Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- env-llmeval/lib/python3.10/site-packages/nvidia/nccl/lib/libnccl.so.2 +3 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/beta_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/binom_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/hypergeom_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/invgauss_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/ncf_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/nct_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/skewnorm_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_censored_data.py +459 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_mannwhitneyu.py +519 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_mvn.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_qmc_cy.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_rvs_sampling.py +56 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/_stats.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/contingency.py +468 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/kde.py +23 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/qmc.py +235 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/common_tests.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_axis_nan_policy.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_binned_statistic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_boost_ufuncs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_censored_data.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_contingency.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_continuous_basic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_continuous_fit_censored.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_crosstab.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_discrete_basic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_discrete_distns.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_distributions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_entropy.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_fast_gen_inversion.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_fit.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_hypotests.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_kdeoth.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_morestats.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_mstats_basic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_mstats_extras.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_multicomp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_multivariate.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_odds_ratio.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_qmc.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_rank.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_relative_risk.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_resampling.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_sampling.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_sensitivity_analysis.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_stats.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_survival.cpython-310.pyc +0 -0
.gitattributes
CHANGED
@@ -160,3 +160,4 @@ llmeval-env/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so filter=lfs d
|
|
160 |
env-llmeval/lib/python3.10/site-packages/scipy/sparse/_sparsetools.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
161 |
env-llmeval/lib/python3.10/site-packages/scipy/linalg/_flapack.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
162 |
env-llmeval/lib/python3.10/site-packages/scipy/misc/face.dat filter=lfs diff=lfs merge=lfs -text
|
|
|
|
160 |
env-llmeval/lib/python3.10/site-packages/scipy/sparse/_sparsetools.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
161 |
env-llmeval/lib/python3.10/site-packages/scipy/linalg/_flapack.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
162 |
env-llmeval/lib/python3.10/site-packages/scipy/misc/face.dat filter=lfs diff=lfs merge=lfs -text
|
163 |
+
env-llmeval/lib/python3.10/site-packages/nvidia/nccl/lib/libnccl.so.2 filter=lfs diff=lfs merge=lfs -text
|
env-llmeval/lib/python3.10/site-packages/nvidia/nccl/lib/libnccl.so.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea129565baf96309bc48b440e9ff15afcd46c1a7f8ff1f1de5596a3f964d575c
|
3 |
+
size 219454696
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/beta_ufunc.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (205 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/binom_ufunc.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (176 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/hypergeom_ufunc.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (121 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/invgauss_ufunc.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (171 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/ncf_ufunc.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (174 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/nct_ufunc.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (224 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_boost/skewnorm_ufunc.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (109 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_censored_data.py
ADDED
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def _validate_1d(a, name, allow_inf=False):
|
5 |
+
if np.ndim(a) != 1:
|
6 |
+
raise ValueError(f'`{name}` must be a one-dimensional sequence.')
|
7 |
+
if np.isnan(a).any():
|
8 |
+
raise ValueError(f'`{name}` must not contain nan.')
|
9 |
+
if not allow_inf and np.isinf(a).any():
|
10 |
+
raise ValueError(f'`{name}` must contain only finite values.')
|
11 |
+
|
12 |
+
|
13 |
+
def _validate_interval(interval):
|
14 |
+
interval = np.asarray(interval)
|
15 |
+
if interval.shape == (0,):
|
16 |
+
# The input was a sequence with length 0.
|
17 |
+
interval = interval.reshape((0, 2))
|
18 |
+
if interval.ndim != 2 or interval.shape[-1] != 2:
|
19 |
+
raise ValueError('`interval` must be a two-dimensional array with '
|
20 |
+
'shape (m, 2), where m is the number of '
|
21 |
+
'interval-censored values, but got shape '
|
22 |
+
f'{interval.shape}')
|
23 |
+
|
24 |
+
if np.isnan(interval).any():
|
25 |
+
raise ValueError('`interval` must not contain nan.')
|
26 |
+
if np.isinf(interval).all(axis=1).any():
|
27 |
+
raise ValueError('In each row in `interval`, both values must not'
|
28 |
+
' be infinite.')
|
29 |
+
if (interval[:, 0] > interval[:, 1]).any():
|
30 |
+
raise ValueError('In each row of `interval`, the left value must not'
|
31 |
+
' exceed the right value.')
|
32 |
+
|
33 |
+
uncensored_mask = interval[:, 0] == interval[:, 1]
|
34 |
+
left_mask = np.isinf(interval[:, 0])
|
35 |
+
right_mask = np.isinf(interval[:, 1])
|
36 |
+
interval_mask = np.isfinite(interval).all(axis=1) & ~uncensored_mask
|
37 |
+
|
38 |
+
uncensored2 = interval[uncensored_mask, 0]
|
39 |
+
left2 = interval[left_mask, 1]
|
40 |
+
right2 = interval[right_mask, 0]
|
41 |
+
interval2 = interval[interval_mask]
|
42 |
+
|
43 |
+
return uncensored2, left2, right2, interval2
|
44 |
+
|
45 |
+
|
46 |
+
def _validate_x_censored(x, censored):
|
47 |
+
x = np.asarray(x)
|
48 |
+
if x.ndim != 1:
|
49 |
+
raise ValueError('`x` must be one-dimensional.')
|
50 |
+
censored = np.asarray(censored)
|
51 |
+
if censored.ndim != 1:
|
52 |
+
raise ValueError('`censored` must be one-dimensional.')
|
53 |
+
if (~np.isfinite(x)).any():
|
54 |
+
raise ValueError('`x` must not contain nan or inf.')
|
55 |
+
if censored.size != x.size:
|
56 |
+
raise ValueError('`x` and `censored` must have the same length.')
|
57 |
+
return x, censored.astype(bool)
|
58 |
+
|
59 |
+
|
60 |
+
class CensoredData:
|
61 |
+
"""
|
62 |
+
Instances of this class represent censored data.
|
63 |
+
|
64 |
+
Instances may be passed to the ``fit`` method of continuous
|
65 |
+
univariate SciPy distributions for maximum likelihood estimation.
|
66 |
+
The *only* method of the univariate continuous distributions that
|
67 |
+
understands `CensoredData` is the ``fit`` method. An instance of
|
68 |
+
`CensoredData` can not be passed to methods such as ``pdf`` and
|
69 |
+
``cdf``.
|
70 |
+
|
71 |
+
An observation is said to be *censored* when the precise value is unknown,
|
72 |
+
but it has a known upper and/or lower bound. The conventional terminology
|
73 |
+
is:
|
74 |
+
|
75 |
+
* left-censored: an observation is below a certain value but it is
|
76 |
+
unknown by how much.
|
77 |
+
* right-censored: an observation is above a certain value but it is
|
78 |
+
unknown by how much.
|
79 |
+
* interval-censored: an observation lies somewhere on an interval between
|
80 |
+
two values.
|
81 |
+
|
82 |
+
Left-, right-, and interval-censored data can be represented by
|
83 |
+
`CensoredData`.
|
84 |
+
|
85 |
+
For convenience, the class methods ``left_censored`` and
|
86 |
+
``right_censored`` are provided to create a `CensoredData`
|
87 |
+
instance from a single one-dimensional array of measurements
|
88 |
+
and a corresponding boolean array to indicate which measurements
|
89 |
+
are censored. The class method ``interval_censored`` accepts two
|
90 |
+
one-dimensional arrays that hold the lower and upper bounds of the
|
91 |
+
intervals.
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
uncensored : array_like, 1D
|
96 |
+
Uncensored observations.
|
97 |
+
left : array_like, 1D
|
98 |
+
Left-censored observations.
|
99 |
+
right : array_like, 1D
|
100 |
+
Right-censored observations.
|
101 |
+
interval : array_like, 2D, with shape (m, 2)
|
102 |
+
Interval-censored observations. Each row ``interval[k, :]``
|
103 |
+
represents the interval for the kth interval-censored observation.
|
104 |
+
|
105 |
+
Notes
|
106 |
+
-----
|
107 |
+
In the input array `interval`, the lower bound of the interval may
|
108 |
+
be ``-inf``, and the upper bound may be ``inf``, but at least one must be
|
109 |
+
finite. When the lower bound is ``-inf``, the row represents a left-
|
110 |
+
censored observation, and when the upper bound is ``inf``, the row
|
111 |
+
represents a right-censored observation. If the length of an interval
|
112 |
+
is 0 (i.e. ``interval[k, 0] == interval[k, 1]``, the observation is
|
113 |
+
treated as uncensored. So one can represent all the types of censored
|
114 |
+
and uncensored data in ``interval``, but it is generally more convenient
|
115 |
+
to use `uncensored`, `left` and `right` for uncensored, left-censored and
|
116 |
+
right-censored observations, respectively.
|
117 |
+
|
118 |
+
Examples
|
119 |
+
--------
|
120 |
+
In the most general case, a censored data set may contain values that
|
121 |
+
are left-censored, right-censored, interval-censored, and uncensored.
|
122 |
+
For example, here we create a data set with five observations. Two
|
123 |
+
are uncensored (values 1 and 1.5), one is a left-censored observation
|
124 |
+
of 0, one is a right-censored observation of 10 and one is
|
125 |
+
interval-censored in the interval [2, 3].
|
126 |
+
|
127 |
+
>>> import numpy as np
|
128 |
+
>>> from scipy.stats import CensoredData
|
129 |
+
>>> data = CensoredData(uncensored=[1, 1.5], left=[0], right=[10],
|
130 |
+
... interval=[[2, 3]])
|
131 |
+
>>> print(data)
|
132 |
+
CensoredData(5 values: 2 not censored, 1 left-censored,
|
133 |
+
1 right-censored, 1 interval-censored)
|
134 |
+
|
135 |
+
Equivalently,
|
136 |
+
|
137 |
+
>>> data = CensoredData(interval=[[1, 1],
|
138 |
+
... [1.5, 1.5],
|
139 |
+
... [-np.inf, 0],
|
140 |
+
... [10, np.inf],
|
141 |
+
... [2, 3]])
|
142 |
+
>>> print(data)
|
143 |
+
CensoredData(5 values: 2 not censored, 1 left-censored,
|
144 |
+
1 right-censored, 1 interval-censored)
|
145 |
+
|
146 |
+
A common case is to have a mix of uncensored observations and censored
|
147 |
+
observations that are all right-censored (or all left-censored). For
|
148 |
+
example, consider an experiment in which six devices are started at
|
149 |
+
various times and left running until they fail. Assume that time is
|
150 |
+
measured in hours, and the experiment is stopped after 30 hours, even
|
151 |
+
if all the devices have not failed by that time. We might end up with
|
152 |
+
data such as this::
|
153 |
+
|
154 |
+
Device Start-time Fail-time Time-to-failure
|
155 |
+
1 0 13 13
|
156 |
+
2 2 24 22
|
157 |
+
3 5 22 17
|
158 |
+
4 8 23 15
|
159 |
+
5 10 *** >20
|
160 |
+
6 12 *** >18
|
161 |
+
|
162 |
+
Two of the devices had not failed when the experiment was stopped;
|
163 |
+
the observations of the time-to-failure for these two devices are
|
164 |
+
right-censored. We can represent this data with
|
165 |
+
|
166 |
+
>>> data = CensoredData(uncensored=[13, 22, 17, 15], right=[20, 18])
|
167 |
+
>>> print(data)
|
168 |
+
CensoredData(6 values: 4 not censored, 2 right-censored)
|
169 |
+
|
170 |
+
Alternatively, we can use the method `CensoredData.right_censored` to
|
171 |
+
create a representation of this data. The time-to-failure observations
|
172 |
+
are put the list ``ttf``. The ``censored`` list indicates which values
|
173 |
+
in ``ttf`` are censored.
|
174 |
+
|
175 |
+
>>> ttf = [13, 22, 17, 15, 20, 18]
|
176 |
+
>>> censored = [False, False, False, False, True, True]
|
177 |
+
|
178 |
+
Pass these lists to `CensoredData.right_censored` to create an
|
179 |
+
instance of `CensoredData`.
|
180 |
+
|
181 |
+
>>> data = CensoredData.right_censored(ttf, censored)
|
182 |
+
>>> print(data)
|
183 |
+
CensoredData(6 values: 4 not censored, 2 right-censored)
|
184 |
+
|
185 |
+
If the input data is interval censored and already stored in two
|
186 |
+
arrays, one holding the low end of the intervals and another
|
187 |
+
holding the high ends, the class method ``interval_censored`` can
|
188 |
+
be used to create the `CensoredData` instance.
|
189 |
+
|
190 |
+
This example creates an instance with four interval-censored values.
|
191 |
+
The intervals are [10, 11], [0.5, 1], [2, 3], and [12.5, 13.5].
|
192 |
+
|
193 |
+
>>> a = [10, 0.5, 2, 12.5] # Low ends of the intervals
|
194 |
+
>>> b = [11, 1.0, 3, 13.5] # High ends of the intervals
|
195 |
+
>>> data = CensoredData.interval_censored(low=a, high=b)
|
196 |
+
>>> print(data)
|
197 |
+
CensoredData(4 values: 0 not censored, 4 interval-censored)
|
198 |
+
|
199 |
+
Finally, we create and censor some data from the `weibull_min`
|
200 |
+
distribution, and then fit `weibull_min` to that data. We'll assume
|
201 |
+
that the location parameter is known to be 0.
|
202 |
+
|
203 |
+
>>> from scipy.stats import weibull_min
|
204 |
+
>>> rng = np.random.default_rng()
|
205 |
+
|
206 |
+
Create the random data set.
|
207 |
+
|
208 |
+
>>> x = weibull_min.rvs(2.5, loc=0, scale=30, size=250, random_state=rng)
|
209 |
+
>>> x[x > 40] = 40 # Right-censor values greater or equal to 40.
|
210 |
+
|
211 |
+
Create the `CensoredData` instance with the `right_censored` method.
|
212 |
+
The censored values are those where the value is 40.
|
213 |
+
|
214 |
+
>>> data = CensoredData.right_censored(x, x == 40)
|
215 |
+
>>> print(data)
|
216 |
+
CensoredData(250 values: 215 not censored, 35 right-censored)
|
217 |
+
|
218 |
+
35 values have been right-censored.
|
219 |
+
|
220 |
+
Fit `weibull_min` to the censored data. We expect to shape and scale
|
221 |
+
to be approximately 2.5 and 30, respectively.
|
222 |
+
|
223 |
+
>>> weibull_min.fit(data, floc=0)
|
224 |
+
(2.3575922823897315, 0, 30.40650074451254)
|
225 |
+
|
226 |
+
"""
|
227 |
+
|
228 |
+
def __init__(self, uncensored=None, *, left=None, right=None,
|
229 |
+
interval=None):
|
230 |
+
if uncensored is None:
|
231 |
+
uncensored = []
|
232 |
+
if left is None:
|
233 |
+
left = []
|
234 |
+
if right is None:
|
235 |
+
right = []
|
236 |
+
if interval is None:
|
237 |
+
interval = np.empty((0, 2))
|
238 |
+
|
239 |
+
_validate_1d(uncensored, 'uncensored')
|
240 |
+
_validate_1d(left, 'left')
|
241 |
+
_validate_1d(right, 'right')
|
242 |
+
uncensored2, left2, right2, interval2 = _validate_interval(interval)
|
243 |
+
|
244 |
+
self._uncensored = np.concatenate((uncensored, uncensored2))
|
245 |
+
self._left = np.concatenate((left, left2))
|
246 |
+
self._right = np.concatenate((right, right2))
|
247 |
+
# Note that by construction, the private attribute _interval
|
248 |
+
# will be a 2D array that contains only finite values representing
|
249 |
+
# intervals with nonzero but finite length.
|
250 |
+
self._interval = interval2
|
251 |
+
|
252 |
+
def __repr__(self):
|
253 |
+
uncensored_str = " ".join(np.array_repr(self._uncensored).split())
|
254 |
+
left_str = " ".join(np.array_repr(self._left).split())
|
255 |
+
right_str = " ".join(np.array_repr(self._right).split())
|
256 |
+
interval_str = " ".join(np.array_repr(self._interval).split())
|
257 |
+
return (f"CensoredData(uncensored={uncensored_str}, left={left_str}, "
|
258 |
+
f"right={right_str}, interval={interval_str})")
|
259 |
+
|
260 |
+
def __str__(self):
|
261 |
+
num_nc = len(self._uncensored)
|
262 |
+
num_lc = len(self._left)
|
263 |
+
num_rc = len(self._right)
|
264 |
+
num_ic = len(self._interval)
|
265 |
+
n = num_nc + num_lc + num_rc + num_ic
|
266 |
+
parts = [f'{num_nc} not censored']
|
267 |
+
if num_lc > 0:
|
268 |
+
parts.append(f'{num_lc} left-censored')
|
269 |
+
if num_rc > 0:
|
270 |
+
parts.append(f'{num_rc} right-censored')
|
271 |
+
if num_ic > 0:
|
272 |
+
parts.append(f'{num_ic} interval-censored')
|
273 |
+
return f'CensoredData({n} values: ' + ', '.join(parts) + ')'
|
274 |
+
|
275 |
+
# This is not a complete implementation of the arithmetic operators.
|
276 |
+
# All we need is subtracting a scalar and dividing by a scalar.
|
277 |
+
|
278 |
+
def __sub__(self, other):
|
279 |
+
return CensoredData(uncensored=self._uncensored - other,
|
280 |
+
left=self._left - other,
|
281 |
+
right=self._right - other,
|
282 |
+
interval=self._interval - other)
|
283 |
+
|
284 |
+
def __truediv__(self, other):
|
285 |
+
return CensoredData(uncensored=self._uncensored / other,
|
286 |
+
left=self._left / other,
|
287 |
+
right=self._right / other,
|
288 |
+
interval=self._interval / other)
|
289 |
+
|
290 |
+
def __len__(self):
|
291 |
+
"""
|
292 |
+
The number of values (censored and not censored).
|
293 |
+
"""
|
294 |
+
return (len(self._uncensored) + len(self._left) + len(self._right)
|
295 |
+
+ len(self._interval))
|
296 |
+
|
297 |
+
def num_censored(self):
|
298 |
+
"""
|
299 |
+
Number of censored values.
|
300 |
+
"""
|
301 |
+
return len(self._left) + len(self._right) + len(self._interval)
|
302 |
+
|
303 |
+
@classmethod
|
304 |
+
def right_censored(cls, x, censored):
|
305 |
+
"""
|
306 |
+
Create a `CensoredData` instance of right-censored data.
|
307 |
+
|
308 |
+
Parameters
|
309 |
+
----------
|
310 |
+
x : array_like
|
311 |
+
`x` is the array of observed data or measurements.
|
312 |
+
`x` must be a one-dimensional sequence of finite numbers.
|
313 |
+
censored : array_like of bool
|
314 |
+
`censored` must be a one-dimensional sequence of boolean
|
315 |
+
values. If ``censored[k]`` is True, the corresponding value
|
316 |
+
in `x` is right-censored. That is, the value ``x[k]``
|
317 |
+
is the lower bound of the true (but unknown) value.
|
318 |
+
|
319 |
+
Returns
|
320 |
+
-------
|
321 |
+
data : `CensoredData`
|
322 |
+
An instance of `CensoredData` that represents the
|
323 |
+
collection of uncensored and right-censored values.
|
324 |
+
|
325 |
+
Examples
|
326 |
+
--------
|
327 |
+
>>> from scipy.stats import CensoredData
|
328 |
+
|
329 |
+
Two uncensored values (4 and 10) and two right-censored values
|
330 |
+
(24 and 25).
|
331 |
+
|
332 |
+
>>> data = CensoredData.right_censored([4, 10, 24, 25],
|
333 |
+
... [False, False, True, True])
|
334 |
+
>>> data
|
335 |
+
CensoredData(uncensored=array([ 4., 10.]),
|
336 |
+
left=array([], dtype=float64), right=array([24., 25.]),
|
337 |
+
interval=array([], shape=(0, 2), dtype=float64))
|
338 |
+
>>> print(data)
|
339 |
+
CensoredData(4 values: 2 not censored, 2 right-censored)
|
340 |
+
"""
|
341 |
+
x, censored = _validate_x_censored(x, censored)
|
342 |
+
return cls(uncensored=x[~censored], right=x[censored])
|
343 |
+
|
344 |
+
@classmethod
|
345 |
+
def left_censored(cls, x, censored):
|
346 |
+
"""
|
347 |
+
Create a `CensoredData` instance of left-censored data.
|
348 |
+
|
349 |
+
Parameters
|
350 |
+
----------
|
351 |
+
x : array_like
|
352 |
+
`x` is the array of observed data or measurements.
|
353 |
+
`x` must be a one-dimensional sequence of finite numbers.
|
354 |
+
censored : array_like of bool
|
355 |
+
`censored` must be a one-dimensional sequence of boolean
|
356 |
+
values. If ``censored[k]`` is True, the corresponding value
|
357 |
+
in `x` is left-censored. That is, the value ``x[k]``
|
358 |
+
is the upper bound of the true (but unknown) value.
|
359 |
+
|
360 |
+
Returns
|
361 |
+
-------
|
362 |
+
data : `CensoredData`
|
363 |
+
An instance of `CensoredData` that represents the
|
364 |
+
collection of uncensored and left-censored values.
|
365 |
+
|
366 |
+
Examples
|
367 |
+
--------
|
368 |
+
>>> from scipy.stats import CensoredData
|
369 |
+
|
370 |
+
Two uncensored values (0.12 and 0.033) and two left-censored values
|
371 |
+
(both 1e-3).
|
372 |
+
|
373 |
+
>>> data = CensoredData.left_censored([0.12, 0.033, 1e-3, 1e-3],
|
374 |
+
... [False, False, True, True])
|
375 |
+
>>> data
|
376 |
+
CensoredData(uncensored=array([0.12 , 0.033]),
|
377 |
+
left=array([0.001, 0.001]), right=array([], dtype=float64),
|
378 |
+
interval=array([], shape=(0, 2), dtype=float64))
|
379 |
+
>>> print(data)
|
380 |
+
CensoredData(4 values: 2 not censored, 2 left-censored)
|
381 |
+
"""
|
382 |
+
x, censored = _validate_x_censored(x, censored)
|
383 |
+
return cls(uncensored=x[~censored], left=x[censored])
|
384 |
+
|
385 |
+
@classmethod
|
386 |
+
def interval_censored(cls, low, high):
|
387 |
+
"""
|
388 |
+
Create a `CensoredData` instance of interval-censored data.
|
389 |
+
|
390 |
+
This method is useful when all the data is interval-censored, and
|
391 |
+
the low and high ends of the intervals are already stored in
|
392 |
+
separate one-dimensional arrays.
|
393 |
+
|
394 |
+
Parameters
|
395 |
+
----------
|
396 |
+
low : array_like
|
397 |
+
The one-dimensional array containing the low ends of the
|
398 |
+
intervals.
|
399 |
+
high : array_like
|
400 |
+
The one-dimensional array containing the high ends of the
|
401 |
+
intervals.
|
402 |
+
|
403 |
+
Returns
|
404 |
+
-------
|
405 |
+
data : `CensoredData`
|
406 |
+
An instance of `CensoredData` that represents the
|
407 |
+
collection of censored values.
|
408 |
+
|
409 |
+
Examples
|
410 |
+
--------
|
411 |
+
>>> import numpy as np
|
412 |
+
>>> from scipy.stats import CensoredData
|
413 |
+
|
414 |
+
``a`` and ``b`` are the low and high ends of a collection of
|
415 |
+
interval-censored values.
|
416 |
+
|
417 |
+
>>> a = [0.5, 2.0, 3.0, 5.5]
|
418 |
+
>>> b = [1.0, 2.5, 3.5, 7.0]
|
419 |
+
>>> data = CensoredData.interval_censored(low=a, high=b)
|
420 |
+
>>> print(data)
|
421 |
+
CensoredData(4 values: 0 not censored, 4 interval-censored)
|
422 |
+
"""
|
423 |
+
_validate_1d(low, 'low', allow_inf=True)
|
424 |
+
_validate_1d(high, 'high', allow_inf=True)
|
425 |
+
if len(low) != len(high):
|
426 |
+
raise ValueError('`low` and `high` must have the same length.')
|
427 |
+
interval = np.column_stack((low, high))
|
428 |
+
uncensored, left, right, interval = _validate_interval(interval)
|
429 |
+
return cls(uncensored=uncensored, left=left, right=right,
|
430 |
+
interval=interval)
|
431 |
+
|
432 |
+
def _uncensor(self):
|
433 |
+
"""
|
434 |
+
This function is used when a non-censored version of the data
|
435 |
+
is needed to create a rough estimate of the parameters of a
|
436 |
+
distribution via the method of moments or some similar method.
|
437 |
+
The data is "uncensored" by taking the given endpoints as the
|
438 |
+
data for the left- or right-censored data, and the mean for the
|
439 |
+
interval-censored data.
|
440 |
+
"""
|
441 |
+
data = np.concatenate((self._uncensored, self._left, self._right,
|
442 |
+
self._interval.mean(axis=1)))
|
443 |
+
return data
|
444 |
+
|
445 |
+
def _supported(self, a, b):
|
446 |
+
"""
|
447 |
+
Return a subset of self containing the values that are in
|
448 |
+
(or overlap with) the interval (a, b).
|
449 |
+
"""
|
450 |
+
uncensored = self._uncensored
|
451 |
+
uncensored = uncensored[(a < uncensored) & (uncensored < b)]
|
452 |
+
left = self._left
|
453 |
+
left = left[a < left]
|
454 |
+
right = self._right
|
455 |
+
right = right[right < b]
|
456 |
+
interval = self._interval
|
457 |
+
interval = interval[(a < interval[:, 1]) & (interval[:, 0] < b)]
|
458 |
+
return CensoredData(uncensored, left=left, right=right,
|
459 |
+
interval=interval)
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_mannwhitneyu.py
ADDED
@@ -0,0 +1,519 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from collections import namedtuple
|
3 |
+
from scipy import special
|
4 |
+
from scipy import stats
|
5 |
+
from scipy.stats._stats_py import _rankdata
|
6 |
+
from ._axis_nan_policy import _axis_nan_policy_factory
|
7 |
+
|
8 |
+
|
9 |
+
def _broadcast_concatenate(x, y, axis):
|
10 |
+
'''Broadcast then concatenate arrays, leaving concatenation axis last'''
|
11 |
+
x = np.moveaxis(x, axis, -1)
|
12 |
+
y = np.moveaxis(y, axis, -1)
|
13 |
+
z = np.broadcast(x[..., 0], y[..., 0])
|
14 |
+
x = np.broadcast_to(x, z.shape + (x.shape[-1],))
|
15 |
+
y = np.broadcast_to(y, z.shape + (y.shape[-1],))
|
16 |
+
z = np.concatenate((x, y), axis=-1)
|
17 |
+
return x, y, z
|
18 |
+
|
19 |
+
|
20 |
+
class _MWU:
|
21 |
+
'''Distribution of MWU statistic under the null hypothesis'''
|
22 |
+
# Possible improvement: if m and n are small enough, use integer arithmetic
|
23 |
+
|
24 |
+
def __init__(self):
|
25 |
+
'''Minimal initializer'''
|
26 |
+
self._fmnks = -np.ones((1, 1, 1))
|
27 |
+
self._recursive = None
|
28 |
+
|
29 |
+
def pmf(self, k, m, n):
|
30 |
+
|
31 |
+
# In practice, `pmf` is never called with k > m*n/2.
|
32 |
+
# If it were, we'd exploit symmetry here:
|
33 |
+
# k = np.array(k, copy=True)
|
34 |
+
# k2 = m*n - k
|
35 |
+
# i = k2 < k
|
36 |
+
# k[i] = k2[i]
|
37 |
+
|
38 |
+
if (self._recursive is None and m <= 500 and n <= 500
|
39 |
+
or self._recursive):
|
40 |
+
return self.pmf_recursive(k, m, n)
|
41 |
+
else:
|
42 |
+
return self.pmf_iterative(k, m, n)
|
43 |
+
|
44 |
+
def pmf_recursive(self, k, m, n):
|
45 |
+
'''Probability mass function, recursive version'''
|
46 |
+
self._resize_fmnks(m, n, np.max(k))
|
47 |
+
# could loop over just the unique elements, but probably not worth
|
48 |
+
# the time to find them
|
49 |
+
for i in np.ravel(k):
|
50 |
+
self._f(m, n, i)
|
51 |
+
return self._fmnks[m, n, k] / special.binom(m + n, m)
|
52 |
+
|
53 |
+
def pmf_iterative(self, k, m, n):
|
54 |
+
'''Probability mass function, iterative version'''
|
55 |
+
fmnks = {}
|
56 |
+
for i in np.ravel(k):
|
57 |
+
fmnks = _mwu_f_iterative(m, n, i, fmnks)
|
58 |
+
return (np.array([fmnks[(m, n, ki)] for ki in k])
|
59 |
+
/ special.binom(m + n, m))
|
60 |
+
|
61 |
+
def cdf(self, k, m, n):
|
62 |
+
'''Cumulative distribution function'''
|
63 |
+
|
64 |
+
# In practice, `cdf` is never called with k > m*n/2.
|
65 |
+
# If it were, we'd exploit symmetry here rather than in `sf`
|
66 |
+
pmfs = self.pmf(np.arange(0, np.max(k) + 1), m, n)
|
67 |
+
cdfs = np.cumsum(pmfs)
|
68 |
+
return cdfs[k]
|
69 |
+
|
70 |
+
def sf(self, k, m, n):
|
71 |
+
'''Survival function'''
|
72 |
+
# Note that both CDF and SF include the PMF at k. The p-value is
|
73 |
+
# calculated from the SF and should include the mass at k, so this
|
74 |
+
# is desirable
|
75 |
+
|
76 |
+
# Use the fact that the distribution is symmetric; i.e.
|
77 |
+
# _f(m, n, m*n-k) = _f(m, n, k), and sum from the left
|
78 |
+
kc = np.asarray(m*n - k) # complement of k
|
79 |
+
i = k < kc
|
80 |
+
if np.any(i):
|
81 |
+
kc[i] = k[i]
|
82 |
+
cdfs = np.asarray(self.cdf(kc, m, n))
|
83 |
+
cdfs[i] = 1. - cdfs[i] + self.pmf(kc[i], m, n)
|
84 |
+
else:
|
85 |
+
cdfs = np.asarray(self.cdf(kc, m, n))
|
86 |
+
return cdfs[()]
|
87 |
+
|
88 |
+
def _resize_fmnks(self, m, n, k):
|
89 |
+
'''If necessary, expand the array that remembers PMF values'''
|
90 |
+
# could probably use `np.pad` but I'm not sure it would save code
|
91 |
+
shape_old = np.array(self._fmnks.shape)
|
92 |
+
shape_new = np.array((m+1, n+1, k+1))
|
93 |
+
if np.any(shape_new > shape_old):
|
94 |
+
shape = np.maximum(shape_old, shape_new)
|
95 |
+
fmnks = -np.ones(shape) # create the new array
|
96 |
+
m0, n0, k0 = shape_old
|
97 |
+
fmnks[:m0, :n0, :k0] = self._fmnks # copy remembered values
|
98 |
+
self._fmnks = fmnks
|
99 |
+
|
100 |
+
def _f(self, m, n, k):
|
101 |
+
'''Recursive implementation of function of [3] Theorem 2.5'''
|
102 |
+
|
103 |
+
# [3] Theorem 2.5 Line 1
|
104 |
+
if k < 0 or m < 0 or n < 0 or k > m*n:
|
105 |
+
return 0
|
106 |
+
|
107 |
+
# if already calculated, return the value
|
108 |
+
if self._fmnks[m, n, k] >= 0:
|
109 |
+
return self._fmnks[m, n, k]
|
110 |
+
|
111 |
+
if k == 0 and m >= 0 and n >= 0: # [3] Theorem 2.5 Line 2
|
112 |
+
fmnk = 1
|
113 |
+
else: # [3] Theorem 2.5 Line 3 / Equation 3
|
114 |
+
fmnk = self._f(m-1, n, k-n) + self._f(m, n-1, k)
|
115 |
+
|
116 |
+
self._fmnks[m, n, k] = fmnk # remember result
|
117 |
+
|
118 |
+
return fmnk
|
119 |
+
|
120 |
+
|
121 |
+
# Maintain state for faster repeat calls to mannwhitneyu w/ method='exact'
|
122 |
+
_mwu_state = _MWU()
|
123 |
+
|
124 |
+
|
125 |
+
def _mwu_f_iterative(m, n, k, fmnks):
|
126 |
+
'''Iterative implementation of function of [3] Theorem 2.5'''
|
127 |
+
|
128 |
+
def _base_case(m, n, k):
|
129 |
+
'''Base cases from recursive version'''
|
130 |
+
|
131 |
+
# if already calculated, return the value
|
132 |
+
if fmnks.get((m, n, k), -1) >= 0:
|
133 |
+
return fmnks[(m, n, k)]
|
134 |
+
|
135 |
+
# [3] Theorem 2.5 Line 1
|
136 |
+
elif k < 0 or m < 0 or n < 0 or k > m*n:
|
137 |
+
return 0
|
138 |
+
|
139 |
+
# [3] Theorem 2.5 Line 2
|
140 |
+
elif k == 0 and m >= 0 and n >= 0:
|
141 |
+
return 1
|
142 |
+
|
143 |
+
return None
|
144 |
+
|
145 |
+
stack = [(m, n, k)]
|
146 |
+
fmnk = None
|
147 |
+
|
148 |
+
while stack:
|
149 |
+
# Popping only if necessary would save a tiny bit of time, but NWI.
|
150 |
+
m, n, k = stack.pop()
|
151 |
+
|
152 |
+
# If we're at a base case, continue (stack unwinds)
|
153 |
+
fmnk = _base_case(m, n, k)
|
154 |
+
if fmnk is not None:
|
155 |
+
fmnks[(m, n, k)] = fmnk
|
156 |
+
continue
|
157 |
+
|
158 |
+
# If both terms are base cases, continue (stack unwinds)
|
159 |
+
f1 = _base_case(m-1, n, k-n)
|
160 |
+
f2 = _base_case(m, n-1, k)
|
161 |
+
if f1 is not None and f2 is not None:
|
162 |
+
# [3] Theorem 2.5 Line 3 / Equation 3
|
163 |
+
fmnk = f1 + f2
|
164 |
+
fmnks[(m, n, k)] = fmnk
|
165 |
+
continue
|
166 |
+
|
167 |
+
# recurse deeper
|
168 |
+
stack.append((m, n, k))
|
169 |
+
if f1 is None:
|
170 |
+
stack.append((m-1, n, k-n))
|
171 |
+
if f2 is None:
|
172 |
+
stack.append((m, n-1, k))
|
173 |
+
|
174 |
+
return fmnks
|
175 |
+
|
176 |
+
|
177 |
+
def _get_mwu_z(U, n1, n2, t, axis=0, continuity=True):
|
178 |
+
'''Standardized MWU statistic'''
|
179 |
+
# Follows mannwhitneyu [2]
|
180 |
+
mu = n1 * n2 / 2
|
181 |
+
n = n1 + n2
|
182 |
+
|
183 |
+
# Tie correction according to [2], "Normal approximation and tie correction"
|
184 |
+
# "A more computationally-efficient form..."
|
185 |
+
tie_term = (t**3 - t).sum(axis=-1)
|
186 |
+
s = np.sqrt(n1*n2/12 * ((n + 1) - tie_term/(n*(n-1))))
|
187 |
+
|
188 |
+
numerator = U - mu
|
189 |
+
|
190 |
+
# Continuity correction.
|
191 |
+
# Because SF is always used to calculate the p-value, we can always
|
192 |
+
# _subtract_ 0.5 for the continuity correction. This always increases the
|
193 |
+
# p-value to account for the rest of the probability mass _at_ q = U.
|
194 |
+
if continuity:
|
195 |
+
numerator -= 0.5
|
196 |
+
|
197 |
+
# no problem evaluating the norm SF at an infinity
|
198 |
+
with np.errstate(divide='ignore', invalid='ignore'):
|
199 |
+
z = numerator / s
|
200 |
+
return z
|
201 |
+
|
202 |
+
|
203 |
+
def _mwu_input_validation(x, y, use_continuity, alternative, axis, method):
|
204 |
+
''' Input validation and standardization for mannwhitneyu '''
|
205 |
+
# Would use np.asarray_chkfinite, but infs are OK
|
206 |
+
x, y = np.atleast_1d(x), np.atleast_1d(y)
|
207 |
+
if np.isnan(x).any() or np.isnan(y).any():
|
208 |
+
raise ValueError('`x` and `y` must not contain NaNs.')
|
209 |
+
if np.size(x) == 0 or np.size(y) == 0:
|
210 |
+
raise ValueError('`x` and `y` must be of nonzero size.')
|
211 |
+
|
212 |
+
bools = {True, False}
|
213 |
+
if use_continuity not in bools:
|
214 |
+
raise ValueError(f'`use_continuity` must be one of {bools}.')
|
215 |
+
|
216 |
+
alternatives = {"two-sided", "less", "greater"}
|
217 |
+
alternative = alternative.lower()
|
218 |
+
if alternative not in alternatives:
|
219 |
+
raise ValueError(f'`alternative` must be one of {alternatives}.')
|
220 |
+
|
221 |
+
axis_int = int(axis)
|
222 |
+
if axis != axis_int:
|
223 |
+
raise ValueError('`axis` must be an integer.')
|
224 |
+
|
225 |
+
if not isinstance(method, stats.PermutationMethod):
|
226 |
+
methods = {"asymptotic", "exact", "auto"}
|
227 |
+
method = method.lower()
|
228 |
+
if method not in methods:
|
229 |
+
raise ValueError(f'`method` must be one of {methods}.')
|
230 |
+
|
231 |
+
return x, y, use_continuity, alternative, axis_int, method
|
232 |
+
|
233 |
+
|
234 |
+
def _mwu_choose_method(n1, n2, ties):
|
235 |
+
"""Choose method 'asymptotic' or 'exact' depending on input size, ties"""
|
236 |
+
|
237 |
+
# if both inputs are large, asymptotic is OK
|
238 |
+
if n1 > 8 and n2 > 8:
|
239 |
+
return "asymptotic"
|
240 |
+
|
241 |
+
# if there are any ties, asymptotic is preferred
|
242 |
+
if ties:
|
243 |
+
return "asymptotic"
|
244 |
+
|
245 |
+
return "exact"
|
246 |
+
|
247 |
+
|
248 |
+
MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue'))
|
249 |
+
|
250 |
+
|
251 |
+
@_axis_nan_policy_factory(MannwhitneyuResult, n_samples=2)
|
252 |
+
def mannwhitneyu(x, y, use_continuity=True, alternative="two-sided",
|
253 |
+
axis=0, method="auto"):
|
254 |
+
r'''Perform the Mann-Whitney U rank test on two independent samples.
|
255 |
+
|
256 |
+
The Mann-Whitney U test is a nonparametric test of the null hypothesis
|
257 |
+
that the distribution underlying sample `x` is the same as the
|
258 |
+
distribution underlying sample `y`. It is often used as a test of
|
259 |
+
difference in location between distributions.
|
260 |
+
|
261 |
+
Parameters
|
262 |
+
----------
|
263 |
+
x, y : array-like
|
264 |
+
N-d arrays of samples. The arrays must be broadcastable except along
|
265 |
+
the dimension given by `axis`.
|
266 |
+
use_continuity : bool, optional
|
267 |
+
Whether a continuity correction (1/2) should be applied.
|
268 |
+
Default is True when `method` is ``'asymptotic'``; has no effect
|
269 |
+
otherwise.
|
270 |
+
alternative : {'two-sided', 'less', 'greater'}, optional
|
271 |
+
Defines the alternative hypothesis. Default is 'two-sided'.
|
272 |
+
Let *F(u)* and *G(u)* be the cumulative distribution functions of the
|
273 |
+
distributions underlying `x` and `y`, respectively. Then the following
|
274 |
+
alternative hypotheses are available:
|
275 |
+
|
276 |
+
* 'two-sided': the distributions are not equal, i.e. *F(u) ≠ G(u)* for
|
277 |
+
at least one *u*.
|
278 |
+
* 'less': the distribution underlying `x` is stochastically less
|
279 |
+
than the distribution underlying `y`, i.e. *F(u) > G(u)* for all *u*.
|
280 |
+
* 'greater': the distribution underlying `x` is stochastically greater
|
281 |
+
than the distribution underlying `y`, i.e. *F(u) < G(u)* for all *u*.
|
282 |
+
|
283 |
+
Note that the mathematical expressions in the alternative hypotheses
|
284 |
+
above describe the CDFs of the underlying distributions. The directions
|
285 |
+
of the inequalities appear inconsistent with the natural language
|
286 |
+
description at first glance, but they are not. For example, suppose
|
287 |
+
*X* and *Y* are random variables that follow distributions with CDFs
|
288 |
+
*F* and *G*, respectively. If *F(u) > G(u)* for all *u*, samples drawn
|
289 |
+
from *X* tend to be less than those drawn from *Y*.
|
290 |
+
|
291 |
+
Under a more restrictive set of assumptions, the alternative hypotheses
|
292 |
+
can be expressed in terms of the locations of the distributions;
|
293 |
+
see [5] section 5.1.
|
294 |
+
axis : int, optional
|
295 |
+
Axis along which to perform the test. Default is 0.
|
296 |
+
method : {'auto', 'asymptotic', 'exact'} or `PermutationMethod` instance, optional
|
297 |
+
Selects the method used to calculate the *p*-value.
|
298 |
+
Default is 'auto'. The following options are available.
|
299 |
+
|
300 |
+
* ``'asymptotic'``: compares the standardized test statistic
|
301 |
+
against the normal distribution, correcting for ties.
|
302 |
+
* ``'exact'``: computes the exact *p*-value by comparing the observed
|
303 |
+
:math:`U` statistic against the exact distribution of the :math:`U`
|
304 |
+
statistic under the null hypothesis. No correction is made for ties.
|
305 |
+
* ``'auto'``: chooses ``'exact'`` when the size of one of the samples
|
306 |
+
is less than or equal to 8 and there are no ties;
|
307 |
+
chooses ``'asymptotic'`` otherwise.
|
308 |
+
* `PermutationMethod` instance. In this case, the p-value
|
309 |
+
is computed using `permutation_test` with the provided
|
310 |
+
configuration options and other appropriate settings.
|
311 |
+
|
312 |
+
Returns
|
313 |
+
-------
|
314 |
+
res : MannwhitneyuResult
|
315 |
+
An object containing attributes:
|
316 |
+
|
317 |
+
statistic : float
|
318 |
+
The Mann-Whitney U statistic corresponding with sample `x`. See
|
319 |
+
Notes for the test statistic corresponding with sample `y`.
|
320 |
+
pvalue : float
|
321 |
+
The associated *p*-value for the chosen `alternative`.
|
322 |
+
|
323 |
+
Notes
|
324 |
+
-----
|
325 |
+
If ``U1`` is the statistic corresponding with sample `x`, then the
|
326 |
+
statistic corresponding with sample `y` is
|
327 |
+
``U2 = x.shape[axis] * y.shape[axis] - U1``.
|
328 |
+
|
329 |
+
`mannwhitneyu` is for independent samples. For related / paired samples,
|
330 |
+
consider `scipy.stats.wilcoxon`.
|
331 |
+
|
332 |
+
`method` ``'exact'`` is recommended when there are no ties and when either
|
333 |
+
sample size is less than 8 [1]_. The implementation follows the recurrence
|
334 |
+
relation originally proposed in [1]_ as it is described in [3]_.
|
335 |
+
Note that the exact method is *not* corrected for ties, but
|
336 |
+
`mannwhitneyu` will not raise errors or warnings if there are ties in the
|
337 |
+
data. If there are ties and either samples is small (fewer than ~10
|
338 |
+
observations), consider passing an instance of `PermutationMethod`
|
339 |
+
as the `method` to perform a permutation test.
|
340 |
+
|
341 |
+
The Mann-Whitney U test is a non-parametric version of the t-test for
|
342 |
+
independent samples. When the means of samples from the populations
|
343 |
+
are normally distributed, consider `scipy.stats.ttest_ind`.
|
344 |
+
|
345 |
+
See Also
|
346 |
+
--------
|
347 |
+
scipy.stats.wilcoxon, scipy.stats.ranksums, scipy.stats.ttest_ind
|
348 |
+
|
349 |
+
References
|
350 |
+
----------
|
351 |
+
.. [1] H.B. Mann and D.R. Whitney, "On a test of whether one of two random
|
352 |
+
variables is stochastically larger than the other", The Annals of
|
353 |
+
Mathematical Statistics, Vol. 18, pp. 50-60, 1947.
|
354 |
+
.. [2] Mann-Whitney U Test, Wikipedia,
|
355 |
+
http://en.wikipedia.org/wiki/Mann-Whitney_U_test
|
356 |
+
.. [3] A. Di Bucchianico, "Combinatorics, computer algebra, and the
|
357 |
+
Wilcoxon-Mann-Whitney test", Journal of Statistical Planning and
|
358 |
+
Inference, Vol. 79, pp. 349-364, 1999.
|
359 |
+
.. [4] Rosie Shier, "Statistics: 2.3 The Mann-Whitney U Test", Mathematics
|
360 |
+
Learning Support Centre, 2004.
|
361 |
+
.. [5] Michael P. Fay and Michael A. Proschan. "Wilcoxon-Mann-Whitney
|
362 |
+
or t-test? On assumptions for hypothesis tests and multiple \
|
363 |
+
interpretations of decision rules." Statistics surveys, Vol. 4, pp.
|
364 |
+
1-39, 2010. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857732/
|
365 |
+
|
366 |
+
Examples
|
367 |
+
--------
|
368 |
+
We follow the example from [4]_: nine randomly sampled young adults were
|
369 |
+
diagnosed with type II diabetes at the ages below.
|
370 |
+
|
371 |
+
>>> males = [19, 22, 16, 29, 24]
|
372 |
+
>>> females = [20, 11, 17, 12]
|
373 |
+
|
374 |
+
We use the Mann-Whitney U test to assess whether there is a statistically
|
375 |
+
significant difference in the diagnosis age of males and females.
|
376 |
+
The null hypothesis is that the distribution of male diagnosis ages is
|
377 |
+
the same as the distribution of female diagnosis ages. We decide
|
378 |
+
that a confidence level of 95% is required to reject the null hypothesis
|
379 |
+
in favor of the alternative that the distributions are different.
|
380 |
+
Since the number of samples is very small and there are no ties in the
|
381 |
+
data, we can compare the observed test statistic against the *exact*
|
382 |
+
distribution of the test statistic under the null hypothesis.
|
383 |
+
|
384 |
+
>>> from scipy.stats import mannwhitneyu
|
385 |
+
>>> U1, p = mannwhitneyu(males, females, method="exact")
|
386 |
+
>>> print(U1)
|
387 |
+
17.0
|
388 |
+
|
389 |
+
`mannwhitneyu` always reports the statistic associated with the first
|
390 |
+
sample, which, in this case, is males. This agrees with :math:`U_M = 17`
|
391 |
+
reported in [4]_. The statistic associated with the second statistic
|
392 |
+
can be calculated:
|
393 |
+
|
394 |
+
>>> nx, ny = len(males), len(females)
|
395 |
+
>>> U2 = nx*ny - U1
|
396 |
+
>>> print(U2)
|
397 |
+
3.0
|
398 |
+
|
399 |
+
This agrees with :math:`U_F = 3` reported in [4]_. The two-sided
|
400 |
+
*p*-value can be calculated from either statistic, and the value produced
|
401 |
+
by `mannwhitneyu` agrees with :math:`p = 0.11` reported in [4]_.
|
402 |
+
|
403 |
+
>>> print(p)
|
404 |
+
0.1111111111111111
|
405 |
+
|
406 |
+
The exact distribution of the test statistic is asymptotically normal, so
|
407 |
+
the example continues by comparing the exact *p*-value against the
|
408 |
+
*p*-value produced using the normal approximation.
|
409 |
+
|
410 |
+
>>> _, pnorm = mannwhitneyu(males, females, method="asymptotic")
|
411 |
+
>>> print(pnorm)
|
412 |
+
0.11134688653314041
|
413 |
+
|
414 |
+
Here `mannwhitneyu`'s reported *p*-value appears to conflict with the
|
415 |
+
value :math:`p = 0.09` given in [4]_. The reason is that [4]_
|
416 |
+
does not apply the continuity correction performed by `mannwhitneyu`;
|
417 |
+
`mannwhitneyu` reduces the distance between the test statistic and the
|
418 |
+
mean :math:`\mu = n_x n_y / 2` by 0.5 to correct for the fact that the
|
419 |
+
discrete statistic is being compared against a continuous distribution.
|
420 |
+
Here, the :math:`U` statistic used is less than the mean, so we reduce
|
421 |
+
the distance by adding 0.5 in the numerator.
|
422 |
+
|
423 |
+
>>> import numpy as np
|
424 |
+
>>> from scipy.stats import norm
|
425 |
+
>>> U = min(U1, U2)
|
426 |
+
>>> N = nx + ny
|
427 |
+
>>> z = (U - nx*ny/2 + 0.5) / np.sqrt(nx*ny * (N + 1)/ 12)
|
428 |
+
>>> p = 2 * norm.cdf(z) # use CDF to get p-value from smaller statistic
|
429 |
+
>>> print(p)
|
430 |
+
0.11134688653314041
|
431 |
+
|
432 |
+
If desired, we can disable the continuity correction to get a result
|
433 |
+
that agrees with that reported in [4]_.
|
434 |
+
|
435 |
+
>>> _, pnorm = mannwhitneyu(males, females, use_continuity=False,
|
436 |
+
... method="asymptotic")
|
437 |
+
>>> print(pnorm)
|
438 |
+
0.0864107329737
|
439 |
+
|
440 |
+
Regardless of whether we perform an exact or asymptotic test, the
|
441 |
+
probability of the test statistic being as extreme or more extreme by
|
442 |
+
chance exceeds 5%, so we do not consider the results statistically
|
443 |
+
significant.
|
444 |
+
|
445 |
+
Suppose that, before seeing the data, we had hypothesized that females
|
446 |
+
would tend to be diagnosed at a younger age than males.
|
447 |
+
In that case, it would be natural to provide the female ages as the
|
448 |
+
first input, and we would have performed a one-sided test using
|
449 |
+
``alternative = 'less'``: females are diagnosed at an age that is
|
450 |
+
stochastically less than that of males.
|
451 |
+
|
452 |
+
>>> res = mannwhitneyu(females, males, alternative="less", method="exact")
|
453 |
+
>>> print(res)
|
454 |
+
MannwhitneyuResult(statistic=3.0, pvalue=0.05555555555555555)
|
455 |
+
|
456 |
+
Again, the probability of getting a sufficiently low value of the
|
457 |
+
test statistic by chance under the null hypothesis is greater than 5%,
|
458 |
+
so we do not reject the null hypothesis in favor of our alternative.
|
459 |
+
|
460 |
+
If it is reasonable to assume that the means of samples from the
|
461 |
+
populations are normally distributed, we could have used a t-test to
|
462 |
+
perform the analysis.
|
463 |
+
|
464 |
+
>>> from scipy.stats import ttest_ind
|
465 |
+
>>> res = ttest_ind(females, males, alternative="less")
|
466 |
+
>>> print(res)
|
467 |
+
Ttest_indResult(statistic=-2.239334696520584, pvalue=0.030068441095757924)
|
468 |
+
|
469 |
+
Under this assumption, the *p*-value would be low enough to reject the
|
470 |
+
null hypothesis in favor of the alternative.
|
471 |
+
|
472 |
+
'''
|
473 |
+
|
474 |
+
x, y, use_continuity, alternative, axis_int, method = (
|
475 |
+
_mwu_input_validation(x, y, use_continuity, alternative, axis, method))
|
476 |
+
|
477 |
+
x, y, xy = _broadcast_concatenate(x, y, axis)
|
478 |
+
|
479 |
+
n1, n2 = x.shape[-1], y.shape[-1]
|
480 |
+
|
481 |
+
# Follows [2]
|
482 |
+
ranks, t = _rankdata(xy, 'average', return_ties=True) # method 2, step 1
|
483 |
+
R1 = ranks[..., :n1].sum(axis=-1) # method 2, step 2
|
484 |
+
U1 = R1 - n1*(n1+1)/2 # method 2, step 3
|
485 |
+
U2 = n1 * n2 - U1 # as U1 + U2 = n1 * n2
|
486 |
+
|
487 |
+
if alternative == "greater":
|
488 |
+
U, f = U1, 1 # U is the statistic to use for p-value, f is a factor
|
489 |
+
elif alternative == "less":
|
490 |
+
U, f = U2, 1 # Due to symmetry, use SF of U2 rather than CDF of U1
|
491 |
+
else:
|
492 |
+
U, f = np.maximum(U1, U2), 2 # multiply SF by two for two-sided test
|
493 |
+
|
494 |
+
if method == "auto":
|
495 |
+
method = _mwu_choose_method(n1, n2, np.any(t > 1))
|
496 |
+
|
497 |
+
if method == "exact":
|
498 |
+
p = _mwu_state.sf(U.astype(int), min(n1, n2), max(n1, n2))
|
499 |
+
elif method == "asymptotic":
|
500 |
+
z = _get_mwu_z(U, n1, n2, t, continuity=use_continuity)
|
501 |
+
p = stats.norm.sf(z)
|
502 |
+
else: # `PermutationMethod` instance (already validated)
|
503 |
+
def statistic(x, y, axis):
|
504 |
+
return mannwhitneyu(x, y, use_continuity=use_continuity,
|
505 |
+
alternative=alternative, axis=axis,
|
506 |
+
method="asymptotic").statistic
|
507 |
+
|
508 |
+
res = stats.permutation_test((x, y), statistic, axis=axis,
|
509 |
+
**method._asdict(), alternative=alternative)
|
510 |
+
p = res.pvalue
|
511 |
+
f = 1
|
512 |
+
|
513 |
+
p *= f
|
514 |
+
|
515 |
+
# Ensure that test statistic is not greater than 1
|
516 |
+
# This could happen for exact test when U = m*n/2
|
517 |
+
p = np.clip(p, 0, 1)
|
518 |
+
|
519 |
+
return MannwhitneyuResult(U1, p)
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_mvn.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (85 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_qmc_cy.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (287 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_rvs_sampling.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from scipy.stats.sampling import RatioUniforms
|
3 |
+
|
4 |
+
def rvs_ratio_uniforms(pdf, umax, vmin, vmax, size=1, c=0, random_state=None):
|
5 |
+
"""
|
6 |
+
Generate random samples from a probability density function using the
|
7 |
+
ratio-of-uniforms method.
|
8 |
+
|
9 |
+
.. deprecated:: 1.12.0
|
10 |
+
`rvs_ratio_uniforms` is deprecated in favour of
|
11 |
+
`scipy.stats.sampling.RatioUniforms` from version 1.12.0 and will
|
12 |
+
be removed in SciPy 1.15.0
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
pdf : callable
|
17 |
+
A function with signature `pdf(x)` that is proportional to the
|
18 |
+
probability density function of the distribution.
|
19 |
+
umax : float
|
20 |
+
The upper bound of the bounding rectangle in the u-direction.
|
21 |
+
vmin : float
|
22 |
+
The lower bound of the bounding rectangle in the v-direction.
|
23 |
+
vmax : float
|
24 |
+
The upper bound of the bounding rectangle in the v-direction.
|
25 |
+
size : int or tuple of ints, optional
|
26 |
+
Defining number of random variates (default is 1).
|
27 |
+
c : float, optional.
|
28 |
+
Shift parameter of ratio-of-uniforms method, see Notes. Default is 0.
|
29 |
+
random_state : {None, int, `numpy.random.Generator`,
|
30 |
+
`numpy.random.RandomState`}, optional
|
31 |
+
|
32 |
+
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
33 |
+
singleton is used.
|
34 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
35 |
+
seeded with `seed`.
|
36 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
37 |
+
that instance is used.
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
rvs : ndarray
|
42 |
+
The random variates distributed according to the probability
|
43 |
+
distribution defined by the pdf.
|
44 |
+
|
45 |
+
Notes
|
46 |
+
-----
|
47 |
+
Please refer to `scipy.stats.sampling.RatioUniforms` for the documentation.
|
48 |
+
"""
|
49 |
+
warnings.warn("Please use `RatioUniforms` from the "
|
50 |
+
"`scipy.stats.sampling` namespace. The "
|
51 |
+
"`scipy.stats.rvs_ratio_uniforms` namespace is deprecated "
|
52 |
+
"and will be removed in SciPy 1.15.0",
|
53 |
+
category=DeprecationWarning, stacklevel=2)
|
54 |
+
gen = RatioUniforms(pdf, umax=umax, vmin=vmin, vmax=vmax,
|
55 |
+
c=c, random_state=random_state)
|
56 |
+
return gen.rvs(size)
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/_stats.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (766 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/contingency.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Contingency table functions (:mod:`scipy.stats.contingency`)
|
3 |
+
============================================================
|
4 |
+
|
5 |
+
Functions for creating and analyzing contingency tables.
|
6 |
+
|
7 |
+
.. currentmodule:: scipy.stats.contingency
|
8 |
+
|
9 |
+
.. autosummary::
|
10 |
+
:toctree: generated/
|
11 |
+
|
12 |
+
chi2_contingency
|
13 |
+
relative_risk
|
14 |
+
odds_ratio
|
15 |
+
crosstab
|
16 |
+
association
|
17 |
+
|
18 |
+
expected_freq
|
19 |
+
margins
|
20 |
+
|
21 |
+
"""
|
22 |
+
|
23 |
+
|
24 |
+
from functools import reduce
|
25 |
+
import math
|
26 |
+
import numpy as np
|
27 |
+
from ._stats_py import power_divergence
|
28 |
+
from ._relative_risk import relative_risk
|
29 |
+
from ._crosstab import crosstab
|
30 |
+
from ._odds_ratio import odds_ratio
|
31 |
+
from scipy._lib._bunch import _make_tuple_bunch
|
32 |
+
|
33 |
+
|
34 |
+
__all__ = ['margins', 'expected_freq', 'chi2_contingency', 'crosstab',
|
35 |
+
'association', 'relative_risk', 'odds_ratio']
|
36 |
+
|
37 |
+
|
38 |
+
def margins(a):
|
39 |
+
"""Return a list of the marginal sums of the array `a`.
|
40 |
+
|
41 |
+
Parameters
|
42 |
+
----------
|
43 |
+
a : ndarray
|
44 |
+
The array for which to compute the marginal sums.
|
45 |
+
|
46 |
+
Returns
|
47 |
+
-------
|
48 |
+
margsums : list of ndarrays
|
49 |
+
A list of length `a.ndim`. `margsums[k]` is the result
|
50 |
+
of summing `a` over all axes except `k`; it has the same
|
51 |
+
number of dimensions as `a`, but the length of each axis
|
52 |
+
except axis `k` will be 1.
|
53 |
+
|
54 |
+
Examples
|
55 |
+
--------
|
56 |
+
>>> import numpy as np
|
57 |
+
>>> from scipy.stats.contingency import margins
|
58 |
+
|
59 |
+
>>> a = np.arange(12).reshape(2, 6)
|
60 |
+
>>> a
|
61 |
+
array([[ 0, 1, 2, 3, 4, 5],
|
62 |
+
[ 6, 7, 8, 9, 10, 11]])
|
63 |
+
>>> m0, m1 = margins(a)
|
64 |
+
>>> m0
|
65 |
+
array([[15],
|
66 |
+
[51]])
|
67 |
+
>>> m1
|
68 |
+
array([[ 6, 8, 10, 12, 14, 16]])
|
69 |
+
|
70 |
+
>>> b = np.arange(24).reshape(2,3,4)
|
71 |
+
>>> m0, m1, m2 = margins(b)
|
72 |
+
>>> m0
|
73 |
+
array([[[ 66]],
|
74 |
+
[[210]]])
|
75 |
+
>>> m1
|
76 |
+
array([[[ 60],
|
77 |
+
[ 92],
|
78 |
+
[124]]])
|
79 |
+
>>> m2
|
80 |
+
array([[[60, 66, 72, 78]]])
|
81 |
+
"""
|
82 |
+
margsums = []
|
83 |
+
ranged = list(range(a.ndim))
|
84 |
+
for k in ranged:
|
85 |
+
marg = np.apply_over_axes(np.sum, a, [j for j in ranged if j != k])
|
86 |
+
margsums.append(marg)
|
87 |
+
return margsums
|
88 |
+
|
89 |
+
|
90 |
+
def expected_freq(observed):
|
91 |
+
"""
|
92 |
+
Compute the expected frequencies from a contingency table.
|
93 |
+
|
94 |
+
Given an n-dimensional contingency table of observed frequencies,
|
95 |
+
compute the expected frequencies for the table based on the marginal
|
96 |
+
sums under the assumption that the groups associated with each
|
97 |
+
dimension are independent.
|
98 |
+
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
observed : array_like
|
102 |
+
The table of observed frequencies. (While this function can handle
|
103 |
+
a 1-D array, that case is trivial. Generally `observed` is at
|
104 |
+
least 2-D.)
|
105 |
+
|
106 |
+
Returns
|
107 |
+
-------
|
108 |
+
expected : ndarray of float64
|
109 |
+
The expected frequencies, based on the marginal sums of the table.
|
110 |
+
Same shape as `observed`.
|
111 |
+
|
112 |
+
Examples
|
113 |
+
--------
|
114 |
+
>>> import numpy as np
|
115 |
+
>>> from scipy.stats.contingency import expected_freq
|
116 |
+
>>> observed = np.array([[10, 10, 20],[20, 20, 20]])
|
117 |
+
>>> expected_freq(observed)
|
118 |
+
array([[ 12., 12., 16.],
|
119 |
+
[ 18., 18., 24.]])
|
120 |
+
|
121 |
+
"""
|
122 |
+
# Typically `observed` is an integer array. If `observed` has a large
|
123 |
+
# number of dimensions or holds large values, some of the following
|
124 |
+
# computations may overflow, so we first switch to floating point.
|
125 |
+
observed = np.asarray(observed, dtype=np.float64)
|
126 |
+
|
127 |
+
# Create a list of the marginal sums.
|
128 |
+
margsums = margins(observed)
|
129 |
+
|
130 |
+
# Create the array of expected frequencies. The shapes of the
|
131 |
+
# marginal sums returned by apply_over_axes() are just what we
|
132 |
+
# need for broadcasting in the following product.
|
133 |
+
d = observed.ndim
|
134 |
+
expected = reduce(np.multiply, margsums) / observed.sum() ** (d - 1)
|
135 |
+
return expected
|
136 |
+
|
137 |
+
|
138 |
+
Chi2ContingencyResult = _make_tuple_bunch(
|
139 |
+
'Chi2ContingencyResult',
|
140 |
+
['statistic', 'pvalue', 'dof', 'expected_freq'], []
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
def chi2_contingency(observed, correction=True, lambda_=None):
|
145 |
+
"""Chi-square test of independence of variables in a contingency table.
|
146 |
+
|
147 |
+
This function computes the chi-square statistic and p-value for the
|
148 |
+
hypothesis test of independence of the observed frequencies in the
|
149 |
+
contingency table [1]_ `observed`. The expected frequencies are computed
|
150 |
+
based on the marginal sums under the assumption of independence; see
|
151 |
+
`scipy.stats.contingency.expected_freq`. The number of degrees of
|
152 |
+
freedom is (expressed using numpy functions and attributes)::
|
153 |
+
|
154 |
+
dof = observed.size - sum(observed.shape) + observed.ndim - 1
|
155 |
+
|
156 |
+
|
157 |
+
Parameters
|
158 |
+
----------
|
159 |
+
observed : array_like
|
160 |
+
The contingency table. The table contains the observed frequencies
|
161 |
+
(i.e. number of occurrences) in each category. In the two-dimensional
|
162 |
+
case, the table is often described as an "R x C table".
|
163 |
+
correction : bool, optional
|
164 |
+
If True, *and* the degrees of freedom is 1, apply Yates' correction
|
165 |
+
for continuity. The effect of the correction is to adjust each
|
166 |
+
observed value by 0.5 towards the corresponding expected value.
|
167 |
+
lambda_ : float or str, optional
|
168 |
+
By default, the statistic computed in this test is Pearson's
|
169 |
+
chi-squared statistic [2]_. `lambda_` allows a statistic from the
|
170 |
+
Cressie-Read power divergence family [3]_ to be used instead. See
|
171 |
+
`scipy.stats.power_divergence` for details.
|
172 |
+
|
173 |
+
Returns
|
174 |
+
-------
|
175 |
+
res : Chi2ContingencyResult
|
176 |
+
An object containing attributes:
|
177 |
+
|
178 |
+
statistic : float
|
179 |
+
The test statistic.
|
180 |
+
pvalue : float
|
181 |
+
The p-value of the test.
|
182 |
+
dof : int
|
183 |
+
The degrees of freedom.
|
184 |
+
expected_freq : ndarray, same shape as `observed`
|
185 |
+
The expected frequencies, based on the marginal sums of the table.
|
186 |
+
|
187 |
+
See Also
|
188 |
+
--------
|
189 |
+
scipy.stats.contingency.expected_freq
|
190 |
+
scipy.stats.fisher_exact
|
191 |
+
scipy.stats.chisquare
|
192 |
+
scipy.stats.power_divergence
|
193 |
+
scipy.stats.barnard_exact
|
194 |
+
scipy.stats.boschloo_exact
|
195 |
+
|
196 |
+
Notes
|
197 |
+
-----
|
198 |
+
An often quoted guideline for the validity of this calculation is that
|
199 |
+
the test should be used only if the observed and expected frequencies
|
200 |
+
in each cell are at least 5.
|
201 |
+
|
202 |
+
This is a test for the independence of different categories of a
|
203 |
+
population. The test is only meaningful when the dimension of
|
204 |
+
`observed` is two or more. Applying the test to a one-dimensional
|
205 |
+
table will always result in `expected` equal to `observed` and a
|
206 |
+
chi-square statistic equal to 0.
|
207 |
+
|
208 |
+
This function does not handle masked arrays, because the calculation
|
209 |
+
does not make sense with missing values.
|
210 |
+
|
211 |
+
Like `scipy.stats.chisquare`, this function computes a chi-square
|
212 |
+
statistic; the convenience this function provides is to figure out the
|
213 |
+
expected frequencies and degrees of freedom from the given contingency
|
214 |
+
table. If these were already known, and if the Yates' correction was not
|
215 |
+
required, one could use `scipy.stats.chisquare`. That is, if one calls::
|
216 |
+
|
217 |
+
res = chi2_contingency(obs, correction=False)
|
218 |
+
|
219 |
+
then the following is true::
|
220 |
+
|
221 |
+
(res.statistic, res.pvalue) == stats.chisquare(obs.ravel(),
|
222 |
+
f_exp=ex.ravel(),
|
223 |
+
ddof=obs.size - 1 - dof)
|
224 |
+
|
225 |
+
The `lambda_` argument was added in version 0.13.0 of scipy.
|
226 |
+
|
227 |
+
References
|
228 |
+
----------
|
229 |
+
.. [1] "Contingency table",
|
230 |
+
https://en.wikipedia.org/wiki/Contingency_table
|
231 |
+
.. [2] "Pearson's chi-squared test",
|
232 |
+
https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
|
233 |
+
.. [3] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
|
234 |
+
Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
|
235 |
+
pp. 440-464.
|
236 |
+
.. [4] Berger, Jeffrey S. et al. "Aspirin for the Primary Prevention of
|
237 |
+
Cardiovascular Events in Women and Men: A Sex-Specific
|
238 |
+
Meta-analysis of Randomized Controlled Trials."
|
239 |
+
JAMA, 295(3):306-313, :doi:`10.1001/jama.295.3.306`, 2006.
|
240 |
+
|
241 |
+
Examples
|
242 |
+
--------
|
243 |
+
In [4]_, the use of aspirin to prevent cardiovascular events in women
|
244 |
+
and men was investigated. The study notably concluded:
|
245 |
+
|
246 |
+
...aspirin therapy reduced the risk of a composite of
|
247 |
+
cardiovascular events due to its effect on reducing the risk of
|
248 |
+
ischemic stroke in women [...]
|
249 |
+
|
250 |
+
The article lists studies of various cardiovascular events. Let's
|
251 |
+
focus on the ischemic stoke in women.
|
252 |
+
|
253 |
+
The following table summarizes the results of the experiment in which
|
254 |
+
participants took aspirin or a placebo on a regular basis for several
|
255 |
+
years. Cases of ischemic stroke were recorded::
|
256 |
+
|
257 |
+
Aspirin Control/Placebo
|
258 |
+
Ischemic stroke 176 230
|
259 |
+
No stroke 21035 21018
|
260 |
+
|
261 |
+
Is there evidence that the aspirin reduces the risk of ischemic stroke?
|
262 |
+
We begin by formulating a null hypothesis :math:`H_0`:
|
263 |
+
|
264 |
+
The effect of aspirin is equivalent to that of placebo.
|
265 |
+
|
266 |
+
Let's assess the plausibility of this hypothesis with
|
267 |
+
a chi-square test.
|
268 |
+
|
269 |
+
>>> import numpy as np
|
270 |
+
>>> from scipy.stats import chi2_contingency
|
271 |
+
>>> table = np.array([[176, 230], [21035, 21018]])
|
272 |
+
>>> res = chi2_contingency(table)
|
273 |
+
>>> res.statistic
|
274 |
+
6.892569132546561
|
275 |
+
>>> res.pvalue
|
276 |
+
0.008655478161175739
|
277 |
+
|
278 |
+
Using a significance level of 5%, we would reject the null hypothesis in
|
279 |
+
favor of the alternative hypothesis: "the effect of aspirin
|
280 |
+
is not equivalent to the effect of placebo".
|
281 |
+
Because `scipy.stats.contingency.chi2_contingency` performs a two-sided
|
282 |
+
test, the alternative hypothesis does not indicate the direction of the
|
283 |
+
effect. We can use `stats.contingency.odds_ratio` to support the
|
284 |
+
conclusion that aspirin *reduces* the risk of ischemic stroke.
|
285 |
+
|
286 |
+
Below are further examples showing how larger contingency tables can be
|
287 |
+
tested.
|
288 |
+
|
289 |
+
A two-way example (2 x 3):
|
290 |
+
|
291 |
+
>>> obs = np.array([[10, 10, 20], [20, 20, 20]])
|
292 |
+
>>> res = chi2_contingency(obs)
|
293 |
+
>>> res.statistic
|
294 |
+
2.7777777777777777
|
295 |
+
>>> res.pvalue
|
296 |
+
0.24935220877729619
|
297 |
+
>>> res.dof
|
298 |
+
2
|
299 |
+
>>> res.expected_freq
|
300 |
+
array([[ 12., 12., 16.],
|
301 |
+
[ 18., 18., 24.]])
|
302 |
+
|
303 |
+
Perform the test using the log-likelihood ratio (i.e. the "G-test")
|
304 |
+
instead of Pearson's chi-squared statistic.
|
305 |
+
|
306 |
+
>>> res = chi2_contingency(obs, lambda_="log-likelihood")
|
307 |
+
>>> res.statistic
|
308 |
+
2.7688587616781319
|
309 |
+
>>> res.pvalue
|
310 |
+
0.25046668010954165
|
311 |
+
|
312 |
+
A four-way example (2 x 2 x 2 x 2):
|
313 |
+
|
314 |
+
>>> obs = np.array(
|
315 |
+
... [[[[12, 17],
|
316 |
+
... [11, 16]],
|
317 |
+
... [[11, 12],
|
318 |
+
... [15, 16]]],
|
319 |
+
... [[[23, 15],
|
320 |
+
... [30, 22]],
|
321 |
+
... [[14, 17],
|
322 |
+
... [15, 16]]]])
|
323 |
+
>>> res = chi2_contingency(obs)
|
324 |
+
>>> res.statistic
|
325 |
+
8.7584514426741897
|
326 |
+
>>> res.pvalue
|
327 |
+
0.64417725029295503
|
328 |
+
"""
|
329 |
+
observed = np.asarray(observed)
|
330 |
+
if np.any(observed < 0):
|
331 |
+
raise ValueError("All values in `observed` must be nonnegative.")
|
332 |
+
if observed.size == 0:
|
333 |
+
raise ValueError("No data; `observed` has size 0.")
|
334 |
+
|
335 |
+
expected = expected_freq(observed)
|
336 |
+
if np.any(expected == 0):
|
337 |
+
# Include one of the positions where expected is zero in
|
338 |
+
# the exception message.
|
339 |
+
zeropos = list(zip(*np.nonzero(expected == 0)))[0]
|
340 |
+
raise ValueError("The internally computed table of expected "
|
341 |
+
f"frequencies has a zero element at {zeropos}.")
|
342 |
+
|
343 |
+
# The degrees of freedom
|
344 |
+
dof = expected.size - sum(expected.shape) + expected.ndim - 1
|
345 |
+
|
346 |
+
if dof == 0:
|
347 |
+
# Degenerate case; this occurs when `observed` is 1D (or, more
|
348 |
+
# generally, when it has only one nontrivial dimension). In this
|
349 |
+
# case, we also have observed == expected, so chi2 is 0.
|
350 |
+
chi2 = 0.0
|
351 |
+
p = 1.0
|
352 |
+
else:
|
353 |
+
if dof == 1 and correction:
|
354 |
+
# Adjust `observed` according to Yates' correction for continuity.
|
355 |
+
# Magnitude of correction no bigger than difference; see gh-13875
|
356 |
+
diff = expected - observed
|
357 |
+
direction = np.sign(diff)
|
358 |
+
magnitude = np.minimum(0.5, np.abs(diff))
|
359 |
+
observed = observed + magnitude * direction
|
360 |
+
|
361 |
+
chi2, p = power_divergence(observed, expected,
|
362 |
+
ddof=observed.size - 1 - dof, axis=None,
|
363 |
+
lambda_=lambda_)
|
364 |
+
|
365 |
+
return Chi2ContingencyResult(chi2, p, dof, expected)
|
366 |
+
|
367 |
+
|
368 |
+
def association(observed, method="cramer", correction=False, lambda_=None):
|
369 |
+
"""Calculates degree of association between two nominal variables.
|
370 |
+
|
371 |
+
The function provides the option for computing one of three measures of
|
372 |
+
association between two nominal variables from the data given in a 2d
|
373 |
+
contingency table: Tschuprow's T, Pearson's Contingency Coefficient
|
374 |
+
and Cramer's V.
|
375 |
+
|
376 |
+
Parameters
|
377 |
+
----------
|
378 |
+
observed : array-like
|
379 |
+
The array of observed values
|
380 |
+
method : {"cramer", "tschuprow", "pearson"} (default = "cramer")
|
381 |
+
The association test statistic.
|
382 |
+
correction : bool, optional
|
383 |
+
Inherited from `scipy.stats.contingency.chi2_contingency()`
|
384 |
+
lambda_ : float or str, optional
|
385 |
+
Inherited from `scipy.stats.contingency.chi2_contingency()`
|
386 |
+
|
387 |
+
Returns
|
388 |
+
-------
|
389 |
+
statistic : float
|
390 |
+
Value of the test statistic
|
391 |
+
|
392 |
+
Notes
|
393 |
+
-----
|
394 |
+
Cramer's V, Tschuprow's T and Pearson's Contingency Coefficient, all
|
395 |
+
measure the degree to which two nominal or ordinal variables are related,
|
396 |
+
or the level of their association. This differs from correlation, although
|
397 |
+
many often mistakenly consider them equivalent. Correlation measures in
|
398 |
+
what way two variables are related, whereas, association measures how
|
399 |
+
related the variables are. As such, association does not subsume
|
400 |
+
independent variables, and is rather a test of independence. A value of
|
401 |
+
1.0 indicates perfect association, and 0.0 means the variables have no
|
402 |
+
association.
|
403 |
+
|
404 |
+
Both the Cramer's V and Tschuprow's T are extensions of the phi
|
405 |
+
coefficient. Moreover, due to the close relationship between the
|
406 |
+
Cramer's V and Tschuprow's T the returned values can often be similar
|
407 |
+
or even equivalent. They are likely to diverge more as the array shape
|
408 |
+
diverges from a 2x2.
|
409 |
+
|
410 |
+
References
|
411 |
+
----------
|
412 |
+
.. [1] "Tschuprow's T",
|
413 |
+
https://en.wikipedia.org/wiki/Tschuprow's_T
|
414 |
+
.. [2] Tschuprow, A. A. (1939)
|
415 |
+
Principles of the Mathematical Theory of Correlation;
|
416 |
+
translated by M. Kantorowitsch. W. Hodge & Co.
|
417 |
+
.. [3] "Cramer's V", https://en.wikipedia.org/wiki/Cramer's_V
|
418 |
+
.. [4] "Nominal Association: Phi and Cramer's V",
|
419 |
+
http://www.people.vcu.edu/~pdattalo/702SuppRead/MeasAssoc/NominalAssoc.html
|
420 |
+
.. [5] Gingrich, Paul, "Association Between Variables",
|
421 |
+
http://uregina.ca/~gingrich/ch11a.pdf
|
422 |
+
|
423 |
+
Examples
|
424 |
+
--------
|
425 |
+
An example with a 4x2 contingency table:
|
426 |
+
|
427 |
+
>>> import numpy as np
|
428 |
+
>>> from scipy.stats.contingency import association
|
429 |
+
>>> obs4x2 = np.array([[100, 150], [203, 322], [420, 700], [320, 210]])
|
430 |
+
|
431 |
+
Pearson's contingency coefficient
|
432 |
+
|
433 |
+
>>> association(obs4x2, method="pearson")
|
434 |
+
0.18303298140595667
|
435 |
+
|
436 |
+
Cramer's V
|
437 |
+
|
438 |
+
>>> association(obs4x2, method="cramer")
|
439 |
+
0.18617813077483678
|
440 |
+
|
441 |
+
Tschuprow's T
|
442 |
+
|
443 |
+
>>> association(obs4x2, method="tschuprow")
|
444 |
+
0.14146478765062995
|
445 |
+
"""
|
446 |
+
arr = np.asarray(observed)
|
447 |
+
if not np.issubdtype(arr.dtype, np.integer):
|
448 |
+
raise ValueError("`observed` must be an integer array.")
|
449 |
+
|
450 |
+
if len(arr.shape) != 2:
|
451 |
+
raise ValueError("method only accepts 2d arrays")
|
452 |
+
|
453 |
+
chi2_stat = chi2_contingency(arr, correction=correction,
|
454 |
+
lambda_=lambda_)
|
455 |
+
|
456 |
+
phi2 = chi2_stat.statistic / arr.sum()
|
457 |
+
n_rows, n_cols = arr.shape
|
458 |
+
if method == "cramer":
|
459 |
+
value = phi2 / min(n_cols - 1, n_rows - 1)
|
460 |
+
elif method == "tschuprow":
|
461 |
+
value = phi2 / math.sqrt((n_rows - 1) * (n_cols - 1))
|
462 |
+
elif method == 'pearson':
|
463 |
+
value = phi2 / (1 + phi2)
|
464 |
+
else:
|
465 |
+
raise ValueError("Invalid argument value: 'method' argument must "
|
466 |
+
"be 'cramer', 'tschuprow', or 'pearson'")
|
467 |
+
|
468 |
+
return math.sqrt(value)
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/kde.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.stats` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'gaussian_kde', 'linalg', 'logsumexp', 'check_random_state',
|
10 |
+
'atleast_2d', 'reshape', 'newaxis', 'exp', 'ravel', 'power',
|
11 |
+
'atleast_1d', 'squeeze', 'sum', 'transpose', 'cov',
|
12 |
+
'gaussian_kernel_estimate'
|
13 |
+
]
|
14 |
+
|
15 |
+
|
16 |
+
def __dir__():
|
17 |
+
return __all__
|
18 |
+
|
19 |
+
|
20 |
+
def __getattr__(name):
|
21 |
+
return _sub_module_deprecation(sub_package="stats", module="kde",
|
22 |
+
private_modules=["_kde"], all=__all__,
|
23 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/qmc.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
====================================================
|
3 |
+
Quasi-Monte Carlo submodule (:mod:`scipy.stats.qmc`)
|
4 |
+
====================================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.stats.qmc
|
7 |
+
|
8 |
+
This module provides Quasi-Monte Carlo generators and associated helper
|
9 |
+
functions.
|
10 |
+
|
11 |
+
|
12 |
+
Quasi-Monte Carlo
|
13 |
+
=================
|
14 |
+
|
15 |
+
Engines
|
16 |
+
-------
|
17 |
+
|
18 |
+
.. autosummary::
|
19 |
+
:toctree: generated/
|
20 |
+
|
21 |
+
QMCEngine
|
22 |
+
Sobol
|
23 |
+
Halton
|
24 |
+
LatinHypercube
|
25 |
+
PoissonDisk
|
26 |
+
MultinomialQMC
|
27 |
+
MultivariateNormalQMC
|
28 |
+
|
29 |
+
Helpers
|
30 |
+
-------
|
31 |
+
|
32 |
+
.. autosummary::
|
33 |
+
:toctree: generated/
|
34 |
+
|
35 |
+
discrepancy
|
36 |
+
geometric_discrepancy
|
37 |
+
update_discrepancy
|
38 |
+
scale
|
39 |
+
|
40 |
+
|
41 |
+
Introduction to Quasi-Monte Carlo
|
42 |
+
=================================
|
43 |
+
|
44 |
+
Quasi-Monte Carlo (QMC) methods [1]_, [2]_, [3]_ provide an
|
45 |
+
:math:`n \times d` array of numbers in :math:`[0,1]`. They can be used in
|
46 |
+
place of :math:`n` points from the :math:`U[0,1]^{d}` distribution. Compared to
|
47 |
+
random points, QMC points are designed to have fewer gaps and clumps. This is
|
48 |
+
quantified by discrepancy measures [4]_. From the Koksma-Hlawka
|
49 |
+
inequality [5]_ we know that low discrepancy reduces a bound on
|
50 |
+
integration error. Averaging a function :math:`f` over :math:`n` QMC points
|
51 |
+
can achieve an integration error close to :math:`O(n^{-1})` for well
|
52 |
+
behaved functions [2]_.
|
53 |
+
|
54 |
+
Most QMC constructions are designed for special values of :math:`n`
|
55 |
+
such as powers of 2 or large primes. Changing the sample
|
56 |
+
size by even one can degrade their performance, even their
|
57 |
+
rate of convergence [6]_. For instance :math:`n=100` points may give less
|
58 |
+
accuracy than :math:`n=64` if the method was designed for :math:`n=2^m`.
|
59 |
+
|
60 |
+
Some QMC constructions are extensible in :math:`n`: we can find
|
61 |
+
another special sample size :math:`n' > n` and often an infinite
|
62 |
+
sequence of increasing special sample sizes. Some QMC
|
63 |
+
constructions are extensible in :math:`d`: we can increase the dimension,
|
64 |
+
possibly to some upper bound, and typically without requiring
|
65 |
+
special values of :math:`d`. Some QMC methods are extensible in
|
66 |
+
both :math:`n` and :math:`d`.
|
67 |
+
|
68 |
+
QMC points are deterministic. That makes it hard to estimate the accuracy of
|
69 |
+
integrals estimated by averages over QMC points. Randomized QMC (RQMC) [7]_
|
70 |
+
points are constructed so that each point is individually :math:`U[0,1]^{d}`
|
71 |
+
while collectively the :math:`n` points retain their low discrepancy.
|
72 |
+
One can make :math:`R` independent replications of RQMC points to
|
73 |
+
see how stable a computation is. From :math:`R` independent values,
|
74 |
+
a t-test (or bootstrap t-test [8]_) then gives approximate confidence
|
75 |
+
intervals on the mean value. Some RQMC methods produce a
|
76 |
+
root mean squared error that is actually :math:`o(1/n)` and smaller than
|
77 |
+
the rate seen in unrandomized QMC. An intuitive explanation is
|
78 |
+
that the error is a sum of many small ones and random errors
|
79 |
+
cancel in a way that deterministic ones do not. RQMC also
|
80 |
+
has advantages on integrands that are singular or, for other
|
81 |
+
reasons, fail to be Riemann integrable.
|
82 |
+
|
83 |
+
(R)QMC cannot beat Bahkvalov's curse of dimension (see [9]_). For
|
84 |
+
any random or deterministic method, there are worst case functions
|
85 |
+
that will give it poor performance in high dimensions. A worst
|
86 |
+
case function for QMC might be 0 at all n points but very
|
87 |
+
large elsewhere. Worst case analyses get very pessimistic
|
88 |
+
in high dimensions. (R)QMC can bring a great improvement over
|
89 |
+
MC when the functions on which it is used are not worst case.
|
90 |
+
For instance (R)QMC can be especially effective on integrands
|
91 |
+
that are well approximated by sums of functions of
|
92 |
+
some small number of their input variables at a time [10]_, [11]_.
|
93 |
+
That property is often a surprising finding about those functions.
|
94 |
+
|
95 |
+
Also, to see an improvement over IID MC, (R)QMC requires a bit of smoothness of
|
96 |
+
the integrand, roughly the mixed first order derivative in each direction,
|
97 |
+
:math:`\partial^d f/\partial x_1 \cdots \partial x_d`, must be integral.
|
98 |
+
For instance, a function that is 1 inside the hypersphere and 0 outside of it
|
99 |
+
has infinite variation in the sense of Hardy and Krause for any dimension
|
100 |
+
:math:`d = 2`.
|
101 |
+
|
102 |
+
Scrambled nets are a kind of RQMC that have some valuable robustness
|
103 |
+
properties [12]_. If the integrand is square integrable, they give variance
|
104 |
+
:math:`var_{SNET} = o(1/n)`. There is a finite upper bound on
|
105 |
+
:math:`var_{SNET} / var_{MC}` that holds simultaneously for every square
|
106 |
+
integrable integrand. Scrambled nets satisfy a strong law of large numbers
|
107 |
+
for :math:`f` in :math:`L^p` when :math:`p>1`. In some
|
108 |
+
special cases there is a central limit theorem [13]_. For smooth enough
|
109 |
+
integrands they can achieve RMSE nearly :math:`O(n^{-3})`. See [12]_
|
110 |
+
for references about these properties.
|
111 |
+
|
112 |
+
The main kinds of QMC methods are lattice rules [14]_ and digital
|
113 |
+
nets and sequences [2]_, [15]_. The theories meet up in polynomial
|
114 |
+
lattice rules [16]_ which can produce digital nets. Lattice rules
|
115 |
+
require some form of search for good constructions. For digital
|
116 |
+
nets there are widely used default constructions.
|
117 |
+
|
118 |
+
The most widely used QMC methods are Sobol' sequences [17]_.
|
119 |
+
These are digital nets. They are extensible in both :math:`n` and :math:`d`.
|
120 |
+
They can be scrambled. The special sample sizes are powers
|
121 |
+
of 2. Another popular method are Halton sequences [18]_.
|
122 |
+
The constructions resemble those of digital nets. The earlier
|
123 |
+
dimensions have much better equidistribution properties than
|
124 |
+
later ones. There are essentially no special sample sizes.
|
125 |
+
They are not thought to be as accurate as Sobol' sequences.
|
126 |
+
They can be scrambled. The nets of Faure [19]_ are also widely
|
127 |
+
used. All dimensions are equally good, but the special sample
|
128 |
+
sizes grow rapidly with dimension :math:`d`. They can be scrambled.
|
129 |
+
The nets of Niederreiter and Xing [20]_ have the best asymptotic
|
130 |
+
properties but have not shown good empirical performance [21]_.
|
131 |
+
|
132 |
+
Higher order digital nets are formed by a digit interleaving process
|
133 |
+
in the digits of the constructed points. They can achieve higher
|
134 |
+
levels of asymptotic accuracy given higher smoothness conditions on :math:`f`
|
135 |
+
and they can be scrambled [22]_. There is little or no empirical work
|
136 |
+
showing the improved rate to be attained.
|
137 |
+
|
138 |
+
Using QMC is like using the entire period of a small random
|
139 |
+
number generator. The constructions are similar and so
|
140 |
+
therefore are the computational costs [23]_.
|
141 |
+
|
142 |
+
(R)QMC is sometimes improved by passing the points through
|
143 |
+
a baker's transformation (tent function) prior to using them.
|
144 |
+
That function has the form :math:`1-2|x-1/2|`. As :math:`x` goes from 0 to
|
145 |
+
1, this function goes from 0 to 1 and then back. It is very
|
146 |
+
useful to produce a periodic function for lattice rules [14]_,
|
147 |
+
and sometimes it improves the convergence rate [24]_.
|
148 |
+
|
149 |
+
It is not straightforward to apply QMC methods to Markov
|
150 |
+
chain Monte Carlo (MCMC). We can think of MCMC as using
|
151 |
+
:math:`n=1` point in :math:`[0,1]^{d}` for very large :math:`d`, with
|
152 |
+
ergodic results corresponding to :math:`d \to \infty`. One proposal is
|
153 |
+
in [25]_ and under strong conditions an improved rate of convergence
|
154 |
+
has been shown [26]_.
|
155 |
+
|
156 |
+
Returning to Sobol' points: there are many versions depending
|
157 |
+
on what are called direction numbers. Those are the result of
|
158 |
+
searches and are tabulated. A very widely used set of direction
|
159 |
+
numbers come from [27]_. It is extensible in dimension up to
|
160 |
+
:math:`d=21201`.
|
161 |
+
|
162 |
+
References
|
163 |
+
----------
|
164 |
+
.. [1] Owen, Art B. "Monte Carlo Book: the Quasi-Monte Carlo parts." 2019.
|
165 |
+
.. [2] Niederreiter, Harald. "Random number generation and quasi-Monte Carlo
|
166 |
+
methods." Society for Industrial and Applied Mathematics, 1992.
|
167 |
+
.. [3] Dick, Josef, Frances Y. Kuo, and Ian H. Sloan. "High-dimensional
|
168 |
+
integration: the quasi-Monte Carlo way." Acta Numerica no. 22: 133, 2013.
|
169 |
+
.. [4] Aho, A. V., C. Aistleitner, T. Anderson, K. Appel, V. Arnol'd, N.
|
170 |
+
Aronszajn, D. Asotsky et al. "W. Chen et al.(eds.), "A Panorama of
|
171 |
+
Discrepancy Theory", Sringer International Publishing,
|
172 |
+
Switzerland: 679, 2014.
|
173 |
+
.. [5] Hickernell, Fred J. "Koksma-Hlawka Inequality." Wiley StatsRef:
|
174 |
+
Statistics Reference Online, 2014.
|
175 |
+
.. [6] Owen, Art B. "On dropping the first Sobol' point." :arxiv:`2008.08051`,
|
176 |
+
2020.
|
177 |
+
.. [7] L'Ecuyer, Pierre, and Christiane Lemieux. "Recent advances in randomized
|
178 |
+
quasi-Monte Carlo methods." In Modeling uncertainty, pp. 419-474. Springer,
|
179 |
+
New York, NY, 2002.
|
180 |
+
.. [8] DiCiccio, Thomas J., and Bradley Efron. "Bootstrap confidence
|
181 |
+
intervals." Statistical science: 189-212, 1996.
|
182 |
+
.. [9] Dimov, Ivan T. "Monte Carlo methods for applied scientists." World
|
183 |
+
Scientific, 2008.
|
184 |
+
.. [10] Caflisch, Russel E., William J. Morokoff, and Art B. Owen. "Valuation
|
185 |
+
of mortgage backed securities using Brownian bridges to reduce effective
|
186 |
+
dimension." Journal of Computational Finance: no. 1 27-46, 1997.
|
187 |
+
.. [11] Sloan, Ian H., and Henryk Wozniakowski. "When are quasi-Monte Carlo
|
188 |
+
algorithms efficient for high dimensional integrals?." Journal of Complexity
|
189 |
+
14, no. 1 (1998): 1-33.
|
190 |
+
.. [12] Owen, Art B., and Daniel Rudolf, "A strong law of large numbers for
|
191 |
+
scrambled net integration." SIAM Review, to appear.
|
192 |
+
.. [13] Loh, Wei-Liem. "On the asymptotic distribution of scrambled net
|
193 |
+
quadrature." The Annals of Statistics 31, no. 4: 1282-1324, 2003.
|
194 |
+
.. [14] Sloan, Ian H. and S. Joe. "Lattice methods for multiple integration."
|
195 |
+
Oxford University Press, 1994.
|
196 |
+
.. [15] Dick, Josef, and Friedrich Pillichshammer. "Digital nets and sequences:
|
197 |
+
discrepancy theory and quasi-Monte Carlo integration." Cambridge University
|
198 |
+
Press, 2010.
|
199 |
+
.. [16] Dick, Josef, F. Kuo, Friedrich Pillichshammer, and I. Sloan.
|
200 |
+
"Construction algorithms for polynomial lattice rules for multivariate
|
201 |
+
integration." Mathematics of computation 74, no. 252: 1895-1921, 2005.
|
202 |
+
.. [17] Sobol', Il'ya Meerovich. "On the distribution of points in a cube and
|
203 |
+
the approximate evaluation of integrals." Zhurnal Vychislitel'noi Matematiki
|
204 |
+
i Matematicheskoi Fiziki 7, no. 4: 784-802, 1967.
|
205 |
+
.. [18] Halton, John H. "On the efficiency of certain quasi-random sequences of
|
206 |
+
points in evaluating multi-dimensional integrals." Numerische Mathematik 2,
|
207 |
+
no. 1: 84-90, 1960.
|
208 |
+
.. [19] Faure, Henri. "Discrepance de suites associees a un systeme de
|
209 |
+
numeration (en dimension s)." Acta arithmetica 41, no. 4: 337-351, 1982.
|
210 |
+
.. [20] Niederreiter, Harold, and Chaoping Xing. "Low-discrepancy sequences and
|
211 |
+
global function fields with many rational places." Finite Fields and their
|
212 |
+
applications 2, no. 3: 241-273, 1996.
|
213 |
+
.. [21] Hong, Hee Sun, and Fred J. Hickernell. "Algorithm 823: Implementing
|
214 |
+
scrambled digital sequences." ACM Transactions on Mathematical Software
|
215 |
+
(TOMS) 29, no. 2: 95-109, 2003.
|
216 |
+
.. [22] Dick, Josef. "Higher order scrambled digital nets achieve the optimal
|
217 |
+
rate of the root mean square error for smooth integrands." The Annals of
|
218 |
+
Statistics 39, no. 3: 1372-1398, 2011.
|
219 |
+
.. [23] Niederreiter, Harald. "Multidimensional numerical integration using
|
220 |
+
pseudorandom numbers." In Stochastic Programming 84 Part I, pp. 17-38.
|
221 |
+
Springer, Berlin, Heidelberg, 1986.
|
222 |
+
.. [24] Hickernell, Fred J. "Obtaining O (N-2+e) Convergence for Lattice
|
223 |
+
Quadrature Rules." In Monte Carlo and Quasi-Monte Carlo Methods 2000,
|
224 |
+
pp. 274-289. Springer, Berlin, Heidelberg, 2002.
|
225 |
+
.. [25] Owen, Art B., and Seth D. Tribble. "A quasi-Monte Carlo Metropolis
|
226 |
+
algorithm." Proceedings of the National Academy of Sciences 102,
|
227 |
+
no. 25: 8844-8849, 2005.
|
228 |
+
.. [26] Chen, Su. "Consistency and convergence rate of Markov chain quasi Monte
|
229 |
+
Carlo with examples." PhD diss., Stanford University, 2011.
|
230 |
+
.. [27] Joe, Stephen, and Frances Y. Kuo. "Constructing Sobol sequences with
|
231 |
+
better two-dimensional projections." SIAM Journal on Scientific Computing
|
232 |
+
30, no. 5: 2635-2654, 2008.
|
233 |
+
|
234 |
+
"""
|
235 |
+
from ._qmc import * # noqa: F403
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (182 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/common_tests.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_axis_nan_policy.cpython-310.pyc
ADDED
Binary file (34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_binned_statistic.cpython-310.pyc
ADDED
Binary file (16.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_boost_ufuncs.cpython-310.pyc
ADDED
Binary file (1.72 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_censored_data.cpython-310.pyc
ADDED
Binary file (6.11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_contingency.cpython-310.pyc
ADDED
Binary file (4.99 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_continuous_basic.cpython-310.pyc
ADDED
Binary file (27.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_continuous_fit_censored.cpython-310.pyc
ADDED
Binary file (22.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_crosstab.cpython-310.pyc
ADDED
Binary file (3.87 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_discrete_basic.cpython-310.pyc
ADDED
Binary file (14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_discrete_distns.cpython-310.pyc
ADDED
Binary file (18.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_distributions.cpython-310.pyc
ADDED
Binary file (278 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_entropy.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_fast_gen_inversion.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_fit.cpython-310.pyc
ADDED
Binary file (30.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_hypotests.cpython-310.pyc
ADDED
Binary file (55.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_kdeoth.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_morestats.cpython-310.pyc
ADDED
Binary file (99.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_mstats_basic.cpython-310.pyc
ADDED
Binary file (68.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_mstats_extras.cpython-310.pyc
ADDED
Binary file (5.56 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_multicomp.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_multivariate.cpython-310.pyc
ADDED
Binary file (112 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_odds_ratio.cpython-310.pyc
ADDED
Binary file (5.14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_qmc.cpython-310.pyc
ADDED
Binary file (44.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_rank.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_relative_risk.cpython-310.pyc
ADDED
Binary file (3.23 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_resampling.cpython-310.pyc
ADDED
Binary file (52.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_sampling.cpython-310.pyc
ADDED
Binary file (46.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_sensitivity_analysis.cpython-310.pyc
ADDED
Binary file (8.36 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_stats.cpython-310.pyc
ADDED
Binary file (265 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_survival.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|