diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack_py.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack_py.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1b4f7365c430c7d791757748c62f203d9bcee4e2 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack_py.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_interpolate.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_interpolate.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f8f652d2d6e3359ce84515aa67813c7946d2c234 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_interpolate.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/fitpack.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/fitpack.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fe4d2fbbdd95f8d796c23c04a146e4d6c4e9485b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/fitpack.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4f619dded6615a284392c4273559f226a1c8c72c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__init__.py @@ -0,0 +1,169 @@ +""" +========================================================= +Multidimensional image processing (:mod:`scipy.ndimage`) +========================================================= + +.. currentmodule:: scipy.ndimage + +This package contains various functions for multidimensional image +processing. + + +Filters +======= + +.. autosummary:: + :toctree: generated/ + + convolve - Multidimensional convolution + convolve1d - 1-D convolution along the given axis + correlate - Multidimensional correlation + correlate1d - 1-D correlation along the given axis + gaussian_filter + gaussian_filter1d + gaussian_gradient_magnitude + gaussian_laplace + generic_filter - Multidimensional filter using a given function + generic_filter1d - 1-D generic filter along the given axis + generic_gradient_magnitude + generic_laplace + laplace - N-D Laplace filter based on approximate second derivatives + maximum_filter + maximum_filter1d + median_filter - Calculates a multidimensional median filter + minimum_filter + minimum_filter1d + percentile_filter - Calculates a multidimensional percentile filter + prewitt + rank_filter - Calculates a multidimensional rank filter + sobel + uniform_filter - Multidimensional uniform filter + uniform_filter1d - 1-D uniform filter along the given axis + +Fourier filters +=============== + +.. autosummary:: + :toctree: generated/ + + fourier_ellipsoid + fourier_gaussian + fourier_shift + fourier_uniform + +Interpolation +============= + +.. autosummary:: + :toctree: generated/ + + affine_transform - Apply an affine transformation + geometric_transform - Apply an arbitrary geometric transform + map_coordinates - Map input array to new coordinates by interpolation + rotate - Rotate an array + shift - Shift an array + spline_filter + spline_filter1d + zoom - Zoom an array + +Measurements +============ + +.. autosummary:: + :toctree: generated/ + + center_of_mass - The center of mass of the values of an array at labels + extrema - Min's and max's of an array at labels, with their positions + find_objects - Find objects in a labeled array + histogram - Histogram of the values of an array, optionally at labels + label - Label features in an array + labeled_comprehension + maximum + maximum_position + mean - Mean of the values of an array at labels + median + minimum + minimum_position + standard_deviation - Standard deviation of an N-D image array + sum_labels - Sum of the values of the array + value_indices - Find indices of each distinct value in given array + variance - Variance of the values of an N-D image array + watershed_ift + +Morphology +========== + +.. autosummary:: + :toctree: generated/ + + binary_closing + binary_dilation + binary_erosion + binary_fill_holes + binary_hit_or_miss + binary_opening + binary_propagation + black_tophat + distance_transform_bf + distance_transform_cdt + distance_transform_edt + generate_binary_structure + grey_closing + grey_dilation + grey_erosion + grey_opening + iterate_structure + morphological_gradient + morphological_laplace + white_tophat + +""" + +# Copyright (C) 2003-2005 Peter J. Verveer +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# +# 2. Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials provided +# with the distribution. +# +# 3. The name of the author may not be used to endorse or promote +# products derived from this software without specific prior +# written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS +# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE +# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +from ._filters import * +from ._fourier import * +from ._interpolation import * +from ._measurements import * +from ._morphology import * + +# Deprecated namespaces, to be removed in v2.0.0 +from . import filters +from . import fourier +from . import interpolation +from . import measurements +from . import morphology + +__all__ = [s for s in dir() if not s.startswith('_')] + +from scipy._lib._testutils import PytestTester +test = PytestTester(__name__) +del PytestTester diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ctest.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ctest.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..0d05e123ba1f7f45c1f37795e7ba5cd0257018b4 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ctest.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_cytest.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_cytest.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..af816c8e2ce5740bd2b524a4bca51b4d0ccdac20 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_cytest.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_filters.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_filters.py new file mode 100644 index 0000000000000000000000000000000000000000..a2907614d5acffcd8dcfaf054d84d69b438e7923 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_filters.py @@ -0,0 +1,1852 @@ +# Copyright (C) 2003-2005 Peter J. Verveer +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# +# 2. Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials provided +# with the distribution. +# +# 3. The name of the author may not be used to endorse or promote +# products derived from this software without specific prior +# written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS +# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE +# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +from collections.abc import Iterable +import numbers +import warnings +import numpy +import operator + +from scipy._lib._util import normalize_axis_index +from . import _ni_support +from . import _nd_image +from . import _ni_docstrings + +__all__ = ['correlate1d', 'convolve1d', 'gaussian_filter1d', 'gaussian_filter', + 'prewitt', 'sobel', 'generic_laplace', 'laplace', + 'gaussian_laplace', 'generic_gradient_magnitude', + 'gaussian_gradient_magnitude', 'correlate', 'convolve', + 'uniform_filter1d', 'uniform_filter', 'minimum_filter1d', + 'maximum_filter1d', 'minimum_filter', 'maximum_filter', + 'rank_filter', 'median_filter', 'percentile_filter', + 'generic_filter1d', 'generic_filter'] + + +def _invalid_origin(origin, lenw): + return (origin < -(lenw // 2)) or (origin > (lenw - 1) // 2) + + +def _complex_via_real_components(func, input, weights, output, cval, **kwargs): + """Complex convolution via a linear combination of real convolutions.""" + complex_input = input.dtype.kind == 'c' + complex_weights = weights.dtype.kind == 'c' + if complex_input and complex_weights: + # real component of the output + func(input.real, weights.real, output=output.real, + cval=numpy.real(cval), **kwargs) + output.real -= func(input.imag, weights.imag, output=None, + cval=numpy.imag(cval), **kwargs) + # imaginary component of the output + func(input.real, weights.imag, output=output.imag, + cval=numpy.real(cval), **kwargs) + output.imag += func(input.imag, weights.real, output=None, + cval=numpy.imag(cval), **kwargs) + elif complex_input: + func(input.real, weights, output=output.real, cval=numpy.real(cval), + **kwargs) + func(input.imag, weights, output=output.imag, cval=numpy.imag(cval), + **kwargs) + else: + if numpy.iscomplexobj(cval): + raise ValueError("Cannot provide a complex-valued cval when the " + "input is real.") + func(input, weights.real, output=output.real, cval=cval, **kwargs) + func(input, weights.imag, output=output.imag, cval=cval, **kwargs) + return output + + +@_ni_docstrings.docfiller +def correlate1d(input, weights, axis=-1, output=None, mode="reflect", + cval=0.0, origin=0): + """Calculate a 1-D correlation along the given axis. + + The lines of the array along the given axis are correlated with the + given weights. + + Parameters + ---------- + %(input)s + weights : array + 1-D sequence of numbers. + %(axis)s + %(output)s + %(mode_reflect)s + %(cval)s + %(origin)s + + Returns + ------- + result : ndarray + Correlation result. Has the same shape as `input`. + + Examples + -------- + >>> from scipy.ndimage import correlate1d + >>> correlate1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3]) + array([ 8, 26, 8, 12, 7, 28, 36, 9]) + """ + input = numpy.asarray(input) + weights = numpy.asarray(weights) + complex_input = input.dtype.kind == 'c' + complex_weights = weights.dtype.kind == 'c' + if complex_input or complex_weights: + if complex_weights: + weights = weights.conj() + weights = weights.astype(numpy.complex128, copy=False) + kwargs = dict(axis=axis, mode=mode, origin=origin) + output = _ni_support._get_output(output, input, complex_output=True) + return _complex_via_real_components(correlate1d, input, weights, + output, cval, **kwargs) + + output = _ni_support._get_output(output, input) + weights = numpy.asarray(weights, dtype=numpy.float64) + if weights.ndim != 1 or weights.shape[0] < 1: + raise RuntimeError('no filter weights given') + if not weights.flags.contiguous: + weights = weights.copy() + axis = normalize_axis_index(axis, input.ndim) + if _invalid_origin(origin, len(weights)): + raise ValueError('Invalid origin; origin must satisfy ' + '-(len(weights) // 2) <= origin <= ' + '(len(weights)-1) // 2') + mode = _ni_support._extend_mode_to_code(mode) + _nd_image.correlate1d(input, weights, axis, output, mode, cval, + origin) + return output + + +@_ni_docstrings.docfiller +def convolve1d(input, weights, axis=-1, output=None, mode="reflect", + cval=0.0, origin=0): + """Calculate a 1-D convolution along the given axis. + + The lines of the array along the given axis are convolved with the + given weights. + + Parameters + ---------- + %(input)s + weights : ndarray + 1-D sequence of numbers. + %(axis)s + %(output)s + %(mode_reflect)s + %(cval)s + %(origin)s + + Returns + ------- + convolve1d : ndarray + Convolved array with same shape as input + + Examples + -------- + >>> from scipy.ndimage import convolve1d + >>> convolve1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3]) + array([14, 24, 4, 13, 12, 36, 27, 0]) + """ + weights = weights[::-1] + origin = -origin + if not len(weights) & 1: + origin -= 1 + weights = numpy.asarray(weights) + if weights.dtype.kind == 'c': + # pre-conjugate here to counteract the conjugation in correlate1d + weights = weights.conj() + return correlate1d(input, weights, axis, output, mode, cval, origin) + + +def _gaussian_kernel1d(sigma, order, radius): + """ + Computes a 1-D Gaussian convolution kernel. + """ + if order < 0: + raise ValueError('order must be non-negative') + exponent_range = numpy.arange(order + 1) + sigma2 = sigma * sigma + x = numpy.arange(-radius, radius+1) + phi_x = numpy.exp(-0.5 / sigma2 * x ** 2) + phi_x = phi_x / phi_x.sum() + + if order == 0: + return phi_x + else: + # f(x) = q(x) * phi(x) = q(x) * exp(p(x)) + # f'(x) = (q'(x) + q(x) * p'(x)) * phi(x) + # p'(x) = -1 / sigma ** 2 + # Implement q'(x) + q(x) * p'(x) as a matrix operator and apply to the + # coefficients of q(x) + q = numpy.zeros(order + 1) + q[0] = 1 + D = numpy.diag(exponent_range[1:], 1) # D @ q(x) = q'(x) + P = numpy.diag(numpy.ones(order)/-sigma2, -1) # P @ q(x) = q(x) * p'(x) + Q_deriv = D + P + for _ in range(order): + q = Q_deriv.dot(q) + q = (x[:, None] ** exponent_range).dot(q) + return q * phi_x + + +@_ni_docstrings.docfiller +def gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, + mode="reflect", cval=0.0, truncate=4.0, *, radius=None): + """1-D Gaussian filter. + + Parameters + ---------- + %(input)s + sigma : scalar + standard deviation for Gaussian kernel + %(axis)s + order : int, optional + An order of 0 corresponds to convolution with a Gaussian + kernel. A positive order corresponds to convolution with + that derivative of a Gaussian. + %(output)s + %(mode_reflect)s + %(cval)s + truncate : float, optional + Truncate the filter at this many standard deviations. + Default is 4.0. + radius : None or int, optional + Radius of the Gaussian kernel. If specified, the size of + the kernel will be ``2*radius + 1``, and `truncate` is ignored. + Default is None. + + Returns + ------- + gaussian_filter1d : ndarray + + Notes + ----- + The Gaussian kernel will have size ``2*radius + 1`` along each axis. If + `radius` is None, a default ``radius = round(truncate * sigma)`` will be + used. + + Examples + -------- + >>> from scipy.ndimage import gaussian_filter1d + >>> import numpy as np + >>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 1) + array([ 1.42704095, 2.06782203, 3. , 3.93217797, 4.57295905]) + >>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 4) + array([ 2.91948343, 2.95023502, 3. , 3.04976498, 3.08051657]) + >>> import matplotlib.pyplot as plt + >>> rng = np.random.default_rng() + >>> x = rng.standard_normal(101).cumsum() + >>> y3 = gaussian_filter1d(x, 3) + >>> y6 = gaussian_filter1d(x, 6) + >>> plt.plot(x, 'k', label='original data') + >>> plt.plot(y3, '--', label='filtered, sigma=3') + >>> plt.plot(y6, ':', label='filtered, sigma=6') + >>> plt.legend() + >>> plt.grid() + >>> plt.show() + + """ + sd = float(sigma) + # make the radius of the filter equal to truncate standard deviations + lw = int(truncate * sd + 0.5) + if radius is not None: + lw = radius + if not isinstance(lw, numbers.Integral) or lw < 0: + raise ValueError('Radius must be a nonnegative integer.') + # Since we are calling correlate, not convolve, revert the kernel + weights = _gaussian_kernel1d(sigma, order, lw)[::-1] + return correlate1d(input, weights, axis, output, mode, cval, 0) + + +@_ni_docstrings.docfiller +def gaussian_filter(input, sigma, order=0, output=None, + mode="reflect", cval=0.0, truncate=4.0, *, radius=None, + axes=None): + """Multidimensional Gaussian filter. + + Parameters + ---------- + %(input)s + sigma : scalar or sequence of scalars + Standard deviation for Gaussian kernel. The standard + deviations of the Gaussian filter are given for each axis as a + sequence, or as a single number, in which case it is equal for + all axes. + order : int or sequence of ints, optional + The order of the filter along each axis is given as a sequence + of integers, or as a single number. An order of 0 corresponds + to convolution with a Gaussian kernel. A positive order + corresponds to convolution with that derivative of a Gaussian. + %(output)s + %(mode_multiple)s + %(cval)s + truncate : float, optional + Truncate the filter at this many standard deviations. + Default is 4.0. + radius : None or int or sequence of ints, optional + Radius of the Gaussian kernel. The radius are given for each axis + as a sequence, or as a single number, in which case it is equal + for all axes. If specified, the size of the kernel along each axis + will be ``2*radius + 1``, and `truncate` is ignored. + Default is None. + axes : tuple of int or None, optional + If None, `input` is filtered along all axes. Otherwise, + `input` is filtered along the specified axes. When `axes` is + specified, any tuples used for `sigma`, `order`, `mode` and/or `radius` + must match the length of `axes`. The ith entry in any of these tuples + corresponds to the ith entry in `axes`. + + Returns + ------- + gaussian_filter : ndarray + Returned array of same shape as `input`. + + Notes + ----- + The multidimensional filter is implemented as a sequence of + 1-D convolution filters. The intermediate arrays are + stored in the same data type as the output. Therefore, for output + types with a limited precision, the results may be imprecise + because intermediate results may be stored with insufficient + precision. + + The Gaussian kernel will have size ``2*radius + 1`` along each axis. If + `radius` is None, the default ``radius = round(truncate * sigma)`` will be + used. + + Examples + -------- + >>> from scipy.ndimage import gaussian_filter + >>> import numpy as np + >>> a = np.arange(50, step=2).reshape((5,5)) + >>> a + array([[ 0, 2, 4, 6, 8], + [10, 12, 14, 16, 18], + [20, 22, 24, 26, 28], + [30, 32, 34, 36, 38], + [40, 42, 44, 46, 48]]) + >>> gaussian_filter(a, sigma=1) + array([[ 4, 6, 8, 9, 11], + [10, 12, 14, 15, 17], + [20, 22, 24, 25, 27], + [29, 31, 33, 34, 36], + [35, 37, 39, 40, 42]]) + + >>> from scipy import datasets + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> plt.gray() # show the filtered result in grayscale + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + >>> ascent = datasets.ascent() + >>> result = gaussian_filter(ascent, sigma=5) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result) + >>> plt.show() + """ + input = numpy.asarray(input) + output = _ni_support._get_output(output, input) + + axes = _ni_support._check_axes(axes, input.ndim) + num_axes = len(axes) + orders = _ni_support._normalize_sequence(order, num_axes) + sigmas = _ni_support._normalize_sequence(sigma, num_axes) + modes = _ni_support._normalize_sequence(mode, num_axes) + radiuses = _ni_support._normalize_sequence(radius, num_axes) + axes = [(axes[ii], sigmas[ii], orders[ii], modes[ii], radiuses[ii]) + for ii in range(num_axes) if sigmas[ii] > 1e-15] + if len(axes) > 0: + for axis, sigma, order, mode, radius in axes: + gaussian_filter1d(input, sigma, axis, order, output, + mode, cval, truncate, radius=radius) + input = output + else: + output[...] = input[...] + return output + + +@_ni_docstrings.docfiller +def prewitt(input, axis=-1, output=None, mode="reflect", cval=0.0): + """Calculate a Prewitt filter. + + Parameters + ---------- + %(input)s + %(axis)s + %(output)s + %(mode_multiple)s + %(cval)s + + Returns + ------- + prewitt : ndarray + Filtered array. Has the same shape as `input`. + + See Also + -------- + sobel: Sobel filter + + Notes + ----- + This function computes the one-dimensional Prewitt filter. + Horizontal edges are emphasised with the horizontal transform (axis=0), + vertical edges with the vertical transform (axis=1), and so on for higher + dimensions. These can be combined to give the magnitude. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> import numpy as np + >>> ascent = datasets.ascent() + >>> prewitt_h = ndimage.prewitt(ascent, axis=0) + >>> prewitt_v = ndimage.prewitt(ascent, axis=1) + >>> magnitude = np.sqrt(prewitt_h ** 2 + prewitt_v ** 2) + >>> magnitude *= 255 / np.max(magnitude) # Normalization + >>> fig, axes = plt.subplots(2, 2, figsize = (8, 8)) + >>> plt.gray() + >>> axes[0, 0].imshow(ascent) + >>> axes[0, 1].imshow(prewitt_h) + >>> axes[1, 0].imshow(prewitt_v) + >>> axes[1, 1].imshow(magnitude) + >>> titles = ["original", "horizontal", "vertical", "magnitude"] + >>> for i, ax in enumerate(axes.ravel()): + ... ax.set_title(titles[i]) + ... ax.axis("off") + >>> plt.show() + + """ + input = numpy.asarray(input) + axis = normalize_axis_index(axis, input.ndim) + output = _ni_support._get_output(output, input) + modes = _ni_support._normalize_sequence(mode, input.ndim) + correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0) + axes = [ii for ii in range(input.ndim) if ii != axis] + for ii in axes: + correlate1d(output, [1, 1, 1], ii, output, modes[ii], cval, 0,) + return output + + +@_ni_docstrings.docfiller +def sobel(input, axis=-1, output=None, mode="reflect", cval=0.0): + """Calculate a Sobel filter. + + Parameters + ---------- + %(input)s + %(axis)s + %(output)s + %(mode_multiple)s + %(cval)s + + Returns + ------- + sobel : ndarray + Filtered array. Has the same shape as `input`. + + Notes + ----- + This function computes the axis-specific Sobel gradient. + The horizontal edges can be emphasised with the horizontal transform (axis=0), + the vertical edges with the vertical transform (axis=1) and so on for higher + dimensions. These can be combined to give the magnitude. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> import numpy as np + >>> ascent = datasets.ascent().astype('int32') + >>> sobel_h = ndimage.sobel(ascent, 0) # horizontal gradient + >>> sobel_v = ndimage.sobel(ascent, 1) # vertical gradient + >>> magnitude = np.sqrt(sobel_h**2 + sobel_v**2) + >>> magnitude *= 255.0 / np.max(magnitude) # normalization + >>> fig, axs = plt.subplots(2, 2, figsize=(8, 8)) + >>> plt.gray() # show the filtered result in grayscale + >>> axs[0, 0].imshow(ascent) + >>> axs[0, 1].imshow(sobel_h) + >>> axs[1, 0].imshow(sobel_v) + >>> axs[1, 1].imshow(magnitude) + >>> titles = ["original", "horizontal", "vertical", "magnitude"] + >>> for i, ax in enumerate(axs.ravel()): + ... ax.set_title(titles[i]) + ... ax.axis("off") + >>> plt.show() + + """ + input = numpy.asarray(input) + axis = normalize_axis_index(axis, input.ndim) + output = _ni_support._get_output(output, input) + modes = _ni_support._normalize_sequence(mode, input.ndim) + correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0) + axes = [ii for ii in range(input.ndim) if ii != axis] + for ii in axes: + correlate1d(output, [1, 2, 1], ii, output, modes[ii], cval, 0) + return output + + +@_ni_docstrings.docfiller +def generic_laplace(input, derivative2, output=None, mode="reflect", + cval=0.0, + extra_arguments=(), + extra_keywords=None): + """ + N-D Laplace filter using a provided second derivative function. + + Parameters + ---------- + %(input)s + derivative2 : callable + Callable with the following signature:: + + derivative2(input, axis, output, mode, cval, + *extra_arguments, **extra_keywords) + + See `extra_arguments`, `extra_keywords` below. + %(output)s + %(mode_multiple)s + %(cval)s + %(extra_keywords)s + %(extra_arguments)s + + Returns + ------- + generic_laplace : ndarray + Filtered array. Has the same shape as `input`. + + """ + if extra_keywords is None: + extra_keywords = {} + input = numpy.asarray(input) + output = _ni_support._get_output(output, input) + axes = list(range(input.ndim)) + if len(axes) > 0: + modes = _ni_support._normalize_sequence(mode, len(axes)) + derivative2(input, axes[0], output, modes[0], cval, + *extra_arguments, **extra_keywords) + for ii in range(1, len(axes)): + tmp = derivative2(input, axes[ii], output.dtype, modes[ii], cval, + *extra_arguments, **extra_keywords) + output += tmp + else: + output[...] = input[...] + return output + + +@_ni_docstrings.docfiller +def laplace(input, output=None, mode="reflect", cval=0.0): + """N-D Laplace filter based on approximate second derivatives. + + Parameters + ---------- + %(input)s + %(output)s + %(mode_multiple)s + %(cval)s + + Returns + ------- + laplace : ndarray + Filtered array. Has the same shape as `input`. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> plt.gray() # show the filtered result in grayscale + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + >>> ascent = datasets.ascent() + >>> result = ndimage.laplace(ascent) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result) + >>> plt.show() + """ + def derivative2(input, axis, output, mode, cval): + return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0) + return generic_laplace(input, derivative2, output, mode, cval) + + +@_ni_docstrings.docfiller +def gaussian_laplace(input, sigma, output=None, mode="reflect", + cval=0.0, **kwargs): + """Multidimensional Laplace filter using Gaussian second derivatives. + + Parameters + ---------- + %(input)s + sigma : scalar or sequence of scalars + The standard deviations of the Gaussian filter are given for + each axis as a sequence, or as a single number, in which case + it is equal for all axes. + %(output)s + %(mode_multiple)s + %(cval)s + Extra keyword arguments will be passed to gaussian_filter(). + + Returns + ------- + gaussian_laplace : ndarray + Filtered array. Has the same shape as `input`. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> ascent = datasets.ascent() + + >>> fig = plt.figure() + >>> plt.gray() # show the filtered result in grayscale + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + + >>> result = ndimage.gaussian_laplace(ascent, sigma=1) + >>> ax1.imshow(result) + + >>> result = ndimage.gaussian_laplace(ascent, sigma=3) + >>> ax2.imshow(result) + >>> plt.show() + """ + input = numpy.asarray(input) + + def derivative2(input, axis, output, mode, cval, sigma, **kwargs): + order = [0] * input.ndim + order[axis] = 2 + return gaussian_filter(input, sigma, order, output, mode, cval, + **kwargs) + + return generic_laplace(input, derivative2, output, mode, cval, + extra_arguments=(sigma,), + extra_keywords=kwargs) + + +@_ni_docstrings.docfiller +def generic_gradient_magnitude(input, derivative, output=None, + mode="reflect", cval=0.0, + extra_arguments=(), extra_keywords=None): + """Gradient magnitude using a provided gradient function. + + Parameters + ---------- + %(input)s + derivative : callable + Callable with the following signature:: + + derivative(input, axis, output, mode, cval, + *extra_arguments, **extra_keywords) + + See `extra_arguments`, `extra_keywords` below. + `derivative` can assume that `input` and `output` are ndarrays. + Note that the output from `derivative` is modified inplace; + be careful to copy important inputs before returning them. + %(output)s + %(mode_multiple)s + %(cval)s + %(extra_keywords)s + %(extra_arguments)s + + Returns + ------- + generic_gradient_matnitude : ndarray + Filtered array. Has the same shape as `input`. + + """ + if extra_keywords is None: + extra_keywords = {} + input = numpy.asarray(input) + output = _ni_support._get_output(output, input) + axes = list(range(input.ndim)) + if len(axes) > 0: + modes = _ni_support._normalize_sequence(mode, len(axes)) + derivative(input, axes[0], output, modes[0], cval, + *extra_arguments, **extra_keywords) + numpy.multiply(output, output, output) + for ii in range(1, len(axes)): + tmp = derivative(input, axes[ii], output.dtype, modes[ii], cval, + *extra_arguments, **extra_keywords) + numpy.multiply(tmp, tmp, tmp) + output += tmp + # This allows the sqrt to work with a different default casting + numpy.sqrt(output, output, casting='unsafe') + else: + output[...] = input[...] + return output + + +@_ni_docstrings.docfiller +def gaussian_gradient_magnitude(input, sigma, output=None, + mode="reflect", cval=0.0, **kwargs): + """Multidimensional gradient magnitude using Gaussian derivatives. + + Parameters + ---------- + %(input)s + sigma : scalar or sequence of scalars + The standard deviations of the Gaussian filter are given for + each axis as a sequence, or as a single number, in which case + it is equal for all axes. + %(output)s + %(mode_multiple)s + %(cval)s + Extra keyword arguments will be passed to gaussian_filter(). + + Returns + ------- + gaussian_gradient_magnitude : ndarray + Filtered array. Has the same shape as `input`. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> plt.gray() # show the filtered result in grayscale + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + >>> ascent = datasets.ascent() + >>> result = ndimage.gaussian_gradient_magnitude(ascent, sigma=5) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result) + >>> plt.show() + """ + input = numpy.asarray(input) + + def derivative(input, axis, output, mode, cval, sigma, **kwargs): + order = [0] * input.ndim + order[axis] = 1 + return gaussian_filter(input, sigma, order, output, mode, + cval, **kwargs) + + return generic_gradient_magnitude(input, derivative, output, mode, + cval, extra_arguments=(sigma,), + extra_keywords=kwargs) + + +def _correlate_or_convolve(input, weights, output, mode, cval, origin, + convolution): + input = numpy.asarray(input) + weights = numpy.asarray(weights) + complex_input = input.dtype.kind == 'c' + complex_weights = weights.dtype.kind == 'c' + if complex_input or complex_weights: + if complex_weights and not convolution: + # As for numpy.correlate, conjugate weights rather than input. + weights = weights.conj() + kwargs = dict( + mode=mode, origin=origin, convolution=convolution + ) + output = _ni_support._get_output(output, input, complex_output=True) + + return _complex_via_real_components(_correlate_or_convolve, input, + weights, output, cval, **kwargs) + + origins = _ni_support._normalize_sequence(origin, input.ndim) + weights = numpy.asarray(weights, dtype=numpy.float64) + wshape = [ii for ii in weights.shape if ii > 0] + if len(wshape) != input.ndim: + raise RuntimeError('filter weights array has incorrect shape.') + if convolution: + weights = weights[tuple([slice(None, None, -1)] * weights.ndim)] + for ii in range(len(origins)): + origins[ii] = -origins[ii] + if not weights.shape[ii] & 1: + origins[ii] -= 1 + for origin, lenw in zip(origins, wshape): + if _invalid_origin(origin, lenw): + raise ValueError('Invalid origin; origin must satisfy ' + '-(weights.shape[k] // 2) <= origin[k] <= ' + '(weights.shape[k]-1) // 2') + + if not weights.flags.contiguous: + weights = weights.copy() + output = _ni_support._get_output(output, input) + temp_needed = numpy.may_share_memory(input, output) + if temp_needed: + # input and output arrays cannot share memory + temp = output + output = _ni_support._get_output(output.dtype, input) + if not isinstance(mode, str) and isinstance(mode, Iterable): + raise RuntimeError("A sequence of modes is not supported") + mode = _ni_support._extend_mode_to_code(mode) + _nd_image.correlate(input, weights, output, mode, cval, origins) + if temp_needed: + temp[...] = output + output = temp + return output + + +@_ni_docstrings.docfiller +def correlate(input, weights, output=None, mode='reflect', cval=0.0, + origin=0): + """ + Multidimensional correlation. + + The array is correlated with the given kernel. + + Parameters + ---------- + %(input)s + weights : ndarray + array of weights, same number of dimensions as input + %(output)s + %(mode_reflect)s + %(cval)s + %(origin_multiple)s + + Returns + ------- + result : ndarray + The result of correlation of `input` with `weights`. + + See Also + -------- + convolve : Convolve an image with a kernel. + + Examples + -------- + Correlation is the process of moving a filter mask often referred to + as kernel over the image and computing the sum of products at each location. + + >>> from scipy.ndimage import correlate + >>> import numpy as np + >>> input_img = np.arange(25).reshape(5,5) + >>> print(input_img) + [[ 0 1 2 3 4] + [ 5 6 7 8 9] + [10 11 12 13 14] + [15 16 17 18 19] + [20 21 22 23 24]] + + Define a kernel (weights) for correlation. In this example, it is for sum of + center and up, down, left and right next elements. + + >>> weights = [[0, 1, 0], + ... [1, 1, 1], + ... [0, 1, 0]] + + We can calculate a correlation result: + For example, element ``[2,2]`` is ``7 + 11 + 12 + 13 + 17 = 60``. + + >>> correlate(input_img, weights) + array([[ 6, 10, 15, 20, 24], + [ 26, 30, 35, 40, 44], + [ 51, 55, 60, 65, 69], + [ 76, 80, 85, 90, 94], + [ 96, 100, 105, 110, 114]]) + + """ + return _correlate_or_convolve(input, weights, output, mode, cval, + origin, False) + + +@_ni_docstrings.docfiller +def convolve(input, weights, output=None, mode='reflect', cval=0.0, + origin=0): + """ + Multidimensional convolution. + + The array is convolved with the given kernel. + + Parameters + ---------- + %(input)s + weights : array_like + Array of weights, same number of dimensions as input + %(output)s + %(mode_reflect)s + cval : scalar, optional + Value to fill past edges of input if `mode` is 'constant'. Default + is 0.0 + origin : int, optional + Controls the origin of the input signal, which is where the + filter is centered to produce the first element of the output. + Positive values shift the filter to the right, and negative values + shift the filter to the left. Default is 0. + + Returns + ------- + result : ndarray + The result of convolution of `input` with `weights`. + + See Also + -------- + correlate : Correlate an image with a kernel. + + Notes + ----- + Each value in result is :math:`C_i = \\sum_j{I_{i+k-j} W_j}`, where + W is the `weights` kernel, + j is the N-D spatial index over :math:`W`, + I is the `input` and k is the coordinate of the center of + W, specified by `origin` in the input parameters. + + Examples + -------- + Perhaps the simplest case to understand is ``mode='constant', cval=0.0``, + because in this case borders (i.e., where the `weights` kernel, centered + on any one value, extends beyond an edge of `input`) are treated as zeros. + + >>> import numpy as np + >>> a = np.array([[1, 2, 0, 0], + ... [5, 3, 0, 4], + ... [0, 0, 0, 7], + ... [9, 3, 0, 0]]) + >>> k = np.array([[1,1,1],[1,1,0],[1,0,0]]) + >>> from scipy import ndimage + >>> ndimage.convolve(a, k, mode='constant', cval=0.0) + array([[11, 10, 7, 4], + [10, 3, 11, 11], + [15, 12, 14, 7], + [12, 3, 7, 0]]) + + Setting ``cval=1.0`` is equivalent to padding the outer edge of `input` + with 1.0's (and then extracting only the original region of the result). + + >>> ndimage.convolve(a, k, mode='constant', cval=1.0) + array([[13, 11, 8, 7], + [11, 3, 11, 14], + [16, 12, 14, 10], + [15, 6, 10, 5]]) + + With ``mode='reflect'`` (the default), outer values are reflected at the + edge of `input` to fill in missing values. + + >>> b = np.array([[2, 0, 0], + ... [1, 0, 0], + ... [0, 0, 0]]) + >>> k = np.array([[0,1,0], [0,1,0], [0,1,0]]) + >>> ndimage.convolve(b, k, mode='reflect') + array([[5, 0, 0], + [3, 0, 0], + [1, 0, 0]]) + + This includes diagonally at the corners. + + >>> k = np.array([[1,0,0],[0,1,0],[0,0,1]]) + >>> ndimage.convolve(b, k) + array([[4, 2, 0], + [3, 2, 0], + [1, 1, 0]]) + + With ``mode='nearest'``, the single nearest value in to an edge in + `input` is repeated as many times as needed to match the overlapping + `weights`. + + >>> c = np.array([[2, 0, 1], + ... [1, 0, 0], + ... [0, 0, 0]]) + >>> k = np.array([[0, 1, 0], + ... [0, 1, 0], + ... [0, 1, 0], + ... [0, 1, 0], + ... [0, 1, 0]]) + >>> ndimage.convolve(c, k, mode='nearest') + array([[7, 0, 3], + [5, 0, 2], + [3, 0, 1]]) + + """ + return _correlate_or_convolve(input, weights, output, mode, cval, + origin, True) + + +@_ni_docstrings.docfiller +def uniform_filter1d(input, size, axis=-1, output=None, + mode="reflect", cval=0.0, origin=0): + """Calculate a 1-D uniform filter along the given axis. + + The lines of the array along the given axis are filtered with a + uniform filter of given size. + + Parameters + ---------- + %(input)s + size : int + length of uniform filter + %(axis)s + %(output)s + %(mode_reflect)s + %(cval)s + %(origin)s + + Returns + ------- + result : ndarray + Filtered array. Has same shape as `input`. + + Examples + -------- + >>> from scipy.ndimage import uniform_filter1d + >>> uniform_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) + array([4, 3, 4, 1, 4, 6, 6, 3]) + """ + input = numpy.asarray(input) + axis = normalize_axis_index(axis, input.ndim) + if size < 1: + raise RuntimeError('incorrect filter size') + complex_output = input.dtype.kind == 'c' + output = _ni_support._get_output(output, input, + complex_output=complex_output) + if (size // 2 + origin < 0) or (size // 2 + origin >= size): + raise ValueError('invalid origin') + mode = _ni_support._extend_mode_to_code(mode) + if not complex_output: + _nd_image.uniform_filter1d(input, size, axis, output, mode, cval, + origin) + else: + _nd_image.uniform_filter1d(input.real, size, axis, output.real, mode, + numpy.real(cval), origin) + _nd_image.uniform_filter1d(input.imag, size, axis, output.imag, mode, + numpy.imag(cval), origin) + return output + + +@_ni_docstrings.docfiller +def uniform_filter(input, size=3, output=None, mode="reflect", + cval=0.0, origin=0, *, axes=None): + """Multidimensional uniform filter. + + Parameters + ---------- + %(input)s + size : int or sequence of ints, optional + The sizes of the uniform filter are given for each axis as a + sequence, or as a single number, in which case the size is + equal for all axes. + %(output)s + %(mode_multiple)s + %(cval)s + %(origin_multiple)s + axes : tuple of int or None, optional + If None, `input` is filtered along all axes. Otherwise, + `input` is filtered along the specified axes. When `axes` is + specified, any tuples used for `size`, `origin`, and/or `mode` + must match the length of `axes`. The ith entry in any of these tuples + corresponds to the ith entry in `axes`. + + Returns + ------- + uniform_filter : ndarray + Filtered array. Has the same shape as `input`. + + Notes + ----- + The multidimensional filter is implemented as a sequence of + 1-D uniform filters. The intermediate arrays are stored + in the same data type as the output. Therefore, for output types + with a limited precision, the results may be imprecise because + intermediate results may be stored with insufficient precision. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> plt.gray() # show the filtered result in grayscale + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + >>> ascent = datasets.ascent() + >>> result = ndimage.uniform_filter(ascent, size=20) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result) + >>> plt.show() + """ + input = numpy.asarray(input) + output = _ni_support._get_output(output, input, + complex_output=input.dtype.kind == 'c') + axes = _ni_support._check_axes(axes, input.ndim) + num_axes = len(axes) + sizes = _ni_support._normalize_sequence(size, num_axes) + origins = _ni_support._normalize_sequence(origin, num_axes) + modes = _ni_support._normalize_sequence(mode, num_axes) + axes = [(axes[ii], sizes[ii], origins[ii], modes[ii]) + for ii in range(num_axes) if sizes[ii] > 1] + if len(axes) > 0: + for axis, size, origin, mode in axes: + uniform_filter1d(input, int(size), axis, output, mode, + cval, origin) + input = output + else: + output[...] = input[...] + return output + + +@_ni_docstrings.docfiller +def minimum_filter1d(input, size, axis=-1, output=None, + mode="reflect", cval=0.0, origin=0): + """Calculate a 1-D minimum filter along the given axis. + + The lines of the array along the given axis are filtered with a + minimum filter of given size. + + Parameters + ---------- + %(input)s + size : int + length along which to calculate 1D minimum + %(axis)s + %(output)s + %(mode_reflect)s + %(cval)s + %(origin)s + + Returns + ------- + result : ndarray. + Filtered image. Has the same shape as `input`. + + Notes + ----- + This function implements the MINLIST algorithm [1]_, as described by + Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being + the `input` length, regardless of filter size. + + References + ---------- + .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 + .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html + + + Examples + -------- + >>> from scipy.ndimage import minimum_filter1d + >>> minimum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) + array([2, 0, 0, 0, 1, 1, 0, 0]) + """ + input = numpy.asarray(input) + if numpy.iscomplexobj(input): + raise TypeError('Complex type not supported') + axis = normalize_axis_index(axis, input.ndim) + if size < 1: + raise RuntimeError('incorrect filter size') + output = _ni_support._get_output(output, input) + if (size // 2 + origin < 0) or (size // 2 + origin >= size): + raise ValueError('invalid origin') + mode = _ni_support._extend_mode_to_code(mode) + _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, + origin, 1) + return output + + +@_ni_docstrings.docfiller +def maximum_filter1d(input, size, axis=-1, output=None, + mode="reflect", cval=0.0, origin=0): + """Calculate a 1-D maximum filter along the given axis. + + The lines of the array along the given axis are filtered with a + maximum filter of given size. + + Parameters + ---------- + %(input)s + size : int + Length along which to calculate the 1-D maximum. + %(axis)s + %(output)s + %(mode_reflect)s + %(cval)s + %(origin)s + + Returns + ------- + maximum1d : ndarray, None + Maximum-filtered array with same shape as input. + None if `output` is not None + + Notes + ----- + This function implements the MAXLIST algorithm [1]_, as described by + Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being + the `input` length, regardless of filter size. + + References + ---------- + .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 + .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html + + Examples + -------- + >>> from scipy.ndimage import maximum_filter1d + >>> maximum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) + array([8, 8, 8, 4, 9, 9, 9, 9]) + """ + input = numpy.asarray(input) + if numpy.iscomplexobj(input): + raise TypeError('Complex type not supported') + axis = normalize_axis_index(axis, input.ndim) + if size < 1: + raise RuntimeError('incorrect filter size') + output = _ni_support._get_output(output, input) + if (size // 2 + origin < 0) or (size // 2 + origin >= size): + raise ValueError('invalid origin') + mode = _ni_support._extend_mode_to_code(mode) + _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, + origin, 0) + return output + + +def _min_or_max_filter(input, size, footprint, structure, output, mode, + cval, origin, minimum, axes=None): + if (size is not None) and (footprint is not None): + warnings.warn("ignoring size because footprint is set", + UserWarning, stacklevel=3) + if structure is None: + if footprint is None: + if size is None: + raise RuntimeError("no footprint provided") + separable = True + else: + footprint = numpy.asarray(footprint, dtype=bool) + if not footprint.any(): + raise ValueError("All-zero footprint is not supported.") + if footprint.all(): + size = footprint.shape + footprint = None + separable = True + else: + separable = False + else: + structure = numpy.asarray(structure, dtype=numpy.float64) + separable = False + if footprint is None: + footprint = numpy.ones(structure.shape, bool) + else: + footprint = numpy.asarray(footprint, dtype=bool) + input = numpy.asarray(input) + if numpy.iscomplexobj(input): + raise TypeError('Complex type not supported') + output = _ni_support._get_output(output, input) + temp_needed = numpy.may_share_memory(input, output) + if temp_needed: + # input and output arrays cannot share memory + temp = output + output = _ni_support._get_output(output.dtype, input) + axes = _ni_support._check_axes(axes, input.ndim) + num_axes = len(axes) + if separable: + origins = _ni_support._normalize_sequence(origin, num_axes) + sizes = _ni_support._normalize_sequence(size, num_axes) + modes = _ni_support._normalize_sequence(mode, num_axes) + axes = [(axes[ii], sizes[ii], origins[ii], modes[ii]) + for ii in range(len(axes)) if sizes[ii] > 1] + if minimum: + filter_ = minimum_filter1d + else: + filter_ = maximum_filter1d + if len(axes) > 0: + for axis, size, origin, mode in axes: + filter_(input, int(size), axis, output, mode, cval, origin) + input = output + else: + output[...] = input[...] + else: + origins = _ni_support._normalize_sequence(origin, input.ndim) + if num_axes < input.ndim: + if footprint.ndim != num_axes: + raise RuntimeError("footprint array has incorrect shape") + footprint = numpy.expand_dims( + footprint, + tuple(ax for ax in range(input.ndim) if ax not in axes) + ) + fshape = [ii for ii in footprint.shape if ii > 0] + if len(fshape) != input.ndim: + raise RuntimeError('footprint array has incorrect shape.') + for origin, lenf in zip(origins, fshape): + if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): + raise ValueError('invalid origin') + if not footprint.flags.contiguous: + footprint = footprint.copy() + if structure is not None: + if len(structure.shape) != input.ndim: + raise RuntimeError('structure array has incorrect shape') + if num_axes != structure.ndim: + structure = numpy.expand_dims( + structure, + tuple(ax for ax in range(structure.ndim) if ax not in axes) + ) + if not structure.flags.contiguous: + structure = structure.copy() + if not isinstance(mode, str) and isinstance(mode, Iterable): + raise RuntimeError( + "A sequence of modes is not supported for non-separable " + "footprints") + mode = _ni_support._extend_mode_to_code(mode) + _nd_image.min_or_max_filter(input, footprint, structure, output, + mode, cval, origins, minimum) + if temp_needed: + temp[...] = output + output = temp + return output + + +@_ni_docstrings.docfiller +def minimum_filter(input, size=None, footprint=None, output=None, + mode="reflect", cval=0.0, origin=0, *, axes=None): + """Calculate a multidimensional minimum filter. + + Parameters + ---------- + %(input)s + %(size_foot)s + %(output)s + %(mode_multiple)s + %(cval)s + %(origin_multiple)s + axes : tuple of int or None, optional + If None, `input` is filtered along all axes. Otherwise, + `input` is filtered along the specified axes. When `axes` is + specified, any tuples used for `size`, `origin`, and/or `mode` + must match the length of `axes`. The ith entry in any of these tuples + corresponds to the ith entry in `axes`. + + Returns + ------- + minimum_filter : ndarray + Filtered array. Has the same shape as `input`. + + Notes + ----- + A sequence of modes (one per axis) is only supported when the footprint is + separable. Otherwise, a single mode string must be provided. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> plt.gray() # show the filtered result in grayscale + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + >>> ascent = datasets.ascent() + >>> result = ndimage.minimum_filter(ascent, size=20) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result) + >>> plt.show() + """ + return _min_or_max_filter(input, size, footprint, None, output, mode, + cval, origin, 1, axes) + + +@_ni_docstrings.docfiller +def maximum_filter(input, size=None, footprint=None, output=None, + mode="reflect", cval=0.0, origin=0, *, axes=None): + """Calculate a multidimensional maximum filter. + + Parameters + ---------- + %(input)s + %(size_foot)s + %(output)s + %(mode_multiple)s + %(cval)s + %(origin_multiple)s + axes : tuple of int or None, optional + If None, `input` is filtered along all axes. Otherwise, + `input` is filtered along the specified axes. When `axes` is + specified, any tuples used for `size`, `origin`, and/or `mode` + must match the length of `axes`. The ith entry in any of these tuples + corresponds to the ith entry in `axes`. + + Returns + ------- + maximum_filter : ndarray + Filtered array. Has the same shape as `input`. + + Notes + ----- + A sequence of modes (one per axis) is only supported when the footprint is + separable. Otherwise, a single mode string must be provided. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> plt.gray() # show the filtered result in grayscale + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + >>> ascent = datasets.ascent() + >>> result = ndimage.maximum_filter(ascent, size=20) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result) + >>> plt.show() + """ + return _min_or_max_filter(input, size, footprint, None, output, mode, + cval, origin, 0, axes) + + +@_ni_docstrings.docfiller +def _rank_filter(input, rank, size=None, footprint=None, output=None, + mode="reflect", cval=0.0, origin=0, operation='rank', + axes=None): + if (size is not None) and (footprint is not None): + warnings.warn("ignoring size because footprint is set", + UserWarning, stacklevel=3) + input = numpy.asarray(input) + if numpy.iscomplexobj(input): + raise TypeError('Complex type not supported') + axes = _ni_support._check_axes(axes, input.ndim) + num_axes = len(axes) + origins = _ni_support._normalize_sequence(origin, num_axes) + if footprint is None: + if size is None: + raise RuntimeError("no footprint or filter size provided") + sizes = _ni_support._normalize_sequence(size, num_axes) + footprint = numpy.ones(sizes, dtype=bool) + else: + footprint = numpy.asarray(footprint, dtype=bool) + if num_axes < input.ndim: + # set origin = 0 for any axes not being filtered + origins_temp = [0,] * input.ndim + for o, ax in zip(origins, axes): + origins_temp[ax] = o + origins = origins_temp + + if not isinstance(mode, str) and isinstance(mode, Iterable): + # set mode = 'constant' for any axes not being filtered + modes = _ni_support._normalize_sequence(mode, num_axes) + modes_temp = ['constant'] * input.ndim + for m, ax in zip(modes, axes): + modes_temp[ax] = m + mode = modes_temp + + # insert singleton dimension along any non-filtered axes + if footprint.ndim != num_axes: + raise RuntimeError("footprint array has incorrect shape") + footprint = numpy.expand_dims( + footprint, + tuple(ax for ax in range(input.ndim) if ax not in axes) + ) + fshape = [ii for ii in footprint.shape if ii > 0] + if len(fshape) != input.ndim: + raise RuntimeError('footprint array has incorrect shape.') + for origin, lenf in zip(origins, fshape): + if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): + raise ValueError('invalid origin') + if not footprint.flags.contiguous: + footprint = footprint.copy() + filter_size = numpy.where(footprint, 1, 0).sum() + if operation == 'median': + rank = filter_size // 2 + elif operation == 'percentile': + percentile = rank + if percentile < 0.0: + percentile += 100.0 + if percentile < 0 or percentile > 100: + raise RuntimeError('invalid percentile') + if percentile == 100.0: + rank = filter_size - 1 + else: + rank = int(float(filter_size) * percentile / 100.0) + if rank < 0: + rank += filter_size + if rank < 0 or rank >= filter_size: + raise RuntimeError('rank not within filter footprint size') + if rank == 0: + return minimum_filter(input, None, footprint, output, mode, cval, + origins, axes=None) + elif rank == filter_size - 1: + return maximum_filter(input, None, footprint, output, mode, cval, + origins, axes=None) + else: + output = _ni_support._get_output(output, input) + temp_needed = numpy.may_share_memory(input, output) + if temp_needed: + # input and output arrays cannot share memory + temp = output + output = _ni_support._get_output(output.dtype, input) + if not isinstance(mode, str) and isinstance(mode, Iterable): + raise RuntimeError( + "A sequence of modes is not supported by non-separable rank " + "filters") + mode = _ni_support._extend_mode_to_code(mode) + _nd_image.rank_filter(input, rank, footprint, output, mode, cval, + origins) + if temp_needed: + temp[...] = output + output = temp + return output + + +@_ni_docstrings.docfiller +def rank_filter(input, rank, size=None, footprint=None, output=None, + mode="reflect", cval=0.0, origin=0, *, axes=None): + """Calculate a multidimensional rank filter. + + Parameters + ---------- + %(input)s + rank : int + The rank parameter may be less than zero, i.e., rank = -1 + indicates the largest element. + %(size_foot)s + %(output)s + %(mode_reflect)s + %(cval)s + %(origin_multiple)s + axes : tuple of int or None, optional + If None, `input` is filtered along all axes. Otherwise, + `input` is filtered along the specified axes. + + Returns + ------- + rank_filter : ndarray + Filtered array. Has the same shape as `input`. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> plt.gray() # show the filtered result in grayscale + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + >>> ascent = datasets.ascent() + >>> result = ndimage.rank_filter(ascent, rank=42, size=20) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result) + >>> plt.show() + """ + rank = operator.index(rank) + return _rank_filter(input, rank, size, footprint, output, mode, cval, + origin, 'rank', axes=axes) + + +@_ni_docstrings.docfiller +def median_filter(input, size=None, footprint=None, output=None, + mode="reflect", cval=0.0, origin=0, *, axes=None): + """ + Calculate a multidimensional median filter. + + Parameters + ---------- + %(input)s + %(size_foot)s + %(output)s + %(mode_reflect)s + %(cval)s + %(origin_multiple)s + axes : tuple of int or None, optional + If None, `input` is filtered along all axes. Otherwise, + `input` is filtered along the specified axes. + + Returns + ------- + median_filter : ndarray + Filtered array. Has the same shape as `input`. + + See Also + -------- + scipy.signal.medfilt2d + + Notes + ----- + For 2-dimensional images with ``uint8``, ``float32`` or ``float64`` dtypes + the specialised function `scipy.signal.medfilt2d` may be faster. It is + however limited to constant mode with ``cval=0``. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> plt.gray() # show the filtered result in grayscale + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + >>> ascent = datasets.ascent() + >>> result = ndimage.median_filter(ascent, size=20) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result) + >>> plt.show() + """ + return _rank_filter(input, 0, size, footprint, output, mode, cval, + origin, 'median', axes=axes) + + +@_ni_docstrings.docfiller +def percentile_filter(input, percentile, size=None, footprint=None, + output=None, mode="reflect", cval=0.0, origin=0, *, + axes=None): + """Calculate a multidimensional percentile filter. + + Parameters + ---------- + %(input)s + percentile : scalar + The percentile parameter may be less than zero, i.e., + percentile = -20 equals percentile = 80 + %(size_foot)s + %(output)s + %(mode_reflect)s + %(cval)s + %(origin_multiple)s + axes : tuple of int or None, optional + If None, `input` is filtered along all axes. Otherwise, + `input` is filtered along the specified axes. + + Returns + ------- + percentile_filter : ndarray + Filtered array. Has the same shape as `input`. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> plt.gray() # show the filtered result in grayscale + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + >>> ascent = datasets.ascent() + >>> result = ndimage.percentile_filter(ascent, percentile=20, size=20) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result) + >>> plt.show() + """ + return _rank_filter(input, percentile, size, footprint, output, mode, + cval, origin, 'percentile', axes=axes) + + +@_ni_docstrings.docfiller +def generic_filter1d(input, function, filter_size, axis=-1, + output=None, mode="reflect", cval=0.0, origin=0, + extra_arguments=(), extra_keywords=None): + """Calculate a 1-D filter along the given axis. + + `generic_filter1d` iterates over the lines of the array, calling the + given function at each line. The arguments of the line are the + input line, and the output line. The input and output lines are 1-D + double arrays. The input line is extended appropriately according + to the filter size and origin. The output line must be modified + in-place with the result. + + Parameters + ---------- + %(input)s + function : {callable, scipy.LowLevelCallable} + Function to apply along given axis. + filter_size : scalar + Length of the filter. + %(axis)s + %(output)s + %(mode_reflect)s + %(cval)s + %(origin)s + %(extra_arguments)s + %(extra_keywords)s + + Returns + ------- + generic_filter1d : ndarray + Filtered array. Has the same shape as `input`. + + Notes + ----- + This function also accepts low-level callback functions with one of + the following signatures and wrapped in `scipy.LowLevelCallable`: + + .. code:: c + + int function(double *input_line, npy_intp input_length, + double *output_line, npy_intp output_length, + void *user_data) + int function(double *input_line, intptr_t input_length, + double *output_line, intptr_t output_length, + void *user_data) + + The calling function iterates over the lines of the input and output + arrays, calling the callback function at each line. The current line + is extended according to the border conditions set by the calling + function, and the result is copied into the array that is passed + through ``input_line``. The length of the input line (after extension) + is passed through ``input_length``. The callback function should apply + the filter and store the result in the array passed through + ``output_line``. The length of the output line is passed through + ``output_length``. ``user_data`` is the data pointer provided + to `scipy.LowLevelCallable` as-is. + + The callback function must return an integer error status that is zero + if something went wrong and one otherwise. If an error occurs, you should + normally set the python error status with an informative message + before returning, otherwise a default error message is set by the + calling function. + + In addition, some other low-level function pointer specifications + are accepted, but these are for backward compatibility only and should + not be used in new code. + + """ + if extra_keywords is None: + extra_keywords = {} + input = numpy.asarray(input) + if numpy.iscomplexobj(input): + raise TypeError('Complex type not supported') + output = _ni_support._get_output(output, input) + if filter_size < 1: + raise RuntimeError('invalid filter size') + axis = normalize_axis_index(axis, input.ndim) + if (filter_size // 2 + origin < 0) or (filter_size // 2 + origin >= + filter_size): + raise ValueError('invalid origin') + mode = _ni_support._extend_mode_to_code(mode) + _nd_image.generic_filter1d(input, function, filter_size, axis, output, + mode, cval, origin, extra_arguments, + extra_keywords) + return output + + +@_ni_docstrings.docfiller +def generic_filter(input, function, size=None, footprint=None, + output=None, mode="reflect", cval=0.0, origin=0, + extra_arguments=(), extra_keywords=None): + """Calculate a multidimensional filter using the given function. + + At each element the provided function is called. The input values + within the filter footprint at that element are passed to the function + as a 1-D array of double values. + + Parameters + ---------- + %(input)s + function : {callable, scipy.LowLevelCallable} + Function to apply at each element. + %(size_foot)s + %(output)s + %(mode_reflect)s + %(cval)s + %(origin_multiple)s + %(extra_arguments)s + %(extra_keywords)s + + Returns + ------- + generic_filter : ndarray + Filtered array. Has the same shape as `input`. + + Notes + ----- + This function also accepts low-level callback functions with one of + the following signatures and wrapped in `scipy.LowLevelCallable`: + + .. code:: c + + int callback(double *buffer, npy_intp filter_size, + double *return_value, void *user_data) + int callback(double *buffer, intptr_t filter_size, + double *return_value, void *user_data) + + The calling function iterates over the elements of the input and + output arrays, calling the callback function at each element. The + elements within the footprint of the filter at the current element are + passed through the ``buffer`` parameter, and the number of elements + within the footprint through ``filter_size``. The calculated value is + returned in ``return_value``. ``user_data`` is the data pointer provided + to `scipy.LowLevelCallable` as-is. + + The callback function must return an integer error status that is zero + if something went wrong and one otherwise. If an error occurs, you should + normally set the python error status with an informative message + before returning, otherwise a default error message is set by the + calling function. + + In addition, some other low-level function pointer specifications + are accepted, but these are for backward compatibility only and should + not be used in new code. + + Examples + -------- + Import the necessary modules and load the example image used for + filtering. + + >>> import numpy as np + >>> from scipy import datasets + >>> from scipy.ndimage import generic_filter + >>> import matplotlib.pyplot as plt + >>> ascent = datasets.ascent() + + Compute a maximum filter with kernel size 10 by passing a simple NumPy + aggregation function as argument to `function`. + + >>> maximum_filter_result = generic_filter(ascent, np.amax, [10, 10]) + + While a maximmum filter could also directly be obtained using + `maximum_filter`, `generic_filter` allows generic Python function or + `scipy.LowLevelCallable` to be used as a filter. Here, we compute the + range between maximum and minimum value as an example for a kernel size + of 5. + + >>> def custom_filter(image): + ... return np.amax(image) - np.amin(image) + >>> custom_filter_result = generic_filter(ascent, custom_filter, [5, 5]) + + Plot the original and filtered images. + + >>> fig, axes = plt.subplots(3, 1, figsize=(4, 12)) + >>> plt.gray() # show the filtered result in grayscale + >>> top, middle, bottom = axes + >>> for ax in axes: + ... ax.set_axis_off() # remove coordinate system + >>> top.imshow(ascent) + >>> top.set_title("Original image") + >>> middle.imshow(maximum_filter_result) + >>> middle.set_title("Maximum filter, Kernel: 10x10") + >>> bottom.imshow(custom_filter_result) + >>> bottom.set_title("Custom filter, Kernel: 5x5") + >>> fig.tight_layout() + + """ + if (size is not None) and (footprint is not None): + warnings.warn("ignoring size because footprint is set", + UserWarning, stacklevel=2) + if extra_keywords is None: + extra_keywords = {} + input = numpy.asarray(input) + if numpy.iscomplexobj(input): + raise TypeError('Complex type not supported') + origins = _ni_support._normalize_sequence(origin, input.ndim) + if footprint is None: + if size is None: + raise RuntimeError("no footprint or filter size provided") + sizes = _ni_support._normalize_sequence(size, input.ndim) + footprint = numpy.ones(sizes, dtype=bool) + else: + footprint = numpy.asarray(footprint, dtype=bool) + fshape = [ii for ii in footprint.shape if ii > 0] + if len(fshape) != input.ndim: + raise RuntimeError('filter footprint array has incorrect shape.') + for origin, lenf in zip(origins, fshape): + if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): + raise ValueError('invalid origin') + if not footprint.flags.contiguous: + footprint = footprint.copy() + output = _ni_support._get_output(output, input) + mode = _ni_support._extend_mode_to_code(mode) + _nd_image.generic_filter(input, function, footprint, output, mode, + cval, origins, extra_arguments, extra_keywords) + return output diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_fourier.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_fourier.py new file mode 100644 index 0000000000000000000000000000000000000000..8966dd6d9a94341f3b68561d8f6d7f8e73e074e8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_fourier.py @@ -0,0 +1,307 @@ +# Copyright (C) 2003-2005 Peter J. Verveer +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# +# 2. Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials provided +# with the distribution. +# +# 3. The name of the author may not be used to endorse or promote +# products derived from this software without specific prior +# written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS +# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE +# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import numpy +from scipy._lib._util import normalize_axis_index +from . import _ni_support +from . import _nd_image + +__all__ = ['fourier_gaussian', 'fourier_uniform', 'fourier_ellipsoid', + 'fourier_shift'] + + +def _get_output_fourier(output, input): + if output is None: + if input.dtype.type in [numpy.complex64, numpy.complex128, + numpy.float32]: + output = numpy.zeros(input.shape, dtype=input.dtype) + else: + output = numpy.zeros(input.shape, dtype=numpy.float64) + elif type(output) is type: + if output not in [numpy.complex64, numpy.complex128, + numpy.float32, numpy.float64]: + raise RuntimeError("output type not supported") + output = numpy.zeros(input.shape, dtype=output) + elif output.shape != input.shape: + raise RuntimeError("output shape not correct") + return output + + +def _get_output_fourier_complex(output, input): + if output is None: + if input.dtype.type in [numpy.complex64, numpy.complex128]: + output = numpy.zeros(input.shape, dtype=input.dtype) + else: + output = numpy.zeros(input.shape, dtype=numpy.complex128) + elif type(output) is type: + if output not in [numpy.complex64, numpy.complex128]: + raise RuntimeError("output type not supported") + output = numpy.zeros(input.shape, dtype=output) + elif output.shape != input.shape: + raise RuntimeError("output shape not correct") + return output + + +def fourier_gaussian(input, sigma, n=-1, axis=-1, output=None): + """ + Multidimensional Gaussian fourier filter. + + The array is multiplied with the fourier transform of a Gaussian + kernel. + + Parameters + ---------- + input : array_like + The input array. + sigma : float or sequence + The sigma of the Gaussian kernel. If a float, `sigma` is the same for + all axes. If a sequence, `sigma` has to contain one value for each + axis. + n : int, optional + If `n` is negative (default), then the input is assumed to be the + result of a complex fft. + If `n` is larger than or equal to zero, the input is assumed to be the + result of a real fft, and `n` gives the length of the array before + transformation along the real transform direction. + axis : int, optional + The axis of the real transform. + output : ndarray, optional + If given, the result of filtering the input is placed in this array. + + Returns + ------- + fourier_gaussian : ndarray + The filtered input. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import numpy.fft + >>> import matplotlib.pyplot as plt + >>> fig, (ax1, ax2) = plt.subplots(1, 2) + >>> plt.gray() # show the filtered result in grayscale + >>> ascent = datasets.ascent() + >>> input_ = numpy.fft.fft2(ascent) + >>> result = ndimage.fourier_gaussian(input_, sigma=4) + >>> result = numpy.fft.ifft2(result) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result.real) # the imaginary part is an artifact + >>> plt.show() + """ + input = numpy.asarray(input) + output = _get_output_fourier(output, input) + axis = normalize_axis_index(axis, input.ndim) + sigmas = _ni_support._normalize_sequence(sigma, input.ndim) + sigmas = numpy.asarray(sigmas, dtype=numpy.float64) + if not sigmas.flags.contiguous: + sigmas = sigmas.copy() + + _nd_image.fourier_filter(input, sigmas, n, axis, output, 0) + return output + + +def fourier_uniform(input, size, n=-1, axis=-1, output=None): + """ + Multidimensional uniform fourier filter. + + The array is multiplied with the Fourier transform of a box of given + size. + + Parameters + ---------- + input : array_like + The input array. + size : float or sequence + The size of the box used for filtering. + If a float, `size` is the same for all axes. If a sequence, `size` has + to contain one value for each axis. + n : int, optional + If `n` is negative (default), then the input is assumed to be the + result of a complex fft. + If `n` is larger than or equal to zero, the input is assumed to be the + result of a real fft, and `n` gives the length of the array before + transformation along the real transform direction. + axis : int, optional + The axis of the real transform. + output : ndarray, optional + If given, the result of filtering the input is placed in this array. + + Returns + ------- + fourier_uniform : ndarray + The filtered input. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import numpy.fft + >>> import matplotlib.pyplot as plt + >>> fig, (ax1, ax2) = plt.subplots(1, 2) + >>> plt.gray() # show the filtered result in grayscale + >>> ascent = datasets.ascent() + >>> input_ = numpy.fft.fft2(ascent) + >>> result = ndimage.fourier_uniform(input_, size=20) + >>> result = numpy.fft.ifft2(result) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result.real) # the imaginary part is an artifact + >>> plt.show() + """ + input = numpy.asarray(input) + output = _get_output_fourier(output, input) + axis = normalize_axis_index(axis, input.ndim) + sizes = _ni_support._normalize_sequence(size, input.ndim) + sizes = numpy.asarray(sizes, dtype=numpy.float64) + if not sizes.flags.contiguous: + sizes = sizes.copy() + _nd_image.fourier_filter(input, sizes, n, axis, output, 1) + return output + + +def fourier_ellipsoid(input, size, n=-1, axis=-1, output=None): + """ + Multidimensional ellipsoid Fourier filter. + + The array is multiplied with the fourier transform of an ellipsoid of + given sizes. + + Parameters + ---------- + input : array_like + The input array. + size : float or sequence + The size of the box used for filtering. + If a float, `size` is the same for all axes. If a sequence, `size` has + to contain one value for each axis. + n : int, optional + If `n` is negative (default), then the input is assumed to be the + result of a complex fft. + If `n` is larger than or equal to zero, the input is assumed to be the + result of a real fft, and `n` gives the length of the array before + transformation along the real transform direction. + axis : int, optional + The axis of the real transform. + output : ndarray, optional + If given, the result of filtering the input is placed in this array. + + Returns + ------- + fourier_ellipsoid : ndarray + The filtered input. + + Notes + ----- + This function is implemented for arrays of rank 1, 2, or 3. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import numpy.fft + >>> import matplotlib.pyplot as plt + >>> fig, (ax1, ax2) = plt.subplots(1, 2) + >>> plt.gray() # show the filtered result in grayscale + >>> ascent = datasets.ascent() + >>> input_ = numpy.fft.fft2(ascent) + >>> result = ndimage.fourier_ellipsoid(input_, size=20) + >>> result = numpy.fft.ifft2(result) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result.real) # the imaginary part is an artifact + >>> plt.show() + """ + input = numpy.asarray(input) + if input.ndim > 3: + raise NotImplementedError("Only 1d, 2d and 3d inputs are supported") + output = _get_output_fourier(output, input) + if output.size == 0: + # The C code has a bug that can result in a segfault with arrays + # that have size 0 (gh-17270), so check here. + return output + axis = normalize_axis_index(axis, input.ndim) + sizes = _ni_support._normalize_sequence(size, input.ndim) + sizes = numpy.asarray(sizes, dtype=numpy.float64) + if not sizes.flags.contiguous: + sizes = sizes.copy() + _nd_image.fourier_filter(input, sizes, n, axis, output, 2) + return output + + +def fourier_shift(input, shift, n=-1, axis=-1, output=None): + """ + Multidimensional Fourier shift filter. + + The array is multiplied with the Fourier transform of a shift operation. + + Parameters + ---------- + input : array_like + The input array. + shift : float or sequence + The size of the box used for filtering. + If a float, `shift` is the same for all axes. If a sequence, `shift` + has to contain one value for each axis. + n : int, optional + If `n` is negative (default), then the input is assumed to be the + result of a complex fft. + If `n` is larger than or equal to zero, the input is assumed to be the + result of a real fft, and `n` gives the length of the array before + transformation along the real transform direction. + axis : int, optional + The axis of the real transform. + output : ndarray, optional + If given, the result of shifting the input is placed in this array. + + Returns + ------- + fourier_shift : ndarray + The shifted input. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> import numpy.fft + >>> fig, (ax1, ax2) = plt.subplots(1, 2) + >>> plt.gray() # show the filtered result in grayscale + >>> ascent = datasets.ascent() + >>> input_ = numpy.fft.fft2(ascent) + >>> result = ndimage.fourier_shift(input_, shift=200) + >>> result = numpy.fft.ifft2(result) + >>> ax1.imshow(ascent) + >>> ax2.imshow(result.real) # the imaginary part is an artifact + >>> plt.show() + """ + input = numpy.asarray(input) + output = _get_output_fourier_complex(output, input) + axis = normalize_axis_index(axis, input.ndim) + shifts = _ni_support._normalize_sequence(shift, input.ndim) + shifts = numpy.asarray(shifts, dtype=numpy.float64) + if not shifts.flags.contiguous: + shifts = shifts.copy() + _nd_image.fourier_shift(input, shifts, n, axis, output) + return output diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_interpolation.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_interpolation.py new file mode 100644 index 0000000000000000000000000000000000000000..b87e32ef60215b8ec7b189bc5e7a579a4095b1f9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_interpolation.py @@ -0,0 +1,1010 @@ +# Copyright (C) 2003-2005 Peter J. Verveer +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# +# 2. Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials provided +# with the distribution. +# +# 3. The name of the author may not be used to endorse or promote +# products derived from this software without specific prior +# written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS +# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE +# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import itertools +import warnings + +import numpy +from scipy._lib._util import normalize_axis_index + +from scipy import special +from . import _ni_support +from . import _nd_image +from ._ni_docstrings import docfiller + + +__all__ = ['spline_filter1d', 'spline_filter', 'geometric_transform', + 'map_coordinates', 'affine_transform', 'shift', 'zoom', 'rotate'] + + +@docfiller +def spline_filter1d(input, order=3, axis=-1, output=numpy.float64, + mode='mirror'): + """ + Calculate a 1-D spline filter along the given axis. + + The lines of the array along the given axis are filtered by a + spline filter. The order of the spline must be >= 2 and <= 5. + + Parameters + ---------- + %(input)s + order : int, optional + The order of the spline, default is 3. + axis : int, optional + The axis along which the spline filter is applied. Default is the last + axis. + output : ndarray or dtype, optional + The array in which to place the output, or the dtype of the returned + array. Default is ``numpy.float64``. + %(mode_interp_mirror)s + + Returns + ------- + spline_filter1d : ndarray + The filtered input. + + See Also + -------- + spline_filter : Multidimensional spline filter. + + Notes + ----- + All of the interpolation functions in `ndimage` do spline interpolation of + the input image. If using B-splines of `order > 1`, the input image + values have to be converted to B-spline coefficients first, which is + done by applying this 1-D filter sequentially along all + axes of the input. All functions that require B-spline coefficients + will automatically filter their inputs, a behavior controllable with + the `prefilter` keyword argument. For functions that accept a `mode` + parameter, the result will only be correct if it matches the `mode` + used when filtering. + + For complex-valued `input`, this function processes the real and imaginary + components independently. + + .. versionadded:: 1.6.0 + Complex-valued support added. + + Examples + -------- + We can filter an image using 1-D spline along the given axis: + + >>> from scipy.ndimage import spline_filter1d + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> orig_img = np.eye(20) # create an image + >>> orig_img[10, :] = 1.0 + >>> sp_filter_axis_0 = spline_filter1d(orig_img, axis=0) + >>> sp_filter_axis_1 = spline_filter1d(orig_img, axis=1) + >>> f, ax = plt.subplots(1, 3, sharex=True) + >>> for ind, data in enumerate([[orig_img, "original image"], + ... [sp_filter_axis_0, "spline filter (axis=0)"], + ... [sp_filter_axis_1, "spline filter (axis=1)"]]): + ... ax[ind].imshow(data[0], cmap='gray_r') + ... ax[ind].set_title(data[1]) + >>> plt.tight_layout() + >>> plt.show() + + """ + if order < 0 or order > 5: + raise RuntimeError('spline order not supported') + input = numpy.asarray(input) + complex_output = numpy.iscomplexobj(input) + output = _ni_support._get_output(output, input, + complex_output=complex_output) + if complex_output: + spline_filter1d(input.real, order, axis, output.real, mode) + spline_filter1d(input.imag, order, axis, output.imag, mode) + return output + if order in [0, 1]: + output[...] = numpy.array(input) + else: + mode = _ni_support._extend_mode_to_code(mode) + axis = normalize_axis_index(axis, input.ndim) + _nd_image.spline_filter1d(input, order, axis, output, mode) + return output + +@docfiller +def spline_filter(input, order=3, output=numpy.float64, mode='mirror'): + """ + Multidimensional spline filter. + + Parameters + ---------- + %(input)s + order : int, optional + The order of the spline, default is 3. + output : ndarray or dtype, optional + The array in which to place the output, or the dtype of the returned + array. Default is ``numpy.float64``. + %(mode_interp_mirror)s + + Returns + ------- + spline_filter : ndarray + Filtered array. Has the same shape as `input`. + + See Also + -------- + spline_filter1d : Calculate a 1-D spline filter along the given axis. + + Notes + ----- + The multidimensional filter is implemented as a sequence of + 1-D spline filters. The intermediate arrays are stored + in the same data type as the output. Therefore, for output types + with a limited precision, the results may be imprecise because + intermediate results may be stored with insufficient precision. + + For complex-valued `input`, this function processes the real and imaginary + components independently. + + .. versionadded:: 1.6.0 + Complex-valued support added. + + Examples + -------- + We can filter an image using multidimentional splines: + + >>> from scipy.ndimage import spline_filter + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> orig_img = np.eye(20) # create an image + >>> orig_img[10, :] = 1.0 + >>> sp_filter = spline_filter(orig_img, order=3) + >>> f, ax = plt.subplots(1, 2, sharex=True) + >>> for ind, data in enumerate([[orig_img, "original image"], + ... [sp_filter, "spline filter"]]): + ... ax[ind].imshow(data[0], cmap='gray_r') + ... ax[ind].set_title(data[1]) + >>> plt.tight_layout() + >>> plt.show() + + """ + if order < 2 or order > 5: + raise RuntimeError('spline order not supported') + input = numpy.asarray(input) + complex_output = numpy.iscomplexobj(input) + output = _ni_support._get_output(output, input, + complex_output=complex_output) + if complex_output: + spline_filter(input.real, order, output.real, mode) + spline_filter(input.imag, order, output.imag, mode) + return output + if order not in [0, 1] and input.ndim > 0: + for axis in range(input.ndim): + spline_filter1d(input, order, axis, output=output, mode=mode) + input = output + else: + output[...] = input[...] + return output + + +def _prepad_for_spline_filter(input, mode, cval): + if mode in ['nearest', 'grid-constant']: + npad = 12 + if mode == 'grid-constant': + padded = numpy.pad(input, npad, mode='constant', + constant_values=cval) + elif mode == 'nearest': + padded = numpy.pad(input, npad, mode='edge') + else: + # other modes have exact boundary conditions implemented so + # no prepadding is needed + npad = 0 + padded = input + return padded, npad + + +@docfiller +def geometric_transform(input, mapping, output_shape=None, + output=None, order=3, + mode='constant', cval=0.0, prefilter=True, + extra_arguments=(), extra_keywords={}): + """ + Apply an arbitrary geometric transform. + + The given mapping function is used to find, for each point in the + output, the corresponding coordinates in the input. The value of the + input at those coordinates is determined by spline interpolation of + the requested order. + + Parameters + ---------- + %(input)s + mapping : {callable, scipy.LowLevelCallable} + A callable object that accepts a tuple of length equal to the output + array rank, and returns the corresponding input coordinates as a tuple + of length equal to the input array rank. + output_shape : tuple of ints, optional + Shape tuple. + %(output)s + order : int, optional + The order of the spline interpolation, default is 3. + The order has to be in the range 0-5. + %(mode_interp_constant)s + %(cval)s + %(prefilter)s + extra_arguments : tuple, optional + Extra arguments passed to `mapping`. + extra_keywords : dict, optional + Extra keywords passed to `mapping`. + + Returns + ------- + output : ndarray + The filtered input. + + See Also + -------- + map_coordinates, affine_transform, spline_filter1d + + + Notes + ----- + This function also accepts low-level callback functions with one + the following signatures and wrapped in `scipy.LowLevelCallable`: + + .. code:: c + + int mapping(npy_intp *output_coordinates, double *input_coordinates, + int output_rank, int input_rank, void *user_data) + int mapping(intptr_t *output_coordinates, double *input_coordinates, + int output_rank, int input_rank, void *user_data) + + The calling function iterates over the elements of the output array, + calling the callback function at each element. The coordinates of the + current output element are passed through ``output_coordinates``. The + callback function must return the coordinates at which the input must + be interpolated in ``input_coordinates``. The rank of the input and + output arrays are given by ``input_rank`` and ``output_rank`` + respectively. ``user_data`` is the data pointer provided + to `scipy.LowLevelCallable` as-is. + + The callback function must return an integer error status that is zero + if something went wrong and one otherwise. If an error occurs, you should + normally set the Python error status with an informative message + before returning, otherwise a default error message is set by the + calling function. + + In addition, some other low-level function pointer specifications + are accepted, but these are for backward compatibility only and should + not be used in new code. + + For complex-valued `input`, this function transforms the real and imaginary + components independently. + + .. versionadded:: 1.6.0 + Complex-valued support added. + + Examples + -------- + >>> import numpy as np + >>> from scipy.ndimage import geometric_transform + >>> a = np.arange(12.).reshape((4, 3)) + >>> def shift_func(output_coords): + ... return (output_coords[0] - 0.5, output_coords[1] - 0.5) + ... + >>> geometric_transform(a, shift_func) + array([[ 0. , 0. , 0. ], + [ 0. , 1.362, 2.738], + [ 0. , 4.812, 6.187], + [ 0. , 8.263, 9.637]]) + + >>> b = [1, 2, 3, 4, 5] + >>> def shift_func(output_coords): + ... return (output_coords[0] - 3,) + ... + >>> geometric_transform(b, shift_func, mode='constant') + array([0, 0, 0, 1, 2]) + >>> geometric_transform(b, shift_func, mode='nearest') + array([1, 1, 1, 1, 2]) + >>> geometric_transform(b, shift_func, mode='reflect') + array([3, 2, 1, 1, 2]) + >>> geometric_transform(b, shift_func, mode='wrap') + array([2, 3, 4, 1, 2]) + + """ + if order < 0 or order > 5: + raise RuntimeError('spline order not supported') + input = numpy.asarray(input) + if output_shape is None: + output_shape = input.shape + if input.ndim < 1 or len(output_shape) < 1: + raise RuntimeError('input and output rank must be > 0') + complex_output = numpy.iscomplexobj(input) + output = _ni_support._get_output(output, input, shape=output_shape, + complex_output=complex_output) + if complex_output: + kwargs = dict(order=order, mode=mode, prefilter=prefilter, + output_shape=output_shape, + extra_arguments=extra_arguments, + extra_keywords=extra_keywords) + geometric_transform(input.real, mapping, output=output.real, + cval=numpy.real(cval), **kwargs) + geometric_transform(input.imag, mapping, output=output.imag, + cval=numpy.imag(cval), **kwargs) + return output + + if prefilter and order > 1: + padded, npad = _prepad_for_spline_filter(input, mode, cval) + filtered = spline_filter(padded, order, output=numpy.float64, + mode=mode) + else: + npad = 0 + filtered = input + mode = _ni_support._extend_mode_to_code(mode) + _nd_image.geometric_transform(filtered, mapping, None, None, None, output, + order, mode, cval, npad, extra_arguments, + extra_keywords) + return output + + +@docfiller +def map_coordinates(input, coordinates, output=None, order=3, + mode='constant', cval=0.0, prefilter=True): + """ + Map the input array to new coordinates by interpolation. + + The array of coordinates is used to find, for each point in the output, + the corresponding coordinates in the input. The value of the input at + those coordinates is determined by spline interpolation of the + requested order. + + The shape of the output is derived from that of the coordinate + array by dropping the first axis. The values of the array along + the first axis are the coordinates in the input array at which the + output value is found. + + Parameters + ---------- + %(input)s + coordinates : array_like + The coordinates at which `input` is evaluated. + %(output)s + order : int, optional + The order of the spline interpolation, default is 3. + The order has to be in the range 0-5. + %(mode_interp_constant)s + %(cval)s + %(prefilter)s + + Returns + ------- + map_coordinates : ndarray + The result of transforming the input. The shape of the output is + derived from that of `coordinates` by dropping the first axis. + + See Also + -------- + spline_filter, geometric_transform, scipy.interpolate + + Notes + ----- + For complex-valued `input`, this function maps the real and imaginary + components independently. + + .. versionadded:: 1.6.0 + Complex-valued support added. + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.arange(12.).reshape((4, 3)) + >>> a + array([[ 0., 1., 2.], + [ 3., 4., 5.], + [ 6., 7., 8.], + [ 9., 10., 11.]]) + >>> ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1) + array([ 2., 7.]) + + Above, the interpolated value of a[0.5, 0.5] gives output[0], while + a[2, 1] is output[1]. + + >>> inds = np.array([[0.5, 2], [0.5, 4]]) + >>> ndimage.map_coordinates(a, inds, order=1, cval=-33.3) + array([ 2. , -33.3]) + >>> ndimage.map_coordinates(a, inds, order=1, mode='nearest') + array([ 2., 8.]) + >>> ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool) + array([ True, False], dtype=bool) + + """ + if order < 0 or order > 5: + raise RuntimeError('spline order not supported') + input = numpy.asarray(input) + coordinates = numpy.asarray(coordinates) + if numpy.iscomplexobj(coordinates): + raise TypeError('Complex type not supported') + output_shape = coordinates.shape[1:] + if input.ndim < 1 or len(output_shape) < 1: + raise RuntimeError('input and output rank must be > 0') + if coordinates.shape[0] != input.ndim: + raise RuntimeError('invalid shape for coordinate array') + complex_output = numpy.iscomplexobj(input) + output = _ni_support._get_output(output, input, shape=output_shape, + complex_output=complex_output) + if complex_output: + kwargs = dict(order=order, mode=mode, prefilter=prefilter) + map_coordinates(input.real, coordinates, output=output.real, + cval=numpy.real(cval), **kwargs) + map_coordinates(input.imag, coordinates, output=output.imag, + cval=numpy.imag(cval), **kwargs) + return output + if prefilter and order > 1: + padded, npad = _prepad_for_spline_filter(input, mode, cval) + filtered = spline_filter(padded, order, output=numpy.float64, + mode=mode) + else: + npad = 0 + filtered = input + mode = _ni_support._extend_mode_to_code(mode) + _nd_image.geometric_transform(filtered, None, coordinates, None, None, + output, order, mode, cval, npad, None, None) + return output + + +@docfiller +def affine_transform(input, matrix, offset=0.0, output_shape=None, + output=None, order=3, + mode='constant', cval=0.0, prefilter=True): + """ + Apply an affine transformation. + + Given an output image pixel index vector ``o``, the pixel value + is determined from the input image at position + ``np.dot(matrix, o) + offset``. + + This does 'pull' (or 'backward') resampling, transforming the output space + to the input to locate data. Affine transformations are often described in + the 'push' (or 'forward') direction, transforming input to output. If you + have a matrix for the 'push' transformation, use its inverse + (:func:`numpy.linalg.inv`) in this function. + + Parameters + ---------- + %(input)s + matrix : ndarray + The inverse coordinate transformation matrix, mapping output + coordinates to input coordinates. If ``ndim`` is the number of + dimensions of ``input``, the given matrix must have one of the + following shapes: + + - ``(ndim, ndim)``: the linear transformation matrix for each + output coordinate. + - ``(ndim,)``: assume that the 2-D transformation matrix is + diagonal, with the diagonal specified by the given value. A more + efficient algorithm is then used that exploits the separability + of the problem. + - ``(ndim + 1, ndim + 1)``: assume that the transformation is + specified using homogeneous coordinates [1]_. In this case, any + value passed to ``offset`` is ignored. + - ``(ndim, ndim + 1)``: as above, but the bottom row of a + homogeneous transformation matrix is always ``[0, 0, ..., 1]``, + and may be omitted. + + offset : float or sequence, optional + The offset into the array where the transform is applied. If a float, + `offset` is the same for each axis. If a sequence, `offset` should + contain one value for each axis. + output_shape : tuple of ints, optional + Shape tuple. + %(output)s + order : int, optional + The order of the spline interpolation, default is 3. + The order has to be in the range 0-5. + %(mode_interp_constant)s + %(cval)s + %(prefilter)s + + Returns + ------- + affine_transform : ndarray + The transformed input. + + Notes + ----- + The given matrix and offset are used to find for each point in the + output the corresponding coordinates in the input by an affine + transformation. The value of the input at those coordinates is + determined by spline interpolation of the requested order. Points + outside the boundaries of the input are filled according to the given + mode. + + .. versionchanged:: 0.18.0 + Previously, the exact interpretation of the affine transformation + depended on whether the matrix was supplied as a 1-D or a + 2-D array. If a 1-D array was supplied + to the matrix parameter, the output pixel value at index ``o`` + was determined from the input image at position + ``matrix * (o + offset)``. + + For complex-valued `input`, this function transforms the real and imaginary + components independently. + + .. versionadded:: 1.6.0 + Complex-valued support added. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Homogeneous_coordinates + """ + if order < 0 or order > 5: + raise RuntimeError('spline order not supported') + input = numpy.asarray(input) + if output_shape is None: + if isinstance(output, numpy.ndarray): + output_shape = output.shape + else: + output_shape = input.shape + if input.ndim < 1 or len(output_shape) < 1: + raise RuntimeError('input and output rank must be > 0') + complex_output = numpy.iscomplexobj(input) + output = _ni_support._get_output(output, input, shape=output_shape, + complex_output=complex_output) + if complex_output: + kwargs = dict(offset=offset, output_shape=output_shape, order=order, + mode=mode, prefilter=prefilter) + affine_transform(input.real, matrix, output=output.real, + cval=numpy.real(cval), **kwargs) + affine_transform(input.imag, matrix, output=output.imag, + cval=numpy.imag(cval), **kwargs) + return output + if prefilter and order > 1: + padded, npad = _prepad_for_spline_filter(input, mode, cval) + filtered = spline_filter(padded, order, output=numpy.float64, + mode=mode) + else: + npad = 0 + filtered = input + mode = _ni_support._extend_mode_to_code(mode) + matrix = numpy.asarray(matrix, dtype=numpy.float64) + if matrix.ndim not in [1, 2] or matrix.shape[0] < 1: + raise RuntimeError('no proper affine matrix provided') + if (matrix.ndim == 2 and matrix.shape[1] == input.ndim + 1 and + (matrix.shape[0] in [input.ndim, input.ndim + 1])): + if matrix.shape[0] == input.ndim + 1: + exptd = [0] * input.ndim + [1] + if not numpy.all(matrix[input.ndim] == exptd): + msg = ('Expected homogeneous transformation matrix with ' + 'shape {} for image shape {}, but bottom row was ' + 'not equal to {}'.format(matrix.shape, input.shape, exptd)) + raise ValueError(msg) + # assume input is homogeneous coordinate transformation matrix + offset = matrix[:input.ndim, input.ndim] + matrix = matrix[:input.ndim, :input.ndim] + if matrix.shape[0] != input.ndim: + raise RuntimeError('affine matrix has wrong number of rows') + if matrix.ndim == 2 and matrix.shape[1] != output.ndim: + raise RuntimeError('affine matrix has wrong number of columns') + if not matrix.flags.contiguous: + matrix = matrix.copy() + offset = _ni_support._normalize_sequence(offset, input.ndim) + offset = numpy.asarray(offset, dtype=numpy.float64) + if offset.ndim != 1 or offset.shape[0] < 1: + raise RuntimeError('no proper offset provided') + if not offset.flags.contiguous: + offset = offset.copy() + if matrix.ndim == 1: + warnings.warn( + "The behavior of affine_transform with a 1-D " + "array supplied for the matrix parameter has changed in " + "SciPy 0.18.0.", + stacklevel=2 + ) + _nd_image.zoom_shift(filtered, matrix, offset/matrix, output, order, + mode, cval, npad, False) + else: + _nd_image.geometric_transform(filtered, None, None, matrix, offset, + output, order, mode, cval, npad, None, + None) + return output + + +@docfiller +def shift(input, shift, output=None, order=3, mode='constant', cval=0.0, + prefilter=True): + """ + Shift an array. + + The array is shifted using spline interpolation of the requested order. + Points outside the boundaries of the input are filled according to the + given mode. + + Parameters + ---------- + %(input)s + shift : float or sequence + The shift along the axes. If a float, `shift` is the same for each + axis. If a sequence, `shift` should contain one value for each axis. + %(output)s + order : int, optional + The order of the spline interpolation, default is 3. + The order has to be in the range 0-5. + %(mode_interp_constant)s + %(cval)s + %(prefilter)s + + Returns + ------- + shift : ndarray + The shifted input. + + See Also + -------- + affine_transform : Affine transformations + + Notes + ----- + For complex-valued `input`, this function shifts the real and imaginary + components independently. + + .. versionadded:: 1.6.0 + Complex-valued support added. + + Examples + -------- + Import the necessary modules and an exemplary image. + + >>> from scipy.ndimage import shift + >>> import matplotlib.pyplot as plt + >>> from scipy import datasets + >>> image = datasets.ascent() + + Shift the image vertically by 20 pixels. + + >>> image_shifted_vertically = shift(image, (20, 0)) + + Shift the image vertically by -200 pixels and horizontally by 100 pixels. + + >>> image_shifted_both_directions = shift(image, (-200, 100)) + + Plot the original and the shifted images. + + >>> fig, axes = plt.subplots(3, 1, figsize=(4, 12)) + >>> plt.gray() # show the filtered result in grayscale + >>> top, middle, bottom = axes + >>> for ax in axes: + ... ax.set_axis_off() # remove coordinate system + >>> top.imshow(image) + >>> top.set_title("Original image") + >>> middle.imshow(image_shifted_vertically) + >>> middle.set_title("Vertically shifted image") + >>> bottom.imshow(image_shifted_both_directions) + >>> bottom.set_title("Image shifted in both directions") + >>> fig.tight_layout() + """ + if order < 0 or order > 5: + raise RuntimeError('spline order not supported') + input = numpy.asarray(input) + if input.ndim < 1: + raise RuntimeError('input and output rank must be > 0') + complex_output = numpy.iscomplexobj(input) + output = _ni_support._get_output(output, input, + complex_output=complex_output) + if complex_output: + # import under different name to avoid confusion with shift parameter + from scipy.ndimage._interpolation import shift as _shift + + kwargs = dict(order=order, mode=mode, prefilter=prefilter) + _shift(input.real, shift, output=output.real, cval=numpy.real(cval), + **kwargs) + _shift(input.imag, shift, output=output.imag, cval=numpy.imag(cval), + **kwargs) + return output + if prefilter and order > 1: + padded, npad = _prepad_for_spline_filter(input, mode, cval) + filtered = spline_filter(padded, order, output=numpy.float64, + mode=mode) + else: + npad = 0 + filtered = input + mode = _ni_support._extend_mode_to_code(mode) + shift = _ni_support._normalize_sequence(shift, input.ndim) + shift = [-ii for ii in shift] + shift = numpy.asarray(shift, dtype=numpy.float64) + if not shift.flags.contiguous: + shift = shift.copy() + _nd_image.zoom_shift(filtered, None, shift, output, order, mode, cval, + npad, False) + return output + + +@docfiller +def zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0, + prefilter=True, *, grid_mode=False): + """ + Zoom an array. + + The array is zoomed using spline interpolation of the requested order. + + Parameters + ---------- + %(input)s + zoom : float or sequence + The zoom factor along the axes. If a float, `zoom` is the same for each + axis. If a sequence, `zoom` should contain one value for each axis. + %(output)s + order : int, optional + The order of the spline interpolation, default is 3. + The order has to be in the range 0-5. + %(mode_interp_constant)s + %(cval)s + %(prefilter)s + grid_mode : bool, optional + If False, the distance from the pixel centers is zoomed. Otherwise, the + distance including the full pixel extent is used. For example, a 1d + signal of length 5 is considered to have length 4 when `grid_mode` is + False, but length 5 when `grid_mode` is True. See the following + visual illustration: + + .. code-block:: text + + | pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 | + |<-------------------------------------->| + vs. + |<----------------------------------------------->| + + The starting point of the arrow in the diagram above corresponds to + coordinate location 0 in each mode. + + Returns + ------- + zoom : ndarray + The zoomed input. + + Notes + ----- + For complex-valued `input`, this function zooms the real and imaginary + components independently. + + .. versionadded:: 1.6.0 + Complex-valued support added. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + + >>> fig = plt.figure() + >>> ax1 = fig.add_subplot(121) # left side + >>> ax2 = fig.add_subplot(122) # right side + >>> ascent = datasets.ascent() + >>> result = ndimage.zoom(ascent, 3.0) + >>> ax1.imshow(ascent, vmin=0, vmax=255) + >>> ax2.imshow(result, vmin=0, vmax=255) + >>> plt.show() + + >>> print(ascent.shape) + (512, 512) + + >>> print(result.shape) + (1536, 1536) + """ + if order < 0 or order > 5: + raise RuntimeError('spline order not supported') + input = numpy.asarray(input) + if input.ndim < 1: + raise RuntimeError('input and output rank must be > 0') + zoom = _ni_support._normalize_sequence(zoom, input.ndim) + output_shape = tuple( + [int(round(ii * jj)) for ii, jj in zip(input.shape, zoom)]) + complex_output = numpy.iscomplexobj(input) + output = _ni_support._get_output(output, input, shape=output_shape, + complex_output=complex_output) + if complex_output: + # import under different name to avoid confusion with zoom parameter + from scipy.ndimage._interpolation import zoom as _zoom + + kwargs = dict(order=order, mode=mode, prefilter=prefilter) + _zoom(input.real, zoom, output=output.real, cval=numpy.real(cval), + **kwargs) + _zoom(input.imag, zoom, output=output.imag, cval=numpy.imag(cval), + **kwargs) + return output + if prefilter and order > 1: + padded, npad = _prepad_for_spline_filter(input, mode, cval) + filtered = spline_filter(padded, order, output=numpy.float64, + mode=mode) + else: + npad = 0 + filtered = input + if grid_mode: + # warn about modes that may have surprising behavior + suggest_mode = None + if mode == 'constant': + suggest_mode = 'grid-constant' + elif mode == 'wrap': + suggest_mode = 'grid-wrap' + if suggest_mode is not None: + warnings.warn( + ("It is recommended to use mode = {} instead of {} when " + "grid_mode is True.").format(suggest_mode, mode), + stacklevel=2 + ) + mode = _ni_support._extend_mode_to_code(mode) + + zoom_div = numpy.array(output_shape) + zoom_nominator = numpy.array(input.shape) + if not grid_mode: + zoom_div -= 1 + zoom_nominator -= 1 + + # Zooming to infinite values is unpredictable, so just choose + # zoom factor 1 instead + zoom = numpy.divide(zoom_nominator, zoom_div, + out=numpy.ones_like(input.shape, dtype=numpy.float64), + where=zoom_div != 0) + zoom = numpy.ascontiguousarray(zoom) + _nd_image.zoom_shift(filtered, zoom, None, output, order, mode, cval, npad, + grid_mode) + return output + + +@docfiller +def rotate(input, angle, axes=(1, 0), reshape=True, output=None, order=3, + mode='constant', cval=0.0, prefilter=True): + """ + Rotate an array. + + The array is rotated in the plane defined by the two axes given by the + `axes` parameter using spline interpolation of the requested order. + + Parameters + ---------- + %(input)s + angle : float + The rotation angle in degrees. + axes : tuple of 2 ints, optional + The two axes that define the plane of rotation. Default is the first + two axes. + reshape : bool, optional + If `reshape` is true, the output shape is adapted so that the input + array is contained completely in the output. Default is True. + %(output)s + order : int, optional + The order of the spline interpolation, default is 3. + The order has to be in the range 0-5. + %(mode_interp_constant)s + %(cval)s + %(prefilter)s + + Returns + ------- + rotate : ndarray + The rotated input. + + Notes + ----- + For complex-valued `input`, this function rotates the real and imaginary + components independently. + + .. versionadded:: 1.6.0 + Complex-valued support added. + + Examples + -------- + >>> from scipy import ndimage, datasets + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure(figsize=(10, 3)) + >>> ax1, ax2, ax3 = fig.subplots(1, 3) + >>> img = datasets.ascent() + >>> img_45 = ndimage.rotate(img, 45, reshape=False) + >>> full_img_45 = ndimage.rotate(img, 45, reshape=True) + >>> ax1.imshow(img, cmap='gray') + >>> ax1.set_axis_off() + >>> ax2.imshow(img_45, cmap='gray') + >>> ax2.set_axis_off() + >>> ax3.imshow(full_img_45, cmap='gray') + >>> ax3.set_axis_off() + >>> fig.set_layout_engine('tight') + >>> plt.show() + >>> print(img.shape) + (512, 512) + >>> print(img_45.shape) + (512, 512) + >>> print(full_img_45.shape) + (724, 724) + + """ + input_arr = numpy.asarray(input) + ndim = input_arr.ndim + + if ndim < 2: + raise ValueError('input array should be at least 2D') + + axes = list(axes) + + if len(axes) != 2: + raise ValueError('axes should contain exactly two values') + + if not all([float(ax).is_integer() for ax in axes]): + raise ValueError('axes should contain only integer values') + + if axes[0] < 0: + axes[0] += ndim + if axes[1] < 0: + axes[1] += ndim + if axes[0] < 0 or axes[1] < 0 or axes[0] >= ndim or axes[1] >= ndim: + raise ValueError('invalid rotation plane specified') + + axes.sort() + + c, s = special.cosdg(angle), special.sindg(angle) + + rot_matrix = numpy.array([[c, s], + [-s, c]]) + + img_shape = numpy.asarray(input_arr.shape) + in_plane_shape = img_shape[axes] + if reshape: + # Compute transformed input bounds + iy, ix = in_plane_shape + out_bounds = rot_matrix @ [[0, 0, iy, iy], + [0, ix, 0, ix]] + # Compute the shape of the transformed input plane + out_plane_shape = (numpy.ptp(out_bounds, axis=1) + 0.5).astype(int) + else: + out_plane_shape = img_shape[axes] + + out_center = rot_matrix @ ((out_plane_shape - 1) / 2) + in_center = (in_plane_shape - 1) / 2 + offset = in_center - out_center + + output_shape = img_shape + output_shape[axes] = out_plane_shape + output_shape = tuple(output_shape) + + complex_output = numpy.iscomplexobj(input_arr) + output = _ni_support._get_output(output, input_arr, shape=output_shape, + complex_output=complex_output) + + if ndim <= 2: + affine_transform(input_arr, rot_matrix, offset, output_shape, output, + order, mode, cval, prefilter) + else: + # If ndim > 2, the rotation is applied over all the planes + # parallel to axes + planes_coord = itertools.product( + *[[slice(None)] if ax in axes else range(img_shape[ax]) + for ax in range(ndim)]) + + out_plane_shape = tuple(out_plane_shape) + + for coordinates in planes_coord: + ia = input_arr[coordinates] + oa = output[coordinates] + affine_transform(ia, rot_matrix, offset, out_plane_shape, + oa, order, mode, cval, prefilter) + + return output diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_measurements.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_measurements.py new file mode 100644 index 0000000000000000000000000000000000000000..bb3c8ef19ebc9f56e3bc0b2cc47e9664e64dd60c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_measurements.py @@ -0,0 +1,1681 @@ +# Copyright (C) 2003-2005 Peter J. Verveer +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# +# 2. Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials provided +# with the distribution. +# +# 3. The name of the author may not be used to endorse or promote +# products derived from this software without specific prior +# written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS +# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE +# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import numpy +import numpy as np +from . import _ni_support +from . import _ni_label +from . import _nd_image +from . import _morphology + +__all__ = ['label', 'find_objects', 'labeled_comprehension', 'sum', 'mean', + 'variance', 'standard_deviation', 'minimum', 'maximum', 'median', + 'minimum_position', 'maximum_position', 'extrema', 'center_of_mass', + 'histogram', 'watershed_ift', 'sum_labels', 'value_indices'] + + +def label(input, structure=None, output=None): + """ + Label features in an array. + + Parameters + ---------- + input : array_like + An array-like object to be labeled. Any non-zero values in `input` are + counted as features and zero values are considered the background. + structure : array_like, optional + A structuring element that defines feature connections. + `structure` must be centrosymmetric + (see Notes). + If no structuring element is provided, + one is automatically generated with a squared connectivity equal to + one. That is, for a 2-D `input` array, the default structuring element + is:: + + [[0,1,0], + [1,1,1], + [0,1,0]] + + output : (None, data-type, array_like), optional + If `output` is a data type, it specifies the type of the resulting + labeled feature array. + If `output` is an array-like object, then `output` will be updated + with the labeled features from this function. This function can + operate in-place, by passing output=input. + Note that the output must be able to store the largest label, or this + function will raise an Exception. + + Returns + ------- + label : ndarray or int + An integer ndarray where each unique feature in `input` has a unique + label in the returned array. + num_features : int + How many objects were found. + + If `output` is None, this function returns a tuple of + (`labeled_array`, `num_features`). + + If `output` is a ndarray, then it will be updated with values in + `labeled_array` and only `num_features` will be returned by this + function. + + See Also + -------- + find_objects : generate a list of slices for the labeled features (or + objects); useful for finding features' position or + dimensions + + Notes + ----- + A centrosymmetric matrix is a matrix that is symmetric about the center. + See [1]_ for more information. + + The `structure` matrix must be centrosymmetric to ensure + two-way connections. + For instance, if the `structure` matrix is not centrosymmetric + and is defined as:: + + [[0,1,0], + [1,1,0], + [0,0,0]] + + and the `input` is:: + + [[1,2], + [0,3]] + + then the structure matrix would indicate the + entry 2 in the input is connected to 1, + but 1 is not connected to 2. + + References + ---------- + .. [1] James R. Weaver, "Centrosymmetric (cross-symmetric) + matrices, their basic properties, eigenvalues, and + eigenvectors." The American Mathematical Monthly 92.10 + (1985): 711-717. + + Examples + -------- + Create an image with some features, then label it using the default + (cross-shaped) structuring element: + + >>> from scipy.ndimage import label, generate_binary_structure + >>> import numpy as np + >>> a = np.array([[0,0,1,1,0,0], + ... [0,0,0,1,0,0], + ... [1,1,0,0,1,0], + ... [0,0,0,1,0,0]]) + >>> labeled_array, num_features = label(a) + + Each of the 4 features are labeled with a different integer: + + >>> num_features + 4 + >>> labeled_array + array([[0, 0, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0], + [2, 2, 0, 0, 3, 0], + [0, 0, 0, 4, 0, 0]]) + + Generate a structuring element that will consider features connected even + if they touch diagonally: + + >>> s = generate_binary_structure(2,2) + + or, + + >>> s = [[1,1,1], + ... [1,1,1], + ... [1,1,1]] + + Label the image using the new structuring element: + + >>> labeled_array, num_features = label(a, structure=s) + + Show the 2 labeled features (note that features 1, 3, and 4 from above are + now considered a single feature): + + >>> num_features + 2 + >>> labeled_array + array([[0, 0, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0], + [2, 2, 0, 0, 1, 0], + [0, 0, 0, 1, 0, 0]]) + + """ + input = numpy.asarray(input) + if numpy.iscomplexobj(input): + raise TypeError('Complex type not supported') + if structure is None: + structure = _morphology.generate_binary_structure(input.ndim, 1) + structure = numpy.asarray(structure, dtype=bool) + if structure.ndim != input.ndim: + raise RuntimeError('structure and input must have equal rank') + for ii in structure.shape: + if ii != 3: + raise ValueError('structure dimensions must be equal to 3') + + # Use 32 bits if it's large enough for this image. + # _ni_label.label() needs two entries for background and + # foreground tracking + need_64bits = input.size >= (2**31 - 2) + + if isinstance(output, numpy.ndarray): + if output.shape != input.shape: + raise ValueError("output shape not correct") + caller_provided_output = True + else: + caller_provided_output = False + if output is None: + output = np.empty(input.shape, np.intp if need_64bits else np.int32) + else: + output = np.empty(input.shape, output) + + # handle scalars, 0-D arrays + if input.ndim == 0 or input.size == 0: + if input.ndim == 0: + # scalar + maxlabel = 1 if (input != 0) else 0 + output[...] = maxlabel + else: + # 0-D + maxlabel = 0 + if caller_provided_output: + return maxlabel + else: + return output, maxlabel + + try: + max_label = _ni_label._label(input, structure, output) + except _ni_label.NeedMoreBits as e: + # Make another attempt with enough bits, then try to cast to the + # new type. + tmp_output = np.empty(input.shape, np.intp if need_64bits else np.int32) + max_label = _ni_label._label(input, structure, tmp_output) + output[...] = tmp_output[...] + if not np.all(output == tmp_output): + # refuse to return bad results + raise RuntimeError( + "insufficient bit-depth in requested output type" + ) from e + + if caller_provided_output: + # result was written in-place + return max_label + else: + return output, max_label + + +def find_objects(input, max_label=0): + """ + Find objects in a labeled array. + + Parameters + ---------- + input : ndarray of ints + Array containing objects defined by different labels. Labels with + value 0 are ignored. + max_label : int, optional + Maximum label to be searched for in `input`. If max_label is not + given, the positions of all objects are returned. + + Returns + ------- + object_slices : list of tuples + A list of tuples, with each tuple containing N slices (with N the + dimension of the input array). Slices correspond to the minimal + parallelepiped that contains the object. If a number is missing, + None is returned instead of a slice. The label ``l`` corresponds to + the index ``l-1`` in the returned list. + + See Also + -------- + label, center_of_mass + + Notes + ----- + This function is very useful for isolating a volume of interest inside + a 3-D array, that cannot be "seen through". + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.zeros((6,6), dtype=int) + >>> a[2:4, 2:4] = 1 + >>> a[4, 4] = 1 + >>> a[:2, :3] = 2 + >>> a[0, 5] = 3 + >>> a + array([[2, 2, 2, 0, 0, 3], + [2, 2, 2, 0, 0, 0], + [0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 0]]) + >>> ndimage.find_objects(a) + [(slice(2, 5, None), slice(2, 5, None)), + (slice(0, 2, None), slice(0, 3, None)), + (slice(0, 1, None), slice(5, 6, None))] + >>> ndimage.find_objects(a, max_label=2) + [(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))] + >>> ndimage.find_objects(a == 1, max_label=2) + [(slice(2, 5, None), slice(2, 5, None)), None] + + >>> loc = ndimage.find_objects(a)[0] + >>> a[loc] + array([[1, 1, 0], + [1, 1, 0], + [0, 0, 1]]) + + """ + input = numpy.asarray(input) + if numpy.iscomplexobj(input): + raise TypeError('Complex type not supported') + + if max_label < 1: + max_label = input.max() + + return _nd_image.find_objects(input, max_label) + + +def value_indices(arr, *, ignore_value=None): + """ + Find indices of each distinct value in given array. + + Parameters + ---------- + arr : ndarray of ints + Array containing integer values. + ignore_value : int, optional + This value will be ignored in searching the `arr` array. If not + given, all values found will be included in output. Default + is None. + + Returns + ------- + indices : dictionary + A Python dictionary of array indices for each distinct value. The + dictionary is keyed by the distinct values, the entries are array + index tuples covering all occurrences of the value within the + array. + + This dictionary can occupy significant memory, usually several times + the size of the input array. + + See Also + -------- + label, maximum, median, minimum_position, extrema, sum, mean, variance, + standard_deviation, numpy.where, numpy.unique + + Notes + ----- + For a small array with few distinct values, one might use + `numpy.unique()` to find all possible values, and ``(arr == val)`` to + locate each value within that array. However, for large arrays, + with many distinct values, this can become extremely inefficient, + as locating each value would require a new search through the entire + array. Using this function, there is essentially one search, with + the indices saved for all distinct values. + + This is useful when matching a categorical image (e.g. a segmentation + or classification) to an associated image of other data, allowing + any per-class statistic(s) to then be calculated. Provides a + more flexible alternative to functions like ``scipy.ndimage.mean()`` + and ``scipy.ndimage.variance()``. + + Some other closely related functionality, with different strengths and + weaknesses, can also be found in ``scipy.stats.binned_statistic()`` and + the `scikit-image `_ function + ``skimage.measure.regionprops()``. + + Note for IDL users: this provides functionality equivalent to IDL's + REVERSE_INDICES option (as per the IDL documentation for the + `HISTOGRAM `_ + function). + + .. versionadded:: 1.10.0 + + Examples + -------- + >>> import numpy as np + >>> from scipy import ndimage + >>> a = np.zeros((6, 6), dtype=int) + >>> a[2:4, 2:4] = 1 + >>> a[4, 4] = 1 + >>> a[:2, :3] = 2 + >>> a[0, 5] = 3 + >>> a + array([[2, 2, 2, 0, 0, 3], + [2, 2, 2, 0, 0, 0], + [0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 0]]) + >>> val_indices = ndimage.value_indices(a) + + The dictionary `val_indices` will have an entry for each distinct + value in the input array. + + >>> val_indices.keys() + dict_keys([0, 1, 2, 3]) + + The entry for each value is an index tuple, locating the elements + with that value. + + >>> ndx1 = val_indices[1] + >>> ndx1 + (array([2, 2, 3, 3, 4]), array([2, 3, 2, 3, 4])) + + This can be used to index into the original array, or any other + array with the same shape. + + >>> a[ndx1] + array([1, 1, 1, 1, 1]) + + If the zeros were to be ignored, then the resulting dictionary + would no longer have an entry for zero. + + >>> val_indices = ndimage.value_indices(a, ignore_value=0) + >>> val_indices.keys() + dict_keys([1, 2, 3]) + + """ + # Cope with ignore_value being None, without too much extra complexity + # in the C code. If not None, the value is passed in as a numpy array + # with the same dtype as arr. + ignore_value_arr = numpy.zeros((1,), dtype=arr.dtype) + ignoreIsNone = (ignore_value is None) + if not ignoreIsNone: + ignore_value_arr[0] = ignore_value_arr.dtype.type(ignore_value) + + val_indices = _nd_image.value_indices(arr, ignoreIsNone, ignore_value_arr) + return val_indices + + +def labeled_comprehension(input, labels, index, func, out_dtype, default, + pass_positions=False): + """ + Roughly equivalent to [func(input[labels == i]) for i in index]. + + Sequentially applies an arbitrary function (that works on array_like input) + to subsets of an N-D image array specified by `labels` and `index`. + The option exists to provide the function with positional parameters as the + second argument. + + Parameters + ---------- + input : array_like + Data from which to select `labels` to process. + labels : array_like or None + Labels to objects in `input`. + If not None, array must be same shape as `input`. + If None, `func` is applied to raveled `input`. + index : int, sequence of ints or None + Subset of `labels` to which to apply `func`. + If a scalar, a single value is returned. + If None, `func` is applied to all non-zero values of `labels`. + func : callable + Python function to apply to `labels` from `input`. + out_dtype : dtype + Dtype to use for `result`. + default : int, float or None + Default return value when a element of `index` does not exist + in `labels`. + pass_positions : bool, optional + If True, pass linear indices to `func` as a second argument. + Default is False. + + Returns + ------- + result : ndarray + Result of applying `func` to each of `labels` to `input` in `index`. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2, 0, 0], + ... [5, 3, 0, 4], + ... [0, 0, 0, 7], + ... [9, 3, 0, 0]]) + >>> from scipy import ndimage + >>> lbl, nlbl = ndimage.label(a) + >>> lbls = np.arange(1, nlbl+1) + >>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, 0) + array([ 2.75, 5.5 , 6. ]) + + Falling back to `default`: + + >>> lbls = np.arange(1, nlbl+2) + >>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, -1) + array([ 2.75, 5.5 , 6. , -1. ]) + + Passing positions: + + >>> def fn(val, pos): + ... print("fn says: %s : %s" % (val, pos)) + ... return (val.sum()) if (pos.sum() % 2 == 0) else (-val.sum()) + ... + >>> ndimage.labeled_comprehension(a, lbl, lbls, fn, float, 0, True) + fn says: [1 2 5 3] : [0 1 4 5] + fn says: [4 7] : [ 7 11] + fn says: [9 3] : [12 13] + array([ 11., 11., -12., 0.]) + + """ + + as_scalar = numpy.isscalar(index) + input = numpy.asarray(input) + + if pass_positions: + positions = numpy.arange(input.size).reshape(input.shape) + + if labels is None: + if index is not None: + raise ValueError("index without defined labels") + if not pass_positions: + return func(input.ravel()) + else: + return func(input.ravel(), positions.ravel()) + + try: + input, labels = numpy.broadcast_arrays(input, labels) + except ValueError as e: + raise ValueError("input and labels must have the same shape " + "(excepting dimensions with width 1)") from e + + if index is None: + if not pass_positions: + return func(input[labels > 0]) + else: + return func(input[labels > 0], positions[labels > 0]) + + index = numpy.atleast_1d(index) + if np.any(index.astype(labels.dtype).astype(index.dtype) != index): + raise ValueError(f"Cannot convert index values from <{index.dtype}> to " + f"<{labels.dtype}> (labels' type) without loss of precision") + + index = index.astype(labels.dtype) + + # optimization: find min/max in index, + # and select those parts of labels, input, and positions + lo = index.min() + hi = index.max() + mask = (labels >= lo) & (labels <= hi) + + # this also ravels the arrays + labels = labels[mask] + input = input[mask] + if pass_positions: + positions = positions[mask] + + # sort everything by labels + label_order = labels.argsort() + labels = labels[label_order] + input = input[label_order] + if pass_positions: + positions = positions[label_order] + + index_order = index.argsort() + sorted_index = index[index_order] + + def do_map(inputs, output): + """labels must be sorted""" + nidx = sorted_index.size + + # Find boundaries for each stretch of constant labels + # This could be faster, but we already paid N log N to sort labels. + lo = numpy.searchsorted(labels, sorted_index, side='left') + hi = numpy.searchsorted(labels, sorted_index, side='right') + + for i, l, h in zip(range(nidx), lo, hi): + if l == h: + continue + output[i] = func(*[inp[l:h] for inp in inputs]) + + temp = numpy.empty(index.shape, out_dtype) + temp[:] = default + if not pass_positions: + do_map([input], temp) + else: + do_map([input, positions], temp) + + output = numpy.zeros(index.shape, out_dtype) + output[index_order] = temp + if as_scalar: + output = output[0] + + return output + + +def _safely_castable_to_int(dt): + """Test whether the NumPy data type `dt` can be safely cast to an int.""" + int_size = np.dtype(int).itemsize + safe = ((np.issubdtype(dt, np.signedinteger) and dt.itemsize <= int_size) or + (np.issubdtype(dt, np.unsignedinteger) and dt.itemsize < int_size)) + return safe + + +def _stats(input, labels=None, index=None, centered=False): + """Count, sum, and optionally compute (sum - centre)^2 of input by label + + Parameters + ---------- + input : array_like, N-D + The input data to be analyzed. + labels : array_like (N-D), optional + The labels of the data in `input`. This array must be broadcast + compatible with `input`; typically, it is the same shape as `input`. + If `labels` is None, all nonzero values in `input` are treated as + the single labeled group. + index : label or sequence of labels, optional + These are the labels of the groups for which the stats are computed. + If `index` is None, the stats are computed for the single group where + `labels` is greater than 0. + centered : bool, optional + If True, the centered sum of squares for each labeled group is + also returned. Default is False. + + Returns + ------- + counts : int or ndarray of ints + The number of elements in each labeled group. + sums : scalar or ndarray of scalars + The sums of the values in each labeled group. + sums_c : scalar or ndarray of scalars, optional + The sums of mean-centered squares of the values in each labeled group. + This is only returned if `centered` is True. + + """ + def single_group(vals): + if centered: + vals_c = vals - vals.mean() + return vals.size, vals.sum(), (vals_c * vals_c.conjugate()).sum() + else: + return vals.size, vals.sum() + + if labels is None: + return single_group(input) + + # ensure input and labels match sizes + input, labels = numpy.broadcast_arrays(input, labels) + + if index is None: + return single_group(input[labels > 0]) + + if numpy.isscalar(index): + return single_group(input[labels == index]) + + def _sum_centered(labels): + # `labels` is expected to be an ndarray with the same shape as `input`. + # It must contain the label indices (which are not necessarily the labels + # themselves). + means = sums / counts + centered_input = input - means[labels] + # bincount expects 1-D inputs, so we ravel the arguments. + bc = numpy.bincount(labels.ravel(), + weights=(centered_input * + centered_input.conjugate()).ravel()) + return bc + + # Remap labels to unique integers if necessary, or if the largest + # label is larger than the number of values. + + if (not _safely_castable_to_int(labels.dtype) or + labels.min() < 0 or labels.max() > labels.size): + # Use numpy.unique to generate the label indices. `new_labels` will + # be 1-D, but it should be interpreted as the flattened N-D array of + # label indices. + unique_labels, new_labels = numpy.unique(labels, return_inverse=True) + new_labels = np.reshape(new_labels, (-1,)) # flatten, since it may be >1-D + counts = numpy.bincount(new_labels) + sums = numpy.bincount(new_labels, weights=input.ravel()) + if centered: + # Compute the sum of the mean-centered squares. + # We must reshape new_labels to the N-D shape of `input` before + # passing it _sum_centered. + sums_c = _sum_centered(new_labels.reshape(labels.shape)) + idxs = numpy.searchsorted(unique_labels, index) + # make all of idxs valid + idxs[idxs >= unique_labels.size] = 0 + found = (unique_labels[idxs] == index) + else: + # labels are an integer type allowed by bincount, and there aren't too + # many, so call bincount directly. + counts = numpy.bincount(labels.ravel()) + sums = numpy.bincount(labels.ravel(), weights=input.ravel()) + if centered: + sums_c = _sum_centered(labels) + # make sure all index values are valid + idxs = numpy.asanyarray(index, numpy.int_).copy() + found = (idxs >= 0) & (idxs < counts.size) + idxs[~found] = 0 + + counts = counts[idxs] + counts[~found] = 0 + sums = sums[idxs] + sums[~found] = 0 + + if not centered: + return (counts, sums) + else: + sums_c = sums_c[idxs] + sums_c[~found] = 0 + return (counts, sums, sums_c) + + +def sum(input, labels=None, index=None): + """ + Calculate the sum of the values of the array. + + Notes + ----- + This is an alias for `ndimage.sum_labels` kept for backwards compatibility + reasons, for new code please prefer `sum_labels`. See the `sum_labels` + docstring for more details. + + """ + return sum_labels(input, labels, index) + + +def sum_labels(input, labels=None, index=None): + """ + Calculate the sum of the values of the array. + + Parameters + ---------- + input : array_like + Values of `input` inside the regions defined by `labels` + are summed together. + labels : array_like of ints, optional + Assign labels to the values of the array. Has to have the same shape as + `input`. + index : array_like, optional + A single label number or a sequence of label numbers of + the objects to be measured. + + Returns + ------- + sum : ndarray or scalar + An array of the sums of values of `input` inside the regions defined + by `labels` with the same shape as `index`. If 'index' is None or scalar, + a scalar is returned. + + See Also + -------- + mean, median + + Examples + -------- + >>> from scipy import ndimage + >>> input = [0,1,2,3] + >>> labels = [1,1,2,2] + >>> ndimage.sum_labels(input, labels, index=[1,2]) + [1.0, 5.0] + >>> ndimage.sum_labels(input, labels, index=1) + 1 + >>> ndimage.sum_labels(input, labels) + 6 + + + """ + count, sum = _stats(input, labels, index) + return sum + + +def mean(input, labels=None, index=None): + """ + Calculate the mean of the values of an array at labels. + + Parameters + ---------- + input : array_like + Array on which to compute the mean of elements over distinct + regions. + labels : array_like, optional + Array of labels of same shape, or broadcastable to the same shape as + `input`. All elements sharing the same label form one region over + which the mean of the elements is computed. + index : int or sequence of ints, optional + Labels of the objects over which the mean is to be computed. + Default is None, in which case the mean for all values where label is + greater than 0 is calculated. + + Returns + ------- + out : list + Sequence of same length as `index`, with the mean of the different + regions labeled by the labels in `index`. + + See Also + -------- + variance, standard_deviation, minimum, maximum, sum, label + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.arange(25).reshape((5,5)) + >>> labels = np.zeros_like(a) + >>> labels[3:5,3:5] = 1 + >>> index = np.unique(labels) + >>> labels + array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 1], + [0, 0, 0, 1, 1]]) + >>> index + array([0, 1]) + >>> ndimage.mean(a, labels=labels, index=index) + [10.285714285714286, 21.0] + + """ + + count, sum = _stats(input, labels, index) + return sum / numpy.asanyarray(count).astype(numpy.float64) + + +def variance(input, labels=None, index=None): + """ + Calculate the variance of the values of an N-D image array, optionally at + specified sub-regions. + + Parameters + ---------- + input : array_like + Nd-image data to process. + labels : array_like, optional + Labels defining sub-regions in `input`. + If not None, must be same shape as `input`. + index : int or sequence of ints, optional + `labels` to include in output. If None (default), all values where + `labels` is non-zero are used. + + Returns + ------- + variance : float or ndarray + Values of variance, for each sub-region if `labels` and `index` are + specified. + + See Also + -------- + label, standard_deviation, maximum, minimum, extrema + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2, 0, 0], + ... [5, 3, 0, 4], + ... [0, 0, 0, 7], + ... [9, 3, 0, 0]]) + >>> from scipy import ndimage + >>> ndimage.variance(a) + 7.609375 + + Features to process can be specified using `labels` and `index`: + + >>> lbl, nlbl = ndimage.label(a) + >>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1)) + array([ 2.1875, 2.25 , 9. ]) + + If no index is given, all non-zero `labels` are processed: + + >>> ndimage.variance(a, lbl) + 6.1875 + + """ + count, sum, sum_c_sq = _stats(input, labels, index, centered=True) + return sum_c_sq / np.asanyarray(count).astype(float) + + +def standard_deviation(input, labels=None, index=None): + """ + Calculate the standard deviation of the values of an N-D image array, + optionally at specified sub-regions. + + Parameters + ---------- + input : array_like + N-D image data to process. + labels : array_like, optional + Labels to identify sub-regions in `input`. + If not None, must be same shape as `input`. + index : int or sequence of ints, optional + `labels` to include in output. If None (default), all values where + `labels` is non-zero are used. + + Returns + ------- + standard_deviation : float or ndarray + Values of standard deviation, for each sub-region if `labels` and + `index` are specified. + + See Also + -------- + label, variance, maximum, minimum, extrema + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2, 0, 0], + ... [5, 3, 0, 4], + ... [0, 0, 0, 7], + ... [9, 3, 0, 0]]) + >>> from scipy import ndimage + >>> ndimage.standard_deviation(a) + 2.7585095613392387 + + Features to process can be specified using `labels` and `index`: + + >>> lbl, nlbl = ndimage.label(a) + >>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1)) + array([ 1.479, 1.5 , 3. ]) + + If no index is given, non-zero `labels` are processed: + + >>> ndimage.standard_deviation(a, lbl) + 2.4874685927665499 + + """ + return numpy.sqrt(variance(input, labels, index)) + + +def _select(input, labels=None, index=None, find_min=False, find_max=False, + find_min_positions=False, find_max_positions=False, + find_median=False): + """Returns min, max, or both, plus their positions (if requested), and + median.""" + + input = numpy.asanyarray(input) + + find_positions = find_min_positions or find_max_positions + positions = None + if find_positions: + positions = numpy.arange(input.size).reshape(input.shape) + + def single_group(vals, positions): + result = [] + if find_min: + result += [vals.min()] + if find_min_positions: + result += [positions[vals == vals.min()][0]] + if find_max: + result += [vals.max()] + if find_max_positions: + result += [positions[vals == vals.max()][0]] + if find_median: + result += [numpy.median(vals)] + return result + + if labels is None: + return single_group(input, positions) + + # ensure input and labels match sizes + input, labels = numpy.broadcast_arrays(input, labels) + + if index is None: + mask = (labels > 0) + masked_positions = None + if find_positions: + masked_positions = positions[mask] + return single_group(input[mask], masked_positions) + + if numpy.isscalar(index): + mask = (labels == index) + masked_positions = None + if find_positions: + masked_positions = positions[mask] + return single_group(input[mask], masked_positions) + + # remap labels to unique integers if necessary, or if the largest + # label is larger than the number of values. + if (not _safely_castable_to_int(labels.dtype) or + labels.min() < 0 or labels.max() > labels.size): + # remap labels, and indexes + unique_labels, labels = numpy.unique(labels, return_inverse=True) + idxs = numpy.searchsorted(unique_labels, index) + + # make all of idxs valid + idxs[idxs >= unique_labels.size] = 0 + found = (unique_labels[idxs] == index) + else: + # labels are an integer type, and there aren't too many + idxs = numpy.asanyarray(index, numpy.int_).copy() + found = (idxs >= 0) & (idxs <= labels.max()) + + idxs[~ found] = labels.max() + 1 + + if find_median: + order = numpy.lexsort((input.ravel(), labels.ravel())) + else: + order = input.ravel().argsort() + input = input.ravel()[order] + labels = labels.ravel()[order] + if find_positions: + positions = positions.ravel()[order] + + result = [] + if find_min: + mins = numpy.zeros(labels.max() + 2, input.dtype) + mins[labels[::-1]] = input[::-1] + result += [mins[idxs]] + if find_min_positions: + minpos = numpy.zeros(labels.max() + 2, int) + minpos[labels[::-1]] = positions[::-1] + result += [minpos[idxs]] + if find_max: + maxs = numpy.zeros(labels.max() + 2, input.dtype) + maxs[labels] = input + result += [maxs[idxs]] + if find_max_positions: + maxpos = numpy.zeros(labels.max() + 2, int) + maxpos[labels] = positions + result += [maxpos[idxs]] + if find_median: + locs = numpy.arange(len(labels)) + lo = numpy.zeros(labels.max() + 2, numpy.int_) + lo[labels[::-1]] = locs[::-1] + hi = numpy.zeros(labels.max() + 2, numpy.int_) + hi[labels] = locs + lo = lo[idxs] + hi = hi[idxs] + # lo is an index to the lowest value in input for each label, + # hi is an index to the largest value. + # move them to be either the same ((hi - lo) % 2 == 0) or next + # to each other ((hi - lo) % 2 == 1), then average. + step = (hi - lo) // 2 + lo += step + hi -= step + if (np.issubdtype(input.dtype, np.integer) + or np.issubdtype(input.dtype, np.bool_)): + # avoid integer overflow or boolean addition (gh-12836) + result += [(input[lo].astype('d') + input[hi].astype('d')) / 2.0] + else: + result += [(input[lo] + input[hi]) / 2.0] + + return result + + +def minimum(input, labels=None, index=None): + """ + Calculate the minimum of the values of an array over labeled regions. + + Parameters + ---------- + input : array_like + Array_like of values. For each region specified by `labels`, the + minimal values of `input` over the region is computed. + labels : array_like, optional + An array_like of integers marking different regions over which the + minimum value of `input` is to be computed. `labels` must have the + same shape as `input`. If `labels` is not specified, the minimum + over the whole array is returned. + index : array_like, optional + A list of region labels that are taken into account for computing the + minima. If index is None, the minimum over all elements where `labels` + is non-zero is returned. + + Returns + ------- + minimum : float or list of floats + List of minima of `input` over the regions determined by `labels` and + whose index is in `index`. If `index` or `labels` are not specified, a + float is returned: the minimal value of `input` if `labels` is None, + and the minimal value of elements where `labels` is greater than zero + if `index` is None. + + See Also + -------- + label, maximum, median, minimum_position, extrema, sum, mean, variance, + standard_deviation + + Notes + ----- + The function returns a Python list and not a NumPy array, use + `np.array` to convert the list to an array. + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.array([[1, 2, 0, 0], + ... [5, 3, 0, 4], + ... [0, 0, 0, 7], + ... [9, 3, 0, 0]]) + >>> labels, labels_nb = ndimage.label(a) + >>> labels + array([[1, 1, 0, 0], + [1, 1, 0, 2], + [0, 0, 0, 2], + [3, 3, 0, 0]]) + >>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1)) + [1.0, 4.0, 3.0] + >>> ndimage.minimum(a) + 0.0 + >>> ndimage.minimum(a, labels=labels) + 1.0 + + """ + return _select(input, labels, index, find_min=True)[0] + + +def maximum(input, labels=None, index=None): + """ + Calculate the maximum of the values of an array over labeled regions. + + Parameters + ---------- + input : array_like + Array_like of values. For each region specified by `labels`, the + maximal values of `input` over the region is computed. + labels : array_like, optional + An array of integers marking different regions over which the + maximum value of `input` is to be computed. `labels` must have the + same shape as `input`. If `labels` is not specified, the maximum + over the whole array is returned. + index : array_like, optional + A list of region labels that are taken into account for computing the + maxima. If index is None, the maximum over all elements where `labels` + is non-zero is returned. + + Returns + ------- + output : float or list of floats + List of maxima of `input` over the regions determined by `labels` and + whose index is in `index`. If `index` or `labels` are not specified, a + float is returned: the maximal value of `input` if `labels` is None, + and the maximal value of elements where `labels` is greater than zero + if `index` is None. + + See Also + -------- + label, minimum, median, maximum_position, extrema, sum, mean, variance, + standard_deviation + + Notes + ----- + The function returns a Python list and not a NumPy array, use + `np.array` to convert the list to an array. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(16).reshape((4,4)) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + >>> labels = np.zeros_like(a) + >>> labels[:2,:2] = 1 + >>> labels[2:, 1:3] = 2 + >>> labels + array([[1, 1, 0, 0], + [1, 1, 0, 0], + [0, 2, 2, 0], + [0, 2, 2, 0]]) + >>> from scipy import ndimage + >>> ndimage.maximum(a) + 15.0 + >>> ndimage.maximum(a, labels=labels, index=[1,2]) + [5.0, 14.0] + >>> ndimage.maximum(a, labels=labels) + 14.0 + + >>> b = np.array([[1, 2, 0, 0], + ... [5, 3, 0, 4], + ... [0, 0, 0, 7], + ... [9, 3, 0, 0]]) + >>> labels, labels_nb = ndimage.label(b) + >>> labels + array([[1, 1, 0, 0], + [1, 1, 0, 2], + [0, 0, 0, 2], + [3, 3, 0, 0]]) + >>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1)) + [5.0, 7.0, 9.0] + + """ + return _select(input, labels, index, find_max=True)[0] + + +def median(input, labels=None, index=None): + """ + Calculate the median of the values of an array over labeled regions. + + Parameters + ---------- + input : array_like + Array_like of values. For each region specified by `labels`, the + median value of `input` over the region is computed. + labels : array_like, optional + An array_like of integers marking different regions over which the + median value of `input` is to be computed. `labels` must have the + same shape as `input`. If `labels` is not specified, the median + over the whole array is returned. + index : array_like, optional + A list of region labels that are taken into account for computing the + medians. If index is None, the median over all elements where `labels` + is non-zero is returned. + + Returns + ------- + median : float or list of floats + List of medians of `input` over the regions determined by `labels` and + whose index is in `index`. If `index` or `labels` are not specified, a + float is returned: the median value of `input` if `labels` is None, + and the median value of elements where `labels` is greater than zero + if `index` is None. + + See Also + -------- + label, minimum, maximum, extrema, sum, mean, variance, standard_deviation + + Notes + ----- + The function returns a Python list and not a NumPy array, use + `np.array` to convert the list to an array. + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.array([[1, 2, 0, 1], + ... [5, 3, 0, 4], + ... [0, 0, 0, 7], + ... [9, 3, 0, 0]]) + >>> labels, labels_nb = ndimage.label(a) + >>> labels + array([[1, 1, 0, 2], + [1, 1, 0, 2], + [0, 0, 0, 2], + [3, 3, 0, 0]]) + >>> ndimage.median(a, labels=labels, index=np.arange(1, labels_nb + 1)) + [2.5, 4.0, 6.0] + >>> ndimage.median(a) + 1.0 + >>> ndimage.median(a, labels=labels) + 3.0 + + """ + return _select(input, labels, index, find_median=True)[0] + + +def minimum_position(input, labels=None, index=None): + """ + Find the positions of the minimums of the values of an array at labels. + + Parameters + ---------- + input : array_like + Array_like of values. + labels : array_like, optional + An array of integers marking different regions over which the + position of the minimum value of `input` is to be computed. + `labels` must have the same shape as `input`. If `labels` is not + specified, the location of the first minimum over the whole + array is returned. + + The `labels` argument only works when `index` is specified. + index : array_like, optional + A list of region labels that are taken into account for finding the + location of the minima. If `index` is None, the ``first`` minimum + over all elements where `labels` is non-zero is returned. + + The `index` argument only works when `labels` is specified. + + Returns + ------- + output : list of tuples of ints + Tuple of ints or list of tuples of ints that specify the location + of minima of `input` over the regions determined by `labels` and + whose index is in `index`. + + If `index` or `labels` are not specified, a tuple of ints is + returned specifying the location of the first minimal value of `input`. + + See Also + -------- + label, minimum, median, maximum_position, extrema, sum, mean, variance, + standard_deviation + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10, 20, 30], + ... [40, 80, 100], + ... [1, 100, 200]]) + >>> b = np.array([[1, 2, 0, 1], + ... [5, 3, 0, 4], + ... [0, 0, 0, 7], + ... [9, 3, 0, 0]]) + + >>> from scipy import ndimage + + >>> ndimage.minimum_position(a) + (2, 0) + >>> ndimage.minimum_position(b) + (0, 2) + + Features to process can be specified using `labels` and `index`: + + >>> label, pos = ndimage.label(a) + >>> ndimage.minimum_position(a, label, index=np.arange(1, pos+1)) + [(2, 0)] + + >>> label, pos = ndimage.label(b) + >>> ndimage.minimum_position(b, label, index=np.arange(1, pos+1)) + [(0, 0), (0, 3), (3, 1)] + + """ + dims = numpy.array(numpy.asarray(input).shape) + # see numpy.unravel_index to understand this line. + dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1] + + result = _select(input, labels, index, find_min_positions=True)[0] + + if numpy.isscalar(result): + return tuple((result // dim_prod) % dims) + + return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims] + + +def maximum_position(input, labels=None, index=None): + """ + Find the positions of the maximums of the values of an array at labels. + + For each region specified by `labels`, the position of the maximum + value of `input` within the region is returned. + + Parameters + ---------- + input : array_like + Array_like of values. + labels : array_like, optional + An array of integers marking different regions over which the + position of the maximum value of `input` is to be computed. + `labels` must have the same shape as `input`. If `labels` is not + specified, the location of the first maximum over the whole + array is returned. + + The `labels` argument only works when `index` is specified. + index : array_like, optional + A list of region labels that are taken into account for finding the + location of the maxima. If `index` is None, the first maximum + over all elements where `labels` is non-zero is returned. + + The `index` argument only works when `labels` is specified. + + Returns + ------- + output : list of tuples of ints + List of tuples of ints that specify the location of maxima of + `input` over the regions determined by `labels` and whose index + is in `index`. + + If `index` or `labels` are not specified, a tuple of ints is + returned specifying the location of the ``first`` maximal value + of `input`. + + See Also + -------- + label, minimum, median, maximum_position, extrema, sum, mean, variance, + standard_deviation + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.array([[1, 2, 0, 0], + ... [5, 3, 0, 4], + ... [0, 0, 0, 7], + ... [9, 3, 0, 0]]) + >>> ndimage.maximum_position(a) + (3, 0) + + Features to process can be specified using `labels` and `index`: + + >>> lbl = np.array([[0, 1, 2, 3], + ... [0, 1, 2, 3], + ... [0, 1, 2, 3], + ... [0, 1, 2, 3]]) + >>> ndimage.maximum_position(a, lbl, 1) + (1, 1) + + If no index is given, non-zero `labels` are processed: + + >>> ndimage.maximum_position(a, lbl) + (2, 3) + + If there are no maxima, the position of the first element is returned: + + >>> ndimage.maximum_position(a, lbl, 2) + (0, 2) + + """ + dims = numpy.array(numpy.asarray(input).shape) + # see numpy.unravel_index to understand this line. + dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1] + + result = _select(input, labels, index, find_max_positions=True)[0] + + if numpy.isscalar(result): + return tuple((result // dim_prod) % dims) + + return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims] + + +def extrema(input, labels=None, index=None): + """ + Calculate the minimums and maximums of the values of an array + at labels, along with their positions. + + Parameters + ---------- + input : ndarray + N-D image data to process. + labels : ndarray, optional + Labels of features in input. + If not None, must be same shape as `input`. + index : int or sequence of ints, optional + Labels to include in output. If None (default), all values where + non-zero `labels` are used. + + Returns + ------- + minimums, maximums : int or ndarray + Values of minimums and maximums in each feature. + min_positions, max_positions : tuple or list of tuples + Each tuple gives the N-D coordinates of the corresponding minimum + or maximum. + + See Also + -------- + maximum, minimum, maximum_position, minimum_position, center_of_mass + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2, 0, 0], + ... [5, 3, 0, 4], + ... [0, 0, 0, 7], + ... [9, 3, 0, 0]]) + >>> from scipy import ndimage + >>> ndimage.extrema(a) + (0, 9, (0, 2), (3, 0)) + + Features to process can be specified using `labels` and `index`: + + >>> lbl, nlbl = ndimage.label(a) + >>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1)) + (array([1, 4, 3]), + array([5, 7, 9]), + [(0, 0), (1, 3), (3, 1)], + [(1, 0), (2, 3), (3, 0)]) + + If no index is given, non-zero `labels` are processed: + + >>> ndimage.extrema(a, lbl) + (1, 9, (0, 0), (3, 0)) + + """ + dims = numpy.array(numpy.asarray(input).shape) + # see numpy.unravel_index to understand this line. + dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1] + + minimums, min_positions, maximums, max_positions = _select(input, labels, + index, + find_min=True, + find_max=True, + find_min_positions=True, + find_max_positions=True) + + if numpy.isscalar(minimums): + return (minimums, maximums, tuple((min_positions // dim_prod) % dims), + tuple((max_positions // dim_prod) % dims)) + + min_positions = [ + tuple(v) for v in (min_positions.reshape(-1, 1) // dim_prod) % dims + ] + max_positions = [ + tuple(v) for v in (max_positions.reshape(-1, 1) // dim_prod) % dims + ] + + return minimums, maximums, min_positions, max_positions + + +def center_of_mass(input, labels=None, index=None): + """ + Calculate the center of mass of the values of an array at labels. + + Parameters + ---------- + input : ndarray + Data from which to calculate center-of-mass. The masses can either + be positive or negative. + labels : ndarray, optional + Labels for objects in `input`, as generated by `ndimage.label`. + Only used with `index`. Dimensions must be the same as `input`. + index : int or sequence of ints, optional + Labels for which to calculate centers-of-mass. If not specified, + the combined center of mass of all labels greater than zero + will be calculated. Only used with `labels`. + + Returns + ------- + center_of_mass : tuple, or list of tuples + Coordinates of centers-of-mass. + + Examples + -------- + >>> import numpy as np + >>> a = np.array(([0,0,0,0], + ... [0,1,1,0], + ... [0,1,1,0], + ... [0,1,1,0])) + >>> from scipy import ndimage + >>> ndimage.center_of_mass(a) + (2.0, 1.5) + + Calculation of multiple objects in an image + + >>> b = np.array(([0,1,1,0], + ... [0,1,0,0], + ... [0,0,0,0], + ... [0,0,1,1], + ... [0,0,1,1])) + >>> lbl = ndimage.label(b)[0] + >>> ndimage.center_of_mass(b, lbl, [1,2]) + [(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)] + + Negative masses are also accepted, which can occur for example when + bias is removed from measured data due to random noise. + + >>> c = np.array(([-1,0,0,0], + ... [0,-1,-1,0], + ... [0,1,-1,0], + ... [0,1,1,0])) + >>> ndimage.center_of_mass(c) + (-4.0, 1.0) + + If there are division by zero issues, the function does not raise an + error but rather issues a RuntimeWarning before returning inf and/or NaN. + + >>> d = np.array([-1, 1]) + >>> ndimage.center_of_mass(d) + (inf,) + """ + normalizer = sum(input, labels, index) + grids = numpy.ogrid[[slice(0, i) for i in input.shape]] + + results = [sum(input * grids[dir].astype(float), labels, index) / normalizer + for dir in range(input.ndim)] + + if numpy.isscalar(results[0]): + return tuple(results) + + return [tuple(v) for v in numpy.array(results).T] + + +def histogram(input, min, max, bins, labels=None, index=None): + """ + Calculate the histogram of the values of an array, optionally at labels. + + Histogram calculates the frequency of values in an array within bins + determined by `min`, `max`, and `bins`. The `labels` and `index` + keywords can limit the scope of the histogram to specified sub-regions + within the array. + + Parameters + ---------- + input : array_like + Data for which to calculate histogram. + min, max : int + Minimum and maximum values of range of histogram bins. + bins : int + Number of bins. + labels : array_like, optional + Labels for objects in `input`. + If not None, must be same shape as `input`. + index : int or sequence of ints, optional + Label or labels for which to calculate histogram. If None, all values + where label is greater than zero are used + + Returns + ------- + hist : ndarray + Histogram counts. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[ 0. , 0.2146, 0.5962, 0. ], + ... [ 0. , 0.7778, 0. , 0. ], + ... [ 0. , 0. , 0. , 0. ], + ... [ 0. , 0. , 0.7181, 0.2787], + ... [ 0. , 0. , 0.6573, 0.3094]]) + >>> from scipy import ndimage + >>> ndimage.histogram(a, 0, 1, 10) + array([13, 0, 2, 1, 0, 1, 1, 2, 0, 0]) + + With labels and no indices, non-zero elements are counted: + + >>> lbl, nlbl = ndimage.label(a) + >>> ndimage.histogram(a, 0, 1, 10, lbl) + array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0]) + + Indices can be used to count only certain objects: + + >>> ndimage.histogram(a, 0, 1, 10, lbl, 2) + array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0]) + + """ + _bins = numpy.linspace(min, max, bins + 1) + + def _hist(vals): + return numpy.histogram(vals, _bins)[0] + + return labeled_comprehension(input, labels, index, _hist, object, None, + pass_positions=False) + + +def watershed_ift(input, markers, structure=None, output=None): + """ + Apply watershed from markers using image foresting transform algorithm. + + Parameters + ---------- + input : array_like + Input. + markers : array_like + Markers are points within each watershed that form the beginning + of the process. Negative markers are considered background markers + which are processed after the other markers. + structure : structure element, optional + A structuring element defining the connectivity of the object can be + provided. If None, an element is generated with a squared + connectivity equal to one. + output : ndarray, optional + An output array can optionally be provided. The same shape as input. + + Returns + ------- + watershed_ift : ndarray + Output. Same shape as `input`. + + References + ---------- + .. [1] A.X. Falcao, J. Stolfi and R. de Alencar Lotufo, "The image + foresting transform: theory, algorithms, and applications", + Pattern Analysis and Machine Intelligence, vol. 26, pp. 19-29, 2004. + + """ + input = numpy.asarray(input) + if input.dtype.type not in [numpy.uint8, numpy.uint16]: + raise TypeError('only 8 and 16 unsigned inputs are supported') + + if structure is None: + structure = _morphology.generate_binary_structure(input.ndim, 1) + structure = numpy.asarray(structure, dtype=bool) + if structure.ndim != input.ndim: + raise RuntimeError('structure and input must have equal rank') + for ii in structure.shape: + if ii != 3: + raise RuntimeError('structure dimensions must be equal to 3') + + if not structure.flags.contiguous: + structure = structure.copy() + markers = numpy.asarray(markers) + if input.shape != markers.shape: + raise RuntimeError('input and markers must have equal shape') + + integral_types = [numpy.int8, + numpy.int16, + numpy.int32, + numpy.int64, + numpy.intc, + numpy.intp] + + if markers.dtype.type not in integral_types: + raise RuntimeError('marker should be of integer type') + + if isinstance(output, numpy.ndarray): + if output.dtype.type not in integral_types: + raise RuntimeError('output should be of integer type') + else: + output = markers.dtype + + output = _ni_support._get_output(output, input) + _nd_image.watershed_ift(input, markers, structure, output) + return output diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_morphology.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_morphology.py new file mode 100644 index 0000000000000000000000000000000000000000..3bd7ec7fbfdead532c7a9d3cb073360907d85b6b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_morphology.py @@ -0,0 +1,2520 @@ +# Copyright (C) 2003-2005 Peter J. Verveer +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# +# 2. Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials provided +# with the distribution. +# +# 3. The name of the author may not be used to endorse or promote +# products derived from this software without specific prior +# written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS +# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE +# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import warnings +import operator + +import numpy +from . import _ni_support +from . import _nd_image +from . import _filters + +__all__ = ['iterate_structure', 'generate_binary_structure', 'binary_erosion', + 'binary_dilation', 'binary_opening', 'binary_closing', + 'binary_hit_or_miss', 'binary_propagation', 'binary_fill_holes', + 'grey_erosion', 'grey_dilation', 'grey_opening', 'grey_closing', + 'morphological_gradient', 'morphological_laplace', 'white_tophat', + 'black_tophat', 'distance_transform_bf', 'distance_transform_cdt', + 'distance_transform_edt'] + + +def _center_is_true(structure, origin): + structure = numpy.array(structure) + coor = tuple([oo + ss // 2 for ss, oo in zip(structure.shape, + origin)]) + return bool(structure[coor]) + + +def iterate_structure(structure, iterations, origin=None): + """ + Iterate a structure by dilating it with itself. + + Parameters + ---------- + structure : array_like + Structuring element (an array of bools, for example), to be dilated with + itself. + iterations : int + number of dilations performed on the structure with itself + origin : optional + If origin is None, only the iterated structure is returned. If + not, a tuple of the iterated structure and the modified origin is + returned. + + Returns + ------- + iterate_structure : ndarray of bools + A new structuring element obtained by dilating `structure` + (`iterations` - 1) times with itself. + + See Also + -------- + generate_binary_structure + + Examples + -------- + >>> from scipy import ndimage + >>> struct = ndimage.generate_binary_structure(2, 1) + >>> struct.astype(int) + array([[0, 1, 0], + [1, 1, 1], + [0, 1, 0]]) + >>> ndimage.iterate_structure(struct, 2).astype(int) + array([[0, 0, 1, 0, 0], + [0, 1, 1, 1, 0], + [1, 1, 1, 1, 1], + [0, 1, 1, 1, 0], + [0, 0, 1, 0, 0]]) + >>> ndimage.iterate_structure(struct, 3).astype(int) + array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]]) + + """ + structure = numpy.asarray(structure) + if iterations < 2: + return structure.copy() + ni = iterations - 1 + shape = [ii + ni * (ii - 1) for ii in structure.shape] + pos = [ni * (structure.shape[ii] // 2) for ii in range(len(shape))] + slc = tuple(slice(pos[ii], pos[ii] + structure.shape[ii], None) + for ii in range(len(shape))) + out = numpy.zeros(shape, bool) + out[slc] = structure != 0 + out = binary_dilation(out, structure, iterations=ni) + if origin is None: + return out + else: + origin = _ni_support._normalize_sequence(origin, structure.ndim) + origin = [iterations * o for o in origin] + return out, origin + + +def generate_binary_structure(rank, connectivity): + """ + Generate a binary structure for binary morphological operations. + + Parameters + ---------- + rank : int + Number of dimensions of the array to which the structuring element + will be applied, as returned by `np.ndim`. + connectivity : int + `connectivity` determines which elements of the output array belong + to the structure, i.e., are considered as neighbors of the central + element. Elements up to a squared distance of `connectivity` from + the center are considered neighbors. `connectivity` may range from 1 + (no diagonal elements are neighbors) to `rank` (all elements are + neighbors). + + Returns + ------- + output : ndarray of bools + Structuring element which may be used for binary morphological + operations, with `rank` dimensions and all dimensions equal to 3. + + See Also + -------- + iterate_structure, binary_dilation, binary_erosion + + Notes + ----- + `generate_binary_structure` can only create structuring elements with + dimensions equal to 3, i.e., minimal dimensions. For larger structuring + elements, that are useful e.g., for eroding large objects, one may either + use `iterate_structure`, or create directly custom arrays with + numpy functions such as `numpy.ones`. + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> struct = ndimage.generate_binary_structure(2, 1) + >>> struct + array([[False, True, False], + [ True, True, True], + [False, True, False]], dtype=bool) + >>> a = np.zeros((5,5)) + >>> a[2, 2] = 1 + >>> a + array([[ 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0.], + [ 0., 0., 1., 0., 0.], + [ 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0.]]) + >>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype) + >>> b + array([[ 0., 0., 0., 0., 0.], + [ 0., 0., 1., 0., 0.], + [ 0., 1., 1., 1., 0.], + [ 0., 0., 1., 0., 0.], + [ 0., 0., 0., 0., 0.]]) + >>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype) + array([[ 0., 0., 1., 0., 0.], + [ 0., 1., 1., 1., 0.], + [ 1., 1., 1., 1., 1.], + [ 0., 1., 1., 1., 0.], + [ 0., 0., 1., 0., 0.]]) + >>> struct = ndimage.generate_binary_structure(2, 2) + >>> struct + array([[ True, True, True], + [ True, True, True], + [ True, True, True]], dtype=bool) + >>> struct = ndimage.generate_binary_structure(3, 1) + >>> struct # no diagonal elements + array([[[False, False, False], + [False, True, False], + [False, False, False]], + [[False, True, False], + [ True, True, True], + [False, True, False]], + [[False, False, False], + [False, True, False], + [False, False, False]]], dtype=bool) + + """ + if connectivity < 1: + connectivity = 1 + if rank < 1: + return numpy.array(True, dtype=bool) + output = numpy.fabs(numpy.indices([3] * rank) - 1) + output = numpy.add.reduce(output, 0) + return output <= connectivity + + +def _binary_erosion(input, structure, iterations, mask, output, + border_value, origin, invert, brute_force): + try: + iterations = operator.index(iterations) + except TypeError as e: + raise TypeError('iterations parameter should be an integer') from e + + input = numpy.asarray(input) + if numpy.iscomplexobj(input): + raise TypeError('Complex type not supported') + if structure is None: + structure = generate_binary_structure(input.ndim, 1) + else: + structure = numpy.asarray(structure, dtype=bool) + if structure.ndim != input.ndim: + raise RuntimeError('structure and input must have same dimensionality') + if not structure.flags.contiguous: + structure = structure.copy() + if numpy.prod(structure.shape, axis=0) < 1: + raise RuntimeError('structure must not be empty') + if mask is not None: + mask = numpy.asarray(mask) + if mask.shape != input.shape: + raise RuntimeError('mask and input must have equal sizes') + origin = _ni_support._normalize_sequence(origin, input.ndim) + cit = _center_is_true(structure, origin) + if isinstance(output, numpy.ndarray): + if numpy.iscomplexobj(output): + raise TypeError('Complex output type not supported') + else: + output = bool + output = _ni_support._get_output(output, input) + temp_needed = numpy.may_share_memory(input, output) + if temp_needed: + # input and output arrays cannot share memory + temp = output + output = _ni_support._get_output(output.dtype, input) + if iterations == 1: + _nd_image.binary_erosion(input, structure, mask, output, + border_value, origin, invert, cit, 0) + elif cit and not brute_force: + changed, coordinate_list = _nd_image.binary_erosion( + input, structure, mask, output, + border_value, origin, invert, cit, 1) + structure = structure[tuple([slice(None, None, -1)] * + structure.ndim)] + for ii in range(len(origin)): + origin[ii] = -origin[ii] + if not structure.shape[ii] & 1: + origin[ii] -= 1 + if mask is not None: + mask = numpy.asarray(mask, dtype=numpy.int8) + if not structure.flags.contiguous: + structure = structure.copy() + _nd_image.binary_erosion2(output, structure, mask, iterations - 1, + origin, invert, coordinate_list) + else: + tmp_in = numpy.empty_like(input, dtype=bool) + tmp_out = output + if iterations >= 1 and not iterations & 1: + tmp_in, tmp_out = tmp_out, tmp_in + changed = _nd_image.binary_erosion( + input, structure, mask, tmp_out, + border_value, origin, invert, cit, 0) + ii = 1 + while ii < iterations or (iterations < 1 and changed): + tmp_in, tmp_out = tmp_out, tmp_in + changed = _nd_image.binary_erosion( + tmp_in, structure, mask, tmp_out, + border_value, origin, invert, cit, 0) + ii += 1 + if temp_needed: + temp[...] = output + output = temp + return output + + +def binary_erosion(input, structure=None, iterations=1, mask=None, output=None, + border_value=0, origin=0, brute_force=False): + """ + Multidimensional binary erosion with a given structuring element. + + Binary erosion is a mathematical morphology operation used for image + processing. + + Parameters + ---------- + input : array_like + Binary image to be eroded. Non-zero (True) elements form + the subset to be eroded. + structure : array_like, optional + Structuring element used for the erosion. Non-zero elements are + considered True. If no structuring element is provided, an element + is generated with a square connectivity equal to one. + iterations : int, optional + The erosion is repeated `iterations` times (one, by default). + If iterations is less than 1, the erosion is repeated until the + result does not change anymore. + mask : array_like, optional + If a mask is given, only those elements with a True value at + the corresponding mask element are modified at each iteration. + output : ndarray, optional + Array of the same shape as input, into which the output is placed. + By default, a new array is created. + border_value : int (cast to 0 or 1), optional + Value at the border in the output array. + origin : int or tuple of ints, optional + Placement of the filter, by default 0. + brute_force : boolean, optional + Memory condition: if False, only the pixels whose value was changed in + the last iteration are tracked as candidates to be updated (eroded) in + the current iteration; if True all pixels are considered as candidates + for erosion, regardless of what happened in the previous iteration. + False by default. + + Returns + ------- + binary_erosion : ndarray of bools + Erosion of the input by the structuring element. + + See Also + -------- + grey_erosion, binary_dilation, binary_closing, binary_opening, + generate_binary_structure + + Notes + ----- + Erosion [1]_ is a mathematical morphology operation [2]_ that uses a + structuring element for shrinking the shapes in an image. The binary + erosion of an image by a structuring element is the locus of the points + where a superimposition of the structuring element centered on the point + is entirely contained in the set of non-zero elements of the image. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29 + .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.zeros((7,7), dtype=int) + >>> a[1:6, 2:5] = 1 + >>> a + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> ndimage.binary_erosion(a).astype(a.dtype) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> #Erosion removes objects smaller than the structure + >>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + + """ + return _binary_erosion(input, structure, iterations, mask, + output, border_value, origin, 0, brute_force) + + +def binary_dilation(input, structure=None, iterations=1, mask=None, + output=None, border_value=0, origin=0, + brute_force=False): + """ + Multidimensional binary dilation with the given structuring element. + + Parameters + ---------- + input : array_like + Binary array_like to be dilated. Non-zero (True) elements form + the subset to be dilated. + structure : array_like, optional + Structuring element used for the dilation. Non-zero elements are + considered True. If no structuring element is provided an element + is generated with a square connectivity equal to one. + iterations : int, optional + The dilation is repeated `iterations` times (one, by default). + If iterations is less than 1, the dilation is repeated until the + result does not change anymore. Only an integer of iterations is + accepted. + mask : array_like, optional + If a mask is given, only those elements with a True value at + the corresponding mask element are modified at each iteration. + output : ndarray, optional + Array of the same shape as input, into which the output is placed. + By default, a new array is created. + border_value : int (cast to 0 or 1), optional + Value at the border in the output array. + origin : int or tuple of ints, optional + Placement of the filter, by default 0. + brute_force : boolean, optional + Memory condition: if False, only the pixels whose value was changed in + the last iteration are tracked as candidates to be updated (dilated) + in the current iteration; if True all pixels are considered as + candidates for dilation, regardless of what happened in the previous + iteration. False by default. + + Returns + ------- + binary_dilation : ndarray of bools + Dilation of the input by the structuring element. + + See Also + -------- + grey_dilation, binary_erosion, binary_closing, binary_opening, + generate_binary_structure + + Notes + ----- + Dilation [1]_ is a mathematical morphology operation [2]_ that uses a + structuring element for expanding the shapes in an image. The binary + dilation of an image by a structuring element is the locus of the points + covered by the structuring element, when its center lies within the + non-zero points of the image. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29 + .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.zeros((5, 5)) + >>> a[2, 2] = 1 + >>> a + array([[ 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0.], + [ 0., 0., 1., 0., 0.], + [ 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0.]]) + >>> ndimage.binary_dilation(a) + array([[False, False, False, False, False], + [False, False, True, False, False], + [False, True, True, True, False], + [False, False, True, False, False], + [False, False, False, False, False]], dtype=bool) + >>> ndimage.binary_dilation(a).astype(a.dtype) + array([[ 0., 0., 0., 0., 0.], + [ 0., 0., 1., 0., 0.], + [ 0., 1., 1., 1., 0.], + [ 0., 0., 1., 0., 0.], + [ 0., 0., 0., 0., 0.]]) + >>> # 3x3 structuring element with connectivity 1, used by default + >>> struct1 = ndimage.generate_binary_structure(2, 1) + >>> struct1 + array([[False, True, False], + [ True, True, True], + [False, True, False]], dtype=bool) + >>> # 3x3 structuring element with connectivity 2 + >>> struct2 = ndimage.generate_binary_structure(2, 2) + >>> struct2 + array([[ True, True, True], + [ True, True, True], + [ True, True, True]], dtype=bool) + >>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype) + array([[ 0., 0., 0., 0., 0.], + [ 0., 0., 1., 0., 0.], + [ 0., 1., 1., 1., 0.], + [ 0., 0., 1., 0., 0.], + [ 0., 0., 0., 0., 0.]]) + >>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype) + array([[ 0., 0., 0., 0., 0.], + [ 0., 1., 1., 1., 0.], + [ 0., 1., 1., 1., 0.], + [ 0., 1., 1., 1., 0.], + [ 0., 0., 0., 0., 0.]]) + >>> ndimage.binary_dilation(a, structure=struct1,\\ + ... iterations=2).astype(a.dtype) + array([[ 0., 0., 1., 0., 0.], + [ 0., 1., 1., 1., 0.], + [ 1., 1., 1., 1., 1.], + [ 0., 1., 1., 1., 0.], + [ 0., 0., 1., 0., 0.]]) + + """ + input = numpy.asarray(input) + if structure is None: + structure = generate_binary_structure(input.ndim, 1) + origin = _ni_support._normalize_sequence(origin, input.ndim) + structure = numpy.asarray(structure) + structure = structure[tuple([slice(None, None, -1)] * + structure.ndim)] + for ii in range(len(origin)): + origin[ii] = -origin[ii] + if not structure.shape[ii] & 1: + origin[ii] -= 1 + + return _binary_erosion(input, structure, iterations, mask, + output, border_value, origin, 1, brute_force) + + +def binary_opening(input, structure=None, iterations=1, output=None, + origin=0, mask=None, border_value=0, brute_force=False): + """ + Multidimensional binary opening with the given structuring element. + + The *opening* of an input image by a structuring element is the + *dilation* of the *erosion* of the image by the structuring element. + + Parameters + ---------- + input : array_like + Binary array_like to be opened. Non-zero (True) elements form + the subset to be opened. + structure : array_like, optional + Structuring element used for the opening. Non-zero elements are + considered True. If no structuring element is provided an element + is generated with a square connectivity equal to one (i.e., only + nearest neighbors are connected to the center, diagonally-connected + elements are not considered neighbors). + iterations : int, optional + The erosion step of the opening, then the dilation step are each + repeated `iterations` times (one, by default). If `iterations` is + less than 1, each operation is repeated until the result does + not change anymore. Only an integer of iterations is accepted. + output : ndarray, optional + Array of the same shape as input, into which the output is placed. + By default, a new array is created. + origin : int or tuple of ints, optional + Placement of the filter, by default 0. + mask : array_like, optional + If a mask is given, only those elements with a True value at + the corresponding mask element are modified at each iteration. + + .. versionadded:: 1.1.0 + border_value : int (cast to 0 or 1), optional + Value at the border in the output array. + + .. versionadded:: 1.1.0 + brute_force : boolean, optional + Memory condition: if False, only the pixels whose value was changed in + the last iteration are tracked as candidates to be updated in the + current iteration; if true all pixels are considered as candidates for + update, regardless of what happened in the previous iteration. + False by default. + + .. versionadded:: 1.1.0 + + Returns + ------- + binary_opening : ndarray of bools + Opening of the input by the structuring element. + + See Also + -------- + grey_opening, binary_closing, binary_erosion, binary_dilation, + generate_binary_structure + + Notes + ----- + *Opening* [1]_ is a mathematical morphology operation [2]_ that + consists in the succession of an erosion and a dilation of the + input with the same structuring element. Opening, therefore, removes + objects smaller than the structuring element. + + Together with *closing* (`binary_closing`), opening can be used for + noise removal. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Opening_%28morphology%29 + .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.zeros((5,5), dtype=int) + >>> a[1:4, 1:4] = 1; a[4, 4] = 1 + >>> a + array([[0, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 1]]) + >>> # Opening removes small objects + >>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int) + array([[0, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]]) + >>> # Opening can also smooth corners + >>> ndimage.binary_opening(a).astype(int) + array([[0, 0, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 1, 1, 1, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 0, 0]]) + >>> # Opening is the dilation of the erosion of the input + >>> ndimage.binary_erosion(a).astype(int) + array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0]]) + >>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int) + array([[0, 0, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 1, 1, 1, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 0, 0]]) + + """ + input = numpy.asarray(input) + if structure is None: + rank = input.ndim + structure = generate_binary_structure(rank, 1) + + tmp = binary_erosion(input, structure, iterations, mask, None, + border_value, origin, brute_force) + return binary_dilation(tmp, structure, iterations, mask, output, + border_value, origin, brute_force) + + +def binary_closing(input, structure=None, iterations=1, output=None, + origin=0, mask=None, border_value=0, brute_force=False): + """ + Multidimensional binary closing with the given structuring element. + + The *closing* of an input image by a structuring element is the + *erosion* of the *dilation* of the image by the structuring element. + + Parameters + ---------- + input : array_like + Binary array_like to be closed. Non-zero (True) elements form + the subset to be closed. + structure : array_like, optional + Structuring element used for the closing. Non-zero elements are + considered True. If no structuring element is provided an element + is generated with a square connectivity equal to one (i.e., only + nearest neighbors are connected to the center, diagonally-connected + elements are not considered neighbors). + iterations : int, optional + The dilation step of the closing, then the erosion step are each + repeated `iterations` times (one, by default). If iterations is + less than 1, each operations is repeated until the result does + not change anymore. Only an integer of iterations is accepted. + output : ndarray, optional + Array of the same shape as input, into which the output is placed. + By default, a new array is created. + origin : int or tuple of ints, optional + Placement of the filter, by default 0. + mask : array_like, optional + If a mask is given, only those elements with a True value at + the corresponding mask element are modified at each iteration. + + .. versionadded:: 1.1.0 + border_value : int (cast to 0 or 1), optional + Value at the border in the output array. + + .. versionadded:: 1.1.0 + brute_force : boolean, optional + Memory condition: if False, only the pixels whose value was changed in + the last iteration are tracked as candidates to be updated in the + current iteration; if true al pixels are considered as candidates for + update, regardless of what happened in the previous iteration. + False by default. + + .. versionadded:: 1.1.0 + + Returns + ------- + binary_closing : ndarray of bools + Closing of the input by the structuring element. + + See Also + -------- + grey_closing, binary_opening, binary_dilation, binary_erosion, + generate_binary_structure + + Notes + ----- + *Closing* [1]_ is a mathematical morphology operation [2]_ that + consists in the succession of a dilation and an erosion of the + input with the same structuring element. Closing therefore fills + holes smaller than the structuring element. + + Together with *opening* (`binary_opening`), closing can be used for + noise removal. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Closing_%28morphology%29 + .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.zeros((5,5), dtype=int) + >>> a[1:-1, 1:-1] = 1; a[2,2] = 0 + >>> a + array([[0, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 1, 0, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]]) + >>> # Closing removes small holes + >>> ndimage.binary_closing(a).astype(int) + array([[0, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]]) + >>> # Closing is the erosion of the dilation of the input + >>> ndimage.binary_dilation(a).astype(int) + array([[0, 1, 1, 1, 0], + [1, 1, 1, 1, 1], + [1, 1, 1, 1, 1], + [1, 1, 1, 1, 1], + [0, 1, 1, 1, 0]]) + >>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int) + array([[0, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]]) + + + >>> a = np.zeros((7,7), dtype=int) + >>> a[1:6, 2:5] = 1; a[1:3,3] = 0 + >>> a + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 1, 0, 0], + [0, 0, 1, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> # In addition to removing holes, closing can also + >>> # coarsen boundaries with fine hollows. + >>> ndimage.binary_closing(a).astype(int) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + + """ + input = numpy.asarray(input) + if structure is None: + rank = input.ndim + structure = generate_binary_structure(rank, 1) + + tmp = binary_dilation(input, structure, iterations, mask, None, + border_value, origin, brute_force) + return binary_erosion(tmp, structure, iterations, mask, output, + border_value, origin, brute_force) + + +def binary_hit_or_miss(input, structure1=None, structure2=None, + output=None, origin1=0, origin2=None): + """ + Multidimensional binary hit-or-miss transform. + + The hit-or-miss transform finds the locations of a given pattern + inside the input image. + + Parameters + ---------- + input : array_like (cast to booleans) + Binary image where a pattern is to be detected. + structure1 : array_like (cast to booleans), optional + Part of the structuring element to be fitted to the foreground + (non-zero elements) of `input`. If no value is provided, a + structure of square connectivity 1 is chosen. + structure2 : array_like (cast to booleans), optional + Second part of the structuring element that has to miss completely + the foreground. If no value is provided, the complementary of + `structure1` is taken. + output : ndarray, optional + Array of the same shape as input, into which the output is placed. + By default, a new array is created. + origin1 : int or tuple of ints, optional + Placement of the first part of the structuring element `structure1`, + by default 0 for a centered structure. + origin2 : int or tuple of ints, optional + Placement of the second part of the structuring element `structure2`, + by default 0 for a centered structure. If a value is provided for + `origin1` and not for `origin2`, then `origin2` is set to `origin1`. + + Returns + ------- + binary_hit_or_miss : ndarray + Hit-or-miss transform of `input` with the given structuring + element (`structure1`, `structure2`). + + See Also + -------- + binary_erosion + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Hit-or-miss_transform + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.zeros((7,7), dtype=int) + >>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1 + >>> a + array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]]) + >>> structure1 + array([[1, 0, 0], + [0, 1, 1], + [0, 1, 1]]) + >>> # Find the matches of structure1 in the array a + >>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(int) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> # Change the origin of the filter + >>> # origin1=1 is equivalent to origin1=(1,1) here + >>> ndimage.binary_hit_or_miss(a, structure1=structure1,\\ + ... origin1=1).astype(int) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 0, 0]]) + + """ + input = numpy.asarray(input) + if structure1 is None: + structure1 = generate_binary_structure(input.ndim, 1) + if structure2 is None: + structure2 = numpy.logical_not(structure1) + origin1 = _ni_support._normalize_sequence(origin1, input.ndim) + if origin2 is None: + origin2 = origin1 + else: + origin2 = _ni_support._normalize_sequence(origin2, input.ndim) + + tmp1 = _binary_erosion(input, structure1, 1, None, None, 0, origin1, + 0, False) + inplace = isinstance(output, numpy.ndarray) + result = _binary_erosion(input, structure2, 1, None, output, 0, + origin2, 1, False) + if inplace: + numpy.logical_not(output, output) + numpy.logical_and(tmp1, output, output) + else: + numpy.logical_not(result, result) + return numpy.logical_and(tmp1, result) + + +def binary_propagation(input, structure=None, mask=None, + output=None, border_value=0, origin=0): + """ + Multidimensional binary propagation with the given structuring element. + + Parameters + ---------- + input : array_like + Binary image to be propagated inside `mask`. + structure : array_like, optional + Structuring element used in the successive dilations. The output + may depend on the structuring element, especially if `mask` has + several connex components. If no structuring element is + provided, an element is generated with a squared connectivity equal + to one. + mask : array_like, optional + Binary mask defining the region into which `input` is allowed to + propagate. + output : ndarray, optional + Array of the same shape as input, into which the output is placed. + By default, a new array is created. + border_value : int (cast to 0 or 1), optional + Value at the border in the output array. + origin : int or tuple of ints, optional + Placement of the filter, by default 0. + + Returns + ------- + binary_propagation : ndarray + Binary propagation of `input` inside `mask`. + + Notes + ----- + This function is functionally equivalent to calling binary_dilation + with the number of iterations less than one: iterative dilation until + the result does not change anymore. + + The succession of an erosion and propagation inside the original image + can be used instead of an *opening* for deleting small objects while + keeping the contours of larger objects untouched. + + References + ---------- + .. [1] http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf, slide 15. + .. [2] I.T. Young, J.J. Gerbrands, and L.J. van Vliet, "Fundamentals of + image processing", 1998 + ftp://qiftp.tudelft.nl/DIPimage/docs/FIP2.3.pdf + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> input = np.zeros((8, 8), dtype=int) + >>> input[2, 2] = 1 + >>> mask = np.zeros((8, 8), dtype=int) + >>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1 + >>> input + array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]]) + >>> mask + array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 1, 1], + [0, 0, 0, 0, 0, 0, 1, 1]]) + >>> ndimage.binary_propagation(input, mask=mask).astype(int) + array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]]) + >>> ndimage.binary_propagation(input, mask=mask,\\ + ... structure=np.ones((3,3))).astype(int) + array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]]) + + >>> # Comparison between opening and erosion+propagation + >>> a = np.zeros((6,6), dtype=int) + >>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1 + >>> a + array([[1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 1]]) + >>> ndimage.binary_opening(a).astype(int) + array([[0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 0], + [0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0]]) + >>> b = ndimage.binary_erosion(a) + >>> b.astype(int) + array([[0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0]]) + >>> ndimage.binary_propagation(b, mask=a).astype(int) + array([[0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0]]) + + """ + return binary_dilation(input, structure, -1, mask, output, + border_value, origin) + + +def binary_fill_holes(input, structure=None, output=None, origin=0): + """ + Fill the holes in binary objects. + + + Parameters + ---------- + input : array_like + N-D binary array with holes to be filled + structure : array_like, optional + Structuring element used in the computation; large-size elements + make computations faster but may miss holes separated from the + background by thin regions. The default element (with a square + connectivity equal to one) yields the intuitive result where all + holes in the input have been filled. + output : ndarray, optional + Array of the same shape as input, into which the output is placed. + By default, a new array is created. + origin : int, tuple of ints, optional + Position of the structuring element. + + Returns + ------- + out : ndarray + Transformation of the initial image `input` where holes have been + filled. + + See Also + -------- + binary_dilation, binary_propagation, label + + Notes + ----- + The algorithm used in this function consists in invading the complementary + of the shapes in `input` from the outer boundary of the image, + using binary dilations. Holes are not connected to the boundary and are + therefore not invaded. The result is the complementary subset of the + invaded region. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology + + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.zeros((5, 5), dtype=int) + >>> a[1:4, 1:4] = 1 + >>> a[2,2] = 0 + >>> a + array([[0, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 1, 0, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]]) + >>> ndimage.binary_fill_holes(a).astype(int) + array([[0, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]]) + >>> # Too big structuring element + >>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int) + array([[0, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 1, 0, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]]) + + """ + mask = numpy.logical_not(input) + tmp = numpy.zeros(mask.shape, bool) + inplace = isinstance(output, numpy.ndarray) + if inplace: + binary_dilation(tmp, structure, -1, mask, output, 1, origin) + numpy.logical_not(output, output) + else: + output = binary_dilation(tmp, structure, -1, mask, None, 1, + origin) + numpy.logical_not(output, output) + return output + + +def grey_erosion(input, size=None, footprint=None, structure=None, + output=None, mode="reflect", cval=0.0, origin=0): + """ + Calculate a greyscale erosion, using either a structuring element, + or a footprint corresponding to a flat structuring element. + + Grayscale erosion is a mathematical morphology operation. For the + simple case of a full and flat structuring element, it can be viewed + as a minimum filter over a sliding window. + + Parameters + ---------- + input : array_like + Array over which the grayscale erosion is to be computed. + size : tuple of ints + Shape of a flat and full structuring element used for the grayscale + erosion. Optional if `footprint` or `structure` is provided. + footprint : array of ints, optional + Positions of non-infinite elements of a flat structuring element + used for the grayscale erosion. Non-zero values give the set of + neighbors of the center over which the minimum is chosen. + structure : array of ints, optional + Structuring element used for the grayscale erosion. `structure` + may be a non-flat structuring element. + output : array, optional + An array used for storing the output of the erosion may be provided. + mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional + The `mode` parameter determines how the array borders are + handled, where `cval` is the value when mode is equal to + 'constant'. Default is 'reflect' + cval : scalar, optional + Value to fill past edges of input if `mode` is 'constant'. Default + is 0.0. + origin : scalar, optional + The `origin` parameter controls the placement of the filter. + Default 0 + + Returns + ------- + output : ndarray + Grayscale erosion of `input`. + + See Also + -------- + binary_erosion, grey_dilation, grey_opening, grey_closing + generate_binary_structure, minimum_filter + + Notes + ----- + The grayscale erosion of an image input by a structuring element s defined + over a domain E is given by: + + (input+s)(x) = min {input(y) - s(x-y), for y in E} + + In particular, for structuring elements defined as + s(y) = 0 for y in E, the grayscale erosion computes the minimum of the + input image inside a sliding window defined by E. + + Grayscale erosion [1]_ is a *mathematical morphology* operation [2]_. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29 + .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.zeros((7,7), dtype=int) + >>> a[1:6, 1:6] = 3 + >>> a[4,4] = 2; a[2,3] = 1 + >>> a + array([[0, 0, 0, 0, 0, 0, 0], + [0, 3, 3, 3, 3, 3, 0], + [0, 3, 3, 1, 3, 3, 0], + [0, 3, 3, 3, 3, 3, 0], + [0, 3, 3, 3, 2, 3, 0], + [0, 3, 3, 3, 3, 3, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> ndimage.grey_erosion(a, size=(3,3)) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 3, 2, 2, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> footprint = ndimage.generate_binary_structure(2, 1) + >>> footprint + array([[False, True, False], + [ True, True, True], + [False, True, False]], dtype=bool) + >>> # Diagonally-connected elements are not considered neighbors + >>> ndimage.grey_erosion(a, footprint=footprint) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 3, 1, 2, 0, 0], + [0, 0, 3, 2, 2, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + + """ + if size is None and footprint is None and structure is None: + raise ValueError("size, footprint, or structure must be specified") + + return _filters._min_or_max_filter(input, size, footprint, structure, + output, mode, cval, origin, 1) + + +def grey_dilation(input, size=None, footprint=None, structure=None, + output=None, mode="reflect", cval=0.0, origin=0): + """ + Calculate a greyscale dilation, using either a structuring element, + or a footprint corresponding to a flat structuring element. + + Grayscale dilation is a mathematical morphology operation. For the + simple case of a full and flat structuring element, it can be viewed + as a maximum filter over a sliding window. + + Parameters + ---------- + input : array_like + Array over which the grayscale dilation is to be computed. + size : tuple of ints + Shape of a flat and full structuring element used for the grayscale + dilation. Optional if `footprint` or `structure` is provided. + footprint : array of ints, optional + Positions of non-infinite elements of a flat structuring element + used for the grayscale dilation. Non-zero values give the set of + neighbors of the center over which the maximum is chosen. + structure : array of ints, optional + Structuring element used for the grayscale dilation. `structure` + may be a non-flat structuring element. + output : array, optional + An array used for storing the output of the dilation may be provided. + mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional + The `mode` parameter determines how the array borders are + handled, where `cval` is the value when mode is equal to + 'constant'. Default is 'reflect' + cval : scalar, optional + Value to fill past edges of input if `mode` is 'constant'. Default + is 0.0. + origin : scalar, optional + The `origin` parameter controls the placement of the filter. + Default 0 + + Returns + ------- + grey_dilation : ndarray + Grayscale dilation of `input`. + + See Also + -------- + binary_dilation, grey_erosion, grey_closing, grey_opening + generate_binary_structure, maximum_filter + + Notes + ----- + The grayscale dilation of an image input by a structuring element s defined + over a domain E is given by: + + (input+s)(x) = max {input(y) + s(x-y), for y in E} + + In particular, for structuring elements defined as + s(y) = 0 for y in E, the grayscale dilation computes the maximum of the + input image inside a sliding window defined by E. + + Grayscale dilation [1]_ is a *mathematical morphology* operation [2]_. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29 + .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.zeros((7,7), dtype=int) + >>> a[2:5, 2:5] = 1 + >>> a[4,4] = 2; a[2,3] = 3 + >>> a + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 3, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 2, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> ndimage.grey_dilation(a, size=(3,3)) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 3, 3, 3, 1, 0], + [0, 1, 3, 3, 3, 1, 0], + [0, 1, 3, 3, 3, 2, 0], + [0, 1, 1, 2, 2, 2, 0], + [0, 1, 1, 2, 2, 2, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> ndimage.grey_dilation(a, footprint=np.ones((3,3))) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 3, 3, 3, 1, 0], + [0, 1, 3, 3, 3, 1, 0], + [0, 1, 3, 3, 3, 2, 0], + [0, 1, 1, 2, 2, 2, 0], + [0, 1, 1, 2, 2, 2, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> s = ndimage.generate_binary_structure(2,1) + >>> s + array([[False, True, False], + [ True, True, True], + [False, True, False]], dtype=bool) + >>> ndimage.grey_dilation(a, footprint=s) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 3, 1, 0, 0], + [0, 1, 3, 3, 3, 1, 0], + [0, 1, 1, 3, 2, 1, 0], + [0, 1, 1, 2, 2, 2, 0], + [0, 0, 1, 1, 2, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3))) + array([[1, 1, 1, 1, 1, 1, 1], + [1, 2, 4, 4, 4, 2, 1], + [1, 2, 4, 4, 4, 2, 1], + [1, 2, 4, 4, 4, 3, 1], + [1, 2, 2, 3, 3, 3, 1], + [1, 2, 2, 3, 3, 3, 1], + [1, 1, 1, 1, 1, 1, 1]]) + + """ + if size is None and footprint is None and structure is None: + raise ValueError("size, footprint, or structure must be specified") + if structure is not None: + structure = numpy.asarray(structure) + structure = structure[tuple([slice(None, None, -1)] * + structure.ndim)] + if footprint is not None: + footprint = numpy.asarray(footprint) + footprint = footprint[tuple([slice(None, None, -1)] * + footprint.ndim)] + + input = numpy.asarray(input) + origin = _ni_support._normalize_sequence(origin, input.ndim) + for ii in range(len(origin)): + origin[ii] = -origin[ii] + if footprint is not None: + sz = footprint.shape[ii] + elif structure is not None: + sz = structure.shape[ii] + elif numpy.isscalar(size): + sz = size + else: + sz = size[ii] + if not sz & 1: + origin[ii] -= 1 + + return _filters._min_or_max_filter(input, size, footprint, structure, + output, mode, cval, origin, 0) + + +def grey_opening(input, size=None, footprint=None, structure=None, + output=None, mode="reflect", cval=0.0, origin=0): + """ + Multidimensional grayscale opening. + + A grayscale opening consists in the succession of a grayscale erosion, + and a grayscale dilation. + + Parameters + ---------- + input : array_like + Array over which the grayscale opening is to be computed. + size : tuple of ints + Shape of a flat and full structuring element used for the grayscale + opening. Optional if `footprint` or `structure` is provided. + footprint : array of ints, optional + Positions of non-infinite elements of a flat structuring element + used for the grayscale opening. + structure : array of ints, optional + Structuring element used for the grayscale opening. `structure` + may be a non-flat structuring element. + output : array, optional + An array used for storing the output of the opening may be provided. + mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional + The `mode` parameter determines how the array borders are + handled, where `cval` is the value when mode is equal to + 'constant'. Default is 'reflect' + cval : scalar, optional + Value to fill past edges of input if `mode` is 'constant'. Default + is 0.0. + origin : scalar, optional + The `origin` parameter controls the placement of the filter. + Default 0 + + Returns + ------- + grey_opening : ndarray + Result of the grayscale opening of `input` with `structure`. + + See Also + -------- + binary_opening, grey_dilation, grey_erosion, grey_closing + generate_binary_structure + + Notes + ----- + The action of a grayscale opening with a flat structuring element amounts + to smoothen high local maxima, whereas binary opening erases small objects. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.arange(36).reshape((6,6)) + >>> a[3, 3] = 50 + >>> a + array([[ 0, 1, 2, 3, 4, 5], + [ 6, 7, 8, 9, 10, 11], + [12, 13, 14, 15, 16, 17], + [18, 19, 20, 50, 22, 23], + [24, 25, 26, 27, 28, 29], + [30, 31, 32, 33, 34, 35]]) + >>> ndimage.grey_opening(a, size=(3,3)) + array([[ 0, 1, 2, 3, 4, 4], + [ 6, 7, 8, 9, 10, 10], + [12, 13, 14, 15, 16, 16], + [18, 19, 20, 22, 22, 22], + [24, 25, 26, 27, 28, 28], + [24, 25, 26, 27, 28, 28]]) + >>> # Note that the local maximum a[3,3] has disappeared + + """ + if (size is not None) and (footprint is not None): + warnings.warn("ignoring size because footprint is set", + UserWarning, stacklevel=2) + tmp = grey_erosion(input, size, footprint, structure, None, mode, + cval, origin) + return grey_dilation(tmp, size, footprint, structure, output, mode, + cval, origin) + + +def grey_closing(input, size=None, footprint=None, structure=None, + output=None, mode="reflect", cval=0.0, origin=0): + """ + Multidimensional grayscale closing. + + A grayscale closing consists in the succession of a grayscale dilation, + and a grayscale erosion. + + Parameters + ---------- + input : array_like + Array over which the grayscale closing is to be computed. + size : tuple of ints + Shape of a flat and full structuring element used for the grayscale + closing. Optional if `footprint` or `structure` is provided. + footprint : array of ints, optional + Positions of non-infinite elements of a flat structuring element + used for the grayscale closing. + structure : array of ints, optional + Structuring element used for the grayscale closing. `structure` + may be a non-flat structuring element. + output : array, optional + An array used for storing the output of the closing may be provided. + mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional + The `mode` parameter determines how the array borders are + handled, where `cval` is the value when mode is equal to + 'constant'. Default is 'reflect' + cval : scalar, optional + Value to fill past edges of input if `mode` is 'constant'. Default + is 0.0. + origin : scalar, optional + The `origin` parameter controls the placement of the filter. + Default 0 + + Returns + ------- + grey_closing : ndarray + Result of the grayscale closing of `input` with `structure`. + + See Also + -------- + binary_closing, grey_dilation, grey_erosion, grey_opening, + generate_binary_structure + + Notes + ----- + The action of a grayscale closing with a flat structuring element amounts + to smoothen deep local minima, whereas binary closing fills small holes. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.arange(36).reshape((6,6)) + >>> a[3,3] = 0 + >>> a + array([[ 0, 1, 2, 3, 4, 5], + [ 6, 7, 8, 9, 10, 11], + [12, 13, 14, 15, 16, 17], + [18, 19, 20, 0, 22, 23], + [24, 25, 26, 27, 28, 29], + [30, 31, 32, 33, 34, 35]]) + >>> ndimage.grey_closing(a, size=(3,3)) + array([[ 7, 7, 8, 9, 10, 11], + [ 7, 7, 8, 9, 10, 11], + [13, 13, 14, 15, 16, 17], + [19, 19, 20, 20, 22, 23], + [25, 25, 26, 27, 28, 29], + [31, 31, 32, 33, 34, 35]]) + >>> # Note that the local minimum a[3,3] has disappeared + + """ + if (size is not None) and (footprint is not None): + warnings.warn("ignoring size because footprint is set", + UserWarning, stacklevel=2) + tmp = grey_dilation(input, size, footprint, structure, None, mode, + cval, origin) + return grey_erosion(tmp, size, footprint, structure, output, mode, + cval, origin) + + +def morphological_gradient(input, size=None, footprint=None, structure=None, + output=None, mode="reflect", cval=0.0, origin=0): + """ + Multidimensional morphological gradient. + + The morphological gradient is calculated as the difference between a + dilation and an erosion of the input with a given structuring element. + + Parameters + ---------- + input : array_like + Array over which to compute the morphlogical gradient. + size : tuple of ints + Shape of a flat and full structuring element used for the mathematical + morphology operations. Optional if `footprint` or `structure` is + provided. A larger `size` yields a more blurred gradient. + footprint : array of ints, optional + Positions of non-infinite elements of a flat structuring element + used for the morphology operations. Larger footprints + give a more blurred morphological gradient. + structure : array of ints, optional + Structuring element used for the morphology operations. + `structure` may be a non-flat structuring element. + output : array, optional + An array used for storing the output of the morphological gradient + may be provided. + mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional + The `mode` parameter determines how the array borders are + handled, where `cval` is the value when mode is equal to + 'constant'. Default is 'reflect' + cval : scalar, optional + Value to fill past edges of input if `mode` is 'constant'. Default + is 0.0. + origin : scalar, optional + The `origin` parameter controls the placement of the filter. + Default 0 + + Returns + ------- + morphological_gradient : ndarray + Morphological gradient of `input`. + + See Also + -------- + grey_dilation, grey_erosion, gaussian_gradient_magnitude + + Notes + ----- + For a flat structuring element, the morphological gradient + computed at a given point corresponds to the maximal difference + between elements of the input among the elements covered by the + structuring element centered on the point. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.zeros((7,7), dtype=int) + >>> a[2:5, 2:5] = 1 + >>> ndimage.morphological_gradient(a, size=(3,3)) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> # The morphological gradient is computed as the difference + >>> # between a dilation and an erosion + >>> ndimage.grey_dilation(a, size=(3,3)) -\\ + ... ndimage.grey_erosion(a, size=(3,3)) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> a = np.zeros((7,7), dtype=int) + >>> a[2:5, 2:5] = 1 + >>> a[4,4] = 2; a[2,3] = 3 + >>> a + array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 3, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 2, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]]) + >>> ndimage.morphological_gradient(a, size=(3,3)) + array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 3, 3, 3, 1, 0], + [0, 1, 3, 3, 3, 1, 0], + [0, 1, 3, 2, 3, 2, 0], + [0, 1, 1, 2, 2, 2, 0], + [0, 1, 1, 2, 2, 2, 0], + [0, 0, 0, 0, 0, 0, 0]]) + + """ + tmp = grey_dilation(input, size, footprint, structure, None, mode, + cval, origin) + if isinstance(output, numpy.ndarray): + grey_erosion(input, size, footprint, structure, output, mode, + cval, origin) + return numpy.subtract(tmp, output, output) + else: + return (tmp - grey_erosion(input, size, footprint, structure, + None, mode, cval, origin)) + + +def morphological_laplace(input, size=None, footprint=None, + structure=None, output=None, + mode="reflect", cval=0.0, origin=0): + """ + Multidimensional morphological laplace. + + Parameters + ---------- + input : array_like + Input. + size : int or sequence of ints, optional + See `structure`. + footprint : bool or ndarray, optional + See `structure`. + structure : structure, optional + Either `size`, `footprint`, or the `structure` must be provided. + output : ndarray, optional + An output array can optionally be provided. + mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional + The mode parameter determines how the array borders are handled. + For 'constant' mode, values beyond borders are set to be `cval`. + Default is 'reflect'. + cval : scalar, optional + Value to fill past edges of input if mode is 'constant'. + Default is 0.0 + origin : origin, optional + The origin parameter controls the placement of the filter. + + Returns + ------- + morphological_laplace : ndarray + Output + + """ + tmp1 = grey_dilation(input, size, footprint, structure, None, mode, + cval, origin) + if isinstance(output, numpy.ndarray): + grey_erosion(input, size, footprint, structure, output, mode, + cval, origin) + numpy.add(tmp1, output, output) + numpy.subtract(output, input, output) + return numpy.subtract(output, input, output) + else: + tmp2 = grey_erosion(input, size, footprint, structure, None, mode, + cval, origin) + numpy.add(tmp1, tmp2, tmp2) + numpy.subtract(tmp2, input, tmp2) + numpy.subtract(tmp2, input, tmp2) + return tmp2 + + +def white_tophat(input, size=None, footprint=None, structure=None, + output=None, mode="reflect", cval=0.0, origin=0): + """ + Multidimensional white tophat filter. + + Parameters + ---------- + input : array_like + Input. + size : tuple of ints + Shape of a flat and full structuring element used for the filter. + Optional if `footprint` or `structure` is provided. + footprint : array of ints, optional + Positions of elements of a flat structuring element + used for the white tophat filter. + structure : array of ints, optional + Structuring element used for the filter. `structure` + may be a non-flat structuring element. + output : array, optional + An array used for storing the output of the filter may be provided. + mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional + The `mode` parameter determines how the array borders are + handled, where `cval` is the value when mode is equal to + 'constant'. Default is 'reflect' + cval : scalar, optional + Value to fill past edges of input if `mode` is 'constant'. + Default is 0.0. + origin : scalar, optional + The `origin` parameter controls the placement of the filter. + Default is 0. + + Returns + ------- + output : ndarray + Result of the filter of `input` with `structure`. + + See Also + -------- + black_tophat + + Examples + -------- + Subtract gray background from a bright peak. + + >>> from scipy.ndimage import generate_binary_structure, white_tophat + >>> import numpy as np + >>> square = generate_binary_structure(rank=2, connectivity=3) + >>> bright_on_gray = np.array([[2, 3, 3, 3, 2], + ... [3, 4, 5, 4, 3], + ... [3, 5, 9, 5, 3], + ... [3, 4, 5, 4, 3], + ... [2, 3, 3, 3, 2]]) + >>> white_tophat(input=bright_on_gray, structure=square) + array([[0, 0, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 1, 5, 1, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 0, 0]]) + + """ + if (size is not None) and (footprint is not None): + warnings.warn("ignoring size because footprint is set", + UserWarning, stacklevel=2) + tmp = grey_erosion(input, size, footprint, structure, None, mode, + cval, origin) + tmp = grey_dilation(tmp, size, footprint, structure, output, mode, + cval, origin) + if tmp is None: + tmp = output + + if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_: + numpy.bitwise_xor(input, tmp, out=tmp) + else: + numpy.subtract(input, tmp, out=tmp) + return tmp + + +def black_tophat(input, size=None, footprint=None, + structure=None, output=None, mode="reflect", + cval=0.0, origin=0): + """ + Multidimensional black tophat filter. + + Parameters + ---------- + input : array_like + Input. + size : tuple of ints, optional + Shape of a flat and full structuring element used for the filter. + Optional if `footprint` or `structure` is provided. + footprint : array of ints, optional + Positions of non-infinite elements of a flat structuring element + used for the black tophat filter. + structure : array of ints, optional + Structuring element used for the filter. `structure` + may be a non-flat structuring element. + output : array, optional + An array used for storing the output of the filter may be provided. + mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional + The `mode` parameter determines how the array borders are + handled, where `cval` is the value when mode is equal to + 'constant'. Default is 'reflect' + cval : scalar, optional + Value to fill past edges of input if `mode` is 'constant'. Default + is 0.0. + origin : scalar, optional + The `origin` parameter controls the placement of the filter. + Default 0 + + Returns + ------- + black_tophat : ndarray + Result of the filter of `input` with `structure`. + + See Also + -------- + white_tophat, grey_opening, grey_closing + + Examples + -------- + Change dark peak to bright peak and subtract background. + + >>> from scipy.ndimage import generate_binary_structure, black_tophat + >>> import numpy as np + >>> square = generate_binary_structure(rank=2, connectivity=3) + >>> dark_on_gray = np.array([[7, 6, 6, 6, 7], + ... [6, 5, 4, 5, 6], + ... [6, 4, 0, 4, 6], + ... [6, 5, 4, 5, 6], + ... [7, 6, 6, 6, 7]]) + >>> black_tophat(input=dark_on_gray, structure=square) + array([[0, 0, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 1, 5, 1, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 0, 0]]) + + """ + if (size is not None) and (footprint is not None): + warnings.warn("ignoring size because footprint is set", + UserWarning, stacklevel=2) + tmp = grey_dilation(input, size, footprint, structure, None, mode, + cval, origin) + tmp = grey_erosion(tmp, size, footprint, structure, output, mode, + cval, origin) + if tmp is None: + tmp = output + + if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_: + numpy.bitwise_xor(tmp, input, out=tmp) + else: + numpy.subtract(tmp, input, out=tmp) + return tmp + + +def distance_transform_bf(input, metric="euclidean", sampling=None, + return_distances=True, return_indices=False, + distances=None, indices=None): + """ + Distance transform function by a brute force algorithm. + + This function calculates the distance transform of the `input`, by + replacing each foreground (non-zero) element, with its + shortest distance to the background (any zero-valued element). + + In addition to the distance transform, the feature transform can + be calculated. In this case the index of the closest background + element to each foreground element is returned in a separate array. + + Parameters + ---------- + input : array_like + Input + metric : {'euclidean', 'taxicab', 'chessboard'}, optional + 'cityblock' and 'manhattan' are also valid, and map to 'taxicab'. + The default is 'euclidean'. + sampling : float, or sequence of float, optional + This parameter is only used when `metric` is 'euclidean'. + Spacing of elements along each dimension. If a sequence, must be of + length equal to the input rank; if a single number, this is used for + all axes. If not specified, a grid spacing of unity is implied. + return_distances : bool, optional + Whether to calculate the distance transform. + Default is True. + return_indices : bool, optional + Whether to calculate the feature transform. + Default is False. + distances : ndarray, optional + An output array to store the calculated distance transform, instead of + returning it. + `return_distances` must be True. + It must be the same shape as `input`, and of type float64 if `metric` + is 'euclidean', uint32 otherwise. + indices : int32 ndarray, optional + An output array to store the calculated feature transform, instead of + returning it. + `return_indicies` must be True. + Its shape must be `(input.ndim,) + input.shape`. + + Returns + ------- + distances : ndarray, optional + The calculated distance transform. Returned only when + `return_distances` is True and `distances` is not supplied. + It will have the same shape as the input array. + indices : int32 ndarray, optional + The calculated feature transform. It has an input-shaped array for each + dimension of the input. See distance_transform_edt documentation for an + example. + Returned only when `return_indices` is True and `indices` is not + supplied. + + See Also + -------- + distance_transform_cdt : Faster distance transform for taxicab and + chessboard metrics + distance_transform_edt : Faster distance transform for euclidean metric + + Notes + ----- + This function employs a slow brute force algorithm. See also the + function `distance_transform_cdt` for more efficient taxicab [1]_ and + chessboard algorithms [2]_. + + References + ---------- + .. [1] Taxicab distance. Wikipedia, 2023. + https://en.wikipedia.org/wiki/Taxicab_geometry + .. [2] Chessboard distance. Wikipedia, 2023. + https://en.wikipedia.org/wiki/Chebyshev_distance + + Examples + -------- + Import the necessary modules. + + >>> import numpy as np + >>> from scipy.ndimage import distance_transform_bf + >>> import matplotlib.pyplot as plt + >>> from mpl_toolkits.axes_grid1 import ImageGrid + + First, we create a toy binary image. + + >>> def add_circle(center_x, center_y, radius, image, fillvalue=1): + ... # fill circular area with 1 + ... xx, yy = np.mgrid[:image.shape[0], :image.shape[1]] + ... circle = (xx - center_x) ** 2 + (yy - center_y) ** 2 + ... circle_shape = np.sqrt(circle) < radius + ... image[circle_shape] = fillvalue + ... return image + >>> image = np.zeros((100, 100), dtype=np.uint8) + >>> image[35:65, 20:80] = 1 + >>> image = add_circle(28, 65, 10, image) + >>> image = add_circle(37, 30, 10, image) + >>> image = add_circle(70, 45, 20, image) + >>> image = add_circle(45, 80, 10, image) + + Next, we set up the figure. + + >>> fig = plt.figure(figsize=(8, 8)) # set up the figure structure + >>> grid = ImageGrid(fig, 111, nrows_ncols=(2, 2), axes_pad=(0.4, 0.3), + ... label_mode="1", share_all=True, + ... cbar_location="right", cbar_mode="each", + ... cbar_size="7%", cbar_pad="2%") + >>> for ax in grid: + ... ax.axis('off') # remove axes from images + + The top left image is the original binary image. + + >>> binary_image = grid[0].imshow(image, cmap='gray') + >>> cbar_binary_image = grid.cbar_axes[0].colorbar(binary_image) + >>> cbar_binary_image.set_ticks([0, 1]) + >>> grid[0].set_title("Binary image: foreground in white") + + The distance transform calculates the distance between foreground pixels + and the image background according to a distance metric. Available metrics + in `distance_transform_bf` are: ``euclidean`` (default), ``taxicab`` + and ``chessboard``. The top right image contains the distance transform + based on the ``euclidean`` metric. + + >>> distance_transform_euclidean = distance_transform_bf(image) + >>> euclidean_transform = grid[1].imshow(distance_transform_euclidean, + ... cmap='gray') + >>> cbar_euclidean = grid.cbar_axes[1].colorbar(euclidean_transform) + >>> colorbar_ticks = [0, 10, 20] + >>> cbar_euclidean.set_ticks(colorbar_ticks) + >>> grid[1].set_title("Euclidean distance") + + The lower left image contains the distance transform using the ``taxicab`` + metric. + + >>> distance_transform_taxicab = distance_transform_bf(image, + ... metric='taxicab') + >>> taxicab_transformation = grid[2].imshow(distance_transform_taxicab, + ... cmap='gray') + >>> cbar_taxicab = grid.cbar_axes[2].colorbar(taxicab_transformation) + >>> cbar_taxicab.set_ticks(colorbar_ticks) + >>> grid[2].set_title("Taxicab distance") + + Finally, the lower right image contains the distance transform using the + ``chessboard`` metric. + + >>> distance_transform_cb = distance_transform_bf(image, + ... metric='chessboard') + >>> chessboard_transformation = grid[3].imshow(distance_transform_cb, + ... cmap='gray') + >>> cbar_taxicab = grid.cbar_axes[3].colorbar(chessboard_transformation) + >>> cbar_taxicab.set_ticks(colorbar_ticks) + >>> grid[3].set_title("Chessboard distance") + >>> plt.show() + + """ + ft_inplace = isinstance(indices, numpy.ndarray) + dt_inplace = isinstance(distances, numpy.ndarray) + _distance_tranform_arg_check( + dt_inplace, ft_inplace, return_distances, return_indices + ) + + tmp1 = numpy.asarray(input) != 0 + struct = generate_binary_structure(tmp1.ndim, tmp1.ndim) + tmp2 = binary_dilation(tmp1, struct) + tmp2 = numpy.logical_xor(tmp1, tmp2) + tmp1 = tmp1.astype(numpy.int8) - tmp2.astype(numpy.int8) + metric = metric.lower() + if metric == 'euclidean': + metric = 1 + elif metric in ['taxicab', 'cityblock', 'manhattan']: + metric = 2 + elif metric == 'chessboard': + metric = 3 + else: + raise RuntimeError('distance metric not supported') + if sampling is not None: + sampling = _ni_support._normalize_sequence(sampling, tmp1.ndim) + sampling = numpy.asarray(sampling, dtype=numpy.float64) + if not sampling.flags.contiguous: + sampling = sampling.copy() + if return_indices: + ft = numpy.zeros(tmp1.shape, dtype=numpy.int32) + else: + ft = None + if return_distances: + if distances is None: + if metric == 1: + dt = numpy.zeros(tmp1.shape, dtype=numpy.float64) + else: + dt = numpy.zeros(tmp1.shape, dtype=numpy.uint32) + else: + if distances.shape != tmp1.shape: + raise RuntimeError('distances array has wrong shape') + if metric == 1: + if distances.dtype.type != numpy.float64: + raise RuntimeError('distances array must be float64') + else: + if distances.dtype.type != numpy.uint32: + raise RuntimeError('distances array must be uint32') + dt = distances + else: + dt = None + + _nd_image.distance_transform_bf(tmp1, metric, sampling, dt, ft) + if return_indices: + if isinstance(indices, numpy.ndarray): + if indices.dtype.type != numpy.int32: + raise RuntimeError('indices array must be int32') + if indices.shape != (tmp1.ndim,) + tmp1.shape: + raise RuntimeError('indices array has wrong shape') + tmp2 = indices + else: + tmp2 = numpy.indices(tmp1.shape, dtype=numpy.int32) + ft = numpy.ravel(ft) + for ii in range(tmp2.shape[0]): + rtmp = numpy.ravel(tmp2[ii, ...])[ft] + rtmp.shape = tmp1.shape + tmp2[ii, ...] = rtmp + ft = tmp2 + + # construct and return the result + result = [] + if return_distances and not dt_inplace: + result.append(dt) + if return_indices and not ft_inplace: + result.append(ft) + + if len(result) == 2: + return tuple(result) + elif len(result) == 1: + return result[0] + else: + return None + + +def distance_transform_cdt(input, metric='chessboard', return_distances=True, + return_indices=False, distances=None, indices=None): + """ + Distance transform for chamfer type of transforms. + + This function calculates the distance transform of the `input`, by + replacing each foreground (non-zero) element, with its + shortest distance to the background (any zero-valued element). + + In addition to the distance transform, the feature transform can + be calculated. In this case the index of the closest background + element to each foreground element is returned in a separate array. + + Parameters + ---------- + input : array_like + Input. Values of 0 are treated as background. + metric : {'chessboard', 'taxicab'} or array_like, optional + The `metric` determines the type of chamfering that is done. If the + `metric` is equal to 'taxicab' a structure is generated using + `generate_binary_structure` with a squared distance equal to 1. If + the `metric` is equal to 'chessboard', a `metric` is generated + using `generate_binary_structure` with a squared distance equal to + the dimensionality of the array. These choices correspond to the + common interpretations of the 'taxicab' and the 'chessboard' + distance metrics in two dimensions. + A custom metric may be provided, in the form of a matrix where + each dimension has a length of three. + 'cityblock' and 'manhattan' are also valid, and map to 'taxicab'. + The default is 'chessboard'. + return_distances : bool, optional + Whether to calculate the distance transform. + Default is True. + return_indices : bool, optional + Whether to calculate the feature transform. + Default is False. + distances : int32 ndarray, optional + An output array to store the calculated distance transform, instead of + returning it. + `return_distances` must be True. + It must be the same shape as `input`. + indices : int32 ndarray, optional + An output array to store the calculated feature transform, instead of + returning it. + `return_indicies` must be True. + Its shape must be `(input.ndim,) + input.shape`. + + Returns + ------- + distances : int32 ndarray, optional + The calculated distance transform. Returned only when + `return_distances` is True, and `distances` is not supplied. + It will have the same shape as the input array. + indices : int32 ndarray, optional + The calculated feature transform. It has an input-shaped array for each + dimension of the input. See distance_transform_edt documentation for an + example. + Returned only when `return_indices` is True, and `indices` is not + supplied. + + See Also + -------- + distance_transform_edt : Fast distance transform for euclidean metric + distance_transform_bf : Distance transform for different metrics using + a slower brute force algorithm + + Examples + -------- + Import the necessary modules. + + >>> import numpy as np + >>> from scipy.ndimage import distance_transform_cdt + >>> import matplotlib.pyplot as plt + >>> from mpl_toolkits.axes_grid1 import ImageGrid + + First, we create a toy binary image. + + >>> def add_circle(center_x, center_y, radius, image, fillvalue=1): + ... # fill circular area with 1 + ... xx, yy = np.mgrid[:image.shape[0], :image.shape[1]] + ... circle = (xx - center_x) ** 2 + (yy - center_y) ** 2 + ... circle_shape = np.sqrt(circle) < radius + ... image[circle_shape] = fillvalue + ... return image + >>> image = np.zeros((100, 100), dtype=np.uint8) + >>> image[35:65, 20:80] = 1 + >>> image = add_circle(28, 65, 10, image) + >>> image = add_circle(37, 30, 10, image) + >>> image = add_circle(70, 45, 20, image) + >>> image = add_circle(45, 80, 10, image) + + Next, we set up the figure. + + >>> fig = plt.figure(figsize=(5, 15)) + >>> grid = ImageGrid(fig, 111, nrows_ncols=(3, 1), axes_pad=(0.5, 0.3), + ... label_mode="1", share_all=True, + ... cbar_location="right", cbar_mode="each", + ... cbar_size="7%", cbar_pad="2%") + >>> for ax in grid: + ... ax.axis('off') + >>> top, middle, bottom = grid + >>> colorbar_ticks = [0, 10, 20] + + The top image contains the original binary image. + + >>> binary_image = top.imshow(image, cmap='gray') + >>> cbar_binary_image = top.cax.colorbar(binary_image) + >>> cbar_binary_image.set_ticks([0, 1]) + >>> top.set_title("Binary image: foreground in white") + + The middle image contains the distance transform using the ``taxicab`` + metric. + + >>> distance_taxicab = distance_transform_cdt(image, metric="taxicab") + >>> taxicab_transform = middle.imshow(distance_taxicab, cmap='gray') + >>> cbar_taxicab = middle.cax.colorbar(taxicab_transform) + >>> cbar_taxicab.set_ticks(colorbar_ticks) + >>> middle.set_title("Taxicab metric") + + The bottom image contains the distance transform using the ``chessboard`` + metric. + + >>> distance_chessboard = distance_transform_cdt(image, + ... metric="chessboard") + >>> chessboard_transform = bottom.imshow(distance_chessboard, cmap='gray') + >>> cbar_chessboard = bottom.cax.colorbar(chessboard_transform) + >>> cbar_chessboard.set_ticks(colorbar_ticks) + >>> bottom.set_title("Chessboard metric") + >>> plt.tight_layout() + >>> plt.show() + + """ + ft_inplace = isinstance(indices, numpy.ndarray) + dt_inplace = isinstance(distances, numpy.ndarray) + _distance_tranform_arg_check( + dt_inplace, ft_inplace, return_distances, return_indices + ) + input = numpy.asarray(input) + if isinstance(metric, str): + if metric in ['taxicab', 'cityblock', 'manhattan']: + rank = input.ndim + metric = generate_binary_structure(rank, 1) + elif metric == 'chessboard': + rank = input.ndim + metric = generate_binary_structure(rank, rank) + else: + raise ValueError('invalid metric provided') + else: + try: + metric = numpy.asarray(metric) + except Exception as e: + raise ValueError('invalid metric provided') from e + for s in metric.shape: + if s != 3: + raise ValueError('metric sizes must be equal to 3') + + if not metric.flags.contiguous: + metric = metric.copy() + if dt_inplace: + if distances.dtype.type != numpy.int32: + raise ValueError('distances must be of int32 type') + if distances.shape != input.shape: + raise ValueError('distances has wrong shape') + dt = distances + dt[...] = numpy.where(input, -1, 0).astype(numpy.int32) + else: + dt = numpy.where(input, -1, 0).astype(numpy.int32) + + rank = dt.ndim + if return_indices: + sz = numpy.prod(dt.shape, axis=0) + ft = numpy.arange(sz, dtype=numpy.int32) + ft.shape = dt.shape + else: + ft = None + + _nd_image.distance_transform_op(metric, dt, ft) + dt = dt[tuple([slice(None, None, -1)] * rank)] + if return_indices: + ft = ft[tuple([slice(None, None, -1)] * rank)] + _nd_image.distance_transform_op(metric, dt, ft) + dt = dt[tuple([slice(None, None, -1)] * rank)] + if return_indices: + ft = ft[tuple([slice(None, None, -1)] * rank)] + ft = numpy.ravel(ft) + if ft_inplace: + if indices.dtype.type != numpy.int32: + raise ValueError('indices array must be int32') + if indices.shape != (dt.ndim,) + dt.shape: + raise ValueError('indices array has wrong shape') + tmp = indices + else: + tmp = numpy.indices(dt.shape, dtype=numpy.int32) + for ii in range(tmp.shape[0]): + rtmp = numpy.ravel(tmp[ii, ...])[ft] + rtmp.shape = dt.shape + tmp[ii, ...] = rtmp + ft = tmp + + # construct and return the result + result = [] + if return_distances and not dt_inplace: + result.append(dt) + if return_indices and not ft_inplace: + result.append(ft) + + if len(result) == 2: + return tuple(result) + elif len(result) == 1: + return result[0] + else: + return None + + +def distance_transform_edt(input, sampling=None, return_distances=True, + return_indices=False, distances=None, indices=None): + """ + Exact Euclidean distance transform. + + This function calculates the distance transform of the `input`, by + replacing each foreground (non-zero) element, with its + shortest distance to the background (any zero-valued element). + + In addition to the distance transform, the feature transform can + be calculated. In this case the index of the closest background + element to each foreground element is returned in a separate array. + + Parameters + ---------- + input : array_like + Input data to transform. Can be any type but will be converted + into binary: 1 wherever input equates to True, 0 elsewhere. + sampling : float, or sequence of float, optional + Spacing of elements along each dimension. If a sequence, must be of + length equal to the input rank; if a single number, this is used for + all axes. If not specified, a grid spacing of unity is implied. + return_distances : bool, optional + Whether to calculate the distance transform. + Default is True. + return_indices : bool, optional + Whether to calculate the feature transform. + Default is False. + distances : float64 ndarray, optional + An output array to store the calculated distance transform, instead of + returning it. + `return_distances` must be True. + It must be the same shape as `input`. + indices : int32 ndarray, optional + An output array to store the calculated feature transform, instead of + returning it. + `return_indicies` must be True. + Its shape must be `(input.ndim,) + input.shape`. + + Returns + ------- + distances : float64 ndarray, optional + The calculated distance transform. Returned only when + `return_distances` is True and `distances` is not supplied. + It will have the same shape as the input array. + indices : int32 ndarray, optional + The calculated feature transform. It has an input-shaped array for each + dimension of the input. See example below. + Returned only when `return_indices` is True and `indices` is not + supplied. + + Notes + ----- + The Euclidean distance transform gives values of the Euclidean + distance:: + + n + y_i = sqrt(sum (x[i]-b[i])**2) + i + + where b[i] is the background point (value 0) with the smallest + Euclidean distance to input points x[i], and n is the + number of dimensions. + + Examples + -------- + >>> from scipy import ndimage + >>> import numpy as np + >>> a = np.array(([0,1,1,1,1], + ... [0,0,1,1,1], + ... [0,1,1,1,1], + ... [0,1,1,1,0], + ... [0,1,1,0,0])) + >>> ndimage.distance_transform_edt(a) + array([[ 0. , 1. , 1.4142, 2.2361, 3. ], + [ 0. , 0. , 1. , 2. , 2. ], + [ 0. , 1. , 1.4142, 1.4142, 1. ], + [ 0. , 1. , 1.4142, 1. , 0. ], + [ 0. , 1. , 1. , 0. , 0. ]]) + + With a sampling of 2 units along x, 1 along y: + + >>> ndimage.distance_transform_edt(a, sampling=[2,1]) + array([[ 0. , 1. , 2. , 2.8284, 3.6056], + [ 0. , 0. , 1. , 2. , 3. ], + [ 0. , 1. , 2. , 2.2361, 2. ], + [ 0. , 1. , 2. , 1. , 0. ], + [ 0. , 1. , 1. , 0. , 0. ]]) + + Asking for indices as well: + + >>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True) + >>> inds + array([[[0, 0, 1, 1, 3], + [1, 1, 1, 1, 3], + [2, 2, 1, 3, 3], + [3, 3, 4, 4, 3], + [4, 4, 4, 4, 4]], + [[0, 0, 1, 1, 4], + [0, 1, 1, 1, 4], + [0, 0, 1, 4, 4], + [0, 0, 3, 3, 4], + [0, 0, 3, 3, 4]]]) + + With arrays provided for inplace outputs: + + >>> indices = np.zeros(((np.ndim(a),) + a.shape), dtype=np.int32) + >>> ndimage.distance_transform_edt(a, return_indices=True, indices=indices) + array([[ 0. , 1. , 1.4142, 2.2361, 3. ], + [ 0. , 0. , 1. , 2. , 2. ], + [ 0. , 1. , 1.4142, 1.4142, 1. ], + [ 0. , 1. , 1.4142, 1. , 0. ], + [ 0. , 1. , 1. , 0. , 0. ]]) + >>> indices + array([[[0, 0, 1, 1, 3], + [1, 1, 1, 1, 3], + [2, 2, 1, 3, 3], + [3, 3, 4, 4, 3], + [4, 4, 4, 4, 4]], + [[0, 0, 1, 1, 4], + [0, 1, 1, 1, 4], + [0, 0, 1, 4, 4], + [0, 0, 3, 3, 4], + [0, 0, 3, 3, 4]]]) + + """ + ft_inplace = isinstance(indices, numpy.ndarray) + dt_inplace = isinstance(distances, numpy.ndarray) + _distance_tranform_arg_check( + dt_inplace, ft_inplace, return_distances, return_indices + ) + + # calculate the feature transform + input = numpy.atleast_1d(numpy.where(input, 1, 0).astype(numpy.int8)) + if sampling is not None: + sampling = _ni_support._normalize_sequence(sampling, input.ndim) + sampling = numpy.asarray(sampling, dtype=numpy.float64) + if not sampling.flags.contiguous: + sampling = sampling.copy() + + if ft_inplace: + ft = indices + if ft.shape != (input.ndim,) + input.shape: + raise RuntimeError('indices array has wrong shape') + if ft.dtype.type != numpy.int32: + raise RuntimeError('indices array must be int32') + else: + ft = numpy.zeros((input.ndim,) + input.shape, dtype=numpy.int32) + + _nd_image.euclidean_feature_transform(input, sampling, ft) + # if requested, calculate the distance transform + if return_distances: + dt = ft - numpy.indices(input.shape, dtype=ft.dtype) + dt = dt.astype(numpy.float64) + if sampling is not None: + for ii in range(len(sampling)): + dt[ii, ...] *= sampling[ii] + numpy.multiply(dt, dt, dt) + if dt_inplace: + dt = numpy.add.reduce(dt, axis=0) + if distances.shape != dt.shape: + raise RuntimeError('distances array has wrong shape') + if distances.dtype.type != numpy.float64: + raise RuntimeError('distances array must be float64') + numpy.sqrt(dt, distances) + else: + dt = numpy.add.reduce(dt, axis=0) + dt = numpy.sqrt(dt) + + # construct and return the result + result = [] + if return_distances and not dt_inplace: + result.append(dt) + if return_indices and not ft_inplace: + result.append(ft) + + if len(result) == 2: + return tuple(result) + elif len(result) == 1: + return result[0] + else: + return None + + +def _distance_tranform_arg_check(distances_out, indices_out, + return_distances, return_indices): + """Raise a RuntimeError if the arguments are invalid""" + error_msgs = [] + if (not return_distances) and (not return_indices): + error_msgs.append( + 'at least one of return_distances/return_indices must be True') + if distances_out and not return_distances: + error_msgs.append( + 'return_distances must be True if distances is supplied' + ) + if indices_out and not return_indices: + error_msgs.append('return_indices must be True if indices is supplied') + if error_msgs: + raise RuntimeError(', '.join(error_msgs)) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_nd_image.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_nd_image.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..b2e0eab625d2da3b1bab2f221530be543eb41628 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_nd_image.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_docstrings.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_docstrings.py new file mode 100644 index 0000000000000000000000000000000000000000..e6469f2c75fcee1f74dfbbe049df8ca05b074505 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_docstrings.py @@ -0,0 +1,208 @@ +"""Docstring components common to several ndimage functions.""" +from scipy._lib import doccer + +__all__ = ['docfiller'] + + +_input_doc = ( +"""input : array_like + The input array.""") +_axis_doc = ( +"""axis : int, optional + The axis of `input` along which to calculate. Default is -1.""") +_output_doc = ( +"""output : array or dtype, optional + The array in which to place the output, or the dtype of the + returned array. By default an array of the same dtype as input + will be created.""") +_size_foot_doc = ( +"""size : scalar or tuple, optional + See footprint, below. Ignored if footprint is given. +footprint : array, optional + Either `size` or `footprint` must be defined. `size` gives + the shape that is taken from the input array, at every element + position, to define the input to the filter function. + `footprint` is a boolean array that specifies (implicitly) a + shape, but also which of the elements within this shape will get + passed to the filter function. Thus ``size=(n,m)`` is equivalent + to ``footprint=np.ones((n,m))``. We adjust `size` to the number + of dimensions of the input array, so that, if the input array is + shape (10,10,10), and `size` is 2, then the actual size used is + (2,2,2). When `footprint` is given, `size` is ignored.""") +_mode_reflect_doc = ( +"""mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional + The `mode` parameter determines how the input array is extended + beyond its boundaries. Default is 'reflect'. Behavior for each valid + value is as follows: + + 'reflect' (`d c b a | a b c d | d c b a`) + The input is extended by reflecting about the edge of the last + pixel. This mode is also sometimes referred to as half-sample + symmetric. + + 'constant' (`k k k k | a b c d | k k k k`) + The input is extended by filling all values beyond the edge with + the same constant value, defined by the `cval` parameter. + + 'nearest' (`a a a a | a b c d | d d d d`) + The input is extended by replicating the last pixel. + + 'mirror' (`d c b | a b c d | c b a`) + The input is extended by reflecting about the center of the last + pixel. This mode is also sometimes referred to as whole-sample + symmetric. + + 'wrap' (`a b c d | a b c d | a b c d`) + The input is extended by wrapping around to the opposite edge. + + For consistency with the interpolation functions, the following mode + names can also be used: + + 'grid-mirror' + This is a synonym for 'reflect'. + + 'grid-constant' + This is a synonym for 'constant'. + + 'grid-wrap' + This is a synonym for 'wrap'.""") + +_mode_interp_constant_doc = ( +"""mode : {'reflect', 'grid-mirror', 'constant', 'grid-constant', 'nearest', \ +'mirror', 'grid-wrap', 'wrap'}, optional + The `mode` parameter determines how the input array is extended + beyond its boundaries. Default is 'constant'. Behavior for each valid + value is as follows (see additional plots and details on + :ref:`boundary modes `): + + 'reflect' (`d c b a | a b c d | d c b a`) + The input is extended by reflecting about the edge of the last + pixel. This mode is also sometimes referred to as half-sample + symmetric. + + 'grid-mirror' + This is a synonym for 'reflect'. + + 'constant' (`k k k k | a b c d | k k k k`) + The input is extended by filling all values beyond the edge with + the same constant value, defined by the `cval` parameter. No + interpolation is performed beyond the edges of the input. + + 'grid-constant' (`k k k k | a b c d | k k k k`) + The input is extended by filling all values beyond the edge with + the same constant value, defined by the `cval` parameter. Interpolation + occurs for samples outside the input's extent as well. + + 'nearest' (`a a a a | a b c d | d d d d`) + The input is extended by replicating the last pixel. + + 'mirror' (`d c b | a b c d | c b a`) + The input is extended by reflecting about the center of the last + pixel. This mode is also sometimes referred to as whole-sample + symmetric. + + 'grid-wrap' (`a b c d | a b c d | a b c d`) + The input is extended by wrapping around to the opposite edge. + + 'wrap' (`d b c d | a b c d | b c a b`) + The input is extended by wrapping around to the opposite edge, but in a + way such that the last point and initial point exactly overlap. In this + case it is not well defined which sample will be chosen at the point of + overlap.""") +_mode_interp_mirror_doc = ( + _mode_interp_constant_doc.replace("Default is 'constant'", + "Default is 'mirror'") +) +assert _mode_interp_mirror_doc != _mode_interp_constant_doc, \ + 'Default not replaced' + +_mode_multiple_doc = ( +"""mode : str or sequence, optional + The `mode` parameter determines how the input array is extended + when the filter overlaps a border. By passing a sequence of modes + with length equal to the number of dimensions of the input array, + different modes can be specified along each axis. Default value is + 'reflect'. The valid values and their behavior is as follows: + + 'reflect' (`d c b a | a b c d | d c b a`) + The input is extended by reflecting about the edge of the last + pixel. This mode is also sometimes referred to as half-sample + symmetric. + + 'constant' (`k k k k | a b c d | k k k k`) + The input is extended by filling all values beyond the edge with + the same constant value, defined by the `cval` parameter. + + 'nearest' (`a a a a | a b c d | d d d d`) + The input is extended by replicating the last pixel. + + 'mirror' (`d c b | a b c d | c b a`) + The input is extended by reflecting about the center of the last + pixel. This mode is also sometimes referred to as whole-sample + symmetric. + + 'wrap' (`a b c d | a b c d | a b c d`) + The input is extended by wrapping around to the opposite edge. + + For consistency with the interpolation functions, the following mode + names can also be used: + + 'grid-constant' + This is a synonym for 'constant'. + + 'grid-mirror' + This is a synonym for 'reflect'. + + 'grid-wrap' + This is a synonym for 'wrap'.""") +_cval_doc = ( +"""cval : scalar, optional + Value to fill past edges of input if `mode` is 'constant'. Default + is 0.0.""") +_origin_doc = ( +"""origin : int, optional + Controls the placement of the filter on the input array's pixels. + A value of 0 (the default) centers the filter over the pixel, with + positive values shifting the filter to the left, and negative ones + to the right.""") +_origin_multiple_doc = ( +"""origin : int or sequence, optional + Controls the placement of the filter on the input array's pixels. + A value of 0 (the default) centers the filter over the pixel, with + positive values shifting the filter to the left, and negative ones + to the right. By passing a sequence of origins with length equal to + the number of dimensions of the input array, different shifts can + be specified along each axis.""") +_extra_arguments_doc = ( +"""extra_arguments : sequence, optional + Sequence of extra positional arguments to pass to passed function.""") +_extra_keywords_doc = ( +"""extra_keywords : dict, optional + dict of extra keyword arguments to pass to passed function.""") +_prefilter_doc = ( +"""prefilter : bool, optional + Determines if the input array is prefiltered with `spline_filter` + before interpolation. The default is True, which will create a + temporary `float64` array of filtered values if `order > 1`. If + setting this to False, the output will be slightly blurred if + `order > 1`, unless the input is prefiltered, i.e. it is the result + of calling `spline_filter` on the original input.""") + +docdict = { + 'input': _input_doc, + 'axis': _axis_doc, + 'output': _output_doc, + 'size_foot': _size_foot_doc, + 'mode_interp_constant': _mode_interp_constant_doc, + 'mode_interp_mirror': _mode_interp_mirror_doc, + 'mode_reflect': _mode_reflect_doc, + 'mode_multiple': _mode_multiple_doc, + 'cval': _cval_doc, + 'origin': _origin_doc, + 'origin_multiple': _origin_multiple_doc, + 'extra_arguments': _extra_arguments_doc, + 'extra_keywords': _extra_keywords_doc, + 'prefilter': _prefilter_doc + } + +docfiller = doccer.filldoc(docdict) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_label.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_label.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..1afb18ebc1f600ee1cc7638c4629b5036144eab4 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_label.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_support.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_support.py new file mode 100644 index 0000000000000000000000000000000000000000..dadce8cf800597764f7f978f22888e4458b3fe7f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_support.py @@ -0,0 +1,119 @@ +# Copyright (C) 2003-2005 Peter J. Verveer +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# +# 2. Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials provided +# with the distribution. +# +# 3. The name of the author may not be used to endorse or promote +# products derived from this software without specific prior +# written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS +# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE +# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +from collections.abc import Iterable +import operator +import warnings +import numpy + + +def _extend_mode_to_code(mode): + """Convert an extension mode to the corresponding integer code. + """ + if mode == 'nearest': + return 0 + elif mode == 'wrap': + return 1 + elif mode in ['reflect', 'grid-mirror']: + return 2 + elif mode == 'mirror': + return 3 + elif mode == 'constant': + return 4 + elif mode == 'grid-wrap': + return 5 + elif mode == 'grid-constant': + return 6 + else: + raise RuntimeError('boundary mode not supported') + + +def _normalize_sequence(input, rank): + """If input is a scalar, create a sequence of length equal to the + rank by duplicating the input. If input is a sequence, + check if its length is equal to the length of array. + """ + is_str = isinstance(input, str) + if not is_str and isinstance(input, Iterable): + normalized = list(input) + if len(normalized) != rank: + err = "sequence argument must have length equal to input rank" + raise RuntimeError(err) + else: + normalized = [input] * rank + return normalized + + +def _get_output(output, input, shape=None, complex_output=False): + if shape is None: + shape = input.shape + if output is None: + if not complex_output: + output = numpy.zeros(shape, dtype=input.dtype.name) + else: + complex_type = numpy.promote_types(input.dtype, numpy.complex64) + output = numpy.zeros(shape, dtype=complex_type) + elif isinstance(output, (type, numpy.dtype)): + # Classes (like `np.float32`) and dtypes are interpreted as dtype + if complex_output and numpy.dtype(output).kind != 'c': + warnings.warn("promoting specified output dtype to complex", stacklevel=3) + output = numpy.promote_types(output, numpy.complex64) + output = numpy.zeros(shape, dtype=output) + elif isinstance(output, str): + output = numpy.dtype(output) + if complex_output and output.kind != 'c': + raise RuntimeError("output must have complex dtype") + elif not issubclass(output.type, numpy.number): + raise RuntimeError("output must have numeric dtype") + output = numpy.zeros(shape, dtype=output) + elif output.shape != shape: + raise RuntimeError("output shape not correct") + elif complex_output and output.dtype.kind != 'c': + raise RuntimeError("output must have complex dtype") + return output + + +def _check_axes(axes, ndim): + if axes is None: + return tuple(range(ndim)) + elif numpy.isscalar(axes): + axes = (operator.index(axes),) + elif isinstance(axes, Iterable): + for ax in axes: + axes = tuple(operator.index(ax) for ax in axes) + if ax < -ndim or ax > ndim - 1: + raise ValueError(f"specified axis: {ax} is out of range") + axes = tuple(ax % ndim if ax < 0 else ax for ax in axes) + else: + message = "axes must be an integer, iterable of integers, or None" + raise ValueError(message) + if len(tuple(set(axes))) != len(axes): + raise ValueError("axes must be unique") + return axes diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/filters.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/filters.py new file mode 100644 index 0000000000000000000000000000000000000000..e16d9d279a9585b2454c46ee09cf22143de833a6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/filters.py @@ -0,0 +1,27 @@ +# This file is not meant for public use and will be removed in SciPy v2.0.0. +# Use the `scipy.ndimage` namespace for importing the functions +# included below. + +from scipy._lib.deprecation import _sub_module_deprecation + + +__all__ = [ # noqa: F822 + 'correlate1d', 'convolve1d', 'gaussian_filter1d', + 'gaussian_filter', 'prewitt', 'sobel', 'generic_laplace', + 'laplace', 'gaussian_laplace', 'generic_gradient_magnitude', + 'gaussian_gradient_magnitude', 'correlate', 'convolve', + 'uniform_filter1d', 'uniform_filter', 'minimum_filter1d', + 'maximum_filter1d', 'minimum_filter', 'maximum_filter', + 'rank_filter', 'median_filter', 'percentile_filter', + 'generic_filter1d', 'generic_filter' +] + + +def __dir__(): + return __all__ + + +def __getattr__(name): + return _sub_module_deprecation(sub_package='ndimage', module='filters', + private_modules=['_filters'], all=__all__, + attribute=name) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/fourier.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/fourier.py new file mode 100644 index 0000000000000000000000000000000000000000..73c49bd52d9a446ce0fe25d9e15b8de68fbd46fb --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/fourier.py @@ -0,0 +1,21 @@ +# This file is not meant for public use and will be removed in SciPy v2.0.0. +# Use the `scipy.ndimage` namespace for importing the functions +# included below. + +from scipy._lib.deprecation import _sub_module_deprecation + + +__all__ = [ # noqa: F822 + 'fourier_gaussian', 'fourier_uniform', + 'fourier_ellipsoid', 'fourier_shift' +] + + +def __dir__(): + return __all__ + + +def __getattr__(name): + return _sub_module_deprecation(sub_package='ndimage', module='fourier', + private_modules=['_fourier'], all=__all__, + attribute=name) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/interpolation.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/interpolation.py new file mode 100644 index 0000000000000000000000000000000000000000..8a28816cbfad89faced7acb8a54cd6ecc4fa8ad2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/interpolation.py @@ -0,0 +1,23 @@ +# This file is not meant for public use and will be removed in SciPy v2.0.0. +# Use the `scipy.ndimage` namespace for importing the functions +# included below. + +from scipy._lib.deprecation import _sub_module_deprecation + + +__all__ = [ # noqa: F822 + 'spline_filter1d', 'spline_filter', + 'geometric_transform', 'map_coordinates', + 'affine_transform', 'shift', 'zoom', 'rotate', + 'docfiller' +] + + +def __dir__(): + return __all__ + + +def __getattr__(name): + return _sub_module_deprecation(sub_package='ndimage', module='interpolation', + private_modules=['_interpolation'], all=__all__, + attribute=name) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/measurements.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/measurements.py new file mode 100644 index 0000000000000000000000000000000000000000..22f76b01840ffb829205bd1d28a7ad1f9ac5db61 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/measurements.py @@ -0,0 +1,24 @@ +# This file is not meant for public use and will be removed in SciPy v2.0.0. +# Use the `scipy.ndimage` namespace for importing the functions +# included below. + +from scipy._lib.deprecation import _sub_module_deprecation + + +__all__ = [ # noqa: F822 + 'label', 'find_objects', 'labeled_comprehension', + 'sum', 'mean', 'variance', 'standard_deviation', + 'minimum', 'maximum', 'median', 'minimum_position', + 'maximum_position', 'extrema', 'center_of_mass', + 'histogram', 'watershed_ift', 'sum_labels' +] + + +def __dir__(): + return __all__ + + +def __getattr__(name): + return _sub_module_deprecation(sub_package='ndimage', module='measurements', + private_modules=['_measurements'], all=__all__, + attribute=name) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/morphology.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/morphology.py new file mode 100644 index 0000000000000000000000000000000000000000..e522e7df3a4b06b7e04ed8c2d0ecaff2a98b951d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/morphology.py @@ -0,0 +1,27 @@ +# This file is not meant for public use and will be removed in SciPy v2.0.0. +# Use the `scipy.ndimage` namespace for importing the functions +# included below. + +from scipy._lib.deprecation import _sub_module_deprecation + + +__all__ = [ # noqa: F822 + 'iterate_structure', 'generate_binary_structure', + 'binary_erosion', 'binary_dilation', 'binary_opening', + 'binary_closing', 'binary_hit_or_miss', 'binary_propagation', + 'binary_fill_holes', 'grey_erosion', 'grey_dilation', + 'grey_opening', 'grey_closing', 'morphological_gradient', + 'morphological_laplace', 'white_tophat', 'black_tophat', + 'distance_transform_bf', 'distance_transform_cdt', + 'distance_transform_edt' +] + + +def __dir__(): + return __all__ + + +def __getattr__(name): + return _sub_module_deprecation(sub_package='ndimage', module='morphology', + private_modules=['_morphology'], all=__all__, + attribute=name) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..8fc6581276063ca8d0e90362e1d1eee743d4ed18 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__init__.py @@ -0,0 +1,13 @@ +from __future__ import annotations +import numpy + +# list of numarray data types +integer_types: list[type] = [ + numpy.int8, numpy.uint8, numpy.int16, numpy.uint16, + numpy.int32, numpy.uint32, numpy.int64, numpy.uint64] + +float_types: list[type] = [numpy.float32, numpy.float64] + +complex_types: list[type] = [numpy.complex64, numpy.complex128] + +types: list[type] = integer_types + float_types diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7608ea15141646a0442e2712d8d4ea6b88cfb119 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_c_api.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_c_api.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cbd8a24d6f57382b8bb3f56d016fae1c5803118b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_c_api.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_filters.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_filters.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..04b546ae599d7a0326ae296e98c6f23c3bb7d91f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_filters.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_fourier.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_fourier.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f4e552339689a95ff69fdb5b9c4276e1dfe8b56b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_fourier.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_interpolation.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_interpolation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b0e9f49cd336227e4ab8c9f86f3919f1b8a4877e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_interpolation.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_measurements.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_measurements.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6a5f364bf4f2831ceb17f44e8c0c35332e53f8c8 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_measurements.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_morphology.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_morphology.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c73cd501b1070a7f4fcc26a3fc0636c0c475b3fe Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_morphology.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_ni_support.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_ni_support.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..074daa1d54234ef4684168b9fc878581dc248a2c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_ni_support.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_splines.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_splines.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b3c71e4fe241b1cf2e419bd07469bd6dbbef27ac Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_splines.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_c_api.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_c_api.py new file mode 100644 index 0000000000000000000000000000000000000000..ed52ed8477056176e1f5aacbf681b12b0153fee6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_c_api.py @@ -0,0 +1,102 @@ +import numpy as np +from numpy.testing import assert_allclose + +from scipy import ndimage +from scipy.ndimage import _ctest +from scipy.ndimage import _cytest +from scipy._lib._ccallback import LowLevelCallable + +FILTER1D_FUNCTIONS = [ + lambda filter_size: _ctest.filter1d(filter_size), + lambda filter_size: _cytest.filter1d(filter_size, with_signature=False), + lambda filter_size: LowLevelCallable( + _cytest.filter1d(filter_size, with_signature=True) + ), + lambda filter_size: LowLevelCallable.from_cython( + _cytest, "_filter1d", + _cytest.filter1d_capsule(filter_size), + ), +] + +FILTER2D_FUNCTIONS = [ + lambda weights: _ctest.filter2d(weights), + lambda weights: _cytest.filter2d(weights, with_signature=False), + lambda weights: LowLevelCallable(_cytest.filter2d(weights, with_signature=True)), + lambda weights: LowLevelCallable.from_cython(_cytest, + "_filter2d", + _cytest.filter2d_capsule(weights),), +] + +TRANSFORM_FUNCTIONS = [ + lambda shift: _ctest.transform(shift), + lambda shift: _cytest.transform(shift, with_signature=False), + lambda shift: LowLevelCallable(_cytest.transform(shift, with_signature=True)), + lambda shift: LowLevelCallable.from_cython(_cytest, + "_transform", + _cytest.transform_capsule(shift),), +] + + +def test_generic_filter(): + def filter2d(footprint_elements, weights): + return (weights*footprint_elements).sum() + + def check(j): + func = FILTER2D_FUNCTIONS[j] + + im = np.ones((20, 20)) + im[:10,:10] = 0 + footprint = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) + footprint_size = np.count_nonzero(footprint) + weights = np.ones(footprint_size)/footprint_size + + res = ndimage.generic_filter(im, func(weights), + footprint=footprint) + std = ndimage.generic_filter(im, filter2d, footprint=footprint, + extra_arguments=(weights,)) + assert_allclose(res, std, err_msg=f"#{j} failed") + + for j, func in enumerate(FILTER2D_FUNCTIONS): + check(j) + + +def test_generic_filter1d(): + def filter1d(input_line, output_line, filter_size): + for i in range(output_line.size): + output_line[i] = 0 + for j in range(filter_size): + output_line[i] += input_line[i+j] + output_line /= filter_size + + def check(j): + func = FILTER1D_FUNCTIONS[j] + + im = np.tile(np.hstack((np.zeros(10), np.ones(10))), (10, 1)) + filter_size = 3 + + res = ndimage.generic_filter1d(im, func(filter_size), + filter_size) + std = ndimage.generic_filter1d(im, filter1d, filter_size, + extra_arguments=(filter_size,)) + assert_allclose(res, std, err_msg=f"#{j} failed") + + for j, func in enumerate(FILTER1D_FUNCTIONS): + check(j) + + +def test_geometric_transform(): + def transform(output_coordinates, shift): + return output_coordinates[0] - shift, output_coordinates[1] - shift + + def check(j): + func = TRANSFORM_FUNCTIONS[j] + + im = np.arange(12).reshape(4, 3).astype(np.float64) + shift = 0.5 + + res = ndimage.geometric_transform(im, func(shift)) + std = ndimage.geometric_transform(im, transform, extra_arguments=(shift,)) + assert_allclose(res, std, err_msg=f"#{j} failed") + + for j, func in enumerate(TRANSFORM_FUNCTIONS): + check(j) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_datatypes.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_datatypes.py new file mode 100644 index 0000000000000000000000000000000000000000..cd9382a16ada38a6d3059d54ad765c2e0f74b7c1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_datatypes.py @@ -0,0 +1,66 @@ +""" Testing data types for ndimage calls +""" +import numpy as np +from numpy.testing import assert_array_almost_equal, assert_ +import pytest + +from scipy import ndimage + + +def test_map_coordinates_dts(): + # check that ndimage accepts different data types for interpolation + data = np.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + shifted_data = np.array([[0, 0, 0, 0], + [0, 4, 1, 3], + [0, 7, 6, 8]]) + idx = np.indices(data.shape) + dts = (np.uint8, np.uint16, np.uint32, np.uint64, + np.int8, np.int16, np.int32, np.int64, + np.intp, np.uintp, np.float32, np.float64) + for order in range(0, 6): + for data_dt in dts: + these_data = data.astype(data_dt) + for coord_dt in dts: + # affine mapping + mat = np.eye(2, dtype=coord_dt) + off = np.zeros((2,), dtype=coord_dt) + out = ndimage.affine_transform(these_data, mat, off) + assert_array_almost_equal(these_data, out) + # map coordinates + coords_m1 = idx.astype(coord_dt) - 1 + coords_p10 = idx.astype(coord_dt) + 10 + out = ndimage.map_coordinates(these_data, coords_m1, order=order) + assert_array_almost_equal(out, shifted_data) + # check constant fill works + out = ndimage.map_coordinates(these_data, coords_p10, order=order) + assert_array_almost_equal(out, np.zeros((3,4))) + # check shift and zoom + out = ndimage.shift(these_data, 1) + assert_array_almost_equal(out, shifted_data) + out = ndimage.zoom(these_data, 1) + assert_array_almost_equal(these_data, out) + + +@pytest.mark.xfail(True, reason="Broken on many platforms") +def test_uint64_max(): + # Test interpolation respects uint64 max. Reported to fail at least on + # win32 (due to the 32 bit visual C compiler using signed int64 when + # converting between uint64 to double) and Debian on s390x. + # Interpolation is always done in double precision floating point, so + # we use the largest uint64 value for which int(float(big)) still fits + # in a uint64. + # This test was last enabled on macOS only, and there it started failing + # on arm64 as well (see gh-19117). + big = 2**64 - 1025 + arr = np.array([big, big, big], dtype=np.uint64) + # Tests geometric transform (map_coordinates, affine_transform) + inds = np.indices(arr.shape) - 0.1 + x = ndimage.map_coordinates(arr, inds) + assert_(x[1] == int(float(big))) + assert_(x[2] == int(float(big))) + # Tests zoom / shift + x = ndimage.shift(arr, 0.1) + assert_(x[1] == int(float(big))) + assert_(x[2] == int(float(big))) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_filters.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_filters.py new file mode 100644 index 0000000000000000000000000000000000000000..6401a69f8627fa6b95c71f3711dfd064e74264f2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_filters.py @@ -0,0 +1,2189 @@ +''' Some tests for filters ''' +import functools +import itertools +import math +import numpy + +from numpy.testing import (assert_equal, assert_allclose, + assert_array_almost_equal, + assert_array_equal, assert_almost_equal, + suppress_warnings, assert_) +import pytest +from pytest import raises as assert_raises + +from scipy import ndimage +from scipy.ndimage._filters import _gaussian_kernel1d + +from . import types, float_types, complex_types + + +def sumsq(a, b): + return math.sqrt(((a - b)**2).sum()) + + +def _complex_correlate(array, kernel, real_dtype, convolve=False, + mode="reflect", cval=0, ): + """Utility to perform a reference complex-valued convolutions. + + When convolve==False, correlation is performed instead + """ + array = numpy.asarray(array) + kernel = numpy.asarray(kernel) + complex_array = array.dtype.kind == 'c' + complex_kernel = kernel.dtype.kind == 'c' + if array.ndim == 1: + func = ndimage.convolve1d if convolve else ndimage.correlate1d + else: + func = ndimage.convolve if convolve else ndimage.correlate + if not convolve: + kernel = kernel.conj() + if complex_array and complex_kernel: + # use: real(cval) for array.real component + # imag(cval) for array.imag component + output = ( + func(array.real, kernel.real, output=real_dtype, + mode=mode, cval=numpy.real(cval)) - + func(array.imag, kernel.imag, output=real_dtype, + mode=mode, cval=numpy.imag(cval)) + + 1j * func(array.imag, kernel.real, output=real_dtype, + mode=mode, cval=numpy.imag(cval)) + + 1j * func(array.real, kernel.imag, output=real_dtype, + mode=mode, cval=numpy.real(cval)) + ) + elif complex_array: + output = ( + func(array.real, kernel, output=real_dtype, mode=mode, + cval=numpy.real(cval)) + + 1j * func(array.imag, kernel, output=real_dtype, mode=mode, + cval=numpy.imag(cval)) + ) + elif complex_kernel: + # real array so cval is real too + output = ( + func(array, kernel.real, output=real_dtype, mode=mode, cval=cval) + + 1j * func(array, kernel.imag, output=real_dtype, mode=mode, + cval=cval) + ) + return output + + +def _cases_axes_tuple_length_mismatch(): + # Generate combinations of filter function, valid kwargs, and + # keyword-value pairs for which the value will become with mismatched + # (invalid) size + filter_func = ndimage.gaussian_filter + kwargs = dict(radius=3, mode='constant', sigma=1.0, order=0) + for key, val in kwargs.items(): + yield filter_func, kwargs, key, val + + filter_funcs = [ndimage.uniform_filter, ndimage.minimum_filter, + ndimage.maximum_filter] + kwargs = dict(size=3, mode='constant', origin=0) + for filter_func in filter_funcs: + for key, val in kwargs.items(): + yield filter_func, kwargs, key, val + + +class TestNdimageFilters: + + def _validate_complex(self, array, kernel, type2, mode='reflect', cval=0): + # utility for validating complex-valued correlations + real_dtype = numpy.asarray([], dtype=type2).real.dtype + expected = _complex_correlate( + array, kernel, real_dtype, convolve=False, mode=mode, cval=cval + ) + + if array.ndim == 1: + correlate = functools.partial(ndimage.correlate1d, axis=-1, + mode=mode, cval=cval) + convolve = functools.partial(ndimage.convolve1d, axis=-1, + mode=mode, cval=cval) + else: + correlate = functools.partial(ndimage.correlate, mode=mode, + cval=cval) + convolve = functools.partial(ndimage.convolve, mode=mode, + cval=cval) + + # test correlate output dtype + output = correlate(array, kernel, output=type2) + assert_array_almost_equal(expected, output) + assert_equal(output.dtype.type, type2) + + # test correlate with pre-allocated output + output = numpy.zeros_like(array, dtype=type2) + correlate(array, kernel, output=output) + assert_array_almost_equal(expected, output) + + # test convolve output dtype + output = convolve(array, kernel, output=type2) + expected = _complex_correlate( + array, kernel, real_dtype, convolve=True, mode=mode, cval=cval, + ) + assert_array_almost_equal(expected, output) + assert_equal(output.dtype.type, type2) + + # convolve with pre-allocated output + convolve(array, kernel, output=output) + assert_array_almost_equal(expected, output) + assert_equal(output.dtype.type, type2) + + # warns if the output is not a complex dtype + with pytest.warns(UserWarning, + match="promoting specified output dtype to complex"): + correlate(array, kernel, output=real_dtype) + + with pytest.warns(UserWarning, + match="promoting specified output dtype to complex"): + convolve(array, kernel, output=real_dtype) + + # raises if output array is provided, but is not complex-valued + output_real = numpy.zeros_like(array, dtype=real_dtype) + with assert_raises(RuntimeError): + correlate(array, kernel, output=output_real) + + with assert_raises(RuntimeError): + convolve(array, kernel, output=output_real) + + def test_correlate01(self): + array = numpy.array([1, 2]) + weights = numpy.array([2]) + expected = [2, 4] + + output = ndimage.correlate(array, weights) + assert_array_almost_equal(output, expected) + + output = ndimage.convolve(array, weights) + assert_array_almost_equal(output, expected) + + output = ndimage.correlate1d(array, weights) + assert_array_almost_equal(output, expected) + + output = ndimage.convolve1d(array, weights) + assert_array_almost_equal(output, expected) + + def test_correlate01_overlap(self): + array = numpy.arange(256).reshape(16, 16) + weights = numpy.array([2]) + expected = 2 * array + + ndimage.correlate1d(array, weights, output=array) + assert_array_almost_equal(array, expected) + + def test_correlate02(self): + array = numpy.array([1, 2, 3]) + kernel = numpy.array([1]) + + output = ndimage.correlate(array, kernel) + assert_array_almost_equal(array, output) + + output = ndimage.convolve(array, kernel) + assert_array_almost_equal(array, output) + + output = ndimage.correlate1d(array, kernel) + assert_array_almost_equal(array, output) + + output = ndimage.convolve1d(array, kernel) + assert_array_almost_equal(array, output) + + def test_correlate03(self): + array = numpy.array([1]) + weights = numpy.array([1, 1]) + expected = [2] + + output = ndimage.correlate(array, weights) + assert_array_almost_equal(output, expected) + + output = ndimage.convolve(array, weights) + assert_array_almost_equal(output, expected) + + output = ndimage.correlate1d(array, weights) + assert_array_almost_equal(output, expected) + + output = ndimage.convolve1d(array, weights) + assert_array_almost_equal(output, expected) + + def test_correlate04(self): + array = numpy.array([1, 2]) + tcor = [2, 3] + tcov = [3, 4] + weights = numpy.array([1, 1]) + output = ndimage.correlate(array, weights) + assert_array_almost_equal(output, tcor) + output = ndimage.convolve(array, weights) + assert_array_almost_equal(output, tcov) + output = ndimage.correlate1d(array, weights) + assert_array_almost_equal(output, tcor) + output = ndimage.convolve1d(array, weights) + assert_array_almost_equal(output, tcov) + + def test_correlate05(self): + array = numpy.array([1, 2, 3]) + tcor = [2, 3, 5] + tcov = [3, 5, 6] + kernel = numpy.array([1, 1]) + output = ndimage.correlate(array, kernel) + assert_array_almost_equal(tcor, output) + output = ndimage.convolve(array, kernel) + assert_array_almost_equal(tcov, output) + output = ndimage.correlate1d(array, kernel) + assert_array_almost_equal(tcor, output) + output = ndimage.convolve1d(array, kernel) + assert_array_almost_equal(tcov, output) + + def test_correlate06(self): + array = numpy.array([1, 2, 3]) + tcor = [9, 14, 17] + tcov = [7, 10, 15] + weights = numpy.array([1, 2, 3]) + output = ndimage.correlate(array, weights) + assert_array_almost_equal(output, tcor) + output = ndimage.convolve(array, weights) + assert_array_almost_equal(output, tcov) + output = ndimage.correlate1d(array, weights) + assert_array_almost_equal(output, tcor) + output = ndimage.convolve1d(array, weights) + assert_array_almost_equal(output, tcov) + + def test_correlate07(self): + array = numpy.array([1, 2, 3]) + expected = [5, 8, 11] + weights = numpy.array([1, 2, 1]) + output = ndimage.correlate(array, weights) + assert_array_almost_equal(output, expected) + output = ndimage.convolve(array, weights) + assert_array_almost_equal(output, expected) + output = ndimage.correlate1d(array, weights) + assert_array_almost_equal(output, expected) + output = ndimage.convolve1d(array, weights) + assert_array_almost_equal(output, expected) + + def test_correlate08(self): + array = numpy.array([1, 2, 3]) + tcor = [1, 2, 5] + tcov = [3, 6, 7] + weights = numpy.array([1, 2, -1]) + output = ndimage.correlate(array, weights) + assert_array_almost_equal(output, tcor) + output = ndimage.convolve(array, weights) + assert_array_almost_equal(output, tcov) + output = ndimage.correlate1d(array, weights) + assert_array_almost_equal(output, tcor) + output = ndimage.convolve1d(array, weights) + assert_array_almost_equal(output, tcov) + + def test_correlate09(self): + array = [] + kernel = numpy.array([1, 1]) + output = ndimage.correlate(array, kernel) + assert_array_almost_equal(array, output) + output = ndimage.convolve(array, kernel) + assert_array_almost_equal(array, output) + output = ndimage.correlate1d(array, kernel) + assert_array_almost_equal(array, output) + output = ndimage.convolve1d(array, kernel) + assert_array_almost_equal(array, output) + + def test_correlate10(self): + array = [[]] + kernel = numpy.array([[1, 1]]) + output = ndimage.correlate(array, kernel) + assert_array_almost_equal(array, output) + output = ndimage.convolve(array, kernel) + assert_array_almost_equal(array, output) + + def test_correlate11(self): + array = numpy.array([[1, 2, 3], + [4, 5, 6]]) + kernel = numpy.array([[1, 1], + [1, 1]]) + output = ndimage.correlate(array, kernel) + assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output) + output = ndimage.convolve(array, kernel) + assert_array_almost_equal([[12, 16, 18], [18, 22, 24]], output) + + def test_correlate12(self): + array = numpy.array([[1, 2, 3], + [4, 5, 6]]) + kernel = numpy.array([[1, 0], + [0, 1]]) + output = ndimage.correlate(array, kernel) + assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output) + output = ndimage.convolve(array, kernel) + assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output) + + @pytest.mark.parametrize('dtype_array', types) + @pytest.mark.parametrize('dtype_kernel', types) + def test_correlate13(self, dtype_array, dtype_kernel): + kernel = numpy.array([[1, 0], + [0, 1]]) + array = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype_array) + output = ndimage.correlate(array, kernel, output=dtype_kernel) + assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output) + assert_equal(output.dtype.type, dtype_kernel) + + output = ndimage.convolve(array, kernel, + output=dtype_kernel) + assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output) + assert_equal(output.dtype.type, dtype_kernel) + + @pytest.mark.parametrize('dtype_array', types) + @pytest.mark.parametrize('dtype_output', types) + def test_correlate14(self, dtype_array, dtype_output): + kernel = numpy.array([[1, 0], + [0, 1]]) + array = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype_array) + output = numpy.zeros(array.shape, dtype_output) + ndimage.correlate(array, kernel, output=output) + assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output) + assert_equal(output.dtype.type, dtype_output) + + ndimage.convolve(array, kernel, output=output) + assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output) + assert_equal(output.dtype.type, dtype_output) + + @pytest.mark.parametrize('dtype_array', types) + def test_correlate15(self, dtype_array): + kernel = numpy.array([[1, 0], + [0, 1]]) + array = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype_array) + output = ndimage.correlate(array, kernel, output=numpy.float32) + assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output) + assert_equal(output.dtype.type, numpy.float32) + + output = ndimage.convolve(array, kernel, output=numpy.float32) + assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output) + assert_equal(output.dtype.type, numpy.float32) + + @pytest.mark.parametrize('dtype_array', types) + def test_correlate16(self, dtype_array): + kernel = numpy.array([[0.5, 0], + [0, 0.5]]) + array = numpy.array([[1, 2, 3], [4, 5, 6]], dtype_array) + output = ndimage.correlate(array, kernel, output=numpy.float32) + assert_array_almost_equal([[1, 1.5, 2.5], [2.5, 3, 4]], output) + assert_equal(output.dtype.type, numpy.float32) + + output = ndimage.convolve(array, kernel, output=numpy.float32) + assert_array_almost_equal([[3, 4, 4.5], [4.5, 5.5, 6]], output) + assert_equal(output.dtype.type, numpy.float32) + + def test_correlate17(self): + array = numpy.array([1, 2, 3]) + tcor = [3, 5, 6] + tcov = [2, 3, 5] + kernel = numpy.array([1, 1]) + output = ndimage.correlate(array, kernel, origin=-1) + assert_array_almost_equal(tcor, output) + output = ndimage.convolve(array, kernel, origin=-1) + assert_array_almost_equal(tcov, output) + output = ndimage.correlate1d(array, kernel, origin=-1) + assert_array_almost_equal(tcor, output) + output = ndimage.convolve1d(array, kernel, origin=-1) + assert_array_almost_equal(tcov, output) + + @pytest.mark.parametrize('dtype_array', types) + def test_correlate18(self, dtype_array): + kernel = numpy.array([[1, 0], + [0, 1]]) + array = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype_array) + output = ndimage.correlate(array, kernel, + output=numpy.float32, + mode='nearest', origin=-1) + assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output) + assert_equal(output.dtype.type, numpy.float32) + + output = ndimage.convolve(array, kernel, + output=numpy.float32, + mode='nearest', origin=-1) + assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output) + assert_equal(output.dtype.type, numpy.float32) + + def test_correlate_mode_sequence(self): + kernel = numpy.ones((2, 2)) + array = numpy.ones((3, 3), float) + with assert_raises(RuntimeError): + ndimage.correlate(array, kernel, mode=['nearest', 'reflect']) + with assert_raises(RuntimeError): + ndimage.convolve(array, kernel, mode=['nearest', 'reflect']) + + @pytest.mark.parametrize('dtype_array', types) + def test_correlate19(self, dtype_array): + kernel = numpy.array([[1, 0], + [0, 1]]) + array = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype_array) + output = ndimage.correlate(array, kernel, + output=numpy.float32, + mode='nearest', origin=[-1, 0]) + assert_array_almost_equal([[5, 6, 8], [8, 9, 11]], output) + assert_equal(output.dtype.type, numpy.float32) + + output = ndimage.convolve(array, kernel, + output=numpy.float32, + mode='nearest', origin=[-1, 0]) + assert_array_almost_equal([[3, 5, 6], [6, 8, 9]], output) + assert_equal(output.dtype.type, numpy.float32) + + @pytest.mark.parametrize('dtype_array', types) + @pytest.mark.parametrize('dtype_output', types) + def test_correlate20(self, dtype_array, dtype_output): + weights = numpy.array([1, 2, 1]) + expected = [[5, 10, 15], [7, 14, 21]] + array = numpy.array([[1, 2, 3], + [2, 4, 6]], dtype_array) + output = numpy.zeros((2, 3), dtype_output) + ndimage.correlate1d(array, weights, axis=0, output=output) + assert_array_almost_equal(output, expected) + ndimage.convolve1d(array, weights, axis=0, output=output) + assert_array_almost_equal(output, expected) + + def test_correlate21(self): + array = numpy.array([[1, 2, 3], + [2, 4, 6]]) + expected = [[5, 10, 15], [7, 14, 21]] + weights = numpy.array([1, 2, 1]) + output = ndimage.correlate1d(array, weights, axis=0) + assert_array_almost_equal(output, expected) + output = ndimage.convolve1d(array, weights, axis=0) + assert_array_almost_equal(output, expected) + + @pytest.mark.parametrize('dtype_array', types) + @pytest.mark.parametrize('dtype_output', types) + def test_correlate22(self, dtype_array, dtype_output): + weights = numpy.array([1, 2, 1]) + expected = [[6, 12, 18], [6, 12, 18]] + array = numpy.array([[1, 2, 3], + [2, 4, 6]], dtype_array) + output = numpy.zeros((2, 3), dtype_output) + ndimage.correlate1d(array, weights, axis=0, + mode='wrap', output=output) + assert_array_almost_equal(output, expected) + ndimage.convolve1d(array, weights, axis=0, + mode='wrap', output=output) + assert_array_almost_equal(output, expected) + + @pytest.mark.parametrize('dtype_array', types) + @pytest.mark.parametrize('dtype_output', types) + def test_correlate23(self, dtype_array, dtype_output): + weights = numpy.array([1, 2, 1]) + expected = [[5, 10, 15], [7, 14, 21]] + array = numpy.array([[1, 2, 3], + [2, 4, 6]], dtype_array) + output = numpy.zeros((2, 3), dtype_output) + ndimage.correlate1d(array, weights, axis=0, + mode='nearest', output=output) + assert_array_almost_equal(output, expected) + ndimage.convolve1d(array, weights, axis=0, + mode='nearest', output=output) + assert_array_almost_equal(output, expected) + + @pytest.mark.parametrize('dtype_array', types) + @pytest.mark.parametrize('dtype_output', types) + def test_correlate24(self, dtype_array, dtype_output): + weights = numpy.array([1, 2, 1]) + tcor = [[7, 14, 21], [8, 16, 24]] + tcov = [[4, 8, 12], [5, 10, 15]] + array = numpy.array([[1, 2, 3], + [2, 4, 6]], dtype_array) + output = numpy.zeros((2, 3), dtype_output) + ndimage.correlate1d(array, weights, axis=0, + mode='nearest', output=output, origin=-1) + assert_array_almost_equal(output, tcor) + ndimage.convolve1d(array, weights, axis=0, + mode='nearest', output=output, origin=-1) + assert_array_almost_equal(output, tcov) + + @pytest.mark.parametrize('dtype_array', types) + @pytest.mark.parametrize('dtype_output', types) + def test_correlate25(self, dtype_array, dtype_output): + weights = numpy.array([1, 2, 1]) + tcor = [[4, 8, 12], [5, 10, 15]] + tcov = [[7, 14, 21], [8, 16, 24]] + array = numpy.array([[1, 2, 3], + [2, 4, 6]], dtype_array) + output = numpy.zeros((2, 3), dtype_output) + ndimage.correlate1d(array, weights, axis=0, + mode='nearest', output=output, origin=1) + assert_array_almost_equal(output, tcor) + ndimage.convolve1d(array, weights, axis=0, + mode='nearest', output=output, origin=1) + assert_array_almost_equal(output, tcov) + + def test_correlate26(self): + # test fix for gh-11661 (mirror extension of a length 1 signal) + y = ndimage.convolve1d(numpy.ones(1), numpy.ones(5), mode='mirror') + assert_array_equal(y, numpy.array(5.)) + + y = ndimage.correlate1d(numpy.ones(1), numpy.ones(5), mode='mirror') + assert_array_equal(y, numpy.array(5.)) + + @pytest.mark.parametrize('dtype_kernel', complex_types) + @pytest.mark.parametrize('dtype_input', types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_correlate_complex_kernel(self, dtype_input, dtype_kernel, + dtype_output): + kernel = numpy.array([[1, 0], + [0, 1 + 1j]], dtype_kernel) + array = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype_input) + self._validate_complex(array, kernel, dtype_output) + + @pytest.mark.parametrize('dtype_kernel', complex_types) + @pytest.mark.parametrize('dtype_input', types) + @pytest.mark.parametrize('dtype_output', complex_types) + @pytest.mark.parametrize('mode', ['grid-constant', 'constant']) + def test_correlate_complex_kernel_cval(self, dtype_input, dtype_kernel, + dtype_output, mode): + # test use of non-zero cval with complex inputs + # also verifies that mode 'grid-constant' does not segfault + kernel = numpy.array([[1, 0], + [0, 1 + 1j]], dtype_kernel) + array = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype_input) + self._validate_complex(array, kernel, dtype_output, mode=mode, + cval=5.0) + + @pytest.mark.parametrize('dtype_kernel', complex_types) + @pytest.mark.parametrize('dtype_input', types) + def test_correlate_complex_kernel_invalid_cval(self, dtype_input, + dtype_kernel): + # cannot give complex cval with a real image + kernel = numpy.array([[1, 0], + [0, 1 + 1j]], dtype_kernel) + array = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype_input) + for func in [ndimage.convolve, ndimage.correlate, ndimage.convolve1d, + ndimage.correlate1d]: + with pytest.raises(ValueError): + func(array, kernel, mode='constant', cval=5.0 + 1.0j, + output=numpy.complex64) + + @pytest.mark.parametrize('dtype_kernel', complex_types) + @pytest.mark.parametrize('dtype_input', types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_correlate1d_complex_kernel(self, dtype_input, dtype_kernel, + dtype_output): + kernel = numpy.array([1, 1 + 1j], dtype_kernel) + array = numpy.array([1, 2, 3, 4, 5, 6], dtype_input) + self._validate_complex(array, kernel, dtype_output) + + @pytest.mark.parametrize('dtype_kernel', complex_types) + @pytest.mark.parametrize('dtype_input', types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_correlate1d_complex_kernel_cval(self, dtype_input, dtype_kernel, + dtype_output): + kernel = numpy.array([1, 1 + 1j], dtype_kernel) + array = numpy.array([1, 2, 3, 4, 5, 6], dtype_input) + self._validate_complex(array, kernel, dtype_output, mode='constant', + cval=5.0) + + @pytest.mark.parametrize('dtype_kernel', types) + @pytest.mark.parametrize('dtype_input', complex_types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_correlate_complex_input(self, dtype_input, dtype_kernel, + dtype_output): + kernel = numpy.array([[1, 0], + [0, 1]], dtype_kernel) + array = numpy.array([[1, 2j, 3], + [1 + 4j, 5, 6j]], dtype_input) + self._validate_complex(array, kernel, dtype_output) + + @pytest.mark.parametrize('dtype_kernel', types) + @pytest.mark.parametrize('dtype_input', complex_types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_correlate1d_complex_input(self, dtype_input, dtype_kernel, + dtype_output): + kernel = numpy.array([1, 0, 1], dtype_kernel) + array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype_input) + self._validate_complex(array, kernel, dtype_output) + + @pytest.mark.parametrize('dtype_kernel', types) + @pytest.mark.parametrize('dtype_input', complex_types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_correlate1d_complex_input_cval(self, dtype_input, dtype_kernel, + dtype_output): + kernel = numpy.array([1, 0, 1], dtype_kernel) + array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype_input) + self._validate_complex(array, kernel, dtype_output, mode='constant', + cval=5 - 3j) + + @pytest.mark.parametrize('dtype', complex_types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_correlate_complex_input_and_kernel(self, dtype, dtype_output): + kernel = numpy.array([[1, 0], + [0, 1 + 1j]], dtype) + array = numpy.array([[1, 2j, 3], + [1 + 4j, 5, 6j]], dtype) + self._validate_complex(array, kernel, dtype_output) + + @pytest.mark.parametrize('dtype', complex_types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_correlate_complex_input_and_kernel_cval(self, dtype, + dtype_output): + kernel = numpy.array([[1, 0], + [0, 1 + 1j]], dtype) + array = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype) + self._validate_complex(array, kernel, dtype_output, mode='constant', + cval=5.0 + 2.0j) + + @pytest.mark.parametrize('dtype', complex_types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_correlate1d_complex_input_and_kernel(self, dtype, dtype_output): + kernel = numpy.array([1, 1 + 1j], dtype) + array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype) + self._validate_complex(array, kernel, dtype_output) + + @pytest.mark.parametrize('dtype', complex_types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_correlate1d_complex_input_and_kernel_cval(self, dtype, + dtype_output): + kernel = numpy.array([1, 1 + 1j], dtype) + array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype) + self._validate_complex(array, kernel, dtype_output, mode='constant', + cval=5.0 + 2.0j) + + def test_gauss01(self): + input = numpy.array([[1, 2, 3], + [2, 4, 6]], numpy.float32) + output = ndimage.gaussian_filter(input, 0) + assert_array_almost_equal(output, input) + + def test_gauss02(self): + input = numpy.array([[1, 2, 3], + [2, 4, 6]], numpy.float32) + output = ndimage.gaussian_filter(input, 1.0) + assert_equal(input.dtype, output.dtype) + assert_equal(input.shape, output.shape) + + def test_gauss03(self): + # single precision data + input = numpy.arange(100 * 100).astype(numpy.float32) + input.shape = (100, 100) + output = ndimage.gaussian_filter(input, [1.0, 1.0]) + + assert_equal(input.dtype, output.dtype) + assert_equal(input.shape, output.shape) + + # input.sum() is 49995000.0. With single precision floats, we can't + # expect more than 8 digits of accuracy, so use decimal=0 in this test. + assert_almost_equal(output.sum(dtype='d'), input.sum(dtype='d'), + decimal=0) + assert_(sumsq(input, output) > 1.0) + + def test_gauss04(self): + input = numpy.arange(100 * 100).astype(numpy.float32) + input.shape = (100, 100) + otype = numpy.float64 + output = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype) + assert_equal(output.dtype.type, numpy.float64) + assert_equal(input.shape, output.shape) + assert_(sumsq(input, output) > 1.0) + + def test_gauss05(self): + input = numpy.arange(100 * 100).astype(numpy.float32) + input.shape = (100, 100) + otype = numpy.float64 + output = ndimage.gaussian_filter(input, [1.0, 1.0], + order=1, output=otype) + assert_equal(output.dtype.type, numpy.float64) + assert_equal(input.shape, output.shape) + assert_(sumsq(input, output) > 1.0) + + def test_gauss06(self): + input = numpy.arange(100 * 100).astype(numpy.float32) + input.shape = (100, 100) + otype = numpy.float64 + output1 = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype) + output2 = ndimage.gaussian_filter(input, 1.0, output=otype) + assert_array_almost_equal(output1, output2) + + def test_gauss_memory_overlap(self): + input = numpy.arange(100 * 100).astype(numpy.float32) + input.shape = (100, 100) + output1 = ndimage.gaussian_filter(input, 1.0) + ndimage.gaussian_filter(input, 1.0, output=input) + assert_array_almost_equal(output1, input) + + @pytest.mark.parametrize(('filter_func', 'extra_args', 'size0', 'size'), + [(ndimage.gaussian_filter, (), 0, 1.0), + (ndimage.uniform_filter, (), 1, 3), + (ndimage.minimum_filter, (), 1, 3), + (ndimage.maximum_filter, (), 1, 3), + (ndimage.median_filter, (), 1, 3), + (ndimage.rank_filter, (1,), 1, 3), + (ndimage.percentile_filter, (40,), 1, 3)]) + @pytest.mark.parametrize( + 'axes', + tuple(itertools.combinations(range(-3, 3), 1)) + + tuple(itertools.combinations(range(-3, 3), 2)) + + ((0, 1, 2),)) + def test_filter_axes(self, filter_func, extra_args, size0, size, axes): + # Note: `size` is called `sigma` in `gaussian_filter` + array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12) + axes = numpy.array(axes) + + if len(set(axes % array.ndim)) != len(axes): + # parametrized cases with duplicate axes raise an error + with pytest.raises(ValueError, match="axes must be unique"): + filter_func(array, *extra_args, size, axes=axes) + return + output = filter_func(array, *extra_args, size, axes=axes) + + # result should be equivalent to sigma=0.0/size=1 on unfiltered axes + all_sizes = (size if ax in (axes % array.ndim) else size0 + for ax in range(array.ndim)) + expected = filter_func(array, *extra_args, all_sizes) + assert_allclose(output, expected) + + kwargs_gauss = dict(radius=[4, 2, 3], order=[0, 1, 2], + mode=['reflect', 'nearest', 'constant']) + kwargs_other = dict(origin=(-1, 0, 1), + mode=['reflect', 'nearest', 'constant']) + kwargs_rank = dict(origin=(-1, 0, 1)) + + @pytest.mark.parametrize("filter_func, size0, size, kwargs", + [(ndimage.gaussian_filter, 0, 1.0, kwargs_gauss), + (ndimage.uniform_filter, 1, 3, kwargs_other), + (ndimage.maximum_filter, 1, 3, kwargs_other), + (ndimage.minimum_filter, 1, 3, kwargs_other), + (ndimage.median_filter, 1, 3, kwargs_rank), + (ndimage.rank_filter, 1, 3, kwargs_rank), + (ndimage.percentile_filter, 1, 3, kwargs_rank)]) + @pytest.mark.parametrize('axes', itertools.combinations(range(-3, 3), 2)) + def test_filter_axes_kwargs(self, filter_func, size0, size, kwargs, axes): + array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12) + + kwargs = {key: numpy.array(val) for key, val in kwargs.items()} + axes = numpy.array(axes) + n_axes = axes.size + + if filter_func == ndimage.rank_filter: + args = (2,) # (rank,) + elif filter_func == ndimage.percentile_filter: + args = (30,) # (percentile,) + else: + args = () + + # form kwargs that specify only the axes in `axes` + reduced_kwargs = {key: val[axes] for key, val in kwargs.items()} + if len(set(axes % array.ndim)) != len(axes): + # parametrized cases with duplicate axes raise an error + with pytest.raises(ValueError, match="axes must be unique"): + filter_func(array, *args, [size]*n_axes, axes=axes, + **reduced_kwargs) + return + + output = filter_func(array, *args, [size]*n_axes, axes=axes, + **reduced_kwargs) + + # result should be equivalent to sigma=0.0/size=1 on unfiltered axes + size_3d = numpy.full(array.ndim, fill_value=size0) + size_3d[axes] = size + if 'origin' in kwargs: + # origin should be zero on the axis that has size 0 + origin = numpy.array([0, 0, 0]) + origin[axes] = reduced_kwargs['origin'] + kwargs['origin'] = origin + expected = filter_func(array, *args, size_3d, **kwargs) + assert_allclose(output, expected) + + @pytest.mark.parametrize( + 'filter_func, args', + [(ndimage.gaussian_filter, (1.0,)), # args = (sigma,) + (ndimage.uniform_filter, (3,)), # args = (size,) + (ndimage.minimum_filter, (3,)), # args = (size,) + (ndimage.maximum_filter, (3,)), # args = (size,) + (ndimage.median_filter, (3,)), # args = (size,) + (ndimage.rank_filter, (2, 3)), # args = (rank, size) + (ndimage.percentile_filter, (30, 3))]) # args = (percentile, size) + @pytest.mark.parametrize( + 'axes', [(1.5,), (0, 1, 2, 3), (3,), (-4,)] + ) + def test_filter_invalid_axes(self, filter_func, args, axes): + array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12) + if any(isinstance(ax, float) for ax in axes): + error_class = TypeError + match = "cannot be interpreted as an integer" + else: + error_class = ValueError + match = "out of range" + with pytest.raises(error_class, match=match): + filter_func(array, *args, axes=axes) + + @pytest.mark.parametrize( + 'filter_func, kwargs', + [(ndimage.minimum_filter, {}), + (ndimage.maximum_filter, {}), + (ndimage.median_filter, {}), + (ndimage.rank_filter, dict(rank=3)), + (ndimage.percentile_filter, dict(percentile=30))]) + @pytest.mark.parametrize( + 'axes', [(0, ), (1, 2), (0, 1, 2)] + ) + @pytest.mark.parametrize('separable_footprint', [False, True]) + def test_filter_invalid_footprint_ndim(self, filter_func, kwargs, axes, + separable_footprint): + array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12) + # create a footprint with one too many dimensions + footprint = numpy.ones((3,) * (len(axes) + 1)) + if not separable_footprint: + footprint[(0,) * footprint.ndim] = 0 + if (filter_func in [ndimage.minimum_filter, ndimage.maximum_filter] + and separable_footprint): + match = "sequence argument must have length equal to input rank" + else: + match = "footprint array has incorrect shape" + with pytest.raises(RuntimeError, match=match): + filter_func(array, **kwargs, footprint=footprint, axes=axes) + + @pytest.mark.parametrize('n_mismatch', [1, 3]) + @pytest.mark.parametrize('filter_func, kwargs, key, val', + _cases_axes_tuple_length_mismatch()) + def test_filter_tuple_length_mismatch(self, n_mismatch, filter_func, + kwargs, key, val): + # Test for the intended RuntimeError when a kwargs has an invalid size + array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12) + kwargs = dict(**kwargs, axes=(0, 1)) + kwargs[key] = (val,) * n_mismatch + err_msg = "sequence argument must have length equal to input rank" + with pytest.raises(RuntimeError, match=err_msg): + filter_func(array, **kwargs) + + @pytest.mark.parametrize('dtype', types + complex_types) + def test_prewitt01(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0) + t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 1) + output = ndimage.prewitt(array, 0) + assert_array_almost_equal(t, output) + + @pytest.mark.parametrize('dtype', types + complex_types) + def test_prewitt02(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0) + t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 1) + output = numpy.zeros(array.shape, dtype) + ndimage.prewitt(array, 0, output) + assert_array_almost_equal(t, output) + + @pytest.mark.parametrize('dtype', types + complex_types) + def test_prewitt03(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 1) + t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 0) + output = ndimage.prewitt(array, 1) + assert_array_almost_equal(t, output) + + @pytest.mark.parametrize('dtype', types + complex_types) + def test_prewitt04(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + t = ndimage.prewitt(array, -1) + output = ndimage.prewitt(array, 1) + assert_array_almost_equal(t, output) + + @pytest.mark.parametrize('dtype', types + complex_types) + def test_sobel01(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0) + t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 1) + output = ndimage.sobel(array, 0) + assert_array_almost_equal(t, output) + + @pytest.mark.parametrize('dtype', types + complex_types) + def test_sobel02(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0) + t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 1) + output = numpy.zeros(array.shape, dtype) + ndimage.sobel(array, 0, output) + assert_array_almost_equal(t, output) + + @pytest.mark.parametrize('dtype', types + complex_types) + def test_sobel03(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 1) + t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 0) + output = numpy.zeros(array.shape, dtype) + output = ndimage.sobel(array, 1) + assert_array_almost_equal(t, output) + + @pytest.mark.parametrize('dtype', types + complex_types) + def test_sobel04(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + t = ndimage.sobel(array, -1) + output = ndimage.sobel(array, 1) + assert_array_almost_equal(t, output) + + @pytest.mark.parametrize('dtype', + [numpy.int32, numpy.float32, numpy.float64, + numpy.complex64, numpy.complex128]) + def test_laplace01(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) * 100 + tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0) + tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1) + output = ndimage.laplace(array) + assert_array_almost_equal(tmp1 + tmp2, output) + + @pytest.mark.parametrize('dtype', + [numpy.int32, numpy.float32, numpy.float64, + numpy.complex64, numpy.complex128]) + def test_laplace02(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) * 100 + tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0) + tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1) + output = numpy.zeros(array.shape, dtype) + ndimage.laplace(array, output=output) + assert_array_almost_equal(tmp1 + tmp2, output) + + @pytest.mark.parametrize('dtype', + [numpy.int32, numpy.float32, numpy.float64, + numpy.complex64, numpy.complex128]) + def test_gaussian_laplace01(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) * 100 + tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0]) + tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2]) + output = ndimage.gaussian_laplace(array, 1.0) + assert_array_almost_equal(tmp1 + tmp2, output) + + @pytest.mark.parametrize('dtype', + [numpy.int32, numpy.float32, numpy.float64, + numpy.complex64, numpy.complex128]) + def test_gaussian_laplace02(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) * 100 + tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0]) + tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2]) + output = numpy.zeros(array.shape, dtype) + ndimage.gaussian_laplace(array, 1.0, output) + assert_array_almost_equal(tmp1 + tmp2, output) + + @pytest.mark.parametrize('dtype', types + complex_types) + def test_generic_laplace01(self, dtype): + def derivative2(input, axis, output, mode, cval, a, b): + sigma = [a, b / 2.0] + input = numpy.asarray(input) + order = [0] * input.ndim + order[axis] = 2 + return ndimage.gaussian_filter(input, sigma, order, + output, mode, cval) + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + output = numpy.zeros(array.shape, dtype) + tmp = ndimage.generic_laplace(array, derivative2, + extra_arguments=(1.0,), + extra_keywords={'b': 2.0}) + ndimage.gaussian_laplace(array, 1.0, output) + assert_array_almost_equal(tmp, output) + + @pytest.mark.parametrize('dtype', + [numpy.int32, numpy.float32, numpy.float64, + numpy.complex64, numpy.complex128]) + def test_gaussian_gradient_magnitude01(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) * 100 + tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0]) + tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1]) + output = ndimage.gaussian_gradient_magnitude(array, 1.0) + expected = tmp1 * tmp1 + tmp2 * tmp2 + expected = numpy.sqrt(expected).astype(dtype) + assert_array_almost_equal(expected, output) + + @pytest.mark.parametrize('dtype', + [numpy.int32, numpy.float32, numpy.float64, + numpy.complex64, numpy.complex128]) + def test_gaussian_gradient_magnitude02(self, dtype): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) * 100 + tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0]) + tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1]) + output = numpy.zeros(array.shape, dtype) + ndimage.gaussian_gradient_magnitude(array, 1.0, output) + expected = tmp1 * tmp1 + tmp2 * tmp2 + expected = numpy.sqrt(expected).astype(dtype) + assert_array_almost_equal(expected, output) + + def test_generic_gradient_magnitude01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], numpy.float64) + + def derivative(input, axis, output, mode, cval, a, b): + sigma = [a, b / 2.0] + input = numpy.asarray(input) + order = [0] * input.ndim + order[axis] = 1 + return ndimage.gaussian_filter(input, sigma, order, + output, mode, cval) + tmp1 = ndimage.gaussian_gradient_magnitude(array, 1.0) + tmp2 = ndimage.generic_gradient_magnitude( + array, derivative, extra_arguments=(1.0,), + extra_keywords={'b': 2.0}) + assert_array_almost_equal(tmp1, tmp2) + + def test_uniform01(self): + array = numpy.array([2, 4, 6]) + size = 2 + output = ndimage.uniform_filter1d(array, size, origin=-1) + assert_array_almost_equal([3, 5, 6], output) + + def test_uniform01_complex(self): + array = numpy.array([2 + 1j, 4 + 2j, 6 + 3j], dtype=numpy.complex128) + size = 2 + output = ndimage.uniform_filter1d(array, size, origin=-1) + assert_array_almost_equal([3, 5, 6], output.real) + assert_array_almost_equal([1.5, 2.5, 3], output.imag) + + def test_uniform02(self): + array = numpy.array([1, 2, 3]) + filter_shape = [0] + output = ndimage.uniform_filter(array, filter_shape) + assert_array_almost_equal(array, output) + + def test_uniform03(self): + array = numpy.array([1, 2, 3]) + filter_shape = [1] + output = ndimage.uniform_filter(array, filter_shape) + assert_array_almost_equal(array, output) + + def test_uniform04(self): + array = numpy.array([2, 4, 6]) + filter_shape = [2] + output = ndimage.uniform_filter(array, filter_shape) + assert_array_almost_equal([2, 3, 5], output) + + def test_uniform05(self): + array = [] + filter_shape = [1] + output = ndimage.uniform_filter(array, filter_shape) + assert_array_almost_equal([], output) + + @pytest.mark.parametrize('dtype_array', types) + @pytest.mark.parametrize('dtype_output', types) + def test_uniform06(self, dtype_array, dtype_output): + filter_shape = [2, 2] + array = numpy.array([[4, 8, 12], + [16, 20, 24]], dtype_array) + output = ndimage.uniform_filter( + array, filter_shape, output=dtype_output) + assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output) + assert_equal(output.dtype.type, dtype_output) + + @pytest.mark.parametrize('dtype_array', complex_types) + @pytest.mark.parametrize('dtype_output', complex_types) + def test_uniform06_complex(self, dtype_array, dtype_output): + filter_shape = [2, 2] + array = numpy.array([[4, 8 + 5j, 12], + [16, 20, 24]], dtype_array) + output = ndimage.uniform_filter( + array, filter_shape, output=dtype_output) + assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output.real) + assert_equal(output.dtype.type, dtype_output) + + def test_minimum_filter01(self): + array = numpy.array([1, 2, 3, 4, 5]) + filter_shape = numpy.array([2]) + output = ndimage.minimum_filter(array, filter_shape) + assert_array_almost_equal([1, 1, 2, 3, 4], output) + + def test_minimum_filter02(self): + array = numpy.array([1, 2, 3, 4, 5]) + filter_shape = numpy.array([3]) + output = ndimage.minimum_filter(array, filter_shape) + assert_array_almost_equal([1, 1, 2, 3, 4], output) + + def test_minimum_filter03(self): + array = numpy.array([3, 2, 5, 1, 4]) + filter_shape = numpy.array([2]) + output = ndimage.minimum_filter(array, filter_shape) + assert_array_almost_equal([3, 2, 2, 1, 1], output) + + def test_minimum_filter04(self): + array = numpy.array([3, 2, 5, 1, 4]) + filter_shape = numpy.array([3]) + output = ndimage.minimum_filter(array, filter_shape) + assert_array_almost_equal([2, 2, 1, 1, 1], output) + + def test_minimum_filter05(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + filter_shape = numpy.array([2, 3]) + output = ndimage.minimum_filter(array, filter_shape) + assert_array_almost_equal([[2, 2, 1, 1, 1], + [2, 2, 1, 1, 1], + [5, 3, 3, 1, 1]], output) + + def test_minimum_filter05_overlap(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + filter_shape = numpy.array([2, 3]) + ndimage.minimum_filter(array, filter_shape, output=array) + assert_array_almost_equal([[2, 2, 1, 1, 1], + [2, 2, 1, 1, 1], + [5, 3, 3, 1, 1]], array) + + def test_minimum_filter06(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 1, 1], [1, 1, 1]] + output = ndimage.minimum_filter(array, footprint=footprint) + assert_array_almost_equal([[2, 2, 1, 1, 1], + [2, 2, 1, 1, 1], + [5, 3, 3, 1, 1]], output) + # separable footprint should allow mode sequence + output2 = ndimage.minimum_filter(array, footprint=footprint, + mode=['reflect', 'reflect']) + assert_array_almost_equal(output2, output) + + def test_minimum_filter07(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + output = ndimage.minimum_filter(array, footprint=footprint) + assert_array_almost_equal([[2, 2, 1, 1, 1], + [2, 3, 1, 3, 1], + [5, 5, 3, 3, 1]], output) + with assert_raises(RuntimeError): + ndimage.minimum_filter(array, footprint=footprint, + mode=['reflect', 'constant']) + + def test_minimum_filter08(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + output = ndimage.minimum_filter(array, footprint=footprint, origin=-1) + assert_array_almost_equal([[3, 1, 3, 1, 1], + [5, 3, 3, 1, 1], + [3, 3, 1, 1, 1]], output) + + def test_minimum_filter09(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + output = ndimage.minimum_filter(array, footprint=footprint, + origin=[-1, 0]) + assert_array_almost_equal([[2, 3, 1, 3, 1], + [5, 5, 3, 3, 1], + [5, 3, 3, 1, 1]], output) + + def test_maximum_filter01(self): + array = numpy.array([1, 2, 3, 4, 5]) + filter_shape = numpy.array([2]) + output = ndimage.maximum_filter(array, filter_shape) + assert_array_almost_equal([1, 2, 3, 4, 5], output) + + def test_maximum_filter02(self): + array = numpy.array([1, 2, 3, 4, 5]) + filter_shape = numpy.array([3]) + output = ndimage.maximum_filter(array, filter_shape) + assert_array_almost_equal([2, 3, 4, 5, 5], output) + + def test_maximum_filter03(self): + array = numpy.array([3, 2, 5, 1, 4]) + filter_shape = numpy.array([2]) + output = ndimage.maximum_filter(array, filter_shape) + assert_array_almost_equal([3, 3, 5, 5, 4], output) + + def test_maximum_filter04(self): + array = numpy.array([3, 2, 5, 1, 4]) + filter_shape = numpy.array([3]) + output = ndimage.maximum_filter(array, filter_shape) + assert_array_almost_equal([3, 5, 5, 5, 4], output) + + def test_maximum_filter05(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + filter_shape = numpy.array([2, 3]) + output = ndimage.maximum_filter(array, filter_shape) + assert_array_almost_equal([[3, 5, 5, 5, 4], + [7, 9, 9, 9, 5], + [8, 9, 9, 9, 7]], output) + + def test_maximum_filter06(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 1, 1], [1, 1, 1]] + output = ndimage.maximum_filter(array, footprint=footprint) + assert_array_almost_equal([[3, 5, 5, 5, 4], + [7, 9, 9, 9, 5], + [8, 9, 9, 9, 7]], output) + # separable footprint should allow mode sequence + output2 = ndimage.maximum_filter(array, footprint=footprint, + mode=['reflect', 'reflect']) + assert_array_almost_equal(output2, output) + + def test_maximum_filter07(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + output = ndimage.maximum_filter(array, footprint=footprint) + assert_array_almost_equal([[3, 5, 5, 5, 4], + [7, 7, 9, 9, 5], + [7, 9, 8, 9, 7]], output) + # non-separable footprint should not allow mode sequence + with assert_raises(RuntimeError): + ndimage.maximum_filter(array, footprint=footprint, + mode=['reflect', 'reflect']) + + def test_maximum_filter08(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + output = ndimage.maximum_filter(array, footprint=footprint, origin=-1) + assert_array_almost_equal([[7, 9, 9, 5, 5], + [9, 8, 9, 7, 5], + [8, 8, 7, 7, 7]], output) + + def test_maximum_filter09(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + output = ndimage.maximum_filter(array, footprint=footprint, + origin=[-1, 0]) + assert_array_almost_equal([[7, 7, 9, 9, 5], + [7, 9, 8, 9, 7], + [8, 8, 8, 7, 7]], output) + + @pytest.mark.parametrize( + 'axes', tuple(itertools.combinations(range(-3, 3), 2)) + ) + @pytest.mark.parametrize( + 'filter_func, kwargs', + [(ndimage.minimum_filter, {}), + (ndimage.maximum_filter, {}), + (ndimage.median_filter, {}), + (ndimage.rank_filter, dict(rank=3)), + (ndimage.percentile_filter, dict(percentile=60))] + ) + def test_minmax_nonseparable_axes(self, filter_func, axes, kwargs): + array = numpy.arange(6 * 8 * 12, dtype=numpy.float32).reshape(6, 8, 12) + # use 2D triangular footprint because it is non-separable + footprint = numpy.tri(5) + axes = numpy.array(axes) + + if len(set(axes % array.ndim)) != len(axes): + # parametrized cases with duplicate axes raise an error + with pytest.raises(ValueError): + filter_func(array, footprint=footprint, axes=axes, **kwargs) + return + output = filter_func(array, footprint=footprint, axes=axes, **kwargs) + + missing_axis = tuple(set(range(3)) - set(axes % array.ndim))[0] + footprint_3d = numpy.expand_dims(footprint, missing_axis) + expected = filter_func(array, footprint=footprint_3d, **kwargs) + assert_allclose(output, expected) + + def test_rank01(self): + array = numpy.array([1, 2, 3, 4, 5]) + output = ndimage.rank_filter(array, 1, size=2) + assert_array_almost_equal(array, output) + output = ndimage.percentile_filter(array, 100, size=2) + assert_array_almost_equal(array, output) + output = ndimage.median_filter(array, 2) + assert_array_almost_equal(array, output) + + def test_rank02(self): + array = numpy.array([1, 2, 3, 4, 5]) + output = ndimage.rank_filter(array, 1, size=[3]) + assert_array_almost_equal(array, output) + output = ndimage.percentile_filter(array, 50, size=3) + assert_array_almost_equal(array, output) + output = ndimage.median_filter(array, (3,)) + assert_array_almost_equal(array, output) + + def test_rank03(self): + array = numpy.array([3, 2, 5, 1, 4]) + output = ndimage.rank_filter(array, 1, size=[2]) + assert_array_almost_equal([3, 3, 5, 5, 4], output) + output = ndimage.percentile_filter(array, 100, size=2) + assert_array_almost_equal([3, 3, 5, 5, 4], output) + + def test_rank04(self): + array = numpy.array([3, 2, 5, 1, 4]) + expected = [3, 3, 2, 4, 4] + output = ndimage.rank_filter(array, 1, size=3) + assert_array_almost_equal(expected, output) + output = ndimage.percentile_filter(array, 50, size=3) + assert_array_almost_equal(expected, output) + output = ndimage.median_filter(array, size=3) + assert_array_almost_equal(expected, output) + + def test_rank05(self): + array = numpy.array([3, 2, 5, 1, 4]) + expected = [3, 3, 2, 4, 4] + output = ndimage.rank_filter(array, -2, size=3) + assert_array_almost_equal(expected, output) + + def test_rank06(self): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]]) + expected = [[2, 2, 1, 1, 1], + [3, 3, 2, 1, 1], + [5, 5, 3, 3, 1]] + output = ndimage.rank_filter(array, 1, size=[2, 3]) + assert_array_almost_equal(expected, output) + output = ndimage.percentile_filter(array, 17, size=(2, 3)) + assert_array_almost_equal(expected, output) + + def test_rank06_overlap(self): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]]) + array_copy = array.copy() + expected = [[2, 2, 1, 1, 1], + [3, 3, 2, 1, 1], + [5, 5, 3, 3, 1]] + ndimage.rank_filter(array, 1, size=[2, 3], output=array) + assert_array_almost_equal(expected, array) + + ndimage.percentile_filter(array_copy, 17, size=(2, 3), + output=array_copy) + assert_array_almost_equal(expected, array_copy) + + def test_rank07(self): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]]) + expected = [[3, 5, 5, 5, 4], + [5, 5, 7, 5, 4], + [6, 8, 8, 7, 5]] + output = ndimage.rank_filter(array, -2, size=[2, 3]) + assert_array_almost_equal(expected, output) + + def test_rank08(self): + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]]) + expected = [[3, 3, 2, 4, 4], + [5, 5, 5, 4, 4], + [5, 6, 7, 5, 5]] + output = ndimage.percentile_filter(array, 50.0, size=(2, 3)) + assert_array_almost_equal(expected, output) + output = ndimage.rank_filter(array, 3, size=(2, 3)) + assert_array_almost_equal(expected, output) + output = ndimage.median_filter(array, size=(2, 3)) + assert_array_almost_equal(expected, output) + + # non-separable: does not allow mode sequence + with assert_raises(RuntimeError): + ndimage.percentile_filter(array, 50.0, size=(2, 3), + mode=['reflect', 'constant']) + with assert_raises(RuntimeError): + ndimage.rank_filter(array, 3, size=(2, 3), mode=['reflect']*2) + with assert_raises(RuntimeError): + ndimage.median_filter(array, size=(2, 3), mode=['reflect']*2) + + @pytest.mark.parametrize('dtype', types) + def test_rank09(self, dtype): + expected = [[3, 3, 2, 4, 4], + [3, 5, 2, 5, 1], + [5, 5, 8, 3, 5]] + footprint = [[1, 0, 1], [0, 1, 0]] + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + output = ndimage.rank_filter(array, 1, footprint=footprint) + assert_array_almost_equal(expected, output) + output = ndimage.percentile_filter(array, 35, footprint=footprint) + assert_array_almost_equal(expected, output) + + def test_rank10(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + expected = [[2, 2, 1, 1, 1], + [2, 3, 1, 3, 1], + [5, 5, 3, 3, 1]] + footprint = [[1, 0, 1], [1, 1, 0]] + output = ndimage.rank_filter(array, 0, footprint=footprint) + assert_array_almost_equal(expected, output) + output = ndimage.percentile_filter(array, 0.0, footprint=footprint) + assert_array_almost_equal(expected, output) + + def test_rank11(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + expected = [[3, 5, 5, 5, 4], + [7, 7, 9, 9, 5], + [7, 9, 8, 9, 7]] + footprint = [[1, 0, 1], [1, 1, 0]] + output = ndimage.rank_filter(array, -1, footprint=footprint) + assert_array_almost_equal(expected, output) + output = ndimage.percentile_filter(array, 100.0, footprint=footprint) + assert_array_almost_equal(expected, output) + + @pytest.mark.parametrize('dtype', types) + def test_rank12(self, dtype): + expected = [[3, 3, 2, 4, 4], + [3, 5, 2, 5, 1], + [5, 5, 8, 3, 5]] + footprint = [[1, 0, 1], [0, 1, 0]] + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + output = ndimage.rank_filter(array, 1, footprint=footprint) + assert_array_almost_equal(expected, output) + output = ndimage.percentile_filter(array, 50.0, + footprint=footprint) + assert_array_almost_equal(expected, output) + output = ndimage.median_filter(array, footprint=footprint) + assert_array_almost_equal(expected, output) + + @pytest.mark.parametrize('dtype', types) + def test_rank13(self, dtype): + expected = [[5, 2, 5, 1, 1], + [5, 8, 3, 5, 5], + [6, 6, 5, 5, 5]] + footprint = [[1, 0, 1], [0, 1, 0]] + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + output = ndimage.rank_filter(array, 1, footprint=footprint, + origin=-1) + assert_array_almost_equal(expected, output) + + @pytest.mark.parametrize('dtype', types) + def test_rank14(self, dtype): + expected = [[3, 5, 2, 5, 1], + [5, 5, 8, 3, 5], + [5, 6, 6, 5, 5]] + footprint = [[1, 0, 1], [0, 1, 0]] + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + output = ndimage.rank_filter(array, 1, footprint=footprint, + origin=[-1, 0]) + assert_array_almost_equal(expected, output) + + @pytest.mark.parametrize('dtype', types) + def test_rank15(self, dtype): + expected = [[2, 3, 1, 4, 1], + [5, 3, 7, 1, 1], + [5, 5, 3, 3, 3]] + footprint = [[1, 0, 1], [0, 1, 0]] + array = numpy.array([[3, 2, 5, 1, 4], + [5, 8, 3, 7, 1], + [5, 6, 9, 3, 5]], dtype) + output = ndimage.rank_filter(array, 0, footprint=footprint, + origin=[-1, 0]) + assert_array_almost_equal(expected, output) + + @pytest.mark.parametrize('dtype', types) + def test_generic_filter1d01(self, dtype): + weights = numpy.array([1.1, 2.2, 3.3]) + + def _filter_func(input, output, fltr, total): + fltr = fltr / total + for ii in range(input.shape[0] - 2): + output[ii] = input[ii] * fltr[0] + output[ii] += input[ii + 1] * fltr[1] + output[ii] += input[ii + 2] * fltr[2] + a = numpy.arange(12, dtype=dtype) + a.shape = (3, 4) + r1 = ndimage.correlate1d(a, weights / weights.sum(), 0, origin=-1) + r2 = ndimage.generic_filter1d( + a, _filter_func, 3, axis=0, origin=-1, + extra_arguments=(weights,), + extra_keywords={'total': weights.sum()}) + assert_array_almost_equal(r1, r2) + + @pytest.mark.parametrize('dtype', types) + def test_generic_filter01(self, dtype): + filter_ = numpy.array([[1.0, 2.0], [3.0, 4.0]]) + footprint = numpy.array([[1, 0], [0, 1]]) + cf = numpy.array([1., 4.]) + + def _filter_func(buffer, weights, total=1.0): + weights = cf / total + return (buffer * weights).sum() + + a = numpy.arange(12, dtype=dtype) + a.shape = (3, 4) + r1 = ndimage.correlate(a, filter_ * footprint) + if dtype in float_types: + r1 /= 5 + else: + r1 //= 5 + r2 = ndimage.generic_filter( + a, _filter_func, footprint=footprint, extra_arguments=(cf,), + extra_keywords={'total': cf.sum()}) + assert_array_almost_equal(r1, r2) + + # generic_filter doesn't allow mode sequence + with assert_raises(RuntimeError): + r2 = ndimage.generic_filter( + a, _filter_func, mode=['reflect', 'reflect'], + footprint=footprint, extra_arguments=(cf,), + extra_keywords={'total': cf.sum()}) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [1, 1, 2]), + ('wrap', [3, 1, 2]), + ('reflect', [1, 1, 2]), + ('mirror', [2, 1, 2]), + ('constant', [0, 1, 2])] + ) + def test_extend01(self, mode, expected_value): + array = numpy.array([1, 2, 3]) + weights = numpy.array([1, 0]) + output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0) + assert_array_equal(output, expected_value) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [1, 1, 1]), + ('wrap', [3, 1, 2]), + ('reflect', [3, 3, 2]), + ('mirror', [1, 2, 3]), + ('constant', [0, 0, 0])] + ) + def test_extend02(self, mode, expected_value): + array = numpy.array([1, 2, 3]) + weights = numpy.array([1, 0, 0, 0, 0, 0, 0, 0]) + output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0) + assert_array_equal(output, expected_value) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [2, 3, 3]), + ('wrap', [2, 3, 1]), + ('reflect', [2, 3, 3]), + ('mirror', [2, 3, 2]), + ('constant', [2, 3, 0])] + ) + def test_extend03(self, mode, expected_value): + array = numpy.array([1, 2, 3]) + weights = numpy.array([0, 0, 1]) + output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0) + assert_array_equal(output, expected_value) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [3, 3, 3]), + ('wrap', [2, 3, 1]), + ('reflect', [2, 1, 1]), + ('mirror', [1, 2, 3]), + ('constant', [0, 0, 0])] + ) + def test_extend04(self, mode, expected_value): + array = numpy.array([1, 2, 3]) + weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1]) + output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0) + assert_array_equal(output, expected_value) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [[1, 1, 2], [1, 1, 2], [4, 4, 5]]), + ('wrap', [[9, 7, 8], [3, 1, 2], [6, 4, 5]]), + ('reflect', [[1, 1, 2], [1, 1, 2], [4, 4, 5]]), + ('mirror', [[5, 4, 5], [2, 1, 2], [5, 4, 5]]), + ('constant', [[0, 0, 0], [0, 1, 2], [0, 4, 5]])] + ) + def test_extend05(self, mode, expected_value): + array = numpy.array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + weights = numpy.array([[1, 0], [0, 0]]) + output = ndimage.correlate(array, weights, mode=mode, cval=0) + assert_array_equal(output, expected_value) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [[5, 6, 6], [8, 9, 9], [8, 9, 9]]), + ('wrap', [[5, 6, 4], [8, 9, 7], [2, 3, 1]]), + ('reflect', [[5, 6, 6], [8, 9, 9], [8, 9, 9]]), + ('mirror', [[5, 6, 5], [8, 9, 8], [5, 6, 5]]), + ('constant', [[5, 6, 0], [8, 9, 0], [0, 0, 0]])] + ) + def test_extend06(self, mode, expected_value): + array = numpy.array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + weights = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]]) + output = ndimage.correlate(array, weights, mode=mode, cval=0) + assert_array_equal(output, expected_value) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [3, 3, 3]), + ('wrap', [2, 3, 1]), + ('reflect', [2, 1, 1]), + ('mirror', [1, 2, 3]), + ('constant', [0, 0, 0])] + ) + def test_extend07(self, mode, expected_value): + array = numpy.array([1, 2, 3]) + weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1]) + output = ndimage.correlate(array, weights, mode=mode, cval=0) + assert_array_equal(output, expected_value) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [[3], [3], [3]]), + ('wrap', [[2], [3], [1]]), + ('reflect', [[2], [1], [1]]), + ('mirror', [[1], [2], [3]]), + ('constant', [[0], [0], [0]])] + ) + def test_extend08(self, mode, expected_value): + array = numpy.array([[1], [2], [3]]) + weights = numpy.array([[0], [0], [0], [0], [0], [0], [0], [0], [1]]) + output = ndimage.correlate(array, weights, mode=mode, cval=0) + assert_array_equal(output, expected_value) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [3, 3, 3]), + ('wrap', [2, 3, 1]), + ('reflect', [2, 1, 1]), + ('mirror', [1, 2, 3]), + ('constant', [0, 0, 0])] + ) + def test_extend09(self, mode, expected_value): + array = numpy.array([1, 2, 3]) + weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1]) + output = ndimage.correlate(array, weights, mode=mode, cval=0) + assert_array_equal(output, expected_value) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [[3], [3], [3]]), + ('wrap', [[2], [3], [1]]), + ('reflect', [[2], [1], [1]]), + ('mirror', [[1], [2], [3]]), + ('constant', [[0], [0], [0]])] + ) + def test_extend10(self, mode, expected_value): + array = numpy.array([[1], [2], [3]]) + weights = numpy.array([[0], [0], [0], [0], [0], [0], [0], [0], [1]]) + output = ndimage.correlate(array, weights, mode=mode, cval=0) + assert_array_equal(output, expected_value) + + +def test_ticket_701(): + # Test generic filter sizes + arr = numpy.arange(4).reshape((2, 2)) + def func(x): + return numpy.min(x) + res = ndimage.generic_filter(arr, func, size=(1, 1)) + # The following raises an error unless ticket 701 is fixed + res2 = ndimage.generic_filter(arr, func, size=1) + assert_equal(res, res2) + + +def test_gh_5430(): + # At least one of these raises an error unless gh-5430 is + # fixed. In py2k an int is implemented using a C long, so + # which one fails depends on your system. In py3k there is only + # one arbitrary precision integer type, so both should fail. + sigma = numpy.int32(1) + out = ndimage._ni_support._normalize_sequence(sigma, 1) + assert_equal(out, [sigma]) + sigma = numpy.int64(1) + out = ndimage._ni_support._normalize_sequence(sigma, 1) + assert_equal(out, [sigma]) + # This worked before; make sure it still works + sigma = 1 + out = ndimage._ni_support._normalize_sequence(sigma, 1) + assert_equal(out, [sigma]) + # This worked before; make sure it still works + sigma = [1, 1] + out = ndimage._ni_support._normalize_sequence(sigma, 2) + assert_equal(out, sigma) + # Also include the OPs original example to make sure we fixed the issue + x = numpy.random.normal(size=(256, 256)) + perlin = numpy.zeros_like(x) + for i in 2**numpy.arange(6): + perlin += ndimage.gaussian_filter(x, i, mode="wrap") * i**2 + # This also fixes gh-4106, show that the OPs example now runs. + x = numpy.int64(21) + ndimage._ni_support._normalize_sequence(x, 0) + + +def test_gaussian_kernel1d(): + radius = 10 + sigma = 2 + sigma2 = sigma * sigma + x = numpy.arange(-radius, radius + 1, dtype=numpy.double) + phi_x = numpy.exp(-0.5 * x * x / sigma2) + phi_x /= phi_x.sum() + assert_allclose(phi_x, _gaussian_kernel1d(sigma, 0, radius)) + assert_allclose(-phi_x * x / sigma2, _gaussian_kernel1d(sigma, 1, radius)) + assert_allclose(phi_x * (x * x / sigma2 - 1) / sigma2, + _gaussian_kernel1d(sigma, 2, radius)) + assert_allclose(phi_x * (3 - x * x / sigma2) * x / (sigma2 * sigma2), + _gaussian_kernel1d(sigma, 3, radius)) + + +def test_orders_gauss(): + # Check order inputs to Gaussians + arr = numpy.zeros((1,)) + assert_equal(0, ndimage.gaussian_filter(arr, 1, order=0)) + assert_equal(0, ndimage.gaussian_filter(arr, 1, order=3)) + assert_raises(ValueError, ndimage.gaussian_filter, arr, 1, -1) + assert_equal(0, ndimage.gaussian_filter1d(arr, 1, axis=-1, order=0)) + assert_equal(0, ndimage.gaussian_filter1d(arr, 1, axis=-1, order=3)) + assert_raises(ValueError, ndimage.gaussian_filter1d, arr, 1, -1, -1) + + +def test_valid_origins(): + """Regression test for #1311.""" + def func(x): + return numpy.mean(x) + data = numpy.array([1, 2, 3, 4, 5], dtype=numpy.float64) + assert_raises(ValueError, ndimage.generic_filter, data, func, size=3, + origin=2) + assert_raises(ValueError, ndimage.generic_filter1d, data, func, + filter_size=3, origin=2) + assert_raises(ValueError, ndimage.percentile_filter, data, 0.2, size=3, + origin=2) + + for filter in [ndimage.uniform_filter, ndimage.minimum_filter, + ndimage.maximum_filter, ndimage.maximum_filter1d, + ndimage.median_filter, ndimage.minimum_filter1d]: + # This should work, since for size == 3, the valid range for origin is + # -1 to 1. + list(filter(data, 3, origin=-1)) + list(filter(data, 3, origin=1)) + # Just check this raises an error instead of silently accepting or + # segfaulting. + assert_raises(ValueError, filter, data, 3, origin=2) + + +def test_bad_convolve_and_correlate_origins(): + """Regression test for gh-822.""" + # Before gh-822 was fixed, these would generate seg. faults or + # other crashes on many system. + assert_raises(ValueError, ndimage.correlate1d, + [0, 1, 2, 3, 4, 5], [1, 1, 2, 0], origin=2) + assert_raises(ValueError, ndimage.correlate, + [0, 1, 2, 3, 4, 5], [0, 1, 2], origin=[2]) + assert_raises(ValueError, ndimage.correlate, + numpy.ones((3, 5)), numpy.ones((2, 2)), origin=[0, 1]) + + assert_raises(ValueError, ndimage.convolve1d, + numpy.arange(10), numpy.ones(3), origin=-2) + assert_raises(ValueError, ndimage.convolve, + numpy.arange(10), numpy.ones(3), origin=[-2]) + assert_raises(ValueError, ndimage.convolve, + numpy.ones((3, 5)), numpy.ones((2, 2)), origin=[0, -2]) + + +def test_multiple_modes(): + # Test that the filters with multiple mode cababilities for different + # dimensions give the same result as applying a single mode. + arr = numpy.array([[1., 0., 0.], + [1., 1., 0.], + [0., 0., 0.]]) + + mode1 = 'reflect' + mode2 = ['reflect', 'reflect'] + + assert_equal(ndimage.gaussian_filter(arr, 1, mode=mode1), + ndimage.gaussian_filter(arr, 1, mode=mode2)) + assert_equal(ndimage.prewitt(arr, mode=mode1), + ndimage.prewitt(arr, mode=mode2)) + assert_equal(ndimage.sobel(arr, mode=mode1), + ndimage.sobel(arr, mode=mode2)) + assert_equal(ndimage.laplace(arr, mode=mode1), + ndimage.laplace(arr, mode=mode2)) + assert_equal(ndimage.gaussian_laplace(arr, 1, mode=mode1), + ndimage.gaussian_laplace(arr, 1, mode=mode2)) + assert_equal(ndimage.maximum_filter(arr, size=5, mode=mode1), + ndimage.maximum_filter(arr, size=5, mode=mode2)) + assert_equal(ndimage.minimum_filter(arr, size=5, mode=mode1), + ndimage.minimum_filter(arr, size=5, mode=mode2)) + assert_equal(ndimage.gaussian_gradient_magnitude(arr, 1, mode=mode1), + ndimage.gaussian_gradient_magnitude(arr, 1, mode=mode2)) + assert_equal(ndimage.uniform_filter(arr, 5, mode=mode1), + ndimage.uniform_filter(arr, 5, mode=mode2)) + + +def test_multiple_modes_sequentially(): + # Test that the filters with multiple mode cababilities for different + # dimensions give the same result as applying the filters with + # different modes sequentially + arr = numpy.array([[1., 0., 0.], + [1., 1., 0.], + [0., 0., 0.]]) + + modes = ['reflect', 'wrap'] + + expected = ndimage.gaussian_filter1d(arr, 1, axis=0, mode=modes[0]) + expected = ndimage.gaussian_filter1d(expected, 1, axis=1, mode=modes[1]) + assert_equal(expected, + ndimage.gaussian_filter(arr, 1, mode=modes)) + + expected = ndimage.uniform_filter1d(arr, 5, axis=0, mode=modes[0]) + expected = ndimage.uniform_filter1d(expected, 5, axis=1, mode=modes[1]) + assert_equal(expected, + ndimage.uniform_filter(arr, 5, mode=modes)) + + expected = ndimage.maximum_filter1d(arr, size=5, axis=0, mode=modes[0]) + expected = ndimage.maximum_filter1d(expected, size=5, axis=1, + mode=modes[1]) + assert_equal(expected, + ndimage.maximum_filter(arr, size=5, mode=modes)) + + expected = ndimage.minimum_filter1d(arr, size=5, axis=0, mode=modes[0]) + expected = ndimage.minimum_filter1d(expected, size=5, axis=1, + mode=modes[1]) + assert_equal(expected, + ndimage.minimum_filter(arr, size=5, mode=modes)) + + +def test_multiple_modes_prewitt(): + # Test prewitt filter for multiple extrapolation modes + arr = numpy.array([[1., 0., 0.], + [1., 1., 0.], + [0., 0., 0.]]) + + expected = numpy.array([[1., -3., 2.], + [1., -2., 1.], + [1., -1., 0.]]) + + modes = ['reflect', 'wrap'] + + assert_equal(expected, + ndimage.prewitt(arr, mode=modes)) + + +def test_multiple_modes_sobel(): + # Test sobel filter for multiple extrapolation modes + arr = numpy.array([[1., 0., 0.], + [1., 1., 0.], + [0., 0., 0.]]) + + expected = numpy.array([[1., -4., 3.], + [2., -3., 1.], + [1., -1., 0.]]) + + modes = ['reflect', 'wrap'] + + assert_equal(expected, + ndimage.sobel(arr, mode=modes)) + + +def test_multiple_modes_laplace(): + # Test laplace filter for multiple extrapolation modes + arr = numpy.array([[1., 0., 0.], + [1., 1., 0.], + [0., 0., 0.]]) + + expected = numpy.array([[-2., 2., 1.], + [-2., -3., 2.], + [1., 1., 0.]]) + + modes = ['reflect', 'wrap'] + + assert_equal(expected, + ndimage.laplace(arr, mode=modes)) + + +def test_multiple_modes_gaussian_laplace(): + # Test gaussian_laplace filter for multiple extrapolation modes + arr = numpy.array([[1., 0., 0.], + [1., 1., 0.], + [0., 0., 0.]]) + + expected = numpy.array([[-0.28438687, 0.01559809, 0.19773499], + [-0.36630503, -0.20069774, 0.07483620], + [0.15849176, 0.18495566, 0.21934094]]) + + modes = ['reflect', 'wrap'] + + assert_almost_equal(expected, + ndimage.gaussian_laplace(arr, 1, mode=modes)) + + +def test_multiple_modes_gaussian_gradient_magnitude(): + # Test gaussian_gradient_magnitude filter for multiple + # extrapolation modes + arr = numpy.array([[1., 0., 0.], + [1., 1., 0.], + [0., 0., 0.]]) + + expected = numpy.array([[0.04928965, 0.09745625, 0.06405368], + [0.23056905, 0.14025305, 0.04550846], + [0.19894369, 0.14950060, 0.06796850]]) + + modes = ['reflect', 'wrap'] + + calculated = ndimage.gaussian_gradient_magnitude(arr, 1, mode=modes) + + assert_almost_equal(expected, calculated) + + +def test_multiple_modes_uniform(): + # Test uniform filter for multiple extrapolation modes + arr = numpy.array([[1., 0., 0.], + [1., 1., 0.], + [0., 0., 0.]]) + + expected = numpy.array([[0.32, 0.40, 0.48], + [0.20, 0.28, 0.32], + [0.28, 0.32, 0.40]]) + + modes = ['reflect', 'wrap'] + + assert_almost_equal(expected, + ndimage.uniform_filter(arr, 5, mode=modes)) + + +def test_gaussian_truncate(): + # Test that Gaussian filters can be truncated at different widths. + # These tests only check that the result has the expected number + # of nonzero elements. + arr = numpy.zeros((100, 100), float) + arr[50, 50] = 1 + num_nonzeros_2 = (ndimage.gaussian_filter(arr, 5, truncate=2) > 0).sum() + assert_equal(num_nonzeros_2, 21**2) + num_nonzeros_5 = (ndimage.gaussian_filter(arr, 5, truncate=5) > 0).sum() + assert_equal(num_nonzeros_5, 51**2) + + # Test truncate when sigma is a sequence. + f = ndimage.gaussian_filter(arr, [0.5, 2.5], truncate=3.5) + fpos = f > 0 + n0 = fpos.any(axis=0).sum() + # n0 should be 2*int(2.5*3.5 + 0.5) + 1 + assert_equal(n0, 19) + n1 = fpos.any(axis=1).sum() + # n1 should be 2*int(0.5*3.5 + 0.5) + 1 + assert_equal(n1, 5) + + # Test gaussian_filter1d. + x = numpy.zeros(51) + x[25] = 1 + f = ndimage.gaussian_filter1d(x, sigma=2, truncate=3.5) + n = (f > 0).sum() + assert_equal(n, 15) + + # Test gaussian_laplace + y = ndimage.gaussian_laplace(x, sigma=2, truncate=3.5) + nonzero_indices = numpy.nonzero(y != 0)[0] + n = numpy.ptp(nonzero_indices) + 1 + assert_equal(n, 15) + + # Test gaussian_gradient_magnitude + y = ndimage.gaussian_gradient_magnitude(x, sigma=2, truncate=3.5) + nonzero_indices = numpy.nonzero(y != 0)[0] + n = numpy.ptp(nonzero_indices) + 1 + assert_equal(n, 15) + + +def test_gaussian_radius(): + # Test that Gaussian filters with radius argument produce the same + # results as the filters with corresponding truncate argument. + # radius = int(truncate * sigma + 0.5) + # Test gaussian_filter1d + x = numpy.zeros(7) + x[3] = 1 + f1 = ndimage.gaussian_filter1d(x, sigma=2, truncate=1.5) + f2 = ndimage.gaussian_filter1d(x, sigma=2, radius=3) + assert_equal(f1, f2) + + # Test gaussian_filter when sigma is a number. + a = numpy.zeros((9, 9)) + a[4, 4] = 1 + f1 = ndimage.gaussian_filter(a, sigma=0.5, truncate=3.5) + f2 = ndimage.gaussian_filter(a, sigma=0.5, radius=2) + assert_equal(f1, f2) + + # Test gaussian_filter when sigma is a sequence. + a = numpy.zeros((50, 50)) + a[25, 25] = 1 + f1 = ndimage.gaussian_filter(a, sigma=[0.5, 2.5], truncate=3.5) + f2 = ndimage.gaussian_filter(a, sigma=[0.5, 2.5], radius=[2, 9]) + assert_equal(f1, f2) + + +def test_gaussian_radius_invalid(): + # radius must be a nonnegative integer + with assert_raises(ValueError): + ndimage.gaussian_filter1d(numpy.zeros(8), sigma=1, radius=-1) + with assert_raises(ValueError): + ndimage.gaussian_filter1d(numpy.zeros(8), sigma=1, radius=1.1) + + +class TestThreading: + def check_func_thread(self, n, fun, args, out): + from threading import Thread + thrds = [Thread(target=fun, args=args, kwargs={'output': out[x]}) + for x in range(n)] + [t.start() for t in thrds] + [t.join() for t in thrds] + + def check_func_serial(self, n, fun, args, out): + for i in range(n): + fun(*args, output=out[i]) + + def test_correlate1d(self): + d = numpy.random.randn(5000) + os = numpy.empty((4, d.size)) + ot = numpy.empty_like(os) + k = numpy.arange(5) + self.check_func_serial(4, ndimage.correlate1d, (d, k), os) + self.check_func_thread(4, ndimage.correlate1d, (d, k), ot) + assert_array_equal(os, ot) + + def test_correlate(self): + d = numpy.random.randn(500, 500) + k = numpy.random.randn(10, 10) + os = numpy.empty([4] + list(d.shape)) + ot = numpy.empty_like(os) + self.check_func_serial(4, ndimage.correlate, (d, k), os) + self.check_func_thread(4, ndimage.correlate, (d, k), ot) + assert_array_equal(os, ot) + + def test_median_filter(self): + d = numpy.random.randn(500, 500) + os = numpy.empty([4] + list(d.shape)) + ot = numpy.empty_like(os) + self.check_func_serial(4, ndimage.median_filter, (d, 3), os) + self.check_func_thread(4, ndimage.median_filter, (d, 3), ot) + assert_array_equal(os, ot) + + def test_uniform_filter1d(self): + d = numpy.random.randn(5000) + os = numpy.empty((4, d.size)) + ot = numpy.empty_like(os) + self.check_func_serial(4, ndimage.uniform_filter1d, (d, 5), os) + self.check_func_thread(4, ndimage.uniform_filter1d, (d, 5), ot) + assert_array_equal(os, ot) + + def test_minmax_filter(self): + d = numpy.random.randn(500, 500) + os = numpy.empty([4] + list(d.shape)) + ot = numpy.empty_like(os) + self.check_func_serial(4, ndimage.maximum_filter, (d, 3), os) + self.check_func_thread(4, ndimage.maximum_filter, (d, 3), ot) + assert_array_equal(os, ot) + self.check_func_serial(4, ndimage.minimum_filter, (d, 3), os) + self.check_func_thread(4, ndimage.minimum_filter, (d, 3), ot) + assert_array_equal(os, ot) + + +def test_minmaximum_filter1d(): + # Regression gh-3898 + in_ = numpy.arange(10) + out = ndimage.minimum_filter1d(in_, 1) + assert_equal(in_, out) + out = ndimage.maximum_filter1d(in_, 1) + assert_equal(in_, out) + # Test reflect + out = ndimage.minimum_filter1d(in_, 5, mode='reflect') + assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out) + out = ndimage.maximum_filter1d(in_, 5, mode='reflect') + assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out) + # Test constant + out = ndimage.minimum_filter1d(in_, 5, mode='constant', cval=-1) + assert_equal([-1, -1, 0, 1, 2, 3, 4, 5, -1, -1], out) + out = ndimage.maximum_filter1d(in_, 5, mode='constant', cval=10) + assert_equal([10, 10, 4, 5, 6, 7, 8, 9, 10, 10], out) + # Test nearest + out = ndimage.minimum_filter1d(in_, 5, mode='nearest') + assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out) + out = ndimage.maximum_filter1d(in_, 5, mode='nearest') + assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out) + # Test wrap + out = ndimage.minimum_filter1d(in_, 5, mode='wrap') + assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 0, 0], out) + out = ndimage.maximum_filter1d(in_, 5, mode='wrap') + assert_equal([9, 9, 4, 5, 6, 7, 8, 9, 9, 9], out) + + +def test_uniform_filter1d_roundoff_errors(): + # gh-6930 + in_ = numpy.repeat([0, 1, 0], [9, 9, 9]) + for filter_size in range(3, 10): + out = ndimage.uniform_filter1d(in_, filter_size) + assert_equal(out.sum(), 10 - filter_size) + + +def test_footprint_all_zeros(): + # regression test for gh-6876: footprint of all zeros segfaults + arr = numpy.random.randint(0, 100, (100, 100)) + kernel = numpy.zeros((3, 3), bool) + with assert_raises(ValueError): + ndimage.maximum_filter(arr, footprint=kernel) + + +def test_gaussian_filter(): + # Test gaussian filter with numpy.float16 + # gh-8207 + data = numpy.array([1], dtype=numpy.float16) + sigma = 1.0 + with assert_raises(RuntimeError): + ndimage.gaussian_filter(data, sigma) + + +def test_rank_filter_noninteger_rank(): + # regression test for issue 9388: ValueError for + # non integer rank when performing rank_filter + arr = numpy.random.random((10, 20, 30)) + assert_raises(TypeError, ndimage.rank_filter, arr, 0.5, + footprint=numpy.ones((1, 1, 10), dtype=bool)) + + +def test_size_footprint_both_set(): + # test for input validation, expect user warning when + # size and footprint is set + with suppress_warnings() as sup: + sup.filter(UserWarning, + "ignoring size because footprint is set") + arr = numpy.random.random((10, 20, 30)) + ndimage.rank_filter(arr, 5, size=2, footprint=numpy.ones((1, 1, 10), + dtype=bool)) + + +def test_byte_order_median(): + """Regression test for #413: median_filter does not handle bytes orders.""" + a = numpy.arange(9, dtype=' 3 raise NotImplementedError + x = numpy.ones((4, 6, 8, 10), dtype=numpy.complex128) + with pytest.raises(NotImplementedError): + ndimage.fourier_ellipsoid(x, 3) + + def test_fourier_ellipsoid_1d_complex(self): + # expected result of 1d ellipsoid is the same as for fourier_uniform + for shape in [(32, ), (31, )]: + for type_, dec in zip([numpy.complex64, numpy.complex128], + [5, 14]): + x = numpy.ones(shape, dtype=type_) + a = ndimage.fourier_ellipsoid(x, 5, -1, 0) + b = ndimage.fourier_uniform(x, 5, -1, 0) + assert_array_almost_equal(a, b, decimal=dec) + + @pytest.mark.parametrize('shape', [(0, ), (0, 10), (10, 0)]) + @pytest.mark.parametrize('dtype', + [numpy.float32, numpy.float64, + numpy.complex64, numpy.complex128]) + @pytest.mark.parametrize('test_func', + [ndimage.fourier_ellipsoid, + ndimage.fourier_gaussian, + ndimage.fourier_uniform]) + def test_fourier_zero_length_dims(self, shape, dtype, test_func): + a = numpy.ones(shape, dtype) + b = test_func(a, 3) + assert_equal(a, b) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_interpolation.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_interpolation.py new file mode 100644 index 0000000000000000000000000000000000000000..beb8681e850bd682b789e97f901048d718627dd0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_interpolation.py @@ -0,0 +1,1327 @@ +import sys + +import numpy +from numpy.testing import (assert_, assert_equal, assert_array_equal, + assert_array_almost_equal, assert_allclose, + suppress_warnings) +import pytest +from pytest import raises as assert_raises +import scipy.ndimage as ndimage + +from . import types + +eps = 1e-12 + +ndimage_to_numpy_mode = { + 'mirror': 'reflect', + 'reflect': 'symmetric', + 'grid-mirror': 'symmetric', + 'grid-wrap': 'wrap', + 'nearest': 'edge', + 'grid-constant': 'constant', +} + + +class TestNdimageInterpolation: + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [1.5, 2.5, 3.5, 4, 4, 4, 4]), + ('wrap', [1.5, 2.5, 3.5, 1.5, 2.5, 3.5, 1.5]), + ('grid-wrap', [1.5, 2.5, 3.5, 2.5, 1.5, 2.5, 3.5]), + ('mirror', [1.5, 2.5, 3.5, 3.5, 2.5, 1.5, 1.5]), + ('reflect', [1.5, 2.5, 3.5, 4, 3.5, 2.5, 1.5]), + ('constant', [1.5, 2.5, 3.5, -1, -1, -1, -1]), + ('grid-constant', [1.5, 2.5, 3.5, 1.5, -1, -1, -1])] + ) + def test_boundaries(self, mode, expected_value): + def shift(x): + return (x[0] + 0.5,) + + data = numpy.array([1, 2, 3, 4.]) + assert_array_equal( + expected_value, + ndimage.geometric_transform(data, shift, cval=-1, mode=mode, + output_shape=(7,), order=1)) + + @pytest.mark.parametrize( + 'mode, expected_value', + [('nearest', [1, 1, 2, 3]), + ('wrap', [3, 1, 2, 3]), + ('grid-wrap', [4, 1, 2, 3]), + ('mirror', [2, 1, 2, 3]), + ('reflect', [1, 1, 2, 3]), + ('constant', [-1, 1, 2, 3]), + ('grid-constant', [-1, 1, 2, 3])] + ) + def test_boundaries2(self, mode, expected_value): + def shift(x): + return (x[0] - 0.9,) + + data = numpy.array([1, 2, 3, 4]) + assert_array_equal( + expected_value, + ndimage.geometric_transform(data, shift, cval=-1, mode=mode, + output_shape=(4,))) + + @pytest.mark.parametrize('mode', ['mirror', 'reflect', 'grid-mirror', + 'grid-wrap', 'grid-constant', + 'nearest']) + @pytest.mark.parametrize('order', range(6)) + def test_boundary_spline_accuracy(self, mode, order): + """Tests based on examples from gh-2640""" + data = numpy.arange(-6, 7, dtype=float) + x = numpy.linspace(-8, 15, num=1000) + y = ndimage.map_coordinates(data, [x], order=order, mode=mode) + + # compute expected value using explicit padding via numpy.pad + npad = 32 + pad_mode = ndimage_to_numpy_mode.get(mode) + padded = numpy.pad(data, npad, mode=pad_mode) + expected = ndimage.map_coordinates(padded, [npad + x], order=order, + mode=mode) + + atol = 1e-5 if mode == 'grid-constant' else 1e-12 + assert_allclose(y, expected, rtol=1e-7, atol=atol) + + @pytest.mark.parametrize('order', range(2, 6)) + @pytest.mark.parametrize('dtype', types) + def test_spline01(self, dtype, order): + data = numpy.ones([], dtype) + out = ndimage.spline_filter(data, order=order) + assert_array_almost_equal(out, 1) + + @pytest.mark.parametrize('order', range(2, 6)) + @pytest.mark.parametrize('dtype', types) + def test_spline02(self, dtype, order): + data = numpy.array([1], dtype) + out = ndimage.spline_filter(data, order=order) + assert_array_almost_equal(out, [1]) + + @pytest.mark.parametrize('order', range(2, 6)) + @pytest.mark.parametrize('dtype', types) + def test_spline03(self, dtype, order): + data = numpy.ones([], dtype) + out = ndimage.spline_filter(data, order, output=dtype) + assert_array_almost_equal(out, 1) + + @pytest.mark.parametrize('order', range(2, 6)) + @pytest.mark.parametrize('dtype', types) + def test_spline04(self, dtype, order): + data = numpy.ones([4], dtype) + out = ndimage.spline_filter(data, order) + assert_array_almost_equal(out, [1, 1, 1, 1]) + + @pytest.mark.parametrize('order', range(2, 6)) + @pytest.mark.parametrize('dtype', types) + def test_spline05(self, dtype, order): + data = numpy.ones([4, 4], dtype) + out = ndimage.spline_filter(data, order=order) + assert_array_almost_equal(out, [[1, 1, 1, 1], + [1, 1, 1, 1], + [1, 1, 1, 1], + [1, 1, 1, 1]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform01(self, order): + data = numpy.array([1]) + + def mapping(x): + return x + + out = ndimage.geometric_transform(data, mapping, data.shape, + order=order) + assert_array_almost_equal(out, [1]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform02(self, order): + data = numpy.ones([4]) + + def mapping(x): + return x + + out = ndimage.geometric_transform(data, mapping, data.shape, + order=order) + assert_array_almost_equal(out, [1, 1, 1, 1]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform03(self, order): + data = numpy.ones([4]) + + def mapping(x): + return (x[0] - 1,) + + out = ndimage.geometric_transform(data, mapping, data.shape, + order=order) + assert_array_almost_equal(out, [0, 1, 1, 1]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform04(self, order): + data = numpy.array([4, 1, 3, 2]) + + def mapping(x): + return (x[0] - 1,) + + out = ndimage.geometric_transform(data, mapping, data.shape, + order=order) + assert_array_almost_equal(out, [0, 4, 1, 3]) + + @pytest.mark.parametrize('order', range(0, 6)) + @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) + def test_geometric_transform05(self, order, dtype): + data = numpy.array([[1, 1, 1, 1], + [1, 1, 1, 1], + [1, 1, 1, 1]], dtype=dtype) + expected = numpy.array([[0, 1, 1, 1], + [0, 1, 1, 1], + [0, 1, 1, 1]], dtype=dtype) + if data.dtype.kind == 'c': + data -= 1j * data + expected -= 1j * expected + + def mapping(x): + return (x[0], x[1] - 1) + + out = ndimage.geometric_transform(data, mapping, data.shape, + order=order) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform06(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + + def mapping(x): + return (x[0], x[1] - 1) + + out = ndimage.geometric_transform(data, mapping, data.shape, + order=order) + assert_array_almost_equal(out, [[0, 4, 1, 3], + [0, 7, 6, 8], + [0, 3, 5, 3]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform07(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + + def mapping(x): + return (x[0] - 1, x[1]) + + out = ndimage.geometric_transform(data, mapping, data.shape, + order=order) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [4, 1, 3, 2], + [7, 6, 8, 5]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform08(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + + def mapping(x): + return (x[0] - 1, x[1] - 1) + + out = ndimage.geometric_transform(data, mapping, data.shape, + order=order) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [0, 4, 1, 3], + [0, 7, 6, 8]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform10(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + + def mapping(x): + return (x[0] - 1, x[1] - 1) + + if (order > 1): + filtered = ndimage.spline_filter(data, order=order) + else: + filtered = data + out = ndimage.geometric_transform(filtered, mapping, data.shape, + order=order, prefilter=False) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [0, 4, 1, 3], + [0, 7, 6, 8]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform13(self, order): + data = numpy.ones([2], numpy.float64) + + def mapping(x): + return (x[0] // 2,) + + out = ndimage.geometric_transform(data, mapping, [4], order=order) + assert_array_almost_equal(out, [1, 1, 1, 1]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform14(self, order): + data = [1, 5, 2, 6, 3, 7, 4, 4] + + def mapping(x): + return (2 * x[0],) + + out = ndimage.geometric_transform(data, mapping, [4], order=order) + assert_array_almost_equal(out, [1, 2, 3, 4]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform15(self, order): + data = [1, 2, 3, 4] + + def mapping(x): + return (x[0] / 2,) + + out = ndimage.geometric_transform(data, mapping, [8], order=order) + assert_array_almost_equal(out[::2], [1, 2, 3, 4]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform16(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9.0, 10, 11, 12]] + + def mapping(x): + return (x[0], x[1] * 2) + + out = ndimage.geometric_transform(data, mapping, (3, 2), + order=order) + assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform17(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + + def mapping(x): + return (x[0] * 2, x[1]) + + out = ndimage.geometric_transform(data, mapping, (1, 4), + order=order) + assert_array_almost_equal(out, [[1, 2, 3, 4]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform18(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + + def mapping(x): + return (x[0] * 2, x[1] * 2) + + out = ndimage.geometric_transform(data, mapping, (1, 2), + order=order) + assert_array_almost_equal(out, [[1, 3]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform19(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + + def mapping(x): + return (x[0], x[1] / 2) + + out = ndimage.geometric_transform(data, mapping, (3, 8), + order=order) + assert_array_almost_equal(out[..., ::2], data) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform20(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + + def mapping(x): + return (x[0] / 2, x[1]) + + out = ndimage.geometric_transform(data, mapping, (6, 4), + order=order) + assert_array_almost_equal(out[::2, ...], data) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform21(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + + def mapping(x): + return (x[0] / 2, x[1] / 2) + + out = ndimage.geometric_transform(data, mapping, (6, 8), + order=order) + assert_array_almost_equal(out[::2, ::2], data) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform22(self, order): + data = numpy.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]], numpy.float64) + + def mapping1(x): + return (x[0] / 2, x[1] / 2) + + def mapping2(x): + return (x[0] * 2, x[1] * 2) + + out = ndimage.geometric_transform(data, mapping1, + (6, 8), order=order) + out = ndimage.geometric_transform(out, mapping2, + (3, 4), order=order) + assert_array_almost_equal(out, data) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform23(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + + def mapping(x): + return (1, x[0] * 2) + + out = ndimage.geometric_transform(data, mapping, (2,), order=order) + out = out.astype(numpy.int32) + assert_array_almost_equal(out, [5, 7]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_geometric_transform24(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + + def mapping(x, a, b): + return (a, x[0] * b) + + out = ndimage.geometric_transform( + data, mapping, (2,), order=order, extra_arguments=(1,), + extra_keywords={'b': 2}) + assert_array_almost_equal(out, [5, 7]) + + def test_geometric_transform_grid_constant_order1(self): + # verify interpolation outside the original bounds + x = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype=float) + + def mapping(x): + return (x[0] - 0.5), (x[1] - 0.5) + + expected_result = numpy.array([[0.25, 0.75, 1.25], + [1.25, 3.00, 4.00]]) + assert_array_almost_equal( + ndimage.geometric_transform(x, mapping, mode='grid-constant', + order=1), + expected_result, + ) + + @pytest.mark.parametrize('mode', ['grid-constant', 'grid-wrap', 'nearest', + 'mirror', 'reflect']) + @pytest.mark.parametrize('order', range(6)) + def test_geometric_transform_vs_padded(self, order, mode): + x = numpy.arange(144, dtype=float).reshape(12, 12) + + def mapping(x): + return (x[0] - 0.4), (x[1] + 2.3) + + # Manually pad and then extract center after the transform to get the + # expected result. + npad = 24 + pad_mode = ndimage_to_numpy_mode.get(mode) + xp = numpy.pad(x, npad, mode=pad_mode) + center_slice = tuple([slice(npad, -npad)] * x.ndim) + expected_result = ndimage.geometric_transform( + xp, mapping, mode=mode, order=order)[center_slice] + + assert_allclose( + ndimage.geometric_transform(x, mapping, mode=mode, + order=order), + expected_result, + rtol=1e-7, + ) + + def test_geometric_transform_endianness_with_output_parameter(self): + # geometric transform given output ndarray or dtype with + # non-native endianness. see issue #4127 + data = numpy.array([1]) + + def mapping(x): + return x + + for out in [data.dtype, data.dtype.newbyteorder(), + numpy.empty_like(data), + numpy.empty_like(data).astype(data.dtype.newbyteorder())]: + returned = ndimage.geometric_transform(data, mapping, data.shape, + output=out) + result = out if returned is None else returned + assert_array_almost_equal(result, [1]) + + def test_geometric_transform_with_string_output(self): + data = numpy.array([1]) + + def mapping(x): + return x + + out = ndimage.geometric_transform(data, mapping, output='f') + assert_(out.dtype is numpy.dtype('f')) + assert_array_almost_equal(out, [1]) + + @pytest.mark.parametrize('order', range(0, 6)) + @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) + def test_map_coordinates01(self, order, dtype): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + expected = numpy.array([[0, 0, 0, 0], + [0, 4, 1, 3], + [0, 7, 6, 8]]) + if data.dtype.kind == 'c': + data = data - 1j * data + expected = expected - 1j * expected + + idx = numpy.indices(data.shape) + idx -= 1 + + out = ndimage.map_coordinates(data, idx, order=order) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_map_coordinates02(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + idx = numpy.indices(data.shape, numpy.float64) + idx -= 0.5 + + out1 = ndimage.shift(data, 0.5, order=order) + out2 = ndimage.map_coordinates(data, idx, order=order) + assert_array_almost_equal(out1, out2) + + def test_map_coordinates03(self): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]], order='F') + idx = numpy.indices(data.shape) - 1 + out = ndimage.map_coordinates(data, idx) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [0, 4, 1, 3], + [0, 7, 6, 8]]) + assert_array_almost_equal(out, ndimage.shift(data, (1, 1))) + idx = numpy.indices(data[::2].shape) - 1 + out = ndimage.map_coordinates(data[::2], idx) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [0, 4, 1, 3]]) + assert_array_almost_equal(out, ndimage.shift(data[::2], (1, 1))) + idx = numpy.indices(data[:, ::2].shape) - 1 + out = ndimage.map_coordinates(data[:, ::2], idx) + assert_array_almost_equal(out, [[0, 0], [0, 4], [0, 7]]) + assert_array_almost_equal(out, ndimage.shift(data[:, ::2], (1, 1))) + + def test_map_coordinates_endianness_with_output_parameter(self): + # output parameter given as array or dtype with either endianness + # see issue #4127 + data = numpy.array([[1, 2], [7, 6]]) + expected = numpy.array([[0, 0], [0, 1]]) + idx = numpy.indices(data.shape) + idx -= 1 + for out in [ + data.dtype, + data.dtype.newbyteorder(), + numpy.empty_like(expected), + numpy.empty_like(expected).astype(expected.dtype.newbyteorder()) + ]: + returned = ndimage.map_coordinates(data, idx, output=out) + result = out if returned is None else returned + assert_array_almost_equal(result, expected) + + def test_map_coordinates_with_string_output(self): + data = numpy.array([[1]]) + idx = numpy.indices(data.shape) + out = ndimage.map_coordinates(data, idx, output='f') + assert_(out.dtype is numpy.dtype('f')) + assert_array_almost_equal(out, [[1]]) + + @pytest.mark.skipif('win32' in sys.platform or numpy.intp(0).itemsize < 8, + reason='do not run on 32 bit or windows ' + '(no sparse memory)') + def test_map_coordinates_large_data(self): + # check crash on large data + try: + n = 30000 + a = numpy.empty(n**2, dtype=numpy.float32).reshape(n, n) + # fill the part we might read + a[n - 3:, n - 3:] = 0 + ndimage.map_coordinates(a, [[n - 1.5], [n - 1.5]], order=1) + except MemoryError as e: + raise pytest.skip('Not enough memory available') from e + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform01(self, order): + data = numpy.array([1]) + out = ndimage.affine_transform(data, [[1]], order=order) + assert_array_almost_equal(out, [1]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform02(self, order): + data = numpy.ones([4]) + out = ndimage.affine_transform(data, [[1]], order=order) + assert_array_almost_equal(out, [1, 1, 1, 1]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform03(self, order): + data = numpy.ones([4]) + out = ndimage.affine_transform(data, [[1]], -1, order=order) + assert_array_almost_equal(out, [0, 1, 1, 1]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform04(self, order): + data = numpy.array([4, 1, 3, 2]) + out = ndimage.affine_transform(data, [[1]], -1, order=order) + assert_array_almost_equal(out, [0, 4, 1, 3]) + + @pytest.mark.parametrize('order', range(0, 6)) + @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) + def test_affine_transform05(self, order, dtype): + data = numpy.array([[1, 1, 1, 1], + [1, 1, 1, 1], + [1, 1, 1, 1]], dtype=dtype) + expected = numpy.array([[0, 1, 1, 1], + [0, 1, 1, 1], + [0, 1, 1, 1]], dtype=dtype) + if data.dtype.kind == 'c': + data -= 1j * data + expected -= 1j * expected + out = ndimage.affine_transform(data, [[1, 0], [0, 1]], + [0, -1], order=order) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform06(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + out = ndimage.affine_transform(data, [[1, 0], [0, 1]], + [0, -1], order=order) + assert_array_almost_equal(out, [[0, 4, 1, 3], + [0, 7, 6, 8], + [0, 3, 5, 3]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform07(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + out = ndimage.affine_transform(data, [[1, 0], [0, 1]], + [-1, 0], order=order) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [4, 1, 3, 2], + [7, 6, 8, 5]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform08(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + out = ndimage.affine_transform(data, [[1, 0], [0, 1]], + [-1, -1], order=order) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [0, 4, 1, 3], + [0, 7, 6, 8]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform09(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + if (order > 1): + filtered = ndimage.spline_filter(data, order=order) + else: + filtered = data + out = ndimage.affine_transform(filtered, [[1, 0], [0, 1]], + [-1, -1], order=order, + prefilter=False) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [0, 4, 1, 3], + [0, 7, 6, 8]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform10(self, order): + data = numpy.ones([2], numpy.float64) + out = ndimage.affine_transform(data, [[0.5]], output_shape=(4,), + order=order) + assert_array_almost_equal(out, [1, 1, 1, 0]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform11(self, order): + data = [1, 5, 2, 6, 3, 7, 4, 4] + out = ndimage.affine_transform(data, [[2]], 0, (4,), order=order) + assert_array_almost_equal(out, [1, 2, 3, 4]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform12(self, order): + data = [1, 2, 3, 4] + out = ndimage.affine_transform(data, [[0.5]], 0, (8,), order=order) + assert_array_almost_equal(out[::2], [1, 2, 3, 4]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform13(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9.0, 10, 11, 12]] + out = ndimage.affine_transform(data, [[1, 0], [0, 2]], 0, (3, 2), + order=order) + assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform14(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + out = ndimage.affine_transform(data, [[2, 0], [0, 1]], 0, (1, 4), + order=order) + assert_array_almost_equal(out, [[1, 2, 3, 4]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform15(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + out = ndimage.affine_transform(data, [[2, 0], [0, 2]], 0, (1, 2), + order=order) + assert_array_almost_equal(out, [[1, 3]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform16(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + out = ndimage.affine_transform(data, [[1, 0.0], [0, 0.5]], 0, + (3, 8), order=order) + assert_array_almost_equal(out[..., ::2], data) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform17(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + out = ndimage.affine_transform(data, [[0.5, 0], [0, 1]], 0, + (6, 4), order=order) + assert_array_almost_equal(out[::2, ...], data) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform18(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0, + (6, 8), order=order) + assert_array_almost_equal(out[::2, ::2], data) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform19(self, order): + data = numpy.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]], numpy.float64) + out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0, + (6, 8), order=order) + out = ndimage.affine_transform(out, [[2.0, 0], [0, 2.0]], 0, + (3, 4), order=order) + assert_array_almost_equal(out, data) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform20(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + out = ndimage.affine_transform(data, [[0], [2]], 0, (2,), + order=order) + assert_array_almost_equal(out, [1, 3]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform21(self, order): + data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]] + out = ndimage.affine_transform(data, [[2], [0]], 0, (2,), + order=order) + assert_array_almost_equal(out, [1, 9]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform22(self, order): + # shift and offset interaction; see issue #1547 + data = numpy.array([4, 1, 3, 2]) + out = ndimage.affine_transform(data, [[2]], [-1], (3,), + order=order) + assert_array_almost_equal(out, [0, 1, 2]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform23(self, order): + # shift and offset interaction; see issue #1547 + data = numpy.array([4, 1, 3, 2]) + out = ndimage.affine_transform(data, [[0.5]], [-1], (8,), + order=order) + assert_array_almost_equal(out[::2], [0, 4, 1, 3]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform24(self, order): + # consistency between diagonal and non-diagonal case; see issue #1547 + data = numpy.array([4, 1, 3, 2]) + with suppress_warnings() as sup: + sup.filter(UserWarning, + 'The behavior of affine_transform with a 1-D array .* ' + 'has changed') + out1 = ndimage.affine_transform(data, [2], -1, order=order) + out2 = ndimage.affine_transform(data, [[2]], -1, order=order) + assert_array_almost_equal(out1, out2) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform25(self, order): + # consistency between diagonal and non-diagonal case; see issue #1547 + data = numpy.array([4, 1, 3, 2]) + with suppress_warnings() as sup: + sup.filter(UserWarning, + 'The behavior of affine_transform with a 1-D array .* ' + 'has changed') + out1 = ndimage.affine_transform(data, [0.5], -1, order=order) + out2 = ndimage.affine_transform(data, [[0.5]], -1, order=order) + assert_array_almost_equal(out1, out2) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform26(self, order): + # test homogeneous coordinates + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + if (order > 1): + filtered = ndimage.spline_filter(data, order=order) + else: + filtered = data + tform_original = numpy.eye(2) + offset_original = -numpy.ones((2, 1)) + tform_h1 = numpy.hstack((tform_original, offset_original)) + tform_h2 = numpy.vstack((tform_h1, [[0, 0, 1]])) + out1 = ndimage.affine_transform(filtered, tform_original, + offset_original.ravel(), + order=order, prefilter=False) + out2 = ndimage.affine_transform(filtered, tform_h1, order=order, + prefilter=False) + out3 = ndimage.affine_transform(filtered, tform_h2, order=order, + prefilter=False) + for out in [out1, out2, out3]: + assert_array_almost_equal(out, [[0, 0, 0, 0], + [0, 4, 1, 3], + [0, 7, 6, 8]]) + + def test_affine_transform27(self): + # test valid homogeneous transformation matrix + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + tform_h1 = numpy.hstack((numpy.eye(2), -numpy.ones((2, 1)))) + tform_h2 = numpy.vstack((tform_h1, [[5, 2, 1]])) + assert_raises(ValueError, ndimage.affine_transform, data, tform_h2) + + def test_affine_transform_1d_endianness_with_output_parameter(self): + # 1d affine transform given output ndarray or dtype with + # either endianness. see issue #7388 + data = numpy.ones((2, 2)) + for out in [numpy.empty_like(data), + numpy.empty_like(data).astype(data.dtype.newbyteorder()), + data.dtype, data.dtype.newbyteorder()]: + with suppress_warnings() as sup: + sup.filter(UserWarning, + 'The behavior of affine_transform with a 1-D array ' + '.* has changed') + returned = ndimage.affine_transform(data, [1, 1], output=out) + result = out if returned is None else returned + assert_array_almost_equal(result, [[1, 1], [1, 1]]) + + def test_affine_transform_multi_d_endianness_with_output_parameter(self): + # affine transform given output ndarray or dtype with either endianness + # see issue #4127 + data = numpy.array([1]) + for out in [data.dtype, data.dtype.newbyteorder(), + numpy.empty_like(data), + numpy.empty_like(data).astype(data.dtype.newbyteorder())]: + returned = ndimage.affine_transform(data, [[1]], output=out) + result = out if returned is None else returned + assert_array_almost_equal(result, [1]) + + def test_affine_transform_output_shape(self): + # don't require output_shape when out of a different size is given + data = numpy.arange(8, dtype=numpy.float64) + out = numpy.ones((16,)) + + ndimage.affine_transform(data, [[1]], output=out) + assert_array_almost_equal(out[:8], data) + + # mismatched output shape raises an error + with pytest.raises(RuntimeError): + ndimage.affine_transform( + data, [[1]], output=out, output_shape=(12,)) + + def test_affine_transform_with_string_output(self): + data = numpy.array([1]) + out = ndimage.affine_transform(data, [[1]], output='f') + assert_(out.dtype is numpy.dtype('f')) + assert_array_almost_equal(out, [1]) + + @pytest.mark.parametrize('shift', + [(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)]) + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform_shift_via_grid_wrap(self, shift, order): + # For mode 'grid-wrap', integer shifts should match numpy.roll + x = numpy.array([[0, 1], + [2, 3]]) + affine = numpy.zeros((2, 3)) + affine[:2, :2] = numpy.eye(2) + affine[:, 2] = shift + assert_array_almost_equal( + ndimage.affine_transform(x, affine, mode='grid-wrap', order=order), + numpy.roll(x, shift, axis=(0, 1)), + ) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_affine_transform_shift_reflect(self, order): + # shift by x.shape results in reflection + x = numpy.array([[0, 1, 2], + [3, 4, 5]]) + affine = numpy.zeros((2, 3)) + affine[:2, :2] = numpy.eye(2) + affine[:, 2] = x.shape + assert_array_almost_equal( + ndimage.affine_transform(x, affine, mode='reflect', order=order), + x[::-1, ::-1], + ) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift01(self, order): + data = numpy.array([1]) + out = ndimage.shift(data, [1], order=order) + assert_array_almost_equal(out, [0]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift02(self, order): + data = numpy.ones([4]) + out = ndimage.shift(data, [1], order=order) + assert_array_almost_equal(out, [0, 1, 1, 1]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift03(self, order): + data = numpy.ones([4]) + out = ndimage.shift(data, -1, order=order) + assert_array_almost_equal(out, [1, 1, 1, 0]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift04(self, order): + data = numpy.array([4, 1, 3, 2]) + out = ndimage.shift(data, 1, order=order) + assert_array_almost_equal(out, [0, 4, 1, 3]) + + @pytest.mark.parametrize('order', range(0, 6)) + @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) + def test_shift05(self, order, dtype): + data = numpy.array([[1, 1, 1, 1], + [1, 1, 1, 1], + [1, 1, 1, 1]], dtype=dtype) + expected = numpy.array([[0, 1, 1, 1], + [0, 1, 1, 1], + [0, 1, 1, 1]], dtype=dtype) + if data.dtype.kind == 'c': + data -= 1j * data + expected -= 1j * expected + out = ndimage.shift(data, [0, 1], order=order) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('order', range(0, 6)) + @pytest.mark.parametrize('mode', ['constant', 'grid-constant']) + @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) + def test_shift_with_nonzero_cval(self, order, mode, dtype): + data = numpy.array([[1, 1, 1, 1], + [1, 1, 1, 1], + [1, 1, 1, 1]], dtype=dtype) + + expected = numpy.array([[0, 1, 1, 1], + [0, 1, 1, 1], + [0, 1, 1, 1]], dtype=dtype) + + if data.dtype.kind == 'c': + data -= 1j * data + expected -= 1j * expected + cval = 5.0 + expected[:, 0] = cval # specific to shift of [0, 1] used below + out = ndimage.shift(data, [0, 1], order=order, mode=mode, cval=cval) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift06(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + out = ndimage.shift(data, [0, 1], order=order) + assert_array_almost_equal(out, [[0, 4, 1, 3], + [0, 7, 6, 8], + [0, 3, 5, 3]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift07(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + out = ndimage.shift(data, [1, 0], order=order) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [4, 1, 3, 2], + [7, 6, 8, 5]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift08(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + out = ndimage.shift(data, [1, 1], order=order) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [0, 4, 1, 3], + [0, 7, 6, 8]]) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift09(self, order): + data = numpy.array([[4, 1, 3, 2], + [7, 6, 8, 5], + [3, 5, 3, 6]]) + if (order > 1): + filtered = ndimage.spline_filter(data, order=order) + else: + filtered = data + out = ndimage.shift(filtered, [1, 1], order=order, prefilter=False) + assert_array_almost_equal(out, [[0, 0, 0, 0], + [0, 4, 1, 3], + [0, 7, 6, 8]]) + + @pytest.mark.parametrize('shift', + [(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)]) + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift_grid_wrap(self, shift, order): + # For mode 'grid-wrap', integer shifts should match numpy.roll + x = numpy.array([[0, 1], + [2, 3]]) + assert_array_almost_equal( + ndimage.shift(x, shift, mode='grid-wrap', order=order), + numpy.roll(x, shift, axis=(0, 1)), + ) + + @pytest.mark.parametrize('shift', + [(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)]) + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift_grid_constant1(self, shift, order): + # For integer shifts, 'constant' and 'grid-constant' should be equal + x = numpy.arange(20).reshape((5, 4)) + assert_array_almost_equal( + ndimage.shift(x, shift, mode='grid-constant', order=order), + ndimage.shift(x, shift, mode='constant', order=order), + ) + + def test_shift_grid_constant_order1(self): + x = numpy.array([[1, 2, 3], + [4, 5, 6]], dtype=float) + expected_result = numpy.array([[0.25, 0.75, 1.25], + [1.25, 3.00, 4.00]]) + assert_array_almost_equal( + ndimage.shift(x, (0.5, 0.5), mode='grid-constant', order=1), + expected_result, + ) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_shift_reflect(self, order): + # shift by x.shape results in reflection + x = numpy.array([[0, 1, 2], + [3, 4, 5]]) + assert_array_almost_equal( + ndimage.shift(x, x.shape, mode='reflect', order=order), + x[::-1, ::-1], + ) + + @pytest.mark.parametrize('order', range(0, 6)) + @pytest.mark.parametrize('prefilter', [False, True]) + def test_shift_nearest_boundary(self, order, prefilter): + # verify that shifting at least order // 2 beyond the end of the array + # gives a value equal to the edge value. + x = numpy.arange(16) + kwargs = dict(mode='nearest', order=order, prefilter=prefilter) + assert_array_almost_equal( + ndimage.shift(x, order // 2 + 1, **kwargs)[0], x[0], + ) + assert_array_almost_equal( + ndimage.shift(x, -order // 2 - 1, **kwargs)[-1], x[-1], + ) + + @pytest.mark.parametrize('mode', ['grid-constant', 'grid-wrap', 'nearest', + 'mirror', 'reflect']) + @pytest.mark.parametrize('order', range(6)) + def test_shift_vs_padded(self, order, mode): + x = numpy.arange(144, dtype=float).reshape(12, 12) + shift = (0.4, -2.3) + + # manually pad and then extract center to get expected result + npad = 32 + pad_mode = ndimage_to_numpy_mode.get(mode) + xp = numpy.pad(x, npad, mode=pad_mode) + center_slice = tuple([slice(npad, -npad)] * x.ndim) + expected_result = ndimage.shift( + xp, shift, mode=mode, order=order)[center_slice] + + assert_allclose( + ndimage.shift(x, shift, mode=mode, order=order), + expected_result, + rtol=1e-7, + ) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_zoom1(self, order): + for z in [2, [2, 2]]: + arr = numpy.array(list(range(25))).reshape((5, 5)).astype(float) + arr = ndimage.zoom(arr, z, order=order) + assert_equal(arr.shape, (10, 10)) + assert_(numpy.all(arr[-1, :] != 0)) + assert_(numpy.all(arr[-1, :] >= (20 - eps))) + assert_(numpy.all(arr[0, :] <= (5 + eps))) + assert_(numpy.all(arr >= (0 - eps))) + assert_(numpy.all(arr <= (24 + eps))) + + def test_zoom2(self): + arr = numpy.arange(12).reshape((3, 4)) + out = ndimage.zoom(ndimage.zoom(arr, 2), 0.5) + assert_array_equal(out, arr) + + def test_zoom3(self): + arr = numpy.array([[1, 2]]) + out1 = ndimage.zoom(arr, (2, 1)) + out2 = ndimage.zoom(arr, (1, 2)) + + assert_array_almost_equal(out1, numpy.array([[1, 2], [1, 2]])) + assert_array_almost_equal(out2, numpy.array([[1, 1, 2, 2]])) + + @pytest.mark.parametrize('order', range(0, 6)) + @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) + def test_zoom_affine01(self, order, dtype): + data = numpy.asarray([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]], dtype=dtype) + if data.dtype.kind == 'c': + data -= 1j * data + with suppress_warnings() as sup: + sup.filter(UserWarning, + 'The behavior of affine_transform with a 1-D array .* ' + 'has changed') + out = ndimage.affine_transform(data, [0.5, 0.5], 0, + (6, 8), order=order) + assert_array_almost_equal(out[::2, ::2], data) + + def test_zoom_infinity(self): + # Ticket #1419 regression test + dim = 8 + ndimage.zoom(numpy.zeros((dim, dim)), 1. / dim, mode='nearest') + + def test_zoom_zoomfactor_one(self): + # Ticket #1122 regression test + arr = numpy.zeros((1, 5, 5)) + zoom = (1.0, 2.0, 2.0) + + out = ndimage.zoom(arr, zoom, cval=7) + ref = numpy.zeros((1, 10, 10)) + assert_array_almost_equal(out, ref) + + def test_zoom_output_shape_roundoff(self): + arr = numpy.zeros((3, 11, 25)) + zoom = (4.0 / 3, 15.0 / 11, 29.0 / 25) + out = ndimage.zoom(arr, zoom) + assert_array_equal(out.shape, (4, 15, 29)) + + @pytest.mark.parametrize('zoom', [(1, 1), (3, 5), (8, 2), (8, 8)]) + @pytest.mark.parametrize('mode', ['nearest', 'constant', 'wrap', 'reflect', + 'mirror', 'grid-wrap', 'grid-mirror', + 'grid-constant']) + def test_zoom_by_int_order0(self, zoom, mode): + # order 0 zoom should be the same as replication via numpy.kron + # Note: This is not True for general x shapes when grid_mode is False, + # but works here for all modes because the size ratio happens to + # always be an integer when x.shape = (2, 2). + x = numpy.array([[0, 1], + [2, 3]], dtype=float) + # x = numpy.arange(16, dtype=float).reshape(4, 4) + assert_array_almost_equal( + ndimage.zoom(x, zoom, order=0, mode=mode), + numpy.kron(x, numpy.ones(zoom)) + ) + + @pytest.mark.parametrize('shape', [(2, 3), (4, 4)]) + @pytest.mark.parametrize('zoom', [(1, 1), (3, 5), (8, 2), (8, 8)]) + @pytest.mark.parametrize('mode', ['nearest', 'reflect', 'mirror', + 'grid-wrap', 'grid-constant']) + def test_zoom_grid_by_int_order0(self, shape, zoom, mode): + # When grid_mode is True, order 0 zoom should be the same as + # replication via numpy.kron. The only exceptions to this are the + # non-grid modes 'constant' and 'wrap'. + x = numpy.arange(numpy.prod(shape), dtype=float).reshape(shape) + assert_array_almost_equal( + ndimage.zoom(x, zoom, order=0, mode=mode, grid_mode=True), + numpy.kron(x, numpy.ones(zoom)) + ) + + @pytest.mark.parametrize('mode', ['constant', 'wrap']) + def test_zoom_grid_mode_warnings(self, mode): + # Warn on use of non-grid modes when grid_mode is True + x = numpy.arange(9, dtype=float).reshape((3, 3)) + with pytest.warns(UserWarning, + match="It is recommended to use mode"): + ndimage.zoom(x, 2, mode=mode, grid_mode=True), + + @pytest.mark.parametrize('order', range(0, 6)) + def test_rotate01(self, order): + data = numpy.array([[0, 0, 0, 0], + [0, 1, 1, 0], + [0, 0, 0, 0]], dtype=numpy.float64) + out = ndimage.rotate(data, 0, order=order) + assert_array_almost_equal(out, data) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_rotate02(self, order): + data = numpy.array([[0, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 0, 0]], dtype=numpy.float64) + expected = numpy.array([[0, 0, 0], + [0, 0, 0], + [0, 1, 0], + [0, 0, 0]], dtype=numpy.float64) + out = ndimage.rotate(data, 90, order=order) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('order', range(0, 6)) + @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128]) + def test_rotate03(self, order, dtype): + data = numpy.array([[0, 0, 0, 0, 0], + [0, 1, 1, 0, 0], + [0, 0, 0, 0, 0]], dtype=dtype) + expected = numpy.array([[0, 0, 0], + [0, 0, 0], + [0, 1, 0], + [0, 1, 0], + [0, 0, 0]], dtype=dtype) + if data.dtype.kind == 'c': + data -= 1j * data + expected -= 1j * expected + out = ndimage.rotate(data, 90, order=order) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_rotate04(self, order): + data = numpy.array([[0, 0, 0, 0, 0], + [0, 1, 1, 0, 0], + [0, 0, 0, 0, 0]], dtype=numpy.float64) + expected = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 0, 1, 0, 0]], dtype=numpy.float64) + out = ndimage.rotate(data, 90, reshape=False, order=order) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_rotate05(self, order): + data = numpy.empty((4, 3, 3)) + for i in range(3): + data[:, :, i] = numpy.array([[0, 0, 0], + [0, 1, 0], + [0, 1, 0], + [0, 0, 0]], dtype=numpy.float64) + expected = numpy.array([[0, 0, 0, 0], + [0, 1, 1, 0], + [0, 0, 0, 0]], dtype=numpy.float64) + out = ndimage.rotate(data, 90, order=order) + for i in range(3): + assert_array_almost_equal(out[:, :, i], expected) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_rotate06(self, order): + data = numpy.empty((3, 4, 3)) + for i in range(3): + data[:, :, i] = numpy.array([[0, 0, 0, 0], + [0, 1, 1, 0], + [0, 0, 0, 0]], dtype=numpy.float64) + expected = numpy.array([[0, 0, 0], + [0, 1, 0], + [0, 1, 0], + [0, 0, 0]], dtype=numpy.float64) + out = ndimage.rotate(data, 90, order=order) + for i in range(3): + assert_array_almost_equal(out[:, :, i], expected) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_rotate07(self, order): + data = numpy.array([[[0, 0, 0, 0, 0], + [0, 1, 1, 0, 0], + [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64) + data = data.transpose() + expected = numpy.array([[[0, 0, 0], + [0, 1, 0], + [0, 1, 0], + [0, 0, 0], + [0, 0, 0]]] * 2, dtype=numpy.float64) + expected = expected.transpose([2, 1, 0]) + out = ndimage.rotate(data, 90, axes=(0, 1), order=order) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('order', range(0, 6)) + def test_rotate08(self, order): + data = numpy.array([[[0, 0, 0, 0, 0], + [0, 1, 1, 0, 0], + [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64) + data = data.transpose() + expected = numpy.array([[[0, 0, 1, 0, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64) + expected = expected.transpose() + out = ndimage.rotate(data, 90, axes=(0, 1), reshape=False, order=order) + assert_array_almost_equal(out, expected) + + def test_rotate09(self): + data = numpy.array([[0, 0, 0, 0, 0], + [0, 1, 1, 0, 0], + [0, 0, 0, 0, 0]] * 2, dtype=numpy.float64) + with assert_raises(ValueError): + ndimage.rotate(data, 90, axes=(0, data.ndim)) + + def test_rotate10(self): + data = numpy.arange(45, dtype=numpy.float64).reshape((3, 5, 3)) + + # The output of ndimage.rotate before refactoring + expected = numpy.array([[[0.0, 0.0, 0.0], + [0.0, 0.0, 0.0], + [6.54914793, 7.54914793, 8.54914793], + [10.84520162, 11.84520162, 12.84520162], + [0.0, 0.0, 0.0]], + [[6.19286575, 7.19286575, 8.19286575], + [13.4730712, 14.4730712, 15.4730712], + [21.0, 22.0, 23.0], + [28.5269288, 29.5269288, 30.5269288], + [35.80713425, 36.80713425, 37.80713425]], + [[0.0, 0.0, 0.0], + [31.15479838, 32.15479838, 33.15479838], + [35.45085207, 36.45085207, 37.45085207], + [0.0, 0.0, 0.0], + [0.0, 0.0, 0.0]]]) + + out = ndimage.rotate(data, angle=12, reshape=False) + assert_array_almost_equal(out, expected) + + def test_rotate_exact_180(self): + a = numpy.tile(numpy.arange(5), (5, 1)) + b = ndimage.rotate(ndimage.rotate(a, 180), -180) + assert_equal(a, b) + + +def test_zoom_output_shape(): + """Ticket #643""" + x = numpy.arange(12).reshape((3, 4)) + ndimage.zoom(x, 2, output=numpy.zeros((6, 8))) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_measurements.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_measurements.py new file mode 100644 index 0000000000000000000000000000000000000000..135e9a72c94103cc378d87ac9a78e44342bfb55b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_measurements.py @@ -0,0 +1,1409 @@ +import os.path + +import numpy as np +from numpy.testing import ( + assert_, + assert_allclose, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + suppress_warnings, +) +from pytest import raises as assert_raises + +import scipy.ndimage as ndimage + + +from . import types + + +class Test_measurements_stats: + """ndimage._measurements._stats() is a utility used by other functions.""" + + def test_a(self): + x = [0, 1, 2, 6] + labels = [0, 0, 1, 1] + index = [0, 1] + for shp in [(4,), (2, 2)]: + x = np.array(x).reshape(shp) + labels = np.array(labels).reshape(shp) + counts, sums = ndimage._measurements._stats( + x, labels=labels, index=index) + assert_array_equal(counts, [2, 2]) + assert_array_equal(sums, [1.0, 8.0]) + + def test_b(self): + # Same data as test_a, but different labels. The label 9 exceeds the + # length of 'labels', so this test will follow a different code path. + x = [0, 1, 2, 6] + labels = [0, 0, 9, 9] + index = [0, 9] + for shp in [(4,), (2, 2)]: + x = np.array(x).reshape(shp) + labels = np.array(labels).reshape(shp) + counts, sums = ndimage._measurements._stats( + x, labels=labels, index=index) + assert_array_equal(counts, [2, 2]) + assert_array_equal(sums, [1.0, 8.0]) + + def test_a_centered(self): + x = [0, 1, 2, 6] + labels = [0, 0, 1, 1] + index = [0, 1] + for shp in [(4,), (2, 2)]: + x = np.array(x).reshape(shp) + labels = np.array(labels).reshape(shp) + counts, sums, centers = ndimage._measurements._stats( + x, labels=labels, index=index, centered=True) + assert_array_equal(counts, [2, 2]) + assert_array_equal(sums, [1.0, 8.0]) + assert_array_equal(centers, [0.5, 8.0]) + + def test_b_centered(self): + x = [0, 1, 2, 6] + labels = [0, 0, 9, 9] + index = [0, 9] + for shp in [(4,), (2, 2)]: + x = np.array(x).reshape(shp) + labels = np.array(labels).reshape(shp) + counts, sums, centers = ndimage._measurements._stats( + x, labels=labels, index=index, centered=True) + assert_array_equal(counts, [2, 2]) + assert_array_equal(sums, [1.0, 8.0]) + assert_array_equal(centers, [0.5, 8.0]) + + def test_nonint_labels(self): + x = [0, 1, 2, 6] + labels = [0.0, 0.0, 9.0, 9.0] + index = [0.0, 9.0] + for shp in [(4,), (2, 2)]: + x = np.array(x).reshape(shp) + labels = np.array(labels).reshape(shp) + counts, sums, centers = ndimage._measurements._stats( + x, labels=labels, index=index, centered=True) + assert_array_equal(counts, [2, 2]) + assert_array_equal(sums, [1.0, 8.0]) + assert_array_equal(centers, [0.5, 8.0]) + + +class Test_measurements_select: + """ndimage._measurements._select() is a utility used by other functions.""" + + def test_basic(self): + x = [0, 1, 6, 2] + cases = [ + ([0, 0, 1, 1], [0, 1]), # "Small" integer labels + ([0, 0, 9, 9], [0, 9]), # A label larger than len(labels) + ([0.0, 0.0, 7.0, 7.0], [0.0, 7.0]), # Non-integer labels + ] + for labels, index in cases: + result = ndimage._measurements._select( + x, labels=labels, index=index) + assert_(len(result) == 0) + result = ndimage._measurements._select( + x, labels=labels, index=index, find_max=True) + assert_(len(result) == 1) + assert_array_equal(result[0], [1, 6]) + result = ndimage._measurements._select( + x, labels=labels, index=index, find_min=True) + assert_(len(result) == 1) + assert_array_equal(result[0], [0, 2]) + result = ndimage._measurements._select( + x, labels=labels, index=index, find_min=True, + find_min_positions=True) + assert_(len(result) == 2) + assert_array_equal(result[0], [0, 2]) + assert_array_equal(result[1], [0, 3]) + assert_equal(result[1].dtype.kind, 'i') + result = ndimage._measurements._select( + x, labels=labels, index=index, find_max=True, + find_max_positions=True) + assert_(len(result) == 2) + assert_array_equal(result[0], [1, 6]) + assert_array_equal(result[1], [1, 2]) + assert_equal(result[1].dtype.kind, 'i') + + +def test_label01(): + data = np.ones([]) + out, n = ndimage.label(data) + assert_array_almost_equal(out, 1) + assert_equal(n, 1) + + +def test_label02(): + data = np.zeros([]) + out, n = ndimage.label(data) + assert_array_almost_equal(out, 0) + assert_equal(n, 0) + + +def test_label03(): + data = np.ones([1]) + out, n = ndimage.label(data) + assert_array_almost_equal(out, [1]) + assert_equal(n, 1) + + +def test_label04(): + data = np.zeros([1]) + out, n = ndimage.label(data) + assert_array_almost_equal(out, [0]) + assert_equal(n, 0) + + +def test_label05(): + data = np.ones([5]) + out, n = ndimage.label(data) + assert_array_almost_equal(out, [1, 1, 1, 1, 1]) + assert_equal(n, 1) + + +def test_label06(): + data = np.array([1, 0, 1, 1, 0, 1]) + out, n = ndimage.label(data) + assert_array_almost_equal(out, [1, 0, 2, 2, 0, 3]) + assert_equal(n, 3) + + +def test_label07(): + data = np.array([[0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0]]) + out, n = ndimage.label(data) + assert_array_almost_equal(out, [[0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0]]) + assert_equal(n, 0) + + +def test_label08(): + data = np.array([[1, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0], + [1, 1, 0, 0, 0, 0], + [1, 1, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0]]) + out, n = ndimage.label(data) + assert_array_almost_equal(out, [[1, 0, 0, 0, 0, 0], + [0, 0, 2, 2, 0, 0], + [0, 0, 2, 2, 2, 0], + [3, 3, 0, 0, 0, 0], + [3, 3, 0, 0, 0, 0], + [0, 0, 0, 4, 4, 0]]) + assert_equal(n, 4) + + +def test_label09(): + data = np.array([[1, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0], + [1, 1, 0, 0, 0, 0], + [1, 1, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0]]) + struct = ndimage.generate_binary_structure(2, 2) + out, n = ndimage.label(data, struct) + assert_array_almost_equal(out, [[1, 0, 0, 0, 0, 0], + [0, 0, 2, 2, 0, 0], + [0, 0, 2, 2, 2, 0], + [2, 2, 0, 0, 0, 0], + [2, 2, 0, 0, 0, 0], + [0, 0, 0, 3, 3, 0]]) + assert_equal(n, 3) + + +def test_label10(): + data = np.array([[0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 1, 0], + [0, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0]]) + struct = ndimage.generate_binary_structure(2, 2) + out, n = ndimage.label(data, struct) + assert_array_almost_equal(out, [[0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 1, 0], + [0, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0]]) + assert_equal(n, 1) + + +def test_label11(): + for type in types: + data = np.array([[1, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0], + [1, 1, 0, 0, 0, 0], + [1, 1, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0]], type) + out, n = ndimage.label(data) + expected = [[1, 0, 0, 0, 0, 0], + [0, 0, 2, 2, 0, 0], + [0, 0, 2, 2, 2, 0], + [3, 3, 0, 0, 0, 0], + [3, 3, 0, 0, 0, 0], + [0, 0, 0, 4, 4, 0]] + assert_array_almost_equal(out, expected) + assert_equal(n, 4) + + +def test_label11_inplace(): + for type in types: + data = np.array([[1, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0], + [1, 1, 0, 0, 0, 0], + [1, 1, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0]], type) + n = ndimage.label(data, output=data) + expected = [[1, 0, 0, 0, 0, 0], + [0, 0, 2, 2, 0, 0], + [0, 0, 2, 2, 2, 0], + [3, 3, 0, 0, 0, 0], + [3, 3, 0, 0, 0, 0], + [0, 0, 0, 4, 4, 0]] + assert_array_almost_equal(data, expected) + assert_equal(n, 4) + + +def test_label12(): + for type in types: + data = np.array([[0, 0, 0, 0, 1, 1], + [0, 0, 0, 0, 0, 1], + [0, 0, 1, 0, 1, 1], + [0, 0, 1, 1, 1, 1], + [0, 0, 0, 1, 1, 0]], type) + out, n = ndimage.label(data) + expected = [[0, 0, 0, 0, 1, 1], + [0, 0, 0, 0, 0, 1], + [0, 0, 1, 0, 1, 1], + [0, 0, 1, 1, 1, 1], + [0, 0, 0, 1, 1, 0]] + assert_array_almost_equal(out, expected) + assert_equal(n, 1) + + +def test_label13(): + for type in types: + data = np.array([[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1], + [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1], + [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], + type) + out, n = ndimage.label(data) + expected = [[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1], + [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1], + [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] + assert_array_almost_equal(out, expected) + assert_equal(n, 1) + + +def test_label_output_typed(): + data = np.ones([5]) + for t in types: + output = np.zeros([5], dtype=t) + n = ndimage.label(data, output=output) + assert_array_almost_equal(output, 1) + assert_equal(n, 1) + + +def test_label_output_dtype(): + data = np.ones([5]) + for t in types: + output, n = ndimage.label(data, output=t) + assert_array_almost_equal(output, 1) + assert output.dtype == t + + +def test_label_output_wrong_size(): + data = np.ones([5]) + for t in types: + output = np.zeros([10], t) + assert_raises((RuntimeError, ValueError), + ndimage.label, data, output=output) + + +def test_label_structuring_elements(): + data = np.loadtxt(os.path.join(os.path.dirname( + __file__), "data", "label_inputs.txt")) + strels = np.loadtxt(os.path.join( + os.path.dirname(__file__), "data", "label_strels.txt")) + results = np.loadtxt(os.path.join( + os.path.dirname(__file__), "data", "label_results.txt")) + data = data.reshape((-1, 7, 7)) + strels = strels.reshape((-1, 3, 3)) + results = results.reshape((-1, 7, 7)) + r = 0 + for i in range(data.shape[0]): + d = data[i, :, :] + for j in range(strels.shape[0]): + s = strels[j, :, :] + assert_equal(ndimage.label(d, s)[0], results[r, :, :]) + r += 1 + + +def test_ticket_742(): + def SE(img, thresh=.7, size=4): + mask = img > thresh + rank = len(mask.shape) + la, co = ndimage.label(mask, + ndimage.generate_binary_structure(rank, rank)) + _ = ndimage.find_objects(la) + + if np.dtype(np.intp) != np.dtype('i'): + shape = (3, 1240, 1240) + a = np.random.rand(np.prod(shape)).reshape(shape) + # shouldn't crash + SE(a) + + +def test_gh_issue_3025(): + """Github issue #3025 - improper merging of labels""" + d = np.zeros((60, 320)) + d[:, :257] = 1 + d[:, 260:] = 1 + d[36, 257] = 1 + d[35, 258] = 1 + d[35, 259] = 1 + assert ndimage.label(d, np.ones((3, 3)))[1] == 1 + + +def test_label_default_dtype(): + test_array = np.random.rand(10, 10) + label, no_features = ndimage.label(test_array > 0.5) + assert_(label.dtype in (np.int32, np.int64)) + # Shouldn't raise an exception + ndimage.find_objects(label) + + +def test_find_objects01(): + data = np.ones([], dtype=int) + out = ndimage.find_objects(data) + assert_(out == [()]) + + +def test_find_objects02(): + data = np.zeros([], dtype=int) + out = ndimage.find_objects(data) + assert_(out == []) + + +def test_find_objects03(): + data = np.ones([1], dtype=int) + out = ndimage.find_objects(data) + assert_equal(out, [(slice(0, 1, None),)]) + + +def test_find_objects04(): + data = np.zeros([1], dtype=int) + out = ndimage.find_objects(data) + assert_equal(out, []) + + +def test_find_objects05(): + data = np.ones([5], dtype=int) + out = ndimage.find_objects(data) + assert_equal(out, [(slice(0, 5, None),)]) + + +def test_find_objects06(): + data = np.array([1, 0, 2, 2, 0, 3]) + out = ndimage.find_objects(data) + assert_equal(out, [(slice(0, 1, None),), + (slice(2, 4, None),), + (slice(5, 6, None),)]) + + +def test_find_objects07(): + data = np.array([[0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0]]) + out = ndimage.find_objects(data) + assert_equal(out, []) + + +def test_find_objects08(): + data = np.array([[1, 0, 0, 0, 0, 0], + [0, 0, 2, 2, 0, 0], + [0, 0, 2, 2, 2, 0], + [3, 3, 0, 0, 0, 0], + [3, 3, 0, 0, 0, 0], + [0, 0, 0, 4, 4, 0]]) + out = ndimage.find_objects(data) + assert_equal(out, [(slice(0, 1, None), slice(0, 1, None)), + (slice(1, 3, None), slice(2, 5, None)), + (slice(3, 5, None), slice(0, 2, None)), + (slice(5, 6, None), slice(3, 5, None))]) + + +def test_find_objects09(): + data = np.array([[1, 0, 0, 0, 0, 0], + [0, 0, 2, 2, 0, 0], + [0, 0, 2, 2, 2, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 4, 4, 0]]) + out = ndimage.find_objects(data) + assert_equal(out, [(slice(0, 1, None), slice(0, 1, None)), + (slice(1, 3, None), slice(2, 5, None)), + None, + (slice(5, 6, None), slice(3, 5, None))]) + + +def test_value_indices01(): + "Test dictionary keys and entries" + data = np.array([[1, 0, 0, 0, 0, 0], + [0, 0, 2, 2, 0, 0], + [0, 0, 2, 2, 2, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 4, 4, 0]]) + vi = ndimage.value_indices(data, ignore_value=0) + true_keys = [1, 2, 4] + assert_equal(list(vi.keys()), true_keys) + + truevi = {} + for k in true_keys: + truevi[k] = np.where(data == k) + + vi = ndimage.value_indices(data, ignore_value=0) + assert_equal(vi, truevi) + + +def test_value_indices02(): + "Test input checking" + data = np.zeros((5, 4), dtype=np.float32) + msg = "Parameter 'arr' must be an integer array" + with assert_raises(ValueError, match=msg): + ndimage.value_indices(data) + + +def test_value_indices03(): + "Test different input array shapes, from 1-D to 4-D" + for shape in [(36,), (18, 2), (3, 3, 4), (3, 3, 2, 2)]: + a = np.array((12*[1]+12*[2]+12*[3]), dtype=np.int32).reshape(shape) + trueKeys = np.unique(a) + vi = ndimage.value_indices(a) + assert_equal(list(vi.keys()), list(trueKeys)) + for k in trueKeys: + trueNdx = np.where(a == k) + assert_equal(vi[k], trueNdx) + + +def test_sum01(): + for type in types: + input = np.array([], type) + output = ndimage.sum(input) + assert_equal(output, 0.0) + + +def test_sum02(): + for type in types: + input = np.zeros([0, 4], type) + output = ndimage.sum(input) + assert_equal(output, 0.0) + + +def test_sum03(): + for type in types: + input = np.ones([], type) + output = ndimage.sum(input) + assert_almost_equal(output, 1.0) + + +def test_sum04(): + for type in types: + input = np.array([1, 2], type) + output = ndimage.sum(input) + assert_almost_equal(output, 3.0) + + +def test_sum05(): + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.sum(input) + assert_almost_equal(output, 10.0) + + +def test_sum06(): + labels = np.array([], bool) + for type in types: + input = np.array([], type) + output = ndimage.sum(input, labels=labels) + assert_equal(output, 0.0) + + +def test_sum07(): + labels = np.ones([0, 4], bool) + for type in types: + input = np.zeros([0, 4], type) + output = ndimage.sum(input, labels=labels) + assert_equal(output, 0.0) + + +def test_sum08(): + labels = np.array([1, 0], bool) + for type in types: + input = np.array([1, 2], type) + output = ndimage.sum(input, labels=labels) + assert_equal(output, 1.0) + + +def test_sum09(): + labels = np.array([1, 0], bool) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.sum(input, labels=labels) + assert_almost_equal(output, 4.0) + + +def test_sum10(): + labels = np.array([1, 0], bool) + input = np.array([[1, 2], [3, 4]], bool) + output = ndimage.sum(input, labels=labels) + assert_almost_equal(output, 2.0) + + +def test_sum11(): + labels = np.array([1, 2], np.int8) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.sum(input, labels=labels, + index=2) + assert_almost_equal(output, 6.0) + + +def test_sum12(): + labels = np.array([[1, 2], [2, 4]], np.int8) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.sum(input, labels=labels, index=[4, 8, 2]) + assert_array_almost_equal(output, [4.0, 0.0, 5.0]) + + +def test_sum_labels(): + labels = np.array([[1, 2], [2, 4]], np.int8) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output_sum = ndimage.sum(input, labels=labels, index=[4, 8, 2]) + output_labels = ndimage.sum_labels( + input, labels=labels, index=[4, 8, 2]) + + assert (output_sum == output_labels).all() + assert_array_almost_equal(output_labels, [4.0, 0.0, 5.0]) + + +def test_mean01(): + labels = np.array([1, 0], bool) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.mean(input, labels=labels) + assert_almost_equal(output, 2.0) + + +def test_mean02(): + labels = np.array([1, 0], bool) + input = np.array([[1, 2], [3, 4]], bool) + output = ndimage.mean(input, labels=labels) + assert_almost_equal(output, 1.0) + + +def test_mean03(): + labels = np.array([1, 2]) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.mean(input, labels=labels, + index=2) + assert_almost_equal(output, 3.0) + + +def test_mean04(): + labels = np.array([[1, 2], [2, 4]], np.int8) + with np.errstate(all='ignore'): + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.mean(input, labels=labels, + index=[4, 8, 2]) + assert_array_almost_equal(output[[0, 2]], [4.0, 2.5]) + assert_(np.isnan(output[1])) + + +def test_minimum01(): + labels = np.array([1, 0], bool) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.minimum(input, labels=labels) + assert_almost_equal(output, 1.0) + + +def test_minimum02(): + labels = np.array([1, 0], bool) + input = np.array([[2, 2], [2, 4]], bool) + output = ndimage.minimum(input, labels=labels) + assert_almost_equal(output, 1.0) + + +def test_minimum03(): + labels = np.array([1, 2]) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.minimum(input, labels=labels, + index=2) + assert_almost_equal(output, 2.0) + + +def test_minimum04(): + labels = np.array([[1, 2], [2, 3]]) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.minimum(input, labels=labels, + index=[2, 3, 8]) + assert_array_almost_equal(output, [2.0, 4.0, 0.0]) + + +def test_maximum01(): + labels = np.array([1, 0], bool) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.maximum(input, labels=labels) + assert_almost_equal(output, 3.0) + + +def test_maximum02(): + labels = np.array([1, 0], bool) + input = np.array([[2, 2], [2, 4]], bool) + output = ndimage.maximum(input, labels=labels) + assert_almost_equal(output, 1.0) + + +def test_maximum03(): + labels = np.array([1, 2]) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.maximum(input, labels=labels, + index=2) + assert_almost_equal(output, 4.0) + + +def test_maximum04(): + labels = np.array([[1, 2], [2, 3]]) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.maximum(input, labels=labels, + index=[2, 3, 8]) + assert_array_almost_equal(output, [3.0, 4.0, 0.0]) + + +def test_maximum05(): + # Regression test for ticket #501 (Trac) + x = np.array([-3, -2, -1]) + assert_equal(ndimage.maximum(x), -1) + + +def test_median01(): + a = np.array([[1, 2, 0, 1], + [5, 3, 0, 4], + [0, 0, 0, 7], + [9, 3, 0, 0]]) + labels = np.array([[1, 1, 0, 2], + [1, 1, 0, 2], + [0, 0, 0, 2], + [3, 3, 0, 0]]) + output = ndimage.median(a, labels=labels, index=[1, 2, 3]) + assert_array_almost_equal(output, [2.5, 4.0, 6.0]) + + +def test_median02(): + a = np.array([[1, 2, 0, 1], + [5, 3, 0, 4], + [0, 0, 0, 7], + [9, 3, 0, 0]]) + output = ndimage.median(a) + assert_almost_equal(output, 1.0) + + +def test_median03(): + a = np.array([[1, 2, 0, 1], + [5, 3, 0, 4], + [0, 0, 0, 7], + [9, 3, 0, 0]]) + labels = np.array([[1, 1, 0, 2], + [1, 1, 0, 2], + [0, 0, 0, 2], + [3, 3, 0, 0]]) + output = ndimage.median(a, labels=labels) + assert_almost_equal(output, 3.0) + + +def test_median_gh12836_bool(): + # test boolean addition fix on example from gh-12836 + a = np.asarray([1, 1], dtype=bool) + output = ndimage.median(a, labels=np.ones((2,)), index=[1]) + assert_array_almost_equal(output, [1.0]) + + +def test_median_no_int_overflow(): + # test integer overflow fix on example from gh-12836 + a = np.asarray([65, 70], dtype=np.int8) + output = ndimage.median(a, labels=np.ones((2,)), index=[1]) + assert_array_almost_equal(output, [67.5]) + + +def test_variance01(): + with np.errstate(all='ignore'): + for type in types: + input = np.array([], type) + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "Mean of empty slice") + output = ndimage.variance(input) + assert_(np.isnan(output)) + + +def test_variance02(): + for type in types: + input = np.array([1], type) + output = ndimage.variance(input) + assert_almost_equal(output, 0.0) + + +def test_variance03(): + for type in types: + input = np.array([1, 3], type) + output = ndimage.variance(input) + assert_almost_equal(output, 1.0) + + +def test_variance04(): + input = np.array([1, 0], bool) + output = ndimage.variance(input) + assert_almost_equal(output, 0.25) + + +def test_variance05(): + labels = [2, 2, 3] + for type in types: + input = np.array([1, 3, 8], type) + output = ndimage.variance(input, labels, 2) + assert_almost_equal(output, 1.0) + + +def test_variance06(): + labels = [2, 2, 3, 3, 4] + with np.errstate(all='ignore'): + for type in types: + input = np.array([1, 3, 8, 10, 8], type) + output = ndimage.variance(input, labels, [2, 3, 4]) + assert_array_almost_equal(output, [1.0, 1.0, 0.0]) + + +def test_standard_deviation01(): + with np.errstate(all='ignore'): + for type in types: + input = np.array([], type) + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "Mean of empty slice") + output = ndimage.standard_deviation(input) + assert_(np.isnan(output)) + + +def test_standard_deviation02(): + for type in types: + input = np.array([1], type) + output = ndimage.standard_deviation(input) + assert_almost_equal(output, 0.0) + + +def test_standard_deviation03(): + for type in types: + input = np.array([1, 3], type) + output = ndimage.standard_deviation(input) + assert_almost_equal(output, np.sqrt(1.0)) + + +def test_standard_deviation04(): + input = np.array([1, 0], bool) + output = ndimage.standard_deviation(input) + assert_almost_equal(output, 0.5) + + +def test_standard_deviation05(): + labels = [2, 2, 3] + for type in types: + input = np.array([1, 3, 8], type) + output = ndimage.standard_deviation(input, labels, 2) + assert_almost_equal(output, 1.0) + + +def test_standard_deviation06(): + labels = [2, 2, 3, 3, 4] + with np.errstate(all='ignore'): + for type in types: + input = np.array([1, 3, 8, 10, 8], type) + output = ndimage.standard_deviation(input, labels, [2, 3, 4]) + assert_array_almost_equal(output, [1.0, 1.0, 0.0]) + + +def test_standard_deviation07(): + labels = [1] + with np.errstate(all='ignore'): + for type in types: + input = np.array([-0.00619519], type) + output = ndimage.standard_deviation(input, labels, [1]) + assert_array_almost_equal(output, [0]) + + +def test_minimum_position01(): + labels = np.array([1, 0], bool) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.minimum_position(input, labels=labels) + assert_equal(output, (0, 0)) + + +def test_minimum_position02(): + for type in types: + input = np.array([[5, 4, 2, 5], + [3, 7, 0, 2], + [1, 5, 1, 1]], type) + output = ndimage.minimum_position(input) + assert_equal(output, (1, 2)) + + +def test_minimum_position03(): + input = np.array([[5, 4, 2, 5], + [3, 7, 0, 2], + [1, 5, 1, 1]], bool) + output = ndimage.minimum_position(input) + assert_equal(output, (1, 2)) + + +def test_minimum_position04(): + input = np.array([[5, 4, 2, 5], + [3, 7, 1, 2], + [1, 5, 1, 1]], bool) + output = ndimage.minimum_position(input) + assert_equal(output, (0, 0)) + + +def test_minimum_position05(): + labels = [1, 2, 0, 4] + for type in types: + input = np.array([[5, 4, 2, 5], + [3, 7, 0, 2], + [1, 5, 2, 3]], type) + output = ndimage.minimum_position(input, labels) + assert_equal(output, (2, 0)) + + +def test_minimum_position06(): + labels = [1, 2, 3, 4] + for type in types: + input = np.array([[5, 4, 2, 5], + [3, 7, 0, 2], + [1, 5, 1, 1]], type) + output = ndimage.minimum_position(input, labels, 2) + assert_equal(output, (0, 1)) + + +def test_minimum_position07(): + labels = [1, 2, 3, 4] + for type in types: + input = np.array([[5, 4, 2, 5], + [3, 7, 0, 2], + [1, 5, 1, 1]], type) + output = ndimage.minimum_position(input, labels, + [2, 3]) + assert_equal(output[0], (0, 1)) + assert_equal(output[1], (1, 2)) + + +def test_maximum_position01(): + labels = np.array([1, 0], bool) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output = ndimage.maximum_position(input, + labels=labels) + assert_equal(output, (1, 0)) + + +def test_maximum_position02(): + for type in types: + input = np.array([[5, 4, 2, 5], + [3, 7, 8, 2], + [1, 5, 1, 1]], type) + output = ndimage.maximum_position(input) + assert_equal(output, (1, 2)) + + +def test_maximum_position03(): + input = np.array([[5, 4, 2, 5], + [3, 7, 8, 2], + [1, 5, 1, 1]], bool) + output = ndimage.maximum_position(input) + assert_equal(output, (0, 0)) + + +def test_maximum_position04(): + labels = [1, 2, 0, 4] + for type in types: + input = np.array([[5, 4, 2, 5], + [3, 7, 8, 2], + [1, 5, 1, 1]], type) + output = ndimage.maximum_position(input, labels) + assert_equal(output, (1, 1)) + + +def test_maximum_position05(): + labels = [1, 2, 0, 4] + for type in types: + input = np.array([[5, 4, 2, 5], + [3, 7, 8, 2], + [1, 5, 1, 1]], type) + output = ndimage.maximum_position(input, labels, 1) + assert_equal(output, (0, 0)) + + +def test_maximum_position06(): + labels = [1, 2, 0, 4] + for type in types: + input = np.array([[5, 4, 2, 5], + [3, 7, 8, 2], + [1, 5, 1, 1]], type) + output = ndimage.maximum_position(input, labels, + [1, 2]) + assert_equal(output[0], (0, 0)) + assert_equal(output[1], (1, 1)) + + +def test_maximum_position07(): + # Test float labels + labels = np.array([1.0, 2.5, 0.0, 4.5]) + for type in types: + input = np.array([[5, 4, 2, 5], + [3, 7, 8, 2], + [1, 5, 1, 1]], type) + output = ndimage.maximum_position(input, labels, + [1.0, 4.5]) + assert_equal(output[0], (0, 0)) + assert_equal(output[1], (0, 3)) + + +def test_extrema01(): + labels = np.array([1, 0], bool) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output1 = ndimage.extrema(input, labels=labels) + output2 = ndimage.minimum(input, labels=labels) + output3 = ndimage.maximum(input, labels=labels) + output4 = ndimage.minimum_position(input, + labels=labels) + output5 = ndimage.maximum_position(input, + labels=labels) + assert_equal(output1, (output2, output3, output4, output5)) + + +def test_extrema02(): + labels = np.array([1, 2]) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output1 = ndimage.extrema(input, labels=labels, + index=2) + output2 = ndimage.minimum(input, labels=labels, + index=2) + output3 = ndimage.maximum(input, labels=labels, + index=2) + output4 = ndimage.minimum_position(input, + labels=labels, index=2) + output5 = ndimage.maximum_position(input, + labels=labels, index=2) + assert_equal(output1, (output2, output3, output4, output5)) + + +def test_extrema03(): + labels = np.array([[1, 2], [2, 3]]) + for type in types: + input = np.array([[1, 2], [3, 4]], type) + output1 = ndimage.extrema(input, labels=labels, + index=[2, 3, 8]) + output2 = ndimage.minimum(input, labels=labels, + index=[2, 3, 8]) + output3 = ndimage.maximum(input, labels=labels, + index=[2, 3, 8]) + output4 = ndimage.minimum_position(input, + labels=labels, index=[2, 3, 8]) + output5 = ndimage.maximum_position(input, + labels=labels, index=[2, 3, 8]) + assert_array_almost_equal(output1[0], output2) + assert_array_almost_equal(output1[1], output3) + assert_array_almost_equal(output1[2], output4) + assert_array_almost_equal(output1[3], output5) + + +def test_extrema04(): + labels = [1, 2, 0, 4] + for type in types: + input = np.array([[5, 4, 2, 5], + [3, 7, 8, 2], + [1, 5, 1, 1]], type) + output1 = ndimage.extrema(input, labels, [1, 2]) + output2 = ndimage.minimum(input, labels, [1, 2]) + output3 = ndimage.maximum(input, labels, [1, 2]) + output4 = ndimage.minimum_position(input, labels, + [1, 2]) + output5 = ndimage.maximum_position(input, labels, + [1, 2]) + assert_array_almost_equal(output1[0], output2) + assert_array_almost_equal(output1[1], output3) + assert_array_almost_equal(output1[2], output4) + assert_array_almost_equal(output1[3], output5) + + +def test_center_of_mass01(): + expected = [0.0, 0.0] + for type in types: + input = np.array([[1, 0], [0, 0]], type) + output = ndimage.center_of_mass(input) + assert_array_almost_equal(output, expected) + + +def test_center_of_mass02(): + expected = [1, 0] + for type in types: + input = np.array([[0, 0], [1, 0]], type) + output = ndimage.center_of_mass(input) + assert_array_almost_equal(output, expected) + + +def test_center_of_mass03(): + expected = [0, 1] + for type in types: + input = np.array([[0, 1], [0, 0]], type) + output = ndimage.center_of_mass(input) + assert_array_almost_equal(output, expected) + + +def test_center_of_mass04(): + expected = [1, 1] + for type in types: + input = np.array([[0, 0], [0, 1]], type) + output = ndimage.center_of_mass(input) + assert_array_almost_equal(output, expected) + + +def test_center_of_mass05(): + expected = [0.5, 0.5] + for type in types: + input = np.array([[1, 1], [1, 1]], type) + output = ndimage.center_of_mass(input) + assert_array_almost_equal(output, expected) + + +def test_center_of_mass06(): + expected = [0.5, 0.5] + input = np.array([[1, 2], [3, 1]], bool) + output = ndimage.center_of_mass(input) + assert_array_almost_equal(output, expected) + + +def test_center_of_mass07(): + labels = [1, 0] + expected = [0.5, 0.0] + input = np.array([[1, 2], [3, 1]], bool) + output = ndimage.center_of_mass(input, labels) + assert_array_almost_equal(output, expected) + + +def test_center_of_mass08(): + labels = [1, 2] + expected = [0.5, 1.0] + input = np.array([[5, 2], [3, 1]], bool) + output = ndimage.center_of_mass(input, labels, 2) + assert_array_almost_equal(output, expected) + + +def test_center_of_mass09(): + labels = [1, 2] + expected = [(0.5, 0.0), (0.5, 1.0)] + input = np.array([[1, 2], [1, 1]], bool) + output = ndimage.center_of_mass(input, labels, [1, 2]) + assert_array_almost_equal(output, expected) + + +def test_histogram01(): + expected = np.ones(10) + input = np.arange(10) + output = ndimage.histogram(input, 0, 10, 10) + assert_array_almost_equal(output, expected) + + +def test_histogram02(): + labels = [1, 1, 1, 1, 2, 2, 2, 2] + expected = [0, 2, 0, 1, 1] + input = np.array([1, 1, 3, 4, 3, 3, 3, 3]) + output = ndimage.histogram(input, 0, 4, 5, labels, 1) + assert_array_almost_equal(output, expected) + + +def test_histogram03(): + labels = [1, 0, 1, 1, 2, 2, 2, 2] + expected1 = [0, 1, 0, 1, 1] + expected2 = [0, 0, 0, 3, 0] + input = np.array([1, 1, 3, 4, 3, 5, 3, 3]) + output = ndimage.histogram(input, 0, 4, 5, labels, (1, 2)) + + assert_array_almost_equal(output[0], expected1) + assert_array_almost_equal(output[1], expected2) + + +def test_stat_funcs_2d(): + a = np.array([[5, 6, 0, 0, 0], [8, 9, 0, 0, 0], [0, 0, 0, 3, 5]]) + lbl = np.array([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 2, 2]]) + + mean = ndimage.mean(a, labels=lbl, index=[1, 2]) + assert_array_equal(mean, [7.0, 4.0]) + + var = ndimage.variance(a, labels=lbl, index=[1, 2]) + assert_array_equal(var, [2.5, 1.0]) + + std = ndimage.standard_deviation(a, labels=lbl, index=[1, 2]) + assert_array_almost_equal(std, np.sqrt([2.5, 1.0])) + + med = ndimage.median(a, labels=lbl, index=[1, 2]) + assert_array_equal(med, [7.0, 4.0]) + + min = ndimage.minimum(a, labels=lbl, index=[1, 2]) + assert_array_equal(min, [5, 3]) + + max = ndimage.maximum(a, labels=lbl, index=[1, 2]) + assert_array_equal(max, [9, 5]) + + +class TestWatershedIft: + + def test_watershed_ift01(self): + data = np.array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 0, 0, 0, 1, 0], + [0, 1, 0, 0, 0, 1, 0], + [0, 1, 0, 0, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], np.uint8) + markers = np.array([[-1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], np.int8) + out = ndimage.watershed_ift(data, markers, structure=[[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + expected = [[-1, -1, -1, -1, -1, -1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, -1, -1, -1, -1, -1, -1], + [-1, -1, -1, -1, -1, -1, -1]] + assert_array_almost_equal(out, expected) + + def test_watershed_ift02(self): + data = np.array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 0, 0, 0, 1, 0], + [0, 1, 0, 0, 0, 1, 0], + [0, 1, 0, 0, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], np.uint8) + markers = np.array([[-1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], np.int8) + out = ndimage.watershed_ift(data, markers) + expected = [[-1, -1, -1, -1, -1, -1, -1], + [-1, -1, 1, 1, 1, -1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, -1, 1, 1, 1, -1, -1], + [-1, -1, -1, -1, -1, -1, -1], + [-1, -1, -1, -1, -1, -1, -1]] + assert_array_almost_equal(out, expected) + + def test_watershed_ift03(self): + data = np.array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 0, 1, 0, 1, 0], + [0, 1, 0, 1, 0, 1, 0], + [0, 1, 0, 1, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0]], np.uint8) + markers = np.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 2, 0, 3, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, -1]], np.int8) + out = ndimage.watershed_ift(data, markers) + expected = [[-1, -1, -1, -1, -1, -1, -1], + [-1, -1, 2, -1, 3, -1, -1], + [-1, 2, 2, 3, 3, 3, -1], + [-1, 2, 2, 3, 3, 3, -1], + [-1, 2, 2, 3, 3, 3, -1], + [-1, -1, 2, -1, 3, -1, -1], + [-1, -1, -1, -1, -1, -1, -1]] + assert_array_almost_equal(out, expected) + + def test_watershed_ift04(self): + data = np.array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 0, 1, 0, 1, 0], + [0, 1, 0, 1, 0, 1, 0], + [0, 1, 0, 1, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0]], np.uint8) + markers = np.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 2, 0, 3, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, -1]], + np.int8) + out = ndimage.watershed_ift(data, markers, + structure=[[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + expected = [[-1, -1, -1, -1, -1, -1, -1], + [-1, 2, 2, 3, 3, 3, -1], + [-1, 2, 2, 3, 3, 3, -1], + [-1, 2, 2, 3, 3, 3, -1], + [-1, 2, 2, 3, 3, 3, -1], + [-1, 2, 2, 3, 3, 3, -1], + [-1, -1, -1, -1, -1, -1, -1]] + assert_array_almost_equal(out, expected) + + def test_watershed_ift05(self): + data = np.array([[0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 0, 1, 0, 1, 0], + [0, 1, 0, 1, 0, 1, 0], + [0, 1, 0, 1, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0]], np.uint8) + markers = np.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 3, 0, 2, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, -1]], + np.int8) + out = ndimage.watershed_ift(data, markers, + structure=[[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + expected = [[-1, -1, -1, -1, -1, -1, -1], + [-1, 3, 3, 2, 2, 2, -1], + [-1, 3, 3, 2, 2, 2, -1], + [-1, 3, 3, 2, 2, 2, -1], + [-1, 3, 3, 2, 2, 2, -1], + [-1, 3, 3, 2, 2, 2, -1], + [-1, -1, -1, -1, -1, -1, -1]] + assert_array_almost_equal(out, expected) + + def test_watershed_ift06(self): + data = np.array([[0, 1, 0, 0, 0, 1, 0], + [0, 1, 0, 0, 0, 1, 0], + [0, 1, 0, 0, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], np.uint8) + markers = np.array([[-1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], np.int8) + out = ndimage.watershed_ift(data, markers, + structure=[[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + expected = [[-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, -1, -1, -1, -1, -1, -1], + [-1, -1, -1, -1, -1, -1, -1]] + assert_array_almost_equal(out, expected) + + def test_watershed_ift07(self): + shape = (7, 6) + data = np.zeros(shape, dtype=np.uint8) + data = data.transpose() + data[...] = np.array([[0, 1, 0, 0, 0, 1, 0], + [0, 1, 0, 0, 0, 1, 0], + [0, 1, 0, 0, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], np.uint8) + markers = np.array([[-1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], np.int8) + out = np.zeros(shape, dtype=np.int16) + out = out.transpose() + ndimage.watershed_ift(data, markers, + structure=[[1, 1, 1], + [1, 1, 1], + [1, 1, 1]], + output=out) + expected = [[-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, 1, 1, 1, 1, 1, -1], + [-1, -1, -1, -1, -1, -1, -1], + [-1, -1, -1, -1, -1, -1, -1]] + assert_array_almost_equal(out, expected) + + def test_watershed_ift08(self): + # Test cost larger than uint8. See gh-10069. + data = np.array([[256, 0], + [0, 0]], np.uint16) + markers = np.array([[1, 0], + [0, 0]], np.int8) + out = ndimage.watershed_ift(data, markers) + expected = [[1, 1], + [1, 1]] + assert_array_almost_equal(out, expected) + + def test_watershed_ift09(self): + # Test large cost. See gh-19575 + data = np.array([[np.iinfo(np.uint16).max, 0], + [0, 0]], np.uint16) + markers = np.array([[1, 0], + [0, 0]], np.int8) + out = ndimage.watershed_ift(data, markers) + expected = [[1, 1], + [1, 1]] + assert_allclose(out, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py new file mode 100644 index 0000000000000000000000000000000000000000..d0f47d651f32143c1594b1fe833e51f0ec4f5fb7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py @@ -0,0 +1,2395 @@ +import numpy +import numpy as np +from numpy.testing import (assert_, assert_equal, assert_array_equal, + assert_array_almost_equal) +import pytest +from pytest import raises as assert_raises + +from scipy import ndimage + +from . import types + + +class TestNdimageMorphology: + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf01(self, dtype): + # brute force (bf) distance transform + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_bf(data, 'euclidean', + return_indices=True) + expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 2, 4, 2, 1, 0, 0], + [0, 0, 1, 4, 8, 4, 1, 0, 0], + [0, 0, 1, 2, 4, 2, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]] + assert_array_almost_equal(out * out, expected) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 2, 1, 2, 2, 2, 2], + [3, 3, 3, 2, 1, 2, 3, 3, 3], + [4, 4, 4, 4, 6, 4, 4, 4, 4], + [5, 5, 6, 6, 7, 6, 6, 5, 5], + [6, 6, 6, 7, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 1, 2, 4, 6, 7, 7, 8], + [0, 1, 1, 1, 6, 7, 7, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf02(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_bf(data, 'cityblock', + return_indices=True) + + expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 2, 2, 2, 1, 0, 0], + [0, 0, 1, 2, 3, 2, 1, 0, 0], + [0, 0, 1, 2, 2, 2, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]] + assert_array_almost_equal(out, expected) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 2, 1, 2, 2, 2, 2], + [3, 3, 3, 3, 1, 3, 3, 3, 3], + [4, 4, 4, 4, 7, 4, 4, 4, 4], + [5, 5, 6, 7, 7, 7, 6, 5, 5], + [6, 6, 6, 7, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 1, 1, 4, 7, 7, 7, 8], + [0, 1, 1, 1, 4, 7, 7, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(expected, ft) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf03(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_bf(data, 'chessboard', + return_indices=True) + + expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 2, 1, 1, 0, 0], + [0, 0, 1, 2, 2, 2, 1, 0, 0], + [0, 0, 1, 1, 2, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]] + assert_array_almost_equal(out, expected) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 2, 1, 2, 2, 2, 2], + [3, 3, 4, 2, 2, 2, 4, 3, 3], + [4, 4, 5, 6, 6, 6, 5, 4, 4], + [5, 5, 6, 6, 7, 6, 6, 5, 5], + [6, 6, 6, 7, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 5, 6, 6, 7, 8], + [0, 1, 1, 2, 6, 6, 7, 7, 8], + [0, 1, 1, 2, 6, 7, 7, 7, 8], + [0, 1, 2, 2, 6, 6, 7, 7, 8], + [0, 1, 2, 4, 5, 6, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf04(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + tdt, tft = ndimage.distance_transform_bf(data, return_indices=1) + dts = [] + fts = [] + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ndimage.distance_transform_bf(data, distances=dt) + dts.append(dt) + ft = ndimage.distance_transform_bf( + data, return_distances=False, return_indices=1) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_bf( + data, return_distances=False, return_indices=True, indices=ft) + fts.append(ft) + dt, ft = ndimage.distance_transform_bf( + data, return_indices=1) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ft = ndimage.distance_transform_bf( + data, distances=dt, return_indices=True) + dts.append(dt) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + dt = ndimage.distance_transform_bf( + data, return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_bf( + data, distances=dt, return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + for dt in dts: + assert_array_almost_equal(tdt, dt) + for ft in fts: + assert_array_almost_equal(tft, ft) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf05(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_bf( + data, 'euclidean', return_indices=True, sampling=[2, 2]) + expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 4, 4, 4, 0, 0, 0], + [0, 0, 4, 8, 16, 8, 4, 0, 0], + [0, 0, 4, 16, 32, 16, 4, 0, 0], + [0, 0, 4, 8, 16, 8, 4, 0, 0], + [0, 0, 0, 4, 4, 4, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]] + assert_array_almost_equal(out * out, expected) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 2, 1, 2, 2, 2, 2], + [3, 3, 3, 2, 1, 2, 3, 3, 3], + [4, 4, 4, 4, 6, 4, 4, 4, 4], + [5, 5, 6, 6, 7, 6, 6, 5, 5], + [6, 6, 6, 7, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 1, 2, 4, 6, 7, 7, 8], + [0, 1, 1, 1, 6, 7, 7, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf06(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_bf( + data, 'euclidean', return_indices=True, sampling=[2, 1]) + expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 4, 1, 0, 0, 0], + [0, 0, 1, 4, 8, 4, 1, 0, 0], + [0, 0, 1, 4, 9, 4, 1, 0, 0], + [0, 0, 1, 4, 8, 4, 1, 0, 0], + [0, 0, 0, 1, 4, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]] + assert_array_almost_equal(out * out, expected) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 2, 2, 2, 2, 2, 2], + [3, 3, 3, 3, 2, 3, 3, 3, 3], + [4, 4, 4, 4, 4, 4, 4, 4, 4], + [5, 5, 5, 5, 6, 5, 5, 5, 5], + [6, 6, 6, 6, 7, 6, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 6, 6, 6, 7, 8], + [0, 1, 1, 1, 6, 7, 7, 7, 8], + [0, 1, 1, 1, 7, 7, 7, 7, 8], + [0, 1, 1, 1, 6, 7, 7, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + def test_distance_transform_bf07(self): + # test input validation per discussion on PR #13302 + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]]) + with assert_raises(RuntimeError): + ndimage.distance_transform_bf( + data, return_distances=False, return_indices=False + ) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_cdt01(self, dtype): + # chamfer type distance (cdt) transform + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_cdt( + data, 'cityblock', return_indices=True) + bf = ndimage.distance_transform_bf(data, 'cityblock') + assert_array_almost_equal(bf, out) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 1, 1, 1, 2, 2, 2], + [3, 3, 2, 1, 1, 1, 2, 3, 3], + [4, 4, 4, 4, 1, 4, 4, 4, 4], + [5, 5, 5, 5, 7, 7, 6, 5, 5], + [6, 6, 6, 6, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 1, 1, 4, 7, 7, 7, 8], + [0, 1, 1, 1, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_cdt02(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_cdt(data, 'chessboard', + return_indices=True) + bf = ndimage.distance_transform_bf(data, 'chessboard') + assert_array_almost_equal(bf, out) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 1, 1, 1, 2, 2, 2], + [3, 3, 2, 2, 1, 2, 2, 3, 3], + [4, 4, 3, 2, 2, 2, 3, 4, 4], + [5, 5, 4, 6, 7, 6, 4, 5, 5], + [6, 6, 6, 6, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 3, 4, 6, 7, 8], + [0, 1, 1, 2, 2, 6, 6, 7, 8], + [0, 1, 1, 1, 2, 6, 7, 7, 8], + [0, 1, 1, 2, 6, 6, 7, 7, 8], + [0, 1, 2, 2, 5, 6, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_cdt03(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + tdt, tft = ndimage.distance_transform_cdt(data, return_indices=True) + dts = [] + fts = [] + dt = numpy.zeros(data.shape, dtype=numpy.int32) + ndimage.distance_transform_cdt(data, distances=dt) + dts.append(dt) + ft = ndimage.distance_transform_cdt( + data, return_distances=False, return_indices=True) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_cdt( + data, return_distances=False, return_indices=True, indices=ft) + fts.append(ft) + dt, ft = ndimage.distance_transform_cdt( + data, return_indices=True) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.int32) + ft = ndimage.distance_transform_cdt( + data, distances=dt, return_indices=True) + dts.append(dt) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + dt = ndimage.distance_transform_cdt( + data, return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.int32) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_cdt(data, distances=dt, + return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + for dt in dts: + assert_array_almost_equal(tdt, dt) + for ft in fts: + assert_array_almost_equal(tft, ft) + + def test_distance_transform_cdt04(self): + # test input validation per discussion on PR #13302 + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]]) + indices_out = numpy.zeros((data.ndim,) + data.shape, dtype=numpy.int32) + with assert_raises(RuntimeError): + ndimage.distance_transform_bf( + data, + return_distances=True, + return_indices=False, + indices=indices_out + ) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_cdt05(self, dtype): + # test custom metric type per discussion on issue #17381 + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + metric_arg = np.ones((3, 3)) + actual = ndimage.distance_transform_cdt(data, metric=metric_arg) + assert actual.sum() == -21 + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_edt01(self, dtype): + # euclidean distance transform (edt) + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_edt(data, return_indices=True) + bf = ndimage.distance_transform_bf(data, 'euclidean') + assert_array_almost_equal(bf, out) + + dt = ft - numpy.indices(ft.shape[1:], dtype=ft.dtype) + dt = dt.astype(numpy.float64) + numpy.multiply(dt, dt, dt) + dt = numpy.add.reduce(dt, axis=0) + numpy.sqrt(dt, dt) + + assert_array_almost_equal(bf, dt) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_edt02(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + tdt, tft = ndimage.distance_transform_edt(data, return_indices=True) + dts = [] + fts = [] + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ndimage.distance_transform_edt(data, distances=dt) + dts.append(dt) + ft = ndimage.distance_transform_edt( + data, return_distances=0, return_indices=True) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_edt( + data, return_distances=False, return_indices=True, indices=ft) + fts.append(ft) + dt, ft = ndimage.distance_transform_edt( + data, return_indices=True) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ft = ndimage.distance_transform_edt( + data, distances=dt, return_indices=True) + dts.append(dt) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + dt = ndimage.distance_transform_edt( + data, return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_edt( + data, distances=dt, return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + for dt in dts: + assert_array_almost_equal(tdt, dt) + for ft in fts: + assert_array_almost_equal(tft, ft) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_edt03(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + ref = ndimage.distance_transform_bf(data, 'euclidean', sampling=[2, 2]) + out = ndimage.distance_transform_edt(data, sampling=[2, 2]) + assert_array_almost_equal(ref, out) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_edt4(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + ref = ndimage.distance_transform_bf(data, 'euclidean', sampling=[2, 1]) + out = ndimage.distance_transform_edt(data, sampling=[2, 1]) + assert_array_almost_equal(ref, out) + + def test_distance_transform_edt5(self): + # Ticket #954 regression test + out = ndimage.distance_transform_edt(False) + assert_array_almost_equal(out, [0.]) + + def test_distance_transform_edt6(self): + # test input validation per discussion on PR #13302 + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]]) + distances_out = numpy.zeros(data.shape, dtype=numpy.float64) + with assert_raises(RuntimeError): + ndimage.distance_transform_bf( + data, + return_indices=True, + return_distances=False, + distances=distances_out + ) + + def test_generate_structure01(self): + struct = ndimage.generate_binary_structure(0, 1) + assert_array_almost_equal(struct, 1) + + def test_generate_structure02(self): + struct = ndimage.generate_binary_structure(1, 1) + assert_array_almost_equal(struct, [1, 1, 1]) + + def test_generate_structure03(self): + struct = ndimage.generate_binary_structure(2, 1) + assert_array_almost_equal(struct, [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]]) + + def test_generate_structure04(self): + struct = ndimage.generate_binary_structure(2, 2) + assert_array_almost_equal(struct, [[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + + def test_iterate_structure01(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + out = ndimage.iterate_structure(struct, 2) + assert_array_almost_equal(out, [[0, 0, 1, 0, 0], + [0, 1, 1, 1, 0], + [1, 1, 1, 1, 1], + [0, 1, 1, 1, 0], + [0, 0, 1, 0, 0]]) + + def test_iterate_structure02(self): + struct = [[0, 1], + [1, 1], + [0, 1]] + out = ndimage.iterate_structure(struct, 2) + assert_array_almost_equal(out, [[0, 0, 1], + [0, 1, 1], + [1, 1, 1], + [0, 1, 1], + [0, 0, 1]]) + + def test_iterate_structure03(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + out = ndimage.iterate_structure(struct, 2, 1) + expected = [[0, 0, 1, 0, 0], + [0, 1, 1, 1, 0], + [1, 1, 1, 1, 1], + [0, 1, 1, 1, 0], + [0, 0, 1, 0, 0]] + assert_array_almost_equal(out[0], expected) + assert_equal(out[1], [2, 2]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion01(self, dtype): + data = numpy.ones([], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, 1) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion02(self, dtype): + data = numpy.ones([], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, 1) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion03(self, dtype): + data = numpy.ones([1], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion04(self, dtype): + data = numpy.ones([1], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion05(self, dtype): + data = numpy.ones([3], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [0, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion06(self, dtype): + data = numpy.ones([3], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [1, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion07(self, dtype): + data = numpy.ones([5], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [0, 1, 1, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion08(self, dtype): + data = numpy.ones([5], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [1, 1, 1, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion09(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [0, 0, 0, 0, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion10(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [1, 0, 0, 0, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion11(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + struct = [1, 0, 1] + out = ndimage.binary_erosion(data, struct, border_value=1) + assert_array_almost_equal(out, [1, 0, 1, 0, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion12(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + struct = [1, 0, 1] + out = ndimage.binary_erosion(data, struct, border_value=1, origin=-1) + assert_array_almost_equal(out, [0, 1, 0, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion13(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + struct = [1, 0, 1] + out = ndimage.binary_erosion(data, struct, border_value=1, origin=1) + assert_array_almost_equal(out, [1, 1, 0, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion14(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + struct = [1, 1] + out = ndimage.binary_erosion(data, struct, border_value=1) + assert_array_almost_equal(out, [1, 1, 0, 0, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion15(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + struct = [1, 1] + out = ndimage.binary_erosion(data, struct, border_value=1, origin=-1) + assert_array_almost_equal(out, [1, 0, 0, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion16(self, dtype): + data = numpy.ones([1, 1], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [[1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion17(self, dtype): + data = numpy.ones([1, 1], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [[0]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion18(self, dtype): + data = numpy.ones([1, 3], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [[0, 0, 0]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion19(self, dtype): + data = numpy.ones([1, 3], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [[1, 1, 1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion20(self, dtype): + data = numpy.ones([3, 3], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [[0, 0, 0], + [0, 1, 0], + [0, 0, 0]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion21(self, dtype): + data = numpy.ones([3, 3], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion22(self, dtype): + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion23(self, dtype): + struct = ndimage.generate_binary_structure(2, 2) + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_erosion(data, struct, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion24(self, dtype): + struct = [[0, 1], + [1, 1]] + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_erosion(data, struct, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion25(self, dtype): + struct = [[0, 1, 0], + [1, 0, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 0, 1, 1], + [0, 0, 1, 0, 1, 1, 0, 0], + [0, 1, 0, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_erosion(data, struct, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion26(self, dtype): + struct = [[0, 1, 0], + [1, 0, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1], + [0, 0, 0, 0, 1, 0, 0, 1], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 0, 1, 1], + [0, 0, 1, 0, 1, 1, 0, 0], + [0, 1, 0, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_erosion(data, struct, border_value=1, + origin=(-1, -1)) + assert_array_almost_equal(out, expected) + + def test_binary_erosion27(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_erosion(data, struct, border_value=1, + iterations=2) + assert_array_almost_equal(out, expected) + + def test_binary_erosion28(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=2, output=out) + assert_array_almost_equal(out, expected) + + def test_binary_erosion29(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + out = ndimage.binary_erosion(data, struct, + border_value=1, iterations=3) + assert_array_almost_equal(out, expected) + + def test_binary_erosion30(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=3, output=out) + assert_array_almost_equal(out, expected) + + # test with output memory overlap + ndimage.binary_erosion(data, struct, border_value=1, + iterations=3, output=data) + assert_array_almost_equal(data, expected) + + def test_binary_erosion31(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0], + [1, 1, 1, 1, 1, 0, 1], + [0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 1]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=1, output=out, origin=(-1, -1)) + assert_array_almost_equal(out, expected) + + def test_binary_erosion32(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_erosion(data, struct, + border_value=1, iterations=2) + assert_array_almost_equal(out, expected) + + def test_binary_erosion33(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 1, 1], + [0, 0, 0, 0, 0, 0, 1], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + mask = [[1, 1, 1, 1, 1, 0, 0], + [1, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 1, 1], + [0, 0, 0, 1, 0, 0, 1], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_erosion(data, struct, + border_value=1, mask=mask, iterations=-1) + assert_array_almost_equal(out, expected) + + def test_binary_erosion34(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + mask = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_erosion(data, struct, + border_value=1, mask=mask) + assert_array_almost_equal(out, expected) + + def test_binary_erosion35(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + mask = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + tmp = [[0, 0, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0], + [1, 1, 1, 1, 1, 0, 1], + [0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 1]] + expected = numpy.logical_and(tmp, mask) + tmp = numpy.logical_and(data, numpy.logical_not(mask)) + expected = numpy.logical_or(expected, tmp) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=1, output=out, + origin=(-1, -1), mask=mask) + assert_array_almost_equal(out, expected) + + def test_binary_erosion36(self): + struct = [[0, 1, 0], + [1, 0, 1], + [0, 1, 0]] + mask = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + tmp = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1], + [0, 0, 0, 0, 1, 0, 0, 1], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 0, 1, 1], + [0, 0, 1, 0, 1, 1, 0, 0], + [0, 1, 0, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]]) + expected = numpy.logical_and(tmp, mask) + tmp = numpy.logical_and(data, numpy.logical_not(mask)) + expected = numpy.logical_or(expected, tmp) + out = ndimage.binary_erosion(data, struct, mask=mask, + border_value=1, origin=(-1, -1)) + assert_array_almost_equal(out, expected) + + def test_binary_erosion37(self): + a = numpy.array([[1, 0, 1], + [0, 1, 0], + [1, 0, 1]], dtype=bool) + b = numpy.zeros_like(a) + out = ndimage.binary_erosion(a, structure=a, output=b, iterations=0, + border_value=True, brute_force=True) + assert_(out is b) + assert_array_equal( + ndimage.binary_erosion(a, structure=a, iterations=0, + border_value=True), + b) + + def test_binary_erosion38(self): + data = numpy.array([[1, 0, 1], + [0, 1, 0], + [1, 0, 1]], dtype=bool) + iterations = 2.0 + with assert_raises(TypeError): + _ = ndimage.binary_erosion(data, iterations=iterations) + + def test_binary_erosion39(self): + iterations = numpy.int32(3) + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=iterations, output=out) + assert_array_almost_equal(out, expected) + + def test_binary_erosion40(self): + iterations = numpy.int64(3) + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=iterations, output=out) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation01(self, dtype): + data = numpy.ones([], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, 1) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation02(self, dtype): + data = numpy.zeros([], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, 0) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation03(self, dtype): + data = numpy.ones([1], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation04(self, dtype): + data = numpy.zeros([1], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation05(self, dtype): + data = numpy.ones([3], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [1, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation06(self, dtype): + data = numpy.zeros([3], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [0, 0, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation07(self, dtype): + data = numpy.zeros([3], dtype) + data[1] = 1 + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [1, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation08(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + data[3] = 1 + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [1, 1, 1, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation09(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [1, 1, 1, 0, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation10(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + out = ndimage.binary_dilation(data, origin=-1) + assert_array_almost_equal(out, [0, 1, 1, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation11(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + out = ndimage.binary_dilation(data, origin=1) + assert_array_almost_equal(out, [1, 1, 0, 0, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation12(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + struct = [1, 0, 1] + out = ndimage.binary_dilation(data, struct) + assert_array_almost_equal(out, [1, 0, 1, 0, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation13(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + struct = [1, 0, 1] + out = ndimage.binary_dilation(data, struct, border_value=1) + assert_array_almost_equal(out, [1, 0, 1, 0, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation14(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + struct = [1, 0, 1] + out = ndimage.binary_dilation(data, struct, origin=-1) + assert_array_almost_equal(out, [0, 1, 0, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation15(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + struct = [1, 0, 1] + out = ndimage.binary_dilation(data, struct, + origin=-1, border_value=1) + assert_array_almost_equal(out, [1, 1, 0, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation16(self, dtype): + data = numpy.ones([1, 1], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [[1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation17(self, dtype): + data = numpy.zeros([1, 1], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [[0]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation18(self, dtype): + data = numpy.ones([1, 3], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [[1, 1, 1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation19(self, dtype): + data = numpy.ones([3, 3], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation20(self, dtype): + data = numpy.zeros([3, 3], dtype) + data[1, 1] = 1 + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation21(self, dtype): + struct = ndimage.generate_binary_structure(2, 2) + data = numpy.zeros([3, 3], dtype) + data[1, 1] = 1 + out = ndimage.binary_dilation(data, struct) + assert_array_almost_equal(out, [[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation22(self, dtype): + expected = [[0, 1, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation23(self, dtype): + expected = [[1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 0, 0, 0, 0, 1], + [1, 1, 0, 0, 0, 1, 0, 1], + [1, 0, 0, 1, 1, 1, 1, 1], + [1, 0, 1, 1, 1, 1, 0, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [1, 0, 1, 0, 0, 1, 0, 1], + [1, 1, 1, 1, 1, 1, 1, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation24(self, dtype): + expected = [[1, 1, 0, 0, 0, 0, 0, 0], + [1, 0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 0, 0], + [0, 1, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, origin=(1, 1)) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation25(self, dtype): + expected = [[1, 1, 0, 0, 0, 0, 1, 1], + [1, 0, 0, 0, 1, 0, 1, 1], + [0, 0, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 0, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [0, 1, 0, 0, 1, 0, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, origin=(1, 1), border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation26(self, dtype): + struct = ndimage.generate_binary_structure(2, 2) + expected = [[1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, struct) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation27(self, dtype): + struct = [[0, 1], + [1, 1]] + expected = [[0, 1, 0, 0, 0, 0, 0, 0], + [1, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, struct) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation28(self, dtype): + expected = [[1, 1, 1, 1], + [1, 0, 0, 1], + [1, 0, 0, 1], + [1, 1, 1, 1]] + data = numpy.array([[0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, border_value=1) + assert_array_almost_equal(out, expected) + + def test_binary_dilation29(self): + struct = [[0, 1], + [1, 1]] + expected = [[0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]] + + data = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 0]], bool) + out = ndimage.binary_dilation(data, struct, iterations=2) + assert_array_almost_equal(out, expected) + + def test_binary_dilation30(self): + struct = [[0, 1], + [1, 1]] + expected = [[0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]] + + data = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_dilation(data, struct, iterations=2, output=out) + assert_array_almost_equal(out, expected) + + def test_binary_dilation31(self): + struct = [[0, 1], + [1, 1]] + expected = [[0, 0, 0, 1, 0], + [0, 0, 1, 1, 0], + [0, 1, 1, 1, 0], + [1, 1, 1, 1, 0], + [0, 0, 0, 0, 0]] + + data = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 0]], bool) + out = ndimage.binary_dilation(data, struct, iterations=3) + assert_array_almost_equal(out, expected) + + def test_binary_dilation32(self): + struct = [[0, 1], + [1, 1]] + expected = [[0, 0, 0, 1, 0], + [0, 0, 1, 1, 0], + [0, 1, 1, 1, 0], + [1, 1, 1, 1, 0], + [0, 0, 0, 0, 0]] + + data = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_dilation(data, struct, iterations=3, output=out) + assert_array_almost_equal(out, expected) + + def test_binary_dilation33(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 1, 1, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 1, 1, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + + out = ndimage.binary_dilation(data, struct, iterations=-1, + mask=mask, border_value=0) + assert_array_almost_equal(out, expected) + + def test_binary_dilation34(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.zeros(mask.shape, bool) + out = ndimage.binary_dilation(data, struct, iterations=-1, + mask=mask, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation35(self, dtype): + tmp = [[1, 1, 0, 0, 0, 0, 1, 1], + [1, 0, 0, 0, 1, 0, 1, 1], + [0, 0, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 0, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [0, 1, 0, 0, 1, 0, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]]) + mask = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + expected = numpy.logical_and(tmp, mask) + tmp = numpy.logical_and(data, numpy.logical_not(mask)) + expected = numpy.logical_or(expected, tmp) + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, mask=mask, + origin=(1, 1), border_value=1) + assert_array_almost_equal(out, expected) + + def test_binary_propagation01(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 1, 1, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 1, 1, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + + out = ndimage.binary_propagation(data, struct, + mask=mask, border_value=0) + assert_array_almost_equal(out, expected) + + def test_binary_propagation02(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.zeros(mask.shape, bool) + out = ndimage.binary_propagation(data, struct, + mask=mask, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_opening01(self, dtype): + expected = [[0, 1, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 0, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_opening(data) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_opening02(self, dtype): + struct = ndimage.generate_binary_structure(2, 2) + expected = [[1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 0, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_opening(data, struct) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_closing01(self, dtype): + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 0, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_closing(data) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_closing02(self, dtype): + struct = ndimage.generate_binary_structure(2, 2) + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 0, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_closing(data, struct) + assert_array_almost_equal(out, expected) + + def test_binary_fill_holes01(self): + expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_fill_holes(data) + assert_array_almost_equal(out, expected) + + def test_binary_fill_holes02(self): + expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_fill_holes(data) + assert_array_almost_equal(out, expected) + + def test_binary_fill_holes03(self): + expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 1, 1, 1], + [0, 1, 1, 1, 0, 1, 1, 1], + [0, 1, 1, 1, 0, 1, 1, 1], + [0, 0, 1, 0, 0, 1, 1, 1], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 1, 0, 1, 1, 1], + [0, 1, 0, 1, 0, 1, 0, 1], + [0, 1, 0, 1, 0, 1, 0, 1], + [0, 0, 1, 0, 0, 1, 1, 1], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_fill_holes(data) + assert_array_almost_equal(out, expected) + + def test_grey_erosion01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + output = ndimage.grey_erosion(array, footprint=footprint) + assert_array_almost_equal([[2, 2, 1, 1, 1], + [2, 3, 1, 3, 1], + [5, 5, 3, 3, 1]], output) + + def test_grey_erosion01_overlap(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + ndimage.grey_erosion(array, footprint=footprint, output=array) + assert_array_almost_equal([[2, 2, 1, 1, 1], + [2, 3, 1, 3, 1], + [5, 5, 3, 3, 1]], array) + + def test_grey_erosion02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + output = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + assert_array_almost_equal([[2, 2, 1, 1, 1], + [2, 3, 1, 3, 1], + [5, 5, 3, 3, 1]], output) + + def test_grey_erosion03(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[1, 1, 1], [1, 1, 1]] + output = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + assert_array_almost_equal([[1, 1, 0, 0, 0], + [1, 2, 0, 2, 0], + [4, 4, 2, 2, 0]], output) + + def test_grey_dilation01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[0, 1, 1], [1, 0, 1]] + output = ndimage.grey_dilation(array, footprint=footprint) + assert_array_almost_equal([[7, 7, 9, 9, 5], + [7, 9, 8, 9, 7], + [8, 8, 8, 7, 7]], output) + + def test_grey_dilation02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[0, 1, 1], [1, 0, 1]] + structure = [[0, 0, 0], [0, 0, 0]] + output = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + assert_array_almost_equal([[7, 7, 9, 9, 5], + [7, 9, 8, 9, 7], + [8, 8, 8, 7, 7]], output) + + def test_grey_dilation03(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[0, 1, 1], [1, 0, 1]] + structure = [[1, 1, 1], [1, 1, 1]] + output = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + assert_array_almost_equal([[8, 8, 10, 10, 6], + [8, 10, 9, 10, 8], + [9, 9, 9, 8, 8]], output) + + def test_grey_opening01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + tmp = ndimage.grey_erosion(array, footprint=footprint) + expected = ndimage.grey_dilation(tmp, footprint=footprint) + output = ndimage.grey_opening(array, footprint=footprint) + assert_array_almost_equal(expected, output) + + def test_grey_opening02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + expected = ndimage.grey_dilation(tmp, footprint=footprint, + structure=structure) + output = ndimage.grey_opening(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_grey_closing01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + tmp = ndimage.grey_dilation(array, footprint=footprint) + expected = ndimage.grey_erosion(tmp, footprint=footprint) + output = ndimage.grey_closing(array, footprint=footprint) + assert_array_almost_equal(expected, output) + + def test_grey_closing02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + expected = ndimage.grey_erosion(tmp, footprint=footprint, + structure=structure) + output = ndimage.grey_closing(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_morphological_gradient01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp1 = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + tmp2 = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + expected = tmp1 - tmp2 + output = numpy.zeros(array.shape, array.dtype) + ndimage.morphological_gradient(array, footprint=footprint, + structure=structure, output=output) + assert_array_almost_equal(expected, output) + + def test_morphological_gradient02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp1 = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + tmp2 = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + expected = tmp1 - tmp2 + output = ndimage.morphological_gradient(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_morphological_laplace01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp1 = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + tmp2 = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + expected = tmp1 + tmp2 - 2 * array + output = numpy.zeros(array.shape, array.dtype) + ndimage.morphological_laplace(array, footprint=footprint, + structure=structure, output=output) + assert_array_almost_equal(expected, output) + + def test_morphological_laplace02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp1 = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + tmp2 = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + expected = tmp1 + tmp2 - 2 * array + output = ndimage.morphological_laplace(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_white_tophat01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_opening(array, footprint=footprint, + structure=structure) + expected = array - tmp + output = numpy.zeros(array.shape, array.dtype) + ndimage.white_tophat(array, footprint=footprint, + structure=structure, output=output) + assert_array_almost_equal(expected, output) + + def test_white_tophat02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_opening(array, footprint=footprint, + structure=structure) + expected = array - tmp + output = ndimage.white_tophat(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_white_tophat03(self): + array = numpy.array([[1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 1]], dtype=numpy.bool_) + structure = numpy.ones((3, 3), dtype=numpy.bool_) + expected = numpy.array([[0, 1, 1, 0, 0, 0, 0], + [1, 0, 0, 1, 1, 1, 0], + [1, 0, 0, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 0, 1], + [0, 1, 1, 0, 1, 0, 1], + [0, 1, 1, 0, 0, 0, 1], + [0, 0, 0, 1, 1, 1, 1]], dtype=numpy.bool_) + + output = ndimage.white_tophat(array, structure=structure) + assert_array_equal(expected, output) + + def test_white_tophat04(self): + array = numpy.eye(5, dtype=numpy.bool_) + structure = numpy.ones((3, 3), dtype=numpy.bool_) + + # Check that type mismatch is properly handled + output = numpy.empty_like(array, dtype=numpy.float64) + ndimage.white_tophat(array, structure=structure, output=output) + + def test_black_tophat01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_closing(array, footprint=footprint, + structure=structure) + expected = tmp - array + output = numpy.zeros(array.shape, array.dtype) + ndimage.black_tophat(array, footprint=footprint, + structure=structure, output=output) + assert_array_almost_equal(expected, output) + + def test_black_tophat02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_closing(array, footprint=footprint, + structure=structure) + expected = tmp - array + output = ndimage.black_tophat(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_black_tophat03(self): + array = numpy.array([[1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 1]], dtype=numpy.bool_) + structure = numpy.ones((3, 3), dtype=numpy.bool_) + expected = numpy.array([[0, 1, 1, 1, 1, 1, 1], + [1, 0, 0, 0, 0, 0, 1], + [1, 0, 0, 0, 0, 0, 1], + [1, 0, 0, 0, 0, 0, 1], + [1, 0, 0, 0, 1, 0, 1], + [1, 0, 0, 0, 0, 0, 1], + [1, 1, 1, 1, 1, 1, 0]], dtype=numpy.bool_) + + output = ndimage.black_tophat(array, structure=structure) + assert_array_equal(expected, output) + + def test_black_tophat04(self): + array = numpy.eye(5, dtype=numpy.bool_) + structure = numpy.ones((3, 3), dtype=numpy.bool_) + + # Check that type mismatch is properly handled + output = numpy.empty_like(array, dtype=numpy.float64) + ndimage.black_tophat(array, structure=structure, output=output) + + @pytest.mark.parametrize('dtype', types) + def test_hit_or_miss01(self, dtype): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0], + [0, 1, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0]] + data = numpy.array([[0, 1, 0, 0, 0], + [1, 1, 1, 0, 0], + [0, 1, 0, 1, 1], + [0, 0, 1, 1, 1], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 1], + [0, 1, 1, 1, 1], + [0, 0, 0, 0, 0]], dtype) + out = numpy.zeros(data.shape, bool) + ndimage.binary_hit_or_miss(data, struct, output=out) + assert_array_almost_equal(expected, out) + + @pytest.mark.parametrize('dtype', types) + def test_hit_or_miss02(self, dtype): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 1, 0, 0, 1, 1, 1, 0], + [1, 1, 1, 0, 0, 1, 0, 0], + [0, 1, 0, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_hit_or_miss(data, struct) + assert_array_almost_equal(expected, out) + + @pytest.mark.parametrize('dtype', types) + def test_hit_or_miss03(self, dtype): + struct1 = [[0, 0, 0], + [1, 1, 1], + [0, 0, 0]] + struct2 = [[1, 1, 1], + [0, 0, 0], + [1, 1, 1]] + expected = [[0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 1, 0, 0, 1, 1, 1, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 0, 1, 1, 0], + [0, 0, 0, 0, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_hit_or_miss(data, struct1, struct2) + assert_array_almost_equal(expected, out) + + +class TestDilateFix: + + def setup_method(self): + # dilation related setup + self.array = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 1, 1, 0], + [0, 0, 0, 0, 0]], dtype=numpy.uint8) + + self.sq3x3 = numpy.ones((3, 3)) + dilated3x3 = ndimage.binary_dilation(self.array, structure=self.sq3x3) + self.dilated3x3 = dilated3x3.view(numpy.uint8) + + def test_dilation_square_structure(self): + result = ndimage.grey_dilation(self.array, structure=self.sq3x3) + # +1 accounts for difference between grey and binary dilation + assert_array_almost_equal(result, self.dilated3x3 + 1) + + def test_dilation_scalar_size(self): + result = ndimage.grey_dilation(self.array, size=3) + assert_array_almost_equal(result, self.dilated3x3) + + +class TestBinaryOpeningClosing: + + def setup_method(self): + a = numpy.zeros((5, 5), dtype=bool) + a[1:4, 1:4] = True + a[4, 4] = True + self.array = a + self.sq3x3 = numpy.ones((3, 3)) + self.opened_old = ndimage.binary_opening(self.array, self.sq3x3, + 1, None, 0) + self.closed_old = ndimage.binary_closing(self.array, self.sq3x3, + 1, None, 0) + + def test_opening_new_arguments(self): + opened_new = ndimage.binary_opening(self.array, self.sq3x3, 1, None, + 0, None, 0, False) + assert_array_equal(opened_new, self.opened_old) + + def test_closing_new_arguments(self): + closed_new = ndimage.binary_closing(self.array, self.sq3x3, 1, None, + 0, None, 0, False) + assert_array_equal(closed_new, self.closed_old) + + +def test_binary_erosion_noninteger_iterations(): + # regression test for gh-9905, gh-9909: ValueError for + # non integer iterations + data = numpy.ones([1]) + assert_raises(TypeError, ndimage.binary_erosion, data, iterations=0.5) + assert_raises(TypeError, ndimage.binary_erosion, data, iterations=1.5) + + +def test_binary_dilation_noninteger_iterations(): + # regression test for gh-9905, gh-9909: ValueError for + # non integer iterations + data = numpy.ones([1]) + assert_raises(TypeError, ndimage.binary_dilation, data, iterations=0.5) + assert_raises(TypeError, ndimage.binary_dilation, data, iterations=1.5) + + +def test_binary_opening_noninteger_iterations(): + # regression test for gh-9905, gh-9909: ValueError for + # non integer iterations + data = numpy.ones([1]) + assert_raises(TypeError, ndimage.binary_opening, data, iterations=0.5) + assert_raises(TypeError, ndimage.binary_opening, data, iterations=1.5) + + +def test_binary_closing_noninteger_iterations(): + # regression test for gh-9905, gh-9909: ValueError for + # non integer iterations + data = numpy.ones([1]) + assert_raises(TypeError, ndimage.binary_closing, data, iterations=0.5) + assert_raises(TypeError, ndimage.binary_closing, data, iterations=1.5) + + +def test_binary_closing_noninteger_brute_force_passes_when_true(): + # regression test for gh-9905, gh-9909: ValueError for + # non integer iterations + data = numpy.ones([1]) + + assert ndimage.binary_erosion( + data, iterations=2, brute_force=1.5 + ) == ndimage.binary_erosion(data, iterations=2, brute_force=bool(1.5)) + assert ndimage.binary_erosion( + data, iterations=2, brute_force=0.0 + ) == ndimage.binary_erosion(data, iterations=2, brute_force=bool(0.0)) + + +@pytest.mark.parametrize( + 'function', + ['binary_erosion', 'binary_dilation', 'binary_opening', 'binary_closing'], +) +@pytest.mark.parametrize('iterations', [1, 5]) +@pytest.mark.parametrize('brute_force', [False, True]) +def test_binary_input_as_output(function, iterations, brute_force): + rstate = numpy.random.RandomState(123) + data = rstate.randint(low=0, high=2, size=100).astype(bool) + ndi_func = getattr(ndimage, function) + + # input data is not modified + data_orig = data.copy() + expected = ndi_func(data, brute_force=brute_force, iterations=iterations) + assert_array_equal(data, data_orig) + + # data should now contain the expected result + ndi_func(data, brute_force=brute_force, iterations=iterations, output=data) + assert_array_equal(expected, data) + + +def test_binary_hit_or_miss_input_as_output(): + rstate = numpy.random.RandomState(123) + data = rstate.randint(low=0, high=2, size=100).astype(bool) + + # input data is not modified + data_orig = data.copy() + expected = ndimage.binary_hit_or_miss(data) + assert_array_equal(data, data_orig) + + # data should now contain the expected result + ndimage.binary_hit_or_miss(data, output=data) + assert_array_equal(expected, data) + + +def test_distance_transform_cdt_invalid_metric(): + msg = 'invalid metric provided' + with pytest.raises(ValueError, match=msg): + ndimage.distance_transform_cdt(np.ones((5, 5)), + metric="garbage") diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_ni_support.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_ni_support.py new file mode 100644 index 0000000000000000000000000000000000000000..a25429eebc8b3739e00465b43fd28ba24b320b45 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_ni_support.py @@ -0,0 +1,77 @@ +import pytest + +import numpy as np +from .._ni_support import _get_output + + +@pytest.mark.parametrize( + 'dtype', + [ + # String specifiers + 'f4', 'float32', 'complex64', 'complex128', + # Type and dtype specifiers + np.float32, float, np.dtype('f4'), + # Derive from input + None, + ], +) +def test_get_output_basic(dtype): + shape = (2, 3) + + input_ = np.zeros(shape, 'float32') + + # For None, derive dtype from input + expected_dtype = 'float32' if dtype is None else dtype + + # Output is dtype-specifier, retrieve shape from input + result = _get_output(dtype, input_) + assert result.shape == shape + assert result.dtype == np.dtype(expected_dtype) + + # Output is dtype specifier, with explicit shape, overriding input + result = _get_output(dtype, input_, shape=(3, 2)) + assert result.shape == (3, 2) + assert result.dtype == np.dtype(expected_dtype) + + # Output is pre-allocated array, return directly + output = np.zeros(shape, dtype) + result = _get_output(output, input_) + assert result is output + + +def test_get_output_complex(): + shape = (2, 3) + + input_ = np.zeros(shape) + + # None, promote input type to complex + result = _get_output(None, input_, complex_output=True) + assert result.shape == shape + assert result.dtype == np.dtype('complex128') + + # Explicit type, promote type to complex + with pytest.warns(UserWarning, match='promoting specified output dtype to complex'): + result = _get_output(float, input_, complex_output=True) + assert result.shape == shape + assert result.dtype == np.dtype('complex128') + + # String specifier, simply verify complex output + result = _get_output('complex64', input_, complex_output=True) + assert result.shape == shape + assert result.dtype == np.dtype('complex64') + + +def test_get_output_error_cases(): + input_ = np.zeros((2, 3), 'float32') + + # Two separate paths can raise the same error + with pytest.raises(RuntimeError, match='output must have complex dtype'): + _get_output('float32', input_, complex_output=True) + with pytest.raises(RuntimeError, match='output must have complex dtype'): + _get_output(np.zeros((2, 3)), input_, complex_output=True) + + with pytest.raises(RuntimeError, match='output must have numeric dtype'): + _get_output('void', input_) + + with pytest.raises(RuntimeError, match='shape not correct'): + _get_output(np.zeros((3, 2)), input_) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_splines.py b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_splines.py new file mode 100644 index 0000000000000000000000000000000000000000..a74e55111f8fac906f58a947db4a214da82a3cae --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_splines.py @@ -0,0 +1,65 @@ +"""Tests for spline filtering.""" +import numpy as np +import pytest + +from numpy.testing import assert_almost_equal + +from scipy import ndimage + + +def get_spline_knot_values(order): + """Knot values to the right of a B-spline's center.""" + knot_values = {0: [1], + 1: [1], + 2: [6, 1], + 3: [4, 1], + 4: [230, 76, 1], + 5: [66, 26, 1]} + + return knot_values[order] + + +def make_spline_knot_matrix(n, order, mode='mirror'): + """Matrix to invert to find the spline coefficients.""" + knot_values = get_spline_knot_values(order) + + matrix = np.zeros((n, n)) + for diag, knot_value in enumerate(knot_values): + indices = np.arange(diag, n) + if diag == 0: + matrix[indices, indices] = knot_value + else: + matrix[indices, indices - diag] = knot_value + matrix[indices - diag, indices] = knot_value + + knot_values_sum = knot_values[0] + 2 * sum(knot_values[1:]) + + if mode == 'mirror': + start, step = 1, 1 + elif mode == 'reflect': + start, step = 0, 1 + elif mode == 'grid-wrap': + start, step = -1, -1 + else: + raise ValueError(f'unsupported mode {mode}') + + for row in range(len(knot_values) - 1): + for idx, knot_value in enumerate(knot_values[row + 1:]): + matrix[row, start + step*idx] += knot_value + matrix[-row - 1, -start - 1 - step*idx] += knot_value + + return matrix / knot_values_sum + + +@pytest.mark.parametrize('order', [0, 1, 2, 3, 4, 5]) +@pytest.mark.parametrize('mode', ['mirror', 'grid-wrap', 'reflect']) +def test_spline_filter_vs_matrix_solution(order, mode): + n = 100 + eye = np.eye(n, dtype=float) + spline_filter_axis_0 = ndimage.spline_filter1d(eye, axis=0, order=order, + mode=mode) + spline_filter_axis_1 = ndimage.spline_filter1d(eye, axis=1, order=order, + mode=mode) + matrix = make_spline_knot_matrix(n, order, mode=mode) + assert_almost_equal(eye, np.dot(spline_filter_axis_0, matrix)) + assert_almost_equal(eye, np.dot(spline_filter_axis_1, matrix.T)) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dcsrch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dcsrch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ffb2d87fe0c5349bf5ca14fcb17bf8b9038bfa3b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dcsrch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentialevolution.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentialevolution.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..517a7350735dd5a9fbe37833d8eedeb1ecfe28b2 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentialevolution.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_isotonic.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_isotonic.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cfbabc652f19ac47eb29f86371c3822001604517 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_isotonic.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linesearch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linesearch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e92436ede2aaf48a95c71b959d81a0a04b65c367 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linesearch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e67f2009259b76eef9a4679217d2c34aa36eabe1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_rs.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_rs.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..220e81be9289d8bd38af7b945449e52a6704da38 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_rs.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_milp.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_milp.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7d4b79e6570650fff0be3981a26d426d20e23dba Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_milp.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_numdiff.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_numdiff.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5957c8ea043e2038d68388bfa44423e2d05aaa19 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_numdiff.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_root.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_root.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2630cb4bc3c2bb22beb1f79bc44c95e0d6c44e79 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_root.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_shgo.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_shgo.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..26afd1028f9bec9ca6a48aa3aa4728b1c736e99a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_shgo.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_slsqp_py.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_slsqp_py.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..41e526ad9ea2a2d893d4dce3d1df380f0d9efa2e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_slsqp_py.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0ddb0a0530d9cd3c5c91a312903881af48aa94de Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_exact.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_exact.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8cbe0194d148cffce4deed3c35ca9ddb2c6a76d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_exact.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_krylov.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_krylov.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3fa6ebaa1abef92d3665c3ebcffb0730c9765b27 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_krylov.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_zeros_py.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_zeros_py.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2aa8879b560a551ab844f7db4497d3b97604f106 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_zeros_py.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/cobyla.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/cobyla.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..41c10e28cb51583b5f0c6faefd20c634785b6876 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/cobyla.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/minpack.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/minpack.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6a99c4eaeba9df85819bad2ededb1072a878f34 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/minpack.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/minpack2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/minpack2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a1a2022760c08de74637ae40c3227d6cb314369 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/minpack2.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/moduleTNC.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/moduleTNC.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0489adbb5565df5e622529303b538fc3fc9241a0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/moduleTNC.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f60adcc891304e34ac9d85d108b6a232b4bf0c93 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__init__.py @@ -0,0 +1,5 @@ +"""This module contains least-squares algorithms.""" +from .least_squares import least_squares +from .lsq_linear import lsq_linear + +__all__ = ['least_squares', 'lsq_linear'] diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1eaed8c36dd513435aefd3b4d26430fbc96bac97 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/bvls.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/bvls.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b2e058750db17f4e60b4cc81f508074bf7936598 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/bvls.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/common.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/common.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..890e2d3c57a0739af06068c19e1f0c3b75c9ff44 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/common.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/dogbox.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/dogbox.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..74c255fad5c213a940659bb8f25a3fc3b490e2c9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/dogbox.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/least_squares.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/least_squares.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7440669b50a7c84bea2da0cec79c59f56d3146b5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/least_squares.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/lsq_linear.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/lsq_linear.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f6f1ddd61ef497114893aed94c925436a5739f2a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/lsq_linear.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/trf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/trf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ae4de7472171cdda36c597b357988591e1e7f6ce Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/trf.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/trf_linear.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/trf_linear.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8bcf95c04864172a44b3c549f88c60e9e231738b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/__pycache__/trf_linear.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/bvls.py b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/bvls.py new file mode 100644 index 0000000000000000000000000000000000000000..8f34ead4a1fc4edbb3c2ab50a204aa9a3cc21cff --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/bvls.py @@ -0,0 +1,183 @@ +"""Bounded-variable least-squares algorithm.""" +import numpy as np +from numpy.linalg import norm, lstsq +from scipy.optimize import OptimizeResult + +from .common import print_header_linear, print_iteration_linear + + +def compute_kkt_optimality(g, on_bound): + """Compute the maximum violation of KKT conditions.""" + g_kkt = g * on_bound + free_set = on_bound == 0 + g_kkt[free_set] = np.abs(g[free_set]) + return np.max(g_kkt) + + +def bvls(A, b, x_lsq, lb, ub, tol, max_iter, verbose, rcond=None): + m, n = A.shape + + x = x_lsq.copy() + on_bound = np.zeros(n) + + mask = x <= lb + x[mask] = lb[mask] + on_bound[mask] = -1 + + mask = x >= ub + x[mask] = ub[mask] + on_bound[mask] = 1 + + free_set = on_bound == 0 + active_set = ~free_set + free_set, = np.nonzero(free_set) + + r = A.dot(x) - b + cost = 0.5 * np.dot(r, r) + initial_cost = cost + g = A.T.dot(r) + + cost_change = None + step_norm = None + iteration = 0 + + if verbose == 2: + print_header_linear() + + # This is the initialization loop. The requirement is that the + # least-squares solution on free variables is feasible before BVLS starts. + # One possible initialization is to set all variables to lower or upper + # bounds, but many iterations may be required from this state later on. + # The implemented ad-hoc procedure which intuitively should give a better + # initial state: find the least-squares solution on current free variables, + # if its feasible then stop, otherwise, set violating variables to + # corresponding bounds and continue on the reduced set of free variables. + + while free_set.size > 0: + if verbose == 2: + optimality = compute_kkt_optimality(g, on_bound) + print_iteration_linear(iteration, cost, cost_change, step_norm, + optimality) + + iteration += 1 + x_free_old = x[free_set].copy() + + A_free = A[:, free_set] + b_free = b - A.dot(x * active_set) + z = lstsq(A_free, b_free, rcond=rcond)[0] + + lbv = z < lb[free_set] + ubv = z > ub[free_set] + v = lbv | ubv + + if np.any(lbv): + ind = free_set[lbv] + x[ind] = lb[ind] + active_set[ind] = True + on_bound[ind] = -1 + + if np.any(ubv): + ind = free_set[ubv] + x[ind] = ub[ind] + active_set[ind] = True + on_bound[ind] = 1 + + ind = free_set[~v] + x[ind] = z[~v] + + r = A.dot(x) - b + cost_new = 0.5 * np.dot(r, r) + cost_change = cost - cost_new + cost = cost_new + g = A.T.dot(r) + step_norm = norm(x[free_set] - x_free_old) + + if np.any(v): + free_set = free_set[~v] + else: + break + + if max_iter is None: + max_iter = n + max_iter += iteration + + termination_status = None + + # Main BVLS loop. + + optimality = compute_kkt_optimality(g, on_bound) + for iteration in range(iteration, max_iter): # BVLS Loop A + if verbose == 2: + print_iteration_linear(iteration, cost, cost_change, + step_norm, optimality) + + if optimality < tol: + termination_status = 1 + + if termination_status is not None: + break + + move_to_free = np.argmax(g * on_bound) + on_bound[move_to_free] = 0 + + while True: # BVLS Loop B + + free_set = on_bound == 0 + active_set = ~free_set + free_set, = np.nonzero(free_set) + + x_free = x[free_set] + x_free_old = x_free.copy() + lb_free = lb[free_set] + ub_free = ub[free_set] + + A_free = A[:, free_set] + b_free = b - A.dot(x * active_set) + z = lstsq(A_free, b_free, rcond=rcond)[0] + + lbv, = np.nonzero(z < lb_free) + ubv, = np.nonzero(z > ub_free) + v = np.hstack((lbv, ubv)) + + if v.size > 0: + alphas = np.hstack(( + lb_free[lbv] - x_free[lbv], + ub_free[ubv] - x_free[ubv])) / (z[v] - x_free[v]) + + i = np.argmin(alphas) + i_free = v[i] + alpha = alphas[i] + + x_free *= 1 - alpha + x_free += alpha * z + x[free_set] = x_free + + if i < lbv.size: + on_bound[free_set[i_free]] = -1 + else: + on_bound[free_set[i_free]] = 1 + else: + x_free = z + x[free_set] = x_free + break + + step_norm = norm(x_free - x_free_old) + + r = A.dot(x) - b + cost_new = 0.5 * np.dot(r, r) + cost_change = cost - cost_new + + if cost_change < tol * cost: + termination_status = 2 + cost = cost_new + + g = A.T.dot(r) + optimality = compute_kkt_optimality(g, on_bound) + + if termination_status is None: + termination_status = 0 + + return OptimizeResult( + x=x, fun=r, cost=cost, optimality=optimality, active_mask=on_bound, + nit=iteration + 1, status=termination_status, + initial_cost=initial_cost) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/common.py b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/common.py new file mode 100644 index 0000000000000000000000000000000000000000..995c3b64ea64670463083ae41ba038f61338cdef --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/common.py @@ -0,0 +1,733 @@ +"""Functions used by least-squares algorithms.""" +from math import copysign + +import numpy as np +from numpy.linalg import norm + +from scipy.linalg import cho_factor, cho_solve, LinAlgError +from scipy.sparse import issparse +from scipy.sparse.linalg import LinearOperator, aslinearoperator + + +EPS = np.finfo(float).eps + + +# Functions related to a trust-region problem. + + +def intersect_trust_region(x, s, Delta): + """Find the intersection of a line with the boundary of a trust region. + + This function solves the quadratic equation with respect to t + ||(x + s*t)||**2 = Delta**2. + + Returns + ------- + t_neg, t_pos : tuple of float + Negative and positive roots. + + Raises + ------ + ValueError + If `s` is zero or `x` is not within the trust region. + """ + a = np.dot(s, s) + if a == 0: + raise ValueError("`s` is zero.") + + b = np.dot(x, s) + + c = np.dot(x, x) - Delta**2 + if c > 0: + raise ValueError("`x` is not within the trust region.") + + d = np.sqrt(b*b - a*c) # Root from one fourth of the discriminant. + + # Computations below avoid loss of significance, see "Numerical Recipes". + q = -(b + copysign(d, b)) + t1 = q / a + t2 = c / q + + if t1 < t2: + return t1, t2 + else: + return t2, t1 + + +def solve_lsq_trust_region(n, m, uf, s, V, Delta, initial_alpha=None, + rtol=0.01, max_iter=10): + """Solve a trust-region problem arising in least-squares minimization. + + This function implements a method described by J. J. More [1]_ and used + in MINPACK, but it relies on a single SVD of Jacobian instead of series + of Cholesky decompositions. Before running this function, compute: + ``U, s, VT = svd(J, full_matrices=False)``. + + Parameters + ---------- + n : int + Number of variables. + m : int + Number of residuals. + uf : ndarray + Computed as U.T.dot(f). + s : ndarray + Singular values of J. + V : ndarray + Transpose of VT. + Delta : float + Radius of a trust region. + initial_alpha : float, optional + Initial guess for alpha, which might be available from a previous + iteration. If None, determined automatically. + rtol : float, optional + Stopping tolerance for the root-finding procedure. Namely, the + solution ``p`` will satisfy ``abs(norm(p) - Delta) < rtol * Delta``. + max_iter : int, optional + Maximum allowed number of iterations for the root-finding procedure. + + Returns + ------- + p : ndarray, shape (n,) + Found solution of a trust-region problem. + alpha : float + Positive value such that (J.T*J + alpha*I)*p = -J.T*f. + Sometimes called Levenberg-Marquardt parameter. + n_iter : int + Number of iterations made by root-finding procedure. Zero means + that Gauss-Newton step was selected as the solution. + + References + ---------- + .. [1] More, J. J., "The Levenberg-Marquardt Algorithm: Implementation + and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes + in Mathematics 630, Springer Verlag, pp. 105-116, 1977. + """ + def phi_and_derivative(alpha, suf, s, Delta): + """Function of which to find zero. + + It is defined as "norm of regularized (by alpha) least-squares + solution minus `Delta`". Refer to [1]_. + """ + denom = s**2 + alpha + p_norm = norm(suf / denom) + phi = p_norm - Delta + phi_prime = -np.sum(suf ** 2 / denom**3) / p_norm + return phi, phi_prime + + suf = s * uf + + # Check if J has full rank and try Gauss-Newton step. + if m >= n: + threshold = EPS * m * s[0] + full_rank = s[-1] > threshold + else: + full_rank = False + + if full_rank: + p = -V.dot(uf / s) + if norm(p) <= Delta: + return p, 0.0, 0 + + alpha_upper = norm(suf) / Delta + + if full_rank: + phi, phi_prime = phi_and_derivative(0.0, suf, s, Delta) + alpha_lower = -phi / phi_prime + else: + alpha_lower = 0.0 + + if initial_alpha is None or not full_rank and initial_alpha == 0: + alpha = max(0.001 * alpha_upper, (alpha_lower * alpha_upper)**0.5) + else: + alpha = initial_alpha + + for it in range(max_iter): + if alpha < alpha_lower or alpha > alpha_upper: + alpha = max(0.001 * alpha_upper, (alpha_lower * alpha_upper)**0.5) + + phi, phi_prime = phi_and_derivative(alpha, suf, s, Delta) + + if phi < 0: + alpha_upper = alpha + + ratio = phi / phi_prime + alpha_lower = max(alpha_lower, alpha - ratio) + alpha -= (phi + Delta) * ratio / Delta + + if np.abs(phi) < rtol * Delta: + break + + p = -V.dot(suf / (s**2 + alpha)) + + # Make the norm of p equal to Delta, p is changed only slightly during + # this. It is done to prevent p lie outside the trust region (which can + # cause problems later). + p *= Delta / norm(p) + + return p, alpha, it + 1 + + +def solve_trust_region_2d(B, g, Delta): + """Solve a general trust-region problem in 2 dimensions. + + The problem is reformulated as a 4th order algebraic equation, + the solution of which is found by numpy.roots. + + Parameters + ---------- + B : ndarray, shape (2, 2) + Symmetric matrix, defines a quadratic term of the function. + g : ndarray, shape (2,) + Defines a linear term of the function. + Delta : float + Radius of a trust region. + + Returns + ------- + p : ndarray, shape (2,) + Found solution. + newton_step : bool + Whether the returned solution is the Newton step which lies within + the trust region. + """ + try: + R, lower = cho_factor(B) + p = -cho_solve((R, lower), g) + if np.dot(p, p) <= Delta**2: + return p, True + except LinAlgError: + pass + + a = B[0, 0] * Delta**2 + b = B[0, 1] * Delta**2 + c = B[1, 1] * Delta**2 + + d = g[0] * Delta + f = g[1] * Delta + + coeffs = np.array( + [-b + d, 2 * (a - c + f), 6 * b, 2 * (-a + c + f), -b - d]) + t = np.roots(coeffs) # Can handle leading zeros. + t = np.real(t[np.isreal(t)]) + + p = Delta * np.vstack((2 * t / (1 + t**2), (1 - t**2) / (1 + t**2))) + value = 0.5 * np.sum(p * B.dot(p), axis=0) + np.dot(g, p) + i = np.argmin(value) + p = p[:, i] + + return p, False + + +def update_tr_radius(Delta, actual_reduction, predicted_reduction, + step_norm, bound_hit): + """Update the radius of a trust region based on the cost reduction. + + Returns + ------- + Delta : float + New radius. + ratio : float + Ratio between actual and predicted reductions. + """ + if predicted_reduction > 0: + ratio = actual_reduction / predicted_reduction + elif predicted_reduction == actual_reduction == 0: + ratio = 1 + else: + ratio = 0 + + if ratio < 0.25: + Delta = 0.25 * step_norm + elif ratio > 0.75 and bound_hit: + Delta *= 2.0 + + return Delta, ratio + + +# Construction and minimization of quadratic functions. + + +def build_quadratic_1d(J, g, s, diag=None, s0=None): + """Parameterize a multivariate quadratic function along a line. + + The resulting univariate quadratic function is given as follows:: + + f(t) = 0.5 * (s0 + s*t).T * (J.T*J + diag) * (s0 + s*t) + + g.T * (s0 + s*t) + + Parameters + ---------- + J : ndarray, sparse matrix or LinearOperator shape (m, n) + Jacobian matrix, affects the quadratic term. + g : ndarray, shape (n,) + Gradient, defines the linear term. + s : ndarray, shape (n,) + Direction vector of a line. + diag : None or ndarray with shape (n,), optional + Addition diagonal part, affects the quadratic term. + If None, assumed to be 0. + s0 : None or ndarray with shape (n,), optional + Initial point. If None, assumed to be 0. + + Returns + ------- + a : float + Coefficient for t**2. + b : float + Coefficient for t. + c : float + Free term. Returned only if `s0` is provided. + """ + v = J.dot(s) + a = np.dot(v, v) + if diag is not None: + a += np.dot(s * diag, s) + a *= 0.5 + + b = np.dot(g, s) + + if s0 is not None: + u = J.dot(s0) + b += np.dot(u, v) + c = 0.5 * np.dot(u, u) + np.dot(g, s0) + if diag is not None: + b += np.dot(s0 * diag, s) + c += 0.5 * np.dot(s0 * diag, s0) + return a, b, c + else: + return a, b + + +def minimize_quadratic_1d(a, b, lb, ub, c=0): + """Minimize a 1-D quadratic function subject to bounds. + + The free term `c` is 0 by default. Bounds must be finite. + + Returns + ------- + t : float + Minimum point. + y : float + Minimum value. + """ + t = [lb, ub] + if a != 0: + extremum = -0.5 * b / a + if lb < extremum < ub: + t.append(extremum) + t = np.asarray(t) + y = t * (a * t + b) + c + min_index = np.argmin(y) + return t[min_index], y[min_index] + + +def evaluate_quadratic(J, g, s, diag=None): + """Compute values of a quadratic function arising in least squares. + + The function is 0.5 * s.T * (J.T * J + diag) * s + g.T * s. + + Parameters + ---------- + J : ndarray, sparse matrix or LinearOperator, shape (m, n) + Jacobian matrix, affects the quadratic term. + g : ndarray, shape (n,) + Gradient, defines the linear term. + s : ndarray, shape (k, n) or (n,) + Array containing steps as rows. + diag : ndarray, shape (n,), optional + Addition diagonal part, affects the quadratic term. + If None, assumed to be 0. + + Returns + ------- + values : ndarray with shape (k,) or float + Values of the function. If `s` was 2-D, then ndarray is + returned, otherwise, float is returned. + """ + if s.ndim == 1: + Js = J.dot(s) + q = np.dot(Js, Js) + if diag is not None: + q += np.dot(s * diag, s) + else: + Js = J.dot(s.T) + q = np.sum(Js**2, axis=0) + if diag is not None: + q += np.sum(diag * s**2, axis=1) + + l = np.dot(s, g) + + return 0.5 * q + l + + +# Utility functions to work with bound constraints. + + +def in_bounds(x, lb, ub): + """Check if a point lies within bounds.""" + return np.all((x >= lb) & (x <= ub)) + + +def step_size_to_bound(x, s, lb, ub): + """Compute a min_step size required to reach a bound. + + The function computes a positive scalar t, such that x + s * t is on + the bound. + + Returns + ------- + step : float + Computed step. Non-negative value. + hits : ndarray of int with shape of x + Each element indicates whether a corresponding variable reaches the + bound: + + * 0 - the bound was not hit. + * -1 - the lower bound was hit. + * 1 - the upper bound was hit. + """ + non_zero = np.nonzero(s) + s_non_zero = s[non_zero] + steps = np.empty_like(x) + steps.fill(np.inf) + with np.errstate(over='ignore'): + steps[non_zero] = np.maximum((lb - x)[non_zero] / s_non_zero, + (ub - x)[non_zero] / s_non_zero) + min_step = np.min(steps) + return min_step, np.equal(steps, min_step) * np.sign(s).astype(int) + + +def find_active_constraints(x, lb, ub, rtol=1e-10): + """Determine which constraints are active in a given point. + + The threshold is computed using `rtol` and the absolute value of the + closest bound. + + Returns + ------- + active : ndarray of int with shape of x + Each component shows whether the corresponding constraint is active: + + * 0 - a constraint is not active. + * -1 - a lower bound is active. + * 1 - a upper bound is active. + """ + active = np.zeros_like(x, dtype=int) + + if rtol == 0: + active[x <= lb] = -1 + active[x >= ub] = 1 + return active + + lower_dist = x - lb + upper_dist = ub - x + + lower_threshold = rtol * np.maximum(1, np.abs(lb)) + upper_threshold = rtol * np.maximum(1, np.abs(ub)) + + lower_active = (np.isfinite(lb) & + (lower_dist <= np.minimum(upper_dist, lower_threshold))) + active[lower_active] = -1 + + upper_active = (np.isfinite(ub) & + (upper_dist <= np.minimum(lower_dist, upper_threshold))) + active[upper_active] = 1 + + return active + + +def make_strictly_feasible(x, lb, ub, rstep=1e-10): + """Shift a point to the interior of a feasible region. + + Each element of the returned vector is at least at a relative distance + `rstep` from the closest bound. If ``rstep=0`` then `np.nextafter` is used. + """ + x_new = x.copy() + + active = find_active_constraints(x, lb, ub, rstep) + lower_mask = np.equal(active, -1) + upper_mask = np.equal(active, 1) + + if rstep == 0: + x_new[lower_mask] = np.nextafter(lb[lower_mask], ub[lower_mask]) + x_new[upper_mask] = np.nextafter(ub[upper_mask], lb[upper_mask]) + else: + x_new[lower_mask] = (lb[lower_mask] + + rstep * np.maximum(1, np.abs(lb[lower_mask]))) + x_new[upper_mask] = (ub[upper_mask] - + rstep * np.maximum(1, np.abs(ub[upper_mask]))) + + tight_bounds = (x_new < lb) | (x_new > ub) + x_new[tight_bounds] = 0.5 * (lb[tight_bounds] + ub[tight_bounds]) + + return x_new + + +def CL_scaling_vector(x, g, lb, ub): + """Compute Coleman-Li scaling vector and its derivatives. + + Components of a vector v are defined as follows:: + + | ub[i] - x[i], if g[i] < 0 and ub[i] < np.inf + v[i] = | x[i] - lb[i], if g[i] > 0 and lb[i] > -np.inf + | 1, otherwise + + According to this definition v[i] >= 0 for all i. It differs from the + definition in paper [1]_ (eq. (2.2)), where the absolute value of v is + used. Both definitions are equivalent down the line. + Derivatives of v with respect to x take value 1, -1 or 0 depending on a + case. + + Returns + ------- + v : ndarray with shape of x + Scaling vector. + dv : ndarray with shape of x + Derivatives of v[i] with respect to x[i], diagonal elements of v's + Jacobian. + + References + ---------- + .. [1] M.A. Branch, T.F. Coleman, and Y. Li, "A Subspace, Interior, + and Conjugate Gradient Method for Large-Scale Bound-Constrained + Minimization Problems," SIAM Journal on Scientific Computing, + Vol. 21, Number 1, pp 1-23, 1999. + """ + v = np.ones_like(x) + dv = np.zeros_like(x) + + mask = (g < 0) & np.isfinite(ub) + v[mask] = ub[mask] - x[mask] + dv[mask] = -1 + + mask = (g > 0) & np.isfinite(lb) + v[mask] = x[mask] - lb[mask] + dv[mask] = 1 + + return v, dv + + +def reflective_transformation(y, lb, ub): + """Compute reflective transformation and its gradient.""" + if in_bounds(y, lb, ub): + return y, np.ones_like(y) + + lb_finite = np.isfinite(lb) + ub_finite = np.isfinite(ub) + + x = y.copy() + g_negative = np.zeros_like(y, dtype=bool) + + mask = lb_finite & ~ub_finite + x[mask] = np.maximum(y[mask], 2 * lb[mask] - y[mask]) + g_negative[mask] = y[mask] < lb[mask] + + mask = ~lb_finite & ub_finite + x[mask] = np.minimum(y[mask], 2 * ub[mask] - y[mask]) + g_negative[mask] = y[mask] > ub[mask] + + mask = lb_finite & ub_finite + d = ub - lb + t = np.remainder(y[mask] - lb[mask], 2 * d[mask]) + x[mask] = lb[mask] + np.minimum(t, 2 * d[mask] - t) + g_negative[mask] = t > d[mask] + + g = np.ones_like(y) + g[g_negative] = -1 + + return x, g + + +# Functions to display algorithm's progress. + + +def print_header_nonlinear(): + print("{:^15}{:^15}{:^15}{:^15}{:^15}{:^15}" + .format("Iteration", "Total nfev", "Cost", "Cost reduction", + "Step norm", "Optimality")) + + +def print_iteration_nonlinear(iteration, nfev, cost, cost_reduction, + step_norm, optimality): + if cost_reduction is None: + cost_reduction = " " * 15 + else: + cost_reduction = f"{cost_reduction:^15.2e}" + + if step_norm is None: + step_norm = " " * 15 + else: + step_norm = f"{step_norm:^15.2e}" + + print("{:^15}{:^15}{:^15.4e}{}{}{:^15.2e}" + .format(iteration, nfev, cost, cost_reduction, + step_norm, optimality)) + + +def print_header_linear(): + print("{:^15}{:^15}{:^15}{:^15}{:^15}" + .format("Iteration", "Cost", "Cost reduction", "Step norm", + "Optimality")) + + +def print_iteration_linear(iteration, cost, cost_reduction, step_norm, + optimality): + if cost_reduction is None: + cost_reduction = " " * 15 + else: + cost_reduction = f"{cost_reduction:^15.2e}" + + if step_norm is None: + step_norm = " " * 15 + else: + step_norm = f"{step_norm:^15.2e}" + + print(f"{iteration:^15}{cost:^15.4e}{cost_reduction}{step_norm}{optimality:^15.2e}") + + +# Simple helper functions. + + +def compute_grad(J, f): + """Compute gradient of the least-squares cost function.""" + if isinstance(J, LinearOperator): + return J.rmatvec(f) + else: + return J.T.dot(f) + + +def compute_jac_scale(J, scale_inv_old=None): + """Compute variables scale based on the Jacobian matrix.""" + if issparse(J): + scale_inv = np.asarray(J.power(2).sum(axis=0)).ravel()**0.5 + else: + scale_inv = np.sum(J**2, axis=0)**0.5 + + if scale_inv_old is None: + scale_inv[scale_inv == 0] = 1 + else: + scale_inv = np.maximum(scale_inv, scale_inv_old) + + return 1 / scale_inv, scale_inv + + +def left_multiplied_operator(J, d): + """Return diag(d) J as LinearOperator.""" + J = aslinearoperator(J) + + def matvec(x): + return d * J.matvec(x) + + def matmat(X): + return d[:, np.newaxis] * J.matmat(X) + + def rmatvec(x): + return J.rmatvec(x.ravel() * d) + + return LinearOperator(J.shape, matvec=matvec, matmat=matmat, + rmatvec=rmatvec) + + +def right_multiplied_operator(J, d): + """Return J diag(d) as LinearOperator.""" + J = aslinearoperator(J) + + def matvec(x): + return J.matvec(np.ravel(x) * d) + + def matmat(X): + return J.matmat(X * d[:, np.newaxis]) + + def rmatvec(x): + return d * J.rmatvec(x) + + return LinearOperator(J.shape, matvec=matvec, matmat=matmat, + rmatvec=rmatvec) + + +def regularized_lsq_operator(J, diag): + """Return a matrix arising in regularized least squares as LinearOperator. + + The matrix is + [ J ] + [ D ] + where D is diagonal matrix with elements from `diag`. + """ + J = aslinearoperator(J) + m, n = J.shape + + def matvec(x): + return np.hstack((J.matvec(x), diag * x)) + + def rmatvec(x): + x1 = x[:m] + x2 = x[m:] + return J.rmatvec(x1) + diag * x2 + + return LinearOperator((m + n, n), matvec=matvec, rmatvec=rmatvec) + + +def right_multiply(J, d, copy=True): + """Compute J diag(d). + + If `copy` is False, `J` is modified in place (unless being LinearOperator). + """ + if copy and not isinstance(J, LinearOperator): + J = J.copy() + + if issparse(J): + J.data *= d.take(J.indices, mode='clip') # scikit-learn recipe. + elif isinstance(J, LinearOperator): + J = right_multiplied_operator(J, d) + else: + J *= d + + return J + + +def left_multiply(J, d, copy=True): + """Compute diag(d) J. + + If `copy` is False, `J` is modified in place (unless being LinearOperator). + """ + if copy and not isinstance(J, LinearOperator): + J = J.copy() + + if issparse(J): + J.data *= np.repeat(d, np.diff(J.indptr)) # scikit-learn recipe. + elif isinstance(J, LinearOperator): + J = left_multiplied_operator(J, d) + else: + J *= d[:, np.newaxis] + + return J + + +def check_termination(dF, F, dx_norm, x_norm, ratio, ftol, xtol): + """Check termination condition for nonlinear least squares.""" + ftol_satisfied = dF < ftol * F and ratio > 0.25 + xtol_satisfied = dx_norm < xtol * (xtol + x_norm) + + if ftol_satisfied and xtol_satisfied: + return 4 + elif ftol_satisfied: + return 2 + elif xtol_satisfied: + return 3 + else: + return None + + +def scale_for_robust_loss_function(J, f, rho): + """Scale Jacobian and residuals for a robust loss function. + + Arrays are modified in place. + """ + J_scale = rho[1] + 2 * rho[2] * f**2 + J_scale[J_scale < EPS] = EPS + J_scale **= 0.5 + + f *= rho[1] / J_scale + + return left_multiply(J, J_scale, copy=False), f diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/dogbox.py b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/dogbox.py new file mode 100644 index 0000000000000000000000000000000000000000..6bb5abbe79028afed7b110603a0d5dfd6affae7f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/dogbox.py @@ -0,0 +1,331 @@ +""" +Dogleg algorithm with rectangular trust regions for least-squares minimization. + +The description of the algorithm can be found in [Voglis]_. The algorithm does +trust-region iterations, but the shape of trust regions is rectangular as +opposed to conventional elliptical. The intersection of a trust region and +an initial feasible region is again some rectangle. Thus, on each iteration a +bound-constrained quadratic optimization problem is solved. + +A quadratic problem is solved by well-known dogleg approach, where the +function is minimized along piecewise-linear "dogleg" path [NumOpt]_, +Chapter 4. If Jacobian is not rank-deficient then the function is decreasing +along this path, and optimization amounts to simply following along this +path as long as a point stays within the bounds. A constrained Cauchy step +(along the anti-gradient) is considered for safety in rank deficient cases, +in this situations the convergence might be slow. + +If during iterations some variable hit the initial bound and the component +of anti-gradient points outside the feasible region, then a next dogleg step +won't make any progress. At this state such variables satisfy first-order +optimality conditions and they are excluded before computing a next dogleg +step. + +Gauss-Newton step can be computed exactly by `numpy.linalg.lstsq` (for dense +Jacobian matrices) or by iterative procedure `scipy.sparse.linalg.lsmr` (for +dense and sparse matrices, or Jacobian being LinearOperator). The second +option allows to solve very large problems (up to couple of millions of +residuals on a regular PC), provided the Jacobian matrix is sufficiently +sparse. But note that dogbox is not very good for solving problems with +large number of constraints, because of variables exclusion-inclusion on each +iteration (a required number of function evaluations might be high or accuracy +of a solution will be poor), thus its large-scale usage is probably limited +to unconstrained problems. + +References +---------- +.. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region Dogleg + Approach for Unconstrained and Bound Constrained Nonlinear + Optimization", WSEAS International Conference on Applied + Mathematics, Corfu, Greece, 2004. +.. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization, 2nd edition". +""" +import numpy as np +from numpy.linalg import lstsq, norm + +from scipy.sparse.linalg import LinearOperator, aslinearoperator, lsmr +from scipy.optimize import OptimizeResult + +from .common import ( + step_size_to_bound, in_bounds, update_tr_radius, evaluate_quadratic, + build_quadratic_1d, minimize_quadratic_1d, compute_grad, + compute_jac_scale, check_termination, scale_for_robust_loss_function, + print_header_nonlinear, print_iteration_nonlinear) + + +def lsmr_operator(Jop, d, active_set): + """Compute LinearOperator to use in LSMR by dogbox algorithm. + + `active_set` mask is used to excluded active variables from computations + of matrix-vector products. + """ + m, n = Jop.shape + + def matvec(x): + x_free = x.ravel().copy() + x_free[active_set] = 0 + return Jop.matvec(x * d) + + def rmatvec(x): + r = d * Jop.rmatvec(x) + r[active_set] = 0 + return r + + return LinearOperator((m, n), matvec=matvec, rmatvec=rmatvec, dtype=float) + + +def find_intersection(x, tr_bounds, lb, ub): + """Find intersection of trust-region bounds and initial bounds. + + Returns + ------- + lb_total, ub_total : ndarray with shape of x + Lower and upper bounds of the intersection region. + orig_l, orig_u : ndarray of bool with shape of x + True means that an original bound is taken as a corresponding bound + in the intersection region. + tr_l, tr_u : ndarray of bool with shape of x + True means that a trust-region bound is taken as a corresponding bound + in the intersection region. + """ + lb_centered = lb - x + ub_centered = ub - x + + lb_total = np.maximum(lb_centered, -tr_bounds) + ub_total = np.minimum(ub_centered, tr_bounds) + + orig_l = np.equal(lb_total, lb_centered) + orig_u = np.equal(ub_total, ub_centered) + + tr_l = np.equal(lb_total, -tr_bounds) + tr_u = np.equal(ub_total, tr_bounds) + + return lb_total, ub_total, orig_l, orig_u, tr_l, tr_u + + +def dogleg_step(x, newton_step, g, a, b, tr_bounds, lb, ub): + """Find dogleg step in a rectangular region. + + Returns + ------- + step : ndarray, shape (n,) + Computed dogleg step. + bound_hits : ndarray of int, shape (n,) + Each component shows whether a corresponding variable hits the + initial bound after the step is taken: + * 0 - a variable doesn't hit the bound. + * -1 - lower bound is hit. + * 1 - upper bound is hit. + tr_hit : bool + Whether the step hit the boundary of the trust-region. + """ + lb_total, ub_total, orig_l, orig_u, tr_l, tr_u = find_intersection( + x, tr_bounds, lb, ub + ) + bound_hits = np.zeros_like(x, dtype=int) + + if in_bounds(newton_step, lb_total, ub_total): + return newton_step, bound_hits, False + + to_bounds, _ = step_size_to_bound(np.zeros_like(x), -g, lb_total, ub_total) + + # The classical dogleg algorithm would check if Cauchy step fits into + # the bounds, and just return it constrained version if not. But in a + # rectangular trust region it makes sense to try to improve constrained + # Cauchy step too. Thus, we don't distinguish these two cases. + + cauchy_step = -minimize_quadratic_1d(a, b, 0, to_bounds)[0] * g + + step_diff = newton_step - cauchy_step + step_size, hits = step_size_to_bound(cauchy_step, step_diff, + lb_total, ub_total) + bound_hits[(hits < 0) & orig_l] = -1 + bound_hits[(hits > 0) & orig_u] = 1 + tr_hit = np.any((hits < 0) & tr_l | (hits > 0) & tr_u) + + return cauchy_step + step_size * step_diff, bound_hits, tr_hit + + +def dogbox(fun, jac, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale, + loss_function, tr_solver, tr_options, verbose): + f = f0 + f_true = f.copy() + nfev = 1 + + J = J0 + njev = 1 + + if loss_function is not None: + rho = loss_function(f) + cost = 0.5 * np.sum(rho[0]) + J, f = scale_for_robust_loss_function(J, f, rho) + else: + cost = 0.5 * np.dot(f, f) + + g = compute_grad(J, f) + + jac_scale = isinstance(x_scale, str) and x_scale == 'jac' + if jac_scale: + scale, scale_inv = compute_jac_scale(J) + else: + scale, scale_inv = x_scale, 1 / x_scale + + Delta = norm(x0 * scale_inv, ord=np.inf) + if Delta == 0: + Delta = 1.0 + + on_bound = np.zeros_like(x0, dtype=int) + on_bound[np.equal(x0, lb)] = -1 + on_bound[np.equal(x0, ub)] = 1 + + x = x0 + step = np.empty_like(x0) + + if max_nfev is None: + max_nfev = x0.size * 100 + + termination_status = None + iteration = 0 + step_norm = None + actual_reduction = None + + if verbose == 2: + print_header_nonlinear() + + while True: + active_set = on_bound * g < 0 + free_set = ~active_set + + g_free = g[free_set] + g_full = g.copy() + g[active_set] = 0 + + g_norm = norm(g, ord=np.inf) + if g_norm < gtol: + termination_status = 1 + + if verbose == 2: + print_iteration_nonlinear(iteration, nfev, cost, actual_reduction, + step_norm, g_norm) + + if termination_status is not None or nfev == max_nfev: + break + + x_free = x[free_set] + lb_free = lb[free_set] + ub_free = ub[free_set] + scale_free = scale[free_set] + + # Compute (Gauss-)Newton and build quadratic model for Cauchy step. + if tr_solver == 'exact': + J_free = J[:, free_set] + newton_step = lstsq(J_free, -f, rcond=-1)[0] + + # Coefficients for the quadratic model along the anti-gradient. + a, b = build_quadratic_1d(J_free, g_free, -g_free) + elif tr_solver == 'lsmr': + Jop = aslinearoperator(J) + + # We compute lsmr step in scaled variables and then + # transform back to normal variables, if lsmr would give exact lsq + # solution, this would be equivalent to not doing any + # transformations, but from experience it's better this way. + + # We pass active_set to make computations as if we selected + # the free subset of J columns, but without actually doing any + # slicing, which is expensive for sparse matrices and impossible + # for LinearOperator. + + lsmr_op = lsmr_operator(Jop, scale, active_set) + newton_step = -lsmr(lsmr_op, f, **tr_options)[0][free_set] + newton_step *= scale_free + + # Components of g for active variables were zeroed, so this call + # is correct and equivalent to using J_free and g_free. + a, b = build_quadratic_1d(Jop, g, -g) + + actual_reduction = -1.0 + while actual_reduction <= 0 and nfev < max_nfev: + tr_bounds = Delta * scale_free + + step_free, on_bound_free, tr_hit = dogleg_step( + x_free, newton_step, g_free, a, b, tr_bounds, lb_free, ub_free) + + step.fill(0.0) + step[free_set] = step_free + + if tr_solver == 'exact': + predicted_reduction = -evaluate_quadratic(J_free, g_free, + step_free) + elif tr_solver == 'lsmr': + predicted_reduction = -evaluate_quadratic(Jop, g, step) + + # gh11403 ensure that solution is fully within bounds. + x_new = np.clip(x + step, lb, ub) + + f_new = fun(x_new) + nfev += 1 + + step_h_norm = norm(step * scale_inv, ord=np.inf) + + if not np.all(np.isfinite(f_new)): + Delta = 0.25 * step_h_norm + continue + + # Usual trust-region step quality estimation. + if loss_function is not None: + cost_new = loss_function(f_new, cost_only=True) + else: + cost_new = 0.5 * np.dot(f_new, f_new) + actual_reduction = cost - cost_new + + Delta, ratio = update_tr_radius( + Delta, actual_reduction, predicted_reduction, + step_h_norm, tr_hit + ) + + step_norm = norm(step) + termination_status = check_termination( + actual_reduction, cost, step_norm, norm(x), ratio, ftol, xtol) + + if termination_status is not None: + break + + if actual_reduction > 0: + on_bound[free_set] = on_bound_free + + x = x_new + # Set variables exactly at the boundary. + mask = on_bound == -1 + x[mask] = lb[mask] + mask = on_bound == 1 + x[mask] = ub[mask] + + f = f_new + f_true = f.copy() + + cost = cost_new + + J = jac(x, f) + njev += 1 + + if loss_function is not None: + rho = loss_function(f) + J, f = scale_for_robust_loss_function(J, f, rho) + + g = compute_grad(J, f) + + if jac_scale: + scale, scale_inv = compute_jac_scale(J, scale_inv) + else: + step_norm = 0 + actual_reduction = 0 + + iteration += 1 + + if termination_status is None: + termination_status = 0 + + return OptimizeResult( + x=x, cost=cost, fun=f_true, jac=J, grad=g_full, optimality=g_norm, + active_mask=on_bound, nfev=nfev, njev=njev, status=termination_status) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/givens_elimination.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/givens_elimination.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..fe54821d9e631ec5a1c8da8b3057ad997af8de00 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/givens_elimination.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/least_squares.py b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/least_squares.py new file mode 100644 index 0000000000000000000000000000000000000000..db8bb31c7b1530fd48ac7ae58cf501e2b0081a91 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/least_squares.py @@ -0,0 +1,967 @@ +"""Generic interface for least-squares minimization.""" +from warnings import warn + +import numpy as np +from numpy.linalg import norm + +from scipy.sparse import issparse +from scipy.sparse.linalg import LinearOperator +from scipy.optimize import _minpack, OptimizeResult +from scipy.optimize._numdiff import approx_derivative, group_columns +from scipy.optimize._minimize import Bounds + +from .trf import trf +from .dogbox import dogbox +from .common import EPS, in_bounds, make_strictly_feasible + + +TERMINATION_MESSAGES = { + -1: "Improper input parameters status returned from `leastsq`", + 0: "The maximum number of function evaluations is exceeded.", + 1: "`gtol` termination condition is satisfied.", + 2: "`ftol` termination condition is satisfied.", + 3: "`xtol` termination condition is satisfied.", + 4: "Both `ftol` and `xtol` termination conditions are satisfied." +} + + +FROM_MINPACK_TO_COMMON = { + 0: -1, # Improper input parameters from MINPACK. + 1: 2, + 2: 3, + 3: 4, + 4: 1, + 5: 0 + # There are 6, 7, 8 for too small tolerance parameters, + # but we guard against it by checking ftol, xtol, gtol beforehand. +} + + +def call_minpack(fun, x0, jac, ftol, xtol, gtol, max_nfev, x_scale, diff_step): + n = x0.size + + if diff_step is None: + epsfcn = EPS + else: + epsfcn = diff_step**2 + + # Compute MINPACK's `diag`, which is inverse of our `x_scale` and + # ``x_scale='jac'`` corresponds to ``diag=None``. + if isinstance(x_scale, str) and x_scale == 'jac': + diag = None + else: + diag = 1 / x_scale + + full_output = True + col_deriv = False + factor = 100.0 + + if jac is None: + if max_nfev is None: + # n squared to account for Jacobian evaluations. + max_nfev = 100 * n * (n + 1) + x, info, status = _minpack._lmdif( + fun, x0, (), full_output, ftol, xtol, gtol, + max_nfev, epsfcn, factor, diag) + else: + if max_nfev is None: + max_nfev = 100 * n + x, info, status = _minpack._lmder( + fun, jac, x0, (), full_output, col_deriv, + ftol, xtol, gtol, max_nfev, factor, diag) + + f = info['fvec'] + + if callable(jac): + J = jac(x) + else: + J = np.atleast_2d(approx_derivative(fun, x)) + + cost = 0.5 * np.dot(f, f) + g = J.T.dot(f) + g_norm = norm(g, ord=np.inf) + + nfev = info['nfev'] + njev = info.get('njev', None) + + status = FROM_MINPACK_TO_COMMON[status] + active_mask = np.zeros_like(x0, dtype=int) + + return OptimizeResult( + x=x, cost=cost, fun=f, jac=J, grad=g, optimality=g_norm, + active_mask=active_mask, nfev=nfev, njev=njev, status=status) + + +def prepare_bounds(bounds, n): + lb, ub = (np.asarray(b, dtype=float) for b in bounds) + if lb.ndim == 0: + lb = np.resize(lb, n) + + if ub.ndim == 0: + ub = np.resize(ub, n) + + return lb, ub + + +def check_tolerance(ftol, xtol, gtol, method): + def check(tol, name): + if tol is None: + tol = 0 + elif tol < EPS: + warn(f"Setting `{name}` below the machine epsilon ({EPS:.2e}) effectively " + f"disables the corresponding termination condition.", + stacklevel=3) + return tol + + ftol = check(ftol, "ftol") + xtol = check(xtol, "xtol") + gtol = check(gtol, "gtol") + + if method == "lm" and (ftol < EPS or xtol < EPS or gtol < EPS): + raise ValueError("All tolerances must be higher than machine epsilon " + f"({EPS:.2e}) for method 'lm'.") + elif ftol < EPS and xtol < EPS and gtol < EPS: + raise ValueError("At least one of the tolerances must be higher than " + f"machine epsilon ({EPS:.2e}).") + + return ftol, xtol, gtol + + +def check_x_scale(x_scale, x0): + if isinstance(x_scale, str) and x_scale == 'jac': + return x_scale + + try: + x_scale = np.asarray(x_scale, dtype=float) + valid = np.all(np.isfinite(x_scale)) and np.all(x_scale > 0) + except (ValueError, TypeError): + valid = False + + if not valid: + raise ValueError("`x_scale` must be 'jac' or array_like with " + "positive numbers.") + + if x_scale.ndim == 0: + x_scale = np.resize(x_scale, x0.shape) + + if x_scale.shape != x0.shape: + raise ValueError("Inconsistent shapes between `x_scale` and `x0`.") + + return x_scale + + +def check_jac_sparsity(jac_sparsity, m, n): + if jac_sparsity is None: + return None + + if not issparse(jac_sparsity): + jac_sparsity = np.atleast_2d(jac_sparsity) + + if jac_sparsity.shape != (m, n): + raise ValueError("`jac_sparsity` has wrong shape.") + + return jac_sparsity, group_columns(jac_sparsity) + + +# Loss functions. + + +def huber(z, rho, cost_only): + mask = z <= 1 + rho[0, mask] = z[mask] + rho[0, ~mask] = 2 * z[~mask]**0.5 - 1 + if cost_only: + return + rho[1, mask] = 1 + rho[1, ~mask] = z[~mask]**-0.5 + rho[2, mask] = 0 + rho[2, ~mask] = -0.5 * z[~mask]**-1.5 + + +def soft_l1(z, rho, cost_only): + t = 1 + z + rho[0] = 2 * (t**0.5 - 1) + if cost_only: + return + rho[1] = t**-0.5 + rho[2] = -0.5 * t**-1.5 + + +def cauchy(z, rho, cost_only): + rho[0] = np.log1p(z) + if cost_only: + return + t = 1 + z + rho[1] = 1 / t + rho[2] = -1 / t**2 + + +def arctan(z, rho, cost_only): + rho[0] = np.arctan(z) + if cost_only: + return + t = 1 + z**2 + rho[1] = 1 / t + rho[2] = -2 * z / t**2 + + +IMPLEMENTED_LOSSES = dict(linear=None, huber=huber, soft_l1=soft_l1, + cauchy=cauchy, arctan=arctan) + + +def construct_loss_function(m, loss, f_scale): + if loss == 'linear': + return None + + if not callable(loss): + loss = IMPLEMENTED_LOSSES[loss] + rho = np.empty((3, m)) + + def loss_function(f, cost_only=False): + z = (f / f_scale) ** 2 + loss(z, rho, cost_only=cost_only) + if cost_only: + return 0.5 * f_scale ** 2 * np.sum(rho[0]) + rho[0] *= f_scale ** 2 + rho[2] /= f_scale ** 2 + return rho + else: + def loss_function(f, cost_only=False): + z = (f / f_scale) ** 2 + rho = loss(z) + if cost_only: + return 0.5 * f_scale ** 2 * np.sum(rho[0]) + rho[0] *= f_scale ** 2 + rho[2] /= f_scale ** 2 + return rho + + return loss_function + + +def least_squares( + fun, x0, jac='2-point', bounds=(-np.inf, np.inf), method='trf', + ftol=1e-8, xtol=1e-8, gtol=1e-8, x_scale=1.0, loss='linear', + f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, + jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={}): + """Solve a nonlinear least-squares problem with bounds on the variables. + + Given the residuals f(x) (an m-D real function of n real + variables) and the loss function rho(s) (a scalar function), `least_squares` + finds a local minimum of the cost function F(x):: + + minimize F(x) = 0.5 * sum(rho(f_i(x)**2), i = 0, ..., m - 1) + subject to lb <= x <= ub + + The purpose of the loss function rho(s) is to reduce the influence of + outliers on the solution. + + Parameters + ---------- + fun : callable + Function which computes the vector of residuals, with the signature + ``fun(x, *args, **kwargs)``, i.e., the minimization proceeds with + respect to its first argument. The argument ``x`` passed to this + function is an ndarray of shape (n,) (never a scalar, even for n=1). + It must allocate and return a 1-D array_like of shape (m,) or a scalar. + If the argument ``x`` is complex or the function ``fun`` returns + complex residuals, it must be wrapped in a real function of real + arguments, as shown at the end of the Examples section. + x0 : array_like with shape (n,) or float + Initial guess on independent variables. If float, it will be treated + as a 1-D array with one element. When `method` is 'trf', the initial + guess might be slightly adjusted to lie sufficiently within the given + `bounds`. + jac : {'2-point', '3-point', 'cs', callable}, optional + Method of computing the Jacobian matrix (an m-by-n matrix, where + element (i, j) is the partial derivative of f[i] with respect to + x[j]). The keywords select a finite difference scheme for numerical + estimation. The scheme '3-point' is more accurate, but requires + twice as many operations as '2-point' (default). The scheme 'cs' + uses complex steps, and while potentially the most accurate, it is + applicable only when `fun` correctly handles complex inputs and + can be analytically continued to the complex plane. Method 'lm' + always uses the '2-point' scheme. If callable, it is used as + ``jac(x, *args, **kwargs)`` and should return a good approximation + (or the exact value) for the Jacobian as an array_like (np.atleast_2d + is applied), a sparse matrix (csr_matrix preferred for performance) or + a `scipy.sparse.linalg.LinearOperator`. + bounds : 2-tuple of array_like or `Bounds`, optional + There are two ways to specify bounds: + + 1. Instance of `Bounds` class + 2. Lower and upper bounds on independent variables. Defaults to no + bounds. Each array must match the size of `x0` or be a scalar, + in the latter case a bound will be the same for all variables. + Use ``np.inf`` with an appropriate sign to disable bounds on all + or some variables. + method : {'trf', 'dogbox', 'lm'}, optional + Algorithm to perform minimization. + + * 'trf' : Trust Region Reflective algorithm, particularly suitable + for large sparse problems with bounds. Generally robust method. + * 'dogbox' : dogleg algorithm with rectangular trust regions, + typical use case is small problems with bounds. Not recommended + for problems with rank-deficient Jacobian. + * 'lm' : Levenberg-Marquardt algorithm as implemented in MINPACK. + Doesn't handle bounds and sparse Jacobians. Usually the most + efficient method for small unconstrained problems. + + Default is 'trf'. See Notes for more information. + ftol : float or None, optional + Tolerance for termination by the change of the cost function. Default + is 1e-8. The optimization process is stopped when ``dF < ftol * F``, + and there was an adequate agreement between a local quadratic model and + the true model in the last step. + + If None and 'method' is not 'lm', the termination by this condition is + disabled. If 'method' is 'lm', this tolerance must be higher than + machine epsilon. + xtol : float or None, optional + Tolerance for termination by the change of the independent variables. + Default is 1e-8. The exact condition depends on the `method` used: + + * For 'trf' and 'dogbox' : ``norm(dx) < xtol * (xtol + norm(x))``. + * For 'lm' : ``Delta < xtol * norm(xs)``, where ``Delta`` is + a trust-region radius and ``xs`` is the value of ``x`` + scaled according to `x_scale` parameter (see below). + + If None and 'method' is not 'lm', the termination by this condition is + disabled. If 'method' is 'lm', this tolerance must be higher than + machine epsilon. + gtol : float or None, optional + Tolerance for termination by the norm of the gradient. Default is 1e-8. + The exact condition depends on a `method` used: + + * For 'trf' : ``norm(g_scaled, ord=np.inf) < gtol``, where + ``g_scaled`` is the value of the gradient scaled to account for + the presence of the bounds [STIR]_. + * For 'dogbox' : ``norm(g_free, ord=np.inf) < gtol``, where + ``g_free`` is the gradient with respect to the variables which + are not in the optimal state on the boundary. + * For 'lm' : the maximum absolute value of the cosine of angles + between columns of the Jacobian and the residual vector is less + than `gtol`, or the residual vector is zero. + + If None and 'method' is not 'lm', the termination by this condition is + disabled. If 'method' is 'lm', this tolerance must be higher than + machine epsilon. + x_scale : array_like or 'jac', optional + Characteristic scale of each variable. Setting `x_scale` is equivalent + to reformulating the problem in scaled variables ``xs = x / x_scale``. + An alternative view is that the size of a trust region along jth + dimension is proportional to ``x_scale[j]``. Improved convergence may + be achieved by setting `x_scale` such that a step of a given size + along any of the scaled variables has a similar effect on the cost + function. If set to 'jac', the scale is iteratively updated using the + inverse norms of the columns of the Jacobian matrix (as described in + [JJMore]_). + loss : str or callable, optional + Determines the loss function. The following keyword values are allowed: + + * 'linear' (default) : ``rho(z) = z``. Gives a standard + least-squares problem. + * 'soft_l1' : ``rho(z) = 2 * ((1 + z)**0.5 - 1)``. The smooth + approximation of l1 (absolute value) loss. Usually a good + choice for robust least squares. + * 'huber' : ``rho(z) = z if z <= 1 else 2*z**0.5 - 1``. Works + similarly to 'soft_l1'. + * 'cauchy' : ``rho(z) = ln(1 + z)``. Severely weakens outliers + influence, but may cause difficulties in optimization process. + * 'arctan' : ``rho(z) = arctan(z)``. Limits a maximum loss on + a single residual, has properties similar to 'cauchy'. + + If callable, it must take a 1-D ndarray ``z=f**2`` and return an + array_like with shape (3, m) where row 0 contains function values, + row 1 contains first derivatives and row 2 contains second + derivatives. Method 'lm' supports only 'linear' loss. + f_scale : float, optional + Value of soft margin between inlier and outlier residuals, default + is 1.0. The loss function is evaluated as follows + ``rho_(f**2) = C**2 * rho(f**2 / C**2)``, where ``C`` is `f_scale`, + and ``rho`` is determined by `loss` parameter. This parameter has + no effect with ``loss='linear'``, but for other `loss` values it is + of crucial importance. + max_nfev : None or int, optional + Maximum number of function evaluations before the termination. + If None (default), the value is chosen automatically: + + * For 'trf' and 'dogbox' : 100 * n. + * For 'lm' : 100 * n if `jac` is callable and 100 * n * (n + 1) + otherwise (because 'lm' counts function calls in Jacobian + estimation). + + diff_step : None or array_like, optional + Determines the relative step size for the finite difference + approximation of the Jacobian. The actual step is computed as + ``x * diff_step``. If None (default), then `diff_step` is taken to be + a conventional "optimal" power of machine epsilon for the finite + difference scheme used [NR]_. + tr_solver : {None, 'exact', 'lsmr'}, optional + Method for solving trust-region subproblems, relevant only for 'trf' + and 'dogbox' methods. + + * 'exact' is suitable for not very large problems with dense + Jacobian matrices. The computational complexity per iteration is + comparable to a singular value decomposition of the Jacobian + matrix. + * 'lsmr' is suitable for problems with sparse and large Jacobian + matrices. It uses the iterative procedure + `scipy.sparse.linalg.lsmr` for finding a solution of a linear + least-squares problem and only requires matrix-vector product + evaluations. + + If None (default), the solver is chosen based on the type of Jacobian + returned on the first iteration. + tr_options : dict, optional + Keyword options passed to trust-region solver. + + * ``tr_solver='exact'``: `tr_options` are ignored. + * ``tr_solver='lsmr'``: options for `scipy.sparse.linalg.lsmr`. + Additionally, ``method='trf'`` supports 'regularize' option + (bool, default is True), which adds a regularization term to the + normal equation, which improves convergence if the Jacobian is + rank-deficient [Byrd]_ (eq. 3.4). + + jac_sparsity : {None, array_like, sparse matrix}, optional + Defines the sparsity structure of the Jacobian matrix for finite + difference estimation, its shape must be (m, n). If the Jacobian has + only few non-zero elements in *each* row, providing the sparsity + structure will greatly speed up the computations [Curtis]_. A zero + entry means that a corresponding element in the Jacobian is identically + zero. If provided, forces the use of 'lsmr' trust-region solver. + If None (default), then dense differencing will be used. Has no effect + for 'lm' method. + verbose : {0, 1, 2}, optional + Level of algorithm's verbosity: + + * 0 (default) : work silently. + * 1 : display a termination report. + * 2 : display progress during iterations (not supported by 'lm' + method). + + args, kwargs : tuple and dict, optional + Additional arguments passed to `fun` and `jac`. Both empty by default. + The calling signature is ``fun(x, *args, **kwargs)`` and the same for + `jac`. + + Returns + ------- + result : OptimizeResult + `OptimizeResult` with the following fields defined: + + x : ndarray, shape (n,) + Solution found. + cost : float + Value of the cost function at the solution. + fun : ndarray, shape (m,) + Vector of residuals at the solution. + jac : ndarray, sparse matrix or LinearOperator, shape (m, n) + Modified Jacobian matrix at the solution, in the sense that J^T J + is a Gauss-Newton approximation of the Hessian of the cost function. + The type is the same as the one used by the algorithm. + grad : ndarray, shape (m,) + Gradient of the cost function at the solution. + optimality : float + First-order optimality measure. In unconstrained problems, it is + always the uniform norm of the gradient. In constrained problems, + it is the quantity which was compared with `gtol` during iterations. + active_mask : ndarray of int, shape (n,) + Each component shows whether a corresponding constraint is active + (that is, whether a variable is at the bound): + + * 0 : a constraint is not active. + * -1 : a lower bound is active. + * 1 : an upper bound is active. + + Might be somewhat arbitrary for 'trf' method as it generates a + sequence of strictly feasible iterates and `active_mask` is + determined within a tolerance threshold. + nfev : int + Number of function evaluations done. Methods 'trf' and 'dogbox' do + not count function calls for numerical Jacobian approximation, as + opposed to 'lm' method. + njev : int or None + Number of Jacobian evaluations done. If numerical Jacobian + approximation is used in 'lm' method, it is set to None. + status : int + The reason for algorithm termination: + + * -1 : improper input parameters status returned from MINPACK. + * 0 : the maximum number of function evaluations is exceeded. + * 1 : `gtol` termination condition is satisfied. + * 2 : `ftol` termination condition is satisfied. + * 3 : `xtol` termination condition is satisfied. + * 4 : Both `ftol` and `xtol` termination conditions are satisfied. + + message : str + Verbal description of the termination reason. + success : bool + True if one of the convergence criteria is satisfied (`status` > 0). + + See Also + -------- + leastsq : A legacy wrapper for the MINPACK implementation of the + Levenberg-Marquadt algorithm. + curve_fit : Least-squares minimization applied to a curve-fitting problem. + + Notes + ----- + Method 'lm' (Levenberg-Marquardt) calls a wrapper over least-squares + algorithms implemented in MINPACK (lmder, lmdif). It runs the + Levenberg-Marquardt algorithm formulated as a trust-region type algorithm. + The implementation is based on paper [JJMore]_, it is very robust and + efficient with a lot of smart tricks. It should be your first choice + for unconstrained problems. Note that it doesn't support bounds. Also, + it doesn't work when m < n. + + Method 'trf' (Trust Region Reflective) is motivated by the process of + solving a system of equations, which constitute the first-order optimality + condition for a bound-constrained minimization problem as formulated in + [STIR]_. The algorithm iteratively solves trust-region subproblems + augmented by a special diagonal quadratic term and with trust-region shape + determined by the distance from the bounds and the direction of the + gradient. This enhancements help to avoid making steps directly into bounds + and efficiently explore the whole space of variables. To further improve + convergence, the algorithm considers search directions reflected from the + bounds. To obey theoretical requirements, the algorithm keeps iterates + strictly feasible. With dense Jacobians trust-region subproblems are + solved by an exact method very similar to the one described in [JJMore]_ + (and implemented in MINPACK). The difference from the MINPACK + implementation is that a singular value decomposition of a Jacobian + matrix is done once per iteration, instead of a QR decomposition and series + of Givens rotation eliminations. For large sparse Jacobians a 2-D subspace + approach of solving trust-region subproblems is used [STIR]_, [Byrd]_. + The subspace is spanned by a scaled gradient and an approximate + Gauss-Newton solution delivered by `scipy.sparse.linalg.lsmr`. When no + constraints are imposed the algorithm is very similar to MINPACK and has + generally comparable performance. The algorithm works quite robust in + unbounded and bounded problems, thus it is chosen as a default algorithm. + + Method 'dogbox' operates in a trust-region framework, but considers + rectangular trust regions as opposed to conventional ellipsoids [Voglis]_. + The intersection of a current trust region and initial bounds is again + rectangular, so on each iteration a quadratic minimization problem subject + to bound constraints is solved approximately by Powell's dogleg method + [NumOpt]_. The required Gauss-Newton step can be computed exactly for + dense Jacobians or approximately by `scipy.sparse.linalg.lsmr` for large + sparse Jacobians. The algorithm is likely to exhibit slow convergence when + the rank of Jacobian is less than the number of variables. The algorithm + often outperforms 'trf' in bounded problems with a small number of + variables. + + Robust loss functions are implemented as described in [BA]_. The idea + is to modify a residual vector and a Jacobian matrix on each iteration + such that computed gradient and Gauss-Newton Hessian approximation match + the true gradient and Hessian approximation of the cost function. Then + the algorithm proceeds in a normal way, i.e., robust loss functions are + implemented as a simple wrapper over standard least-squares algorithms. + + .. versionadded:: 0.17.0 + + References + ---------- + .. [STIR] M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior, + and Conjugate Gradient Method for Large-Scale Bound-Constrained + Minimization Problems," SIAM Journal on Scientific Computing, + Vol. 21, Number 1, pp 1-23, 1999. + .. [NR] William H. Press et. al., "Numerical Recipes. The Art of Scientific + Computing. 3rd edition", Sec. 5.7. + .. [Byrd] R. H. Byrd, R. B. Schnabel and G. A. Shultz, "Approximate + solution of the trust region problem by minimization over + two-dimensional subspaces", Math. Programming, 40, pp. 247-263, + 1988. + .. [Curtis] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of + sparse Jacobian matrices", Journal of the Institute of + Mathematics and its Applications, 13, pp. 117-120, 1974. + .. [JJMore] J. J. More, "The Levenberg-Marquardt Algorithm: Implementation + and Theory," Numerical Analysis, ed. G. A. Watson, Lecture + Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977. + .. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region + Dogleg Approach for Unconstrained and Bound Constrained + Nonlinear Optimization", WSEAS International Conference on + Applied Mathematics, Corfu, Greece, 2004. + .. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization, + 2nd edition", Chapter 4. + .. [BA] B. Triggs et. al., "Bundle Adjustment - A Modern Synthesis", + Proceedings of the International Workshop on Vision Algorithms: + Theory and Practice, pp. 298-372, 1999. + + Examples + -------- + In this example we find a minimum of the Rosenbrock function without bounds + on independent variables. + + >>> import numpy as np + >>> def fun_rosenbrock(x): + ... return np.array([10 * (x[1] - x[0]**2), (1 - x[0])]) + + Notice that we only provide the vector of the residuals. The algorithm + constructs the cost function as a sum of squares of the residuals, which + gives the Rosenbrock function. The exact minimum is at ``x = [1.0, 1.0]``. + + >>> from scipy.optimize import least_squares + >>> x0_rosenbrock = np.array([2, 2]) + >>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock) + >>> res_1.x + array([ 1., 1.]) + >>> res_1.cost + 9.8669242910846867e-30 + >>> res_1.optimality + 8.8928864934219529e-14 + + We now constrain the variables, in such a way that the previous solution + becomes infeasible. Specifically, we require that ``x[1] >= 1.5``, and + ``x[0]`` left unconstrained. To this end, we specify the `bounds` parameter + to `least_squares` in the form ``bounds=([-np.inf, 1.5], np.inf)``. + + We also provide the analytic Jacobian: + + >>> def jac_rosenbrock(x): + ... return np.array([ + ... [-20 * x[0], 10], + ... [-1, 0]]) + + Putting this all together, we see that the new solution lies on the bound: + + >>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock, + ... bounds=([-np.inf, 1.5], np.inf)) + >>> res_2.x + array([ 1.22437075, 1.5 ]) + >>> res_2.cost + 0.025213093946805685 + >>> res_2.optimality + 1.5885401433157753e-07 + + Now we solve a system of equations (i.e., the cost function should be zero + at a minimum) for a Broyden tridiagonal vector-valued function of 100000 + variables: + + >>> def fun_broyden(x): + ... f = (3 - x) * x + 1 + ... f[1:] -= x[:-1] + ... f[:-1] -= 2 * x[1:] + ... return f + + The corresponding Jacobian matrix is sparse. We tell the algorithm to + estimate it by finite differences and provide the sparsity structure of + Jacobian to significantly speed up this process. + + >>> from scipy.sparse import lil_matrix + >>> def sparsity_broyden(n): + ... sparsity = lil_matrix((n, n), dtype=int) + ... i = np.arange(n) + ... sparsity[i, i] = 1 + ... i = np.arange(1, n) + ... sparsity[i, i - 1] = 1 + ... i = np.arange(n - 1) + ... sparsity[i, i + 1] = 1 + ... return sparsity + ... + >>> n = 100000 + >>> x0_broyden = -np.ones(n) + ... + >>> res_3 = least_squares(fun_broyden, x0_broyden, + ... jac_sparsity=sparsity_broyden(n)) + >>> res_3.cost + 4.5687069299604613e-23 + >>> res_3.optimality + 1.1650454296851518e-11 + + Let's also solve a curve fitting problem using robust loss function to + take care of outliers in the data. Define the model function as + ``y = a + b * exp(c * t)``, where t is a predictor variable, y is an + observation and a, b, c are parameters to estimate. + + First, define the function which generates the data with noise and + outliers, define the model parameters, and generate data: + + >>> from numpy.random import default_rng + >>> rng = default_rng() + >>> def gen_data(t, a, b, c, noise=0., n_outliers=0, seed=None): + ... rng = default_rng(seed) + ... + ... y = a + b * np.exp(t * c) + ... + ... error = noise * rng.standard_normal(t.size) + ... outliers = rng.integers(0, t.size, n_outliers) + ... error[outliers] *= 10 + ... + ... return y + error + ... + >>> a = 0.5 + >>> b = 2.0 + >>> c = -1 + >>> t_min = 0 + >>> t_max = 10 + >>> n_points = 15 + ... + >>> t_train = np.linspace(t_min, t_max, n_points) + >>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3) + + Define function for computing residuals and initial estimate of + parameters. + + >>> def fun(x, t, y): + ... return x[0] + x[1] * np.exp(x[2] * t) - y + ... + >>> x0 = np.array([1.0, 1.0, 0.0]) + + Compute a standard least-squares solution: + + >>> res_lsq = least_squares(fun, x0, args=(t_train, y_train)) + + Now compute two solutions with two different robust loss functions. The + parameter `f_scale` is set to 0.1, meaning that inlier residuals should + not significantly exceed 0.1 (the noise level used). + + >>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1, + ... args=(t_train, y_train)) + >>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1, + ... args=(t_train, y_train)) + + And, finally, plot all the curves. We see that by selecting an appropriate + `loss` we can get estimates close to optimal even in the presence of + strong outliers. But keep in mind that generally it is recommended to try + 'soft_l1' or 'huber' losses first (if at all necessary) as the other two + options may cause difficulties in optimization process. + + >>> t_test = np.linspace(t_min, t_max, n_points * 10) + >>> y_true = gen_data(t_test, a, b, c) + >>> y_lsq = gen_data(t_test, *res_lsq.x) + >>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x) + >>> y_log = gen_data(t_test, *res_log.x) + ... + >>> import matplotlib.pyplot as plt + >>> plt.plot(t_train, y_train, 'o') + >>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true') + >>> plt.plot(t_test, y_lsq, label='linear loss') + >>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss') + >>> plt.plot(t_test, y_log, label='cauchy loss') + >>> plt.xlabel("t") + >>> plt.ylabel("y") + >>> plt.legend() + >>> plt.show() + + In the next example, we show how complex-valued residual functions of + complex variables can be optimized with ``least_squares()``. Consider the + following function: + + >>> def f(z): + ... return z - (0.5 + 0.5j) + + We wrap it into a function of real variables that returns real residuals + by simply handling the real and imaginary parts as independent variables: + + >>> def f_wrap(x): + ... fx = f(x[0] + 1j*x[1]) + ... return np.array([fx.real, fx.imag]) + + Thus, instead of the original m-D complex function of n complex + variables we optimize a 2m-D real function of 2n real variables: + + >>> from scipy.optimize import least_squares + >>> res_wrapped = least_squares(f_wrap, (0.1, 0.1), bounds=([0, 0], [1, 1])) + >>> z = res_wrapped.x[0] + res_wrapped.x[1]*1j + >>> z + (0.49999999999925893+0.49999999999925893j) + + """ + if method not in ['trf', 'dogbox', 'lm']: + raise ValueError("`method` must be 'trf', 'dogbox' or 'lm'.") + + if jac not in ['2-point', '3-point', 'cs'] and not callable(jac): + raise ValueError("`jac` must be '2-point', '3-point', 'cs' or " + "callable.") + + if tr_solver not in [None, 'exact', 'lsmr']: + raise ValueError("`tr_solver` must be None, 'exact' or 'lsmr'.") + + if loss not in IMPLEMENTED_LOSSES and not callable(loss): + raise ValueError("`loss` must be one of {} or a callable." + .format(IMPLEMENTED_LOSSES.keys())) + + if method == 'lm' and loss != 'linear': + raise ValueError("method='lm' supports only 'linear' loss function.") + + if verbose not in [0, 1, 2]: + raise ValueError("`verbose` must be in [0, 1, 2].") + + if max_nfev is not None and max_nfev <= 0: + raise ValueError("`max_nfev` must be None or positive integer.") + + if np.iscomplexobj(x0): + raise ValueError("`x0` must be real.") + + x0 = np.atleast_1d(x0).astype(float) + + if x0.ndim > 1: + raise ValueError("`x0` must have at most 1 dimension.") + + if isinstance(bounds, Bounds): + lb, ub = bounds.lb, bounds.ub + bounds = (lb, ub) + else: + if len(bounds) == 2: + lb, ub = prepare_bounds(bounds, x0.shape[0]) + else: + raise ValueError("`bounds` must contain 2 elements.") + + if method == 'lm' and not np.all((lb == -np.inf) & (ub == np.inf)): + raise ValueError("Method 'lm' doesn't support bounds.") + + if lb.shape != x0.shape or ub.shape != x0.shape: + raise ValueError("Inconsistent shapes between bounds and `x0`.") + + if np.any(lb >= ub): + raise ValueError("Each lower bound must be strictly less than each " + "upper bound.") + + if not in_bounds(x0, lb, ub): + raise ValueError("`x0` is infeasible.") + + x_scale = check_x_scale(x_scale, x0) + + ftol, xtol, gtol = check_tolerance(ftol, xtol, gtol, method) + + if method == 'trf': + x0 = make_strictly_feasible(x0, lb, ub) + + def fun_wrapped(x): + return np.atleast_1d(fun(x, *args, **kwargs)) + + f0 = fun_wrapped(x0) + + if f0.ndim != 1: + raise ValueError("`fun` must return at most 1-d array_like. " + f"f0.shape: {f0.shape}") + + if not np.all(np.isfinite(f0)): + raise ValueError("Residuals are not finite in the initial point.") + + n = x0.size + m = f0.size + + if method == 'lm' and m < n: + raise ValueError("Method 'lm' doesn't work when the number of " + "residuals is less than the number of variables.") + + loss_function = construct_loss_function(m, loss, f_scale) + if callable(loss): + rho = loss_function(f0) + if rho.shape != (3, m): + raise ValueError("The return value of `loss` callable has wrong " + "shape.") + initial_cost = 0.5 * np.sum(rho[0]) + elif loss_function is not None: + initial_cost = loss_function(f0, cost_only=True) + else: + initial_cost = 0.5 * np.dot(f0, f0) + + if callable(jac): + J0 = jac(x0, *args, **kwargs) + + if issparse(J0): + J0 = J0.tocsr() + + def jac_wrapped(x, _=None): + return jac(x, *args, **kwargs).tocsr() + + elif isinstance(J0, LinearOperator): + def jac_wrapped(x, _=None): + return jac(x, *args, **kwargs) + + else: + J0 = np.atleast_2d(J0) + + def jac_wrapped(x, _=None): + return np.atleast_2d(jac(x, *args, **kwargs)) + + else: # Estimate Jacobian by finite differences. + if method == 'lm': + if jac_sparsity is not None: + raise ValueError("method='lm' does not support " + "`jac_sparsity`.") + + if jac != '2-point': + warn(f"jac='{jac}' works equivalently to '2-point' for method='lm'.", + stacklevel=2) + + J0 = jac_wrapped = None + else: + if jac_sparsity is not None and tr_solver == 'exact': + raise ValueError("tr_solver='exact' is incompatible " + "with `jac_sparsity`.") + + jac_sparsity = check_jac_sparsity(jac_sparsity, m, n) + + def jac_wrapped(x, f): + J = approx_derivative(fun, x, rel_step=diff_step, method=jac, + f0=f, bounds=bounds, args=args, + kwargs=kwargs, sparsity=jac_sparsity) + if J.ndim != 2: # J is guaranteed not sparse. + J = np.atleast_2d(J) + + return J + + J0 = jac_wrapped(x0, f0) + + if J0 is not None: + if J0.shape != (m, n): + raise ValueError( + f"The return value of `jac` has wrong shape: expected {(m, n)}, " + f"actual {J0.shape}." + ) + + if not isinstance(J0, np.ndarray): + if method == 'lm': + raise ValueError("method='lm' works only with dense " + "Jacobian matrices.") + + if tr_solver == 'exact': + raise ValueError( + "tr_solver='exact' works only with dense " + "Jacobian matrices.") + + jac_scale = isinstance(x_scale, str) and x_scale == 'jac' + if isinstance(J0, LinearOperator) and jac_scale: + raise ValueError("x_scale='jac' can't be used when `jac` " + "returns LinearOperator.") + + if tr_solver is None: + if isinstance(J0, np.ndarray): + tr_solver = 'exact' + else: + tr_solver = 'lsmr' + + if method == 'lm': + result = call_minpack(fun_wrapped, x0, jac_wrapped, ftol, xtol, gtol, + max_nfev, x_scale, diff_step) + + elif method == 'trf': + result = trf(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol, + gtol, max_nfev, x_scale, loss_function, tr_solver, + tr_options.copy(), verbose) + + elif method == 'dogbox': + if tr_solver == 'lsmr' and 'regularize' in tr_options: + warn("The keyword 'regularize' in `tr_options` is not relevant " + "for 'dogbox' method.", + stacklevel=2) + tr_options = tr_options.copy() + del tr_options['regularize'] + + result = dogbox(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, + xtol, gtol, max_nfev, x_scale, loss_function, + tr_solver, tr_options, verbose) + + result.message = TERMINATION_MESSAGES[result.status] + result.success = result.status > 0 + + if verbose >= 1: + print(result.message) + print("Function evaluations {}, initial cost {:.4e}, final cost " + "{:.4e}, first-order optimality {:.2e}." + .format(result.nfev, initial_cost, result.cost, + result.optimality)) + + return result diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/lsq_linear.py b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/lsq_linear.py new file mode 100644 index 0000000000000000000000000000000000000000..fdf4d26020109d55a6aea2be3009181a388c722d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/lsq_linear.py @@ -0,0 +1,362 @@ +"""Linear least squares with bound constraints on independent variables.""" +import numpy as np +from numpy.linalg import norm +from scipy.sparse import issparse, csr_matrix +from scipy.sparse.linalg import LinearOperator, lsmr +from scipy.optimize import OptimizeResult +from scipy.optimize._minimize import Bounds + +from .common import in_bounds, compute_grad +from .trf_linear import trf_linear +from .bvls import bvls + + +def prepare_bounds(bounds, n): + if len(bounds) != 2: + raise ValueError("`bounds` must contain 2 elements.") + lb, ub = (np.asarray(b, dtype=float) for b in bounds) + + if lb.ndim == 0: + lb = np.resize(lb, n) + + if ub.ndim == 0: + ub = np.resize(ub, n) + + return lb, ub + + +TERMINATION_MESSAGES = { + -1: "The algorithm was not able to make progress on the last iteration.", + 0: "The maximum number of iterations is exceeded.", + 1: "The first-order optimality measure is less than `tol`.", + 2: "The relative change of the cost function is less than `tol`.", + 3: "The unconstrained solution is optimal." +} + + +def lsq_linear(A, b, bounds=(-np.inf, np.inf), method='trf', tol=1e-10, + lsq_solver=None, lsmr_tol=None, max_iter=None, + verbose=0, *, lsmr_maxiter=None,): + r"""Solve a linear least-squares problem with bounds on the variables. + + Given a m-by-n design matrix A and a target vector b with m elements, + `lsq_linear` solves the following optimization problem:: + + minimize 0.5 * ||A x - b||**2 + subject to lb <= x <= ub + + This optimization problem is convex, hence a found minimum (if iterations + have converged) is guaranteed to be global. + + Parameters + ---------- + A : array_like, sparse matrix of LinearOperator, shape (m, n) + Design matrix. Can be `scipy.sparse.linalg.LinearOperator`. + b : array_like, shape (m,) + Target vector. + bounds : 2-tuple of array_like or `Bounds`, optional + Lower and upper bounds on parameters. Defaults to no bounds. + There are two ways to specify the bounds: + + - Instance of `Bounds` class. + + - 2-tuple of array_like: Each element of the tuple must be either + an array with the length equal to the number of parameters, or a + scalar (in which case the bound is taken to be the same for all + parameters). Use ``np.inf`` with an appropriate sign to disable + bounds on all or some parameters. + + method : 'trf' or 'bvls', optional + Method to perform minimization. + + * 'trf' : Trust Region Reflective algorithm adapted for a linear + least-squares problem. This is an interior-point-like method + and the required number of iterations is weakly correlated with + the number of variables. + * 'bvls' : Bounded-variable least-squares algorithm. This is + an active set method, which requires the number of iterations + comparable to the number of variables. Can't be used when `A` is + sparse or LinearOperator. + + Default is 'trf'. + tol : float, optional + Tolerance parameter. The algorithm terminates if a relative change + of the cost function is less than `tol` on the last iteration. + Additionally, the first-order optimality measure is considered: + + * ``method='trf'`` terminates if the uniform norm of the gradient, + scaled to account for the presence of the bounds, is less than + `tol`. + * ``method='bvls'`` terminates if Karush-Kuhn-Tucker conditions + are satisfied within `tol` tolerance. + + lsq_solver : {None, 'exact', 'lsmr'}, optional + Method of solving unbounded least-squares problems throughout + iterations: + + * 'exact' : Use dense QR or SVD decomposition approach. Can't be + used when `A` is sparse or LinearOperator. + * 'lsmr' : Use `scipy.sparse.linalg.lsmr` iterative procedure + which requires only matrix-vector product evaluations. Can't + be used with ``method='bvls'``. + + If None (default), the solver is chosen based on type of `A`. + lsmr_tol : None, float or 'auto', optional + Tolerance parameters 'atol' and 'btol' for `scipy.sparse.linalg.lsmr` + If None (default), it is set to ``1e-2 * tol``. If 'auto', the + tolerance will be adjusted based on the optimality of the current + iterate, which can speed up the optimization process, but is not always + reliable. + max_iter : None or int, optional + Maximum number of iterations before termination. If None (default), it + is set to 100 for ``method='trf'`` or to the number of variables for + ``method='bvls'`` (not counting iterations for 'bvls' initialization). + verbose : {0, 1, 2}, optional + Level of algorithm's verbosity: + + * 0 : work silently (default). + * 1 : display a termination report. + * 2 : display progress during iterations. + lsmr_maxiter : None or int, optional + Maximum number of iterations for the lsmr least squares solver, + if it is used (by setting ``lsq_solver='lsmr'``). If None (default), it + uses lsmr's default of ``min(m, n)`` where ``m`` and ``n`` are the + number of rows and columns of `A`, respectively. Has no effect if + ``lsq_solver='exact'``. + + Returns + ------- + OptimizeResult with the following fields defined: + x : ndarray, shape (n,) + Solution found. + cost : float + Value of the cost function at the solution. + fun : ndarray, shape (m,) + Vector of residuals at the solution. + optimality : float + First-order optimality measure. The exact meaning depends on `method`, + refer to the description of `tol` parameter. + active_mask : ndarray of int, shape (n,) + Each component shows whether a corresponding constraint is active + (that is, whether a variable is at the bound): + + * 0 : a constraint is not active. + * -1 : a lower bound is active. + * 1 : an upper bound is active. + + Might be somewhat arbitrary for the `trf` method as it generates a + sequence of strictly feasible iterates and active_mask is determined + within a tolerance threshold. + unbounded_sol : tuple + Unbounded least squares solution tuple returned by the least squares + solver (set with `lsq_solver` option). If `lsq_solver` is not set or is + set to ``'exact'``, the tuple contains an ndarray of shape (n,) with + the unbounded solution, an ndarray with the sum of squared residuals, + an int with the rank of `A`, and an ndarray with the singular values + of `A` (see NumPy's ``linalg.lstsq`` for more information). If + `lsq_solver` is set to ``'lsmr'``, the tuple contains an ndarray of + shape (n,) with the unbounded solution, an int with the exit code, + an int with the number of iterations, and five floats with + various norms and the condition number of `A` (see SciPy's + ``sparse.linalg.lsmr`` for more information). This output can be + useful for determining the convergence of the least squares solver, + particularly the iterative ``'lsmr'`` solver. The unbounded least + squares problem is to minimize ``0.5 * ||A x - b||**2``. + nit : int + Number of iterations. Zero if the unconstrained solution is optimal. + status : int + Reason for algorithm termination: + + * -1 : the algorithm was not able to make progress on the last + iteration. + * 0 : the maximum number of iterations is exceeded. + * 1 : the first-order optimality measure is less than `tol`. + * 2 : the relative change of the cost function is less than `tol`. + * 3 : the unconstrained solution is optimal. + + message : str + Verbal description of the termination reason. + success : bool + True if one of the convergence criteria is satisfied (`status` > 0). + + See Also + -------- + nnls : Linear least squares with non-negativity constraint. + least_squares : Nonlinear least squares with bounds on the variables. + + Notes + ----- + The algorithm first computes the unconstrained least-squares solution by + `numpy.linalg.lstsq` or `scipy.sparse.linalg.lsmr` depending on + `lsq_solver`. This solution is returned as optimal if it lies within the + bounds. + + Method 'trf' runs the adaptation of the algorithm described in [STIR]_ for + a linear least-squares problem. The iterations are essentially the same as + in the nonlinear least-squares algorithm, but as the quadratic function + model is always accurate, we don't need to track or modify the radius of + a trust region. The line search (backtracking) is used as a safety net + when a selected step does not decrease the cost function. Read more + detailed description of the algorithm in `scipy.optimize.least_squares`. + + Method 'bvls' runs a Python implementation of the algorithm described in + [BVLS]_. The algorithm maintains active and free sets of variables, on + each iteration chooses a new variable to move from the active set to the + free set and then solves the unconstrained least-squares problem on free + variables. This algorithm is guaranteed to give an accurate solution + eventually, but may require up to n iterations for a problem with n + variables. Additionally, an ad-hoc initialization procedure is + implemented, that determines which variables to set free or active + initially. It takes some number of iterations before actual BVLS starts, + but can significantly reduce the number of further iterations. + + References + ---------- + .. [STIR] M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior, + and Conjugate Gradient Method for Large-Scale Bound-Constrained + Minimization Problems," SIAM Journal on Scientific Computing, + Vol. 21, Number 1, pp 1-23, 1999. + .. [BVLS] P. B. Start and R. L. Parker, "Bounded-Variable Least-Squares: + an Algorithm and Applications", Computational Statistics, 10, + 129-141, 1995. + + Examples + -------- + In this example, a problem with a large sparse matrix and bounds on the + variables is solved. + + >>> import numpy as np + >>> from scipy.sparse import rand + >>> from scipy.optimize import lsq_linear + >>> rng = np.random.default_rng() + ... + >>> m = 20000 + >>> n = 10000 + ... + >>> A = rand(m, n, density=1e-4, random_state=rng) + >>> b = rng.standard_normal(m) + ... + >>> lb = rng.standard_normal(n) + >>> ub = lb + 1 + ... + >>> res = lsq_linear(A, b, bounds=(lb, ub), lsmr_tol='auto', verbose=1) + # may vary + The relative change of the cost function is less than `tol`. + Number of iterations 16, initial cost 1.5039e+04, final cost 1.1112e+04, + first-order optimality 4.66e-08. + """ + if method not in ['trf', 'bvls']: + raise ValueError("`method` must be 'trf' or 'bvls'") + + if lsq_solver not in [None, 'exact', 'lsmr']: + raise ValueError("`solver` must be None, 'exact' or 'lsmr'.") + + if verbose not in [0, 1, 2]: + raise ValueError("`verbose` must be in [0, 1, 2].") + + if issparse(A): + A = csr_matrix(A) + elif not isinstance(A, LinearOperator): + A = np.atleast_2d(np.asarray(A)) + + if method == 'bvls': + if lsq_solver == 'lsmr': + raise ValueError("method='bvls' can't be used with " + "lsq_solver='lsmr'") + + if not isinstance(A, np.ndarray): + raise ValueError("method='bvls' can't be used with `A` being " + "sparse or LinearOperator.") + + if lsq_solver is None: + if isinstance(A, np.ndarray): + lsq_solver = 'exact' + else: + lsq_solver = 'lsmr' + elif lsq_solver == 'exact' and not isinstance(A, np.ndarray): + raise ValueError("`exact` solver can't be used when `A` is " + "sparse or LinearOperator.") + + if len(A.shape) != 2: # No ndim for LinearOperator. + raise ValueError("`A` must have at most 2 dimensions.") + + if max_iter is not None and max_iter <= 0: + raise ValueError("`max_iter` must be None or positive integer.") + + m, n = A.shape + + b = np.atleast_1d(b) + if b.ndim != 1: + raise ValueError("`b` must have at most 1 dimension.") + + if b.size != m: + raise ValueError("Inconsistent shapes between `A` and `b`.") + + if isinstance(bounds, Bounds): + lb = bounds.lb + ub = bounds.ub + else: + lb, ub = prepare_bounds(bounds, n) + + if lb.shape != (n,) and ub.shape != (n,): + raise ValueError("Bounds have wrong shape.") + + if np.any(lb >= ub): + raise ValueError("Each lower bound must be strictly less than each " + "upper bound.") + + if lsmr_maxiter is not None and lsmr_maxiter < 1: + raise ValueError("`lsmr_maxiter` must be None or positive integer.") + + if not ((isinstance(lsmr_tol, float) and lsmr_tol > 0) or + lsmr_tol in ('auto', None)): + raise ValueError("`lsmr_tol` must be None, 'auto', or positive float.") + + if lsq_solver == 'exact': + unbd_lsq = np.linalg.lstsq(A, b, rcond=-1) + elif lsq_solver == 'lsmr': + first_lsmr_tol = lsmr_tol # tol of first call to lsmr + if lsmr_tol is None or lsmr_tol == 'auto': + first_lsmr_tol = 1e-2 * tol # default if lsmr_tol not defined + unbd_lsq = lsmr(A, b, maxiter=lsmr_maxiter, + atol=first_lsmr_tol, btol=first_lsmr_tol) + x_lsq = unbd_lsq[0] # extract the solution from the least squares solver + + if in_bounds(x_lsq, lb, ub): + r = A @ x_lsq - b + cost = 0.5 * np.dot(r, r) + termination_status = 3 + termination_message = TERMINATION_MESSAGES[termination_status] + g = compute_grad(A, r) + g_norm = norm(g, ord=np.inf) + + if verbose > 0: + print(termination_message) + print(f"Final cost {cost:.4e}, first-order optimality {g_norm:.2e}") + + return OptimizeResult( + x=x_lsq, fun=r, cost=cost, optimality=g_norm, + active_mask=np.zeros(n), unbounded_sol=unbd_lsq, + nit=0, status=termination_status, + message=termination_message, success=True) + + if method == 'trf': + res = trf_linear(A, b, x_lsq, lb, ub, tol, lsq_solver, lsmr_tol, + max_iter, verbose, lsmr_maxiter=lsmr_maxiter) + elif method == 'bvls': + res = bvls(A, b, x_lsq, lb, ub, tol, max_iter, verbose) + + res.unbounded_sol = unbd_lsq + res.message = TERMINATION_MESSAGES[res.status] + res.success = res.status > 0 + + if verbose > 0: + print(res.message) + print( + f"Number of iterations {res.nit}, initial cost {res.initial_cost:.4e}, " + f"final cost {res.cost:.4e}, first-order optimality {res.optimality:.2e}." + ) + + del res.initial_cost + + return res diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/trf.py b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/trf.py new file mode 100644 index 0000000000000000000000000000000000000000..9154bdba5b2cc41883811ba1820dfc251e515d6c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/trf.py @@ -0,0 +1,560 @@ +"""Trust Region Reflective algorithm for least-squares optimization. + +The algorithm is based on ideas from paper [STIR]_. The main idea is to +account for the presence of the bounds by appropriate scaling of the variables (or, +equivalently, changing a trust-region shape). Let's introduce a vector v: + + | ub[i] - x[i], if g[i] < 0 and ub[i] < np.inf + v[i] = | x[i] - lb[i], if g[i] > 0 and lb[i] > -np.inf + | 1, otherwise + +where g is the gradient of a cost function and lb, ub are the bounds. Its +components are distances to the bounds at which the anti-gradient points (if +this distance is finite). Define a scaling matrix D = diag(v**0.5). +First-order optimality conditions can be stated as + + D^2 g(x) = 0. + +Meaning that components of the gradient should be zero for strictly interior +variables, and components must point inside the feasible region for variables +on the bound. + +Now consider this system of equations as a new optimization problem. If the +point x is strictly interior (not on the bound), then the left-hand side is +differentiable and the Newton step for it satisfies + + (D^2 H + diag(g) Jv) p = -D^2 g + +where H is the Hessian matrix (or its J^T J approximation in least squares), +Jv is the Jacobian matrix of v with components -1, 1 or 0, such that all +elements of matrix C = diag(g) Jv are non-negative. Introduce the change +of the variables x = D x_h (_h would be "hat" in LaTeX). In the new variables, +we have a Newton step satisfying + + B_h p_h = -g_h, + +where B_h = D H D + C, g_h = D g. In least squares B_h = J_h^T J_h, where +J_h = J D. Note that J_h and g_h are proper Jacobian and gradient with respect +to "hat" variables. To guarantee global convergence we formulate a +trust-region problem based on the Newton step in the new variables: + + 0.5 * p_h^T B_h p + g_h^T p_h -> min, ||p_h|| <= Delta + +In the original space B = H + D^{-1} C D^{-1}, and the equivalent trust-region +problem is + + 0.5 * p^T B p + g^T p -> min, ||D^{-1} p|| <= Delta + +Here, the meaning of the matrix D becomes more clear: it alters the shape +of a trust-region, such that large steps towards the bounds are not allowed. +In the implementation, the trust-region problem is solved in "hat" space, +but handling of the bounds is done in the original space (see below and read +the code). + +The introduction of the matrix D doesn't allow to ignore bounds, the algorithm +must keep iterates strictly feasible (to satisfy aforementioned +differentiability), the parameter theta controls step back from the boundary +(see the code for details). + +The algorithm does another important trick. If the trust-region solution +doesn't fit into the bounds, then a reflected (from a firstly encountered +bound) search direction is considered. For motivation and analysis refer to +[STIR]_ paper (and other papers of the authors). In practice, it doesn't need +a lot of justifications, the algorithm simply chooses the best step among +three: a constrained trust-region step, a reflected step and a constrained +Cauchy step (a minimizer along -g_h in "hat" space, or -D^2 g in the original +space). + +Another feature is that a trust-region radius control strategy is modified to +account for appearance of the diagonal C matrix (called diag_h in the code). + +Note that all described peculiarities are completely gone as we consider +problems without bounds (the algorithm becomes a standard trust-region type +algorithm very similar to ones implemented in MINPACK). + +The implementation supports two methods of solving the trust-region problem. +The first, called 'exact', applies SVD on Jacobian and then solves the problem +very accurately using the algorithm described in [JJMore]_. It is not +applicable to large problem. The second, called 'lsmr', uses the 2-D subspace +approach (sometimes called "indefinite dogleg"), where the problem is solved +in a subspace spanned by the gradient and the approximate Gauss-Newton step +found by ``scipy.sparse.linalg.lsmr``. A 2-D trust-region problem is +reformulated as a 4th order algebraic equation and solved very accurately by +``numpy.roots``. The subspace approach allows to solve very large problems +(up to couple of millions of residuals on a regular PC), provided the Jacobian +matrix is sufficiently sparse. + +References +---------- +.. [STIR] Branch, M.A., T.F. Coleman, and Y. Li, "A Subspace, Interior, + and Conjugate Gradient Method for Large-Scale Bound-Constrained + Minimization Problems," SIAM Journal on Scientific Computing, + Vol. 21, Number 1, pp 1-23, 1999. +.. [JJMore] More, J. J., "The Levenberg-Marquardt Algorithm: Implementation + and Theory," Numerical Analysis, ed. G. A. Watson, Lecture +""" +import numpy as np +from numpy.linalg import norm +from scipy.linalg import svd, qr +from scipy.sparse.linalg import lsmr +from scipy.optimize import OptimizeResult + +from .common import ( + step_size_to_bound, find_active_constraints, in_bounds, + make_strictly_feasible, intersect_trust_region, solve_lsq_trust_region, + solve_trust_region_2d, minimize_quadratic_1d, build_quadratic_1d, + evaluate_quadratic, right_multiplied_operator, regularized_lsq_operator, + CL_scaling_vector, compute_grad, compute_jac_scale, check_termination, + update_tr_radius, scale_for_robust_loss_function, print_header_nonlinear, + print_iteration_nonlinear) + + +def trf(fun, jac, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale, + loss_function, tr_solver, tr_options, verbose): + # For efficiency, it makes sense to run the simplified version of the + # algorithm when no bounds are imposed. We decided to write the two + # separate functions. It violates the DRY principle, but the individual + # functions are kept the most readable. + if np.all(lb == -np.inf) and np.all(ub == np.inf): + return trf_no_bounds( + fun, jac, x0, f0, J0, ftol, xtol, gtol, max_nfev, x_scale, + loss_function, tr_solver, tr_options, verbose) + else: + return trf_bounds( + fun, jac, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale, + loss_function, tr_solver, tr_options, verbose) + + +def select_step(x, J_h, diag_h, g_h, p, p_h, d, Delta, lb, ub, theta): + """Select the best step according to Trust Region Reflective algorithm.""" + if in_bounds(x + p, lb, ub): + p_value = evaluate_quadratic(J_h, g_h, p_h, diag=diag_h) + return p, p_h, -p_value + + p_stride, hits = step_size_to_bound(x, p, lb, ub) + + # Compute the reflected direction. + r_h = np.copy(p_h) + r_h[hits.astype(bool)] *= -1 + r = d * r_h + + # Restrict trust-region step, such that it hits the bound. + p *= p_stride + p_h *= p_stride + x_on_bound = x + p + + # Reflected direction will cross first either feasible region or trust + # region boundary. + _, to_tr = intersect_trust_region(p_h, r_h, Delta) + to_bound, _ = step_size_to_bound(x_on_bound, r, lb, ub) + + # Find lower and upper bounds on a step size along the reflected + # direction, considering the strict feasibility requirement. There is no + # single correct way to do that, the chosen approach seems to work best + # on test problems. + r_stride = min(to_bound, to_tr) + if r_stride > 0: + r_stride_l = (1 - theta) * p_stride / r_stride + if r_stride == to_bound: + r_stride_u = theta * to_bound + else: + r_stride_u = to_tr + else: + r_stride_l = 0 + r_stride_u = -1 + + # Check if reflection step is available. + if r_stride_l <= r_stride_u: + a, b, c = build_quadratic_1d(J_h, g_h, r_h, s0=p_h, diag=diag_h) + r_stride, r_value = minimize_quadratic_1d( + a, b, r_stride_l, r_stride_u, c=c) + r_h *= r_stride + r_h += p_h + r = r_h * d + else: + r_value = np.inf + + # Now correct p_h to make it strictly interior. + p *= theta + p_h *= theta + p_value = evaluate_quadratic(J_h, g_h, p_h, diag=diag_h) + + ag_h = -g_h + ag = d * ag_h + + to_tr = Delta / norm(ag_h) + to_bound, _ = step_size_to_bound(x, ag, lb, ub) + if to_bound < to_tr: + ag_stride = theta * to_bound + else: + ag_stride = to_tr + + a, b = build_quadratic_1d(J_h, g_h, ag_h, diag=diag_h) + ag_stride, ag_value = minimize_quadratic_1d(a, b, 0, ag_stride) + ag_h *= ag_stride + ag *= ag_stride + + if p_value < r_value and p_value < ag_value: + return p, p_h, -p_value + elif r_value < p_value and r_value < ag_value: + return r, r_h, -r_value + else: + return ag, ag_h, -ag_value + + +def trf_bounds(fun, jac, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, + x_scale, loss_function, tr_solver, tr_options, verbose): + x = x0.copy() + + f = f0 + f_true = f.copy() + nfev = 1 + + J = J0 + njev = 1 + m, n = J.shape + + if loss_function is not None: + rho = loss_function(f) + cost = 0.5 * np.sum(rho[0]) + J, f = scale_for_robust_loss_function(J, f, rho) + else: + cost = 0.5 * np.dot(f, f) + + g = compute_grad(J, f) + + jac_scale = isinstance(x_scale, str) and x_scale == 'jac' + if jac_scale: + scale, scale_inv = compute_jac_scale(J) + else: + scale, scale_inv = x_scale, 1 / x_scale + + v, dv = CL_scaling_vector(x, g, lb, ub) + v[dv != 0] *= scale_inv[dv != 0] + Delta = norm(x0 * scale_inv / v**0.5) + if Delta == 0: + Delta = 1.0 + + g_norm = norm(g * v, ord=np.inf) + + f_augmented = np.zeros(m + n) + if tr_solver == 'exact': + J_augmented = np.empty((m + n, n)) + elif tr_solver == 'lsmr': + reg_term = 0.0 + regularize = tr_options.pop('regularize', True) + + if max_nfev is None: + max_nfev = x0.size * 100 + + alpha = 0.0 # "Levenberg-Marquardt" parameter + + termination_status = None + iteration = 0 + step_norm = None + actual_reduction = None + + if verbose == 2: + print_header_nonlinear() + + while True: + v, dv = CL_scaling_vector(x, g, lb, ub) + + g_norm = norm(g * v, ord=np.inf) + if g_norm < gtol: + termination_status = 1 + + if verbose == 2: + print_iteration_nonlinear(iteration, nfev, cost, actual_reduction, + step_norm, g_norm) + + if termination_status is not None or nfev == max_nfev: + break + + # Now compute variables in "hat" space. Here, we also account for + # scaling introduced by `x_scale` parameter. This part is a bit tricky, + # you have to write down the formulas and see how the trust-region + # problem is formulated when the two types of scaling are applied. + # The idea is that first we apply `x_scale` and then apply Coleman-Li + # approach in the new variables. + + # v is recomputed in the variables after applying `x_scale`, note that + # components which were identically 1 not affected. + v[dv != 0] *= scale_inv[dv != 0] + + # Here, we apply two types of scaling. + d = v**0.5 * scale + + # C = diag(g * scale) Jv + diag_h = g * dv * scale + + # After all this has been done, we continue normally. + + # "hat" gradient. + g_h = d * g + + f_augmented[:m] = f + if tr_solver == 'exact': + J_augmented[:m] = J * d + J_h = J_augmented[:m] # Memory view. + J_augmented[m:] = np.diag(diag_h**0.5) + U, s, V = svd(J_augmented, full_matrices=False) + V = V.T + uf = U.T.dot(f_augmented) + elif tr_solver == 'lsmr': + J_h = right_multiplied_operator(J, d) + + if regularize: + a, b = build_quadratic_1d(J_h, g_h, -g_h, diag=diag_h) + to_tr = Delta / norm(g_h) + ag_value = minimize_quadratic_1d(a, b, 0, to_tr)[1] + reg_term = -ag_value / Delta**2 + + lsmr_op = regularized_lsq_operator(J_h, (diag_h + reg_term)**0.5) + gn_h = lsmr(lsmr_op, f_augmented, **tr_options)[0] + S = np.vstack((g_h, gn_h)).T + S, _ = qr(S, mode='economic') + JS = J_h.dot(S) # LinearOperator does dot too. + B_S = np.dot(JS.T, JS) + np.dot(S.T * diag_h, S) + g_S = S.T.dot(g_h) + + # theta controls step back step ratio from the bounds. + theta = max(0.995, 1 - g_norm) + + actual_reduction = -1 + while actual_reduction <= 0 and nfev < max_nfev: + if tr_solver == 'exact': + p_h, alpha, n_iter = solve_lsq_trust_region( + n, m, uf, s, V, Delta, initial_alpha=alpha) + elif tr_solver == 'lsmr': + p_S, _ = solve_trust_region_2d(B_S, g_S, Delta) + p_h = S.dot(p_S) + + p = d * p_h # Trust-region solution in the original space. + step, step_h, predicted_reduction = select_step( + x, J_h, diag_h, g_h, p, p_h, d, Delta, lb, ub, theta) + + x_new = make_strictly_feasible(x + step, lb, ub, rstep=0) + f_new = fun(x_new) + nfev += 1 + + step_h_norm = norm(step_h) + + if not np.all(np.isfinite(f_new)): + Delta = 0.25 * step_h_norm + continue + + # Usual trust-region step quality estimation. + if loss_function is not None: + cost_new = loss_function(f_new, cost_only=True) + else: + cost_new = 0.5 * np.dot(f_new, f_new) + actual_reduction = cost - cost_new + Delta_new, ratio = update_tr_radius( + Delta, actual_reduction, predicted_reduction, + step_h_norm, step_h_norm > 0.95 * Delta) + + step_norm = norm(step) + termination_status = check_termination( + actual_reduction, cost, step_norm, norm(x), ratio, ftol, xtol) + if termination_status is not None: + break + + alpha *= Delta / Delta_new + Delta = Delta_new + + if actual_reduction > 0: + x = x_new + + f = f_new + f_true = f.copy() + + cost = cost_new + + J = jac(x, f) + njev += 1 + + if loss_function is not None: + rho = loss_function(f) + J, f = scale_for_robust_loss_function(J, f, rho) + + g = compute_grad(J, f) + + if jac_scale: + scale, scale_inv = compute_jac_scale(J, scale_inv) + else: + step_norm = 0 + actual_reduction = 0 + + iteration += 1 + + if termination_status is None: + termination_status = 0 + + active_mask = find_active_constraints(x, lb, ub, rtol=xtol) + return OptimizeResult( + x=x, cost=cost, fun=f_true, jac=J, grad=g, optimality=g_norm, + active_mask=active_mask, nfev=nfev, njev=njev, + status=termination_status) + + +def trf_no_bounds(fun, jac, x0, f0, J0, ftol, xtol, gtol, max_nfev, + x_scale, loss_function, tr_solver, tr_options, verbose): + x = x0.copy() + + f = f0 + f_true = f.copy() + nfev = 1 + + J = J0 + njev = 1 + m, n = J.shape + + if loss_function is not None: + rho = loss_function(f) + cost = 0.5 * np.sum(rho[0]) + J, f = scale_for_robust_loss_function(J, f, rho) + else: + cost = 0.5 * np.dot(f, f) + + g = compute_grad(J, f) + + jac_scale = isinstance(x_scale, str) and x_scale == 'jac' + if jac_scale: + scale, scale_inv = compute_jac_scale(J) + else: + scale, scale_inv = x_scale, 1 / x_scale + + Delta = norm(x0 * scale_inv) + if Delta == 0: + Delta = 1.0 + + if tr_solver == 'lsmr': + reg_term = 0 + damp = tr_options.pop('damp', 0.0) + regularize = tr_options.pop('regularize', True) + + if max_nfev is None: + max_nfev = x0.size * 100 + + alpha = 0.0 # "Levenberg-Marquardt" parameter + + termination_status = None + iteration = 0 + step_norm = None + actual_reduction = None + + if verbose == 2: + print_header_nonlinear() + + while True: + g_norm = norm(g, ord=np.inf) + if g_norm < gtol: + termination_status = 1 + + if verbose == 2: + print_iteration_nonlinear(iteration, nfev, cost, actual_reduction, + step_norm, g_norm) + + if termination_status is not None or nfev == max_nfev: + break + + d = scale + g_h = d * g + + if tr_solver == 'exact': + J_h = J * d + U, s, V = svd(J_h, full_matrices=False) + V = V.T + uf = U.T.dot(f) + elif tr_solver == 'lsmr': + J_h = right_multiplied_operator(J, d) + + if regularize: + a, b = build_quadratic_1d(J_h, g_h, -g_h) + to_tr = Delta / norm(g_h) + ag_value = minimize_quadratic_1d(a, b, 0, to_tr)[1] + reg_term = -ag_value / Delta**2 + + damp_full = (damp**2 + reg_term)**0.5 + gn_h = lsmr(J_h, f, damp=damp_full, **tr_options)[0] + S = np.vstack((g_h, gn_h)).T + S, _ = qr(S, mode='economic') + JS = J_h.dot(S) + B_S = np.dot(JS.T, JS) + g_S = S.T.dot(g_h) + + actual_reduction = -1 + while actual_reduction <= 0 and nfev < max_nfev: + if tr_solver == 'exact': + step_h, alpha, n_iter = solve_lsq_trust_region( + n, m, uf, s, V, Delta, initial_alpha=alpha) + elif tr_solver == 'lsmr': + p_S, _ = solve_trust_region_2d(B_S, g_S, Delta) + step_h = S.dot(p_S) + + predicted_reduction = -evaluate_quadratic(J_h, g_h, step_h) + step = d * step_h + x_new = x + step + f_new = fun(x_new) + nfev += 1 + + step_h_norm = norm(step_h) + + if not np.all(np.isfinite(f_new)): + Delta = 0.25 * step_h_norm + continue + + # Usual trust-region step quality estimation. + if loss_function is not None: + cost_new = loss_function(f_new, cost_only=True) + else: + cost_new = 0.5 * np.dot(f_new, f_new) + actual_reduction = cost - cost_new + + Delta_new, ratio = update_tr_radius( + Delta, actual_reduction, predicted_reduction, + step_h_norm, step_h_norm > 0.95 * Delta) + + step_norm = norm(step) + termination_status = check_termination( + actual_reduction, cost, step_norm, norm(x), ratio, ftol, xtol) + if termination_status is not None: + break + + alpha *= Delta / Delta_new + Delta = Delta_new + + if actual_reduction > 0: + x = x_new + + f = f_new + f_true = f.copy() + + cost = cost_new + + J = jac(x, f) + njev += 1 + + if loss_function is not None: + rho = loss_function(f) + J, f = scale_for_robust_loss_function(J, f, rho) + + g = compute_grad(J, f) + + if jac_scale: + scale, scale_inv = compute_jac_scale(J, scale_inv) + else: + step_norm = 0 + actual_reduction = 0 + + iteration += 1 + + if termination_status is None: + termination_status = 0 + + active_mask = np.zeros_like(x) + return OptimizeResult( + x=x, cost=cost, fun=f_true, jac=J, grad=g, optimality=g_norm, + active_mask=active_mask, nfev=nfev, njev=njev, + status=termination_status) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/trf_linear.py b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/trf_linear.py new file mode 100644 index 0000000000000000000000000000000000000000..dd752763179bcf97945c7f34ce6a9e49e85c819e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/optimize/_lsq/trf_linear.py @@ -0,0 +1,249 @@ +"""The adaptation of Trust Region Reflective algorithm for a linear +least-squares problem.""" +import numpy as np +from numpy.linalg import norm +from scipy.linalg import qr, solve_triangular +from scipy.sparse.linalg import lsmr +from scipy.optimize import OptimizeResult + +from .givens_elimination import givens_elimination +from .common import ( + EPS, step_size_to_bound, find_active_constraints, in_bounds, + make_strictly_feasible, build_quadratic_1d, evaluate_quadratic, + minimize_quadratic_1d, CL_scaling_vector, reflective_transformation, + print_header_linear, print_iteration_linear, compute_grad, + regularized_lsq_operator, right_multiplied_operator) + + +def regularized_lsq_with_qr(m, n, R, QTb, perm, diag, copy_R=True): + """Solve regularized least squares using information from QR-decomposition. + + The initial problem is to solve the following system in a least-squares + sense:: + + A x = b + D x = 0 + + where D is diagonal matrix. The method is based on QR decomposition + of the form A P = Q R, where P is a column permutation matrix, Q is an + orthogonal matrix and R is an upper triangular matrix. + + Parameters + ---------- + m, n : int + Initial shape of A. + R : ndarray, shape (n, n) + Upper triangular matrix from QR decomposition of A. + QTb : ndarray, shape (n,) + First n components of Q^T b. + perm : ndarray, shape (n,) + Array defining column permutation of A, such that ith column of + P is perm[i]-th column of identity matrix. + diag : ndarray, shape (n,) + Array containing diagonal elements of D. + + Returns + ------- + x : ndarray, shape (n,) + Found least-squares solution. + """ + if copy_R: + R = R.copy() + v = QTb.copy() + + givens_elimination(R, v, diag[perm]) + + abs_diag_R = np.abs(np.diag(R)) + threshold = EPS * max(m, n) * np.max(abs_diag_R) + nns, = np.nonzero(abs_diag_R > threshold) + + R = R[np.ix_(nns, nns)] + v = v[nns] + + x = np.zeros(n) + x[perm[nns]] = solve_triangular(R, v) + + return x + + +def backtracking(A, g, x, p, theta, p_dot_g, lb, ub): + """Find an appropriate step size using backtracking line search.""" + alpha = 1 + while True: + x_new, _ = reflective_transformation(x + alpha * p, lb, ub) + step = x_new - x + cost_change = -evaluate_quadratic(A, g, step) + if cost_change > -0.1 * alpha * p_dot_g: + break + alpha *= 0.5 + + active = find_active_constraints(x_new, lb, ub) + if np.any(active != 0): + x_new, _ = reflective_transformation(x + theta * alpha * p, lb, ub) + x_new = make_strictly_feasible(x_new, lb, ub, rstep=0) + step = x_new - x + cost_change = -evaluate_quadratic(A, g, step) + + return x, step, cost_change + + +def select_step(x, A_h, g_h, c_h, p, p_h, d, lb, ub, theta): + """Select the best step according to Trust Region Reflective algorithm.""" + if in_bounds(x + p, lb, ub): + return p + + p_stride, hits = step_size_to_bound(x, p, lb, ub) + r_h = np.copy(p_h) + r_h[hits.astype(bool)] *= -1 + r = d * r_h + + # Restrict step, such that it hits the bound. + p *= p_stride + p_h *= p_stride + x_on_bound = x + p + + # Find the step size along reflected direction. + r_stride_u, _ = step_size_to_bound(x_on_bound, r, lb, ub) + + # Stay interior. + r_stride_l = (1 - theta) * r_stride_u + r_stride_u *= theta + + if r_stride_u > 0: + a, b, c = build_quadratic_1d(A_h, g_h, r_h, s0=p_h, diag=c_h) + r_stride, r_value = minimize_quadratic_1d( + a, b, r_stride_l, r_stride_u, c=c) + r_h = p_h + r_h * r_stride + r = d * r_h + else: + r_value = np.inf + + # Now correct p_h to make it strictly interior. + p_h *= theta + p *= theta + p_value = evaluate_quadratic(A_h, g_h, p_h, diag=c_h) + + ag_h = -g_h + ag = d * ag_h + ag_stride_u, _ = step_size_to_bound(x, ag, lb, ub) + ag_stride_u *= theta + a, b = build_quadratic_1d(A_h, g_h, ag_h, diag=c_h) + ag_stride, ag_value = minimize_quadratic_1d(a, b, 0, ag_stride_u) + ag *= ag_stride + + if p_value < r_value and p_value < ag_value: + return p + elif r_value < p_value and r_value < ag_value: + return r + else: + return ag + + +def trf_linear(A, b, x_lsq, lb, ub, tol, lsq_solver, lsmr_tol, + max_iter, verbose, *, lsmr_maxiter=None): + m, n = A.shape + x, _ = reflective_transformation(x_lsq, lb, ub) + x = make_strictly_feasible(x, lb, ub, rstep=0.1) + + if lsq_solver == 'exact': + QT, R, perm = qr(A, mode='economic', pivoting=True) + QT = QT.T + + if m < n: + R = np.vstack((R, np.zeros((n - m, n)))) + + QTr = np.zeros(n) + k = min(m, n) + elif lsq_solver == 'lsmr': + r_aug = np.zeros(m + n) + auto_lsmr_tol = False + if lsmr_tol is None: + lsmr_tol = 1e-2 * tol + elif lsmr_tol == 'auto': + auto_lsmr_tol = True + + r = A.dot(x) - b + g = compute_grad(A, r) + cost = 0.5 * np.dot(r, r) + initial_cost = cost + + termination_status = None + step_norm = None + cost_change = None + + if max_iter is None: + max_iter = 100 + + if verbose == 2: + print_header_linear() + + for iteration in range(max_iter): + v, dv = CL_scaling_vector(x, g, lb, ub) + g_scaled = g * v + g_norm = norm(g_scaled, ord=np.inf) + if g_norm < tol: + termination_status = 1 + + if verbose == 2: + print_iteration_linear(iteration, cost, cost_change, + step_norm, g_norm) + + if termination_status is not None: + break + + diag_h = g * dv + diag_root_h = diag_h ** 0.5 + d = v ** 0.5 + g_h = d * g + + A_h = right_multiplied_operator(A, d) + if lsq_solver == 'exact': + QTr[:k] = QT.dot(r) + p_h = -regularized_lsq_with_qr(m, n, R * d[perm], QTr, perm, + diag_root_h, copy_R=False) + elif lsq_solver == 'lsmr': + lsmr_op = regularized_lsq_operator(A_h, diag_root_h) + r_aug[:m] = r + if auto_lsmr_tol: + eta = 1e-2 * min(0.5, g_norm) + lsmr_tol = max(EPS, min(0.1, eta * g_norm)) + p_h = -lsmr(lsmr_op, r_aug, maxiter=lsmr_maxiter, + atol=lsmr_tol, btol=lsmr_tol)[0] + + p = d * p_h + + p_dot_g = np.dot(p, g) + if p_dot_g > 0: + termination_status = -1 + + theta = 1 - min(0.005, g_norm) + step = select_step(x, A_h, g_h, diag_h, p, p_h, d, lb, ub, theta) + cost_change = -evaluate_quadratic(A, g, step) + + # Perhaps almost never executed, the idea is that `p` is descent + # direction thus we must find acceptable cost decrease using simple + # "backtracking", otherwise the algorithm's logic would break. + if cost_change < 0: + x, step, cost_change = backtracking( + A, g, x, p, theta, p_dot_g, lb, ub) + else: + x = make_strictly_feasible(x + step, lb, ub, rstep=0) + + step_norm = norm(step) + r = A.dot(x) - b + g = compute_grad(A, r) + + if cost_change < tol * cost: + termination_status = 2 + + cost = 0.5 * np.dot(r, r) + + if termination_status is None: + termination_status = 0 + + active_mask = find_active_constraints(x, lb, ub, rtol=tol) + + return OptimizeResult( + x=x, fun=r, cost=cost, optimality=g_norm, active_mask=active_mask, + nit=iteration + 1, status=termination_status, + initial_cost=initial_cost)