
|
515 |
+
parties.
|
516 |
+
|
517 |
+
|
518 |
+
2. CUDA Toolkit Supplement to Software License Agreement for
|
519 |
+
NVIDIA Software Development Kits
|
520 |
+
------------------------------------------------------------
|
521 |
+
|
522 |
+
|
523 |
+
Release date: August 16, 2018
|
524 |
+
-----------------------------
|
525 |
+
|
526 |
+
The terms in this supplement govern your use of the NVIDIA
|
527 |
+
CUDA Toolkit SDK under the terms of your license agreement
|
528 |
+
(“Agreement”) as modified by this supplement. Capitalized
|
529 |
+
terms used but not defined below have the meaning assigned to
|
530 |
+
them in the Agreement.
|
531 |
+
|
532 |
+
This supplement is an exhibit to the Agreement and is
|
533 |
+
incorporated as an integral part of the Agreement. In the
|
534 |
+
event of conflict between the terms in this supplement and the
|
535 |
+
terms in the Agreement, the terms in this supplement govern.
|
536 |
+
|
537 |
+
|
538 |
+
2.1. License Scope
|
539 |
+
|
540 |
+
The SDK is licensed for you to develop applications only for
|
541 |
+
use in systems with NVIDIA GPUs.
|
542 |
+
|
543 |
+
|
544 |
+
2.2. Distribution
|
545 |
+
|
546 |
+
The portions of the SDK that are distributable under the
|
547 |
+
Agreement are listed in Attachment A.
|
548 |
+
|
549 |
+
|
550 |
+
2.3. Operating Systems
|
551 |
+
|
552 |
+
Those portions of the SDK designed exclusively for use on the
|
553 |
+
Linux or FreeBSD operating systems, or other operating systems
|
554 |
+
derived from the source code to these operating systems, may
|
555 |
+
be copied and redistributed for use in accordance with this
|
556 |
+
Agreement, provided that the object code files are not
|
557 |
+
modified in any way (except for unzipping of compressed
|
558 |
+
files).
|
559 |
+
|
560 |
+
|
561 |
+
2.4. Audio and Video Encoders and Decoders
|
562 |
+
|
563 |
+
You acknowledge and agree that it is your sole responsibility
|
564 |
+
to obtain any additional third-party licenses required to
|
565 |
+
make, have made, use, have used, sell, import, and offer for
|
566 |
+
sale your products or services that include or incorporate any
|
567 |
+
third-party software and content relating to audio and/or
|
568 |
+
video encoders and decoders from, including but not limited
|
569 |
+
to, Microsoft, Thomson, Fraunhofer IIS, Sisvel S.p.A.,
|
570 |
+
MPEG-LA, and Coding Technologies. NVIDIA does not grant to you
|
571 |
+
under this Agreement any necessary patent or other rights with
|
572 |
+
respect to any audio and/or video encoders and decoders.
|
573 |
+
|
574 |
+
|
575 |
+
2.5. Licensing
|
576 |
+
|
577 |
+
If the distribution terms in this Agreement are not suitable
|
578 |
+
for your organization, or for any questions regarding this
|
579 |
+
Agreement, please contact NVIDIA at
|
580 | |
581 |
+
|
582 |
+
|
583 |
+
2.6. Attachment A
|
584 |
+
|
585 |
+
The following portions of the SDK are distributable under the
|
586 |
+
Agreement:
|
587 |
+
|
588 |
+
Component
|
589 |
+
|
590 |
+
CUDA Runtime
|
591 |
+
|
592 |
+
Windows
|
593 |
+
|
594 |
+
cudart.dll, cudart_static.lib, cudadevrt.lib
|
595 |
+
|
596 |
+
Mac OSX
|
597 |
+
|
598 |
+
libcudart.dylib, libcudart_static.a, libcudadevrt.a
|
599 |
+
|
600 |
+
Linux
|
601 |
+
|
602 |
+
libcudart.so, libcudart_static.a, libcudadevrt.a
|
603 |
+
|
604 |
+
Android
|
605 |
+
|
606 |
+
libcudart.so, libcudart_static.a, libcudadevrt.a
|
607 |
+
|
608 |
+
Component
|
609 |
+
|
610 |
+
CUDA FFT Library
|
611 |
+
|
612 |
+
Windows
|
613 |
+
|
614 |
+
cufft.dll, cufftw.dll, cufft.lib, cufftw.lib
|
615 |
+
|
616 |
+
Mac OSX
|
617 |
+
|
618 |
+
libcufft.dylib, libcufft_static.a, libcufftw.dylib,
|
619 |
+
libcufftw_static.a
|
620 |
+
|
621 |
+
Linux
|
622 |
+
|
623 |
+
libcufft.so, libcufft_static.a, libcufftw.so,
|
624 |
+
libcufftw_static.a
|
625 |
+
|
626 |
+
Android
|
627 |
+
|
628 |
+
libcufft.so, libcufft_static.a, libcufftw.so,
|
629 |
+
libcufftw_static.a
|
630 |
+
|
631 |
+
Component
|
632 |
+
|
633 |
+
CUDA BLAS Library
|
634 |
+
|
635 |
+
Windows
|
636 |
+
|
637 |
+
cublas.dll, cublasLt.dll
|
638 |
+
|
639 |
+
Mac OSX
|
640 |
+
|
641 |
+
libcublas.dylib, libcublasLt.dylib, libcublas_static.a,
|
642 |
+
libcublasLt_static.a
|
643 |
+
|
644 |
+
Linux
|
645 |
+
|
646 |
+
libcublas.so, libcublasLt.so, libcublas_static.a,
|
647 |
+
libcublasLt_static.a
|
648 |
+
|
649 |
+
Android
|
650 |
+
|
651 |
+
libcublas.so, libcublasLt.so, libcublas_static.a,
|
652 |
+
libcublasLt_static.a
|
653 |
+
|
654 |
+
Component
|
655 |
+
|
656 |
+
NVIDIA "Drop-in" BLAS Library
|
657 |
+
|
658 |
+
Windows
|
659 |
+
|
660 |
+
nvblas.dll
|
661 |
+
|
662 |
+
Mac OSX
|
663 |
+
|
664 |
+
libnvblas.dylib
|
665 |
+
|
666 |
+
Linux
|
667 |
+
|
668 |
+
libnvblas.so
|
669 |
+
|
670 |
+
Component
|
671 |
+
|
672 |
+
CUDA Sparse Matrix Library
|
673 |
+
|
674 |
+
Windows
|
675 |
+
|
676 |
+
cusparse.dll, cusparse.lib
|
677 |
+
|
678 |
+
Mac OSX
|
679 |
+
|
680 |
+
libcusparse.dylib, libcusparse_static.a
|
681 |
+
|
682 |
+
Linux
|
683 |
+
|
684 |
+
libcusparse.so, libcusparse_static.a
|
685 |
+
|
686 |
+
Android
|
687 |
+
|
688 |
+
libcusparse.so, libcusparse_static.a
|
689 |
+
|
690 |
+
Component
|
691 |
+
|
692 |
+
CUDA Linear Solver Library
|
693 |
+
|
694 |
+
Windows
|
695 |
+
|
696 |
+
cusolver.dll, cusolver.lib
|
697 |
+
|
698 |
+
Mac OSX
|
699 |
+
|
700 |
+
libcusolver.dylib, libcusolver_static.a
|
701 |
+
|
702 |
+
Linux
|
703 |
+
|
704 |
+
libcusolver.so, libcusolver_static.a
|
705 |
+
|
706 |
+
Android
|
707 |
+
|
708 |
+
libcusolver.so, libcusolver_static.a
|
709 |
+
|
710 |
+
Component
|
711 |
+
|
712 |
+
CUDA Random Number Generation Library
|
713 |
+
|
714 |
+
Windows
|
715 |
+
|
716 |
+
curand.dll, curand.lib
|
717 |
+
|
718 |
+
Mac OSX
|
719 |
+
|
720 |
+
libcurand.dylib, libcurand_static.a
|
721 |
+
|
722 |
+
Linux
|
723 |
+
|
724 |
+
libcurand.so, libcurand_static.a
|
725 |
+
|
726 |
+
Android
|
727 |
+
|
728 |
+
libcurand.so, libcurand_static.a
|
729 |
+
|
730 |
+
Component
|
731 |
+
|
732 |
+
CUDA Accelerated Graph Library
|
733 |
+
|
734 |
+
Component
|
735 |
+
|
736 |
+
NVIDIA Performance Primitives Library
|
737 |
+
|
738 |
+
Windows
|
739 |
+
|
740 |
+
nppc.dll, nppc.lib, nppial.dll, nppial.lib, nppicc.dll,
|
741 |
+
nppicc.lib, nppicom.dll, nppicom.lib, nppidei.dll,
|
742 |
+
nppidei.lib, nppif.dll, nppif.lib, nppig.dll, nppig.lib,
|
743 |
+
nppim.dll, nppim.lib, nppist.dll, nppist.lib, nppisu.dll,
|
744 |
+
nppisu.lib, nppitc.dll, nppitc.lib, npps.dll, npps.lib
|
745 |
+
|
746 |
+
Mac OSX
|
747 |
+
|
748 |
+
libnppc.dylib, libnppc_static.a, libnppial.dylib,
|
749 |
+
libnppial_static.a, libnppicc.dylib, libnppicc_static.a,
|
750 |
+
libnppicom.dylib, libnppicom_static.a, libnppidei.dylib,
|
751 |
+
libnppidei_static.a, libnppif.dylib, libnppif_static.a,
|
752 |
+
libnppig.dylib, libnppig_static.a, libnppim.dylib,
|
753 |
+
libnppisu_static.a, libnppitc.dylib, libnppitc_static.a,
|
754 |
+
libnpps.dylib, libnpps_static.a
|
755 |
+
|
756 |
+
Linux
|
757 |
+
|
758 |
+
libnppc.so, libnppc_static.a, libnppial.so,
|
759 |
+
libnppial_static.a, libnppicc.so, libnppicc_static.a,
|
760 |
+
libnppicom.so, libnppicom_static.a, libnppidei.so,
|
761 |
+
libnppidei_static.a, libnppif.so, libnppif_static.a
|
762 |
+
libnppig.so, libnppig_static.a, libnppim.so,
|
763 |
+
libnppim_static.a, libnppist.so, libnppist_static.a,
|
764 |
+
libnppisu.so, libnppisu_static.a, libnppitc.so
|
765 |
+
libnppitc_static.a, libnpps.so, libnpps_static.a
|
766 |
+
|
767 |
+
Android
|
768 |
+
|
769 |
+
libnppc.so, libnppc_static.a, libnppial.so,
|
770 |
+
libnppial_static.a, libnppicc.so, libnppicc_static.a,
|
771 |
+
libnppicom.so, libnppicom_static.a, libnppidei.so,
|
772 |
+
libnppidei_static.a, libnppif.so, libnppif_static.a
|
773 |
+
libnppig.so, libnppig_static.a, libnppim.so,
|
774 |
+
libnppim_static.a, libnppist.so, libnppist_static.a,
|
775 |
+
libnppisu.so, libnppisu_static.a, libnppitc.so
|
776 |
+
libnppitc_static.a, libnpps.so, libnpps_static.a
|
777 |
+
|
778 |
+
Component
|
779 |
+
|
780 |
+
NVIDIA JPEG Library
|
781 |
+
|
782 |
+
Linux
|
783 |
+
|
784 |
+
libnvjpeg.so, libnvjpeg_static.a
|
785 |
+
|
786 |
+
Component
|
787 |
+
|
788 |
+
Internal common library required for statically linking to
|
789 |
+
cuBLAS, cuSPARSE, cuFFT, cuRAND, nvJPEG and NPP
|
790 |
+
|
791 |
+
Mac OSX
|
792 |
+
|
793 |
+
libculibos.a
|
794 |
+
|
795 |
+
Linux
|
796 |
+
|
797 |
+
libculibos.a
|
798 |
+
|
799 |
+
Component
|
800 |
+
|
801 |
+
NVIDIA Runtime Compilation Library and Header
|
802 |
+
|
803 |
+
All
|
804 |
+
|
805 |
+
nvrtc.h
|
806 |
+
|
807 |
+
Windows
|
808 |
+
|
809 |
+
nvrtc.dll, nvrtc-builtins.dll
|
810 |
+
|
811 |
+
Mac OSX
|
812 |
+
|
813 |
+
libnvrtc.dylib, libnvrtc-builtins.dylib
|
814 |
+
|
815 |
+
Linux
|
816 |
+
|
817 |
+
libnvrtc.so, libnvrtc-builtins.so
|
818 |
+
|
819 |
+
Component
|
820 |
+
|
821 |
+
NVIDIA Optimizing Compiler Library
|
822 |
+
|
823 |
+
Windows
|
824 |
+
|
825 |
+
nvvm.dll
|
826 |
+
|
827 |
+
Mac OSX
|
828 |
+
|
829 |
+
libnvvm.dylib
|
830 |
+
|
831 |
+
Linux
|
832 |
+
|
833 |
+
libnvvm.so
|
834 |
+
|
835 |
+
Component
|
836 |
+
|
837 |
+
NVIDIA Common Device Math Functions Library
|
838 |
+
|
839 |
+
Windows
|
840 |
+
|
841 |
+
libdevice.10.bc
|
842 |
+
|
843 |
+
Mac OSX
|
844 |
+
|
845 |
+
libdevice.10.bc
|
846 |
+
|
847 |
+
Linux
|
848 |
+
|
849 |
+
libdevice.10.bc
|
850 |
+
|
851 |
+
Component
|
852 |
+
|
853 |
+
CUDA Occupancy Calculation Header Library
|
854 |
+
|
855 |
+
All
|
856 |
+
|
857 |
+
cuda_occupancy.h
|
858 |
+
|
859 |
+
Component
|
860 |
+
|
861 |
+
CUDA Half Precision Headers
|
862 |
+
|
863 |
+
All
|
864 |
+
|
865 |
+
cuda_fp16.h, cuda_fp16.hpp
|
866 |
+
|
867 |
+
Component
|
868 |
+
|
869 |
+
CUDA Profiling Tools Interface (CUPTI) Library
|
870 |
+
|
871 |
+
Windows
|
872 |
+
|
873 |
+
cupti.dll
|
874 |
+
|
875 |
+
Mac OSX
|
876 |
+
|
877 |
+
libcupti.dylib
|
878 |
+
|
879 |
+
Linux
|
880 |
+
|
881 |
+
libcupti.so
|
882 |
+
|
883 |
+
Component
|
884 |
+
|
885 |
+
NVIDIA Tools Extension Library
|
886 |
+
|
887 |
+
Windows
|
888 |
+
|
889 |
+
nvToolsExt.dll, nvToolsExt.lib
|
890 |
+
|
891 |
+
Mac OSX
|
892 |
+
|
893 |
+
libnvToolsExt.dylib
|
894 |
+
|
895 |
+
Linux
|
896 |
+
|
897 |
+
libnvToolsExt.so
|
898 |
+
|
899 |
+
Component
|
900 |
+
|
901 |
+
NVIDIA CUDA Driver Libraries
|
902 |
+
|
903 |
+
Linux
|
904 |
+
|
905 |
+
libcuda.so, libnvidia-fatbinaryloader.so,
|
906 |
+
libnvidia-ptxjitcompiler.so
|
907 |
+
|
908 |
+
The NVIDIA CUDA Driver Libraries are only distributable in
|
909 |
+
applications that meet this criteria:
|
910 |
+
|
911 |
+
1. The application was developed starting from a NVIDIA CUDA
|
912 |
+
container obtained from Docker Hub or the NVIDIA GPU
|
913 |
+
Cloud, and
|
914 |
+
|
915 |
+
2. The resulting application is packaged as a Docker
|
916 |
+
container and distributed to users on Docker Hub or the
|
917 |
+
NVIDIA GPU Cloud only.
|
918 |
+
|
919 |
+
|
920 |
+
2.7. Attachment B
|
921 |
+
|
922 |
+
|
923 |
+
Additional Licensing Obligations
|
924 |
+
|
925 |
+
The following third party components included in the SOFTWARE
|
926 |
+
are licensed to Licensee pursuant to the following terms and
|
927 |
+
conditions:
|
928 |
+
|
929 |
+
1. Licensee's use of the GDB third party component is
|
930 |
+
subject to the terms and conditions of GNU GPL v3:
|
931 |
+
|
932 |
+
This product includes copyrighted third-party software licensed
|
933 |
+
under the terms of the GNU General Public License v3 ("GPL v3").
|
934 |
+
All third-party software packages are copyright by their respective
|
935 |
+
authors. GPL v3 terms and conditions are hereby incorporated into
|
936 |
+
the Agreement by this reference: http://www.gnu.org/licenses/gpl.txt
|
937 |
+
|
938 |
+
Consistent with these licensing requirements, the software
|
939 |
+
listed below is provided under the terms of the specified
|
940 |
+
open source software licenses. To obtain source code for
|
941 |
+
software provided under licenses that require
|
942 |
+
redistribution of source code, including the GNU General
|
943 |
+
Public License (GPL) and GNU Lesser General Public License
|
944 |
+
(LGPL), contact [email protected]. This offer is
|
945 |
+
valid for a period of three (3) years from the date of the
|
946 |
+
distribution of this product by NVIDIA CORPORATION.
|
947 |
+
|
948 |
+
Component License
|
949 |
+
CUDA-GDB GPL v3
|
950 |
+
|
951 |
+
2. Licensee represents and warrants that any and all third
|
952 |
+
party licensing and/or royalty payment obligations in
|
953 |
+
connection with Licensee's use of the H.264 video codecs
|
954 |
+
are solely the responsibility of Licensee.
|
955 |
+
|
956 |
+
3. Licensee's use of the Thrust library is subject to the
|
957 |
+
terms and conditions of the Apache License Version 2.0.
|
958 |
+
All third-party software packages are copyright by their
|
959 |
+
respective authors. Apache License Version 2.0 terms and
|
960 |
+
conditions are hereby incorporated into the Agreement by
|
961 |
+
this reference.
|
962 |
+
http://www.apache.org/licenses/LICENSE-2.0.html
|
963 |
+
|
964 |
+
In addition, Licensee acknowledges the following notice:
|
965 |
+
Thrust includes source code from the Boost Iterator,
|
966 |
+
Tuple, System, and Random Number libraries.
|
967 |
+
|
968 |
+
Boost Software License - Version 1.0 - August 17th, 2003
|
969 |
+
. . . .
|
970 |
+
|
971 |
+
Permission is hereby granted, free of charge, to any person or
|
972 |
+
organization obtaining a copy of the software and accompanying
|
973 |
+
documentation covered by this license (the "Software") to use,
|
974 |
+
reproduce, display, distribute, execute, and transmit the Software,
|
975 |
+
and to prepare derivative works of the Software, and to permit
|
976 |
+
third-parties to whom the Software is furnished to do so, all
|
977 |
+
subject to the following:
|
978 |
+
|
979 |
+
The copyright notices in the Software and this entire statement,
|
980 |
+
including the above license grant, this restriction and the following
|
981 |
+
disclaimer, must be included in all copies of the Software, in whole
|
982 |
+
or in part, and all derivative works of the Software, unless such
|
983 |
+
copies or derivative works are solely in the form of machine-executable
|
984 |
+
object code generated by a source language processor.
|
985 |
+
|
986 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
987 |
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
988 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
|
989 |
+
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
|
990 |
+
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
|
991 |
+
OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
|
992 |
+
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
993 |
+
OTHER DEALINGS IN THE SOFTWARE.
|
994 |
+
|
995 |
+
4. Licensee's use of the LLVM third party component is
|
996 |
+
subject to the following terms and conditions:
|
997 |
+
|
998 |
+
======================================================
|
999 |
+
LLVM Release License
|
1000 |
+
======================================================
|
1001 |
+
University of Illinois/NCSA
|
1002 |
+
Open Source License
|
1003 |
+
|
1004 |
+
Copyright (c) 2003-2010 University of Illinois at Urbana-Champaign.
|
1005 |
+
All rights reserved.
|
1006 |
+
|
1007 |
+
Developed by:
|
1008 |
+
|
1009 |
+
LLVM Team
|
1010 |
+
|
1011 |
+
University of Illinois at Urbana-Champaign
|
1012 |
+
|
1013 |
+
http://llvm.org
|
1014 |
+
|
1015 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
1016 |
+
of this software and associated documentation files (the "Software"), to
|
1017 |
+
deal with the Software without restriction, including without limitation the
|
1018 |
+
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
1019 |
+
sell copies of the Software, and to permit persons to whom the Software is
|
1020 |
+
furnished to do so, subject to the following conditions:
|
1021 |
+
|
1022 |
+
* Redistributions of source code must retain the above copyright notice,
|
1023 |
+
this list of conditions and the following disclaimers.
|
1024 |
+
|
1025 |
+
* Redistributions in binary form must reproduce the above copyright
|
1026 |
+
notice, this list of conditions and the following disclaimers in the
|
1027 |
+
documentation and/or other materials provided with the distribution.
|
1028 |
+
|
1029 |
+
* Neither the names of the LLVM Team, University of Illinois at Urbana-
|
1030 |
+
Champaign, nor the names of its contributors may be used to endorse or
|
1031 |
+
promote products derived from this Software without specific prior
|
1032 |
+
written permission.
|
1033 |
+
|
1034 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
1035 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
1036 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
1037 |
+
THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
1038 |
+
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
1039 |
+
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
1040 |
+
DEALINGS WITH THE SOFTWARE.
|
1041 |
+
|
1042 |
+
5. Licensee's use (e.g. nvprof) of the PCRE third party
|
1043 |
+
component is subject to the following terms and
|
1044 |
+
conditions:
|
1045 |
+
|
1046 |
+
------------
|
1047 |
+
PCRE LICENCE
|
1048 |
+
------------
|
1049 |
+
PCRE is a library of functions to support regular expressions whose syntax
|
1050 |
+
and semantics are as close as possible to those of the Perl 5 language.
|
1051 |
+
Release 8 of PCRE is distributed under the terms of the "BSD" licence, as
|
1052 |
+
specified below. The documentation for PCRE, supplied in the "doc"
|
1053 |
+
directory, is distributed under the same terms as the software itself. The
|
1054 |
+
basic library functions are written in C and are freestanding. Also
|
1055 |
+
included in the distribution is a set of C++ wrapper functions, and a just-
|
1056 |
+
in-time compiler that can be used to optimize pattern matching. These are
|
1057 |
+
both optional features that can be omitted when the library is built.
|
1058 |
+
|
1059 |
+
THE BASIC LIBRARY FUNCTIONS
|
1060 |
+
---------------------------
|
1061 |
+
Written by: Philip Hazel
|
1062 |
+
Email local part: ph10
|
1063 |
+
Email domain: cam.ac.uk
|
1064 |
+
University of Cambridge Computing Service,
|
1065 |
+
Cambridge, England.
|
1066 |
+
Copyright (c) 1997-2012 University of Cambridge
|
1067 |
+
All rights reserved.
|
1068 |
+
|
1069 |
+
PCRE JUST-IN-TIME COMPILATION SUPPORT
|
1070 |
+
-------------------------------------
|
1071 |
+
Written by: Zoltan Herczeg
|
1072 |
+
Email local part: hzmester
|
1073 |
+
Emain domain: freemail.hu
|
1074 |
+
Copyright(c) 2010-2012 Zoltan Herczeg
|
1075 |
+
All rights reserved.
|
1076 |
+
|
1077 |
+
STACK-LESS JUST-IN-TIME COMPILER
|
1078 |
+
--------------------------------
|
1079 |
+
Written by: Zoltan Herczeg
|
1080 |
+
Email local part: hzmester
|
1081 |
+
Emain domain: freemail.hu
|
1082 |
+
Copyright(c) 2009-2012 Zoltan Herczeg
|
1083 |
+
All rights reserved.
|
1084 |
+
|
1085 |
+
THE C++ WRAPPER FUNCTIONS
|
1086 |
+
-------------------------
|
1087 |
+
Contributed by: Google Inc.
|
1088 |
+
Copyright (c) 2007-2012, Google Inc.
|
1089 |
+
All rights reserved.
|
1090 |
+
|
1091 |
+
THE "BSD" LICENCE
|
1092 |
+
-----------------
|
1093 |
+
Redistribution and use in source and binary forms, with or without
|
1094 |
+
modification, are permitted provided that the following conditions are met:
|
1095 |
+
|
1096 |
+
* Redistributions of source code must retain the above copyright notice,
|
1097 |
+
this list of conditions and the following disclaimer.
|
1098 |
+
|
1099 |
+
* Redistributions in binary form must reproduce the above copyright
|
1100 |
+
notice, this list of conditions and the following disclaimer in the
|
1101 |
+
documentation and/or other materials provided with the distribution.
|
1102 |
+
|
1103 |
+
* Neither the name of the University of Cambridge nor the name of Google
|
1104 |
+
Inc. nor the names of their contributors may be used to endorse or
|
1105 |
+
promote products derived from this software without specific prior
|
1106 |
+
written permission.
|
1107 |
+
|
1108 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
1109 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
1110 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
1111 |
+
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
1112 |
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
1113 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
1114 |
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
1115 |
+
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
1116 |
+
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
1117 |
+
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
1118 |
+
POSSIBILITY OF SUCH DAMAGE.
|
1119 |
+
|
1120 |
+
6. Some of the cuBLAS library routines were written by or
|
1121 |
+
derived from code written by Vasily Volkov and are subject
|
1122 |
+
to the Modified Berkeley Software Distribution License as
|
1123 |
+
follows:
|
1124 |
+
|
1125 |
+
Copyright (c) 2007-2009, Regents of the University of California
|
1126 |
+
|
1127 |
+
All rights reserved.
|
1128 |
+
|
1129 |
+
Redistribution and use in source and binary forms, with or without
|
1130 |
+
modification, are permitted provided that the following conditions are
|
1131 |
+
met:
|
1132 |
+
* Redistributions of source code must retain the above copyright
|
1133 |
+
notice, this list of conditions and the following disclaimer.
|
1134 |
+
* Redistributions in binary form must reproduce the above
|
1135 |
+
copyright notice, this list of conditions and the following
|
1136 |
+
disclaimer in the documentation and/or other materials provided
|
1137 |
+
with the distribution.
|
1138 |
+
* Neither the name of the University of California, Berkeley nor
|
1139 |
+
the names of its contributors may be used to endorse or promote
|
1140 |
+
products derived from this software without specific prior
|
1141 |
+
written permission.
|
1142 |
+
|
1143 |
+
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
|
1144 |
+
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
1145 |
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
1146 |
+
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
1147 |
+
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
1148 |
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
1149 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
1150 |
+
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
1151 |
+
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
1152 |
+
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
1153 |
+
POSSIBILITY OF SUCH DAMAGE.
|
1154 |
+
|
1155 |
+
7. Some of the cuBLAS library routines were written by or
|
1156 |
+
derived from code written by Davide Barbieri and are
|
1157 |
+
subject to the Modified Berkeley Software Distribution
|
1158 |
+
License as follows:
|
1159 |
+
|
1160 |
+
Copyright (c) 2008-2009 Davide Barbieri @ University of Rome Tor Vergata.
|
1161 |
+
|
1162 |
+
All rights reserved.
|
1163 |
+
|
1164 |
+
Redistribution and use in source and binary forms, with or without
|
1165 |
+
modification, are permitted provided that the following conditions are
|
1166 |
+
met:
|
1167 |
+
* Redistributions of source code must retain the above copyright
|
1168 |
+
notice, this list of conditions and the following disclaimer.
|
1169 |
+
* Redistributions in binary form must reproduce the above
|
1170 |
+
copyright notice, this list of conditions and the following
|
1171 |
+
disclaimer in the documentation and/or other materials provided
|
1172 |
+
with the distribution.
|
1173 |
+
* The name of the author may not be used to endorse or promote
|
1174 |
+
products derived from this software without specific prior
|
1175 |
+
written permission.
|
1176 |
+
|
1177 |
+
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
|
1178 |
+
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
1179 |
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
1180 |
+
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
1181 |
+
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
1182 |
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
1183 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
1184 |
+
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
1185 |
+
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
1186 |
+
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
1187 |
+
POSSIBILITY OF SUCH DAMAGE.
|
1188 |
+
|
1189 |
+
8. Some of the cuBLAS library routines were derived from
|
1190 |
+
code developed by the University of Tennessee and are
|
1191 |
+
subject to the Modified Berkeley Software Distribution
|
1192 |
+
License as follows:
|
1193 |
+
|
1194 |
+
Copyright (c) 2010 The University of Tennessee.
|
1195 |
+
|
1196 |
+
All rights reserved.
|
1197 |
+
|
1198 |
+
Redistribution and use in source and binary forms, with or without
|
1199 |
+
modification, are permitted provided that the following conditions are
|
1200 |
+
met:
|
1201 |
+
* Redistributions of source code must retain the above copyright
|
1202 |
+
notice, this list of conditions and the following disclaimer.
|
1203 |
+
* Redistributions in binary form must reproduce the above
|
1204 |
+
copyright notice, this list of conditions and the following
|
1205 |
+
disclaimer listed in this license in the documentation and/or
|
1206 |
+
other materials provided with the distribution.
|
1207 |
+
* Neither the name of the copyright holders nor the names of its
|
1208 |
+
contributors may be used to endorse or promote products derived
|
1209 |
+
from this software without specific prior written permission.
|
1210 |
+
|
1211 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1212 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1213 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1214 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1215 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1216 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1217 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1218 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1219 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1220 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1221 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1222 |
+
|
1223 |
+
9. Some of the cuBLAS library routines were written by or
|
1224 |
+
derived from code written by Jonathan Hogg and are subject
|
1225 |
+
to the Modified Berkeley Software Distribution License as
|
1226 |
+
follows:
|
1227 |
+
|
1228 |
+
Copyright (c) 2012, The Science and Technology Facilities Council (STFC).
|
1229 |
+
|
1230 |
+
All rights reserved.
|
1231 |
+
|
1232 |
+
Redistribution and use in source and binary forms, with or without
|
1233 |
+
modification, are permitted provided that the following conditions are
|
1234 |
+
met:
|
1235 |
+
* Redistributions of source code must retain the above copyright
|
1236 |
+
notice, this list of conditions and the following disclaimer.
|
1237 |
+
* Redistributions in binary form must reproduce the above
|
1238 |
+
copyright notice, this list of conditions and the following
|
1239 |
+
disclaimer in the documentation and/or other materials provided
|
1240 |
+
with the distribution.
|
1241 |
+
* Neither the name of the STFC nor the names of its contributors
|
1242 |
+
may be used to endorse or promote products derived from this
|
1243 |
+
software without specific prior written permission.
|
1244 |
+
|
1245 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1246 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1247 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1248 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE STFC BE
|
1249 |
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
1250 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
1251 |
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
1252 |
+
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
1253 |
+
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
1254 |
+
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
|
1255 |
+
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1256 |
+
|
1257 |
+
10. Some of the cuBLAS library routines were written by or
|
1258 |
+
derived from code written by Ahmad M. Abdelfattah, David
|
1259 |
+
Keyes, and Hatem Ltaief, and are subject to the Apache
|
1260 |
+
License, Version 2.0, as follows:
|
1261 |
+
|
1262 |
+
-- (C) Copyright 2013 King Abdullah University of Science and Technology
|
1263 |
+
Authors:
|
1264 |
+
Ahmad Abdelfattah ([email protected])
|
1265 |
+
David Keyes ([email protected])
|
1266 |
+
Hatem Ltaief ([email protected])
|
1267 |
+
|
1268 |
+
Redistribution and use in source and binary forms, with or without
|
1269 |
+
modification, are permitted provided that the following conditions
|
1270 |
+
are met:
|
1271 |
+
|
1272 |
+
* Redistributions of source code must retain the above copyright
|
1273 |
+
notice, this list of conditions and the following disclaimer.
|
1274 |
+
* Redistributions in binary form must reproduce the above copyright
|
1275 |
+
notice, this list of conditions and the following disclaimer in the
|
1276 |
+
documentation and/or other materials provided with the distribution.
|
1277 |
+
* Neither the name of the King Abdullah University of Science and
|
1278 |
+
Technology nor the names of its contributors may be used to endorse
|
1279 |
+
or promote products derived from this software without specific prior
|
1280 |
+
written permission.
|
1281 |
+
|
1282 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1283 |
+
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1284 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1285 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1286 |
+
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1287 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1288 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1289 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1290 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1291 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1292 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
|
1293 |
+
|
1294 |
+
11. Some of the cuSPARSE library routines were written by or
|
1295 |
+
derived from code written by Li-Wen Chang and are subject
|
1296 |
+
to the NCSA Open Source License as follows:
|
1297 |
+
|
1298 |
+
Copyright (c) 2012, University of Illinois.
|
1299 |
+
|
1300 |
+
All rights reserved.
|
1301 |
+
|
1302 |
+
Developed by: IMPACT Group, University of Illinois, http://impact.crhc.illinois.edu
|
1303 |
+
|
1304 |
+
Permission is hereby granted, free of charge, to any person obtaining
|
1305 |
+
a copy of this software and associated documentation files (the
|
1306 |
+
"Software"), to deal with the Software without restriction, including
|
1307 |
+
without limitation the rights to use, copy, modify, merge, publish,
|
1308 |
+
distribute, sublicense, and/or sell copies of the Software, and to
|
1309 |
+
permit persons to whom the Software is furnished to do so, subject to
|
1310 |
+
the following conditions:
|
1311 |
+
* Redistributions of source code must retain the above copyright
|
1312 |
+
notice, this list of conditions and the following disclaimer.
|
1313 |
+
* Redistributions in binary form must reproduce the above
|
1314 |
+
copyright notice, this list of conditions and the following
|
1315 |
+
disclaimers in the documentation and/or other materials provided
|
1316 |
+
with the distribution.
|
1317 |
+
* Neither the names of IMPACT Group, University of Illinois, nor
|
1318 |
+
the names of its contributors may be used to endorse or promote
|
1319 |
+
products derived from this Software without specific prior
|
1320 |
+
written permission.
|
1321 |
+
|
1322 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
1323 |
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
1324 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
1325 |
+
NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
|
1326 |
+
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
1327 |
+
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
1328 |
+
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
|
1329 |
+
SOFTWARE.
|
1330 |
+
|
1331 |
+
12. Some of the cuRAND library routines were written by or
|
1332 |
+
derived from code written by Mutsuo Saito and Makoto
|
1333 |
+
Matsumoto and are subject to the following license:
|
1334 |
+
|
1335 |
+
Copyright (c) 2009, 2010 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
1336 |
+
University. All rights reserved.
|
1337 |
+
|
1338 |
+
Copyright (c) 2011 Mutsuo Saito, Makoto Matsumoto, Hiroshima
|
1339 |
+
University and University of Tokyo. All rights reserved.
|
1340 |
+
|
1341 |
+
Redistribution and use in source and binary forms, with or without
|
1342 |
+
modification, are permitted provided that the following conditions are
|
1343 |
+
met:
|
1344 |
+
* Redistributions of source code must retain the above copyright
|
1345 |
+
notice, this list of conditions and the following disclaimer.
|
1346 |
+
* Redistributions in binary form must reproduce the above
|
1347 |
+
copyright notice, this list of conditions and the following
|
1348 |
+
disclaimer in the documentation and/or other materials provided
|
1349 |
+
with the distribution.
|
1350 |
+
* Neither the name of the Hiroshima University nor the names of
|
1351 |
+
its contributors may be used to endorse or promote products
|
1352 |
+
derived from this software without specific prior written
|
1353 |
+
permission.
|
1354 |
+
|
1355 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1356 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1357 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1358 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1359 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1360 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1361 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1362 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1363 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1364 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1365 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1366 |
+
|
1367 |
+
13. Some of the cuRAND library routines were derived from
|
1368 |
+
code developed by D. E. Shaw Research and are subject to
|
1369 |
+
the following license:
|
1370 |
+
|
1371 |
+
Copyright 2010-2011, D. E. Shaw Research.
|
1372 |
+
|
1373 |
+
All rights reserved.
|
1374 |
+
|
1375 |
+
Redistribution and use in source and binary forms, with or without
|
1376 |
+
modification, are permitted provided that the following conditions are
|
1377 |
+
met:
|
1378 |
+
* Redistributions of source code must retain the above copyright
|
1379 |
+
notice, this list of conditions, and the following disclaimer.
|
1380 |
+
* Redistributions in binary form must reproduce the above
|
1381 |
+
copyright notice, this list of conditions, and the following
|
1382 |
+
disclaimer in the documentation and/or other materials provided
|
1383 |
+
with the distribution.
|
1384 |
+
* Neither the name of D. E. Shaw Research nor the names of its
|
1385 |
+
contributors may be used to endorse or promote products derived
|
1386 |
+
from this software without specific prior written permission.
|
1387 |
+
|
1388 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1389 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1390 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1391 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1392 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1393 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1394 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1395 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1396 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1397 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1398 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1399 |
+
|
1400 |
+
14. Some of the Math library routines were written by or
|
1401 |
+
derived from code developed by Norbert Juffa and are
|
1402 |
+
subject to the following license:
|
1403 |
+
|
1404 |
+
Copyright (c) 2015-2017, Norbert Juffa
|
1405 |
+
All rights reserved.
|
1406 |
+
|
1407 |
+
Redistribution and use in source and binary forms, with or without
|
1408 |
+
modification, are permitted provided that the following conditions
|
1409 |
+
are met:
|
1410 |
+
|
1411 |
+
1. Redistributions of source code must retain the above copyright
|
1412 |
+
notice, this list of conditions and the following disclaimer.
|
1413 |
+
|
1414 |
+
2. Redistributions in binary form must reproduce the above copyright
|
1415 |
+
notice, this list of conditions and the following disclaimer in the
|
1416 |
+
documentation and/or other materials provided with the distribution.
|
1417 |
+
|
1418 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1419 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1420 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1421 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1422 |
+
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1423 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1424 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1425 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1426 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1427 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1428 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1429 |
+
|
1430 |
+
15. Licensee's use of the lz4 third party component is
|
1431 |
+
subject to the following terms and conditions:
|
1432 |
+
|
1433 |
+
Copyright (C) 2011-2013, Yann Collet.
|
1434 |
+
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
1435 |
+
|
1436 |
+
Redistribution and use in source and binary forms, with or without
|
1437 |
+
modification, are permitted provided that the following conditions are
|
1438 |
+
met:
|
1439 |
+
|
1440 |
+
* Redistributions of source code must retain the above copyright
|
1441 |
+
notice, this list of conditions and the following disclaimer.
|
1442 |
+
* Redistributions in binary form must reproduce the above
|
1443 |
+
copyright notice, this list of conditions and the following disclaimer
|
1444 |
+
in the documentation and/or other materials provided with the
|
1445 |
+
distribution.
|
1446 |
+
|
1447 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1448 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1449 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1450 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1451 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1452 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1453 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1454 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1455 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1456 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1457 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1458 |
+
|
1459 |
+
16. The NPP library uses code from the Boost Math Toolkit,
|
1460 |
+
and is subject to the following license:
|
1461 |
+
|
1462 |
+
Boost Software License - Version 1.0 - August 17th, 2003
|
1463 |
+
. . . .
|
1464 |
+
|
1465 |
+
Permission is hereby granted, free of charge, to any person or
|
1466 |
+
organization obtaining a copy of the software and accompanying
|
1467 |
+
documentation covered by this license (the "Software") to use,
|
1468 |
+
reproduce, display, distribute, execute, and transmit the Software,
|
1469 |
+
and to prepare derivative works of the Software, and to permit
|
1470 |
+
third-parties to whom the Software is furnished to do so, all
|
1471 |
+
subject to the following:
|
1472 |
+
|
1473 |
+
The copyright notices in the Software and this entire statement,
|
1474 |
+
including the above license grant, this restriction and the following
|
1475 |
+
disclaimer, must be included in all copies of the Software, in whole
|
1476 |
+
or in part, and all derivative works of the Software, unless such
|
1477 |
+
copies or derivative works are solely in the form of machine-executable
|
1478 |
+
object code generated by a source language processor.
|
1479 |
+
|
1480 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
1481 |
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
1482 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
|
1483 |
+
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
|
1484 |
+
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
|
1485 |
+
OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
|
1486 |
+
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
1487 |
+
OTHER DEALINGS IN THE SOFTWARE.
|
1488 |
+
|
1489 |
+
17. Portions of the Nsight Eclipse Edition is subject to the
|
1490 |
+
following license:
|
1491 |
+
|
1492 |
+
The Eclipse Foundation makes available all content in this plug-in
|
1493 |
+
("Content"). Unless otherwise indicated below, the Content is provided
|
1494 |
+
to you under the terms and conditions of the Eclipse Public License
|
1495 |
+
Version 1.0 ("EPL"). A copy of the EPL is available at http://
|
1496 |
+
www.eclipse.org/legal/epl-v10.html. For purposes of the EPL, "Program"
|
1497 |
+
will mean the Content.
|
1498 |
+
|
1499 |
+
If you did not receive this Content directly from the Eclipse
|
1500 |
+
Foundation, the Content is being redistributed by another party
|
1501 |
+
("Redistributor") and different terms and conditions may apply to your
|
1502 |
+
use of any object code in the Content. Check the Redistributor's
|
1503 |
+
license that was provided with the Content. If no such license exists,
|
1504 |
+
contact the Redistributor. Unless otherwise indicated below, the terms
|
1505 |
+
and conditions of the EPL still apply to any source code in the
|
1506 |
+
Content and such source code may be obtained at http://www.eclipse.org.
|
1507 |
+
|
1508 |
+
18. Some of the cuBLAS library routines uses code from
|
1509 |
+
OpenAI, which is subject to the following license:
|
1510 |
+
|
1511 |
+
License URL
|
1512 |
+
https://github.com/openai/openai-gemm/blob/master/LICENSE
|
1513 |
+
|
1514 |
+
License Text
|
1515 |
+
The MIT License
|
1516 |
+
|
1517 |
+
Copyright (c) 2016 OpenAI (http://openai.com), 2016 Google Inc.
|
1518 |
+
|
1519 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
1520 |
+
of this software and associated documentation files (the "Software"), to deal
|
1521 |
+
in the Software without restriction, including without limitation the rights
|
1522 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
1523 |
+
copies of the Software, and to permit persons to whom the Software is
|
1524 |
+
furnished to do so, subject to the following conditions:
|
1525 |
+
|
1526 |
+
The above copyright notice and this permission notice shall be included in
|
1527 |
+
all copies or substantial portions of the Software.
|
1528 |
+
|
1529 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
1530 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
1531 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
1532 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
1533 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
1534 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
1535 |
+
THE SOFTWARE.
|
1536 |
+
|
1537 |
+
19. Licensee's use of the Visual Studio Setup Configuration
|
1538 |
+
Samples is subject to the following license:
|
1539 |
+
|
1540 |
+
The MIT License (MIT)
|
1541 |
+
Copyright (C) Microsoft Corporation. All rights reserved.
|
1542 |
+
|
1543 |
+
Permission is hereby granted, free of charge, to any person
|
1544 |
+
obtaining a copy of this software and associated documentation
|
1545 |
+
files (the "Software"), to deal in the Software without restriction,
|
1546 |
+
including without limitation the rights to use, copy, modify, merge,
|
1547 |
+
publish, distribute, sublicense, and/or sell copies of the Software,
|
1548 |
+
and to permit persons to whom the Software is furnished to do so,
|
1549 |
+
subject to the following conditions:
|
1550 |
+
|
1551 |
+
The above copyright notice and this permission notice shall be included
|
1552 |
+
in all copies or substantial portions of the Software.
|
1553 |
+
|
1554 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
1555 |
+
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
1556 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
1557 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
1558 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
1559 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
1560 |
+
|
1561 |
+
20. Licensee's use of linmath.h header for CPU functions for
|
1562 |
+
GL vector/matrix operations from lunarG is subject to the
|
1563 |
+
Apache License Version 2.0.
|
1564 |
+
|
1565 |
+
21. The DX12-CUDA sample uses the d3dx12.h header, which is
|
1566 |
+
subject to the MIT license .
|
1567 |
+
|
1568 |
+
-----------------
|
env-llmeval/lib/python3.10/site-packages/nvidia_cuda_cupti_cu12-12.1.105.dist-info/RECORD
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
nvidia/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2 |
+
nvidia/__pycache__/__init__.cpython-310.pyc,,
|
3 |
+
nvidia/cuda_cupti/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4 |
+
nvidia/cuda_cupti/__pycache__/__init__.cpython-310.pyc,,
|
5 |
+
nvidia/cuda_cupti/include/Openacc/cupti_openacc.h,sha256=Z0OM5e_hbd3cxdXyn3SCHqBBQawLg4QORnlm57Cr2-M,3513
|
6 |
+
nvidia/cuda_cupti/include/Openmp/cupti_openmp.h,sha256=E1WNmeb_7HaUSmBegtUNe4IV1i7pXeNxgzIlyKn1zrM,3491
|
7 |
+
nvidia/cuda_cupti/include/Openmp/omp-tools.h,sha256=AmuC_xPC7VPu3B-W4PmXuCNufFawhY8PjNXePaQFAOg,37403
|
8 |
+
nvidia/cuda_cupti/include/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9 |
+
nvidia/cuda_cupti/include/__pycache__/__init__.cpython-310.pyc,,
|
10 |
+
nvidia/cuda_cupti/include/cuda_stdint.h,sha256=XbFOk9CtJjKqk7PpYNqbSVsDxAsVM8avA4rWpPi0BjQ,4093
|
11 |
+
nvidia/cuda_cupti/include/cupti.h,sha256=JkVyAGTIMYzwm62dfVqas3nMcILhgP_Wdz6fh4_NED0,4697
|
12 |
+
nvidia/cuda_cupti/include/cupti_activity.h,sha256=qVVazvOJZbDMzvbqgS8nmaHN4gaxAWO2HA_8D7-Vpiw,311866
|
13 |
+
nvidia/cuda_cupti/include/cupti_callbacks.h,sha256=-a47AoM4HoU5IuCCB_L-6lZRdrkDAC4XXLJuoUqojeY,26587
|
14 |
+
nvidia/cuda_cupti/include/cupti_checkpoint.h,sha256=rTz8JoWxqESBXyZWUhZJGm4xeYcx4OJOtJ7Ld13T_b0,5264
|
15 |
+
nvidia/cuda_cupti/include/cupti_driver_cbid.h,sha256=Uc74JDlJN_3qI04l4gkGzYbB3Ki0l0IgZILZO0WXtVs,70346
|
16 |
+
nvidia/cuda_cupti/include/cupti_events.h,sha256=oHIOKSsE5ZAot5tZK-sbS2K9xcgiXBXTZZDkPQuiaNw,52639
|
17 |
+
nvidia/cuda_cupti/include/cupti_metrics.h,sha256=iLAOlDrcbHEsIIUmgq0Tp1ZOY9O3Ot3wj2-bI8iYbSs,32148
|
18 |
+
nvidia/cuda_cupti/include/cupti_nvtx_cbid.h,sha256=_azPtR1g4qivvX7qbvHRUg0RHCWF7iEOJyHMN9qZe9E,5912
|
19 |
+
nvidia/cuda_cupti/include/cupti_pcsampling.h,sha256=uT_DtFN0Bye6ADtxfKXUAc8BcrFefotf-VtTuKQGJx0,32395
|
20 |
+
nvidia/cuda_cupti/include/cupti_pcsampling_util.h,sha256=gEiMBes3mtpDJqauxqUtfe0csY4J31qpdg2Cp8On95E,13060
|
21 |
+
nvidia/cuda_cupti/include/cupti_profiler_target.h,sha256=LWNFuYyotgGhCKY7TS48uVGxjeuOAuANWSnB8yfOfvo,31596
|
22 |
+
nvidia/cuda_cupti/include/cupti_result.h,sha256=sOBZCRuRVHvcbIyDlzyLeina5YXwIQH21rVr3FPoB6M,12026
|
23 |
+
nvidia/cuda_cupti/include/cupti_runtime_cbid.h,sha256=ZpomdRK7Fhn_NZYiiq5b3AyNZX3gznot-aX4dk-tsZI,44182
|
24 |
+
nvidia/cuda_cupti/include/cupti_target.h,sha256=x4Vz1Upb6m9ixmVpmGaKQldDWYQI3OZ-ocEXGzNK0EE,1263
|
25 |
+
nvidia/cuda_cupti/include/cupti_version.h,sha256=7XDJSIWpeJU8lrp0cOyma7dXXSGK4bdT1G8akxu8D_Q,4344
|
26 |
+
nvidia/cuda_cupti/include/generated_cudaGL_meta.h,sha256=dfd2QuaRdEjbStOKvaQLi1Md_qrpRQh8PfyZznJ8bWY,3115
|
27 |
+
nvidia/cuda_cupti/include/generated_cudaVDPAU_meta.h,sha256=fAedsoQxaU3hIAApAWDOKsa9kgcuQw4tdyf8klLm-3k,1453
|
28 |
+
nvidia/cuda_cupti/include/generated_cuda_gl_interop_meta.h,sha256=LXOqvQCej0sCgAT1LUKKYZ466EFxN4hIwf9oIhXOLF0,2250
|
29 |
+
nvidia/cuda_cupti/include/generated_cuda_meta.h,sha256=qZhsMxL-CURycqC2YkkioSDiD5pA8q22GOje2bOeviU,87152
|
30 |
+
nvidia/cuda_cupti/include/generated_cuda_runtime_api_meta.h,sha256=YCkUMRP93XtDGLEH7DOJCUuhdRcVsO1vQwF_K9AuDfI,64332
|
31 |
+
nvidia/cuda_cupti/include/generated_cuda_vdpau_interop_meta.h,sha256=8OLqWN26aEYpTWUXtbHJvA5GYhVv3ybYVOTW7yK37z8,1367
|
32 |
+
nvidia/cuda_cupti/include/generated_cudart_removed_meta.h,sha256=X3I5WXmhtsJNNlgY7coJ5vg4t11G5FRR6Xo7MboIeck,5172
|
33 |
+
nvidia/cuda_cupti/include/generated_nvtx_meta.h,sha256=YHb_RD8g3s4m8PJn7Z0wnxvUHarl7BOAX5ADr-BL3HI,7513
|
34 |
+
nvidia/cuda_cupti/include/nvperf_common.h,sha256=MMZrDvDdtG2DSS0h2B8AR1aPyt6UmeWwH-Dc_XsxaHo,10422
|
35 |
+
nvidia/cuda_cupti/include/nvperf_cuda_host.h,sha256=xEapxwvdl96uV-On-c8LY2lvwVNfIjq-rAgj9_dYbqo,8299
|
36 |
+
nvidia/cuda_cupti/include/nvperf_host.h,sha256=3mcgAEbB9uaDfWheRqC8gLlTiTggc_auV8PE9dTShx4,66289
|
37 |
+
nvidia/cuda_cupti/include/nvperf_target.h,sha256=jVR2zEO2KmMta0C-qTGuS9V6rhVyMNnRnOU4QJSiPrc,21476
|
38 |
+
nvidia/cuda_cupti/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
39 |
+
nvidia/cuda_cupti/lib/__pycache__/__init__.cpython-310.pyc,,
|
40 |
+
nvidia/cuda_cupti/lib/libcheckpoint.so,sha256=Fib_EZWCvKRmBbxtSXaat1MUuZk91ke9ZKkN7HR7yEM,1534104
|
41 |
+
nvidia/cuda_cupti/lib/libcupti.so.12,sha256=q8YxAOnPUWuO0folNUrlPb_o30g4rFJdjXODMsIZjcI,7419504
|
42 |
+
nvidia/cuda_cupti/lib/libnvperf_host.so,sha256=lc7EKudwwfIlHSBLA-EtVv2y5VYeSJjAe0A4L-JHRYk,28636664
|
43 |
+
nvidia/cuda_cupti/lib/libnvperf_target.so,sha256=-iWHyNIR-8hei4jMoLzr54yMxAyBsMN2POV6yeY_Bmk,5895416
|
44 |
+
nvidia/cuda_cupti/lib/libpcsamplingutil.so,sha256=XGCctMdV5khc1HtLdK_imh8aepM88GJz0q6CcPJtb3k,912728
|
45 |
+
nvidia_cuda_cupti_cu12-12.1.105.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
46 |
+
nvidia_cuda_cupti_cu12-12.1.105.dist-info/License.txt,sha256=rW9YU_ugyg0VnQ9Y1JrkmDDC-Mk_epJki5zpCttMbM0,59262
|
47 |
+
nvidia_cuda_cupti_cu12-12.1.105.dist-info/METADATA,sha256=xrOx7eliZP6--5Pla2AJW0e8XI3H0XDb9ZEN7DXghPs,1553
|
48 |
+
nvidia_cuda_cupti_cu12-12.1.105.dist-info/RECORD,,
|
49 |
+
nvidia_cuda_cupti_cu12-12.1.105.dist-info/WHEEL,sha256=-kQi_VMfvRQozZJT7HUPMfY-5vLo0LVTmAylNJ3Ft98,106
|
50 |
+
nvidia_cuda_cupti_cu12-12.1.105.dist-info/top_level.txt,sha256=fTkAtiFuL16nUrB9ytDDtpytz2t0B4NvYTnRzwAhO14,7
|
env-llmeval/lib/python3.10/site-packages/nvidia_cuda_cupti_cu12-12.1.105.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.37.1)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-manylinux1_x86_64
|
5 |
+
|
env-llmeval/lib/python3.10/site-packages/nvidia_cuda_cupti_cu12-12.1.105.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
nvidia
|
env-llmeval/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
env-llmeval/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/License.txt
ADDED
@@ -0,0 +1,1568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
End User License Agreement
|
2 |
+
--------------------------
|
3 |
+
|
4 |
+
|
5 |
+
Preface
|
6 |
+
-------
|
7 |
+
|
8 |
+
The Software License Agreement in Chapter 1 and the Supplement
|
9 |
+
in Chapter 2 contain license terms and conditions that govern
|
10 |
+
the use of NVIDIA software. By accepting this agreement, you
|
11 |
+
agree to comply with all the terms and conditions applicable
|
12 |
+
to the product(s) included herein.
|
13 |
+
|
14 |
+
|
15 |
+
NVIDIA Driver
|
16 |
+
|
17 |
+
|
18 |
+
Description
|
19 |
+
|
20 |
+
This package contains the operating system driver and
|
21 |
+
fundamental system software components for NVIDIA GPUs.
|
22 |
+
|
23 |
+
|
24 |
+
NVIDIA CUDA Toolkit
|
25 |
+
|
26 |
+
|
27 |
+
Description
|
28 |
+
|
29 |
+
The NVIDIA CUDA Toolkit provides command-line and graphical
|
30 |
+
tools for building, debugging and optimizing the performance
|
31 |
+
of applications accelerated by NVIDIA GPUs, runtime and math
|
32 |
+
libraries, and documentation including programming guides,
|
33 |
+
user manuals, and API references.
|
34 |
+
|
35 |
+
|
36 |
+
Default Install Location of CUDA Toolkit
|
37 |
+
|
38 |
+
Windows platform:
|
39 |
+
|
40 |
+
%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v#.#
|
41 |
+
|
42 |
+
Linux platform:
|
43 |
+
|
44 |
+
/usr/local/cuda-#.#
|
45 |
+
|
46 |
+
Mac platform:
|
47 |
+
|
48 |
+
/Developer/NVIDIA/CUDA-#.#
|
49 |
+
|
50 |
+
|
51 |
+
NVIDIA CUDA Samples
|
52 |
+
|
53 |
+
|
54 |
+
Description
|
55 |
+
|
56 |
+
This package includes over 100+ CUDA examples that demonstrate
|
57 |
+
various CUDA programming principles, and efficient CUDA
|
58 |
+
implementation of algorithms in specific application domains.
|
59 |
+
|
60 |
+
|
61 |
+
Default Install Location of CUDA Samples
|
62 |
+
|
63 |
+
Windows platform:
|
64 |
+
|
65 |
+
%ProgramData%\NVIDIA Corporation\CUDA Samples\v#.#
|
66 |
+
|
67 |
+
Linux platform:
|
68 |
+
|
69 |
+
/usr/local/cuda-#.#/samples
|
70 |
+
|
71 |
+
and
|
72 |
+
|
73 |
+
$HOME/NVIDIA_CUDA-#.#_Samples
|
74 |
+
|
75 |
+
Mac platform:
|
76 |
+
|
77 |
+
/Developer/NVIDIA/CUDA-#.#/samples
|
78 |
+
|
79 |
+
|
80 |
+
NVIDIA Nsight Visual Studio Edition (Windows only)
|
81 |
+
|
82 |
+
|
83 |
+
Description
|
84 |
+
|
85 |
+
NVIDIA Nsight Development Platform, Visual Studio Edition is a
|
86 |
+
development environment integrated into Microsoft Visual
|
87 |
+
Studio that provides tools for debugging, profiling, analyzing
|
88 |
+
and optimizing your GPU computing and graphics applications.
|
89 |
+
|
90 |
+
|
91 |
+
Default Install Location of Nsight Visual Studio Edition
|
92 |
+
|
93 |
+
Windows platform:
|
94 |
+
|
95 |
+
%ProgramFiles(x86)%\NVIDIA Corporation\Nsight Visual Studio Edition #.#
|
96 |
+
|
97 |
+
|
98 |
+
1. License Agreement for NVIDIA Software Development Kits
|
99 |
+
---------------------------------------------------------
|
100 |
+
|
101 |
+
|
102 |
+
Release Date: July 26, 2018
|
103 |
+
---------------------------
|
104 |
+
|
105 |
+
|
106 |
+
Important NoticeRead before downloading, installing,
|
107 |
+
copying or using the licensed software:
|
108 |
+
-------------------------------------------------------
|
109 |
+
|
110 |
+
This license agreement, including exhibits attached
|
111 |
+
("Agreement”) is a legal agreement between you and NVIDIA
|
112 |
+
Corporation ("NVIDIA") and governs your use of a NVIDIA
|
113 |
+
software development kit (“SDK”).
|
114 |
+
|
115 |
+
Each SDK has its own set of software and materials, but here
|
116 |
+
is a description of the types of items that may be included in
|
117 |
+
a SDK: source code, header files, APIs, data sets and assets
|
118 |
+
(examples include images, textures, models, scenes, videos,
|
119 |
+
native API input/output files), binary software, sample code,
|
120 |
+
libraries, utility programs, programming code and
|
121 |
+
documentation.
|
122 |
+
|
123 |
+
This Agreement can be accepted only by an adult of legal age
|
124 |
+
of majority in the country in which the SDK is used.
|
125 |
+
|
126 |
+
If you are entering into this Agreement on behalf of a company
|
127 |
+
or other legal entity, you represent that you have the legal
|
128 |
+
authority to bind the entity to this Agreement, in which case
|
129 |
+
“you” will mean the entity you represent.
|
130 |
+
|
131 |
+
If you don’t have the required age or authority to accept
|
132 |
+
this Agreement, or if you don’t accept all the terms and
|
133 |
+
conditions of this Agreement, do not download, install or use
|
134 |
+
the SDK.
|
135 |
+
|
136 |
+
You agree to use the SDK only for purposes that are permitted
|
137 |
+
by (a) this Agreement, and (b) any applicable law, regulation
|
138 |
+
or generally accepted practices or guidelines in the relevant
|
139 |
+
jurisdictions.
|
140 |
+
|
141 |
+
|
142 |
+
1.1. License
|
143 |
+
|
144 |
+
|
145 |
+
1.1.1. License Grant
|
146 |
+
|
147 |
+
Subject to the terms of this Agreement, NVIDIA hereby grants
|
148 |
+
you a non-exclusive, non-transferable license, without the
|
149 |
+
right to sublicense (except as expressly provided in this
|
150 |
+
Agreement) to:
|
151 |
+
|
152 |
+
1. Install and use the SDK,
|
153 |
+
|
154 |
+
2. Modify and create derivative works of sample source code
|
155 |
+
delivered in the SDK, and
|
156 |
+
|
157 |
+
3. Distribute those portions of the SDK that are identified
|
158 |
+
in this Agreement as distributable, as incorporated in
|
159 |
+
object code format into a software application that meets
|
160 |
+
the distribution requirements indicated in this Agreement.
|
161 |
+
|
162 |
+
|
163 |
+
1.1.2. Distribution Requirements
|
164 |
+
|
165 |
+
These are the distribution requirements for you to exercise
|
166 |
+
the distribution grant:
|
167 |
+
|
168 |
+
1. Your application must have material additional
|
169 |
+
functionality, beyond the included portions of the SDK.
|
170 |
+
|
171 |
+
2. The distributable portions of the SDK shall only be
|
172 |
+
accessed by your application.
|
173 |
+
|
174 |
+
3. The following notice shall be included in modifications
|
175 |
+
and derivative works of sample source code distributed:
|
176 |
+
“This software contains source code provided by NVIDIA
|
177 |
+
Corporation.”
|
178 |
+
|
179 |
+
4. Unless a developer tool is identified in this Agreement
|
180 |
+
as distributable, it is delivered for your internal use
|
181 |
+
only.
|
182 |
+
|
183 |
+
5. The terms under which you distribute your application
|
184 |
+
must be consistent with the terms of this Agreement,
|
185 |
+
including (without limitation) terms relating to the
|
186 |
+
license grant and license restrictions and protection of
|
187 |
+
NVIDIA’s intellectual property rights. Additionally, you
|
188 |
+
agree that you will protect the privacy, security and
|
189 |
+
legal rights of your application users.
|
190 |
+
|
191 |
+
6. You agree to notify NVIDIA in writing of any known or
|
192 |
+
suspected distribution or use of the SDK not in compliance
|
193 |
+
with the requirements of this Agreement, and to enforce
|
194 |
+
the terms of your agreements with respect to distributed
|
195 |
+
SDK.
|
196 |
+
|
197 |
+
|
198 |
+
1.1.3. Authorized Users
|
199 |
+
|
200 |
+
You may allow employees and contractors of your entity or of
|
201 |
+
your subsidiary(ies) to access and use the SDK from your
|
202 |
+
secure network to perform work on your behalf.
|
203 |
+
|
204 |
+
If you are an academic institution you may allow users
|
205 |
+
enrolled or employed by the academic institution to access and
|
206 |
+
use the SDK from your secure network.
|
207 |
+
|
208 |
+
You are responsible for the compliance with the terms of this
|
209 |
+
Agreement by your authorized users. If you become aware that
|
210 |
+
your authorized users didn’t follow the terms of this
|
211 |
+
Agreement, you agree to take reasonable steps to resolve the
|
212 |
+
non-compliance and prevent new occurrences.
|
213 |
+
|
214 |
+
|
215 |
+
1.1.4. Pre-Release SDK
|
216 |
+
|
217 |
+
The SDK versions identified as alpha, beta, preview or
|
218 |
+
otherwise as pre-release, may not be fully functional, may
|
219 |
+
contain errors or design flaws, and may have reduced or
|
220 |
+
different security, privacy, accessibility, availability, and
|
221 |
+
reliability standards relative to commercial versions of
|
222 |
+
NVIDIA software and materials. Use of a pre-release SDK may
|
223 |
+
result in unexpected results, loss of data, project delays or
|
224 |
+
other unpredictable damage or loss.
|
225 |
+
|
226 |
+
You may use a pre-release SDK at your own risk, understanding
|
227 |
+
that pre-release SDKs are not intended for use in production
|
228 |
+
or business-critical systems.
|
229 |
+
|
230 |
+
NVIDIA may choose not to make available a commercial version
|
231 |
+
of any pre-release SDK. NVIDIA may also choose to abandon
|
232 |
+
development and terminate the availability of a pre-release
|
233 |
+
SDK at any time without liability.
|
234 |
+
|
235 |
+
|
236 |
+
1.1.5. Updates
|
237 |
+
|
238 |
+
NVIDIA may, at its option, make available patches, workarounds
|
239 |
+
or other updates to this SDK. Unless the updates are provided
|
240 |
+
with their separate governing terms, they are deemed part of
|
241 |
+
the SDK licensed to you as provided in this Agreement. You
|
242 |
+
agree that the form and content of the SDK that NVIDIA
|
243 |
+
provides may change without prior notice to you. While NVIDIA
|
244 |
+
generally maintains compatibility between versions, NVIDIA may
|
245 |
+
in some cases make changes that introduce incompatibilities in
|
246 |
+
future versions of the SDK.
|
247 |
+
|
248 |
+
|
249 |
+
1.1.6. Third Party Licenses
|
250 |
+
|
251 |
+
The SDK may come bundled with, or otherwise include or be
|
252 |
+
distributed with, third party software licensed by a NVIDIA
|
253 |
+
supplier and/or open source software provided under an open
|
254 |
+
source license. Use of third party software is subject to the
|
255 |
+
third-party license terms, or in the absence of third party
|
256 |
+
terms, the terms of this Agreement. Copyright to third party
|
257 |
+
software is held by the copyright holders indicated in the
|
258 |
+
third-party software or license.
|
259 |
+
|
260 |
+
|
261 |
+
1.1.7. Reservation of Rights
|
262 |
+
|
263 |
+
NVIDIA reserves all rights, title, and interest in and to the
|
264 |
+
SDK, not expressly granted to you under this Agreement.
|
265 |
+
|
266 |
+
|
267 |
+
1.2. Limitations
|
268 |
+
|
269 |
+
The following license limitations apply to your use of the
|
270 |
+
SDK:
|
271 |
+
|
272 |
+
1. You may not reverse engineer, decompile or disassemble,
|
273 |
+
or remove copyright or other proprietary notices from any
|
274 |
+
portion of the SDK or copies of the SDK.
|
275 |
+
|
276 |
+
2. Except as expressly provided in this Agreement, you may
|
277 |
+
not copy, sell, rent, sublicense, transfer, distribute,
|
278 |
+
modify, or create derivative works of any portion of the
|
279 |
+
SDK. For clarity, you may not distribute or sublicense the
|
280 |
+
SDK as a stand-alone product.
|
281 |
+
|
282 |
+
3. Unless you have an agreement with NVIDIA for this
|
283 |
+
purpose, you may not indicate that an application created
|
284 |
+
with the SDK is sponsored or endorsed by NVIDIA.
|
285 |
+
|
286 |
+
4. You may not bypass, disable, or circumvent any
|
287 |
+
encryption, security, digital rights management or
|
288 |
+
authentication mechanism in the SDK.
|
289 |
+
|
290 |
+
5. You may not use the SDK in any manner that would cause it
|
291 |
+
to become subject to an open source software license. As
|
292 |
+
examples, licenses that require as a condition of use,
|
293 |
+
modification, and/or distribution that the SDK be:
|
294 |
+
|
295 |
+
a. Disclosed or distributed in source code form;
|
296 |
+
|
297 |
+
b. Licensed for the purpose of making derivative works;
|
298 |
+
or
|
299 |
+
|
300 |
+
c. Redistributable at no charge.
|
301 |
+
|
302 |
+
6. Unless you have an agreement with NVIDIA for this
|
303 |
+
purpose, you may not use the SDK with any system or
|
304 |
+
application where the use or failure of the system or
|
305 |
+
application can reasonably be expected to threaten or
|
306 |
+
result in personal injury, death, or catastrophic loss.
|
307 |
+
Examples include use in avionics, navigation, military,
|
308 |
+
medical, life support or other life critical applications.
|
309 |
+
NVIDIA does not design, test or manufacture the SDK for
|
310 |
+
these critical uses and NVIDIA shall not be liable to you
|
311 |
+
or any third party, in whole or in part, for any claims or
|
312 |
+
damages arising from such uses.
|
313 |
+
|
314 |
+
7. You agree to defend, indemnify and hold harmless NVIDIA
|
315 |
+
and its affiliates, and their respective employees,
|
316 |
+
contractors, agents, officers and directors, from and
|
317 |
+
against any and all claims, damages, obligations, losses,
|
318 |
+
liabilities, costs or debt, fines, restitutions and
|
319 |
+
expenses (including but not limited to attorney’s fees
|
320 |
+
and costs incident to establishing the right of
|
321 |
+
indemnification) arising out of or related to your use of
|
322 |
+
the SDK outside of the scope of this Agreement, or not in
|
323 |
+
compliance with its terms.
|
324 |
+
|
325 |
+
|
326 |
+
1.3. Ownership
|
327 |
+
|
328 |
+
1. NVIDIA or its licensors hold all rights, title and
|
329 |
+
interest in and to the SDK and its modifications and
|
330 |
+
derivative works, including their respective intellectual
|
331 |
+
property rights, subject to your rights described in this
|
332 |
+
section. This SDK may include software and materials from
|
333 |
+
NVIDIA’s licensors, and these licensors are intended
|
334 |
+
third party beneficiaries that may enforce this Agreement
|
335 |
+
with respect to their intellectual property rights.
|
336 |
+
|
337 |
+
2. You hold all rights, title and interest in and to your
|
338 |
+
applications and your derivative works of the sample
|
339 |
+
source code delivered in the SDK, including their
|
340 |
+
respective intellectual property rights, subject to
|
341 |
+
NVIDIA’s rights described in this section.
|
342 |
+
|
343 |
+
3. You may, but don’t have to, provide to NVIDIA
|
344 |
+
suggestions, feature requests or other feedback regarding
|
345 |
+
the SDK, including possible enhancements or modifications
|
346 |
+
to the SDK. For any feedback that you voluntarily provide,
|
347 |
+
you hereby grant NVIDIA and its affiliates a perpetual,
|
348 |
+
non-exclusive, worldwide, irrevocable license to use,
|
349 |
+
reproduce, modify, license, sublicense (through multiple
|
350 |
+
tiers of sublicensees), and distribute (through multiple
|
351 |
+
tiers of distributors) it without the payment of any
|
352 |
+
royalties or fees to you. NVIDIA will use feedback at its
|
353 |
+
choice. NVIDIA is constantly looking for ways to improve
|
354 |
+
its products, so you may send feedback to NVIDIA through
|
355 |
+
the developer portal at https://developer.nvidia.com.
|
356 |
+
|
357 |
+
|
358 |
+
1.4. No Warranties
|
359 |
+
|
360 |
+
THE SDK IS PROVIDED BY NVIDIA “AS IS” AND “WITH ALL
|
361 |
+
FAULTS.” TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND
|
362 |
+
ITS AFFILIATES EXPRESSLY DISCLAIM ALL WARRANTIES OF ANY KIND
|
363 |
+
OR NATURE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
|
364 |
+
BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
|
365 |
+
FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, OR THE
|
366 |
+
ABSENCE OF ANY DEFECTS THEREIN, WHETHER LATENT OR PATENT. NO
|
367 |
+
WARRANTY IS MADE ON THE BASIS OF TRADE USAGE, COURSE OF
|
368 |
+
DEALING OR COURSE OF TRADE.
|
369 |
+
|
370 |
+
|
371 |
+
1.5. Limitation of Liability
|
372 |
+
|
373 |
+
TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND ITS
|
374 |
+
AFFILIATES SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
|
375 |
+
PUNITIVE OR CONSEQUENTIAL DAMAGES, OR ANY LOST PROFITS, LOSS
|
376 |
+
OF USE, LOSS OF DATA OR LOSS OF GOODWILL, OR THE COSTS OF
|
377 |
+
PROCURING SUBSTITUTE PRODUCTS, ARISING OUT OF OR IN CONNECTION
|
378 |
+
WITH THIS AGREEMENT OR THE USE OR PERFORMANCE OF THE SDK,
|
379 |
+
WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON BREACH
|
380 |
+
OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE),
|
381 |
+
PRODUCT LIABILITY OR ANY OTHER CAUSE OF ACTION OR THEORY OF
|
382 |
+
LIABILITY. IN NO EVENT WILL NVIDIA’S AND ITS AFFILIATES
|
383 |
+
TOTAL CUMULATIVE LIABILITY UNDER OR ARISING OUT OF THIS
|
384 |
+
AGREEMENT EXCEED US$10.00. THE NATURE OF THE LIABILITY OR THE
|
385 |
+
NUMBER OF CLAIMS OR SUITS SHALL NOT ENLARGE OR EXTEND THIS
|
386 |
+
LIMIT.
|
387 |
+
|
388 |
+
These exclusions and limitations of liability shall apply
|
389 |
+
regardless if NVIDIA or its affiliates have been advised of
|
390 |
+
the possibility of such damages, and regardless of whether a
|
391 |
+
remedy fails its essential purpose. These exclusions and
|
392 |
+
limitations of liability form an essential basis of the
|
393 |
+
bargain between the parties, and, absent any of these
|
394 |
+
exclusions or limitations of liability, the provisions of this
|
395 |
+
Agreement, including, without limitation, the economic terms,
|
396 |
+
would be substantially different.
|
397 |
+
|
398 |
+
|
399 |
+
1.6. Termination
|
400 |
+
|
401 |
+
1. This Agreement will continue to apply until terminated by
|
402 |
+
either you or NVIDIA as described below.
|
403 |
+
|
404 |
+
2. If you want to terminate this Agreement, you may do so by
|
405 |
+
stopping to use the SDK.
|
406 |
+
|
407 |
+
3. NVIDIA may, at any time, terminate this Agreement if:
|
408 |
+
|
409 |
+
a. (i) you fail to comply with any term of this
|
410 |
+
Agreement and the non-compliance is not fixed within
|
411 |
+
thirty (30) days following notice from NVIDIA (or
|
412 |
+
immediately if you violate NVIDIA’s intellectual
|
413 |
+
property rights);
|
414 |
+
|
415 |
+
b. (ii) you commence or participate in any legal
|
416 |
+
proceeding against NVIDIA with respect to the SDK; or
|
417 |
+
|
418 |
+
c. (iii) NVIDIA decides to no longer provide the SDK in
|
419 |
+
a country or, in NVIDIA’s sole discretion, the
|
420 |
+
continued use of it is no longer commercially viable.
|
421 |
+
|
422 |
+
4. Upon any termination of this Agreement, you agree to
|
423 |
+
promptly discontinue use of the SDK and destroy all copies
|
424 |
+
in your possession or control. Your prior distributions in
|
425 |
+
accordance with this Agreement are not affected by the
|
426 |
+
termination of this Agreement. Upon written request, you
|
427 |
+
will certify in writing that you have complied with your
|
428 |
+
commitments under this section. Upon any termination of
|
429 |
+
this Agreement all provisions survive except for the
|
430 |
+
license grant provisions.
|
431 |
+
|
432 |
+
|
433 |
+
1.7. General
|
434 |
+
|
435 |
+
If you wish to assign this Agreement or your rights and
|
436 |
+
obligations, including by merger, consolidation, dissolution
|
437 |
+
or operation of law, contact NVIDIA to ask for permission. Any
|
438 |
+
attempted assignment not approved by NVIDIA in writing shall
|
439 |
+
be void and of no effect. NVIDIA may assign, delegate or
|
440 |
+
transfer this Agreement and its rights and obligations, and if
|
441 |
+
to a non-affiliate you will be notified.
|
442 |
+
|
443 |
+
You agree to cooperate with NVIDIA and provide reasonably
|
444 |
+
requested information to verify your compliance with this
|
445 |
+
Agreement.
|
446 |
+
|
447 |
+
This Agreement will be governed in all respects by the laws of
|
448 |
+
the United States and of the State of Delaware as those laws
|
449 |
+
are applied to contracts entered into and performed entirely
|
450 |
+
within Delaware by Delaware residents, without regard to the
|
451 |
+
conflicts of laws principles. The United Nations Convention on
|
452 |
+
Contracts for the International Sale of Goods is specifically
|
453 |
+
disclaimed. You agree to all terms of this Agreement in the
|
454 |
+
English language.
|
455 |
+
|
456 |
+
The state or federal courts residing in Santa Clara County,
|
457 |
+
California shall have exclusive jurisdiction over any dispute
|
458 |
+
or claim arising out of this Agreement. Notwithstanding this,
|
459 |
+
you agree that NVIDIA shall still be allowed to apply for
|
460 |
+
injunctive remedies or an equivalent type of urgent legal
|
461 |
+
relief in any jurisdiction.
|
462 |
+
|
463 |
+
If any court of competent jurisdiction determines that any
|
464 |
+
provision of this Agreement is illegal, invalid or
|
465 |
+
unenforceable, such provision will be construed as limited to
|
466 |
+
the extent necessary to be consistent with and fully
|
467 |
+
enforceable under the law and the remaining provisions will
|
468 |
+
remain in full force and effect. Unless otherwise specified,
|
469 |
+
remedies are cumulative.
|
470 |
+
|
471 |
+
Each party acknowledges and agrees that the other is an
|
472 |
+
independent contractor in the performance of this Agreement.
|
473 |
+
|
474 |
+
The SDK has been developed entirely at private expense and is
|
475 |
+
“commercial items” consisting of “commercial computer
|
476 |
+
software” and “commercial computer software
|
477 |
+
documentation” provided with RESTRICTED RIGHTS. Use,
|
478 |
+
duplication or disclosure by the U.S. Government or a U.S.
|
479 |
+
Government subcontractor is subject to the restrictions in
|
480 |
+
this Agreement pursuant to DFARS 227.7202-3(a) or as set forth
|
481 |
+
in subparagraphs (c)(1) and (2) of the Commercial Computer
|
482 |
+
Software - Restricted Rights clause at FAR 52.227-19, as
|
483 |
+
applicable. Contractor/manufacturer is NVIDIA, 2788 San Tomas
|
484 |
+
Expressway, Santa Clara, CA 95051.
|
485 |
+
|
486 |
+
The SDK is subject to United States export laws and
|
487 |
+
regulations. You agree that you will not ship, transfer or
|
488 |
+
export the SDK into any country, or use the SDK in any manner,
|
489 |
+
prohibited by the United States Bureau of Industry and
|
490 |
+
Security or economic sanctions regulations administered by the
|
491 |
+
U.S. Department of Treasury’s Office of Foreign Assets
|
492 |
+
Control (OFAC), or any applicable export laws, restrictions or
|
493 |
+
regulations. These laws include restrictions on destinations,
|
494 |
+
end users and end use. By accepting this Agreement, you
|
495 |
+
confirm that you are not a resident or citizen of any country
|
496 |
+
currently embargoed by the U.S. and that you are not otherwise
|
497 |
+
prohibited from receiving the SDK.
|
498 |
+
|
499 |
+
Any notice delivered by NVIDIA to you under this Agreement
|
500 |
+
will be delivered via mail, email or fax. You agree that any
|
501 |
+
notices that NVIDIA sends you electronically will satisfy any
|
502 |
+
legal communication requirements. Please direct your legal
|
503 |
+
notices or other correspondence to NVIDIA Corporation, 2788
|
504 |
+
San Tomas Expressway, Santa Clara, California 95051, United
|
505 |
+
States of America, Attention: Legal Department.
|
506 |
+
|
507 |
+
This Agreement and any exhibits incorporated into this
|
508 |
+
Agreement constitute the entire agreement of the parties with
|
509 |
+
respect to the subject matter of this Agreement and supersede
|
510 |
+
all prior negotiations or documentation exchanged between the
|
511 |
+
parties relating to this SDK license. Any additional and/or
|
512 |
+
conflicting terms on documents issued by you are null, void,
|
513 |
+
and invalid. Any amendment or waiver under this Agreement
|
514 |
+
shall be in writing and signed by representatives of both
|
515 |
+
parties.
|
516 |
+
|
517 |
+
|
518 |
+
2. CUDA Toolkit Supplement to Software License Agreement for
|
519 |
+
NVIDIA Software Development Kits
|
520 |
+
------------------------------------------------------------
|
521 |
+
|
522 |
+
|
523 |
+
Release date: August 16, 2018
|
524 |
+
-----------------------------
|
525 |
+
|
526 |
+
The terms in this supplement govern your use of the NVIDIA
|
527 |
+
CUDA Toolkit SDK under the terms of your license agreement
|
528 |
+
(“Agreement”) as modified by this supplement. Capitalized
|
529 |
+
terms used but not defined below have the meaning assigned to
|
530 |
+
them in the Agreement.
|
531 |
+
|
532 |
+
This supplement is an exhibit to the Agreement and is
|
533 |
+
incorporated as an integral part of the Agreement. In the
|
534 |
+
event of conflict between the terms in this supplement and the
|
535 |
+
terms in the Agreement, the terms in this supplement govern.
|
536 |
+
|
537 |
+
|
538 |
+
2.1. License Scope
|
539 |
+
|
540 |
+
The SDK is licensed for you to develop applications only for
|
541 |
+
use in systems with NVIDIA GPUs.
|
542 |
+
|
543 |
+
|
544 |
+
2.2. Distribution
|
545 |
+
|
546 |
+
The portions of the SDK that are distributable under the
|
547 |
+
Agreement are listed in Attachment A.
|
548 |
+
|
549 |
+
|
550 |
+
2.3. Operating Systems
|
551 |
+
|
552 |
+
Those portions of the SDK designed exclusively for use on the
|
553 |
+
Linux or FreeBSD operating systems, or other operating systems
|
554 |
+
derived from the source code to these operating systems, may
|
555 |
+
be copied and redistributed for use in accordance with this
|
556 |
+
Agreement, provided that the object code files are not
|
557 |
+
modified in any way (except for unzipping of compressed
|
558 |
+
files).
|
559 |
+
|
560 |
+
|
561 |
+
2.4. Audio and Video Encoders and Decoders
|
562 |
+
|
563 |
+
You acknowledge and agree that it is your sole responsibility
|
564 |
+
to obtain any additional third-party licenses required to
|
565 |
+
make, have made, use, have used, sell, import, and offer for
|
566 |
+
sale your products or services that include or incorporate any
|
567 |
+
third-party software and content relating to audio and/or
|
568 |
+
video encoders and decoders from, including but not limited
|
569 |
+
to, Microsoft, Thomson, Fraunhofer IIS, Sisvel S.p.A.,
|
570 |
+
MPEG-LA, and Coding Technologies. NVIDIA does not grant to you
|
571 |
+
under this Agreement any necessary patent or other rights with
|
572 |
+
respect to any audio and/or video encoders and decoders.
|
573 |
+
|
574 |
+
|
575 |
+
2.5. Licensing
|
576 |
+
|
577 |
+
If the distribution terms in this Agreement are not suitable
|
578 |
+
for your organization, or for any questions regarding this
|
579 |
+
Agreement, please contact NVIDIA at
|
580 | |
581 |
+
|
582 |
+
|
583 |
+
2.6. Attachment A
|
584 |
+
|
585 |
+
The following portions of the SDK are distributable under the
|
586 |
+
Agreement:
|
587 |
+
|
588 |
+
Component
|
589 |
+
|
590 |
+
CUDA Runtime
|
591 |
+
|
592 |
+
Windows
|
593 |
+
|
594 |
+
cudart.dll, cudart_static.lib, cudadevrt.lib
|
595 |
+
|
596 |
+
Mac OSX
|
597 |
+
|
598 |
+
libcudart.dylib, libcudart_static.a, libcudadevrt.a
|
599 |
+
|
600 |
+
Linux
|
601 |
+
|
602 |
+
libcudart.so, libcudart_static.a, libcudadevrt.a
|
603 |
+
|
604 |
+
Android
|
605 |
+
|
606 |
+
libcudart.so, libcudart_static.a, libcudadevrt.a
|
607 |
+
|
608 |
+
Component
|
609 |
+
|
610 |
+
CUDA FFT Library
|
611 |
+
|
612 |
+
Windows
|
613 |
+
|
614 |
+
cufft.dll, cufftw.dll, cufft.lib, cufftw.lib
|
615 |
+
|
616 |
+
Mac OSX
|
617 |
+
|
618 |
+
libcufft.dylib, libcufft_static.a, libcufftw.dylib,
|
619 |
+
libcufftw_static.a
|
620 |
+
|
621 |
+
Linux
|
622 |
+
|
623 |
+
libcufft.so, libcufft_static.a, libcufftw.so,
|
624 |
+
libcufftw_static.a
|
625 |
+
|
626 |
+
Android
|
627 |
+
|
628 |
+
libcufft.so, libcufft_static.a, libcufftw.so,
|
629 |
+
libcufftw_static.a
|
630 |
+
|
631 |
+
Component
|
632 |
+
|
633 |
+
CUDA BLAS Library
|
634 |
+
|
635 |
+
Windows
|
636 |
+
|
637 |
+
cublas.dll, cublasLt.dll
|
638 |
+
|
639 |
+
Mac OSX
|
640 |
+
|
641 |
+
libcublas.dylib, libcublasLt.dylib, libcublas_static.a,
|
642 |
+
libcublasLt_static.a
|
643 |
+
|
644 |
+
Linux
|
645 |
+
|
646 |
+
libcublas.so, libcublasLt.so, libcublas_static.a,
|
647 |
+
libcublasLt_static.a
|
648 |
+
|
649 |
+
Android
|
650 |
+
|
651 |
+
libcublas.so, libcublasLt.so, libcublas_static.a,
|
652 |
+
libcublasLt_static.a
|
653 |
+
|
654 |
+
Component
|
655 |
+
|
656 |
+
NVIDIA "Drop-in" BLAS Library
|
657 |
+
|
658 |
+
Windows
|
659 |
+
|
660 |
+
nvblas.dll
|
661 |
+
|
662 |
+
Mac OSX
|
663 |
+
|
664 |
+
libnvblas.dylib
|
665 |
+
|
666 |
+
Linux
|
667 |
+
|
668 |
+
libnvblas.so
|
669 |
+
|
670 |
+
Component
|
671 |
+
|
672 |
+
CUDA Sparse Matrix Library
|
673 |
+
|
674 |
+
Windows
|
675 |
+
|
676 |
+
cusparse.dll, cusparse.lib
|
677 |
+
|
678 |
+
Mac OSX
|
679 |
+
|
680 |
+
libcusparse.dylib, libcusparse_static.a
|
681 |
+
|
682 |
+
Linux
|
683 |
+
|
684 |
+
libcusparse.so, libcusparse_static.a
|
685 |
+
|
686 |
+
Android
|
687 |
+
|
688 |
+
libcusparse.so, libcusparse_static.a
|
689 |
+
|
690 |
+
Component
|
691 |
+
|
692 |
+
CUDA Linear Solver Library
|
693 |
+
|
694 |
+
Windows
|
695 |
+
|
696 |
+
cusolver.dll, cusolver.lib
|
697 |
+
|
698 |
+
Mac OSX
|
699 |
+
|
700 |
+
libcusolver.dylib, libcusolver_static.a
|
701 |
+
|
702 |
+
Linux
|
703 |
+
|
704 |
+
libcusolver.so, libcusolver_static.a
|
705 |
+
|
706 |
+
Android
|
707 |
+
|
708 |
+
libcusolver.so, libcusolver_static.a
|
709 |
+
|
710 |
+
Component
|
711 |
+
|
712 |
+
CUDA Random Number Generation Library
|
713 |
+
|
714 |
+
Windows
|
715 |
+
|
716 |
+
curand.dll, curand.lib
|
717 |
+
|
718 |
+
Mac OSX
|
719 |
+
|
720 |
+
libcurand.dylib, libcurand_static.a
|
721 |
+
|
722 |
+
Linux
|
723 |
+
|
724 |
+
libcurand.so, libcurand_static.a
|
725 |
+
|
726 |
+
Android
|
727 |
+
|
728 |
+
libcurand.so, libcurand_static.a
|
729 |
+
|
730 |
+
Component
|
731 |
+
|
732 |
+
CUDA Accelerated Graph Library
|
733 |
+
|
734 |
+
Component
|
735 |
+
|
736 |
+
NVIDIA Performance Primitives Library
|
737 |
+
|
738 |
+
Windows
|
739 |
+
|
740 |
+
nppc.dll, nppc.lib, nppial.dll, nppial.lib, nppicc.dll,
|
741 |
+
nppicc.lib, nppicom.dll, nppicom.lib, nppidei.dll,
|
742 |
+
nppidei.lib, nppif.dll, nppif.lib, nppig.dll, nppig.lib,
|
743 |
+
nppim.dll, nppim.lib, nppist.dll, nppist.lib, nppisu.dll,
|
744 |
+
nppisu.lib, nppitc.dll, nppitc.lib, npps.dll, npps.lib
|
745 |
+
|
746 |
+
Mac OSX
|
747 |
+
|
748 |
+
libnppc.dylib, libnppc_static.a, libnppial.dylib,
|
749 |
+
libnppial_static.a, libnppicc.dylib, libnppicc_static.a,
|
750 |
+
libnppicom.dylib, libnppicom_static.a, libnppidei.dylib,
|
751 |
+
libnppidei_static.a, libnppif.dylib, libnppif_static.a,
|
752 |
+
libnppig.dylib, libnppig_static.a, libnppim.dylib,
|
753 |
+
libnppisu_static.a, libnppitc.dylib, libnppitc_static.a,
|
754 |
+
libnpps.dylib, libnpps_static.a
|
755 |
+
|
756 |
+
Linux
|
757 |
+
|
758 |
+
libnppc.so, libnppc_static.a, libnppial.so,
|
759 |
+
libnppial_static.a, libnppicc.so, libnppicc_static.a,
|
760 |
+
libnppicom.so, libnppicom_static.a, libnppidei.so,
|
761 |
+
libnppidei_static.a, libnppif.so, libnppif_static.a
|
762 |
+
libnppig.so, libnppig_static.a, libnppim.so,
|
763 |
+
libnppim_static.a, libnppist.so, libnppist_static.a,
|
764 |
+
libnppisu.so, libnppisu_static.a, libnppitc.so
|
765 |
+
libnppitc_static.a, libnpps.so, libnpps_static.a
|
766 |
+
|
767 |
+
Android
|
768 |
+
|
769 |
+
libnppc.so, libnppc_static.a, libnppial.so,
|
770 |
+
libnppial_static.a, libnppicc.so, libnppicc_static.a,
|
771 |
+
libnppicom.so, libnppicom_static.a, libnppidei.so,
|
772 |
+
libnppidei_static.a, libnppif.so, libnppif_static.a
|
773 |
+
libnppig.so, libnppig_static.a, libnppim.so,
|
774 |
+
libnppim_static.a, libnppist.so, libnppist_static.a,
|
775 |
+
libnppisu.so, libnppisu_static.a, libnppitc.so
|
776 |
+
libnppitc_static.a, libnpps.so, libnpps_static.a
|
777 |
+
|
778 |
+
Component
|
779 |
+
|
780 |
+
NVIDIA JPEG Library
|
781 |
+
|
782 |
+
Linux
|
783 |
+
|
784 |
+
libnvjpeg.so, libnvjpeg_static.a
|
785 |
+
|
786 |
+
Component
|
787 |
+
|
788 |
+
Internal common library required for statically linking to
|
789 |
+
cuBLAS, cuSPARSE, cuFFT, cuRAND, nvJPEG and NPP
|
790 |
+
|
791 |
+
Mac OSX
|
792 |
+
|
793 |
+
libculibos.a
|
794 |
+
|
795 |
+
Linux
|
796 |
+
|
797 |
+
libculibos.a
|
798 |
+
|
799 |
+
Component
|
800 |
+
|
801 |
+
NVIDIA Runtime Compilation Library and Header
|
802 |
+
|
803 |
+
All
|
804 |
+
|
805 |
+
nvrtc.h
|
806 |
+
|
807 |
+
Windows
|
808 |
+
|
809 |
+
nvrtc.dll, nvrtc-builtins.dll
|
810 |
+
|
811 |
+
Mac OSX
|
812 |
+
|
813 |
+
libnvrtc.dylib, libnvrtc-builtins.dylib
|
814 |
+
|
815 |
+
Linux
|
816 |
+
|
817 |
+
libnvrtc.so, libnvrtc-builtins.so
|
818 |
+
|
819 |
+
Component
|
820 |
+
|
821 |
+
NVIDIA Optimizing Compiler Library
|
822 |
+
|
823 |
+
Windows
|
824 |
+
|
825 |
+
nvvm.dll
|
826 |
+
|
827 |
+
Mac OSX
|
828 |
+
|
829 |
+
libnvvm.dylib
|
830 |
+
|
831 |
+
Linux
|
832 |
+
|
833 |
+
libnvvm.so
|
834 |
+
|
835 |
+
Component
|
836 |
+
|
837 |
+
NVIDIA Common Device Math Functions Library
|
838 |
+
|
839 |
+
Windows
|
840 |
+
|
841 |
+
libdevice.10.bc
|
842 |
+
|
843 |
+
Mac OSX
|
844 |
+
|
845 |
+
libdevice.10.bc
|
846 |
+
|
847 |
+
Linux
|
848 |
+
|
849 |
+
libdevice.10.bc
|
850 |
+
|
851 |
+
Component
|
852 |
+
|
853 |
+
CUDA Occupancy Calculation Header Library
|
854 |
+
|
855 |
+
All
|
856 |
+
|
857 |
+
cuda_occupancy.h
|
858 |
+
|
859 |
+
Component
|
860 |
+
|
861 |
+
CUDA Half Precision Headers
|
862 |
+
|
863 |
+
All
|
864 |
+
|
865 |
+
cuda_fp16.h, cuda_fp16.hpp
|
866 |
+
|
867 |
+
Component
|
868 |
+
|
869 |
+
CUDA Profiling Tools Interface (CUPTI) Library
|
870 |
+
|
871 |
+
Windows
|
872 |
+
|
873 |
+
cupti.dll
|
874 |
+
|
875 |
+
Mac OSX
|
876 |
+
|
877 |
+
libcupti.dylib
|
878 |
+
|
879 |
+
Linux
|
880 |
+
|
881 |
+
libcupti.so
|
882 |
+
|
883 |
+
Component
|
884 |
+
|
885 |
+
NVIDIA Tools Extension Library
|
886 |
+
|
887 |
+
Windows
|
888 |
+
|
889 |
+
nvToolsExt.dll, nvToolsExt.lib
|
890 |
+
|
891 |
+
Mac OSX
|
892 |
+
|
893 |
+
libnvToolsExt.dylib
|
894 |
+
|
895 |
+
Linux
|
896 |
+
|
897 |
+
libnvToolsExt.so
|
898 |
+
|
899 |
+
Component
|
900 |
+
|
901 |
+
NVIDIA CUDA Driver Libraries
|
902 |
+
|
903 |
+
Linux
|
904 |
+
|
905 |
+
libcuda.so, libnvidia-fatbinaryloader.so,
|
906 |
+
libnvidia-ptxjitcompiler.so
|
907 |
+
|
908 |
+
The NVIDIA CUDA Driver Libraries are only distributable in
|
909 |
+
applications that meet this criteria:
|
910 |
+
|
911 |
+
1. The application was developed starting from a NVIDIA CUDA
|
912 |
+
container obtained from Docker Hub or the NVIDIA GPU
|
913 |
+
Cloud, and
|
914 |
+
|
915 |
+
2. The resulting application is packaged as a Docker
|
916 |
+
container and distributed to users on Docker Hub or the
|
917 |
+
NVIDIA GPU Cloud only.
|
918 |
+
|
919 |
+
|
920 |
+
2.7. Attachment B
|
921 |
+
|
922 |
+
|
923 |
+
Additional Licensing Obligations
|
924 |
+
|
925 |
+
The following third party components included in the SOFTWARE
|
926 |
+
are licensed to Licensee pursuant to the following terms and
|
927 |
+
conditions:
|
928 |
+
|
929 |
+
1. Licensee's use of the GDB third party component is
|
930 |
+
subject to the terms and conditions of GNU GPL v3:
|
931 |
+
|
932 |
+
This product includes copyrighted third-party software licensed
|
933 |
+
under the terms of the GNU General Public License v3 ("GPL v3").
|
934 |
+
All third-party software packages are copyright by their respective
|
935 |
+
authors. GPL v3 terms and conditions are hereby incorporated into
|
936 |
+
the Agreement by this reference: http://www.gnu.org/licenses/gpl.txt
|
937 |
+
|
938 |
+
Consistent with these licensing requirements, the software
|
939 |
+
listed below is provided under the terms of the specified
|
940 |
+
open source software licenses. To obtain source code for
|
941 |
+
software provided under licenses that require
|
942 |
+
redistribution of source code, including the GNU General
|
943 |
+
Public License (GPL) and GNU Lesser General Public License
|
944 |
+
(LGPL), contact [email protected]. This offer is
|
945 |
+
valid for a period of three (3) years from the date of the
|
946 |
+
distribution of this product by NVIDIA CORPORATION.
|
947 |
+
|
948 |
+
Component License
|
949 |
+
CUDA-GDB GPL v3
|
950 |
+
|
951 |
+
2. Licensee represents and warrants that any and all third
|
952 |
+
party licensing and/or royalty payment obligations in
|
953 |
+
connection with Licensee's use of the H.264 video codecs
|
954 |
+
are solely the responsibility of Licensee.
|
955 |
+
|
956 |
+
3. Licensee's use of the Thrust library is subject to the
|
957 |
+
terms and conditions of the Apache License Version 2.0.
|
958 |
+
All third-party software packages are copyright by their
|
959 |
+
respective authors. Apache License Version 2.0 terms and
|
960 |
+
conditions are hereby incorporated into the Agreement by
|
961 |
+
this reference.
|
962 |
+
http://www.apache.org/licenses/LICENSE-2.0.html
|
963 |
+
|
964 |
+
In addition, Licensee acknowledges the following notice:
|
965 |
+
Thrust includes source code from the Boost Iterator,
|
966 |
+
Tuple, System, and Random Number libraries.
|
967 |
+
|
968 |
+
Boost Software License - Version 1.0 - August 17th, 2003
|
969 |
+
. . . .
|
970 |
+
|
971 |
+
Permission is hereby granted, free of charge, to any person or
|
972 |
+
organization obtaining a copy of the software and accompanying
|
973 |
+
documentation covered by this license (the "Software") to use,
|
974 |
+
reproduce, display, distribute, execute, and transmit the Software,
|
975 |
+
and to prepare derivative works of the Software, and to permit
|
976 |
+
third-parties to whom the Software is furnished to do so, all
|
977 |
+
subject to the following:
|
978 |
+
|
979 |
+
The copyright notices in the Software and this entire statement,
|
980 |
+
including the above license grant, this restriction and the following
|
981 |
+
disclaimer, must be included in all copies of the Software, in whole
|
982 |
+
or in part, and all derivative works of the Software, unless such
|
983 |
+
copies or derivative works are solely in the form of machine-executable
|
984 |
+
object code generated by a source language processor.
|
985 |
+
|
986 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
987 |
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
988 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
|
989 |
+
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
|
990 |
+
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
|
991 |
+
OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
|
992 |
+
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
993 |
+
OTHER DEALINGS IN THE SOFTWARE.
|
994 |
+
|
995 |
+
4. Licensee's use of the LLVM third party component is
|
996 |
+
subject to the following terms and conditions:
|
997 |
+
|
998 |
+
======================================================
|
999 |
+
LLVM Release License
|
1000 |
+
======================================================
|
1001 |
+
University of Illinois/NCSA
|
1002 |
+
Open Source License
|
1003 |
+
|
1004 |
+
Copyright (c) 2003-2010 University of Illinois at Urbana-Champaign.
|
1005 |
+
All rights reserved.
|
1006 |
+
|
1007 |
+
Developed by:
|
1008 |
+
|
1009 |
+
LLVM Team
|
1010 |
+
|
1011 |
+
University of Illinois at Urbana-Champaign
|
1012 |
+
|
1013 |
+
http://llvm.org
|
1014 |
+
|
1015 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
1016 |
+
of this software and associated documentation files (the "Software"), to
|
1017 |
+
deal with the Software without restriction, including without limitation the
|
1018 |
+
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
1019 |
+
sell copies of the Software, and to permit persons to whom the Software is
|
1020 |
+
furnished to do so, subject to the following conditions:
|
1021 |
+
|
1022 |
+
* Redistributions of source code must retain the above copyright notice,
|
1023 |
+
this list of conditions and the following disclaimers.
|
1024 |
+
|
1025 |
+
* Redistributions in binary form must reproduce the above copyright
|
1026 |
+
notice, this list of conditions and the following disclaimers in the
|
1027 |
+
documentation and/or other materials provided with the distribution.
|
1028 |
+
|
1029 |
+
* Neither the names of the LLVM Team, University of Illinois at Urbana-
|
1030 |
+
Champaign, nor the names of its contributors may be used to endorse or
|
1031 |
+
promote products derived from this Software without specific prior
|
1032 |
+
written permission.
|
1033 |
+
|
1034 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
1035 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
1036 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
1037 |
+
THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
1038 |
+
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
1039 |
+
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
1040 |
+
DEALINGS WITH THE SOFTWARE.
|
1041 |
+
|
1042 |
+
5. Licensee's use (e.g. nvprof) of the PCRE third party
|
1043 |
+
component is subject to the following terms and
|
1044 |
+
conditions:
|
1045 |
+
|
1046 |
+
------------
|
1047 |
+
PCRE LICENCE
|
1048 |
+
------------
|
1049 |
+
PCRE is a library of functions to support regular expressions whose syntax
|
1050 |
+
and semantics are as close as possible to those of the Perl 5 language.
|
1051 |
+
Release 8 of PCRE is distributed under the terms of the "BSD" licence, as
|
1052 |
+
specified below. The documentation for PCRE, supplied in the "doc"
|
1053 |
+
directory, is distributed under the same terms as the software itself. The
|
1054 |
+
basic library functions are written in C and are freestanding. Also
|
1055 |
+
included in the distribution is a set of C++ wrapper functions, and a just-
|
1056 |
+
in-time compiler that can be used to optimize pattern matching. These are
|
1057 |
+
both optional features that can be omitted when the library is built.
|
1058 |
+
|
1059 |
+
THE BASIC LIBRARY FUNCTIONS
|
1060 |
+
---------------------------
|
1061 |
+
Written by: Philip Hazel
|
1062 |
+
Email local part: ph10
|
1063 |
+
Email domain: cam.ac.uk
|
1064 |
+
University of Cambridge Computing Service,
|
1065 |
+
Cambridge, England.
|
1066 |
+
Copyright (c) 1997-2012 University of Cambridge
|
1067 |
+
All rights reserved.
|
1068 |
+
|
1069 |
+
PCRE JUST-IN-TIME COMPILATION SUPPORT
|
1070 |
+
-------------------------------------
|
1071 |
+
Written by: Zoltan Herczeg
|
1072 |
+
Email local part: hzmester
|
1073 |
+
Emain domain: freemail.hu
|
1074 |
+
Copyright(c) 2010-2012 Zoltan Herczeg
|
1075 |
+
All rights reserved.
|
1076 |
+
|
1077 |
+
STACK-LESS JUST-IN-TIME COMPILER
|
1078 |
+
--------------------------------
|
1079 |
+
Written by: Zoltan Herczeg
|
1080 |
+
Email local part: hzmester
|
1081 |
+
Emain domain: freemail.hu
|
1082 |
+
Copyright(c) 2009-2012 Zoltan Herczeg
|
1083 |
+
All rights reserved.
|
1084 |
+
|
1085 |
+
THE C++ WRAPPER FUNCTIONS
|
1086 |
+
-------------------------
|
1087 |
+
Contributed by: Google Inc.
|
1088 |
+
Copyright (c) 2007-2012, Google Inc.
|
1089 |
+
All rights reserved.
|
1090 |
+
|
1091 |
+
THE "BSD" LICENCE
|
1092 |
+
-----------------
|
1093 |
+
Redistribution and use in source and binary forms, with or without
|
1094 |
+
modification, are permitted provided that the following conditions are met:
|
1095 |
+
|
1096 |
+
* Redistributions of source code must retain the above copyright notice,
|
1097 |
+
this list of conditions and the following disclaimer.
|
1098 |
+
|
1099 |
+
* Redistributions in binary form must reproduce the above copyright
|
1100 |
+
notice, this list of conditions and the following disclaimer in the
|
1101 |
+
documentation and/or other materials provided with the distribution.
|
1102 |
+
|
1103 |
+
* Neither the name of the University of Cambridge nor the name of Google
|
1104 |
+
Inc. nor the names of their contributors may be used to endorse or
|
1105 |
+
promote products derived from this software without specific prior
|
1106 |
+
written permission.
|
1107 |
+
|
1108 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
1109 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
1110 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
1111 |
+
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
1112 |
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
1113 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
1114 |
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
1115 |
+
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
1116 |
+
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
1117 |
+
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
1118 |
+
POSSIBILITY OF SUCH DAMAGE.
|
1119 |
+
|
1120 |
+
6. Some of the cuBLAS library routines were written by or
|
1121 |
+
derived from code written by Vasily Volkov and are subject
|
1122 |
+
to the Modified Berkeley Software Distribution License as
|
1123 |
+
follows:
|
1124 |
+
|
1125 |
+
Copyright (c) 2007-2009, Regents of the University of California
|
1126 |
+
|
1127 |
+
All rights reserved.
|
1128 |
+
|
1129 |
+
Redistribution and use in source and binary forms, with or without
|
1130 |
+
modification, are permitted provided that the following conditions are
|
1131 |
+
met:
|
1132 |
+
* Redistributions of source code must retain the above copyright
|
1133 |
+
notice, this list of conditions and the following disclaimer.
|
1134 |
+
* Redistributions in binary form must reproduce the above
|
1135 |
+
copyright notice, this list of conditions and the following
|
1136 |
+
disclaimer in the documentation and/or other materials provided
|
1137 |
+
with the distribution.
|
1138 |
+
* Neither the name of the University of California, Berkeley nor
|
1139 |
+
the names of its contributors may be used to endorse or promote
|
1140 |
+
products derived from this software without specific prior
|
1141 |
+
written permission.
|
1142 |
+
|
1143 |
+
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
|
1144 |
+
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
1145 |
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
1146 |
+
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
1147 |
+
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
1148 |
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
1149 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
1150 |
+
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
1151 |
+
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
1152 |
+
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
1153 |
+
POSSIBILITY OF SUCH DAMAGE.
|
1154 |
+
|
1155 |
+
7. Some of the cuBLAS library routines were written by or
|
1156 |
+
derived from code written by Davide Barbieri and are
|
1157 |
+
subject to the Modified Berkeley Software Distribution
|
1158 |
+
License as follows:
|
1159 |
+
|
1160 |
+
Copyright (c) 2008-2009 Davide Barbieri @ University of Rome Tor Vergata.
|
1161 |
+
|
1162 |
+
All rights reserved.
|
1163 |
+
|
1164 |
+
Redistribution and use in source and binary forms, with or without
|
1165 |
+
modification, are permitted provided that the following conditions are
|
1166 |
+
met:
|
1167 |
+
* Redistributions of source code must retain the above copyright
|
1168 |
+
notice, this list of conditions and the following disclaimer.
|
1169 |
+
* Redistributions in binary form must reproduce the above
|
1170 |
+
copyright notice, this list of conditions and the following
|
1171 |
+
disclaimer in the documentation and/or other materials provided
|
1172 |
+
with the distribution.
|
1173 |
+
* The name of the author may not be used to endorse or promote
|
1174 |
+
products derived from this software without specific prior
|
1175 |
+
written permission.
|
1176 |
+
|
1177 |
+
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
|
1178 |
+
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
1179 |
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
1180 |
+
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
1181 |
+
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
1182 |
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
1183 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
1184 |
+
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
1185 |
+
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
1186 |
+
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
1187 |
+
POSSIBILITY OF SUCH DAMAGE.
|
1188 |
+
|
1189 |
+
8. Some of the cuBLAS library routines were derived from
|
1190 |
+
code developed by the University of Tennessee and are
|
1191 |
+
subject to the Modified Berkeley Software Distribution
|
1192 |
+
License as follows:
|
1193 |
+
|
1194 |
+
Copyright (c) 2010 The University of Tennessee.
|
1195 |
+
|
1196 |
+
All rights reserved.
|
1197 |
+
|
1198 |
+
Redistribution and use in source and binary forms, with or without
|
1199 |
+
modification, are permitted provided that the following conditions are
|
1200 |
+
met:
|
1201 |
+
* Redistributions of source code must retain the above copyright
|
1202 |
+
notice, this list of conditions and the following disclaimer.
|
1203 |
+
* Redistributions in binary form must reproduce the above
|
1204 |
+
copyright notice, this list of conditions and the following
|
1205 |
+
disclaimer listed in this license in the documentation and/or
|
1206 |
+
other materials provided with the distribution.
|
1207 |
+
* Neither the name of the copyright holders nor the names of its
|
1208 |
+
contributors may be used to endorse or promote products derived
|
1209 |
+
from this software without specific prior written permission.
|
1210 |
+
|
1211 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1212 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1213 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1214 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1215 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1216 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1217 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1218 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1219 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1220 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1221 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1222 |
+
|
1223 |
+
9. Some of the cuBLAS library routines were written by or
|
1224 |
+
derived from code written by Jonathan Hogg and are subject
|
1225 |
+
to the Modified Berkeley Software Distribution License as
|
1226 |
+
follows:
|
1227 |
+
|
1228 |
+
Copyright (c) 2012, The Science and Technology Facilities Council (STFC).
|
1229 |
+
|
1230 |
+
All rights reserved.
|
1231 |
+
|
1232 |
+
Redistribution and use in source and binary forms, with or without
|
1233 |
+
modification, are permitted provided that the following conditions are
|
1234 |
+
met:
|
1235 |
+
* Redistributions of source code must retain the above copyright
|
1236 |
+
notice, this list of conditions and the following disclaimer.
|
1237 |
+
* Redistributions in binary form must reproduce the above
|
1238 |
+
copyright notice, this list of conditions and the following
|
1239 |
+
disclaimer in the documentation and/or other materials provided
|
1240 |
+
with the distribution.
|
1241 |
+
* Neither the name of the STFC nor the names of its contributors
|
1242 |
+
may be used to endorse or promote products derived from this
|
1243 |
+
software without specific prior written permission.
|
1244 |
+
|
1245 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1246 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1247 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1248 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE STFC BE
|
1249 |
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
1250 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
1251 |
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
1252 |
+
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
1253 |
+
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
1254 |
+
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
|
1255 |
+
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1256 |
+
|
1257 |
+
10. Some of the cuBLAS library routines were written by or
|
1258 |
+
derived from code written by Ahmad M. Abdelfattah, David
|
1259 |
+
Keyes, and Hatem Ltaief, and are subject to the Apache
|
1260 |
+
License, Version 2.0, as follows:
|
1261 |
+
|
1262 |
+
-- (C) Copyright 2013 King Abdullah University of Science and Technology
|
1263 |
+
Authors:
|
1264 |
+
Ahmad Abdelfattah ([email protected])
|
1265 |
+
David Keyes ([email protected])
|
1266 |
+
Hatem Ltaief ([email protected])
|
1267 |
+
|
1268 |
+
Redistribution and use in source and binary forms, with or without
|
1269 |
+
modification, are permitted provided that the following conditions
|
1270 |
+
are met:
|
1271 |
+
|
1272 |
+
* Redistributions of source code must retain the above copyright
|
1273 |
+
notice, this list of conditions and the following disclaimer.
|
1274 |
+
* Redistributions in binary form must reproduce the above copyright
|
1275 |
+
notice, this list of conditions and the following disclaimer in the
|
1276 |
+
documentation and/or other materials provided with the distribution.
|
1277 |
+
* Neither the name of the King Abdullah University of Science and
|
1278 |
+
Technology nor the names of its contributors may be used to endorse
|
1279 |
+
or promote products derived from this software without specific prior
|
1280 |
+
written permission.
|
1281 |
+
|
1282 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1283 |
+
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1284 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1285 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1286 |
+
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1287 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1288 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1289 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1290 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1291 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1292 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
|
1293 |
+
|
1294 |
+
11. Some of the cuSPARSE library routines were written by or
|
1295 |
+
derived from code written by Li-Wen Chang and are subject
|
1296 |
+
to the NCSA Open Source License as follows:
|
1297 |
+
|
1298 |
+
Copyright (c) 2012, University of Illinois.
|
1299 |
+
|
1300 |
+
All rights reserved.
|
1301 |
+
|
1302 |
+
Developed by: IMPACT Group, University of Illinois, http://impact.crhc.illinois.edu
|
1303 |
+
|
1304 |
+
Permission is hereby granted, free of charge, to any person obtaining
|
1305 |
+
a copy of this software and associated documentation files (the
|
1306 |
+
"Software"), to deal with the Software without restriction, including
|
1307 |
+
without limitation the rights to use, copy, modify, merge, publish,
|
1308 |
+
distribute, sublicense, and/or sell copies of the Software, and to
|
1309 |
+
permit persons to whom the Software is furnished to do so, subject to
|
1310 |
+
the following conditions:
|
1311 |
+
* Redistributions of source code must retain the above copyright
|
1312 |
+
notice, this list of conditions and the following disclaimer.
|
1313 |
+
* Redistributions in binary form must reproduce the above
|
1314 |
+
copyright notice, this list of conditions and the following
|
1315 |
+
disclaimers in the documentation and/or other materials provided
|
1316 |
+
with the distribution.
|
1317 |
+
* Neither the names of IMPACT Group, University of Illinois, nor
|
1318 |
+
the names of its contributors may be used to endorse or promote
|
1319 |
+
products derived from this Software without specific prior
|
1320 |
+
written permission.
|
1321 |
+
|
1322 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
1323 |
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
1324 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
1325 |
+
NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
|
1326 |
+
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
1327 |
+
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
1328 |
+
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
|
1329 |
+
SOFTWARE.
|
1330 |
+
|
1331 |
+
12. Some of the cuRAND library routines were written by or
|
1332 |
+
derived from code written by Mutsuo Saito and Makoto
|
1333 |
+
Matsumoto and are subject to the following license:
|
1334 |
+
|
1335 |
+
Copyright (c) 2009, 2010 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
1336 |
+
University. All rights reserved.
|
1337 |
+
|
1338 |
+
Copyright (c) 2011 Mutsuo Saito, Makoto Matsumoto, Hiroshima
|
1339 |
+
University and University of Tokyo. All rights reserved.
|
1340 |
+
|
1341 |
+
Redistribution and use in source and binary forms, with or without
|
1342 |
+
modification, are permitted provided that the following conditions are
|
1343 |
+
met:
|
1344 |
+
* Redistributions of source code must retain the above copyright
|
1345 |
+
notice, this list of conditions and the following disclaimer.
|
1346 |
+
* Redistributions in binary form must reproduce the above
|
1347 |
+
copyright notice, this list of conditions and the following
|
1348 |
+
disclaimer in the documentation and/or other materials provided
|
1349 |
+
with the distribution.
|
1350 |
+
* Neither the name of the Hiroshima University nor the names of
|
1351 |
+
its contributors may be used to endorse or promote products
|
1352 |
+
derived from this software without specific prior written
|
1353 |
+
permission.
|
1354 |
+
|
1355 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1356 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1357 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1358 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1359 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1360 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1361 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1362 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1363 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1364 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1365 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1366 |
+
|
1367 |
+
13. Some of the cuRAND library routines were derived from
|
1368 |
+
code developed by D. E. Shaw Research and are subject to
|
1369 |
+
the following license:
|
1370 |
+
|
1371 |
+
Copyright 2010-2011, D. E. Shaw Research.
|
1372 |
+
|
1373 |
+
All rights reserved.
|
1374 |
+
|
1375 |
+
Redistribution and use in source and binary forms, with or without
|
1376 |
+
modification, are permitted provided that the following conditions are
|
1377 |
+
met:
|
1378 |
+
* Redistributions of source code must retain the above copyright
|
1379 |
+
notice, this list of conditions, and the following disclaimer.
|
1380 |
+
* Redistributions in binary form must reproduce the above
|
1381 |
+
copyright notice, this list of conditions, and the following
|
1382 |
+
disclaimer in the documentation and/or other materials provided
|
1383 |
+
with the distribution.
|
1384 |
+
* Neither the name of D. E. Shaw Research nor the names of its
|
1385 |
+
contributors may be used to endorse or promote products derived
|
1386 |
+
from this software without specific prior written permission.
|
1387 |
+
|
1388 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1389 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1390 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1391 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1392 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1393 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1394 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1395 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1396 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1397 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1398 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1399 |
+
|
1400 |
+
14. Some of the Math library routines were written by or
|
1401 |
+
derived from code developed by Norbert Juffa and are
|
1402 |
+
subject to the following license:
|
1403 |
+
|
1404 |
+
Copyright (c) 2015-2017, Norbert Juffa
|
1405 |
+
All rights reserved.
|
1406 |
+
|
1407 |
+
Redistribution and use in source and binary forms, with or without
|
1408 |
+
modification, are permitted provided that the following conditions
|
1409 |
+
are met:
|
1410 |
+
|
1411 |
+
1. Redistributions of source code must retain the above copyright
|
1412 |
+
notice, this list of conditions and the following disclaimer.
|
1413 |
+
|
1414 |
+
2. Redistributions in binary form must reproduce the above copyright
|
1415 |
+
notice, this list of conditions and the following disclaimer in the
|
1416 |
+
documentation and/or other materials provided with the distribution.
|
1417 |
+
|
1418 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1419 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1420 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1421 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1422 |
+
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1423 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1424 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1425 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1426 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1427 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1428 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1429 |
+
|
1430 |
+
15. Licensee's use of the lz4 third party component is
|
1431 |
+
subject to the following terms and conditions:
|
1432 |
+
|
1433 |
+
Copyright (C) 2011-2013, Yann Collet.
|
1434 |
+
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
1435 |
+
|
1436 |
+
Redistribution and use in source and binary forms, with or without
|
1437 |
+
modification, are permitted provided that the following conditions are
|
1438 |
+
met:
|
1439 |
+
|
1440 |
+
* Redistributions of source code must retain the above copyright
|
1441 |
+
notice, this list of conditions and the following disclaimer.
|
1442 |
+
* Redistributions in binary form must reproduce the above
|
1443 |
+
copyright notice, this list of conditions and the following disclaimer
|
1444 |
+
in the documentation and/or other materials provided with the
|
1445 |
+
distribution.
|
1446 |
+
|
1447 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1448 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1449 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1450 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1451 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1452 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1453 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1454 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1455 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1456 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1457 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1458 |
+
|
1459 |
+
16. The NPP library uses code from the Boost Math Toolkit,
|
1460 |
+
and is subject to the following license:
|
1461 |
+
|
1462 |
+
Boost Software License - Version 1.0 - August 17th, 2003
|
1463 |
+
. . . .
|
1464 |
+
|
1465 |
+
Permission is hereby granted, free of charge, to any person or
|
1466 |
+
organization obtaining a copy of the software and accompanying
|
1467 |
+
documentation covered by this license (the "Software") to use,
|
1468 |
+
reproduce, display, distribute, execute, and transmit the Software,
|
1469 |
+
and to prepare derivative works of the Software, and to permit
|
1470 |
+
third-parties to whom the Software is furnished to do so, all
|
1471 |
+
subject to the following:
|
1472 |
+
|
1473 |
+
The copyright notices in the Software and this entire statement,
|
1474 |
+
including the above license grant, this restriction and the following
|
1475 |
+
disclaimer, must be included in all copies of the Software, in whole
|
1476 |
+
or in part, and all derivative works of the Software, unless such
|
1477 |
+
copies or derivative works are solely in the form of machine-executable
|
1478 |
+
object code generated by a source language processor.
|
1479 |
+
|
1480 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
1481 |
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
1482 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
|
1483 |
+
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
|
1484 |
+
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
|
1485 |
+
OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
|
1486 |
+
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
1487 |
+
OTHER DEALINGS IN THE SOFTWARE.
|
1488 |
+
|
1489 |
+
17. Portions of the Nsight Eclipse Edition is subject to the
|
1490 |
+
following license:
|
1491 |
+
|
1492 |
+
The Eclipse Foundation makes available all content in this plug-in
|
1493 |
+
("Content"). Unless otherwise indicated below, the Content is provided
|
1494 |
+
to you under the terms and conditions of the Eclipse Public License
|
1495 |
+
Version 1.0 ("EPL"). A copy of the EPL is available at http://
|
1496 |
+
www.eclipse.org/legal/epl-v10.html. For purposes of the EPL, "Program"
|
1497 |
+
will mean the Content.
|
1498 |
+
|
1499 |
+
If you did not receive this Content directly from the Eclipse
|
1500 |
+
Foundation, the Content is being redistributed by another party
|
1501 |
+
("Redistributor") and different terms and conditions may apply to your
|
1502 |
+
use of any object code in the Content. Check the Redistributor's
|
1503 |
+
license that was provided with the Content. If no such license exists,
|
1504 |
+
contact the Redistributor. Unless otherwise indicated below, the terms
|
1505 |
+
and conditions of the EPL still apply to any source code in the
|
1506 |
+
Content and such source code may be obtained at http://www.eclipse.org.
|
1507 |
+
|
1508 |
+
18. Some of the cuBLAS library routines uses code from
|
1509 |
+
OpenAI, which is subject to the following license:
|
1510 |
+
|
1511 |
+
License URL
|
1512 |
+
https://github.com/openai/openai-gemm/blob/master/LICENSE
|
1513 |
+
|
1514 |
+
License Text
|
1515 |
+
The MIT License
|
1516 |
+
|
1517 |
+
Copyright (c) 2016 OpenAI (http://openai.com), 2016 Google Inc.
|
1518 |
+
|
1519 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
1520 |
+
of this software and associated documentation files (the "Software"), to deal
|
1521 |
+
in the Software without restriction, including without limitation the rights
|
1522 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
1523 |
+
copies of the Software, and to permit persons to whom the Software is
|
1524 |
+
furnished to do so, subject to the following conditions:
|
1525 |
+
|
1526 |
+
The above copyright notice and this permission notice shall be included in
|
1527 |
+
all copies or substantial portions of the Software.
|
1528 |
+
|
1529 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
1530 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
1531 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
1532 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
1533 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
1534 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
1535 |
+
THE SOFTWARE.
|
1536 |
+
|
1537 |
+
19. Licensee's use of the Visual Studio Setup Configuration
|
1538 |
+
Samples is subject to the following license:
|
1539 |
+
|
1540 |
+
The MIT License (MIT)
|
1541 |
+
Copyright (C) Microsoft Corporation. All rights reserved.
|
1542 |
+
|
1543 |
+
Permission is hereby granted, free of charge, to any person
|
1544 |
+
obtaining a copy of this software and associated documentation
|
1545 |
+
files (the "Software"), to deal in the Software without restriction,
|
1546 |
+
including without limitation the rights to use, copy, modify, merge,
|
1547 |
+
publish, distribute, sublicense, and/or sell copies of the Software,
|
1548 |
+
and to permit persons to whom the Software is furnished to do so,
|
1549 |
+
subject to the following conditions:
|
1550 |
+
|
1551 |
+
The above copyright notice and this permission notice shall be included
|
1552 |
+
in all copies or substantial portions of the Software.
|
1553 |
+
|
1554 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
1555 |
+
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
1556 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
1557 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
1558 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
1559 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
1560 |
+
|
1561 |
+
20. Licensee's use of linmath.h header for CPU functions for
|
1562 |
+
GL vector/matrix operations from lunarG is subject to the
|
1563 |
+
Apache License Version 2.0.
|
1564 |
+
|
1565 |
+
21. The DX12-CUDA sample uses the d3dx12.h header, which is
|
1566 |
+
subject to the MIT license .
|
1567 |
+
|
1568 |
+
-----------------
|