applied-ai-018 commited on
Commit
396e7f7
·
verified ·
1 Parent(s): bfe1c06

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/Descriptors.h +146 -0
  2. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/Exceptions.h +41 -0
  3. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/Handle.h +9 -0
  4. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/Types.h +12 -0
  5. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/Utils.h +18 -0
  6. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/miopen-wrapper.h +3 -0
  7. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/Distance.h +20 -0
  8. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/LinearAlgebra.h +18 -0
  9. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/LinearAlgebraUtils.h +623 -0
  10. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/MaxPooling.h +97 -0
  11. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/PointwiseOps.h +28 -0
  12. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/Repeat.h +48 -0
  13. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/Resize.h +173 -0
  14. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/TensorFactories.h +142 -0
  15. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/TensorShape.h +105 -0
  16. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/im2col_shape_check.h +232 -0
  17. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/vol2col.h +109 -0
  18. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_add_batch_dim_native.h +21 -0
  19. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_amp_foreach_non_finite_check_and_unscale.h +44 -0
  20. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cdist_backward_native.h +22 -0
  21. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution_double_backward.h +47 -0
  22. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution_mode_native.h +21 -0
  23. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_div_cpu_dispatch.h +30 -0
  24. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_is_all_true_ops.h +28 -0
  25. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_solve_ex_cuda_dispatch.h +25 -0
  26. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_make_dep_token_native.h +21 -0
  27. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_efficient_attention.h +30 -0
  28. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_backward.h +39 -0
  29. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsc_compositeexplicitautograd_dispatch.h +24 -0
  30. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_transformer_encoder_layer_fwd_cuda_dispatch.h +23 -0
  31. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_compressed_sparse_indices_native.h +22 -0
  32. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool3d_backward_ops.h +39 -0
  33. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/and_native.h +24 -0
  34. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/asin.h +44 -0
  35. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/asin_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
  36. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/dequantize_native.h +25 -0
  37. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_copy_compositeexplicitautograd_dispatch.h +24 -0
  38. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_dense_backward_ops.h +39 -0
  39. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_int8_weight_fp32_activation.h +30 -0
  40. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/frexp_cpu_dispatch.h +24 -0
  41. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/geometric_meta_dispatch.h +23 -0
  42. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_2d_backward_native.h +23 -0
  43. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/hardsigmoid_backward_cpu_dispatch.h +25 -0
  44. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/index_fill_ops.h +127 -0
  45. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/kl_div.h +30 -0
  46. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lerp.h +53 -0
  47. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_householder_product_native.h +22 -0
  48. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_inv_ops.h +39 -0
  49. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_matmul_ops.h +39 -0
  50. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/mH_compositeimplicitautograd_dispatch.h +23 -0
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/Descriptors.h ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/miopen/Exceptions.h>
4
+
5
+ #include <ATen/miopen/miopen-wrapper.h>
6
+ #include <ATen/core/Tensor.h>
7
+ #include <ATen/TensorUtils.h>
8
+
9
+ namespace at { namespace native {
10
+
11
+ inline int dataSize(miopenDataType_t dataType)
12
+ {
13
+ switch (dataType) {
14
+ case miopenHalf: return 2;
15
+ case miopenFloat: return 4;
16
+ case miopenBFloat16: return 2;
17
+ default: return 8;
18
+ }
19
+ }
20
+
21
+ template <typename T, miopenStatus_t (*dtor)(T*)>
22
+ struct DescriptorDeleter {
23
+ void operator()(T* x) {
24
+ if (x != nullptr) {
25
+ MIOPEN_CHECK(dtor(x));
26
+ }
27
+ }
28
+ };
29
+
30
+ // A generic class for wrapping MIOpen descriptor types. All you need
31
+ // is to give the underlying type the Descriptor_t points to (usually,
32
+ // if it's miopenTensorDescriptor_t it points to miopenTensorStruct),
33
+ // the constructor and the destructor. Subclasses are responsible
34
+ // for defining a set() function to actually set the descriptor.
35
+ //
36
+ // Descriptors default construct to a nullptr, and have a descriptor
37
+ // initialized the first time you call set() or any other initializing
38
+ // function.
39
+ template <typename T, miopenStatus_t (*ctor)(T**), miopenStatus_t (*dtor)(T*)>
40
+ class Descriptor
41
+ {
42
+ public:
43
+ // Use desc() to access the underlying descriptor pointer in
44
+ // a read-only fashion. Most client code should use this.
45
+ // If the descriptor was never initialized, this will return
46
+ // nullptr.
47
+ T* desc() const { return desc_.get(); }
48
+ T* desc() { return desc_.get(); }
49
+
50
+ // Use mut_desc() to access the underlying descriptor pointer
51
+ // if you intend to modify what it points to (e.g., using
52
+ // miopenSetFooDescriptor). This will ensure that the descriptor
53
+ // is initialized. Code in this file will use this function.
54
+ T* mut_desc() { init(); return desc_.get(); }
55
+ protected:
56
+ void init() {
57
+ if (desc_ == nullptr) {
58
+ T* raw_desc;
59
+ MIOPEN_CHECK(ctor(&raw_desc));
60
+ desc_.reset(raw_desc);
61
+ }
62
+ }
63
+ private:
64
+ std::unique_ptr<T, DescriptorDeleter<T, dtor>> desc_;
65
+ };
66
+
67
+ class TensorDescriptor
68
+ : public Descriptor<miopenTensorDescriptor,
69
+ &miopenCreateTensorDescriptor,
70
+ &miopenDestroyTensorDescriptor>
71
+ {
72
+ public:
73
+ TensorDescriptor() {}
74
+ explicit TensorDescriptor(const at::Tensor &t, size_t pad = 0) {
75
+ set(t, pad);
76
+ }
77
+
78
+ void set(const at::Tensor &t, size_t pad = 0);
79
+ void set(miopenDataType_t dataType, IntArrayRef sizes, IntArrayRef strides, size_t pad = 0);
80
+
81
+ void print();
82
+
83
+ private:
84
+ void set(miopenDataType_t dataType, int dim, int* size, int* stride) {
85
+ MIOPEN_CHECK(miopenSetTensorDescriptor(mut_desc(), dataType, dim, size, stride));
86
+ }
87
+ };
88
+
89
+ std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d);
90
+
91
+ class FilterDescriptor
92
+ : public Descriptor<miopenTensorDescriptor,
93
+ &miopenCreateTensorDescriptor,
94
+ &miopenDestroyTensorDescriptor>
95
+ {
96
+ public:
97
+ void set(const at::Tensor &t, int64_t pad = 0) {
98
+ set(t, at::MemoryFormat::Contiguous, pad);
99
+ }
100
+
101
+ void set(const at::Tensor &t, const at::MemoryFormat memory_format, int64_t pad = 0);
102
+
103
+ private:
104
+ void set(miopenDataType_t dataType, int dim, int* size, int* stride) {
105
+ MIOPEN_CHECK(miopenSetTensorDescriptor(mut_desc(), dataType, dim, size, stride));
106
+ }
107
+ };
108
+
109
+ struct ConvolutionDescriptor
110
+ : public Descriptor<miopenConvolutionDescriptor,
111
+ &miopenCreateConvolutionDescriptor,
112
+ &miopenDestroyConvolutionDescriptor>
113
+ {
114
+ void set(miopenDataType_t dataType, miopenConvolutionMode_t c_mode, int dim, int* pad, int* stride, int * upscale /* aka dilation */, int groups, bool deterministic) {
115
+ MIOPEN_CHECK(miopenInitConvolutionNdDescriptor(mut_desc(), dim, pad, stride, upscale, c_mode));
116
+ MIOPEN_CHECK(miopenSetConvolutionGroupCount(mut_desc(), groups));
117
+ MIOPEN_CHECK(miopenSetConvolutionAttribute(mut_desc(), MIOPEN_CONVOLUTION_ATTRIB_DETERMINISTIC, deterministic ? 1 : 0));
118
+ }
119
+ };
120
+
121
+
122
+ struct RNNDescriptor
123
+ : public Descriptor<miopenRNNDescriptor,
124
+ &miopenCreateRNNDescriptor,
125
+ &miopenDestroyRNNDescriptor>
126
+ {
127
+ void set(int64_t hidden_size, int64_t num_layers, miopenRNNInputMode_t input_mode, miopenRNNDirectionMode_t direction, miopenRNNMode_t rnn_mode,
128
+ miopenRNNBiasMode_t bias_mode, miopenRNNAlgo_t algorithm, miopenDataType_t datatype) {
129
+ MIOPEN_CHECK(miopenSetRNNDescriptor(mut_desc(), hidden_size, num_layers, input_mode, direction, rnn_mode, bias_mode, algorithm, datatype));
130
+ }
131
+ };
132
+
133
+ union Constant
134
+ {
135
+ float f;
136
+ double d;
137
+ Constant(miopenDataType_t dataType, double value) {
138
+ if (dataType == miopenHalf || dataType == miopenFloat || dataType == miopenBFloat16) {
139
+ f = static_cast<float>(value);
140
+ } else {
141
+ d = value;
142
+ }
143
+ }
144
+ };
145
+
146
+ }} // namespace
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/Exceptions.h ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/miopen/miopen-wrapper.h>
4
+ #include <string>
5
+ #include <stdexcept>
6
+ #include <sstream>
7
+
8
+ namespace at { namespace native {
9
+
10
+ class miopen_exception : public std::runtime_error {
11
+ public:
12
+ miopenStatus_t status;
13
+ miopen_exception(miopenStatus_t status, const char* msg)
14
+ : std::runtime_error(msg)
15
+ , status(status) {}
16
+ miopen_exception(miopenStatus_t status, const std::string& msg)
17
+ : std::runtime_error(msg)
18
+ , status(status) {}
19
+ };
20
+
21
+ inline void MIOPEN_CHECK(miopenStatus_t status)
22
+ {
23
+ if (status != miopenStatusSuccess) {
24
+ if (status == miopenStatusNotImplemented) {
25
+ throw miopen_exception(status, std::string(miopenGetErrorString(status)) +
26
+ ". This error may appear if you passed in a non-contiguous input.");
27
+ }
28
+ throw miopen_exception(status, miopenGetErrorString(status));
29
+ }
30
+ }
31
+
32
+ inline void HIP_CHECK(hipError_t error)
33
+ {
34
+ if (error != hipSuccess) {
35
+ std::string msg("HIP error: ");
36
+ msg += hipGetErrorString(error);
37
+ throw std::runtime_error(msg);
38
+ }
39
+ }
40
+
41
+ }} // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/Handle.h ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/miopen/miopen-wrapper.h>
4
+
5
+ namespace at { namespace native {
6
+
7
+ miopenHandle_t getMiopenHandle();
8
+
9
+ }} // namespace
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/Types.h ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/miopen/miopen-wrapper.h>
4
+ #include <ATen/Tensor.h>
5
+
6
+ namespace at { namespace native {
7
+
8
+ miopenDataType_t getMiopenDataType(const at::Tensor& tensor);
9
+
10
+ int64_t miopen_version();
11
+
12
+ }} // namespace at::miopen
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/Utils.h ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/miopen/miopen-wrapper.h>
5
+ #include <ATen/miopen/Handle.h>
6
+
7
+ namespace at { namespace native {
8
+
9
+ // This function makes tensors which have zero stride contiguous, by
10
+ // setting the strides to 1.
11
+ inline Tensor contiguousIfZeroInStrides(const Tensor& t) {
12
+ for (auto s : t.strides()) {
13
+ if (s == 0) return t.contiguous();
14
+ }
15
+ return t;
16
+ }
17
+
18
+ }}
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/miopen/miopen-wrapper.h ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <miopen/miopen.h>
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/Distance.h ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/native/DispatchStub.h>
4
+
5
+ namespace at {
6
+ class Tensor;
7
+
8
+ namespace native {
9
+
10
+ using pdist_forward_fn = void(*)(Tensor&, const Tensor&, const double p);
11
+ using pdist_backward_fn = void(*)(Tensor&, const Tensor&, const Tensor&, const double p, const Tensor&);
12
+ using cdist_fn = void(*)(Tensor&, const Tensor&, const Tensor&, const double p);
13
+ using cdist_backward_fn = void(*)(Tensor&, const Tensor&, const Tensor&, const Tensor&, const double p, const Tensor&);
14
+
15
+ DECLARE_DISPATCH(pdist_forward_fn, pdist_forward_stub);
16
+ DECLARE_DISPATCH(pdist_backward_fn, pdist_backward_stub);
17
+ DECLARE_DISPATCH(cdist_fn, cdist_stub);
18
+ DECLARE_DISPATCH(cdist_backward_fn, cdist_backward_stub);
19
+
20
+ }} // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/LinearAlgebra.h ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/native/DispatchStub.h>
4
+ #include <c10/util/Optional.h>
5
+
6
+ namespace c10 {
7
+ class Scalar;
8
+ }
9
+
10
+ namespace at {
11
+ struct TensorIterator;
12
+ }
13
+
14
+ namespace at::native {
15
+
16
+ using addr_fn = void (*)(TensorIterator &, const Scalar& beta, const Scalar& alpha);
17
+ DECLARE_DISPATCH(addr_fn, addr_stub);
18
+ } // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/LinearAlgebraUtils.h ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/core/ScalarType.h>
4
+ #include <c10/util/irange.h>
5
+ #include <c10/util/Exception.h>
6
+ #include <c10/util/strides.h>
7
+ #include <ATen/core/Tensor.h>
8
+ #include <ATen/ExpandUtils.h>
9
+ #include <ATen/TensorUtils.h>
10
+ #include <ATen/native/TensorIterator.h>
11
+ #include <ATen/native/TransposeType.h>
12
+ #include <limits>
13
+ #include <type_traits>
14
+ #include <sstream>
15
+ #include <cstring>
16
+ #include <cctype>
17
+
18
+ #ifndef AT_PER_OPERATOR_HEADERS
19
+ #include <ATen/Functions.h>
20
+ #else
21
+ #include <ATen/ops/arange.h>
22
+ #include <ATen/ops/empty.h>
23
+ #include <ATen/ops/empty_like.h>
24
+ #include <ATen/ops/empty_strided.h>
25
+ #include <ATen/ops/zeros.h>
26
+ #endif
27
+
28
+ namespace at::native {
29
+
30
+ static inline c10::MaybeOwned<Tensor> expect_resolved_conj(const Tensor& tensor) {
31
+ if (tensor.is_conj()) {
32
+ return c10::MaybeOwned<Tensor>::owned(tensor.resolve_conj());
33
+ } else {
34
+ return c10::MaybeOwned<Tensor>::borrowed(tensor);
35
+ }
36
+ }
37
+
38
+ static inline DimVector batched_matrix_contiguous_strides(
39
+ const IntArrayRef sizes,
40
+ const bool f_contig = false) {
41
+ // f_contig chooses between the strides of a batch of Fortran (F-contiguous)
42
+ // and C-contiguous matrices
43
+ auto strides = c10::contiguous_strides(sizes);
44
+ auto dim = strides.size();
45
+
46
+ if (f_contig && dim >= 2) {
47
+ // Fix the strides of the last two dimensions, so that we return
48
+ // C-contiguous batches of F-contiguous matrices.
49
+ strides[dim - 1] = std::max(sizes[dim - 2], static_cast<int64_t>(1));
50
+ strides[dim - 2] = 1;
51
+ }
52
+ return strides;
53
+ }
54
+
55
+ /*
56
+ * Clones a Tensor so that the following conditions hold:
57
+ * If we think of a Tensor of having size (B, M, N), where B is any number
58
+ * of batch dimensions, then:
59
+ * - Each (M, N) matrix is in column major form
60
+ * - Let Tensor P have size (B, M, N) and Q have size (B, M', N').
61
+ * Then when laid out in memory, the M by N matrix starting at
62
+ * P.data_ptr()[B * M * N] is of the same corresponding batch as the M' by N'
63
+ * matrix starting at Q.data_ptr()[B * M' * N'].
64
+ */
65
+ static inline Tensor cloneBatchedColumnMajor(const Tensor& src) {
66
+ // If src is already in batched column major format, then
67
+ // this will be efficient (no reordering of the data will occur)
68
+ // because the first transpose will make the tensor contiguous,
69
+ // and cloning a contiguous tensor is fast.
70
+ auto result = src.mT().clone(at::MemoryFormat::Contiguous);
71
+ result.transpose_(-2, -1);
72
+ return result;
73
+ }
74
+
75
+ /*
76
+ * contig chooses between C-contig (true) and F-contig (false)
77
+ */
78
+ static inline c10::MaybeOwned<Tensor> borrow_else_clone(const bool cond, const Tensor& borrow, const Tensor& clone, const bool contig) {
79
+ return cond ? c10::MaybeOwned<Tensor>::borrowed(borrow)
80
+ : c10::MaybeOwned<Tensor>::owned(contig ? clone.clone(MemoryFormat::Contiguous)
81
+ : cloneBatchedColumnMajor(clone));
82
+ }
83
+
84
+ /*
85
+ * This method is designed to be a faster alternative to
86
+ * `cloneBatchedColumnMajor` with some additional features,
87
+ * namely:
88
+ * 1. It uses `copy` instead of `clone` which could be much faster.
89
+ * 2. `nrows` parameter used to create inputs with the number of rows larger
90
+ * than the original input, which is required for some LAPACK/MAGMA methods.
91
+ * 3. `desired_batch_size` is used to create copies with the batch size
92
+ * which is either the original batch size of the input, or its larger
93
+ * broadcasted shape.
94
+ */
95
+ static inline Tensor copyBatchedColumnMajor(const Tensor& src, int64_t nrows = -1,
96
+ at::OptionalIntArrayRef desired_batch_sizes = c10::nullopt) {
97
+ nrows = (nrows == -1) ? src.size(-2) : nrows;
98
+ auto copy_sizes = desired_batch_sizes.has_value()
99
+ ? desired_batch_sizes.value().vec()
100
+ : IntArrayRef(src.sizes().data(), src.dim() - 2).vec();
101
+ copy_sizes.insert(copy_sizes.end(), {nrows, src.size(-1)});
102
+ const auto copy_strides = batched_matrix_contiguous_strides(copy_sizes, /*f-contig*/true);
103
+ auto copy = at::empty_strided(copy_sizes, copy_strides, src.options());
104
+ copy.narrow(-2, 0, src.size(-2)).copy_(src);
105
+ return copy;
106
+ }
107
+
108
+ /*
109
+ * Given batches of matrices with arbitrary batch dim,
110
+ * computes the number of batches.
111
+ */
112
+ static inline int64_t batchCount(const Tensor& batched_matrices) {
113
+ int64_t result = 1;
114
+ for (int64_t i = 0; i < batched_matrices.ndimension() - 2; i++) {
115
+ result *= batched_matrices.size(i);
116
+ }
117
+ return result;
118
+ }
119
+
120
+ // Computes the number of elements of a matrix in a batched matrix tensor
121
+ static inline int64_t matrixStride(const Tensor& batched_matrices) {
122
+ return batched_matrices.size(-1) * batched_matrices.size(-2);
123
+ }
124
+
125
+ // Validates input shapes for operations on batches of square matrices (inverse, cholesky, symeig, eig)
126
+ static inline void checkIsMatrix(const Tensor& A, const char* const f_name, const char* const arg_name = "A") {
127
+ TORCH_CHECK(A.dim() >= 2, f_name, ": The input tensor ", arg_name, " must have at least 2 dimensions.");
128
+ }
129
+ static inline void squareCheckInputs(const Tensor& self, const char* const f_name, const char* const arg_name = "A") {
130
+ checkIsMatrix(self, f_name, arg_name);
131
+ TORCH_CHECK(self.sym_size(-1) == self.sym_size(-2),
132
+ f_name,
133
+ ": ", arg_name, " must be batches of square matrices, "
134
+ "but they are ", self.sym_size(-2), " by ", self.sym_size(-1), " matrices");
135
+ }
136
+
137
+ static inline void checkInputsSolver(const Tensor& A,
138
+ const Tensor& B,
139
+ const bool left,
140
+ const char* const f_name) {
141
+ squareCheckInputs(A, f_name, "A");
142
+ checkIsMatrix(B, f_name, "B");
143
+ TORCH_CHECK(left ? A.size(-2) == B.size(-2) : A.size(-1) == B.size(-1),
144
+ f_name, ": Incompatible shapes of A and B for the equation ",
145
+ left ? "AX = B" : "XA = B",
146
+ " (", A.size(-2), "x", A.size(-1), " and ", B.size(-2), "x", B.size(-1), ")");
147
+ }
148
+
149
+ static inline bool is_row_or_column_contiguous(const Tensor& t) {
150
+ // This could be made more general, similar to how it's checked in matmul, which would allow to
151
+ // ellide the copy with strides such as (6, 12, 1, 3) or (3, 1, 9), but this is quite tricky.
152
+ // We choose to be conservative for simplicity
153
+ return t.is_contiguous() || t.transpose(-2, -1).is_contiguous();
154
+ }
155
+
156
+ static inline TransposeType to_transpose_type(const bool contig, const bool conj) {
157
+ if (conj) {
158
+ if (contig) { TORCH_INTERNAL_ASSERT(false, "Invalid transpose type"); }
159
+ else { return TransposeType::ConjTranspose; }
160
+ } else {
161
+ if (contig) { return TransposeType::NoTranspose; }
162
+ else { return TransposeType::Transpose; }
163
+ }
164
+ }
165
+
166
+
167
+ // This function is designed to be used with linear algebra methods that minimize
168
+ // L(ax - b) = 0, where L is generally the identity map (`solve`, for example)
169
+ // or the L2 norm (`lstsq`).
170
+ // It is expected that `a` and `b` are contiguous tensors of column-major matrices
171
+ // (so that a.view({-1, a.size(-2), a.size(-1)}) succeeds, same for `b`),
172
+ // with the following additional properties:
173
+ //
174
+ // 1. a.dim() == b.dim()
175
+ // 2. a.shape[:-2] broadcasts over b.shape[:-2]
176
+ // 3. a.size(i) <= b.size(i) for i=0,..., a.dim() - 3 (only for batch dimensions)
177
+ //
178
+ // MAGMA/LAPACK modify tensor `a` in-place, and the main goal of this method
179
+ // is to be memory efficient, which means that if there exists an index i such that
180
+ // a.shape[i] < b.shape[i], 0 <= i <= a.dim() - 3,
181
+ // then instead of materializing copies of `a` in the broadcasted shape, we keep
182
+ // a buffer copy of `a` along with flags that check whether specific batch dimension
183
+ // indices for `a` were already accessed. If they were, we copy the data from the buffer
184
+ // into `a`. The number of copies does not exceed
185
+ // prod(max(a.shape[:-2], b.shape[:-2]) - a.shape[:-2] + 1)
186
+ // and this value is attained by tensors with non-empty batch dimensions.
187
+ //
188
+ // func_t `f` is a callable that is being supplied with
189
+ // scalar_t* a_working_ptr, scalar_t* b_working_ptr, int64_t a_linear_batch_idx.
190
+ // a_working_ptr and b_working_ptr can directly be passed to LAPACK/MAGMA routines,
191
+ // and a_linear_batch_idx is an index in the 3d representation which corresponds to
192
+ // the memory a_working_ptr points to, in other words:
193
+ // a_working_ptr == a.view({-1, a.size(-2), a.size(-1)}.select(0, a_linear_batch_idx).data_ptr<scalar_t>();
194
+ // a_linear_batch_idx is useful to store metadata related to `a`, such as, for example,
195
+ // its rank or singular values (see linalg_lstsq).
196
+ template<typename scalar_t, typename func_t>
197
+ void batch_iterator_with_broadcasting(const Tensor& a, const Tensor& b, const func_t& f) {
198
+ IntArrayRef a_batch_sizes(a.sizes().data(), a.dim() - 2);
199
+ IntArrayRef b_batch_sizes(b.sizes().data(), b.dim() - 2);
200
+
201
+ auto a_linear_batch_idx = at::arange(batchCount(a)).view(a_batch_sizes);
202
+ auto b_linear_batch_idx = at::arange(batchCount(b)).view(b_batch_sizes);
203
+
204
+ TensorIterator iter = TensorIteratorConfig()
205
+ .set_check_mem_overlap(false)
206
+ .check_all_same_dtype(false)
207
+ .resize_outputs(false)
208
+ .add_output(b_linear_batch_idx)
209
+ .add_input(a_linear_batch_idx)
210
+ .build();
211
+
212
+ auto m = a.size(-2);
213
+ auto n = a.size(-1);
214
+ auto a_3d = a.view({batchCount(a), m, n});
215
+ auto b_3d = b.view({batchCount(b), b.size(-2), b.size(-1)});
216
+
217
+ auto a_broadcasts_over_b = (a_batch_sizes != b_batch_sizes);
218
+ Tensor a_buffer, a_was_accessed, a_buffer_3d;
219
+ std::function<void(int64_t)> check_if_copy_needed_for_a
220
+ = [](int64_t /*a_curr_linear_batch_idx*/){};
221
+ if (a_broadcasts_over_b) {
222
+ a_buffer = at::empty_strided(a.sizes(), a.strides(), a.options())
223
+ .copy_(a);
224
+ a_was_accessed = at::zeros(batchCount(a), at::kBool);
225
+ a_buffer_3d = a_buffer.view({batchCount(a), m, n});
226
+ check_if_copy_needed_for_a = [&](int64_t a_curr_linear_batch_idx) {
227
+ auto* a_was_accessed_flag = a_was_accessed
228
+ .select(0, a_curr_linear_batch_idx)
229
+ .data_ptr<bool>();
230
+ if (!(*a_was_accessed_flag)) {
231
+ *a_was_accessed_flag = true;
232
+ }
233
+ else {
234
+ a_3d.select(0, a_curr_linear_batch_idx)
235
+ .copy_(a_buffer_3d.select(0, a_curr_linear_batch_idx));
236
+ }
237
+ };
238
+ }
239
+
240
+ auto loop = [&](char** data, const int64_t* strides, int64_t nelems) {
241
+ auto* b_batch_idx_ptr = data[0];
242
+ auto* a_batch_idx_ptr = data[1];
243
+
244
+ for (const auto elem C10_UNUSED : c10::irange(nelems)) {
245
+ auto b_curr_linear_batch_idx = *reinterpret_cast<int64_t*>(b_batch_idx_ptr);
246
+ auto a_curr_linear_batch_idx = *reinterpret_cast<int64_t*>(a_batch_idx_ptr);
247
+
248
+ check_if_copy_needed_for_a(a_curr_linear_batch_idx);
249
+
250
+ auto* a_working_ptr = a_3d.select(0, a_curr_linear_batch_idx)
251
+ .data_ptr<scalar_t>();
252
+ auto* b_working_ptr = b_3d.select(0, b_curr_linear_batch_idx)
253
+ .data_ptr<scalar_t>();
254
+ f(a_working_ptr, b_working_ptr, a_curr_linear_batch_idx);
255
+
256
+ b_batch_idx_ptr += strides[0];
257
+ a_batch_idx_ptr += strides[1];
258
+ }
259
+ };
260
+ iter.serial_for_each(loop, {0, batchCount(b)});
261
+ }
262
+
263
+ // Returns the epsilon value for floating types except half
264
+ static inline double _get_epsilon(const ScalarType& sc_type) {
265
+ switch (sc_type) {
266
+ case at::ScalarType::Float:
267
+ return static_cast<double>(std::numeric_limits<float>::epsilon());
268
+ case at::ScalarType::Double:
269
+ return std::numeric_limits<double>::epsilon();
270
+ default:
271
+ AT_ERROR("This function doesn't handle types other than float and double");
272
+ }
273
+ }
274
+
275
+ // Validates input shapes and devices
276
+ // for linear solve methods (solve, cholesky_solve, lu_solve, triangular_solve)
277
+ static inline void linearSolveCheckInputs(const Tensor& self, const Tensor& A, const char* name) {
278
+ TORCH_CHECK(self.device() == A.device(),
279
+ "Expected b and A to be on the same device, but found b on ",
280
+ self.device(), " and A on ", A.device(), " instead.");
281
+
282
+ TORCH_CHECK(self.scalar_type() == A.scalar_type(),
283
+ "Expected b and A to have the same dtype, but found b of type ",
284
+ self.scalar_type(), " and A of type ", A.scalar_type(), " instead.");
285
+
286
+ TORCH_CHECK(A.size(-1) == A.size(-2),
287
+ "A must be batches of square matrices, "
288
+ "but they are ", A.size(-2), " by ", A.size(-1), " matrices");
289
+
290
+ TORCH_CHECK(A.size(-1) == self.size(-2),
291
+ "Incompatible matrix sizes for ", name, ": each A "
292
+ "matrix is ", A.size(-1), " by ", A.size(-1),
293
+ " but each b matrix is ", self.size(-2), " by ", self.size(-1));
294
+ }
295
+
296
+ static inline void checkFloatingOrComplex(const Tensor& t, const char* const f_name, const bool allow_low_precision_dtypes=true) {
297
+ auto dtype = t.scalar_type();
298
+ TORCH_CHECK((at::isFloatingType(dtype) || at::isComplexType(dtype)),
299
+ f_name, ": Expected a floating point or complex tensor as input. Got ", dtype);
300
+ if (!allow_low_precision_dtypes) {
301
+ TORCH_CHECK(dtype == kFloat || dtype == kDouble || dtype == kComplexFloat || dtype == kComplexDouble,
302
+ f_name, ": Low precision dtypes not supported. Got ", dtype);
303
+ }
304
+ }
305
+
306
+
307
+ // Checks if all the Tensors in a TensorList are of the same dimensions
308
+ static inline void checkAllSameDim(TensorList tensors, int64_t dim) {
309
+ for (auto &t : tensors) {
310
+ TORCH_CHECK(t.dim() == dim, "Tensor dimension is ", t.dim(), ", expected ", dim, " instead.");
311
+ }
312
+ }
313
+
314
+ static inline std::tuple<std::vector<int64_t>, std::vector<int64_t>> _linalg_broadcast_batch_dims(const Tensor& arg1, const Tensor& arg2) {
315
+ // broadcast the batch dimensions of arg1 and arg2.
316
+ IntArrayRef arg1_batch_sizes(arg1.sizes().data(), arg1.ndimension() - 2);
317
+ IntArrayRef arg2_batch_sizes(arg2.sizes().data(), arg2.ndimension() - 2);
318
+ std::vector<int64_t> expand_batch_portion = infer_size(arg1_batch_sizes, arg2_batch_sizes);
319
+
320
+ std::vector<int64_t> arg1_expand_size({expand_batch_portion});
321
+ arg1_expand_size.insert(arg1_expand_size.end(), { arg1.size(-2), arg1.size(-1) });
322
+
323
+ std::vector<int64_t> arg2_expand_size({expand_batch_portion});
324
+ arg2_expand_size.insert(arg2_expand_size.end(), { arg2.size(-2), arg2.size(-1) });
325
+ return std::make_tuple(std::move(arg1_expand_size), std::move(arg2_expand_size));
326
+ }
327
+
328
+ static inline std::tuple<Tensor,Tensor> _linalg_broadcast_batch_dims(const Tensor& arg1, const Tensor& arg2, const char* name) {
329
+ // If there's no name we assume we don't want to check the errors
330
+ if (name != nullptr) {
331
+ linearSolveCheckInputs(arg1, arg2, name);
332
+ }
333
+
334
+ auto [arg1_expand_size, arg2_expand_size] = at::native::_linalg_broadcast_batch_dims(arg1, arg2);
335
+
336
+ auto arg1_broadcasted = arg1_expand_size == arg1.sizes() ? arg1 : arg1.expand(arg1_expand_size);
337
+ auto arg2_broadcasted = arg2_expand_size == arg2.sizes() ? arg2 : arg2.expand(arg2_expand_size);
338
+ return std::make_tuple(arg1_broadcasted, arg2_broadcasted);
339
+ }
340
+
341
+ static inline std::vector<int64_t> broadcast_batch_size(const Tensor& t1, const Tensor& t2, int64_t n_batch_dims) {
342
+ IntArrayRef t1_batch_sizes(t1.sizes().data(), n_batch_dims);
343
+ IntArrayRef t2_batch_sizes(t2.sizes().data(), n_batch_dims);
344
+ auto broadcasted_batch_sizes = infer_size(t1_batch_sizes, t2_batch_sizes);
345
+ return broadcasted_batch_sizes;
346
+ }
347
+
348
+ // Return a permutation with the given axes moved to the end.
349
+ static inline Tensor _move_to_end(const Tensor& self, IntArrayRef axes) {
350
+ const std::vector<int64_t> a = axes.vec();
351
+ const int64_t ndim = self.ndimension();
352
+ std::vector<int64_t> perm;
353
+
354
+ for (const auto i : c10::irange(ndim)) {
355
+ auto it = std::find(a.begin(), a.end(), i);
356
+ if (it == a.end()) {
357
+ perm.push_back(i);
358
+ }
359
+ }
360
+ for (auto i : a) {
361
+ perm.push_back(i);
362
+ }
363
+
364
+ TORCH_CHECK((int64_t)perm.size() == ndim,
365
+ "duplicate or invalid axis in 'dim' argument for tensor with ndim==", ndim);
366
+
367
+ return self.permute(perm);
368
+ }
369
+
370
+ // parse the "mode" param in linalg_qr: return a tuple of bools (compute_q, reduced)
371
+ static inline std::tuple<bool, bool> _parse_qr_mode(c10::string_view mode) {
372
+ bool compute_q;
373
+ bool reduced;
374
+ if (mode == "reduced") {
375
+ compute_q = true;
376
+ reduced = true;
377
+ } else if (mode == "complete") {
378
+ compute_q = true;
379
+ reduced = false;
380
+ } else if (mode == "r") {
381
+ compute_q = false;
382
+ reduced = true; // this is actually irrelevant in this mode
383
+ } else {
384
+ TORCH_CHECK(false, "qr received unrecognized mode '", mode,
385
+ "' but expected one of 'reduced' (default), 'r', or 'complete'");
386
+ }
387
+ return std::make_tuple(compute_q, reduced);
388
+ }
389
+
390
+ // Function to compute sizes, strides and the extra columns for the Q matrix in the QR Decomposition
391
+ static inline std::tuple<DimVector, DimVector, int64_t> _compute_geometry_for_Q(
392
+ const Tensor& input,
393
+ bool reduced) {
394
+ int64_t m = input.size(-2), n = input.size(-1);
395
+ int64_t n_columns_q;
396
+
397
+ // We need to compute the required size of Q based on the `reduced` option
398
+ DimVector q_sizes(input.sizes());
399
+ if (!reduced && m > n) {
400
+ q_sizes[input.dim() - 1] = m;
401
+ n_columns_q = m;
402
+ } else {
403
+ q_sizes[input.dim() - 1] = n;
404
+ n_columns_q = std::min(m, n);
405
+ }
406
+ auto q_strides = batched_matrix_contiguous_strides(q_sizes, /*f-contig*/true);
407
+ return std::make_tuple(q_sizes, q_strides, n_columns_q);
408
+ }
409
+
410
+ static inline bool svd_uses_cusolver(const Tensor& A) {
411
+ // if cusolver is available, it is used unconditionally
412
+ return A.is_cuda()
413
+ && at::globalContext().hasCuSOLVER()
414
+ && at::globalContext().linalgPreferredBackend() != at::LinalgBackend::Magma;
415
+ }
416
+
417
+
418
+ // Function used instead of .to so that the original strides are retained
419
+ // .to doesn't retain strides and make the output tensor contiguous
420
+ static inline Tensor same_stride_to(const Tensor& original_tensor, const at::TensorOptions& options) {
421
+ auto strided_to = at::empty_strided(original_tensor.sizes(),
422
+ original_tensor.strides(),
423
+ options);
424
+ strided_to.copy_(original_tensor);
425
+ return strided_to;
426
+ }
427
+
428
+ // Creates a dimension permutation array that can be given to `at::permute()`, which will shift
429
+ // the two specified dimensions to the end of a tensor, without changing the order of
430
+ // the other dimensions. `dim1` will be placed at the very end, and `dim0` will be
431
+ // placed just to the left of it.
432
+ //
433
+ // For instance, given a 4-D tensor, dimensions 1 and 3 can be shifted to the end by
434
+ // calling `create_dim_backshift_permutation(1, 3, 4)`. The resulting vector will
435
+ // be `vec(0, 2, 1, 3)`.
436
+ static inline std::vector<int64_t> create_dim_backshift_permutation(int64_t dim0, int64_t dim1, int64_t ndim) {
437
+ TORCH_CHECK(
438
+ (dim0 != dim1) && (dim0 < ndim) && (dim0 >= 0) && (dim1 < ndim) && (dim1 >= 0),
439
+ "duplicate or invalid dimensions");
440
+ std::vector<int64_t> permutation(ndim);
441
+ int64_t cur_permuted_dim = 0;
442
+ for (const auto dim_ind : c10::irange(ndim)) {
443
+ if ((dim_ind != dim0) && (dim_ind != dim1)) {
444
+ permutation[cur_permuted_dim++] = dim_ind;
445
+ }
446
+ }
447
+ permutation[cur_permuted_dim++] = dim0;
448
+ permutation[cur_permuted_dim] = dim1;
449
+ return permutation;
450
+ }
451
+
452
+ // Creates a dimension permutation array that can be given to `at::permute()`, which
453
+ // will reverse a given permutation.
454
+ // The reverse permutation array is created by swapping the indices and their
455
+ // associated values from the given permutation array.
456
+ static inline std::vector<int64_t> create_reverse_permutation(std::vector<int64_t> permutation) {
457
+ int64_t ndim = permutation.size();
458
+ std::vector<int64_t> reverse_permutation(ndim);
459
+ for (const auto dim_ind : c10::irange(ndim)) {
460
+ reverse_permutation[permutation[dim_ind]] = dim_ind;
461
+ }
462
+ return reverse_permutation;
463
+ }
464
+
465
+ // Compute R-work array size for MAGMA/LAPACK cgesdd/zgesdd
466
+ // See https://github.com/Reference-LAPACK/lapack/blob/122506cd8b6ce050a200920c3d4c0b153b150fd8/SRC/cgesdd.f#L186
467
+ static inline int64_t computeLRWorkDim(const char jobz, int64_t m, int64_t n) {
468
+ auto mn = std::min(m, n);
469
+ auto mx = std::max(m, n);
470
+ if (jobz == 'N') {
471
+ #ifdef __APPLE__
472
+ // According to `vecLib.framework/Headers/clapack.h` Accelerate.framework is based on LAPACK 3.2.1
473
+ return 7 * mn;
474
+ #else
475
+ // These setting is valid for on LAPACK 3.6+
476
+ return 5 * mn;
477
+ #endif
478
+ }
479
+ if (mx > 10 * mn) {
480
+ return 5 * mn * mn + 5 * mn;
481
+ }
482
+ return std::max(5 * mn * mn + 5 * mn, 2 * mx * mn + 2 * mn * mn + mn);
483
+ }
484
+
485
+ // This function checks whether the uplo argument input is valid
486
+ // Allowed strings are "u", "U", "l", "L"
487
+ static inline void checkUplo(const c10::string_view uplo) {
488
+ // To use std::toupper safely with plain chars (or signed chars), the argument should first be converted to unsigned char
489
+ char uplo_uppercase = static_cast<char>(std::toupper(static_cast<unsigned char>(uplo[0])));
490
+ TORCH_CHECK(uplo.size() == 1 && (uplo_uppercase == 'U' || uplo_uppercase == 'L'),
491
+ "Expected UPLO argument to be 'L' or 'U', but got ", uplo);
492
+ }
493
+
494
+ static inline void checkSameDevice(const std::string& fn_name, Tensor result, Tensor input, const std::string& result_name = "result") {
495
+ TORCH_CHECK(
496
+ result.device() == input.device(),
497
+ fn_name,
498
+ ": Expected ", result_name, " and input tensors to be on the same device, but got ",
499
+ result_name, " on ", result.device(), " and input on ", input.device());
500
+ }
501
+
502
+ // Check the dtype of result and input tensors (for _out variants).
503
+ // Most linear algebra functions have the same dtype for input and output
504
+ // (either floating or complex type input), so we can check whether input's dtype can be casted to result's dtype.
505
+ // According to https://github.com/pytorch/pytorch/wiki/Developer-FAQ#how-does-out-work-in-pytorch
506
+ // c10::canCast is used for checking the "safe copy" dtype requirements.
507
+ static inline void checkLinalgCompatibleDtype(const std::string& fn_name, Tensor result, Tensor input, const std::string& result_name = "result") {
508
+ bool can_cast = c10::canCast(input.scalar_type(), result.scalar_type());
509
+ TORCH_CHECK(
510
+ can_cast,
511
+ fn_name,
512
+ ": Expected ", result_name, " to be safely castable from ", input.scalar_type(), " dtype, but got ",
513
+ result_name, " with dtype ", result.scalar_type());
514
+ }
515
+
516
+ // Alternatively, we can check whether the specific expected output type (result_type) can be safely casted to out tensor dtype (out_type)
517
+ static inline void checkLinalgCompatibleDtype(const std::string& fn_name, ScalarType out_type, ScalarType result_type, const std::string& out_name = "result") {
518
+ bool can_cast = c10::canCast(result_type, out_type);
519
+ TORCH_CHECK(
520
+ can_cast,
521
+ fn_name,
522
+ ": Expected ", out_name, " to be safely castable from ", result_type, " dtype, but got ",
523
+ out_name, " with dtype ", out_type);
524
+ }
525
+
526
+ static inline void checkNotComplexTolerance(const Tensor& tol, const c10::string_view f_name, const c10::string_view tol_name) {
527
+ TORCH_CHECK(!at::isComplexType(tol.scalar_type()),
528
+ f_name, ": ", tol_name, " tensor of complex type is not supported. Got ", tol.scalar_type());
529
+ }
530
+
531
+ /*
532
+ Two types of 'other' tensors are supported when solving
533
+ a system of linear equations matmul(input, x) = other:
534
+ * 1-dimensional (1D) tensor or batch of 1D tensors (vector case)
535
+ * 2-dimensional (2D) tensor or batch of 2D tensors (matrix case).
536
+ The original torch.solve supported only the matrix case, while NumPy works for both cases.
537
+ For the batched input we need to be able to distinguish them.
538
+ Let input.shape = (batch_dimensions, m, n), then 'other' is of vector type if other.shape == (batch_dimensions, m).
539
+ This rule is compatible with NumPy, see https://github.com/numpy/numpy/blob/v1.20.0/numpy/linalg/linalg.py#L384-L389
540
+ */
541
+ static inline bool linalg_solve_is_vector_rhs(const Tensor& input, const Tensor& other) {
542
+ auto expected_batched_rhs_shape = SymIntArrayRef(input.sym_sizes().data(), input.dim() - 1); // input.shape[:-1]
543
+ bool vector_case = other.dim() == 1 || (input.dim() - 1 == other.dim() && other.sym_sizes().equals(expected_batched_rhs_shape));
544
+ return vector_case;
545
+ }
546
+
547
+ /*
548
+ Computes linear indices for a tensor with original_shape to access its elements like it was a materialized broadcast tensor.
549
+ */
550
+ static inline Tensor get_linear_indices(int64_t numel, IntArrayRef original_shape, IntArrayRef broadcast_shape) {
551
+ TensorOptions options = at::TensorOptions().dtype(at::kLong).device(at::kCPU);
552
+ return at::arange(numel, options).view(original_shape).broadcast_to(broadcast_shape).contiguous();
553
+ }
554
+
555
+ class BroadcastLinearIndices {
556
+ private:
557
+ Tensor linear_indices_;
558
+ bool is_broadcasting_;
559
+
560
+ public:
561
+ BroadcastLinearIndices(
562
+ int64_t numel,
563
+ IntArrayRef original_shape,
564
+ IntArrayRef broadcast_shape) : is_broadcasting_(!original_shape.equals(broadcast_shape)) {
565
+ // The assumption is that the broadcast_shape is a materialized broadcast
566
+ // shape of the original_shape. We need to compute the linear indices
567
+ // compatible with the original_shape to access the elements in the original
568
+ // tensor corresponding to the broadcast tensor.
569
+ if (is_broadcasting_) {
570
+ linear_indices_ =
571
+ get_linear_indices(numel, original_shape, broadcast_shape);
572
+ }
573
+ }
574
+ int64_t operator()(int64_t broadcast_linear_index) {
575
+ return is_broadcasting_
576
+ ? linear_indices_.data_ptr<int64_t>()[broadcast_linear_index]
577
+ : broadcast_linear_index;
578
+ }
579
+ };
580
+
581
+ static inline bool is_blas_compatible_column_major_order(const Tensor& input) {
582
+ IntArrayRef input_strides = input.strides();
583
+ IntArrayRef input_sizes = input.sizes();
584
+ auto ndim = input.dim();
585
+ TORCH_INTERNAL_ASSERT_DEBUG_ONLY(ndim >= 2);
586
+ if (ndim > 3) {
587
+ return input.transpose(-2, -1).is_contiguous();
588
+ }
589
+ auto leading_dimension = input_strides[ndim - 1];
590
+ auto rows = input_sizes[ndim - 2];
591
+ bool batch_stride_compatible = true;
592
+ if (ndim == 3) {
593
+ auto cols = input_sizes[ndim - 1];
594
+ batch_stride_compatible =
595
+ input_strides[ndim - 3] >= leading_dimension * cols;
596
+ }
597
+ return (input_strides[ndim - 2] == 1) &&
598
+ (leading_dimension >= std::max<int64_t>(1, rows)) &&
599
+ batch_stride_compatible;
600
+ }
601
+
602
+ static inline bool is_blas_compatible_row_major_order(const Tensor& input) {
603
+ IntArrayRef input_strides = input.strides();
604
+ IntArrayRef input_sizes = input.sizes();
605
+ auto ndim = input.dim();
606
+ TORCH_INTERNAL_ASSERT_DEBUG_ONLY(ndim >= 2);
607
+ if (ndim > 3) {
608
+ return input.is_contiguous();
609
+ }
610
+ auto leading_dimension = input_strides[ndim - 2];
611
+ auto cols = input_sizes[ndim - 1];
612
+ bool batch_stride_compatible = true;
613
+ if (ndim == 3) {
614
+ auto rows = input_sizes[ndim - 2];
615
+ batch_stride_compatible =
616
+ input_strides[ndim - 3] >= leading_dimension * rows;
617
+ }
618
+ return (input_strides[ndim - 1] == 1) &&
619
+ (leading_dimension >= std::max<int64_t>(1, cols)) &&
620
+ batch_stride_compatible;
621
+ }
622
+
623
+ } // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/MaxPooling.h ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/Parallel.h>
5
+ #include <ATen/native/DispatchStub.h>
6
+ #include <ATen/native/Pool.h>
7
+
8
+ namespace at::native {
9
+
10
+ static void check_max_pool1d(
11
+ const Tensor& self,
12
+ IntArrayRef kernel_size,
13
+ IntArrayRef stride,
14
+ IntArrayRef padding,
15
+ IntArrayRef dilation,
16
+ bool ceil_mode) {
17
+
18
+ TORCH_CHECK(
19
+ self.dim() == 2 || self.dim() == 3,
20
+ "max_pool1d() Expected 2D or 3D input tensor, but got ", self.sym_sizes());
21
+ TORCH_CHECK(
22
+ kernel_size.size() == 1,
23
+ "max_pool1d() kernel_size must be an int, list of ints or tuple of ints of size 1 but got size ",
24
+ kernel_size.size());
25
+ TORCH_CHECK(
26
+ stride.empty() || stride.size() == 1,
27
+ "max_pool1d() stride must be None, an int, list of ints, or tuple of ints of size 1 but got size ",
28
+ stride.size());
29
+ TORCH_CHECK(
30
+ padding.size() == 1,
31
+ "max_pool1d() padding must be an int, list of ints, or tuple of ints of size 1 but got size ",
32
+ padding.size());
33
+ TORCH_CHECK(
34
+ dilation.size() == 1,
35
+ "max_pool1d() dilation must be an int, list of ints or tuple of ints of size 1 but got size ",
36
+ dilation.size());
37
+
38
+ // If stride=None then set it to kernel_size
39
+ if (stride.empty()) {
40
+ stride = kernel_size;
41
+ }
42
+
43
+ TORCH_CHECK(
44
+ kernel_size[0] > 0,
45
+ "max_pool1d() kernel_size must be greater than zero, but got ",
46
+ kernel_size[0]);
47
+ TORCH_CHECK(
48
+ stride[0] > 0, "max_pool1d() stride must be greater than zero, but got ", stride[0]);
49
+ TORCH_CHECK(
50
+ padding[0] >= 0, "max_pool1d() padding must be non-negative, but got ", padding[0]);
51
+ TORCH_CHECK(
52
+ padding[0] <= kernel_size[0] / 2,
53
+ "max_pool1d() padding should be at most half of kernel size, but got padding=",
54
+ padding[0],
55
+ " and kernel_size=",
56
+ kernel_size[0]);
57
+ TORCH_CHECK(
58
+ dilation[0] > 0, "max_pool1d() dilation must be greater than zero, but got ", dilation[0]);
59
+
60
+ const int64_t OW = pooling_output_shape(self.sym_size(-1).guard_int(__FILE__, __LINE__), kernel_size[0], padding[0], stride[0], dilation[0], ceil_mode);
61
+ TORCH_CHECK(OW > 0, "max_pool1d() Invalid computed output size: ", OW);
62
+ }
63
+
64
+ // TODO(Heitor) Template by dimension
65
+ struct PoolingParams1D {
66
+ int64_t NB; // Number of batches
67
+ int64_t NC; // Number of channels
68
+ int64_t IW; // Input width
69
+ int64_t OW; // Output width
70
+ int64_t KW; // Kernel width
71
+ int64_t SJ; // Column stride
72
+ int64_t PJ; // Column padding
73
+ int64_t DJ; // Column dilation
74
+
75
+ // Return index of input element for the given kernel and output index
76
+ inline int64_t index(int64_t kj, int64_t oj) const {
77
+ return oj * SJ + kj * DJ - PJ;
78
+ }
79
+
80
+ // Return index of first output within bounds for this kernel index
81
+ inline int64_t valid_output_start(int64_t kj) const {
82
+ int64_t ij = index(kj, 0);;
83
+ return ij < 0 ? at::divup(-ij, SJ) : 0;
84
+ }
85
+
86
+ // Return index one past last output within bounds for this kernel index
87
+ inline int64_t valid_output_end(int64_t kj) const {
88
+ int64_t ij = index(kj, OW - 1);
89
+ return ij >= IW ? OW - at::divup(ij - (IW - 1), SJ) : OW;
90
+ }
91
+ };
92
+
93
+ using pooling_fn = void (*)(Tensor&, const Tensor&, const PoolingParams1D&);
94
+
95
+ DECLARE_DISPATCH(pooling_fn, max_pool1d_stub);
96
+
97
+ } // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/PointwiseOps.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Ternary and higher-order pointwise operations
2
+ #pragma once
3
+
4
+ #include <ATen/native/DispatchStub.h>
5
+
6
+ namespace c10 {
7
+ class Scalar;
8
+ }
9
+
10
+ namespace at {
11
+
12
+ struct TensorIterator;
13
+ struct TensorIteratorBase;
14
+
15
+ namespace native {
16
+
17
+ using pointwise_fn = void (*)(TensorIterator&, const Scalar& scalar);
18
+ using structured_pointwise_fn = void (*)(TensorIteratorBase&, const Scalar& scalar);
19
+ using pointwise_fn_double = void (*)(TensorIterator&, const Scalar&, double);
20
+
21
+ DECLARE_DISPATCH(structured_pointwise_fn, addcmul_stub);
22
+ DECLARE_DISPATCH(structured_pointwise_fn, addcdiv_stub);
23
+ DECLARE_DISPATCH(pointwise_fn_double, smooth_l1_backward_stub);
24
+ DECLARE_DISPATCH(pointwise_fn_double, huber_backward_stub);
25
+ DECLARE_DISPATCH(pointwise_fn, mse_backward_stub);
26
+
27
+ } // namespace native
28
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/Repeat.h ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/TensorOperators.h>
5
+
6
+ #ifndef AT_PER_OPERATOR_HEADERS
7
+ #include <ATen/Functions.h>
8
+ #else
9
+ #include <ATen/ops/empty.h>
10
+ #include <ATen/ops/empty_like.h>
11
+ #endif
12
+
13
+ namespace at::native {
14
+
15
+ template <
16
+ typename index_t,
17
+ void compute(index_t*, int64_t*, index_t*, int64_t, int64_t)>
18
+ static inline Tensor repeat_interleave_common(
19
+ const Tensor& repeats,
20
+ c10::optional<int64_t> output_size) {
21
+ TORCH_CHECK(
22
+ repeats.dim() == 1, "repeat_interleave only accept 1D vector as repeat");
23
+ TORCH_CHECK(
24
+ repeats.scalar_type() == at::kLong || repeats.scalar_type() == at::kInt,
25
+ "repeats has to be Long or Int tensor");
26
+ if (repeats.size(0) == 0) {
27
+ return at::empty_like(repeats, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
28
+ }
29
+ Tensor repeats_ = repeats.contiguous();
30
+ Tensor cumsum = repeats.cumsum(0);
31
+ int64_t total;
32
+ if (output_size.has_value()) {
33
+ total = output_size.value();
34
+ } else {
35
+ total = cumsum[-1].item<int64_t>();
36
+ TORCH_CHECK(
37
+ (repeats >= 0).all().item<uint8_t>(), "repeats can not be negative");
38
+ }
39
+
40
+ Tensor result = at::empty({total}, repeats.options());
41
+ index_t* repeat_ptr = repeats_.data_ptr<index_t>();
42
+ int64_t* cumsum_ptr = cumsum.data_ptr<int64_t>();
43
+ index_t* result_ptr = result.data_ptr<index_t>();
44
+ compute(repeat_ptr, cumsum_ptr, result_ptr, repeats.size(0), total);
45
+ return result;
46
+ }
47
+
48
+ } // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/Resize.h ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/native/ResizeCommon.h>
5
+ #include <ATen/EmptyTensor.h>
6
+ #include <ATen/TensorUtils.h>
7
+
8
+ #include <c10/core/CPUAllocator.h>
9
+
10
+ #include <utility>
11
+
12
+
13
+ namespace at::native {
14
+
15
+ // TODO: make all operations that resize given outputs use this function
16
+ // for consistency and maintainability.
17
+ // Some operations like `cat` might not be able to make the use of
18
+ // resize_output directly. For more details to understand how it works in `cat`,
19
+ // see https://github.com/pytorch/pytorch/pull/62560#discussion_r687363362
20
+ // Resizes outputs
21
+ // Functions accepting output tensors, like with the "out" kwarg, should
22
+ // call this function to handle resizing their output tensor.
23
+ // Issues a warning if the output tensor has one or more elements and
24
+ // needs resizing
25
+ // NOTE: In the future the warning will become an error
26
+ // Returns a bool saying whether or not the resize actually happened or not
27
+ TORCH_API bool resize_output(const Tensor& output, IntArrayRef shape);
28
+ // WARNING: Do NOT call this directly. If you are resizing an output and want
29
+ // to support dynamic shapes call at::resize__symint and resize_output_check_symint.
30
+ // For more details, see: https://github.com/pytorch/pytorch/pull/111530/files#r1365845272
31
+ TORCH_API bool resize_output_symint(const Tensor& output, SymIntArrayRef shape);
32
+
33
+ // Utility for resize_output
34
+ // Returns a bool saying resize should happen or not and
35
+ // raises a warning if resizing for one or more elements
36
+ TORCH_API bool resize_output_check(const Tensor& output, IntArrayRef shape);
37
+ TORCH_API bool resize_output_check_symint(const Tensor& output, SymIntArrayRef shape);
38
+
39
+ TORCH_API void resize_bytes_cpu(StorageImpl* storage, size_t size_bytes);
40
+ TORCH_API void resize_bytes_meta(StorageImpl* storage, c10::SymInt size_bytes);
41
+ TORCH_API void resize_bytes_nocuda(const Storage& storage, c10::SymInt size_bytes);
42
+
43
+ static inline void maybe_resize_storage_cpu(TensorImpl* self, size_t new_size_bytes) {
44
+ // It does not make sense to try to resize a storage
45
+ // to hold 0 elements, and this can break
46
+ // if storage_offset is positive but
47
+ // new_size is 0, so just bail in that case
48
+ // (same comment is in cuda/Resize.h)
49
+ if (self->numel() == 0) {
50
+ return;
51
+ }
52
+
53
+ const Storage& storage = self->unsafe_storage();
54
+ if (!storage) {
55
+ auto new_storage = c10::make_intrusive<StorageImpl>(
56
+ StorageImpl::use_byte_size_t(),
57
+ new_size_bytes,
58
+ c10::GetCPUAllocator(),
59
+ true);
60
+ self->set_storage_keep_dtype(std::move(new_storage));
61
+ } else if (new_size_bytes > storage.nbytes()) {
62
+ resize_bytes_cpu(storage.unsafeGetStorageImpl(), new_size_bytes);
63
+ }
64
+ }
65
+
66
+ TORCH_API TensorImpl* resize_impl_cpu_(
67
+ TensorImpl* self,
68
+ IntArrayRef size,
69
+ at::OptionalIntArrayRef stride,
70
+ bool resize_storage = true);
71
+
72
+ template <typename T>
73
+ T maybe_convert_symint(c10::SymInt) = delete;
74
+
75
+ template <>
76
+ inline c10::SymInt maybe_convert_symint(c10::SymInt x) { return x; }
77
+
78
+ template <>
79
+ inline int64_t maybe_convert_symint(c10::SymInt x) { return x.guard_int(__FILE__, __LINE__); }
80
+
81
+ template <typename T>
82
+ static inline void checkInBoundsForStorage(
83
+ ArrayRef<T> size,
84
+ ArrayRef<T> stride,
85
+ T storage_offset,
86
+ const caffe2::TypeMeta& data_type,
87
+ const Storage& new_storage) {
88
+ T storage_size_bytes =
89
+ at::detail::computeStorageNbytes(size, stride, data_type.itemsize());
90
+ T storage_offset_bytes = storage_offset * data_type.itemsize();
91
+ if (storage_size_bytes == 0) {
92
+ // NB: (a tensor with arbitrary 0 dims)'s storage can have any numel.
93
+ return;
94
+ }
95
+ T new_storage_size_bytes = maybe_convert_symint<T>(new_storage.sym_nbytes());
96
+ TORCH_CHECK(
97
+ storage_size_bytes + storage_offset_bytes <= new_storage_size_bytes,
98
+ "setStorage: sizes ",
99
+ size,
100
+ ", strides ",
101
+ stride,
102
+ ","
103
+ " storage offset ",
104
+ storage_offset,
105
+ ", and itemsize ",
106
+ data_type.itemsize(),
107
+ " requiring a storage size of ",
108
+ storage_size_bytes + storage_offset_bytes,
109
+ " are out of bounds for storage of size ",
110
+ new_storage_size_bytes);
111
+ }
112
+
113
+ template <typename T>
114
+ static inline void checkSetStorage(Tensor& result, Storage storage, T storage_offset,
115
+ ArrayRef<T> size, ArrayRef<T> stride) {
116
+ // FIXME: stride should be optional
117
+ if (stride.data()) {
118
+ TORCH_CHECK(size.size() == stride.size(), "unequal size length (", size.size(),
119
+ ") and stride length (", stride.size(), ")");
120
+ }
121
+
122
+ #ifdef DEBUG
123
+ TORCH_CHECK(size.size() <= INT_MAX, "size length (", size.size(), ") greater than INT_MAX");
124
+ #endif
125
+
126
+ // storage: note this can't be replaced with result.set_(storage) as the semantics of that
127
+ // function is to set the tensor size to be equal to the size of the storage.
128
+ if (!result.storage().is_alias_of(storage)) {
129
+ // Caffe2 might have tensors whose storages are null, but we
130
+ // don't allow it in PyTorch.
131
+ TORCH_INTERNAL_ASSERT(storage);
132
+ TORCH_INTERNAL_ASSERT(result.storage());
133
+
134
+ // We used to allow this, but this breaks device caching.
135
+ // Let's put an actual error message for this one.
136
+ TORCH_CHECK(result.storage().device() == storage.device(),
137
+ "Attempted to set the storage of a tensor on device \"", result.storage().device(),
138
+ "\" to a storage on different device \"", storage.device(),
139
+ "\". This is no longer allowed; the devices must match.");
140
+ result.unsafeGetTensorImpl()->set_storage_keep_dtype(std::move(storage));
141
+ }
142
+
143
+ // storageOffset
144
+ TORCH_CHECK(storage_offset >= 0, "Tensor: invalid storage offset ", storage_offset);
145
+ }
146
+
147
+ /**
148
+ * Set self's sizes, strides, and storage_offset.
149
+ * (size, stride, storage_offset) must be in bounds for self's storage.
150
+ */
151
+ template <typename T>
152
+ inline void setStrided(
153
+ const Tensor& self,
154
+ ArrayRef<T> size,
155
+ ArrayRef<T> stride,
156
+ T storage_offset) {
157
+ TORCH_CHECK(size.size() == stride.size(), "mismatch in length of strides and shape");
158
+ for (const auto& val : stride) {
159
+ TORCH_CHECK(val >= 0,
160
+ "as_strided: Negative strides are not supported at the moment, "
161
+ "got strides: ", stride);
162
+ }
163
+
164
+ auto* self_ = self.unsafeGetTensorImpl();
165
+ checkInBoundsForStorage(
166
+ size, stride, storage_offset, self_->dtype(), self_->storage());
167
+
168
+ /* storage offset */
169
+ TORCH_CHECK(storage_offset >= 0, "Tensor: invalid storage offset ", storage_offset);
170
+ self_->set_sizes_and_strides(size, stride, c10::make_optional(storage_offset));
171
+ }
172
+
173
+ } // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/TensorFactories.h ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/Tensor.h>
4
+ #include <ATen/EmptyTensor.h>
5
+ #include <ATen/TensorIterator.h>
6
+ #include <ATen/Dispatch.h>
7
+ #include <ATen/Dispatch_v2.h>
8
+ #include <ATen/native/DispatchStub.h>
9
+
10
+ #ifndef AT_PER_OPERATOR_HEADERS
11
+ #include <ATen/Functions.h>
12
+ #else
13
+ #include <ATen/ops/scalar_tensor.h>
14
+ #endif
15
+
16
+ namespace at::native {
17
+ // Different combinations of row, col, and offset can lead to two cases:
18
+ //
19
+ // Case 1 - Trapezoid (Triangle as a special case): row + offset <= col
20
+ // Example A: offset > 0
21
+ // 1 1 0 0 0
22
+ // 1 1 1 0 0
23
+ // 1 1 1 1 0
24
+ // Example B: offset <= 0
25
+ // 0 0 0
26
+ // 1 0 0
27
+ // 1 1 0
28
+ // In this case, we calculate the number of elements in the first row and
29
+ // last row of the tril respectively, and then compute the tril size.
30
+ //
31
+ // Case 2 - Trapezoid + Rectangle: row + offset > col
32
+ // Example:
33
+ // 1 1 0
34
+ // 1 1 1
35
+ // 1 1 1
36
+ // In this case, we first calculate the size of top trapezoid, and then
37
+ // calculate the size of the bottom rectangle.
38
+ inline int64_t get_tril_size(int64_t row, int64_t col, int64_t offset) {
39
+ // If either dimension is 0 then the there is no tril
40
+ if (row == 0 || col == 0) {
41
+ return 0;
42
+ }
43
+ // number of elements in the first row of the tril
44
+ auto m_first_row = offset > 0 ?
45
+ std::min<int64_t>(col, 1 + offset) : // upper bounded by col
46
+ row + offset > 0; // either 0 or 1
47
+ // number of elements in the last row of the tril, bounded by [0, col]
48
+ auto m_last_row = std::max<int64_t>(0, std::min<int64_t>(col, row + offset));
49
+ // number of rows, bounded by [0, row]
50
+ auto n_row_all = std::max<int64_t>(0, std::min<int64_t>(row, row + offset));
51
+ auto n_row_trapezoid = (m_last_row - m_first_row + 1);
52
+
53
+ // calculate # of elements in the top trapezoid
54
+ auto tril_size = (m_first_row + m_last_row) * n_row_trapezoid >> 1;
55
+
56
+ // calculate # of elements in the bottom rectangle if there is any
57
+ auto diff_row = n_row_all - n_row_trapezoid;
58
+ if (diff_row > 0) {
59
+ tril_size += diff_row * col;
60
+ }
61
+
62
+ return tril_size;
63
+ }
64
+
65
+ inline void check_args(
66
+ int64_t row, int64_t col, c10::optional<Layout> layout_opt) {
67
+ TORCH_CHECK(row >= 0, "row must be non-negative, got", row);
68
+ TORCH_CHECK(col >= 0, "col must be non-negative, got", col);
69
+ if (layout_opt.has_value()) {
70
+ TORCH_CHECK(
71
+ *layout_opt == at::kStrided,
72
+ "only support layout=torch.strided, got",
73
+ *layout_opt)
74
+ }
75
+ }
76
+
77
+ using at::check_size_nonnegative;
78
+
79
+ // assumes maximum value in created tensor is n-1 (e.g., torch.randperm(n))
80
+ inline void check_supported_max_int_with_precision(int64_t n, const Tensor& tensor) {
81
+ // match defined() to behavior of checks below
82
+ TORCH_CHECK(at::scalar_tensor(n>0?n-1:n, tensor.options()).defined(),
83
+ "n is too large for result tensor type: '", tensor.toString(), "'");
84
+
85
+ // Ensure sufficient precision for floating point representation.
86
+ switch (tensor.scalar_type()) {
87
+ case at::ScalarType::Half:
88
+ TORCH_CHECK(n <= (int64_t(1) << 11) + 1, "n cannot be greater than 2049 for Half type.");
89
+ break;
90
+ case at::ScalarType::Float:
91
+ TORCH_CHECK(n <= (int64_t(1) << 24) + 1, "n cannot be greater than 2^24+1 for Float type.");
92
+ break;
93
+ case at::ScalarType::Double: // Unlikely to happen, but doesn't hurt to check
94
+ TORCH_CHECK(n <= (int64_t(1) << 53) + 1, "n cannot be greater than 2^53+1 for Double type.");
95
+ break;
96
+ default:
97
+ break;
98
+ }
99
+ }
100
+
101
+ // Called by `empty*` functions when deterministic algorithms are enabled to
102
+ // fill the tensor with NaN if it is floating point or complex type, or fill
103
+ // with max value if it is integer type
104
+ inline Tensor& fill_empty_deterministic_(Tensor& tensor) {
105
+ if (tensor.is_floating_point() || tensor.is_complex()) {
106
+ AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
107
+ kBFloat16, kHalf, tensor.scalar_type(), "fill_empty_deterministic_", [&]() {
108
+ tensor.fill_(std::numeric_limits<scalar_t>::quiet_NaN());
109
+ });
110
+ } else {
111
+ AT_DISPATCH_V2(
112
+ tensor.scalar_type(), "fill_empty_deterministic_", AT_WRAP([&]() {
113
+ tensor.fill_(std::numeric_limits<scalar_t>::max());
114
+ }), kBool, AT_EXPAND(AT_INTEGRAL_TYPES_V2));
115
+ }
116
+ return tensor;
117
+ }
118
+
119
+ // The ZeroTensor allocator ignores whatever allocation is requested and always
120
+ // gives you nullptr
121
+ struct ZeroTensorAllocator final : public at::Allocator {
122
+ ZeroTensorAllocator(at::Device device) : device_(device) {};
123
+ ~ZeroTensorAllocator() override = default;
124
+ static void deleter(void* const pointer) {
125
+ TORCH_INTERNAL_ASSERT(!pointer);
126
+ }
127
+ DataPtr allocate(const size_t /*nbytes*/) override {
128
+ return {nullptr, nullptr, &deleter, device_};
129
+ }
130
+ DeleterFnPtr raw_deleter() const override {
131
+ return deleter;
132
+ }
133
+ void copy_data(void* dest, const void* src, std::size_t count) const final {}
134
+ at::Device device_;
135
+ };
136
+
137
+ using binary_fn = void (*)(TensorIterator&);
138
+
139
+ DECLARE_DISPATCH(binary_fn, complex_stub);
140
+ DECLARE_DISPATCH(binary_fn, polar_stub);
141
+
142
+ } // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/TensorShape.h ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/core/Tensor.h>
3
+ #include <c10/util/irange.h>
4
+ #include <ATen/core/IListRef.h>
5
+
6
+ namespace at::native {
7
+
8
+ TORCH_API at::Tensor clone_preserve_strides(const at::Tensor& self);
9
+
10
+ inline bool cat_should_skip_tensor(const Tensor& t) {
11
+ return t.numel() == 0 && t.dim() == 1;
12
+ }
13
+
14
+ // Check to see if the shape of tensors is compatible
15
+ // for being concatenated along a given dimension.
16
+ inline void check_cat_shape_except_dim(const Tensor & first, const Tensor & second, int64_t dimension, int64_t index) {
17
+ int64_t first_dims = first.dim();
18
+ int64_t second_dims = second.dim();
19
+ TORCH_CHECK(first_dims == second_dims, "Tensors must have same number of dimensions: got ",
20
+ first_dims, " and ", second_dims);
21
+ for (const auto dim : c10::irange(first_dims)) {
22
+ if (dim == dimension) {
23
+ continue;
24
+ }
25
+ int64_t first_dim_size = first.sizes()[dim];
26
+ int64_t second_dim_size = second.sizes()[dim];
27
+ TORCH_CHECK(first_dim_size == second_dim_size, "Sizes of tensors must match except in dimension ",
28
+ dimension, ". Expected size ", static_cast<long long>(first_dim_size), " but got size ", static_cast<long long>(second_dim_size), " for tensor number ", index, " in the list.");
29
+ }
30
+ }
31
+
32
+ inline void check_cat_no_zero_dim(const MaterializedITensorListRef& tensors) {
33
+ int64_t i = 0;
34
+ for(const Tensor& t : tensors) {
35
+ TORCH_CHECK(t.dim() > 0,
36
+ "zero-dimensional tensor (at position ", i, ") cannot be concatenated");
37
+ i++;
38
+ }
39
+ }
40
+
41
+ inline int64_t get_num_splits(const Tensor& self, int64_t split_size, int64_t dim) {
42
+ TORCH_CHECK(self.dim() != 0, "split expects at least a 1-dimensional tensor");
43
+ TORCH_CHECK(split_size >= 0, "split expects split_size be non-negative, but got split_size=", split_size);
44
+ int64_t dim_size = self.size(dim);
45
+ TORCH_CHECK(split_size > 0 || dim_size == 0,
46
+ "split_size can only be 0 if dimension size is 0, "
47
+ "but got dimension size of ", dim_size);
48
+ // if split_size is 0 and dimension size is 0, there is 1 split.
49
+ int64_t num_splits = 1;
50
+ if (split_size != 0) {
51
+ // ensuring num_splits is at least 1 makes consistent the case where split_size > dim_size
52
+ // (returns a single split). We might want to error here, but keep it for BC.
53
+ num_splits = std::max<int64_t>((dim_size + split_size - 1) / split_size, 1);
54
+ }
55
+ return num_splits;
56
+ }
57
+
58
+ inline bool have_same_ndims(TensorList tensors) {
59
+ auto ndim = tensors[0].dim();
60
+ for (const auto tensor_idx : c10::irange(tensors.size())) {
61
+ if(tensors[tensor_idx].dim() != ndim) {
62
+ return false;
63
+ }
64
+ }
65
+ return true;
66
+ }
67
+
68
+ inline void leading_dimension_matches(TensorList tensors, int64_t dim) {
69
+ auto tensor_zero_size = tensors[0].sizes();
70
+ std::vector<c10::SymInt> leading_dim_sizes(tensor_zero_size.begin(), tensor_zero_size.begin() + dim);
71
+ for (const auto i : c10::irange(tensors.size())) {
72
+ at::Tensor tensor = tensors[i];
73
+ for(const auto j : c10::irange(dim)) {
74
+ TORCH_CHECK(
75
+ tensor.size(j) == leading_dim_sizes[j],
76
+ "_chunk_cat expects same sizes of 0,...,dim-1 dimensions for all tensors"
77
+ );
78
+ }
79
+ }
80
+ }
81
+
82
+ inline int64_t preprocess_chunk_cat_inputs(TensorList tensors, int64_t dim, int64_t num_chunks) {
83
+ TORCH_CHECK(num_chunks >= 1, "_chunk_cat expects positive num_chunks");
84
+ TORCH_CHECK(!tensors.empty(),
85
+ "_chunk_cat expects a non-empty input tensor list");
86
+ auto expected_dtype = tensors[0].dtype();
87
+ auto expected_device = tensors[0].device();
88
+ for(const auto i : c10::irange(tensors.size())) {
89
+ TORCH_CHECK(tensors[i].numel() > 0, "_chunk_cat expects non-empty tensor");
90
+ TORCH_CHECK(tensors[i].dtype() == expected_dtype, "_chunk_cat expects all input tensors with the same dtype");
91
+ TORCH_CHECK(tensors[i].device() == expected_device, "_chunk_cat expects all inputs tensors on the same device");
92
+ }
93
+ if (have_same_ndims(tensors)) {
94
+ dim = maybe_wrap_dim(dim, tensors[0].dim());
95
+ } else {
96
+ TORCH_CHECK(dim >= 0, "_chunk_cat expects non-negative dim when input tensors have different ndims")
97
+ for(const auto i : c10::irange(tensors.size())) {
98
+ TORCH_CHECK(dim < tensors[i].ndimension(), "_chunk_cat expects dim < ndim for all input tensors");
99
+ }
100
+ }
101
+ leading_dimension_matches(tensors, dim);
102
+ return dim;
103
+ }
104
+
105
+ } // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/im2col_shape_check.h ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <ATen/core/Tensor.h>
3
+ #include <ATen/TensorUtils.h>
4
+ #include <ATen/div_rtn.h>
5
+
6
+ namespace at::native {
7
+
8
+ static inline void col2im_shape_check(
9
+ const Tensor& input,
10
+ const Tensor& grad_output,
11
+ int64_t output_height,
12
+ int64_t output_width,
13
+ int64_t kernel_height,
14
+ int64_t kernel_width,
15
+ int64_t dilation_height,
16
+ int64_t dilation_width,
17
+ int64_t pad_height,
18
+ int64_t pad_width,
19
+ int64_t stride_height,
20
+ int64_t stride_width) {
21
+ TORCH_CHECK(
22
+ kernel_width > 0 && kernel_height > 0,
23
+ "kernel size should be greater than zero, but got kernel_height: ",
24
+ kernel_height,
25
+ " kernel_width: ",
26
+ kernel_width);
27
+ TORCH_CHECK(
28
+ stride_width > 0 && stride_height > 0,
29
+ "stride should be greater than zero, but got stride_height: ",
30
+ stride_height,
31
+ " stride_width: ",
32
+ stride_width);
33
+ TORCH_CHECK(
34
+ dilation_width > 0 && dilation_height > 0,
35
+ "dilation should be greater than zero, but got dilation_height: ",
36
+ dilation_height,
37
+ " dilation_width: ",
38
+ dilation_width);
39
+ TORCH_CHECK(
40
+ pad_width >= 0 && pad_height >= 0,
41
+ "padding should be non-negative, but got pad_height: ",
42
+ pad_height,
43
+ " pad_width: ",
44
+ pad_width);
45
+
46
+
47
+ int64_t ndim = input.ndimension();
48
+ // allow dim=0 only the batch dimension.
49
+ TORCH_CHECK(
50
+ (ndim == 2 && input.size(0) != 0 && input.size(1) != 0) ||
51
+ (ndim == 3 && input.size(1) != 0 && input.size(2) != 0),
52
+ "Expected 2D or 3D (batch mode) tensor for input with possibly 0 batch size and non-zero dimensions for input, but got: ",
53
+ input.sizes());
54
+
55
+ int64_t batch_dim = (ndim == 3) ? 0 : -1;
56
+ int64_t n_input_plane = input.size(batch_dim + 1);
57
+
58
+ if (n_input_plane % (kernel_width * kernel_height) != 0) {
59
+ AT_ERROR(
60
+ "Expected size of input's dimension 1 to be divisible by the "
61
+ "product of kernel_size, but got input.size(1)=",
62
+ n_input_plane,
63
+ " and kernel_size=(",
64
+ kernel_height,
65
+ ", ",
66
+ kernel_width,
67
+ ").");
68
+ }
69
+
70
+ int64_t input_length = input.size(batch_dim + 2);
71
+ int64_t n_blocks_height =
72
+ div_rtn<int64_t>(
73
+ output_height + 2 * pad_height -
74
+ dilation_height * (kernel_height - 1) - 1,
75
+ stride_height) +
76
+ 1;
77
+ int64_t n_blocks_width = div_rtn<int64_t>(
78
+ output_width + 2 * pad_width -
79
+ dilation_width * (kernel_width - 1) - 1,
80
+ stride_width) +
81
+ 1;
82
+
83
+ if (input_length != (n_blocks_height * n_blocks_width)) {
84
+ AT_ERROR(
85
+ "Given output_size=(",
86
+ output_height,
87
+ ", ",
88
+ output_width,
89
+ "), kernel_size=(",
90
+ kernel_height,
91
+ ", ",
92
+ kernel_width,
93
+ "), dilation=(",
94
+ dilation_height,
95
+ ", ",
96
+ dilation_width,
97
+ "), padding=(",
98
+ pad_height,
99
+ ", ",
100
+ pad_width,
101
+ "), stride=(",
102
+ stride_height,
103
+ ", ",
104
+ stride_width,
105
+ "), expected size of input's dimension 2 to match the calculated number of ",
106
+ "sliding blocks ",
107
+ n_blocks_height,
108
+ " * ",
109
+ n_blocks_width,
110
+ " = ",
111
+ (n_blocks_height * n_blocks_width),
112
+ ", but got input.size(2)=",
113
+ input_length,
114
+ ".");
115
+ }
116
+
117
+ TORCH_CHECK(
118
+ n_blocks_height >= 1 && n_blocks_width >= 1,
119
+ "Given output_size=(", output_height, ", ", output_width, "), ",
120
+ "kernel_size=(", kernel_height, ", ", kernel_width, "), ",
121
+ "dilation=(", dilation_height, ", ", dilation_width, "), ",
122
+ "padding=(", pad_height, ", ", pad_width, "), ",
123
+ "stride=(", stride_height, ", ", stride_width, "), ",
124
+ "calculated shape of the array of sliding blocks as ",
125
+ "(", n_blocks_height, ", ", n_blocks_width, "), ",
126
+ "which is too small (non-positive)");
127
+
128
+ if (output_width < 1 || output_height < 1) {
129
+ AT_ERROR(
130
+ "Expected output spatial size to be positive, but got: output_size=(",
131
+ output_height,
132
+ ", ",
133
+ output_width,
134
+ ").");
135
+ }
136
+ }
137
+
138
+ static inline void im2col_shape_check(
139
+ const Tensor& input,
140
+ const Tensor& grad_output,
141
+ int64_t kernel_height,
142
+ int64_t kernel_width,
143
+ int64_t dilation_height,
144
+ int64_t dilation_width,
145
+ int64_t pad_height,
146
+ int64_t pad_width,
147
+ int64_t stride_height,
148
+ int64_t stride_width) {
149
+ TORCH_CHECK(
150
+ kernel_width > 0 && kernel_height > 0,
151
+ "kernel size should be greater than zero, but got kernel_height: ",
152
+ kernel_height,
153
+ " kernel_width: ",
154
+ kernel_width);
155
+
156
+ TORCH_CHECK(
157
+ dilation_width > 0 && dilation_height > 0,
158
+ "dilation should be greater than zero, but got dilation_height: ",
159
+ dilation_height,
160
+ " dilation_width: ",
161
+ dilation_width);
162
+
163
+ TORCH_CHECK(
164
+ pad_width >= 0 && pad_height >= 0,
165
+ "padding should be non-negative, but got pad_height: ",
166
+ pad_height,
167
+ " pad_width: ",
168
+ pad_width);
169
+
170
+ TORCH_CHECK(
171
+ stride_width > 0 && stride_height > 0,
172
+ "stride should be greater than zero, but got stride_height: ",
173
+ stride_height,
174
+ " stride_width: ",
175
+ stride_width);
176
+
177
+ int64_t ndim = input.ndimension();
178
+
179
+ // allow dim=0 only the batch dimension.
180
+ bool valid_dims = input.size(1) != 0 && input.size(2) != 0;
181
+ TORCH_CHECK(
182
+ (ndim == 3 && input.size(0) && valid_dims) ||
183
+ (ndim == 4 && valid_dims && input.size(3) != 0),
184
+ "Expected 3D or 4D (batch mode) tensor with possibly 0 batch size and other non-zero dimensions for input, but got: ",
185
+ input.sizes());
186
+
187
+ int64_t dim_batch = 0;
188
+
189
+ if (ndim == 3) {
190
+ dim_batch = -1;
191
+ }
192
+
193
+ int64_t input_height = input.size(dim_batch + 2);
194
+ int64_t input_width = input.size(dim_batch + 3);
195
+ int64_t output_height = div_rtn<int64_t>(
196
+ input_height + 2 * pad_height -
197
+ (dilation_height * (kernel_height - 1) + 1),
198
+ stride_height) +
199
+ 1;
200
+ int64_t output_width = div_rtn<int64_t>(
201
+ input_width + 2 * pad_width -
202
+ (dilation_width * (kernel_width - 1) + 1),
203
+ stride_width) +
204
+ 1;
205
+
206
+ if (output_height < 1 || output_width < 1) {
207
+ AT_ERROR(
208
+ "Given input with spatial size (",
209
+ input_height,
210
+ ", ",
211
+ input_height,
212
+ "), kernel_size=(",
213
+ kernel_height,
214
+ ", ",
215
+ kernel_width,
216
+ "), dilation=(",
217
+ dilation_height,
218
+ ", ",
219
+ dilation_width,
220
+ "), padding=(",
221
+ pad_height,
222
+ ", ",
223
+ pad_width,
224
+ "), calculated shape of the array of sliding blocks as (",
225
+ output_height,
226
+ ", ",
227
+ output_width,
228
+ "), but its components must be at least one.");
229
+ }
230
+ }
231
+
232
+ } // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/vol2col.h ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <cstring>
4
+
5
+ namespace at::native {
6
+
7
+ template <typename T>
8
+ static void vol2col(
9
+ const T* data_vol,
10
+ const int64_t channels,
11
+ const int64_t depth,
12
+ const int64_t height,
13
+ const int64_t width,
14
+ const int64_t depth_col,
15
+ const int64_t height_col,
16
+ const int64_t width_col,
17
+ const int64_t kT,
18
+ const int64_t kernel_height,
19
+ const int64_t kernel_width,
20
+ const int64_t pT,
21
+ const int64_t pH,
22
+ const int64_t pW,
23
+ const int64_t dT,
24
+ const int64_t dH,
25
+ const int64_t dW,
26
+ const int64_t dilationT,
27
+ const int64_t dilationH,
28
+ const int64_t dilationW,
29
+ T* data_col) {
30
+ int64_t c, t, h, w;
31
+ int64_t channels_col = channels * kT * kernel_height * kernel_width;
32
+ for (c = 0; c < channels_col; ++c) {
33
+ int64_t w_offset = c % kernel_width;
34
+ int64_t h_offset = (c / kernel_width) % kernel_height;
35
+ int64_t t_offset = (c / kernel_width / kernel_height) % kT;
36
+ int64_t c_vol = c / kT / kernel_height / kernel_width;
37
+ for (t = 0; t < depth_col; ++t) {
38
+ int64_t t_pad = t * dT - pT + t_offset * dilationT;
39
+ for (h = 0; h < height_col; ++h) {
40
+ int64_t h_pad = h * dH - pH + h_offset * dilationH;
41
+ for (w = 0; w < width_col; ++w) {
42
+ int64_t w_pad = w * dW - pW + w_offset * dilationW;
43
+ if (t_pad >= 0 && t_pad < depth && h_pad >= 0 && h_pad < height &&
44
+ w_pad >= 0 && w_pad < width)
45
+ data_col[((c * depth_col + t) * height_col + h) * width_col + w] =
46
+ data_vol
47
+ [((c_vol * depth + t_pad) * height + h_pad) * width +
48
+ w_pad];
49
+ else
50
+ data_col[((c * depth_col + t) * height_col + h) * width_col + w] =
51
+ 0;
52
+ }
53
+ }
54
+ }
55
+ }
56
+ }
57
+
58
+ template <typename T>
59
+ static void col2vol(
60
+ const T* data_col,
61
+ const int64_t channels,
62
+ const int64_t depth,
63
+ const int64_t height,
64
+ const int64_t width,
65
+ const int64_t out_depth,
66
+ const int64_t out_height,
67
+ const int64_t out_width,
68
+ const int64_t kT,
69
+ const int64_t kernel_height,
70
+ const int64_t kernel_width,
71
+ const int64_t pT,
72
+ const int64_t pH,
73
+ const int64_t pW,
74
+ const int64_t dT,
75
+ const int64_t dH,
76
+ const int64_t dW,
77
+ const int64_t dilationT,
78
+ const int64_t dilationH,
79
+ const int64_t dilationW,
80
+ T* data_vol) {
81
+ memset(data_vol, 0, sizeof(T) * depth * height * width * channels);
82
+ int64_t depth_col = out_depth;
83
+ int64_t height_col = out_height;
84
+ int64_t width_col = out_width;
85
+ int64_t channels_col = channels * kT * kernel_height * kernel_width;
86
+ for (int64_t c = 0; c < channels_col; ++c) {
87
+ int64_t w_offset = c % kernel_width;
88
+ int64_t h_offset = (c / kernel_width) % kernel_height;
89
+ int64_t t_offset = (c / kernel_width / kernel_height) % kT;
90
+ int64_t c_vol = c / kT / kernel_height / kernel_width;
91
+ for (int64_t t = 0; t < depth_col; ++t) {
92
+ int64_t t_pad = t * dT - pT + t_offset * dilationT;
93
+ for (int64_t h = 0; h < height_col; ++h) {
94
+ int64_t h_pad = h * dH - pH + h_offset * dilationH;
95
+ for (int64_t w = 0; w < width_col; ++w) {
96
+ int64_t w_pad = w * dW - pW + w_offset * dilationW;
97
+ if (t_pad >= 0 && t_pad < depth && h_pad >= 0 && h_pad < height &&
98
+ w_pad >= 0 && w_pad < width)
99
+ data_vol
100
+ [((c_vol * depth + t_pad) * height + h_pad) * width + w_pad] +=
101
+ data_col
102
+ [((c * depth_col + t) * height_col + h) * width_col + w];
103
+ }
104
+ }
105
+ }
106
+ }
107
+ }
108
+
109
+ } // namespace at::native
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_add_batch_dim_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _add_batch_dim(const at::Tensor & self, int64_t batch_dim, int64_t level);
20
+ } // namespace native
21
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_amp_foreach_non_finite_check_and_unscale.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_amp_foreach_non_finite_check_and_unscale_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_amp_foreach_non_finite_check_and_unscale_(Tensor(a!)[] self, Tensor(b!) found_inf, Tensor inv_scale) -> ()
26
+ inline void _amp_foreach_non_finite_check_and_unscale_(at::TensorList self, at::Tensor & found_inf, const at::Tensor & inv_scale) {
27
+ return at::_ops::_amp_foreach_non_finite_check_and_unscale_::call(self, found_inf, inv_scale);
28
+ }
29
+
30
+ // aten::_amp_foreach_non_finite_check_and_unscale.out(Tensor[] self, Tensor(b!) found_inf, Tensor inv_scale, *, Tensor(a!)[] out) -> ()
31
+ inline void _amp_foreach_non_finite_check_and_unscale_out(at::TensorList out, at::TensorList self, at::Tensor & found_inf, const at::Tensor & inv_scale) {
32
+ return at::_ops::_amp_foreach_non_finite_check_and_unscale_out::call(self, found_inf, inv_scale, out);
33
+ }
34
+ // aten::_amp_foreach_non_finite_check_and_unscale.out(Tensor[] self, Tensor(b!) found_inf, Tensor inv_scale, *, Tensor(a!)[] out) -> ()
35
+ inline void _amp_foreach_non_finite_check_and_unscale_outf(at::TensorList self, at::Tensor & found_inf, const at::Tensor & inv_scale, at::TensorList out) {
36
+ return at::_ops::_amp_foreach_non_finite_check_and_unscale_out::call(self, found_inf, inv_scale, out);
37
+ }
38
+
39
+ // aten::_amp_foreach_non_finite_check_and_unscale(Tensor[] self, Tensor found_inf, Tensor inv_scale) -> (Tensor[] self_out, Tensor found_inf_out)
40
+ inline ::std::tuple<::std::vector<at::Tensor>,at::Tensor> _amp_foreach_non_finite_check_and_unscale(at::TensorList self, const at::Tensor & found_inf, const at::Tensor & inv_scale) {
41
+ return at::_ops::_amp_foreach_non_finite_check_and_unscale::call(self, found_inf, inv_scale);
42
+ }
43
+
44
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cdist_backward_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _cdist_backward_out(const at::Tensor & grad, const at::Tensor & x1, const at::Tensor & x2, double p, const at::Tensor & cdist, at::Tensor & out);
20
+ TORCH_API at::Tensor _cdist_backward(const at::Tensor & grad, const at::Tensor & x1, const at::Tensor & x2, double p, const at::Tensor & cdist);
21
+ } // namespace native
22
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution_double_backward.h ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_convolution_double_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_convolution_double_backward(Tensor? ggI, Tensor? ggW, Tensor? ggb, Tensor gO, Tensor weight, Tensor self, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _convolution_double_backward(const c10::optional<at::Tensor> & ggI, const c10::optional<at::Tensor> & ggW, const c10::optional<at::Tensor> & ggb, const at::Tensor & gO, const at::Tensor & weight, const at::Tensor & self, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, ::std::array<bool,3> output_mask) {
27
+ return at::_ops::_convolution_double_backward::call(ggI, ggW, ggb, gO, weight, self, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, output_mask);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _convolution_double_backward(const c10::optional<at::Tensor> & ggI, const c10::optional<at::Tensor> & ggW, const c10::optional<at::Tensor> & ggb, const at::Tensor & gO, const at::Tensor & weight, const at::Tensor & self, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool transposed, at::IntArrayRef output_padding, int64_t groups, ::std::array<bool,3> output_mask) {
32
+ return at::_ops::_convolution_double_backward::call(ggI, ggW, ggb, gO, weight, self, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), transposed, c10::fromIntArrayRefSlow(output_padding), groups, output_mask);
33
+ }
34
+ }
35
+
36
+ // aten::_convolution_double_backward(Tensor? ggI, Tensor? ggW, Tensor? ggb, Tensor gO, Tensor weight, Tensor self, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
37
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _convolution_double_backward_symint(const c10::optional<at::Tensor> & ggI, const c10::optional<at::Tensor> & ggW, const c10::optional<at::Tensor> & ggb, const at::Tensor & gO, const at::Tensor & weight, const at::Tensor & self, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask) {
38
+ return at::_ops::_convolution_double_backward::call(ggI, ggW, ggb, gO, weight, self, stride, padding, dilation, transposed, output_padding, groups, output_mask);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _convolution_double_backward(const c10::optional<at::Tensor> & ggI, const c10::optional<at::Tensor> & ggW, const c10::optional<at::Tensor> & ggb, const at::Tensor & gO, const at::Tensor & weight, const at::Tensor & self, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask) {
43
+ return at::_ops::_convolution_double_backward::call(ggI, ggW, ggb, gO, weight, self, stride, padding, dilation, transposed, output_padding, groups, output_mask);
44
+ }
45
+ }
46
+
47
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution_mode_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _convolution_mode_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation, c10::SymInt groups);
20
+ } // namespace native
21
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_div_cpu_dispatch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, const at::Scalar & scalar);
21
+ TORCH_API void _foreach_div_(at::TensorList self, const at::Scalar & scalar);
22
+ TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, at::TensorList other);
23
+ TORCH_API void _foreach_div_(at::TensorList self, at::TensorList other);
24
+ TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
25
+ TORCH_API void _foreach_div_(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
26
+ TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, const at::Tensor & other);
27
+ TORCH_API void _foreach_div_(at::TensorList self, const at::Tensor & other);
28
+
29
+ } // namespace cpu
30
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_is_all_true_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _is_all_true {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_is_all_true")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_is_all_true(Tensor self) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
26
+ };
27
+
28
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_solve_ex_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _linalg_solve_ex(const at::Tensor & A, const at::Tensor & B, bool left=true, bool check_errors=false);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _linalg_solve_ex_out(at::Tensor & result, at::Tensor & LU, at::Tensor & pivots, at::Tensor & info, const at::Tensor & A, const at::Tensor & B, bool left=true, bool check_errors=false);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _linalg_solve_ex_outf(const at::Tensor & A, const at::Tensor & B, bool left, bool check_errors, at::Tensor & result, at::Tensor & LU, at::Tensor & pivots, at::Tensor & info);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_make_dep_token_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _make_dep_token_cpu(c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
20
+ } // namespace native
21
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_efficient_attention.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_scaled_dot_product_efficient_attention_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_scaled_dot_product_efficient_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0.0, bool is_causal=False, *, float? scale=None) -> (Tensor output, Tensor log_sumexp, Tensor philox_seed, Tensor philox_offset)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _scaled_dot_product_efficient_attention(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & attn_bias, bool compute_log_sumexp, double dropout_p=0.0, bool is_causal=false, c10::optional<double> scale=c10::nullopt) {
27
+ return at::_ops::_scaled_dot_product_efficient_attention::call(query, key, value, attn_bias, compute_log_sumexp, dropout_p, is_causal, scale);
28
+ }
29
+
30
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_backward.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_sparse_sum_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_sparse_sum_backward(Tensor grad, Tensor self, int[] dim) -> Tensor
26
+ inline at::Tensor _sparse_sum_backward(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dim) {
27
+ return at::_ops::_sparse_sum_backward::call(grad, self, dim);
28
+ }
29
+
30
+ // aten::_sparse_sum_backward.out(Tensor grad, Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & _sparse_sum_backward_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dim) {
32
+ return at::_ops::_sparse_sum_backward_out::call(grad, self, dim, out);
33
+ }
34
+ // aten::_sparse_sum_backward.out(Tensor grad, Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & _sparse_sum_backward_outf(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dim, at::Tensor & out) {
36
+ return at::_ops::_sparse_sum_backward_out::call(grad, self, dim, out);
37
+ }
38
+
39
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsc_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _to_sparse_bsc_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim=c10::nullopt);
21
+ TORCH_API at::Tensor & _to_sparse_bsc_outf(const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_transformer_encoder_layer_fwd_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _transformer_encoder_layer_fwd(const at::Tensor & src, int64_t embed_dim, int64_t num_heads, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, bool use_gelu, bool norm_first, double eps, const at::Tensor & norm_weight_1, const at::Tensor & norm_bias_1, const at::Tensor & norm_weight_2, const at::Tensor & norm_bias_2, const at::Tensor & ffn_weight_1, const at::Tensor & ffn_bias_1, const at::Tensor & ffn_weight_2, const at::Tensor & ffn_bias_2, const c10::optional<at::Tensor> & mask={}, c10::optional<int64_t> mask_type=c10::nullopt);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_compressed_sparse_indices_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API void _validate_compressed_sparse_indices_cpu(bool is_crow, const at::Tensor & compressed_idx, const at::Tensor & plain_idx, int64_t cdim, int64_t dim, int64_t nnz);
20
+ TORCH_API void _validate_compressed_sparse_indices_cuda(bool is_crow, const at::Tensor & compressed_idx, const at::Tensor & plain_idx, int64_t cdim, int64_t dim, int64_t nnz);
21
+ } // namespace native
22
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool3d_backward_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API adaptive_max_pool3d_backward_grad_input {
18
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Tensor &, at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::adaptive_max_pool3d_backward")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "grad_input")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "adaptive_max_pool3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)")
24
+ static at::Tensor & call(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices, at::Tensor & grad_input);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices, at::Tensor & grad_input);
26
+ };
27
+
28
+ struct TORCH_API adaptive_max_pool3d_backward {
29
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::adaptive_max_pool3d_backward")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "adaptive_max_pool3d_backward(Tensor grad_output, Tensor self, Tensor indices) -> Tensor")
35
+ static at::Tensor call(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices);
36
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices);
37
+ };
38
+
39
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/and_native.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor __and__(const at::Tensor & self, const at::Scalar & other);
20
+ TORCH_API at::Tensor & __iand__(at::Tensor & self, const at::Scalar & other);
21
+ TORCH_API at::Tensor __and__(const at::Tensor & self, const at::Tensor & other);
22
+ TORCH_API at::Tensor & __iand__(at::Tensor & self, const at::Tensor & other);
23
+ } // namespace native
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/asin.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/asin_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::asin(Tensor self) -> Tensor
26
+ inline at::Tensor asin(const at::Tensor & self) {
27
+ return at::_ops::asin::call(self);
28
+ }
29
+
30
+ // aten::asin_(Tensor(a!) self) -> Tensor(a!)
31
+ inline at::Tensor & asin_(at::Tensor & self) {
32
+ return at::_ops::asin_::call(self);
33
+ }
34
+
35
+ // aten::asin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
36
+ inline at::Tensor & asin_out(at::Tensor & out, const at::Tensor & self) {
37
+ return at::_ops::asin_out::call(self, out);
38
+ }
39
+ // aten::asin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & asin_outf(const at::Tensor & self, at::Tensor & out) {
41
+ return at::_ops::asin_out::call(self, out);
42
+ }
43
+
44
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/asin_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor asin(const at::Tensor & self);
21
+ TORCH_API at::Tensor & asin_(at::Tensor & self);
22
+
23
+ } // namespace compositeexplicitautogradnonfunctional
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/dequantize_native.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & dequantize_self_out(const at::Tensor & self, at::Tensor & out);
20
+ TORCH_API at::Tensor dequantize_cpu_or_cuda(const at::Tensor & self);
21
+ TORCH_API at::Tensor dequantize_quantized(const at::Tensor & self);
22
+ TORCH_API void dequantize_tensors_out(at::TensorList tensors, at::TensorList out);
23
+ TORCH_API ::std::vector<at::Tensor> dequantize_tensors_quantized_cpu(at::TensorList tensors);
24
+ } // namespace native
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_copy_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & diagonal_copy_out(at::Tensor & out, const at::Tensor & self, int64_t offset=0, int64_t dim1=0, int64_t dim2=1);
21
+ TORCH_API at::Tensor & diagonal_copy_outf(const at::Tensor & self, int64_t offset, int64_t dim1, int64_t dim2, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_dense_backward_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API embedding_dense_backward {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, c10::SymInt, c10::SymInt, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::embedding_dense_backward")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "embedding_dense_backward(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq);
26
+ };
27
+
28
+ struct TORCH_API embedding_dense_backward_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, c10::SymInt, c10::SymInt, bool, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::embedding_dense_backward")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "embedding_dense_backward.out(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_int8_weight_fp32_activation.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/fbgemm_linear_int8_weight_fp32_activation_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::fbgemm_linear_int8_weight_fp32_activation(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor
26
+ inline at::Tensor fbgemm_linear_int8_weight_fp32_activation(const at::Tensor & input, const at::Tensor & weight, const at::Tensor & packed, const at::Tensor & col_offsets, const at::Scalar & weight_scale, const at::Scalar & weight_zero_point, const at::Tensor & bias) {
27
+ return at::_ops::fbgemm_linear_int8_weight_fp32_activation::call(input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias);
28
+ }
29
+
30
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/frexp_cpu_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> frexp_out(at::Tensor & mantissa, at::Tensor & exponent, const at::Tensor & self);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> frexp_outf(const at::Tensor & self, at::Tensor & mantissa, at::Tensor & exponent);
22
+
23
+ } // namespace cpu
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/geometric_meta_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor & geometric_(at::Tensor & self, double p, c10::optional<at::Generator> generator=c10::nullopt);
21
+
22
+ } // namespace meta
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_2d_backward_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> grid_sampler_2d_backward_out(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask, at::Tensor & out0, at::Tensor & out1);
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> grid_sampler_2d_backward_cpu(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask);
21
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> grid_sampler_2d_backward_cuda(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask);
22
+ } // namespace native
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/hardsigmoid_backward_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor hardsigmoid_backward(const at::Tensor & grad_output, const at::Tensor & self);
21
+ TORCH_API at::Tensor & hardsigmoid_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self);
22
+ TORCH_API at::Tensor & hardsigmoid_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, at::Tensor & grad_input);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/index_fill_ops.h ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API index_fill__int_Scalar {
18
+ using schema = at::Tensor & (at::Tensor &, int64_t, const at::Tensor &, const at::Scalar &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_fill_")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "int_Scalar")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_fill_.int_Scalar(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)")
24
+ static at::Tensor & call(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Scalar & value);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Scalar & value);
26
+ };
27
+
28
+ struct TORCH_API index_fill_int_Scalar {
29
+ using schema = at::Tensor (const at::Tensor &, int64_t, const at::Tensor &, const at::Scalar &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_fill")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "int_Scalar")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor")
35
+ static at::Tensor call(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Scalar & value);
36
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Scalar & value);
37
+ };
38
+
39
+ struct TORCH_API index_fill__int_Tensor {
40
+ using schema = at::Tensor & (at::Tensor &, int64_t, const at::Tensor &, const at::Tensor &);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_fill_")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "int_Tensor")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_fill_.int_Tensor(Tensor(a!) self, int dim, Tensor index, Tensor value) -> Tensor(a!)")
46
+ static at::Tensor & call(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & value);
47
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & value);
48
+ };
49
+
50
+ struct TORCH_API index_fill_int_Tensor {
51
+ using schema = at::Tensor (const at::Tensor &, int64_t, const at::Tensor &, const at::Tensor &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_fill")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "int_Tensor")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor")
57
+ static at::Tensor call(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & value);
58
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & value);
59
+ };
60
+
61
+ struct TORCH_API index_fill__Dimname_Scalar {
62
+ using schema = at::Tensor & (at::Tensor &, at::Dimname, const at::Tensor &, const at::Scalar &);
63
+ using ptr_schema = schema*;
64
+ // See Note [static constexpr char* members for windows NVCC]
65
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_fill_")
66
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Dimname_Scalar")
67
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_fill_.Dimname_Scalar(Tensor(a!) self, Dimname dim, Tensor index, Scalar value) -> Tensor(a!)")
68
+ static at::Tensor & call(at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Scalar & value);
69
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Scalar & value);
70
+ };
71
+
72
+ struct TORCH_API index_fill__Dimname_Tensor {
73
+ using schema = at::Tensor & (at::Tensor &, at::Dimname, const at::Tensor &, const at::Tensor &);
74
+ using ptr_schema = schema*;
75
+ // See Note [static constexpr char* members for windows NVCC]
76
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_fill_")
77
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Dimname_Tensor")
78
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_fill_.Dimname_Tensor(Tensor(a!) self, Dimname dim, Tensor index, Tensor value) -> Tensor(a!)")
79
+ static at::Tensor & call(at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Tensor & value);
80
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Tensor & value);
81
+ };
82
+
83
+ struct TORCH_API index_fill_Dimname_Scalar {
84
+ using schema = at::Tensor (const at::Tensor &, at::Dimname, const at::Tensor &, const at::Scalar &);
85
+ using ptr_schema = schema*;
86
+ // See Note [static constexpr char* members for windows NVCC]
87
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_fill")
88
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Dimname_Scalar")
89
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_fill.Dimname_Scalar(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor")
90
+ static at::Tensor call(const at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Scalar & value);
91
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Scalar & value);
92
+ };
93
+
94
+ struct TORCH_API index_fill_Dimname_Tensor {
95
+ using schema = at::Tensor (const at::Tensor &, at::Dimname, const at::Tensor &, const at::Tensor &);
96
+ using ptr_schema = schema*;
97
+ // See Note [static constexpr char* members for windows NVCC]
98
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_fill")
99
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Dimname_Tensor")
100
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_fill.Dimname_Tensor(Tensor self, Dimname dim, Tensor index, Tensor value) -> Tensor")
101
+ static at::Tensor call(const at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Tensor & value);
102
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Tensor & value);
103
+ };
104
+
105
+ struct TORCH_API index_fill_int_Scalar_out {
106
+ using schema = at::Tensor & (const at::Tensor &, int64_t, const at::Tensor &, const at::Scalar &, at::Tensor &);
107
+ using ptr_schema = schema*;
108
+ // See Note [static constexpr char* members for windows NVCC]
109
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_fill")
110
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "int_Scalar_out")
111
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_fill.int_Scalar_out(Tensor self, int dim, Tensor index, Scalar value, *, Tensor(a!) out) -> Tensor(a!)")
112
+ static at::Tensor & call(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Scalar & value, at::Tensor & out);
113
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Scalar & value, at::Tensor & out);
114
+ };
115
+
116
+ struct TORCH_API index_fill_int_Tensor_out {
117
+ using schema = at::Tensor & (const at::Tensor &, int64_t, const at::Tensor &, const at::Tensor &, at::Tensor &);
118
+ using ptr_schema = schema*;
119
+ // See Note [static constexpr char* members for windows NVCC]
120
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_fill")
121
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "int_Tensor_out")
122
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_fill.int_Tensor_out(Tensor self, int dim, Tensor index, Tensor value, *, Tensor(a!) out) -> Tensor(a!)")
123
+ static at::Tensor & call(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & value, at::Tensor & out);
124
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & value, at::Tensor & out);
125
+ };
126
+
127
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/kl_div.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/kl_div_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::kl_div(Tensor self, Tensor target, int reduction=Mean, *, bool log_target=False) -> Tensor
26
+ inline at::Tensor kl_div(const at::Tensor & self, const at::Tensor & target, int64_t reduction=at::Reduction::Mean, bool log_target=false) {
27
+ return at::_ops::kl_div::call(self, target, reduction, log_target);
28
+ }
29
+
30
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lerp.h ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/lerp_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::lerp.Scalar_out(Tensor self, Tensor end, Scalar weight, *, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & lerp_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & end, const at::Scalar & weight) {
27
+ return at::_ops::lerp_Scalar_out::call(self, end, weight, out);
28
+ }
29
+ // aten::lerp.Scalar_out(Tensor self, Tensor end, Scalar weight, *, Tensor(a!) out) -> Tensor(a!)
30
+ inline at::Tensor & lerp_outf(const at::Tensor & self, const at::Tensor & end, const at::Scalar & weight, at::Tensor & out) {
31
+ return at::_ops::lerp_Scalar_out::call(self, end, weight, out);
32
+ }
33
+
34
+ // aten::lerp.Tensor_out(Tensor self, Tensor end, Tensor weight, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & lerp_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & end, const at::Tensor & weight) {
36
+ return at::_ops::lerp_Tensor_out::call(self, end, weight, out);
37
+ }
38
+ // aten::lerp.Tensor_out(Tensor self, Tensor end, Tensor weight, *, Tensor(a!) out) -> Tensor(a!)
39
+ inline at::Tensor & lerp_outf(const at::Tensor & self, const at::Tensor & end, const at::Tensor & weight, at::Tensor & out) {
40
+ return at::_ops::lerp_Tensor_out::call(self, end, weight, out);
41
+ }
42
+
43
+ // aten::lerp.Scalar(Tensor self, Tensor end, Scalar weight) -> Tensor
44
+ inline at::Tensor lerp(const at::Tensor & self, const at::Tensor & end, const at::Scalar & weight) {
45
+ return at::_ops::lerp_Scalar::call(self, end, weight);
46
+ }
47
+
48
+ // aten::lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> Tensor
49
+ inline at::Tensor lerp(const at::Tensor & self, const at::Tensor & end, const at::Tensor & weight) {
50
+ return at::_ops::lerp_Tensor::call(self, end, weight);
51
+ }
52
+
53
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_householder_product_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor linalg_householder_product(const at::Tensor & input, const at::Tensor & tau);
20
+ TORCH_API at::Tensor & linalg_householder_product_out(const at::Tensor & input, const at::Tensor & tau, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_inv_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API linalg_inv {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_inv")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_inv(Tensor A) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & A);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & A);
26
+ };
27
+
28
+ struct TORCH_API linalg_inv_out {
29
+ using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_inv")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_inv.out(Tensor A, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & A, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & A, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_matmul_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API linalg_matmul {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_matmul")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_matmul(Tensor self, Tensor other) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & other);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other);
26
+ };
27
+
28
+ struct TORCH_API linalg_matmul_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_matmul")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_matmul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/mH_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor mH(const at::Tensor & self);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at