diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb85d4ff5d53eb44a039a95cfc2fff687322cc76
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__init__.py
@@ -0,0 +1,45 @@
+"""
+A geometry module for the SymPy library. This module contains all of the
+entities and functions needed to construct basic geometrical data and to
+perform simple informational queries.
+
+Usage:
+======
+
+Examples
+========
+
+"""
+from sympy.geometry.point import Point, Point2D, Point3D
+from sympy.geometry.line import Line, Ray, Segment, Line2D, Segment2D, Ray2D, \
+ Line3D, Segment3D, Ray3D
+from sympy.geometry.plane import Plane
+from sympy.geometry.ellipse import Ellipse, Circle
+from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle, rad, deg
+from sympy.geometry.util import are_similar, centroid, convex_hull, idiff, \
+ intersection, closest_points, farthest_points
+from sympy.geometry.exceptions import GeometryError
+from sympy.geometry.curve import Curve
+from sympy.geometry.parabola import Parabola
+
+__all__ = [
+ 'Point', 'Point2D', 'Point3D',
+
+ 'Line', 'Ray', 'Segment', 'Line2D', 'Segment2D', 'Ray2D', 'Line3D',
+ 'Segment3D', 'Ray3D',
+
+ 'Plane',
+
+ 'Ellipse', 'Circle',
+
+ 'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg',
+
+ 'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection',
+ 'closest_points', 'farthest_points',
+
+ 'GeometryError',
+
+ 'Curve',
+
+ 'Parabola',
+]
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..04f2cbd6b631d9aa7cacc9c122b15d65d007c0d6
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b34b540d90d85d7b78b8e42a17fb4b2db9dac6fa
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8d6b2072e07419be80258b418092998f2e041f2f
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fb9a46f3d1c29e09cbc428fe7e67f096a105b3d5
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7049567f20db5312af6ac54efc7828573943cf88
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ef988609c76a19d8123c940df795fa1a3d827467
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e0d3fad7ea5f743fb4c8c46887e9f13820f0bfed
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..86a19f4d6c5a06e6ddc64fa836e3da1856693aa4
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..11cd0681a7b9cb0950acb01f471809af241387ce
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4169f37ce5a74d2ed1abf676a6cd0e8b2802e6a5
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8074bb42748bca7b59ec02f359fa26bf827db9a1
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/ellipse.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/ellipse.py
new file mode 100644
index 0000000000000000000000000000000000000000..e191ee694211eabae51e9706b9bc65df9ad0ba78
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/ellipse.py
@@ -0,0 +1,1780 @@
+"""Elliptical geometrical entities.
+
+Contains
+* Ellipse
+* Circle
+
+"""
+
+from sympy.core.expr import Expr
+from sympy.core.relational import Eq
+from sympy.core import S, pi, sympify
+from sympy.core.evalf import N
+from sympy.core.parameters import global_parameters
+from sympy.core.logic import fuzzy_bool
+from sympy.core.numbers import Rational, oo
+from sympy.core.sorting import ordered
+from sympy.core.symbol import Dummy, uniquely_named_symbol, _symbol
+from sympy.simplify import simplify, trigsimp
+from sympy.functions.elementary.miscellaneous import sqrt, Max
+from sympy.functions.elementary.trigonometric import cos, sin
+from sympy.functions.special.elliptic_integrals import elliptic_e
+from .entity import GeometryEntity, GeometrySet
+from .exceptions import GeometryError
+from .line import Line, Segment, Ray2D, Segment2D, Line2D, LinearEntity3D
+from .point import Point, Point2D, Point3D
+from .util import idiff, find
+from sympy.polys import DomainError, Poly, PolynomialError
+from sympy.polys.polyutils import _not_a_coeff, _nsort
+from sympy.solvers import solve
+from sympy.solvers.solveset import linear_coeffs
+from sympy.utilities.misc import filldedent, func_name
+
+from mpmath.libmp.libmpf import prec_to_dps
+
+import random
+
+x, y = [Dummy('ellipse_dummy', real=True) for i in range(2)]
+
+
+class Ellipse(GeometrySet):
+ """An elliptical GeometryEntity.
+
+ Parameters
+ ==========
+
+ center : Point, optional
+ Default value is Point(0, 0)
+ hradius : number or SymPy expression, optional
+ vradius : number or SymPy expression, optional
+ eccentricity : number or SymPy expression, optional
+ Two of `hradius`, `vradius` and `eccentricity` must be supplied to
+ create an Ellipse. The third is derived from the two supplied.
+
+ Attributes
+ ==========
+
+ center
+ hradius
+ vradius
+ area
+ circumference
+ eccentricity
+ periapsis
+ apoapsis
+ focus_distance
+ foci
+
+ Raises
+ ======
+
+ GeometryError
+ When `hradius`, `vradius` and `eccentricity` are incorrectly supplied
+ as parameters.
+ TypeError
+ When `center` is not a Point.
+
+ See Also
+ ========
+
+ Circle
+
+ Notes
+ -----
+ Constructed from a center and two radii, the first being the horizontal
+ radius (along the x-axis) and the second being the vertical radius (along
+ the y-axis).
+
+ When symbolic value for hradius and vradius are used, any calculation that
+ refers to the foci or the major or minor axis will assume that the ellipse
+ has its major radius on the x-axis. If this is not true then a manual
+ rotation is necessary.
+
+ Examples
+ ========
+
+ >>> from sympy import Ellipse, Point, Rational
+ >>> e1 = Ellipse(Point(0, 0), 5, 1)
+ >>> e1.hradius, e1.vradius
+ (5, 1)
+ >>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
+ >>> e2
+ Ellipse(Point2D(3, 1), 3, 9/5)
+
+ """
+
+ def __contains__(self, o):
+ if isinstance(o, Point):
+ res = self.equation(x, y).subs({x: o.x, y: o.y})
+ return trigsimp(simplify(res)) is S.Zero
+ elif isinstance(o, Ellipse):
+ return self == o
+ return False
+
+ def __eq__(self, o):
+ """Is the other GeometryEntity the same as this ellipse?"""
+ return isinstance(o, Ellipse) and (self.center == o.center and
+ self.hradius == o.hradius and
+ self.vradius == o.vradius)
+
+ def __hash__(self):
+ return super().__hash__()
+
+ def __new__(
+ cls, center=None, hradius=None, vradius=None, eccentricity=None, **kwargs):
+
+ hradius = sympify(hradius)
+ vradius = sympify(vradius)
+
+ if center is None:
+ center = Point(0, 0)
+ else:
+ if len(center) != 2:
+ raise ValueError('The center of "{}" must be a two dimensional point'.format(cls))
+ center = Point(center, dim=2)
+
+ if len(list(filter(lambda x: x is not None, (hradius, vradius, eccentricity)))) != 2:
+ raise ValueError(filldedent('''
+ Exactly two arguments of "hradius", "vradius", and
+ "eccentricity" must not be None.'''))
+
+ if eccentricity is not None:
+ eccentricity = sympify(eccentricity)
+ if eccentricity.is_negative:
+ raise GeometryError("Eccentricity of ellipse/circle should lie between [0, 1)")
+ elif hradius is None:
+ hradius = vradius / sqrt(1 - eccentricity**2)
+ elif vradius is None:
+ vradius = hradius * sqrt(1 - eccentricity**2)
+
+ if hradius == vradius:
+ return Circle(center, hradius, **kwargs)
+
+ if S.Zero in (hradius, vradius):
+ return Segment(Point(center[0] - hradius, center[1] - vradius), Point(center[0] + hradius, center[1] + vradius))
+
+ if hradius.is_real is False or vradius.is_real is False:
+ raise GeometryError("Invalid value encountered when computing hradius / vradius.")
+
+ return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)
+
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
+ """Returns SVG ellipse element for the Ellipse.
+
+ Parameters
+ ==========
+
+ scale_factor : float
+ Multiplication factor for the SVG stroke-width. Default is 1.
+ fill_color : str, optional
+ Hex string for fill color. Default is "#66cc99".
+ """
+
+ c = N(self.center)
+ h, v = N(self.hradius), N(self.vradius)
+ return (
+ ''
+ ).format(2. * scale_factor, fill_color, c.x, c.y, h, v)
+
+ @property
+ def ambient_dimension(self):
+ return 2
+
+ @property
+ def apoapsis(self):
+ """The apoapsis of the ellipse.
+
+ The greatest distance between the focus and the contour.
+
+ Returns
+ =======
+
+ apoapsis : number
+
+ See Also
+ ========
+
+ periapsis : Returns shortest distance between foci and contour
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.apoapsis
+ 2*sqrt(2) + 3
+
+ """
+ return self.major * (1 + self.eccentricity)
+
+ def arbitrary_point(self, parameter='t'):
+ """A parameterized point on the ellipse.
+
+ Parameters
+ ==========
+
+ parameter : str, optional
+ Default value is 't'.
+
+ Returns
+ =======
+
+ arbitrary_point : Point
+
+ Raises
+ ======
+
+ ValueError
+ When `parameter` already appears in the functions.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> e1 = Ellipse(Point(0, 0), 3, 2)
+ >>> e1.arbitrary_point()
+ Point2D(3*cos(t), 2*sin(t))
+
+ """
+ t = _symbol(parameter, real=True)
+ if t.name in (f.name for f in self.free_symbols):
+ raise ValueError(filldedent('Symbol %s already appears in object '
+ 'and cannot be used as a parameter.' % t.name))
+ return Point(self.center.x + self.hradius*cos(t),
+ self.center.y + self.vradius*sin(t))
+
+ @property
+ def area(self):
+ """The area of the ellipse.
+
+ Returns
+ =======
+
+ area : number
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.area
+ 3*pi
+
+ """
+ return simplify(S.Pi * self.hradius * self.vradius)
+
+ @property
+ def bounds(self):
+ """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
+ rectangle for the geometric figure.
+
+ """
+
+ h, v = self.hradius, self.vradius
+ return (self.center.x - h, self.center.y - v, self.center.x + h, self.center.y + v)
+
+ @property
+ def center(self):
+ """The center of the ellipse.
+
+ Returns
+ =======
+
+ center : number
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.center
+ Point2D(0, 0)
+
+ """
+ return self.args[0]
+
+ @property
+ def circumference(self):
+ """The circumference of the ellipse.
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.circumference
+ 12*elliptic_e(8/9)
+
+ """
+ if self.eccentricity == 1:
+ # degenerate
+ return 4*self.major
+ elif self.eccentricity == 0:
+ # circle
+ return 2*pi*self.hradius
+ else:
+ return 4*self.major*elliptic_e(self.eccentricity**2)
+
+ @property
+ def eccentricity(self):
+ """The eccentricity of the ellipse.
+
+ Returns
+ =======
+
+ eccentricity : number
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse, sqrt
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, sqrt(2))
+ >>> e1.eccentricity
+ sqrt(7)/3
+
+ """
+ return self.focus_distance / self.major
+
+ def encloses_point(self, p):
+ """
+ Return True if p is enclosed by (is inside of) self.
+
+ Notes
+ -----
+ Being on the border of self is considered False.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ encloses_point : True, False or None
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Ellipse, S
+ >>> from sympy.abc import t
+ >>> e = Ellipse((0, 0), 3, 2)
+ >>> e.encloses_point((0, 0))
+ True
+ >>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
+ False
+ >>> e.encloses_point((4, 0))
+ False
+
+ """
+ p = Point(p, dim=2)
+ if p in self:
+ return False
+
+ if len(self.foci) == 2:
+ # if the combined distance from the foci to p (h1 + h2) is less
+ # than the combined distance from the foci to the minor axis
+ # (which is the same as the major axis length) then p is inside
+ # the ellipse
+ h1, h2 = [f.distance(p) for f in self.foci]
+ test = 2*self.major - (h1 + h2)
+ else:
+ test = self.radius - self.center.distance(p)
+
+ return fuzzy_bool(test.is_positive)
+
+ def equation(self, x='x', y='y', _slope=None):
+ """
+ Returns the equation of an ellipse aligned with the x and y axes;
+ when slope is given, the equation returned corresponds to an ellipse
+ with a major axis having that slope.
+
+ Parameters
+ ==========
+
+ x : str, optional
+ Label for the x-axis. Default value is 'x'.
+ y : str, optional
+ Label for the y-axis. Default value is 'y'.
+ _slope : Expr, optional
+ The slope of the major axis. Ignored when 'None'.
+
+ Returns
+ =======
+
+ equation : SymPy expression
+
+ See Also
+ ========
+
+ arbitrary_point : Returns parameterized point on ellipse
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse, pi
+ >>> from sympy.abc import x, y
+ >>> e1 = Ellipse(Point(1, 0), 3, 2)
+ >>> eq1 = e1.equation(x, y); eq1
+ y**2/4 + (x/3 - 1/3)**2 - 1
+ >>> eq2 = e1.equation(x, y, _slope=1); eq2
+ (-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1
+
+ A point on e1 satisfies eq1. Let's use one on the x-axis:
+
+ >>> p1 = e1.center + Point(e1.major, 0)
+ >>> assert eq1.subs(x, p1.x).subs(y, p1.y) == 0
+
+ When rotated the same as the rotated ellipse, about the center
+ point of the ellipse, it will satisfy the rotated ellipse's
+ equation, too:
+
+ >>> r1 = p1.rotate(pi/4, e1.center)
+ >>> assert eq2.subs(x, r1.x).subs(y, r1.y) == 0
+
+ References
+ ==========
+
+ .. [1] https://math.stackexchange.com/questions/108270/what-is-the-equation-of-an-ellipse-that-is-not-aligned-with-the-axis
+ .. [2] https://en.wikipedia.org/wiki/Ellipse#Shifted_ellipse
+
+ """
+
+ x = _symbol(x, real=True)
+ y = _symbol(y, real=True)
+
+ dx = x - self.center.x
+ dy = y - self.center.y
+
+ if _slope is not None:
+ L = (dy - _slope*dx)**2
+ l = (_slope*dy + dx)**2
+ h = 1 + _slope**2
+ b = h*self.major**2
+ a = h*self.minor**2
+ return l/b + L/a - 1
+
+ else:
+ t1 = (dx/self.hradius)**2
+ t2 = (dy/self.vradius)**2
+ return t1 + t2 - 1
+
+ def evolute(self, x='x', y='y'):
+ """The equation of evolute of the ellipse.
+
+ Parameters
+ ==========
+
+ x : str, optional
+ Label for the x-axis. Default value is 'x'.
+ y : str, optional
+ Label for the y-axis. Default value is 'y'.
+
+ Returns
+ =======
+
+ equation : SymPy expression
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> e1 = Ellipse(Point(1, 0), 3, 2)
+ >>> e1.evolute()
+ 2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3)
+ """
+ if len(self.args) != 3:
+ raise NotImplementedError('Evolute of arbitrary Ellipse is not supported.')
+ x = _symbol(x, real=True)
+ y = _symbol(y, real=True)
+ t1 = (self.hradius*(x - self.center.x))**Rational(2, 3)
+ t2 = (self.vradius*(y - self.center.y))**Rational(2, 3)
+ return t1 + t2 - (self.hradius**2 - self.vradius**2)**Rational(2, 3)
+
+ @property
+ def foci(self):
+ """The foci of the ellipse.
+
+ Notes
+ -----
+ The foci can only be calculated if the major/minor axes are known.
+
+ Raises
+ ======
+
+ ValueError
+ When the major and minor axis cannot be determined.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+ focus_distance : Returns the distance between focus and center
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.foci
+ (Point2D(-2*sqrt(2), 0), Point2D(2*sqrt(2), 0))
+
+ """
+ c = self.center
+ hr, vr = self.hradius, self.vradius
+ if hr == vr:
+ return (c, c)
+
+ # calculate focus distance manually, since focus_distance calls this
+ # routine
+ fd = sqrt(self.major**2 - self.minor**2)
+ if hr == self.minor:
+ # foci on the y-axis
+ return (c + Point(0, -fd), c + Point(0, fd))
+ elif hr == self.major:
+ # foci on the x-axis
+ return (c + Point(-fd, 0), c + Point(fd, 0))
+
+ @property
+ def focus_distance(self):
+ """The focal distance of the ellipse.
+
+ The distance between the center and one focus.
+
+ Returns
+ =======
+
+ focus_distance : number
+
+ See Also
+ ========
+
+ foci
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.focus_distance
+ 2*sqrt(2)
+
+ """
+ return Point.distance(self.center, self.foci[0])
+
+ @property
+ def hradius(self):
+ """The horizontal radius of the ellipse.
+
+ Returns
+ =======
+
+ hradius : number
+
+ See Also
+ ========
+
+ vradius, major, minor
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.hradius
+ 3
+
+ """
+ return self.args[1]
+
+ def intersection(self, o):
+ """The intersection of this ellipse and another geometrical entity
+ `o`.
+
+ Parameters
+ ==========
+
+ o : GeometryEntity
+
+ Returns
+ =======
+
+ intersection : list of GeometryEntity objects
+
+ Notes
+ -----
+ Currently supports intersections with Point, Line, Segment, Ray,
+ Circle and Ellipse types.
+
+ See Also
+ ========
+
+ sympy.geometry.entity.GeometryEntity
+
+ Examples
+ ========
+
+ >>> from sympy import Ellipse, Point, Line
+ >>> e = Ellipse(Point(0, 0), 5, 7)
+ >>> e.intersection(Point(0, 0))
+ []
+ >>> e.intersection(Point(5, 0))
+ [Point2D(5, 0)]
+ >>> e.intersection(Line(Point(0,0), Point(0, 1)))
+ [Point2D(0, -7), Point2D(0, 7)]
+ >>> e.intersection(Line(Point(5,0), Point(5, 1)))
+ [Point2D(5, 0)]
+ >>> e.intersection(Line(Point(6,0), Point(6, 1)))
+ []
+ >>> e = Ellipse(Point(-1, 0), 4, 3)
+ >>> e.intersection(Ellipse(Point(1, 0), 4, 3))
+ [Point2D(0, -3*sqrt(15)/4), Point2D(0, 3*sqrt(15)/4)]
+ >>> e.intersection(Ellipse(Point(5, 0), 4, 3))
+ [Point2D(2, -3*sqrt(7)/4), Point2D(2, 3*sqrt(7)/4)]
+ >>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
+ []
+ >>> e.intersection(Ellipse(Point(0, 0), 3, 4))
+ [Point2D(3, 0), Point2D(-363/175, -48*sqrt(111)/175), Point2D(-363/175, 48*sqrt(111)/175)]
+ >>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
+ [Point2D(-17/5, -12/5), Point2D(-17/5, 12/5), Point2D(7/5, -12/5), Point2D(7/5, 12/5)]
+ """
+ # TODO: Replace solve with nonlinsolve, when nonlinsolve will be able to solve in real domain
+
+ if isinstance(o, Point):
+ if o in self:
+ return [o]
+ else:
+ return []
+
+ elif isinstance(o, (Segment2D, Ray2D)):
+ ellipse_equation = self.equation(x, y)
+ result = solve([ellipse_equation, Line(
+ o.points[0], o.points[1]).equation(x, y)], [x, y],
+ set=True)[1]
+ return list(ordered([Point(i) for i in result if i in o]))
+
+ elif isinstance(o, Polygon):
+ return o.intersection(self)
+
+ elif isinstance(o, (Ellipse, Line2D)):
+ if o == self:
+ return self
+ else:
+ ellipse_equation = self.equation(x, y)
+ return list(ordered([Point(i) for i in solve(
+ [ellipse_equation, o.equation(x, y)], [x, y],
+ set=True)[1]]))
+ elif isinstance(o, LinearEntity3D):
+ raise TypeError('Entity must be two dimensional, not three dimensional')
+ else:
+ raise TypeError('Intersection not handled for %s' % func_name(o))
+
+ def is_tangent(self, o):
+ """Is `o` tangent to the ellipse?
+
+ Parameters
+ ==========
+
+ o : GeometryEntity
+ An Ellipse, LinearEntity or Polygon
+
+ Raises
+ ======
+
+ NotImplementedError
+ When the wrong type of argument is supplied.
+
+ Returns
+ =======
+
+ is_tangent: boolean
+ True if o is tangent to the ellipse, False otherwise.
+
+ See Also
+ ========
+
+ tangent_lines
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse, Line
+ >>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
+ >>> e1 = Ellipse(p0, 3, 2)
+ >>> l1 = Line(p1, p2)
+ >>> e1.is_tangent(l1)
+ True
+
+ """
+ if isinstance(o, Point2D):
+ return False
+ elif isinstance(o, Ellipse):
+ intersect = self.intersection(o)
+ if isinstance(intersect, Ellipse):
+ return True
+ elif intersect:
+ return all((self.tangent_lines(i)[0]).equals(o.tangent_lines(i)[0]) for i in intersect)
+ else:
+ return False
+ elif isinstance(o, Line2D):
+ hit = self.intersection(o)
+ if not hit:
+ return False
+ if len(hit) == 1:
+ return True
+ # might return None if it can't decide
+ return hit[0].equals(hit[1])
+ elif isinstance(o, Ray2D):
+ intersect = self.intersection(o)
+ if len(intersect) == 1:
+ return intersect[0] != o.source and not self.encloses_point(o.source)
+ else:
+ return False
+ elif isinstance(o, (Segment2D, Polygon)):
+ all_tangents = False
+ segments = o.sides if isinstance(o, Polygon) else [o]
+ for segment in segments:
+ intersect = self.intersection(segment)
+ if len(intersect) == 1:
+ if not any(intersect[0] in i for i in segment.points) \
+ and not any(self.encloses_point(i) for i in segment.points):
+ all_tangents = True
+ continue
+ else:
+ return False
+ else:
+ return all_tangents
+ return all_tangents
+ elif isinstance(o, (LinearEntity3D, Point3D)):
+ raise TypeError('Entity must be two dimensional, not three dimensional')
+ else:
+ raise TypeError('Is_tangent not handled for %s' % func_name(o))
+
+ @property
+ def major(self):
+ """Longer axis of the ellipse (if it can be determined) else hradius.
+
+ Returns
+ =======
+
+ major : number or expression
+
+ See Also
+ ========
+
+ hradius, vradius, minor
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse, Symbol
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.major
+ 3
+
+ >>> a = Symbol('a')
+ >>> b = Symbol('b')
+ >>> Ellipse(p1, a, b).major
+ a
+ >>> Ellipse(p1, b, a).major
+ b
+
+ >>> m = Symbol('m')
+ >>> M = m + 1
+ >>> Ellipse(p1, m, M).major
+ m + 1
+
+ """
+ ab = self.args[1:3]
+ if len(ab) == 1:
+ return ab[0]
+ a, b = ab
+ o = b - a < 0
+ if o == True:
+ return a
+ elif o == False:
+ return b
+ return self.hradius
+
+ @property
+ def minor(self):
+ """Shorter axis of the ellipse (if it can be determined) else vradius.
+
+ Returns
+ =======
+
+ minor : number or expression
+
+ See Also
+ ========
+
+ hradius, vradius, major
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse, Symbol
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.minor
+ 1
+
+ >>> a = Symbol('a')
+ >>> b = Symbol('b')
+ >>> Ellipse(p1, a, b).minor
+ b
+ >>> Ellipse(p1, b, a).minor
+ a
+
+ >>> m = Symbol('m')
+ >>> M = m + 1
+ >>> Ellipse(p1, m, M).minor
+ m
+
+ """
+ ab = self.args[1:3]
+ if len(ab) == 1:
+ return ab[0]
+ a, b = ab
+ o = a - b < 0
+ if o == True:
+ return a
+ elif o == False:
+ return b
+ return self.vradius
+
+ def normal_lines(self, p, prec=None):
+ """Normal lines between `p` and the ellipse.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ normal_lines : list with 1, 2 or 4 Lines
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> e = Ellipse((0, 0), 2, 3)
+ >>> c = e.center
+ >>> e.normal_lines(c + Point(1, 0))
+ [Line2D(Point2D(0, 0), Point2D(1, 0))]
+ >>> e.normal_lines(c)
+ [Line2D(Point2D(0, 0), Point2D(0, 1)), Line2D(Point2D(0, 0), Point2D(1, 0))]
+
+ Off-axis points require the solution of a quartic equation. This
+ often leads to very large expressions that may be of little practical
+ use. An approximate solution of `prec` digits can be obtained by
+ passing in the desired value:
+
+ >>> e.normal_lines((3, 3), prec=2)
+ [Line2D(Point2D(-0.81, -2.7), Point2D(0.19, -1.2)),
+ Line2D(Point2D(1.5, -2.0), Point2D(2.5, -2.7))]
+
+ Whereas the above solution has an operation count of 12, the exact
+ solution has an operation count of 2020.
+ """
+ p = Point(p, dim=2)
+
+ # XXX change True to something like self.angle == 0 if the arbitrarily
+ # rotated ellipse is introduced.
+ # https://github.com/sympy/sympy/issues/2815)
+ if True:
+ rv = []
+ if p.x == self.center.x:
+ rv.append(Line(self.center, slope=oo))
+ if p.y == self.center.y:
+ rv.append(Line(self.center, slope=0))
+ if rv:
+ # at these special orientations of p either 1 or 2 normals
+ # exist and we are done
+ return rv
+
+ # find the 4 normal points and construct lines through them with
+ # the corresponding slope
+ eq = self.equation(x, y)
+ dydx = idiff(eq, y, x)
+ norm = -1/dydx
+ slope = Line(p, (x, y)).slope
+ seq = slope - norm
+
+ # TODO: Replace solve with solveset, when this line is tested
+ yis = solve(seq, y)[0]
+ xeq = eq.subs(y, yis).as_numer_denom()[0].expand()
+ if len(xeq.free_symbols) == 1:
+ try:
+ # this is so much faster, it's worth a try
+ xsol = Poly(xeq, x).real_roots()
+ except (DomainError, PolynomialError, NotImplementedError):
+ # TODO: Replace solve with solveset, when these lines are tested
+ xsol = _nsort(solve(xeq, x), separated=True)[0]
+ points = [Point(i, solve(eq.subs(x, i), y)[0]) for i in xsol]
+ else:
+ raise NotImplementedError(
+ 'intersections for the general ellipse are not supported')
+ slopes = [norm.subs(zip((x, y), pt.args)) for pt in points]
+ if prec is not None:
+ points = [pt.n(prec) for pt in points]
+ slopes = [i if _not_a_coeff(i) else i.n(prec) for i in slopes]
+ return [Line(pt, slope=s) for pt, s in zip(points, slopes)]
+
+ @property
+ def periapsis(self):
+ """The periapsis of the ellipse.
+
+ The shortest distance between the focus and the contour.
+
+ Returns
+ =======
+
+ periapsis : number
+
+ See Also
+ ========
+
+ apoapsis : Returns greatest distance between focus and contour
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.periapsis
+ 3 - 2*sqrt(2)
+
+ """
+ return self.major * (1 - self.eccentricity)
+
+ @property
+ def semilatus_rectum(self):
+ """
+ Calculates the semi-latus rectum of the Ellipse.
+
+ Semi-latus rectum is defined as one half of the chord through a
+ focus parallel to the conic section directrix of a conic section.
+
+ Returns
+ =======
+
+ semilatus_rectum : number
+
+ See Also
+ ========
+
+ apoapsis : Returns greatest distance between focus and contour
+
+ periapsis : The shortest distance between the focus and the contour
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.semilatus_rectum
+ 1/3
+
+ References
+ ==========
+
+ .. [1] https://mathworld.wolfram.com/SemilatusRectum.html
+ .. [2] https://en.wikipedia.org/wiki/Ellipse#Semi-latus_rectum
+
+ """
+ return self.major * (1 - self.eccentricity ** 2)
+
+ def auxiliary_circle(self):
+ """Returns a Circle whose diameter is the major axis of the ellipse.
+
+ Examples
+ ========
+
+ >>> from sympy import Ellipse, Point, symbols
+ >>> c = Point(1, 2)
+ >>> Ellipse(c, 8, 7).auxiliary_circle()
+ Circle(Point2D(1, 2), 8)
+ >>> a, b = symbols('a b')
+ >>> Ellipse(c, a, b).auxiliary_circle()
+ Circle(Point2D(1, 2), Max(a, b))
+ """
+ return Circle(self.center, Max(self.hradius, self.vradius))
+
+ def director_circle(self):
+ """
+ Returns a Circle consisting of all points where two perpendicular
+ tangent lines to the ellipse cross each other.
+
+ Returns
+ =======
+
+ Circle
+ A director circle returned as a geometric object.
+
+ Examples
+ ========
+
+ >>> from sympy import Ellipse, Point, symbols
+ >>> c = Point(3,8)
+ >>> Ellipse(c, 7, 9).director_circle()
+ Circle(Point2D(3, 8), sqrt(130))
+ >>> a, b = symbols('a b')
+ >>> Ellipse(c, a, b).director_circle()
+ Circle(Point2D(3, 8), sqrt(a**2 + b**2))
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Director_circle
+
+ """
+ return Circle(self.center, sqrt(self.hradius**2 + self.vradius**2))
+
+ def plot_interval(self, parameter='t'):
+ """The plot interval for the default geometric plot of the Ellipse.
+
+ Parameters
+ ==========
+
+ parameter : str, optional
+ Default value is 't'.
+
+ Returns
+ =======
+
+ plot_interval : list
+ [parameter, lower_bound, upper_bound]
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> e1 = Ellipse(Point(0, 0), 3, 2)
+ >>> e1.plot_interval()
+ [t, -pi, pi]
+
+ """
+ t = _symbol(parameter, real=True)
+ return [t, -S.Pi, S.Pi]
+
+ def random_point(self, seed=None):
+ """A random point on the ellipse.
+
+ Returns
+ =======
+
+ point : Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> e1 = Ellipse(Point(0, 0), 3, 2)
+ >>> e1.random_point() # gives some random point
+ Point2D(...)
+ >>> p1 = e1.random_point(seed=0); p1.n(2)
+ Point2D(2.1, 1.4)
+
+ Notes
+ =====
+
+ When creating a random point, one may simply replace the
+ parameter with a random number. When doing so, however, the
+ random number should be made a Rational or else the point
+ may not test as being in the ellipse:
+
+ >>> from sympy.abc import t
+ >>> from sympy import Rational
+ >>> arb = e1.arbitrary_point(t); arb
+ Point2D(3*cos(t), 2*sin(t))
+ >>> arb.subs(t, .1) in e1
+ False
+ >>> arb.subs(t, Rational(.1)) in e1
+ True
+ >>> arb.subs(t, Rational('.1')) in e1
+ True
+
+ See Also
+ ========
+ sympy.geometry.point.Point
+ arbitrary_point : Returns parameterized point on ellipse
+ """
+ t = _symbol('t', real=True)
+ x, y = self.arbitrary_point(t).args
+ # get a random value in [-1, 1) corresponding to cos(t)
+ # and confirm that it will test as being in the ellipse
+ if seed is not None:
+ rng = random.Random(seed)
+ else:
+ rng = random
+ # simplify this now or else the Float will turn s into a Float
+ r = Rational(rng.random())
+ c = 2*r - 1
+ s = sqrt(1 - c**2)
+ return Point(x.subs(cos(t), c), y.subs(sin(t), s))
+
+ def reflect(self, line):
+ """Override GeometryEntity.reflect since the radius
+ is not a GeometryEntity.
+
+ Examples
+ ========
+
+ >>> from sympy import Circle, Line
+ >>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
+ Circle(Point2D(1, 0), -1)
+ >>> from sympy import Ellipse, Line, Point
+ >>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0)))
+ Traceback (most recent call last):
+ ...
+ NotImplementedError:
+ General Ellipse is not supported but the equation of the reflected
+ Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
+ 37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1
+
+ Notes
+ =====
+
+ Until the general ellipse (with no axis parallel to the x-axis) is
+ supported a NotImplemented error is raised and the equation whose
+ zeros define the rotated ellipse is given.
+
+ """
+
+ if line.slope in (0, oo):
+ c = self.center
+ c = c.reflect(line)
+ return self.func(c, -self.hradius, self.vradius)
+ else:
+ x, y = [uniquely_named_symbol(
+ name, (self, line), modify=lambda s: '_' + s, real=True)
+ for name in 'xy']
+ expr = self.equation(x, y)
+ p = Point(x, y).reflect(line)
+ result = expr.subs(zip((x, y), p.args
+ ), simultaneous=True)
+ raise NotImplementedError(filldedent(
+ 'General Ellipse is not supported but the equation '
+ 'of the reflected Ellipse is given by the zeros of: ' +
+ "f(%s, %s) = %s" % (str(x), str(y), str(result))))
+
+ def rotate(self, angle=0, pt=None):
+ """Rotate ``angle`` radians counterclockwise about Point ``pt``.
+
+ Note: since the general ellipse is not supported, only rotations that
+ are integer multiples of pi/2 are allowed.
+
+ Examples
+ ========
+
+ >>> from sympy import Ellipse, pi
+ >>> Ellipse((1, 0), 2, 1).rotate(pi/2)
+ Ellipse(Point2D(0, 1), 1, 2)
+ >>> Ellipse((1, 0), 2, 1).rotate(pi)
+ Ellipse(Point2D(-1, 0), 2, 1)
+ """
+ if self.hradius == self.vradius:
+ return self.func(self.center.rotate(angle, pt), self.hradius)
+ if (angle/S.Pi).is_integer:
+ return super().rotate(angle, pt)
+ if (2*angle/S.Pi).is_integer:
+ return self.func(self.center.rotate(angle, pt), self.vradius, self.hradius)
+ # XXX see https://github.com/sympy/sympy/issues/2815 for general ellipes
+ raise NotImplementedError('Only rotations of pi/2 are currently supported for Ellipse.')
+
+ def scale(self, x=1, y=1, pt=None):
+ """Override GeometryEntity.scale since it is the major and minor
+ axes which must be scaled and they are not GeometryEntities.
+
+ Examples
+ ========
+
+ >>> from sympy import Ellipse
+ >>> Ellipse((0, 0), 2, 1).scale(2, 4)
+ Circle(Point2D(0, 0), 4)
+ >>> Ellipse((0, 0), 2, 1).scale(2)
+ Ellipse(Point2D(0, 0), 4, 1)
+ """
+ c = self.center
+ if pt:
+ pt = Point(pt, dim=2)
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
+ h = self.hradius
+ v = self.vradius
+ return self.func(c.scale(x, y), hradius=h*x, vradius=v*y)
+
+ def tangent_lines(self, p):
+ """Tangent lines between `p` and the ellipse.
+
+ If `p` is on the ellipse, returns the tangent line through point `p`.
+ Otherwise, returns the tangent line(s) from `p` to the ellipse, or
+ None if no tangent line is possible (e.g., `p` inside ellipse).
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ tangent_lines : list with 1 or 2 Lines
+
+ Raises
+ ======
+
+ NotImplementedError
+ Can only find tangent lines for a point, `p`, on the ellipse.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.line.Line
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> e1 = Ellipse(Point(0, 0), 3, 2)
+ >>> e1.tangent_lines(Point(3, 0))
+ [Line2D(Point2D(3, 0), Point2D(3, -12))]
+
+ """
+ p = Point(p, dim=2)
+ if self.encloses_point(p):
+ return []
+
+ if p in self:
+ delta = self.center - p
+ rise = (self.vradius**2)*delta.x
+ run = -(self.hradius**2)*delta.y
+ p2 = Point(simplify(p.x + run),
+ simplify(p.y + rise))
+ return [Line(p, p2)]
+ else:
+ if len(self.foci) == 2:
+ f1, f2 = self.foci
+ maj = self.hradius
+ test = (2*maj -
+ Point.distance(f1, p) -
+ Point.distance(f2, p))
+ else:
+ test = self.radius - Point.distance(self.center, p)
+ if test.is_number and test.is_positive:
+ return []
+ # else p is outside the ellipse or we can't tell. In case of the
+ # latter, the solutions returned will only be valid if
+ # the point is not inside the ellipse; if it is, nan will result.
+ eq = self.equation(x, y)
+ dydx = idiff(eq, y, x)
+ slope = Line(p, Point(x, y)).slope
+
+ # TODO: Replace solve with solveset, when this line is tested
+ tangent_points = solve([slope - dydx, eq], [x, y])
+
+ # handle horizontal and vertical tangent lines
+ if len(tangent_points) == 1:
+ if tangent_points[0][
+ 0] == p.x or tangent_points[0][1] == p.y:
+ return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))]
+ else:
+ return [Line(p, p + Point(0, 1)), Line(p, tangent_points[0])]
+
+ # others
+ return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]
+
+ @property
+ def vradius(self):
+ """The vertical radius of the ellipse.
+
+ Returns
+ =======
+
+ vradius : number
+
+ See Also
+ ========
+
+ hradius, major, minor
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.vradius
+ 1
+
+ """
+ return self.args[2]
+
+
+ def second_moment_of_area(self, point=None):
+ """Returns the second moment and product moment area of an ellipse.
+
+ Parameters
+ ==========
+
+ point : Point, two-tuple of sympifiable objects, or None(default=None)
+ point is the point about which second moment of area is to be found.
+ If "point=None" it will be calculated about the axis passing through the
+ centroid of the ellipse.
+
+ Returns
+ =======
+
+ I_xx, I_yy, I_xy : number or SymPy expression
+ I_xx, I_yy are second moment of area of an ellise.
+ I_xy is product moment of area of an ellipse.
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Ellipse
+ >>> p1 = Point(0, 0)
+ >>> e1 = Ellipse(p1, 3, 1)
+ >>> e1.second_moment_of_area()
+ (3*pi/4, 27*pi/4, 0)
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/List_of_second_moments_of_area
+
+ """
+
+ I_xx = (S.Pi*(self.hradius)*(self.vradius**3))/4
+ I_yy = (S.Pi*(self.hradius**3)*(self.vradius))/4
+ I_xy = 0
+
+ if point is None:
+ return I_xx, I_yy, I_xy
+
+ # parallel axis theorem
+ I_xx = I_xx + self.area*((point[1] - self.center.y)**2)
+ I_yy = I_yy + self.area*((point[0] - self.center.x)**2)
+ I_xy = I_xy + self.area*(point[0] - self.center.x)*(point[1] - self.center.y)
+
+ return I_xx, I_yy, I_xy
+
+
+ def polar_second_moment_of_area(self):
+ """Returns the polar second moment of area of an Ellipse
+
+ It is a constituent of the second moment of area, linked through
+ the perpendicular axis theorem. While the planar second moment of
+ area describes an object's resistance to deflection (bending) when
+ subjected to a force applied to a plane parallel to the central
+ axis, the polar second moment of area describes an object's
+ resistance to deflection when subjected to a moment applied in a
+ plane perpendicular to the object's central axis (i.e. parallel to
+ the cross-section)
+
+ Examples
+ ========
+
+ >>> from sympy import symbols, Circle, Ellipse
+ >>> c = Circle((5, 5), 4)
+ >>> c.polar_second_moment_of_area()
+ 128*pi
+ >>> a, b = symbols('a, b')
+ >>> e = Ellipse((0, 0), a, b)
+ >>> e.polar_second_moment_of_area()
+ pi*a**3*b/4 + pi*a*b**3/4
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia
+
+ """
+ second_moment = self.second_moment_of_area()
+ return second_moment[0] + second_moment[1]
+
+
+ def section_modulus(self, point=None):
+ """Returns a tuple with the section modulus of an ellipse
+
+ Section modulus is a geometric property of an ellipse defined as the
+ ratio of second moment of area to the distance of the extreme end of
+ the ellipse from the centroidal axis.
+
+ Parameters
+ ==========
+
+ point : Point, two-tuple of sympifyable objects, or None(default=None)
+ point is the point at which section modulus is to be found.
+ If "point=None" section modulus will be calculated for the
+ point farthest from the centroidal axis of the ellipse.
+
+ Returns
+ =======
+
+ S_x, S_y: numbers or SymPy expressions
+ S_x is the section modulus with respect to the x-axis
+ S_y is the section modulus with respect to the y-axis
+ A negative sign indicates that the section modulus is
+ determined for a point below the centroidal axis.
+
+ Examples
+ ========
+
+ >>> from sympy import Symbol, Ellipse, Circle, Point2D
+ >>> d = Symbol('d', positive=True)
+ >>> c = Circle((0, 0), d/2)
+ >>> c.section_modulus()
+ (pi*d**3/32, pi*d**3/32)
+ >>> e = Ellipse(Point2D(0, 0), 2, 4)
+ >>> e.section_modulus()
+ (8*pi, 4*pi)
+ >>> e.section_modulus((2, 2))
+ (16*pi, 4*pi)
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Section_modulus
+
+ """
+ x_c, y_c = self.center
+ if point is None:
+ # taking x and y as maximum distances from centroid
+ x_min, y_min, x_max, y_max = self.bounds
+ y = max(y_c - y_min, y_max - y_c)
+ x = max(x_c - x_min, x_max - x_c)
+ else:
+ # taking x and y as distances of the given point from the center
+ point = Point2D(point)
+ y = point.y - y_c
+ x = point.x - x_c
+
+ second_moment = self.second_moment_of_area()
+ S_x = second_moment[0]/y
+ S_y = second_moment[1]/x
+
+ return S_x, S_y
+
+
+class Circle(Ellipse):
+ """A circle in space.
+
+ Constructed simply from a center and a radius, from three
+ non-collinear points, or the equation of a circle.
+
+ Parameters
+ ==========
+
+ center : Point
+ radius : number or SymPy expression
+ points : sequence of three Points
+ equation : equation of a circle
+
+ Attributes
+ ==========
+
+ radius (synonymous with hradius, vradius, major and minor)
+ circumference
+ equation
+
+ Raises
+ ======
+
+ GeometryError
+ When the given equation is not that of a circle.
+ When trying to construct circle from incorrect parameters.
+
+ See Also
+ ========
+
+ Ellipse, sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Circle, Eq
+ >>> from sympy.abc import x, y, a, b
+
+ A circle constructed from a center and radius:
+
+ >>> c1 = Circle(Point(0, 0), 5)
+ >>> c1.hradius, c1.vradius, c1.radius
+ (5, 5, 5)
+
+ A circle constructed from three points:
+
+ >>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
+ >>> c2.hradius, c2.vradius, c2.radius, c2.center
+ (sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point2D(1/2, 1/2))
+
+ A circle can be constructed from an equation in the form
+ `a*x**2 + by**2 + gx + hy + c = 0`, too:
+
+ >>> Circle(x**2 + y**2 - 25)
+ Circle(Point2D(0, 0), 5)
+
+ If the variables corresponding to x and y are named something
+ else, their name or symbol can be supplied:
+
+ >>> Circle(Eq(a**2 + b**2, 25), x='a', y=b)
+ Circle(Point2D(0, 0), 5)
+ """
+
+ def __new__(cls, *args, **kwargs):
+ evaluate = kwargs.get('evaluate', global_parameters.evaluate)
+ if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
+ x = kwargs.get('x', 'x')
+ y = kwargs.get('y', 'y')
+ equation = args[0].expand()
+ if isinstance(equation, Eq):
+ equation = equation.lhs - equation.rhs
+ x = find(x, equation)
+ y = find(y, equation)
+
+ try:
+ a, b, c, d, e = linear_coeffs(equation, x**2, y**2, x, y)
+ except ValueError:
+ raise GeometryError("The given equation is not that of a circle.")
+
+ if S.Zero in (a, b) or a != b:
+ raise GeometryError("The given equation is not that of a circle.")
+
+ center_x = -c/a/2
+ center_y = -d/b/2
+ r2 = (center_x**2) + (center_y**2) - e/a
+
+ return Circle((center_x, center_y), sqrt(r2), evaluate=evaluate)
+
+ else:
+ c, r = None, None
+ if len(args) == 3:
+ args = [Point(a, dim=2, evaluate=evaluate) for a in args]
+ t = Triangle(*args)
+ if not isinstance(t, Triangle):
+ return t
+ c = t.circumcenter
+ r = t.circumradius
+ elif len(args) == 2:
+ # Assume (center, radius) pair
+ c = Point(args[0], dim=2, evaluate=evaluate)
+ r = args[1]
+ # this will prohibit imaginary radius
+ try:
+ r = Point(r, 0, evaluate=evaluate).x
+ except ValueError:
+ raise GeometryError("Circle with imaginary radius is not permitted")
+
+ if not (c is None or r is None):
+ if r == 0:
+ return c
+ return GeometryEntity.__new__(cls, c, r, **kwargs)
+
+ raise GeometryError("Circle.__new__ received unknown arguments")
+
+ def _eval_evalf(self, prec=15, **options):
+ pt, r = self.args
+ dps = prec_to_dps(prec)
+ pt = pt.evalf(n=dps, **options)
+ r = r.evalf(n=dps, **options)
+ return self.func(pt, r, evaluate=False)
+
+ @property
+ def circumference(self):
+ """The circumference of the circle.
+
+ Returns
+ =======
+
+ circumference : number or SymPy expression
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Circle
+ >>> c1 = Circle(Point(3, 4), 6)
+ >>> c1.circumference
+ 12*pi
+
+ """
+ return 2 * S.Pi * self.radius
+
+ def equation(self, x='x', y='y'):
+ """The equation of the circle.
+
+ Parameters
+ ==========
+
+ x : str or Symbol, optional
+ Default value is 'x'.
+ y : str or Symbol, optional
+ Default value is 'y'.
+
+ Returns
+ =======
+
+ equation : SymPy expression
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Circle
+ >>> c1 = Circle(Point(0, 0), 5)
+ >>> c1.equation()
+ x**2 + y**2 - 25
+
+ """
+ x = _symbol(x, real=True)
+ y = _symbol(y, real=True)
+ t1 = (x - self.center.x)**2
+ t2 = (y - self.center.y)**2
+ return t1 + t2 - self.major**2
+
+ def intersection(self, o):
+ """The intersection of this circle with another geometrical entity.
+
+ Parameters
+ ==========
+
+ o : GeometryEntity
+
+ Returns
+ =======
+
+ intersection : list of GeometryEntities
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Circle, Line, Ray
+ >>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
+ >>> p4 = Point(5, 0)
+ >>> c1 = Circle(p1, 5)
+ >>> c1.intersection(p2)
+ []
+ >>> c1.intersection(p4)
+ [Point2D(5, 0)]
+ >>> c1.intersection(Ray(p1, p2))
+ [Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)]
+ >>> c1.intersection(Line(p2, p3))
+ []
+
+ """
+ return Ellipse.intersection(self, o)
+
+ @property
+ def radius(self):
+ """The radius of the circle.
+
+ Returns
+ =======
+
+ radius : number or SymPy expression
+
+ See Also
+ ========
+
+ Ellipse.major, Ellipse.minor, Ellipse.hradius, Ellipse.vradius
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Circle
+ >>> c1 = Circle(Point(3, 4), 6)
+ >>> c1.radius
+ 6
+
+ """
+ return self.args[1]
+
+ def reflect(self, line):
+ """Override GeometryEntity.reflect since the radius
+ is not a GeometryEntity.
+
+ Examples
+ ========
+
+ >>> from sympy import Circle, Line
+ >>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
+ Circle(Point2D(1, 0), -1)
+ """
+ c = self.center
+ c = c.reflect(line)
+ return self.func(c, -self.radius)
+
+ def scale(self, x=1, y=1, pt=None):
+ """Override GeometryEntity.scale since the radius
+ is not a GeometryEntity.
+
+ Examples
+ ========
+
+ >>> from sympy import Circle
+ >>> Circle((0, 0), 1).scale(2, 2)
+ Circle(Point2D(0, 0), 2)
+ >>> Circle((0, 0), 1).scale(2, 4)
+ Ellipse(Point2D(0, 0), 2, 4)
+ """
+ c = self.center
+ if pt:
+ pt = Point(pt, dim=2)
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
+ c = c.scale(x, y)
+ x, y = [abs(i) for i in (x, y)]
+ if x == y:
+ return self.func(c, x*self.radius)
+ h = v = self.radius
+ return Ellipse(c, hradius=h*x, vradius=v*y)
+
+ @property
+ def vradius(self):
+ """
+ This Ellipse property is an alias for the Circle's radius.
+
+ Whereas hradius, major and minor can use Ellipse's conventions,
+ the vradius does not exist for a circle. It is always a positive
+ value in order that the Circle, like Polygons, will have an
+ area that can be positive or negative as determined by the sign
+ of the hradius.
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Circle
+ >>> c1 = Circle(Point(3, 4), 6)
+ >>> c1.vradius
+ 6
+ """
+ return abs(self.radius)
+
+
+from .polygon import Polygon, Triangle
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/entity.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/entity.py
new file mode 100644
index 0000000000000000000000000000000000000000..5ea1e807542c43eb955c2d778cec0f101d78bdce
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/entity.py
@@ -0,0 +1,641 @@
+"""The definition of the base geometrical entity with attributes common to
+all derived geometrical entities.
+
+Contains
+========
+
+GeometryEntity
+GeometricSet
+
+Notes
+=====
+
+A GeometryEntity is any object that has special geometric properties.
+A GeometrySet is a superclass of any GeometryEntity that can also
+be viewed as a sympy.sets.Set. In particular, points are the only
+GeometryEntity not considered a Set.
+
+Rn is a GeometrySet representing n-dimensional Euclidean space. R2 and
+R3 are currently the only ambient spaces implemented.
+
+"""
+from __future__ import annotations
+
+from sympy.core.basic import Basic
+from sympy.core.containers import Tuple
+from sympy.core.evalf import EvalfMixin, N
+from sympy.core.numbers import oo
+from sympy.core.symbol import Dummy
+from sympy.core.sympify import sympify
+from sympy.functions.elementary.trigonometric import cos, sin, atan
+from sympy.matrices import eye
+from sympy.multipledispatch import dispatch
+from sympy.printing import sstr
+from sympy.sets import Set, Union, FiniteSet
+from sympy.sets.handlers.intersection import intersection_sets
+from sympy.sets.handlers.union import union_sets
+from sympy.solvers.solvers import solve
+from sympy.utilities.misc import func_name
+from sympy.utilities.iterables import is_sequence
+
+
+# How entities are ordered; used by __cmp__ in GeometryEntity
+ordering_of_classes = [
+ "Point2D",
+ "Point3D",
+ "Point",
+ "Segment2D",
+ "Ray2D",
+ "Line2D",
+ "Segment3D",
+ "Line3D",
+ "Ray3D",
+ "Segment",
+ "Ray",
+ "Line",
+ "Plane",
+ "Triangle",
+ "RegularPolygon",
+ "Polygon",
+ "Circle",
+ "Ellipse",
+ "Curve",
+ "Parabola"
+]
+
+
+x, y = [Dummy('entity_dummy') for i in range(2)]
+T = Dummy('entity_dummy', real=True)
+
+
+class GeometryEntity(Basic, EvalfMixin):
+ """The base class for all geometrical entities.
+
+ This class does not represent any particular geometric entity, it only
+ provides the implementation of some methods common to all subclasses.
+
+ """
+
+ __slots__: tuple[str, ...] = ()
+
+ def __cmp__(self, other):
+ """Comparison of two GeometryEntities."""
+ n1 = self.__class__.__name__
+ n2 = other.__class__.__name__
+ c = (n1 > n2) - (n1 < n2)
+ if not c:
+ return 0
+
+ i1 = -1
+ for cls in self.__class__.__mro__:
+ try:
+ i1 = ordering_of_classes.index(cls.__name__)
+ break
+ except ValueError:
+ i1 = -1
+ if i1 == -1:
+ return c
+
+ i2 = -1
+ for cls in other.__class__.__mro__:
+ try:
+ i2 = ordering_of_classes.index(cls.__name__)
+ break
+ except ValueError:
+ i2 = -1
+ if i2 == -1:
+ return c
+
+ return (i1 > i2) - (i1 < i2)
+
+ def __contains__(self, other):
+ """Subclasses should implement this method for anything more complex than equality."""
+ if type(self) is type(other):
+ return self == other
+ raise NotImplementedError()
+
+ def __getnewargs__(self):
+ """Returns a tuple that will be passed to __new__ on unpickling."""
+ return tuple(self.args)
+
+ def __ne__(self, o):
+ """Test inequality of two geometrical entities."""
+ return not self == o
+
+ def __new__(cls, *args, **kwargs):
+ # Points are sequences, but they should not
+ # be converted to Tuples, so use this detection function instead.
+ def is_seq_and_not_point(a):
+ # we cannot use isinstance(a, Point) since we cannot import Point
+ if hasattr(a, 'is_Point') and a.is_Point:
+ return False
+ return is_sequence(a)
+
+ args = [Tuple(*a) if is_seq_and_not_point(a) else sympify(a) for a in args]
+ return Basic.__new__(cls, *args)
+
+ def __radd__(self, a):
+ """Implementation of reverse add method."""
+ return a.__add__(self)
+
+ def __rtruediv__(self, a):
+ """Implementation of reverse division method."""
+ return a.__truediv__(self)
+
+ def __repr__(self):
+ """String representation of a GeometryEntity that can be evaluated
+ by sympy."""
+ return type(self).__name__ + repr(self.args)
+
+ def __rmul__(self, a):
+ """Implementation of reverse multiplication method."""
+ return a.__mul__(self)
+
+ def __rsub__(self, a):
+ """Implementation of reverse subtraction method."""
+ return a.__sub__(self)
+
+ def __str__(self):
+ """String representation of a GeometryEntity."""
+ return type(self).__name__ + sstr(self.args)
+
+ def _eval_subs(self, old, new):
+ from sympy.geometry.point import Point, Point3D
+ if is_sequence(old) or is_sequence(new):
+ if isinstance(self, Point3D):
+ old = Point3D(old)
+ new = Point3D(new)
+ else:
+ old = Point(old)
+ new = Point(new)
+ return self._subs(old, new)
+
+ def _repr_svg_(self):
+ """SVG representation of a GeometryEntity suitable for IPython"""
+
+ try:
+ bounds = self.bounds
+ except (NotImplementedError, TypeError):
+ # if we have no SVG representation, return None so IPython
+ # will fall back to the next representation
+ return None
+
+ if not all(x.is_number and x.is_finite for x in bounds):
+ return None
+
+ svg_top = ''''
+ ).format(transform, svg)
+
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
+ """Returns SVG path element for the GeometryEntity.
+
+ Parameters
+ ==========
+
+ scale_factor : float
+ Multiplication factor for the SVG stroke-width. Default is 1.
+ fill_color : str, optional
+ Hex string for fill color. Default is "#66cc99".
+ """
+ raise NotImplementedError()
+
+ def _sympy_(self):
+ return self
+
+ @property
+ def ambient_dimension(self):
+ """What is the dimension of the space that the object is contained in?"""
+ raise NotImplementedError()
+
+ @property
+ def bounds(self):
+ """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
+ rectangle for the geometric figure.
+
+ """
+
+ raise NotImplementedError()
+
+ def encloses(self, o):
+ """
+ Return True if o is inside (not on or outside) the boundaries of self.
+
+ The object will be decomposed into Points and individual Entities need
+ only define an encloses_point method for their class.
+
+ See Also
+ ========
+
+ sympy.geometry.ellipse.Ellipse.encloses_point
+ sympy.geometry.polygon.Polygon.encloses_point
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point, Polygon
+ >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
+ >>> t2 = Polygon(*RegularPolygon(Point(0, 0), 2, 3).vertices)
+ >>> t2.encloses(t)
+ True
+ >>> t.encloses(t2)
+ False
+
+ """
+
+ from sympy.geometry.point import Point
+ from sympy.geometry.line import Segment, Ray, Line
+ from sympy.geometry.ellipse import Ellipse
+ from sympy.geometry.polygon import Polygon, RegularPolygon
+
+ if isinstance(o, Point):
+ return self.encloses_point(o)
+ elif isinstance(o, Segment):
+ return all(self.encloses_point(x) for x in o.points)
+ elif isinstance(o, (Ray, Line)):
+ return False
+ elif isinstance(o, Ellipse):
+ return self.encloses_point(o.center) and \
+ self.encloses_point(
+ Point(o.center.x + o.hradius, o.center.y)) and \
+ not self.intersection(o)
+ elif isinstance(o, Polygon):
+ if isinstance(o, RegularPolygon):
+ if not self.encloses_point(o.center):
+ return False
+ return all(self.encloses_point(v) for v in o.vertices)
+ raise NotImplementedError()
+
+ def equals(self, o):
+ return self == o
+
+ def intersection(self, o):
+ """
+ Returns a list of all of the intersections of self with o.
+
+ Notes
+ =====
+
+ An entity is not required to implement this method.
+
+ If two different types of entities can intersect, the item with
+ higher index in ordering_of_classes should implement
+ intersections with anything having a lower index.
+
+ See Also
+ ========
+
+ sympy.geometry.util.intersection
+
+ """
+ raise NotImplementedError()
+
+ def is_similar(self, other):
+ """Is this geometrical entity similar to another geometrical entity?
+
+ Two entities are similar if a uniform scaling (enlarging or
+ shrinking) of one of the entities will allow one to obtain the other.
+
+ Notes
+ =====
+
+ This method is not intended to be used directly but rather
+ through the `are_similar` function found in util.py.
+ An entity is not required to implement this method.
+ If two different types of entities can be similar, it is only
+ required that one of them be able to determine this.
+
+ See Also
+ ========
+
+ scale
+
+ """
+ raise NotImplementedError()
+
+ def reflect(self, line):
+ """
+ Reflects an object across a line.
+
+ Parameters
+ ==========
+
+ line: Line
+
+ Examples
+ ========
+
+ >>> from sympy import pi, sqrt, Line, RegularPolygon
+ >>> l = Line((0, pi), slope=sqrt(2))
+ >>> pent = RegularPolygon((1, 2), 1, 5)
+ >>> rpent = pent.reflect(l)
+ >>> rpent
+ RegularPolygon(Point2D(-2*sqrt(2)*pi/3 - 1/3 + 4*sqrt(2)/3, 2/3 + 2*sqrt(2)/3 + 2*pi/3), -1, 5, -atan(2*sqrt(2)) + 3*pi/5)
+
+ >>> from sympy import pi, Line, Circle, Point
+ >>> l = Line((0, pi), slope=1)
+ >>> circ = Circle(Point(0, 0), 5)
+ >>> rcirc = circ.reflect(l)
+ >>> rcirc
+ Circle(Point2D(-pi, pi), -5)
+
+ """
+ from sympy.geometry.point import Point
+
+ g = self
+ l = line
+ o = Point(0, 0)
+ if l.slope.is_zero:
+ v = l.args[0].y
+ if not v: # x-axis
+ return g.scale(y=-1)
+ reps = [(p, p.translate(y=2*(v - p.y))) for p in g.atoms(Point)]
+ elif l.slope is oo:
+ v = l.args[0].x
+ if not v: # y-axis
+ return g.scale(x=-1)
+ reps = [(p, p.translate(x=2*(v - p.x))) for p in g.atoms(Point)]
+ else:
+ if not hasattr(g, 'reflect') and not all(
+ isinstance(arg, Point) for arg in g.args):
+ raise NotImplementedError(
+ 'reflect undefined or non-Point args in %s' % g)
+ a = atan(l.slope)
+ c = l.coefficients
+ d = -c[-1]/c[1] # y-intercept
+ # apply the transform to a single point
+ xf = Point(x, y)
+ xf = xf.translate(y=-d).rotate(-a, o).scale(y=-1
+ ).rotate(a, o).translate(y=d)
+ # replace every point using that transform
+ reps = [(p, xf.xreplace({x: p.x, y: p.y})) for p in g.atoms(Point)]
+ return g.xreplace(dict(reps))
+
+ def rotate(self, angle, pt=None):
+ """Rotate ``angle`` radians counterclockwise about Point ``pt``.
+
+ The default pt is the origin, Point(0, 0)
+
+ See Also
+ ========
+
+ scale, translate
+
+ Examples
+ ========
+
+ >>> from sympy import Point, RegularPolygon, Polygon, pi
+ >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
+ >>> t # vertex on x axis
+ Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
+ >>> t.rotate(pi/2) # vertex on y axis now
+ Triangle(Point2D(0, 1), Point2D(-sqrt(3)/2, -1/2), Point2D(sqrt(3)/2, -1/2))
+
+ """
+ newargs = []
+ for a in self.args:
+ if isinstance(a, GeometryEntity):
+ newargs.append(a.rotate(angle, pt))
+ else:
+ newargs.append(a)
+ return type(self)(*newargs)
+
+ def scale(self, x=1, y=1, pt=None):
+ """Scale the object by multiplying the x,y-coordinates by x and y.
+
+ If pt is given, the scaling is done relative to that point; the
+ object is shifted by -pt, scaled, and shifted by pt.
+
+ See Also
+ ========
+
+ rotate, translate
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point, Polygon
+ >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
+ >>> t
+ Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
+ >>> t.scale(2)
+ Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)/2), Point2D(-1, -sqrt(3)/2))
+ >>> t.scale(2, 2)
+ Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)), Point2D(-1, -sqrt(3)))
+
+ """
+ from sympy.geometry.point import Point
+ if pt:
+ pt = Point(pt, dim=2)
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
+ return type(self)(*[a.scale(x, y) for a in self.args]) # if this fails, override this class
+
+ def translate(self, x=0, y=0):
+ """Shift the object by adding to the x,y-coordinates the values x and y.
+
+ See Also
+ ========
+
+ rotate, scale
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point, Polygon
+ >>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
+ >>> t
+ Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
+ >>> t.translate(2)
+ Triangle(Point2D(3, 0), Point2D(3/2, sqrt(3)/2), Point2D(3/2, -sqrt(3)/2))
+ >>> t.translate(2, 2)
+ Triangle(Point2D(3, 2), Point2D(3/2, sqrt(3)/2 + 2), Point2D(3/2, 2 - sqrt(3)/2))
+
+ """
+ newargs = []
+ for a in self.args:
+ if isinstance(a, GeometryEntity):
+ newargs.append(a.translate(x, y))
+ else:
+ newargs.append(a)
+ return self.func(*newargs)
+
+ def parameter_value(self, other, t):
+ """Return the parameter corresponding to the given point.
+ Evaluating an arbitrary point of the entity at this parameter
+ value will return the given point.
+
+ Examples
+ ========
+
+ >>> from sympy import Line, Point
+ >>> from sympy.abc import t
+ >>> a = Point(0, 0)
+ >>> b = Point(2, 2)
+ >>> Line(a, b).parameter_value((1, 1), t)
+ {t: 1/2}
+ >>> Line(a, b).arbitrary_point(t).subs(_)
+ Point2D(1, 1)
+ """
+ from sympy.geometry.point import Point
+ if not isinstance(other, GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+ if not isinstance(other, Point):
+ raise ValueError("other must be a point")
+ sol = solve(self.arbitrary_point(T) - other, T, dict=True)
+ if not sol:
+ raise ValueError("Given point is not on %s" % func_name(self))
+ return {t: sol[0][T]}
+
+
+class GeometrySet(GeometryEntity, Set):
+ """Parent class of all GeometryEntity that are also Sets
+ (compatible with sympy.sets)
+ """
+ __slots__ = ()
+
+ def _contains(self, other):
+ """sympy.sets uses the _contains method, so include it for compatibility."""
+
+ if isinstance(other, Set) and other.is_FiniteSet:
+ return all(self.__contains__(i) for i in other)
+
+ return self.__contains__(other)
+
+@dispatch(GeometrySet, Set) # type:ignore # noqa:F811
+def union_sets(self, o): # noqa:F811
+ """ Returns the union of self and o
+ for use with sympy.sets.Set, if possible. """
+
+
+ # if its a FiniteSet, merge any points
+ # we contain and return a union with the rest
+ if o.is_FiniteSet:
+ other_points = [p for p in o if not self._contains(p)]
+ if len(other_points) == len(o):
+ return None
+ return Union(self, FiniteSet(*other_points))
+ if self._contains(o):
+ return self
+ return None
+
+
+@dispatch(GeometrySet, Set) # type: ignore # noqa:F811
+def intersection_sets(self, o): # noqa:F811
+ """ Returns a sympy.sets.Set of intersection objects,
+ if possible. """
+
+ from sympy.geometry.point import Point
+
+ try:
+ # if o is a FiniteSet, find the intersection directly
+ # to avoid infinite recursion
+ if o.is_FiniteSet:
+ inter = FiniteSet(*(p for p in o if self.contains(p)))
+ else:
+ inter = self.intersection(o)
+ except NotImplementedError:
+ # sympy.sets.Set.reduce expects None if an object
+ # doesn't know how to simplify
+ return None
+
+ # put the points in a FiniteSet
+ points = FiniteSet(*[p for p in inter if isinstance(p, Point)])
+ non_points = [p for p in inter if not isinstance(p, Point)]
+
+ return Union(*(non_points + [points]))
+
+def translate(x, y):
+ """Return the matrix to translate a 2-D point by x and y."""
+ rv = eye(3)
+ rv[2, 0] = x
+ rv[2, 1] = y
+ return rv
+
+
+def scale(x, y, pt=None):
+ """Return the matrix to multiply a 2-D point's coordinates by x and y.
+
+ If pt is given, the scaling is done relative to that point."""
+ rv = eye(3)
+ rv[0, 0] = x
+ rv[1, 1] = y
+ if pt:
+ from sympy.geometry.point import Point
+ pt = Point(pt, dim=2)
+ tr1 = translate(*(-pt).args)
+ tr2 = translate(*pt.args)
+ return tr1*rv*tr2
+ return rv
+
+
+def rotate(th):
+ """Return the matrix to rotate a 2-D point about the origin by ``angle``.
+
+ The angle is measured in radians. To Point a point about a point other
+ then the origin, translate the Point, do the rotation, and
+ translate it back:
+
+ >>> from sympy.geometry.entity import rotate, translate
+ >>> from sympy import Point, pi
+ >>> rot_about_11 = translate(-1, -1)*rotate(pi/2)*translate(1, 1)
+ >>> Point(1, 1).transform(rot_about_11)
+ Point2D(1, 1)
+ >>> Point(0, 0).transform(rot_about_11)
+ Point2D(2, 0)
+ """
+ s = sin(th)
+ rv = eye(3)*cos(th)
+ rv[0, 1] = s
+ rv[1, 0] = -s
+ rv[2, 2] = 1
+ return rv
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/exceptions.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/exceptions.py
new file mode 100644
index 0000000000000000000000000000000000000000..41d97af718de2cebad3accefcd60e43ccf74a3f6
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/exceptions.py
@@ -0,0 +1,5 @@
+"""Geometry Errors."""
+
+class GeometryError(ValueError):
+ """An exception raised by classes in the geometry module."""
+ pass
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/polygon.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/polygon.py
new file mode 100644
index 0000000000000000000000000000000000000000..3a2a02c7e4d9196da293e7bda7612f97555468aa
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/polygon.py
@@ -0,0 +1,2883 @@
+from sympy.core import Expr, S, oo, pi, sympify
+from sympy.core.evalf import N
+from sympy.core.sorting import default_sort_key, ordered
+from sympy.core.symbol import _symbol, Dummy, Symbol
+from sympy.functions.elementary.complexes import sign
+from sympy.functions.elementary.piecewise import Piecewise
+from sympy.functions.elementary.trigonometric import cos, sin, tan
+from .ellipse import Circle
+from .entity import GeometryEntity, GeometrySet
+from .exceptions import GeometryError
+from .line import Line, Segment, Ray
+from .point import Point
+from sympy.logic import And
+from sympy.matrices import Matrix
+from sympy.simplify.simplify import simplify
+from sympy.solvers.solvers import solve
+from sympy.utilities.iterables import has_dups, has_variety, uniq, rotate_left, least_rotation
+from sympy.utilities.misc import as_int, func_name
+
+from mpmath.libmp.libmpf import prec_to_dps
+
+import warnings
+
+
+x, y, T = [Dummy('polygon_dummy', real=True) for i in range(3)]
+
+
+class Polygon(GeometrySet):
+ """A two-dimensional polygon.
+
+ A simple polygon in space. Can be constructed from a sequence of points
+ or from a center, radius, number of sides and rotation angle.
+
+ Parameters
+ ==========
+
+ vertices
+ A sequence of points.
+
+ n : int, optional
+ If $> 0$, an n-sided RegularPolygon is created.
+ Default value is $0$.
+
+ Attributes
+ ==========
+
+ area
+ angles
+ perimeter
+ vertices
+ centroid
+ sides
+
+ Raises
+ ======
+
+ GeometryError
+ If all parameters are not Points.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle
+
+ Notes
+ =====
+
+ Polygons are treated as closed paths rather than 2D areas so
+ some calculations can be be negative or positive (e.g., area)
+ based on the orientation of the points.
+
+ Any consecutive identical points are reduced to a single point
+ and any points collinear and between two points will be removed
+ unless they are needed to define an explicit intersection (see examples).
+
+ A Triangle, Segment or Point will be returned when there are 3 or
+ fewer points provided.
+
+ Examples
+ ========
+
+ >>> from sympy import Polygon, pi
+ >>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
+ >>> Polygon(p1, p2, p3, p4)
+ Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1))
+ >>> Polygon(p1, p2)
+ Segment2D(Point2D(0, 0), Point2D(1, 0))
+ >>> Polygon(p1, p2, p5)
+ Segment2D(Point2D(0, 0), Point2D(3, 0))
+
+ The area of a polygon is calculated as positive when vertices are
+ traversed in a ccw direction. When the sides of a polygon cross the
+ area will have positive and negative contributions. The following
+ defines a Z shape where the bottom right connects back to the top
+ left.
+
+ >>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area
+ 0
+
+ When the keyword `n` is used to define the number of sides of the
+ Polygon then a RegularPolygon is created and the other arguments are
+ interpreted as center, radius and rotation. The unrotated RegularPolygon
+ will always have a vertex at Point(r, 0) where `r` is the radius of the
+ circle that circumscribes the RegularPolygon. Its method `spin` can be
+ used to increment that angle.
+
+ >>> p = Polygon((0,0), 1, n=3)
+ >>> p
+ RegularPolygon(Point2D(0, 0), 1, 3, 0)
+ >>> p.vertices[0]
+ Point2D(1, 0)
+ >>> p.args[0]
+ Point2D(0, 0)
+ >>> p.spin(pi/2)
+ >>> p.vertices[0]
+ Point2D(0, 1)
+
+ """
+
+ __slots__ = ()
+
+ def __new__(cls, *args, n = 0, **kwargs):
+ if n:
+ args = list(args)
+ # return a virtual polygon with n sides
+ if len(args) == 2: # center, radius
+ args.append(n)
+ elif len(args) == 3: # center, radius, rotation
+ args.insert(2, n)
+ return RegularPolygon(*args, **kwargs)
+
+ vertices = [Point(a, dim=2, **kwargs) for a in args]
+
+ # remove consecutive duplicates
+ nodup = []
+ for p in vertices:
+ if nodup and p == nodup[-1]:
+ continue
+ nodup.append(p)
+ if len(nodup) > 1 and nodup[-1] == nodup[0]:
+ nodup.pop() # last point was same as first
+
+ # remove collinear points
+ i = -3
+ while i < len(nodup) - 3 and len(nodup) > 2:
+ a, b, c = nodup[i], nodup[i + 1], nodup[i + 2]
+ if Point.is_collinear(a, b, c):
+ nodup.pop(i + 1)
+ if a == c:
+ nodup.pop(i)
+ else:
+ i += 1
+
+ vertices = list(nodup)
+
+ if len(vertices) > 3:
+ return GeometryEntity.__new__(cls, *vertices, **kwargs)
+ elif len(vertices) == 3:
+ return Triangle(*vertices, **kwargs)
+ elif len(vertices) == 2:
+ return Segment(*vertices, **kwargs)
+ else:
+ return Point(*vertices, **kwargs)
+
+ @property
+ def area(self):
+ """
+ The area of the polygon.
+
+ Notes
+ =====
+
+ The area calculation can be positive or negative based on the
+ orientation of the points. If any side of the polygon crosses
+ any other side, there will be areas having opposite signs.
+
+ See Also
+ ========
+
+ sympy.geometry.ellipse.Ellipse.area
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
+ >>> poly = Polygon(p1, p2, p3, p4)
+ >>> poly.area
+ 3
+
+ In the Z shaped polygon (with the lower right connecting back
+ to the upper left) the areas cancel out:
+
+ >>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0))
+ >>> Z.area
+ 0
+
+ In the M shaped polygon, areas do not cancel because no side
+ crosses any other (though there is a point of contact).
+
+ >>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0))
+ >>> M.area
+ -3/2
+
+ """
+ area = 0
+ args = self.args
+ for i in range(len(args)):
+ x1, y1 = args[i - 1].args
+ x2, y2 = args[i].args
+ area += x1*y2 - x2*y1
+ return simplify(area) / 2
+
+ @staticmethod
+ def _isright(a, b, c):
+ """Return True/False for cw/ccw orientation.
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon
+ >>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]]
+ >>> Polygon._isright(a, b, c)
+ True
+ >>> Polygon._isright(a, c, b)
+ False
+ """
+ ba = b - a
+ ca = c - a
+ t_area = simplify(ba.x*ca.y - ca.x*ba.y)
+ res = t_area.is_nonpositive
+ if res is None:
+ raise ValueError("Can't determine orientation")
+ return res
+
+ @property
+ def angles(self):
+ """The internal angle at each vertex.
+
+ Returns
+ =======
+
+ angles : dict
+ A dictionary where each key is a vertex and each value is the
+ internal angle at that vertex. The vertices are represented as
+ Points.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
+ >>> poly = Polygon(p1, p2, p3, p4)
+ >>> poly.angles[p1]
+ pi/2
+ >>> poly.angles[p2]
+ acos(-4*sqrt(17)/17)
+
+ """
+
+ # Determine orientation of points
+ args = self.vertices
+ cw = self._isright(args[-1], args[0], args[1])
+
+ ret = {}
+ for i in range(len(args)):
+ a, b, c = args[i - 2], args[i - 1], args[i]
+ ang = Ray(b, a).angle_between(Ray(b, c))
+ if cw ^ self._isright(a, b, c):
+ ret[b] = 2*S.Pi - ang
+ else:
+ ret[b] = ang
+ return ret
+
+ @property
+ def ambient_dimension(self):
+ return self.vertices[0].ambient_dimension
+
+ @property
+ def perimeter(self):
+ """The perimeter of the polygon.
+
+ Returns
+ =======
+
+ perimeter : number or Basic instance
+
+ See Also
+ ========
+
+ sympy.geometry.line.Segment.length
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
+ >>> poly = Polygon(p1, p2, p3, p4)
+ >>> poly.perimeter
+ sqrt(17) + 7
+ """
+ p = 0
+ args = self.vertices
+ for i in range(len(args)):
+ p += args[i - 1].distance(args[i])
+ return simplify(p)
+
+ @property
+ def vertices(self):
+ """The vertices of the polygon.
+
+ Returns
+ =======
+
+ vertices : list of Points
+
+ Notes
+ =====
+
+ When iterating over the vertices, it is more efficient to index self
+ rather than to request the vertices and index them. Only use the
+ vertices when you want to process all of them at once. This is even
+ more important with RegularPolygons that calculate each vertex.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
+ >>> poly = Polygon(p1, p2, p3, p4)
+ >>> poly.vertices
+ [Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)]
+ >>> poly.vertices[0]
+ Point2D(0, 0)
+
+ """
+ return list(self.args)
+
+ @property
+ def centroid(self):
+ """The centroid of the polygon.
+
+ Returns
+ =======
+
+ centroid : Point
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.util.centroid
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
+ >>> poly = Polygon(p1, p2, p3, p4)
+ >>> poly.centroid
+ Point2D(31/18, 11/18)
+
+ """
+ A = 1/(6*self.area)
+ cx, cy = 0, 0
+ args = self.args
+ for i in range(len(args)):
+ x1, y1 = args[i - 1].args
+ x2, y2 = args[i].args
+ v = x1*y2 - x2*y1
+ cx += v*(x1 + x2)
+ cy += v*(y1 + y2)
+ return Point(simplify(A*cx), simplify(A*cy))
+
+
+ def second_moment_of_area(self, point=None):
+ """Returns the second moment and product moment of area of a two dimensional polygon.
+
+ Parameters
+ ==========
+
+ point : Point, two-tuple of sympifyable objects, or None(default=None)
+ point is the point about which second moment of area is to be found.
+ If "point=None" it will be calculated about the axis passing through the
+ centroid of the polygon.
+
+ Returns
+ =======
+
+ I_xx, I_yy, I_xy : number or SymPy expression
+ I_xx, I_yy are second moment of area of a two dimensional polygon.
+ I_xy is product moment of area of a two dimensional polygon.
+
+ Examples
+ ========
+
+ >>> from sympy import Polygon, symbols
+ >>> a, b = symbols('a, b')
+ >>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)]
+ >>> rectangle = Polygon(p1, p2, p3, p4)
+ >>> rectangle.second_moment_of_area()
+ (a*b**3/12, a**3*b/12, 0)
+ >>> rectangle.second_moment_of_area(p5)
+ (a*b**3/9, a**3*b/9, a**2*b**2/36)
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Second_moment_of_area
+
+ """
+
+ I_xx, I_yy, I_xy = 0, 0, 0
+ args = self.vertices
+ for i in range(len(args)):
+ x1, y1 = args[i-1].args
+ x2, y2 = args[i].args
+ v = x1*y2 - x2*y1
+ I_xx += (y1**2 + y1*y2 + y2**2)*v
+ I_yy += (x1**2 + x1*x2 + x2**2)*v
+ I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v
+ A = self.area
+ c_x = self.centroid[0]
+ c_y = self.centroid[1]
+ # parallel axis theorem
+ I_xx_c = (I_xx/12) - (A*(c_y**2))
+ I_yy_c = (I_yy/12) - (A*(c_x**2))
+ I_xy_c = (I_xy/24) - (A*(c_x*c_y))
+ if point is None:
+ return I_xx_c, I_yy_c, I_xy_c
+
+ I_xx = (I_xx_c + A*((point[1]-c_y)**2))
+ I_yy = (I_yy_c + A*((point[0]-c_x)**2))
+ I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y)))
+
+ return I_xx, I_yy, I_xy
+
+
+ def first_moment_of_area(self, point=None):
+ """
+ Returns the first moment of area of a two-dimensional polygon with
+ respect to a certain point of interest.
+
+ First moment of area is a measure of the distribution of the area
+ of a polygon in relation to an axis. The first moment of area of
+ the entire polygon about its own centroid is always zero. Therefore,
+ here it is calculated for an area, above or below a certain point
+ of interest, that makes up a smaller portion of the polygon. This
+ area is bounded by the point of interest and the extreme end
+ (top or bottom) of the polygon. The first moment for this area is
+ is then determined about the centroidal axis of the initial polygon.
+
+ References
+ ==========
+
+ .. [1] https://skyciv.com/docs/tutorials/section-tutorials/calculating-the-statical-or-first-moment-of-area-of-beam-sections/?cc=BMD
+ .. [2] https://mechanicalc.com/reference/cross-sections
+
+ Parameters
+ ==========
+
+ point: Point, two-tuple of sympifyable objects, or None (default=None)
+ point is the point above or below which the area of interest lies
+ If ``point=None`` then the centroid acts as the point of interest.
+
+ Returns
+ =======
+
+ Q_x, Q_y: number or SymPy expressions
+ Q_x is the first moment of area about the x-axis
+ Q_y is the first moment of area about the y-axis
+ A negative sign indicates that the section modulus is
+ determined for a section below (or left of) the centroidal axis
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon
+ >>> a, b = 50, 10
+ >>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
+ >>> p = Polygon(p1, p2, p3, p4)
+ >>> p.first_moment_of_area()
+ (625, 3125)
+ >>> p.first_moment_of_area(point=Point(30, 7))
+ (525, 3000)
+ """
+ if point:
+ xc, yc = self.centroid
+ else:
+ point = self.centroid
+ xc, yc = point
+
+ h_line = Line(point, slope=0)
+ v_line = Line(point, slope=S.Infinity)
+
+ h_poly = self.cut_section(h_line)
+ v_poly = self.cut_section(v_line)
+
+ poly_1 = h_poly[0] if h_poly[0].area <= h_poly[1].area else h_poly[1]
+ poly_2 = v_poly[0] if v_poly[0].area <= v_poly[1].area else v_poly[1]
+
+ Q_x = (poly_1.centroid.y - yc)*poly_1.area
+ Q_y = (poly_2.centroid.x - xc)*poly_2.area
+
+ return Q_x, Q_y
+
+
+ def polar_second_moment_of_area(self):
+ """Returns the polar modulus of a two-dimensional polygon
+
+ It is a constituent of the second moment of area, linked through
+ the perpendicular axis theorem. While the planar second moment of
+ area describes an object's resistance to deflection (bending) when
+ subjected to a force applied to a plane parallel to the central
+ axis, the polar second moment of area describes an object's
+ resistance to deflection when subjected to a moment applied in a
+ plane perpendicular to the object's central axis (i.e. parallel to
+ the cross-section)
+
+ Examples
+ ========
+
+ >>> from sympy import Polygon, symbols
+ >>> a, b = symbols('a, b')
+ >>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
+ >>> rectangle.polar_second_moment_of_area()
+ a**3*b/12 + a*b**3/12
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia
+
+ """
+ second_moment = self.second_moment_of_area()
+ return second_moment[0] + second_moment[1]
+
+
+ def section_modulus(self, point=None):
+ """Returns a tuple with the section modulus of a two-dimensional
+ polygon.
+
+ Section modulus is a geometric property of a polygon defined as the
+ ratio of second moment of area to the distance of the extreme end of
+ the polygon from the centroidal axis.
+
+ Parameters
+ ==========
+
+ point : Point, two-tuple of sympifyable objects, or None(default=None)
+ point is the point at which section modulus is to be found.
+ If "point=None" it will be calculated for the point farthest from the
+ centroidal axis of the polygon.
+
+ Returns
+ =======
+
+ S_x, S_y: numbers or SymPy expressions
+ S_x is the section modulus with respect to the x-axis
+ S_y is the section modulus with respect to the y-axis
+ A negative sign indicates that the section modulus is
+ determined for a point below the centroidal axis
+
+ Examples
+ ========
+
+ >>> from sympy import symbols, Polygon, Point
+ >>> a, b = symbols('a, b', positive=True)
+ >>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
+ >>> rectangle.section_modulus()
+ (a*b**2/6, a**2*b/6)
+ >>> rectangle.section_modulus(Point(a/4, b/4))
+ (-a*b**2/3, -a**2*b/3)
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Section_modulus
+
+ """
+ x_c, y_c = self.centroid
+ if point is None:
+ # taking x and y as maximum distances from centroid
+ x_min, y_min, x_max, y_max = self.bounds
+ y = max(y_c - y_min, y_max - y_c)
+ x = max(x_c - x_min, x_max - x_c)
+ else:
+ # taking x and y as distances of the given point from the centroid
+ y = point.y - y_c
+ x = point.x - x_c
+
+ second_moment= self.second_moment_of_area()
+ S_x = second_moment[0]/y
+ S_y = second_moment[1]/x
+
+ return S_x, S_y
+
+
+ @property
+ def sides(self):
+ """The directed line segments that form the sides of the polygon.
+
+ Returns
+ =======
+
+ sides : list of sides
+ Each side is a directed Segment.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.line.Segment
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
+ >>> poly = Polygon(p1, p2, p3, p4)
+ >>> poly.sides
+ [Segment2D(Point2D(0, 0), Point2D(1, 0)),
+ Segment2D(Point2D(1, 0), Point2D(5, 1)),
+ Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))]
+
+ """
+ res = []
+ args = self.vertices
+ for i in range(-len(args), 0):
+ res.append(Segment(args[i], args[i + 1]))
+ return res
+
+ @property
+ def bounds(self):
+ """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
+ rectangle for the geometric figure.
+
+ """
+
+ verts = self.vertices
+ xs = [p.x for p in verts]
+ ys = [p.y for p in verts]
+ return (min(xs), min(ys), max(xs), max(ys))
+
+ def is_convex(self):
+ """Is the polygon convex?
+
+ A polygon is convex if all its interior angles are less than 180
+ degrees and there are no intersections between sides.
+
+ Returns
+ =======
+
+ is_convex : boolean
+ True if this polygon is convex, False otherwise.
+
+ See Also
+ ========
+
+ sympy.geometry.util.convex_hull
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
+ >>> poly = Polygon(p1, p2, p3, p4)
+ >>> poly.is_convex()
+ True
+
+ """
+ # Determine orientation of points
+ args = self.vertices
+ cw = self._isright(args[-2], args[-1], args[0])
+ for i in range(1, len(args)):
+ if cw ^ self._isright(args[i - 2], args[i - 1], args[i]):
+ return False
+ # check for intersecting sides
+ sides = self.sides
+ for i, si in enumerate(sides):
+ pts = si.args
+ # exclude the sides connected to si
+ for j in range(1 if i == len(sides) - 1 else 0, i - 1):
+ sj = sides[j]
+ if sj.p1 not in pts and sj.p2 not in pts:
+ hit = si.intersection(sj)
+ if hit:
+ return False
+ return True
+
+ def encloses_point(self, p):
+ """
+ Return True if p is enclosed by (is inside of) self.
+
+ Notes
+ =====
+
+ Being on the border of self is considered False.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ encloses_point : True, False or None
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point
+
+ Examples
+ ========
+
+ >>> from sympy import Polygon, Point
+ >>> p = Polygon((0, 0), (4, 0), (4, 4))
+ >>> p.encloses_point(Point(2, 1))
+ True
+ >>> p.encloses_point(Point(2, 2))
+ False
+ >>> p.encloses_point(Point(5, 5))
+ False
+
+ References
+ ==========
+
+ .. [1] http://paulbourke.net/geometry/polygonmesh/#insidepoly
+
+ """
+ p = Point(p, dim=2)
+ if p in self.vertices or any(p in s for s in self.sides):
+ return False
+
+ # move to p, checking that the result is numeric
+ lit = []
+ for v in self.vertices:
+ lit.append(v - p) # the difference is simplified
+ if lit[-1].free_symbols:
+ return None
+
+ poly = Polygon(*lit)
+
+ # polygon closure is assumed in the following test but Polygon removes duplicate pts so
+ # the last point has to be added so all sides are computed. Using Polygon.sides is
+ # not good since Segments are unordered.
+ args = poly.args
+ indices = list(range(-len(args), 1))
+
+ if poly.is_convex():
+ orientation = None
+ for i in indices:
+ a = args[i]
+ b = args[i + 1]
+ test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative
+ if orientation is None:
+ orientation = test
+ elif test is not orientation:
+ return False
+ return True
+
+ hit_odd = False
+ p1x, p1y = args[0].args
+ for i in indices[1:]:
+ p2x, p2y = args[i].args
+ if 0 > min(p1y, p2y):
+ if 0 <= max(p1y, p2y):
+ if 0 <= max(p1x, p2x):
+ if p1y != p2y:
+ xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x
+ if p1x == p2x or 0 <= xinters:
+ hit_odd = not hit_odd
+ p1x, p1y = p2x, p2y
+ return hit_odd
+
+ def arbitrary_point(self, parameter='t'):
+ """A parameterized point on the polygon.
+
+ The parameter, varying from 0 to 1, assigns points to the position on
+ the perimeter that is that fraction of the total perimeter. So the
+ point evaluated at t=1/2 would return the point from the first vertex
+ that is 1/2 way around the polygon.
+
+ Parameters
+ ==========
+
+ parameter : str, optional
+ Default value is 't'.
+
+ Returns
+ =======
+
+ arbitrary_point : Point
+
+ Raises
+ ======
+
+ ValueError
+ When `parameter` already appears in the Polygon's definition.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Polygon, Symbol
+ >>> t = Symbol('t', real=True)
+ >>> tri = Polygon((0, 0), (1, 0), (1, 1))
+ >>> p = tri.arbitrary_point('t')
+ >>> perimeter = tri.perimeter
+ >>> s1, s2 = [s.length for s in tri.sides[:2]]
+ >>> p.subs(t, (s1 + s2/2)/perimeter)
+ Point2D(1, 1/2)
+
+ """
+ t = _symbol(parameter, real=True)
+ if t.name in (f.name for f in self.free_symbols):
+ raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
+ sides = []
+ perimeter = self.perimeter
+ perim_fraction_start = 0
+ for s in self.sides:
+ side_perim_fraction = s.length/perimeter
+ perim_fraction_end = perim_fraction_start + side_perim_fraction
+ pt = s.arbitrary_point(parameter).subs(
+ t, (t - perim_fraction_start)/side_perim_fraction)
+ sides.append(
+ (pt, (And(perim_fraction_start <= t, t < perim_fraction_end))))
+ perim_fraction_start = perim_fraction_end
+ return Piecewise(*sides)
+
+ def parameter_value(self, other, t):
+ if not isinstance(other,GeometryEntity):
+ other = Point(other, dim=self.ambient_dimension)
+ if not isinstance(other,Point):
+ raise ValueError("other must be a point")
+ if other.free_symbols:
+ raise NotImplementedError('non-numeric coordinates')
+ unknown = False
+ p = self.arbitrary_point(T)
+ for pt, cond in p.args:
+ sol = solve(pt - other, T, dict=True)
+ if not sol:
+ continue
+ value = sol[0][T]
+ if simplify(cond.subs(T, value)) == True:
+ return {t: value}
+ unknown = True
+ if unknown:
+ raise ValueError("Given point may not be on %s" % func_name(self))
+ raise ValueError("Given point is not on %s" % func_name(self))
+
+ def plot_interval(self, parameter='t'):
+ """The plot interval for the default geometric plot of the polygon.
+
+ Parameters
+ ==========
+
+ parameter : str, optional
+ Default value is 't'.
+
+ Returns
+ =======
+
+ plot_interval : list (plot interval)
+ [parameter, lower_bound, upper_bound]
+
+ Examples
+ ========
+
+ >>> from sympy import Polygon
+ >>> p = Polygon((0, 0), (1, 0), (1, 1))
+ >>> p.plot_interval()
+ [t, 0, 1]
+
+ """
+ t = Symbol(parameter, real=True)
+ return [t, 0, 1]
+
+ def intersection(self, o):
+ """The intersection of polygon and geometry entity.
+
+ The intersection may be empty and can contain individual Points and
+ complete Line Segments.
+
+ Parameters
+ ==========
+
+ other: GeometryEntity
+
+ Returns
+ =======
+
+ intersection : list
+ The list of Segments and Points
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.line.Segment
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon, Line
+ >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
+ >>> poly1 = Polygon(p1, p2, p3, p4)
+ >>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
+ >>> poly2 = Polygon(p5, p6, p7)
+ >>> poly1.intersection(poly2)
+ [Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)]
+ >>> poly1.intersection(Line(p1, p2))
+ [Segment2D(Point2D(0, 0), Point2D(1, 0))]
+ >>> poly1.intersection(p1)
+ [Point2D(0, 0)]
+ """
+ intersection_result = []
+ k = o.sides if isinstance(o, Polygon) else [o]
+ for side in self.sides:
+ for side1 in k:
+ intersection_result.extend(side.intersection(side1))
+
+ intersection_result = list(uniq(intersection_result))
+ points = [entity for entity in intersection_result if isinstance(entity, Point)]
+ segments = [entity for entity in intersection_result if isinstance(entity, Segment)]
+
+ if points and segments:
+ points_in_segments = list(uniq([point for point in points for segment in segments if point in segment]))
+ if points_in_segments:
+ for i in points_in_segments:
+ points.remove(i)
+ return list(ordered(segments + points))
+ else:
+ return list(ordered(intersection_result))
+
+
+ def cut_section(self, line):
+ """
+ Returns a tuple of two polygon segments that lie above and below
+ the intersecting line respectively.
+
+ Parameters
+ ==========
+
+ line: Line object of geometry module
+ line which cuts the Polygon. The part of the Polygon that lies
+ above and below this line is returned.
+
+ Returns
+ =======
+
+ upper_polygon, lower_polygon: Polygon objects or None
+ upper_polygon is the polygon that lies above the given line.
+ lower_polygon is the polygon that lies below the given line.
+ upper_polygon and lower polygon are ``None`` when no polygon
+ exists above the line or below the line.
+
+ Raises
+ ======
+
+ ValueError: When the line does not intersect the polygon
+
+ Examples
+ ========
+
+ >>> from sympy import Polygon, Line
+ >>> a, b = 20, 10
+ >>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
+ >>> rectangle = Polygon(p1, p2, p3, p4)
+ >>> t = rectangle.cut_section(Line((0, 5), slope=0))
+ >>> t
+ (Polygon(Point2D(0, 10), Point2D(0, 5), Point2D(20, 5), Point2D(20, 10)),
+ Polygon(Point2D(0, 5), Point2D(0, 0), Point2D(20, 0), Point2D(20, 5)))
+ >>> upper_segment, lower_segment = t
+ >>> upper_segment.area
+ 100
+ >>> upper_segment.centroid
+ Point2D(10, 15/2)
+ >>> lower_segment.centroid
+ Point2D(10, 5/2)
+
+ References
+ ==========
+
+ .. [1] https://github.com/sympy/sympy/wiki/A-method-to-return-a-cut-section-of-any-polygon-geometry
+
+ """
+ intersection_points = self.intersection(line)
+ if not intersection_points:
+ raise ValueError("This line does not intersect the polygon")
+
+ points = list(self.vertices)
+ points.append(points[0])
+
+ eq = line.equation(x, y)
+
+ # considering equation of line to be `ax +by + c`
+ a = eq.coeff(x)
+ b = eq.coeff(y)
+
+ upper_vertices = []
+ lower_vertices = []
+ # prev is true when previous point is above the line
+ prev = True
+ prev_point = None
+ for point in points:
+ # when coefficient of y is 0, right side of the line is
+ # considered
+ compare = eq.subs({x: point.x, y: point.y})/b if b \
+ else eq.subs(x, point.x)/a
+
+ # if point lies above line
+ if compare > 0:
+ if not prev:
+ # if previous point lies below the line, the intersection
+ # point of the polygon edge and the line has to be included
+ edge = Line(point, prev_point)
+ new_point = edge.intersection(line)
+ upper_vertices.append(new_point[0])
+ lower_vertices.append(new_point[0])
+
+ upper_vertices.append(point)
+ prev = True
+ else:
+ if prev and prev_point:
+ edge = Line(point, prev_point)
+ new_point = edge.intersection(line)
+ upper_vertices.append(new_point[0])
+ lower_vertices.append(new_point[0])
+ lower_vertices.append(point)
+ prev = False
+ prev_point = point
+
+ upper_polygon, lower_polygon = None, None
+ if upper_vertices and isinstance(Polygon(*upper_vertices), Polygon):
+ upper_polygon = Polygon(*upper_vertices)
+ if lower_vertices and isinstance(Polygon(*lower_vertices), Polygon):
+ lower_polygon = Polygon(*lower_vertices)
+
+ return upper_polygon, lower_polygon
+
+
+ def distance(self, o):
+ """
+ Returns the shortest distance between self and o.
+
+ If o is a point, then self does not need to be convex.
+ If o is another polygon self and o must be convex.
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon, RegularPolygon
+ >>> p1, p2 = map(Point, [(0, 0), (7, 5)])
+ >>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices)
+ >>> poly.distance(p2)
+ sqrt(61)
+ """
+ if isinstance(o, Point):
+ dist = oo
+ for side in self.sides:
+ current = side.distance(o)
+ if current == 0:
+ return S.Zero
+ elif current < dist:
+ dist = current
+ return dist
+ elif isinstance(o, Polygon) and self.is_convex() and o.is_convex():
+ return self._do_poly_distance(o)
+ raise NotImplementedError()
+
+ def _do_poly_distance(self, e2):
+ """
+ Calculates the least distance between the exteriors of two
+ convex polygons e1 and e2. Does not check for the convexity
+ of the polygons as this is checked by Polygon.distance.
+
+ Notes
+ =====
+
+ - Prints a warning if the two polygons possibly intersect as the return
+ value will not be valid in such a case. For a more through test of
+ intersection use intersection().
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point.distance
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Polygon
+ >>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
+ >>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
+ >>> square._do_poly_distance(triangle)
+ sqrt(2)/2
+
+ Description of method used
+ ==========================
+
+ Method:
+ [1] https://web.archive.org/web/20150509035744/http://cgm.cs.mcgill.ca/~orm/mind2p.html
+ Uses rotating calipers:
+ [2] https://en.wikipedia.org/wiki/Rotating_calipers
+ and antipodal points:
+ [3] https://en.wikipedia.org/wiki/Antipodal_point
+ """
+ e1 = self
+
+ '''Tests for a possible intersection between the polygons and outputs a warning'''
+ e1_center = e1.centroid
+ e2_center = e2.centroid
+ e1_max_radius = S.Zero
+ e2_max_radius = S.Zero
+ for vertex in e1.vertices:
+ r = Point.distance(e1_center, vertex)
+ if e1_max_radius < r:
+ e1_max_radius = r
+ for vertex in e2.vertices:
+ r = Point.distance(e2_center, vertex)
+ if e2_max_radius < r:
+ e2_max_radius = r
+ center_dist = Point.distance(e1_center, e2_center)
+ if center_dist <= e1_max_radius + e2_max_radius:
+ warnings.warn("Polygons may intersect producing erroneous output",
+ stacklevel=3)
+
+ '''
+ Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2
+ '''
+ e1_ymax = Point(0, -oo)
+ e2_ymin = Point(0, oo)
+
+ for vertex in e1.vertices:
+ if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x):
+ e1_ymax = vertex
+ for vertex in e2.vertices:
+ if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x):
+ e2_ymin = vertex
+ min_dist = Point.distance(e1_ymax, e2_ymin)
+
+ '''
+ Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points
+ to which the vertex is connected as its value. The same is then done for e2.
+ '''
+ e1_connections = {}
+ e2_connections = {}
+
+ for side in e1.sides:
+ if side.p1 in e1_connections:
+ e1_connections[side.p1].append(side.p2)
+ else:
+ e1_connections[side.p1] = [side.p2]
+
+ if side.p2 in e1_connections:
+ e1_connections[side.p2].append(side.p1)
+ else:
+ e1_connections[side.p2] = [side.p1]
+
+ for side in e2.sides:
+ if side.p1 in e2_connections:
+ e2_connections[side.p1].append(side.p2)
+ else:
+ e2_connections[side.p1] = [side.p2]
+
+ if side.p2 in e2_connections:
+ e2_connections[side.p2].append(side.p1)
+ else:
+ e2_connections[side.p2] = [side.p1]
+
+ e1_current = e1_ymax
+ e2_current = e2_ymin
+ support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero))
+
+ '''
+ Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax,
+ this information combined with the above produced dictionaries determines the
+ path that will be taken around the polygons
+ '''
+ point1 = e1_connections[e1_ymax][0]
+ point2 = e1_connections[e1_ymax][1]
+ angle1 = support_line.angle_between(Line(e1_ymax, point1))
+ angle2 = support_line.angle_between(Line(e1_ymax, point2))
+ if angle1 < angle2:
+ e1_next = point1
+ elif angle2 < angle1:
+ e1_next = point2
+ elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2):
+ e1_next = point2
+ else:
+ e1_next = point1
+
+ point1 = e2_connections[e2_ymin][0]
+ point2 = e2_connections[e2_ymin][1]
+ angle1 = support_line.angle_between(Line(e2_ymin, point1))
+ angle2 = support_line.angle_between(Line(e2_ymin, point2))
+ if angle1 > angle2:
+ e2_next = point1
+ elif angle2 > angle1:
+ e2_next = point2
+ elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2):
+ e2_next = point2
+ else:
+ e2_next = point1
+
+ '''
+ Loop which determines the distance between anti-podal pairs and updates the
+ minimum distance accordingly. It repeats until it reaches the starting position.
+ '''
+ while True:
+ e1_angle = support_line.angle_between(Line(e1_current, e1_next))
+ e2_angle = pi - support_line.angle_between(Line(
+ e2_current, e2_next))
+
+ if (e1_angle < e2_angle) is True:
+ support_line = Line(e1_current, e1_next)
+ e1_segment = Segment(e1_current, e1_next)
+ min_dist_current = e1_segment.distance(e2_current)
+
+ if min_dist_current.evalf() < min_dist.evalf():
+ min_dist = min_dist_current
+
+ if e1_connections[e1_next][0] != e1_current:
+ e1_current = e1_next
+ e1_next = e1_connections[e1_next][0]
+ else:
+ e1_current = e1_next
+ e1_next = e1_connections[e1_next][1]
+ elif (e1_angle > e2_angle) is True:
+ support_line = Line(e2_next, e2_current)
+ e2_segment = Segment(e2_current, e2_next)
+ min_dist_current = e2_segment.distance(e1_current)
+
+ if min_dist_current.evalf() < min_dist.evalf():
+ min_dist = min_dist_current
+
+ if e2_connections[e2_next][0] != e2_current:
+ e2_current = e2_next
+ e2_next = e2_connections[e2_next][0]
+ else:
+ e2_current = e2_next
+ e2_next = e2_connections[e2_next][1]
+ else:
+ support_line = Line(e1_current, e1_next)
+ e1_segment = Segment(e1_current, e1_next)
+ e2_segment = Segment(e2_current, e2_next)
+ min1 = e1_segment.distance(e2_next)
+ min2 = e2_segment.distance(e1_next)
+
+ min_dist_current = min(min1, min2)
+ if min_dist_current.evalf() < min_dist.evalf():
+ min_dist = min_dist_current
+
+ if e1_connections[e1_next][0] != e1_current:
+ e1_current = e1_next
+ e1_next = e1_connections[e1_next][0]
+ else:
+ e1_current = e1_next
+ e1_next = e1_connections[e1_next][1]
+
+ if e2_connections[e2_next][0] != e2_current:
+ e2_current = e2_next
+ e2_next = e2_connections[e2_next][0]
+ else:
+ e2_current = e2_next
+ e2_next = e2_connections[e2_next][1]
+ if e1_current == e1_ymax and e2_current == e2_ymin:
+ break
+ return min_dist
+
+ def _svg(self, scale_factor=1., fill_color="#66cc99"):
+ """Returns SVG path element for the Polygon.
+
+ Parameters
+ ==========
+
+ scale_factor : float
+ Multiplication factor for the SVG stroke-width. Default is 1.
+ fill_color : str, optional
+ Hex string for fill color. Default is "#66cc99".
+ """
+ verts = map(N, self.vertices)
+ coords = ["{},{}".format(p.x, p.y) for p in verts]
+ path = "M {} L {} z".format(coords[0], " L ".join(coords[1:]))
+ return (
+ ''
+ ).format(2. * scale_factor, path, fill_color)
+
+ def _hashable_content(self):
+
+ D = {}
+ def ref_list(point_list):
+ kee = {}
+ for i, p in enumerate(ordered(set(point_list))):
+ kee[p] = i
+ D[i] = p
+ return [kee[p] for p in point_list]
+
+ S1 = ref_list(self.args)
+ r_nor = rotate_left(S1, least_rotation(S1))
+ S2 = ref_list(list(reversed(self.args)))
+ r_rev = rotate_left(S2, least_rotation(S2))
+ if r_nor < r_rev:
+ r = r_nor
+ else:
+ r = r_rev
+ canonical_args = [ D[order] for order in r ]
+ return tuple(canonical_args)
+
+ def __contains__(self, o):
+ """
+ Return True if o is contained within the boundary lines of self.altitudes
+
+ Parameters
+ ==========
+
+ other : GeometryEntity
+
+ Returns
+ =======
+
+ contained in : bool
+ The points (and sides, if applicable) are contained in self.
+
+ See Also
+ ========
+
+ sympy.geometry.entity.GeometryEntity.encloses
+
+ Examples
+ ========
+
+ >>> from sympy import Line, Segment, Point
+ >>> p = Point(0, 0)
+ >>> q = Point(1, 1)
+ >>> s = Segment(p, q*2)
+ >>> l = Line(p, q)
+ >>> p in q
+ False
+ >>> p in s
+ True
+ >>> q*3 in s
+ False
+ >>> s in l
+ True
+
+ """
+
+ if isinstance(o, Polygon):
+ return self == o
+ elif isinstance(o, Segment):
+ return any(o in s for s in self.sides)
+ elif isinstance(o, Point):
+ if o in self.vertices:
+ return True
+ for side in self.sides:
+ if o in side:
+ return True
+
+ return False
+
+ def bisectors(p, prec=None):
+ """Returns angle bisectors of a polygon. If prec is given
+ then approximate the point defining the ray to that precision.
+
+ The distance between the points defining the bisector ray is 1.
+
+ Examples
+ ========
+
+ >>> from sympy import Polygon, Point
+ >>> p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
+ >>> p.bisectors(2)
+ {Point2D(0, 0): Ray2D(Point2D(0, 0), Point2D(0.71, 0.71)),
+ Point2D(0, 3): Ray2D(Point2D(0, 3), Point2D(0.23, 2.0)),
+ Point2D(1, 1): Ray2D(Point2D(1, 1), Point2D(0.19, 0.42)),
+ Point2D(2, 0): Ray2D(Point2D(2, 0), Point2D(1.1, 0.38))}
+ """
+ b = {}
+ pts = list(p.args)
+ pts.append(pts[0]) # close it
+ cw = Polygon._isright(*pts[:3])
+ if cw:
+ pts = list(reversed(pts))
+ for v, a in p.angles.items():
+ i = pts.index(v)
+ p1, p2 = Point._normalize_dimension(pts[i], pts[i + 1])
+ ray = Ray(p1, p2).rotate(a/2, v)
+ dir = ray.direction
+ ray = Ray(ray.p1, ray.p1 + dir/dir.distance((0, 0)))
+ if prec is not None:
+ ray = Ray(ray.p1, ray.p2.n(prec))
+ b[v] = ray
+ return b
+
+
+class RegularPolygon(Polygon):
+ """
+ A regular polygon.
+
+ Such a polygon has all internal angles equal and all sides the same length.
+
+ Parameters
+ ==========
+
+ center : Point
+ radius : number or Basic instance
+ The distance from the center to a vertex
+ n : int
+ The number of sides
+
+ Attributes
+ ==========
+
+ vertices
+ center
+ radius
+ rotation
+ apothem
+ interior_angle
+ exterior_angle
+ circumcircle
+ incircle
+ angles
+
+ Raises
+ ======
+
+ GeometryError
+ If the `center` is not a Point, or the `radius` is not a number or Basic
+ instance, or the number of sides, `n`, is less than three.
+
+ Notes
+ =====
+
+ A RegularPolygon can be instantiated with Polygon with the kwarg n.
+
+ Regular polygons are instantiated with a center, radius, number of sides
+ and a rotation angle. Whereas the arguments of a Polygon are vertices, the
+ vertices of the RegularPolygon must be obtained with the vertices method.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, Polygon
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point
+ >>> r = RegularPolygon(Point(0, 0), 5, 3)
+ >>> r
+ RegularPolygon(Point2D(0, 0), 5, 3, 0)
+ >>> r.vertices[0]
+ Point2D(5, 0)
+
+ """
+
+ __slots__ = ('_n', '_center', '_radius', '_rot')
+
+ def __new__(self, c, r, n, rot=0, **kwargs):
+ r, n, rot = map(sympify, (r, n, rot))
+ c = Point(c, dim=2, **kwargs)
+ if not isinstance(r, Expr):
+ raise GeometryError("r must be an Expr object, not %s" % r)
+ if n.is_Number:
+ as_int(n) # let an error raise if necessary
+ if n < 3:
+ raise GeometryError("n must be a >= 3, not %s" % n)
+
+ obj = GeometryEntity.__new__(self, c, r, n, **kwargs)
+ obj._n = n
+ obj._center = c
+ obj._radius = r
+ obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot
+ return obj
+
+ def _eval_evalf(self, prec=15, **options):
+ c, r, n, a = self.args
+ dps = prec_to_dps(prec)
+ c, r, a = [i.evalf(n=dps, **options) for i in (c, r, a)]
+ return self.func(c, r, n, a)
+
+ @property
+ def args(self):
+ """
+ Returns the center point, the radius,
+ the number of sides, and the orientation angle.
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point
+ >>> r = RegularPolygon(Point(0, 0), 5, 3)
+ >>> r.args
+ (Point2D(0, 0), 5, 3, 0)
+ """
+ return self._center, self._radius, self._n, self._rot
+
+ def __str__(self):
+ return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
+
+ def __repr__(self):
+ return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
+
+ @property
+ def area(self):
+ """Returns the area.
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon
+ >>> square = RegularPolygon((0, 0), 1, 4)
+ >>> square.area
+ 2
+ >>> _ == square.length**2
+ True
+ """
+ c, r, n, rot = self.args
+ return sign(r)*n*self.length**2/(4*tan(pi/n))
+
+ @property
+ def length(self):
+ """Returns the length of the sides.
+
+ The half-length of the side and the apothem form two legs
+ of a right triangle whose hypotenuse is the radius of the
+ regular polygon.
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon
+ >>> from sympy import sqrt
+ >>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4)
+ >>> s.length
+ sqrt(2)
+ >>> sqrt((_/2)**2 + s.apothem**2) == s.radius
+ True
+
+ """
+ return self.radius*2*sin(pi/self._n)
+
+ @property
+ def center(self):
+ """The center of the RegularPolygon
+
+ This is also the center of the circumscribing circle.
+
+ Returns
+ =======
+
+ center : Point
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point
+ >>> rp = RegularPolygon(Point(0, 0), 5, 4)
+ >>> rp.center
+ Point2D(0, 0)
+ """
+ return self._center
+
+ centroid = center
+
+ @property
+ def circumcenter(self):
+ """
+ Alias for center.
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point
+ >>> rp = RegularPolygon(Point(0, 0), 5, 4)
+ >>> rp.circumcenter
+ Point2D(0, 0)
+ """
+ return self.center
+
+ @property
+ def radius(self):
+ """Radius of the RegularPolygon
+
+ This is also the radius of the circumscribing circle.
+
+ Returns
+ =======
+
+ radius : number or instance of Basic
+
+ See Also
+ ========
+
+ sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
+
+ Examples
+ ========
+
+ >>> from sympy import Symbol
+ >>> from sympy import RegularPolygon, Point
+ >>> radius = Symbol('r')
+ >>> rp = RegularPolygon(Point(0, 0), radius, 4)
+ >>> rp.radius
+ r
+
+ """
+ return self._radius
+
+ @property
+ def circumradius(self):
+ """
+ Alias for radius.
+
+ Examples
+ ========
+
+ >>> from sympy import Symbol
+ >>> from sympy import RegularPolygon, Point
+ >>> radius = Symbol('r')
+ >>> rp = RegularPolygon(Point(0, 0), radius, 4)
+ >>> rp.circumradius
+ r
+ """
+ return self.radius
+
+ @property
+ def rotation(self):
+ """CCW angle by which the RegularPolygon is rotated
+
+ Returns
+ =======
+
+ rotation : number or instance of Basic
+
+ Examples
+ ========
+
+ >>> from sympy import pi
+ >>> from sympy.abc import a
+ >>> from sympy import RegularPolygon, Point
+ >>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation
+ pi/4
+
+ Numerical rotation angles are made canonical:
+
+ >>> RegularPolygon(Point(0, 0), 3, 4, a).rotation
+ a
+ >>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
+ 0
+
+ """
+ return self._rot
+
+ @property
+ def apothem(self):
+ """The inradius of the RegularPolygon.
+
+ The apothem/inradius is the radius of the inscribed circle.
+
+ Returns
+ =======
+
+ apothem : number or instance of Basic
+
+ See Also
+ ========
+
+ sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
+
+ Examples
+ ========
+
+ >>> from sympy import Symbol
+ >>> from sympy import RegularPolygon, Point
+ >>> radius = Symbol('r')
+ >>> rp = RegularPolygon(Point(0, 0), radius, 4)
+ >>> rp.apothem
+ sqrt(2)*r/2
+
+ """
+ return self.radius * cos(S.Pi/self._n)
+
+ @property
+ def inradius(self):
+ """
+ Alias for apothem.
+
+ Examples
+ ========
+
+ >>> from sympy import Symbol
+ >>> from sympy import RegularPolygon, Point
+ >>> radius = Symbol('r')
+ >>> rp = RegularPolygon(Point(0, 0), radius, 4)
+ >>> rp.inradius
+ sqrt(2)*r/2
+ """
+ return self.apothem
+
+ @property
+ def interior_angle(self):
+ """Measure of the interior angles.
+
+ Returns
+ =======
+
+ interior_angle : number
+
+ See Also
+ ========
+
+ sympy.geometry.line.LinearEntity.angle_between
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point
+ >>> rp = RegularPolygon(Point(0, 0), 4, 8)
+ >>> rp.interior_angle
+ 3*pi/4
+
+ """
+ return (self._n - 2)*S.Pi/self._n
+
+ @property
+ def exterior_angle(self):
+ """Measure of the exterior angles.
+
+ Returns
+ =======
+
+ exterior_angle : number
+
+ See Also
+ ========
+
+ sympy.geometry.line.LinearEntity.angle_between
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point
+ >>> rp = RegularPolygon(Point(0, 0), 4, 8)
+ >>> rp.exterior_angle
+ pi/4
+
+ """
+ return 2*S.Pi/self._n
+
+ @property
+ def circumcircle(self):
+ """The circumcircle of the RegularPolygon.
+
+ Returns
+ =======
+
+ circumcircle : Circle
+
+ See Also
+ ========
+
+ circumcenter, sympy.geometry.ellipse.Circle
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point
+ >>> rp = RegularPolygon(Point(0, 0), 4, 8)
+ >>> rp.circumcircle
+ Circle(Point2D(0, 0), 4)
+
+ """
+ return Circle(self.center, self.radius)
+
+ @property
+ def incircle(self):
+ """The incircle of the RegularPolygon.
+
+ Returns
+ =======
+
+ incircle : Circle
+
+ See Also
+ ========
+
+ inradius, sympy.geometry.ellipse.Circle
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point
+ >>> rp = RegularPolygon(Point(0, 0), 4, 7)
+ >>> rp.incircle
+ Circle(Point2D(0, 0), 4*cos(pi/7))
+
+ """
+ return Circle(self.center, self.apothem)
+
+ @property
+ def angles(self):
+ """
+ Returns a dictionary with keys, the vertices of the Polygon,
+ and values, the interior angle at each vertex.
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point
+ >>> r = RegularPolygon(Point(0, 0), 5, 3)
+ >>> r.angles
+ {Point2D(-5/2, -5*sqrt(3)/2): pi/3,
+ Point2D(-5/2, 5*sqrt(3)/2): pi/3,
+ Point2D(5, 0): pi/3}
+ """
+ ret = {}
+ ang = self.interior_angle
+ for v in self.vertices:
+ ret[v] = ang
+ return ret
+
+ def encloses_point(self, p):
+ """
+ Return True if p is enclosed by (is inside of) self.
+
+ Notes
+ =====
+
+ Being on the border of self is considered False.
+
+ The general Polygon.encloses_point method is called only if
+ a point is not within or beyond the incircle or circumcircle,
+ respectively.
+
+ Parameters
+ ==========
+
+ p : Point
+
+ Returns
+ =======
+
+ encloses_point : True, False or None
+
+ See Also
+ ========
+
+ sympy.geometry.ellipse.Ellipse.encloses_point
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, S, Point, Symbol
+ >>> p = RegularPolygon((0, 0), 3, 4)
+ >>> p.encloses_point(Point(0, 0))
+ True
+ >>> r, R = p.inradius, p.circumradius
+ >>> p.encloses_point(Point((r + R)/2, 0))
+ True
+ >>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
+ False
+ >>> t = Symbol('t', real=True)
+ >>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
+ False
+ >>> p.encloses_point(Point(5, 5))
+ False
+
+ """
+
+ c = self.center
+ d = Segment(c, p).length
+ if d >= self.radius:
+ return False
+ elif d < self.inradius:
+ return True
+ else:
+ # now enumerate the RegularPolygon like a general polygon.
+ return Polygon.encloses_point(self, p)
+
+ def spin(self, angle):
+ """Increment *in place* the virtual Polygon's rotation by ccw angle.
+
+ See also: rotate method which moves the center.
+
+ >>> from sympy import Polygon, Point, pi
+ >>> r = Polygon(Point(0,0), 1, n=3)
+ >>> r.vertices[0]
+ Point2D(1, 0)
+ >>> r.spin(pi/6)
+ >>> r.vertices[0]
+ Point2D(sqrt(3)/2, 1/2)
+
+ See Also
+ ========
+
+ rotation
+ rotate : Creates a copy of the RegularPolygon rotated about a Point
+
+ """
+ self._rot += angle
+
+ def rotate(self, angle, pt=None):
+ """Override GeometryEntity.rotate to first rotate the RegularPolygon
+ about its center.
+
+ >>> from sympy import Point, RegularPolygon, pi
+ >>> t = RegularPolygon(Point(1, 0), 1, 3)
+ >>> t.vertices[0] # vertex on x-axis
+ Point2D(2, 0)
+ >>> t.rotate(pi/2).vertices[0] # vertex on y axis now
+ Point2D(0, 2)
+
+ See Also
+ ========
+
+ rotation
+ spin : Rotates a RegularPolygon in place
+
+ """
+
+ r = type(self)(*self.args) # need a copy or else changes are in-place
+ r._rot += angle
+ return GeometryEntity.rotate(r, angle, pt)
+
+ def scale(self, x=1, y=1, pt=None):
+ """Override GeometryEntity.scale since it is the radius that must be
+ scaled (if x == y) or else a new Polygon must be returned.
+
+ >>> from sympy import RegularPolygon
+
+ Symmetric scaling returns a RegularPolygon:
+
+ >>> RegularPolygon((0, 0), 1, 4).scale(2, 2)
+ RegularPolygon(Point2D(0, 0), 2, 4, 0)
+
+ Asymmetric scaling returns a kite as a Polygon:
+
+ >>> RegularPolygon((0, 0), 1, 4).scale(2, 1)
+ Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1))
+
+ """
+ if pt:
+ pt = Point(pt, dim=2)
+ return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
+ if x != y:
+ return Polygon(*self.vertices).scale(x, y)
+ c, r, n, rot = self.args
+ r *= x
+ return self.func(c, r, n, rot)
+
+ def reflect(self, line):
+ """Override GeometryEntity.reflect since this is not made of only
+ points.
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Line
+
+ >>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2))
+ RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3))
+
+ """
+ c, r, n, rot = self.args
+ v = self.vertices[0]
+ d = v - c
+ cc = c.reflect(line)
+ vv = v.reflect(line)
+ dd = vv - cc
+ # calculate rotation about the new center
+ # which will align the vertices
+ l1 = Ray((0, 0), dd)
+ l2 = Ray((0, 0), d)
+ ang = l1.closing_angle(l2)
+ rot += ang
+ # change sign of radius as point traversal is reversed
+ return self.func(cc, -r, n, rot)
+
+ @property
+ def vertices(self):
+ """The vertices of the RegularPolygon.
+
+ Returns
+ =======
+
+ vertices : list
+ Each vertex is a Point.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import RegularPolygon, Point
+ >>> rp = RegularPolygon(Point(0, 0), 5, 4)
+ >>> rp.vertices
+ [Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)]
+
+ """
+ c = self._center
+ r = abs(self._radius)
+ rot = self._rot
+ v = 2*S.Pi/self._n
+
+ return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot))
+ for k in range(self._n)]
+
+ def __eq__(self, o):
+ if not isinstance(o, Polygon):
+ return False
+ elif not isinstance(o, RegularPolygon):
+ return Polygon.__eq__(o, self)
+ return self.args == o.args
+
+ def __hash__(self):
+ return super().__hash__()
+
+
+class Triangle(Polygon):
+ """
+ A polygon with three vertices and three sides.
+
+ Parameters
+ ==========
+
+ points : sequence of Points
+ keyword: asa, sas, or sss to specify sides/angles of the triangle
+
+ Attributes
+ ==========
+
+ vertices
+ altitudes
+ orthocenter
+ circumcenter
+ circumradius
+ circumcircle
+ inradius
+ incircle
+ exradii
+ medians
+ medial
+ nine_point_circle
+
+ Raises
+ ======
+
+ GeometryError
+ If the number of vertices is not equal to three, or one of the vertices
+ is not a Point, or a valid keyword is not given.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, Polygon
+
+ Examples
+ ========
+
+ >>> from sympy import Triangle, Point
+ >>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
+ Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
+
+ Keywords sss, sas, or asa can be used to give the desired
+ side lengths (in order) and interior angles (in degrees) that
+ define the triangle:
+
+ >>> Triangle(sss=(3, 4, 5))
+ Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
+ >>> Triangle(asa=(30, 1, 30))
+ Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6))
+ >>> Triangle(sas=(1, 45, 2))
+ Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2))
+
+ """
+
+ def __new__(cls, *args, **kwargs):
+ if len(args) != 3:
+ if 'sss' in kwargs:
+ return _sss(*[simplify(a) for a in kwargs['sss']])
+ if 'asa' in kwargs:
+ return _asa(*[simplify(a) for a in kwargs['asa']])
+ if 'sas' in kwargs:
+ return _sas(*[simplify(a) for a in kwargs['sas']])
+ msg = "Triangle instantiates with three points or a valid keyword."
+ raise GeometryError(msg)
+
+ vertices = [Point(a, dim=2, **kwargs) for a in args]
+
+ # remove consecutive duplicates
+ nodup = []
+ for p in vertices:
+ if nodup and p == nodup[-1]:
+ continue
+ nodup.append(p)
+ if len(nodup) > 1 and nodup[-1] == nodup[0]:
+ nodup.pop() # last point was same as first
+
+ # remove collinear points
+ i = -3
+ while i < len(nodup) - 3 and len(nodup) > 2:
+ a, b, c = sorted(
+ [nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key)
+ if Point.is_collinear(a, b, c):
+ nodup[i] = a
+ nodup[i + 1] = None
+ nodup.pop(i + 1)
+ i += 1
+
+ vertices = list(filter(lambda x: x is not None, nodup))
+
+ if len(vertices) == 3:
+ return GeometryEntity.__new__(cls, *vertices, **kwargs)
+ elif len(vertices) == 2:
+ return Segment(*vertices, **kwargs)
+ else:
+ return Point(*vertices, **kwargs)
+
+ @property
+ def vertices(self):
+ """The triangle's vertices
+
+ Returns
+ =======
+
+ vertices : tuple
+ Each element in the tuple is a Point
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Triangle, Point
+ >>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
+ >>> t.vertices
+ (Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
+
+ """
+ return self.args
+
+ def is_similar(t1, t2):
+ """Is another triangle similar to this one.
+
+ Two triangles are similar if one can be uniformly scaled to the other.
+
+ Parameters
+ ==========
+
+ other: Triangle
+
+ Returns
+ =======
+
+ is_similar : boolean
+
+ See Also
+ ========
+
+ sympy.geometry.entity.GeometryEntity.is_similar
+
+ Examples
+ ========
+
+ >>> from sympy import Triangle, Point
+ >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
+ >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
+ >>> t1.is_similar(t2)
+ True
+
+ >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
+ >>> t1.is_similar(t2)
+ False
+
+ """
+ if not isinstance(t2, Polygon):
+ return False
+
+ s1_1, s1_2, s1_3 = [side.length for side in t1.sides]
+ s2 = [side.length for side in t2.sides]
+
+ def _are_similar(u1, u2, u3, v1, v2, v3):
+ e1 = simplify(u1/v1)
+ e2 = simplify(u2/v2)
+ e3 = simplify(u3/v3)
+ return bool(e1 == e2) and bool(e2 == e3)
+
+ # There's only 6 permutations, so write them out
+ return _are_similar(s1_1, s1_2, s1_3, *s2) or \
+ _are_similar(s1_1, s1_3, s1_2, *s2) or \
+ _are_similar(s1_2, s1_1, s1_3, *s2) or \
+ _are_similar(s1_2, s1_3, s1_1, *s2) or \
+ _are_similar(s1_3, s1_1, s1_2, *s2) or \
+ _are_similar(s1_3, s1_2, s1_1, *s2)
+
+ def is_equilateral(self):
+ """Are all the sides the same length?
+
+ Returns
+ =======
+
+ is_equilateral : boolean
+
+ See Also
+ ========
+
+ sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon
+ is_isosceles, is_right, is_scalene
+
+ Examples
+ ========
+
+ >>> from sympy import Triangle, Point
+ >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
+ >>> t1.is_equilateral()
+ False
+
+ >>> from sympy import sqrt
+ >>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
+ >>> t2.is_equilateral()
+ True
+
+ """
+ return not has_variety(s.length for s in self.sides)
+
+ def is_isosceles(self):
+ """Are two or more of the sides the same length?
+
+ Returns
+ =======
+
+ is_isosceles : boolean
+
+ See Also
+ ========
+
+ is_equilateral, is_right, is_scalene
+
+ Examples
+ ========
+
+ >>> from sympy import Triangle, Point
+ >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
+ >>> t1.is_isosceles()
+ True
+
+ """
+ return has_dups(s.length for s in self.sides)
+
+ def is_scalene(self):
+ """Are all the sides of the triangle of different lengths?
+
+ Returns
+ =======
+
+ is_scalene : boolean
+
+ See Also
+ ========
+
+ is_equilateral, is_isosceles, is_right
+
+ Examples
+ ========
+
+ >>> from sympy import Triangle, Point
+ >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
+ >>> t1.is_scalene()
+ True
+
+ """
+ return not has_dups(s.length for s in self.sides)
+
+ def is_right(self):
+ """Is the triangle right-angled.
+
+ Returns
+ =======
+
+ is_right : boolean
+
+ See Also
+ ========
+
+ sympy.geometry.line.LinearEntity.is_perpendicular
+ is_equilateral, is_isosceles, is_scalene
+
+ Examples
+ ========
+
+ >>> from sympy import Triangle, Point
+ >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
+ >>> t1.is_right()
+ True
+
+ """
+ s = self.sides
+ return Segment.is_perpendicular(s[0], s[1]) or \
+ Segment.is_perpendicular(s[1], s[2]) or \
+ Segment.is_perpendicular(s[0], s[2])
+
+ @property
+ def altitudes(self):
+ """The altitudes of the triangle.
+
+ An altitude of a triangle is a segment through a vertex,
+ perpendicular to the opposite side, with length being the
+ height of the vertex measured from the line containing the side.
+
+ Returns
+ =======
+
+ altitudes : dict
+ The dictionary consists of keys which are vertices and values
+ which are Segments.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.line.Segment.length
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.altitudes[p1]
+ Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
+
+ """
+ s = self.sides
+ v = self.vertices
+ return {v[0]: s[1].perpendicular_segment(v[0]),
+ v[1]: s[2].perpendicular_segment(v[1]),
+ v[2]: s[0].perpendicular_segment(v[2])}
+
+ @property
+ def orthocenter(self):
+ """The orthocenter of the triangle.
+
+ The orthocenter is the intersection of the altitudes of a triangle.
+ It may lie inside, outside or on the triangle.
+
+ Returns
+ =======
+
+ orthocenter : Point
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.orthocenter
+ Point2D(0, 0)
+
+ """
+ a = self.altitudes
+ v = self.vertices
+ return Line(a[v[0]]).intersection(Line(a[v[1]]))[0]
+
+ @property
+ def circumcenter(self):
+ """The circumcenter of the triangle
+
+ The circumcenter is the center of the circumcircle.
+
+ Returns
+ =======
+
+ circumcenter : Point
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.circumcenter
+ Point2D(1/2, 1/2)
+ """
+ a, b, c = [x.perpendicular_bisector() for x in self.sides]
+ return a.intersection(b)[0]
+
+ @property
+ def circumradius(self):
+ """The radius of the circumcircle of the triangle.
+
+ Returns
+ =======
+
+ circumradius : number of Basic instance
+
+ See Also
+ ========
+
+ sympy.geometry.ellipse.Circle.radius
+
+ Examples
+ ========
+
+ >>> from sympy import Symbol
+ >>> from sympy import Point, Triangle
+ >>> a = Symbol('a')
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.circumradius
+ sqrt(a**2/4 + 1/4)
+ """
+ return Point.distance(self.circumcenter, self.vertices[0])
+
+ @property
+ def circumcircle(self):
+ """The circle which passes through the three vertices of the triangle.
+
+ Returns
+ =======
+
+ circumcircle : Circle
+
+ See Also
+ ========
+
+ sympy.geometry.ellipse.Circle
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.circumcircle
+ Circle(Point2D(1/2, 1/2), sqrt(2)/2)
+
+ """
+ return Circle(self.circumcenter, self.circumradius)
+
+ def bisectors(self):
+ """The angle bisectors of the triangle.
+
+ An angle bisector of a triangle is a straight line through a vertex
+ which cuts the corresponding angle in half.
+
+ Returns
+ =======
+
+ bisectors : dict
+ Each key is a vertex (Point) and each value is the corresponding
+ bisector (Segment).
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.line.Segment
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle, Segment
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ >>> t = Triangle(p1, p2, p3)
+ >>> from sympy import sqrt
+ >>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
+ True
+
+ """
+ # use lines containing sides so containment check during
+ # intersection calculation can be avoided, thus reducing
+ # the processing time for calculating the bisectors
+ s = [Line(l) for l in self.sides]
+ v = self.vertices
+ c = self.incenter
+ l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0])
+ l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0])
+ l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0])
+ return {v[0]: l1, v[1]: l2, v[2]: l3}
+
+ @property
+ def incenter(self):
+ """The center of the incircle.
+
+ The incircle is the circle which lies inside the triangle and touches
+ all three sides.
+
+ Returns
+ =======
+
+ incenter : Point
+
+ See Also
+ ========
+
+ incircle, sympy.geometry.point.Point
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.incenter
+ Point2D(1 - sqrt(2)/2, 1 - sqrt(2)/2)
+
+ """
+ s = self.sides
+ l = Matrix([s[i].length for i in [1, 2, 0]])
+ p = sum(l)
+ v = self.vertices
+ x = simplify(l.dot(Matrix([vi.x for vi in v]))/p)
+ y = simplify(l.dot(Matrix([vi.y for vi in v]))/p)
+ return Point(x, y)
+
+ @property
+ def inradius(self):
+ """The radius of the incircle.
+
+ Returns
+ =======
+
+ inradius : number of Basic instance
+
+ See Also
+ ========
+
+ incircle, sympy.geometry.ellipse.Circle.radius
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.inradius
+ 1
+
+ """
+ return simplify(2 * self.area / self.perimeter)
+
+ @property
+ def incircle(self):
+ """The incircle of the triangle.
+
+ The incircle is the circle which lies inside the triangle and touches
+ all three sides.
+
+ Returns
+ =======
+
+ incircle : Circle
+
+ See Also
+ ========
+
+ sympy.geometry.ellipse.Circle
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.incircle
+ Circle(Point2D(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
+
+ """
+ return Circle(self.incenter, self.inradius)
+
+ @property
+ def exradii(self):
+ """The radius of excircles of a triangle.
+
+ An excircle of the triangle is a circle lying outside the triangle,
+ tangent to one of its sides and tangent to the extensions of the
+ other two.
+
+ Returns
+ =======
+
+ exradii : dict
+
+ See Also
+ ========
+
+ sympy.geometry.polygon.Triangle.inradius
+
+ Examples
+ ========
+
+ The exradius touches the side of the triangle to which it is keyed, e.g.
+ the exradius touching side 2 is:
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.exradii[t.sides[2]]
+ -2 + sqrt(10)
+
+ References
+ ==========
+
+ .. [1] https://mathworld.wolfram.com/Exradius.html
+ .. [2] https://mathworld.wolfram.com/Excircles.html
+
+ """
+
+ side = self.sides
+ a = side[0].length
+ b = side[1].length
+ c = side[2].length
+ s = (a+b+c)/2
+ area = self.area
+ exradii = {self.sides[0]: simplify(area/(s-a)),
+ self.sides[1]: simplify(area/(s-b)),
+ self.sides[2]: simplify(area/(s-c))}
+
+ return exradii
+
+ @property
+ def excenters(self):
+ """Excenters of the triangle.
+
+ An excenter is the center of a circle that is tangent to a side of the
+ triangle and the extensions of the other two sides.
+
+ Returns
+ =======
+
+ excenters : dict
+
+
+ Examples
+ ========
+
+ The excenters are keyed to the side of the triangle to which their corresponding
+ excircle is tangent: The center is keyed, e.g. the excenter of a circle touching
+ side 0 is:
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.excenters[t.sides[0]]
+ Point2D(12*sqrt(10), 2/3 + sqrt(10)/3)
+
+ See Also
+ ========
+
+ sympy.geometry.polygon.Triangle.exradii
+
+ References
+ ==========
+
+ .. [1] https://mathworld.wolfram.com/Excircles.html
+
+ """
+
+ s = self.sides
+ v = self.vertices
+ a = s[0].length
+ b = s[1].length
+ c = s[2].length
+ x = [v[0].x, v[1].x, v[2].x]
+ y = [v[0].y, v[1].y, v[2].y]
+
+ exc_coords = {
+ "x1": simplify(-a*x[0]+b*x[1]+c*x[2]/(-a+b+c)),
+ "x2": simplify(a*x[0]-b*x[1]+c*x[2]/(a-b+c)),
+ "x3": simplify(a*x[0]+b*x[1]-c*x[2]/(a+b-c)),
+ "y1": simplify(-a*y[0]+b*y[1]+c*y[2]/(-a+b+c)),
+ "y2": simplify(a*y[0]-b*y[1]+c*y[2]/(a-b+c)),
+ "y3": simplify(a*y[0]+b*y[1]-c*y[2]/(a+b-c))
+ }
+
+ excenters = {
+ s[0]: Point(exc_coords["x1"], exc_coords["y1"]),
+ s[1]: Point(exc_coords["x2"], exc_coords["y2"]),
+ s[2]: Point(exc_coords["x3"], exc_coords["y3"])
+ }
+
+ return excenters
+
+ @property
+ def medians(self):
+ """The medians of the triangle.
+
+ A median of a triangle is a straight line through a vertex and the
+ midpoint of the opposite side, and divides the triangle into two
+ equal areas.
+
+ Returns
+ =======
+
+ medians : dict
+ Each key is a vertex (Point) and each value is the median (Segment)
+ at that point.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.medians[p1]
+ Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
+
+ """
+ s = self.sides
+ v = self.vertices
+ return {v[0]: Segment(v[0], s[1].midpoint),
+ v[1]: Segment(v[1], s[2].midpoint),
+ v[2]: Segment(v[2], s[0].midpoint)}
+
+ @property
+ def medial(self):
+ """The medial triangle of the triangle.
+
+ The triangle which is formed from the midpoints of the three sides.
+
+ Returns
+ =======
+
+ medial : Triangle
+
+ See Also
+ ========
+
+ sympy.geometry.line.Segment.midpoint
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.medial
+ Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2))
+
+ """
+ s = self.sides
+ return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint)
+
+ @property
+ def nine_point_circle(self):
+ """The nine-point circle of the triangle.
+
+ Nine-point circle is the circumcircle of the medial triangle, which
+ passes through the feet of altitudes and the middle points of segments
+ connecting the vertices and the orthocenter.
+
+ Returns
+ =======
+
+ nine_point_circle : Circle
+
+ See also
+ ========
+
+ sympy.geometry.line.Segment.midpoint
+ sympy.geometry.polygon.Triangle.medial
+ sympy.geometry.polygon.Triangle.orthocenter
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.nine_point_circle
+ Circle(Point2D(1/4, 1/4), sqrt(2)/4)
+
+ """
+ return Circle(*self.medial.vertices)
+
+ @property
+ def eulerline(self):
+ """The Euler line of the triangle.
+
+ The line which passes through circumcenter, centroid and orthocenter.
+
+ Returns
+ =======
+
+ eulerline : Line (or Point for equilateral triangles in which case all
+ centers coincide)
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Triangle
+ >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ >>> t = Triangle(p1, p2, p3)
+ >>> t.eulerline
+ Line2D(Point2D(0, 0), Point2D(1/2, 1/2))
+
+ """
+ if self.is_equilateral():
+ return self.orthocenter
+ return Line(self.orthocenter, self.circumcenter)
+
+def rad(d):
+ """Return the radian value for the given degrees (pi = 180 degrees)."""
+ return d*pi/180
+
+
+def deg(r):
+ """Return the degree value for the given radians (pi = 180 degrees)."""
+ return r/pi*180
+
+
+def _slope(d):
+ rv = tan(rad(d))
+ return rv
+
+
+def _asa(d1, l, d2):
+ """Return triangle having side with length l on the x-axis."""
+ xy = Line((0, 0), slope=_slope(d1)).intersection(
+ Line((l, 0), slope=_slope(180 - d2)))[0]
+ return Triangle((0, 0), (l, 0), xy)
+
+
+def _sss(l1, l2, l3):
+ """Return triangle having side of length l1 on the x-axis."""
+ c1 = Circle((0, 0), l3)
+ c2 = Circle((l1, 0), l2)
+ inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative]
+ if not inter:
+ return None
+ pt = inter[0]
+ return Triangle((0, 0), (l1, 0), pt)
+
+
+def _sas(l1, d, l2):
+ """Return triangle having side with length l2 on the x-axis."""
+ p1 = Point(0, 0)
+ p2 = Point(l2, 0)
+ p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1)
+ return Triangle(p1, p2, p3)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f63a7c62660e266b1f4ddfd290ef9fc73a48cdf3
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_curve.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_curve.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b3631a866a7b019316a62026d44ccf8ee51e0360
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_curve.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_ellipse.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_ellipse.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..49664891a7d7a00cc1a876e3bb33b2f318646684
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_ellipse.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_entity.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_entity.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b41647a10fe723a19ba9390c563db610ce5388bb
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_entity.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_geometrysets.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_geometrysets.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b105ae84b1cb492fb82e5b0f6a8c82271b85da52
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_geometrysets.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_line.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_line.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..929d09eab1bbaa3230f83e85f65a2c51dbb7fd15
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_line.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_parabola.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_parabola.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d7df097c8fc270183bf0f72d3b5a8874fe6b0b99
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_parabola.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_plane.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_plane.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2d4135a38e397e9fc6bee7aa8cfdfe4698b64e7d
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_plane.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_point.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_point.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1f52297adc206eb67b106df319d450c073205d98
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_point.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_polygon.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_polygon.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..411e7b6c3b10af9fff1cfc33935c6fe22e5ca49a
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_polygon.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_util.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_util.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2c6ab61515977b7a8e9097d10c6390ad854aa8c5
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_util.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_curve.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_curve.py
new file mode 100644
index 0000000000000000000000000000000000000000..50aa80273a1d8eb9e414a8d591571f3127352dad
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_curve.py
@@ -0,0 +1,120 @@
+from sympy.core.containers import Tuple
+from sympy.core.numbers import (Rational, pi)
+from sympy.core.singleton import S
+from sympy.core.symbol import (Symbol, symbols)
+from sympy.functions.elementary.hyperbolic import asinh
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.geometry import Curve, Line, Point, Ellipse, Ray, Segment, Circle, Polygon, RegularPolygon
+from sympy.testing.pytest import raises, slow
+
+
+def test_curve():
+ x = Symbol('x', real=True)
+ s = Symbol('s')
+ z = Symbol('z')
+
+ # this curve is independent of the indicated parameter
+ c = Curve([2*s, s**2], (z, 0, 2))
+
+ assert c.parameter == z
+ assert c.functions == (2*s, s**2)
+ assert c.arbitrary_point() == Point(2*s, s**2)
+ assert c.arbitrary_point(z) == Point(2*s, s**2)
+
+ # this is how it is normally used
+ c = Curve([2*s, s**2], (s, 0, 2))
+
+ assert c.parameter == s
+ assert c.functions == (2*s, s**2)
+ t = Symbol('t')
+ # the t returned as assumptions
+ assert c.arbitrary_point() != Point(2*t, t**2)
+ t = Symbol('t', real=True)
+ # now t has the same assumptions so the test passes
+ assert c.arbitrary_point() == Point(2*t, t**2)
+ assert c.arbitrary_point(z) == Point(2*z, z**2)
+ assert c.arbitrary_point(c.parameter) == Point(2*s, s**2)
+ assert c.arbitrary_point(None) == Point(2*s, s**2)
+ assert c.plot_interval() == [t, 0, 2]
+ assert c.plot_interval(z) == [z, 0, 2]
+
+ assert Curve([x, x], (x, 0, 1)).rotate(pi/2) == Curve([-x, x], (x, 0, 1))
+ assert Curve([x, x], (x, 0, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
+ 1, 3).arbitrary_point(s) == \
+ Line((0, 0), (1, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
+ 1, 3).arbitrary_point(s) == \
+ Point(-2*s + 7, 3*s + 6)
+
+ raises(ValueError, lambda: Curve((s), (s, 1, 2)))
+ raises(ValueError, lambda: Curve((x, x * 2), (1, x)))
+
+ raises(ValueError, lambda: Curve((s, s + t), (s, 1, 2)).arbitrary_point())
+ raises(ValueError, lambda: Curve((s, s + t), (t, 1, 2)).arbitrary_point(s))
+
+
+@slow
+def test_free_symbols():
+ a, b, c, d, e, f, s = symbols('a:f,s')
+ assert Point(a, b).free_symbols == {a, b}
+ assert Line((a, b), (c, d)).free_symbols == {a, b, c, d}
+ assert Ray((a, b), (c, d)).free_symbols == {a, b, c, d}
+ assert Ray((a, b), angle=c).free_symbols == {a, b, c}
+ assert Segment((a, b), (c, d)).free_symbols == {a, b, c, d}
+ assert Line((a, b), slope=c).free_symbols == {a, b, c}
+ assert Curve((a*s, b*s), (s, c, d)).free_symbols == {a, b, c, d}
+ assert Ellipse((a, b), c, d).free_symbols == {a, b, c, d}
+ assert Ellipse((a, b), c, eccentricity=d).free_symbols == \
+ {a, b, c, d}
+ assert Ellipse((a, b), vradius=c, eccentricity=d).free_symbols == \
+ {a, b, c, d}
+ assert Circle((a, b), c).free_symbols == {a, b, c}
+ assert Circle((a, b), (c, d), (e, f)).free_symbols == \
+ {e, d, c, b, f, a}
+ assert Polygon((a, b), (c, d), (e, f)).free_symbols == \
+ {e, b, d, f, a, c}
+ assert RegularPolygon((a, b), c, d, e).free_symbols == {e, a, b, c, d}
+
+
+def test_transform():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ c = Curve((x, x**2), (x, 0, 1))
+ cout = Curve((2*x - 4, 3*x**2 - 10), (x, 0, 1))
+ pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
+ pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
+
+ assert c.scale(2, 3, (4, 5)) == cout
+ assert [c.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts
+ assert [cout.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts_out
+ assert Curve((x + y, 3*x), (x, 0, 1)).subs(y, S.Half) == \
+ Curve((x + S.Half, 3*x), (x, 0, 1))
+ assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \
+ Curve((x + 4, 3*x + 5), (x, 0, 1))
+
+
+def test_length():
+ t = Symbol('t', real=True)
+
+ c1 = Curve((t, 0), (t, 0, 1))
+ assert c1.length == 1
+
+ c2 = Curve((t, t), (t, 0, 1))
+ assert c2.length == sqrt(2)
+
+ c3 = Curve((t ** 2, t), (t, 2, 5))
+ assert c3.length == -sqrt(17) - asinh(4) / 4 + asinh(10) / 4 + 5 * sqrt(101) / 2
+
+
+def test_parameter_value():
+ t = Symbol('t')
+ C = Curve([2*t, t**2], (t, 0, 2))
+ assert C.parameter_value((2, 1), t) == {t: 1}
+ raises(ValueError, lambda: C.parameter_value((2, 0), t))
+
+
+def test_issue_17997():
+ t, s = symbols('t s')
+ c = Curve((t, t**2), (t, 0, 10))
+ p = Curve([2*s, s**2], (s, 0, 2))
+ assert c(2) == Point(2, 4)
+ assert p(1) == Point(2, 1)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_ellipse.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_ellipse.py
new file mode 100644
index 0000000000000000000000000000000000000000..385213f427d8780ada4c5775d0e53ab1f7e3e360
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_ellipse.py
@@ -0,0 +1,601 @@
+from sympy.core import expand
+from sympy.core.numbers import (Rational, oo, pi)
+from sympy.core.relational import Eq
+from sympy.core.singleton import S
+from sympy.core.symbol import (Symbol, symbols)
+from sympy.functions.elementary.complexes import Abs
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.functions.elementary.trigonometric import sec
+from sympy.geometry.line import Segment2D
+from sympy.geometry.point import Point2D
+from sympy.geometry import (Circle, Ellipse, GeometryError, Line, Point,
+ Polygon, Ray, RegularPolygon, Segment,
+ Triangle, intersection)
+from sympy.testing.pytest import raises, slow
+from sympy.integrals.integrals import integrate
+from sympy.functions.special.elliptic_integrals import elliptic_e
+from sympy.functions.elementary.miscellaneous import Max
+
+
+def test_ellipse_equation_using_slope():
+ from sympy.abc import x, y
+
+ e1 = Ellipse(Point(1, 0), 3, 2)
+ assert str(e1.equation(_slope=1)) == str((-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1)
+
+ e2 = Ellipse(Point(0, 0), 4, 1)
+ assert str(e2.equation(_slope=1)) == str((-x + y)**2/2 + (x + y)**2/32 - 1)
+
+ e3 = Ellipse(Point(1, 5), 6, 2)
+ assert str(e3.equation(_slope=2)) == str((-2*x + y - 3)**2/20 + (x + 2*y - 11)**2/180 - 1)
+
+
+def test_object_from_equation():
+ from sympy.abc import x, y, a, b, c, d, e
+ assert Circle(x**2 + y**2 + 3*x + 4*y - 8) == Circle(Point2D(S(-3) / 2, -2), sqrt(57) / 2)
+ assert Circle(x**2 + y**2 + 6*x + 8*y + 25) == Circle(Point2D(-3, -4), 0)
+ assert Circle(a**2 + b**2 + 6*a + 8*b + 25, x='a', y='b') == Circle(Point2D(-3, -4), 0)
+ assert Circle(x**2 + y**2 - 25) == Circle(Point2D(0, 0), 5)
+ assert Circle(x**2 + y**2) == Circle(Point2D(0, 0), 0)
+ assert Circle(a**2 + b**2, x='a', y='b') == Circle(Point2D(0, 0), 0)
+ assert Circle(x**2 + y**2 + 6*x + 8) == Circle(Point2D(-3, 0), 1)
+ assert Circle(x**2 + y**2 + 6*y + 8) == Circle(Point2D(0, -3), 1)
+ assert Circle((x - 1)**2 + y**2 - 9) == Circle(Point2D(1, 0), 3)
+ assert Circle(6*(x**2) + 6*(y**2) + 6*x + 8*y - 25) == Circle(Point2D(Rational(-1, 2), Rational(-2, 3)), 5*sqrt(7)/6)
+ assert Circle(Eq(a**2 + b**2, 25), x='a', y=b) == Circle(Point2D(0, 0), 5)
+ raises(GeometryError, lambda: Circle(x**2 + y**2 + 3*x + 4*y + 26))
+ raises(GeometryError, lambda: Circle(x**2 + y**2 + 25))
+ raises(GeometryError, lambda: Circle(a**2 + b**2 + 25, x='a', y='b'))
+ raises(GeometryError, lambda: Circle(x**2 + 6*y + 8))
+ raises(GeometryError, lambda: Circle(6*(x ** 2) + 4*(y**2) + 6*x + 8*y + 25))
+ raises(ValueError, lambda: Circle(a**2 + b**2 + 3*a + 4*b - 8))
+ # .equation() adds 'real=True' assumption; '==' would fail if assumptions differed
+ x, y = symbols('x y', real=True)
+ eq = a*x**2 + a*y**2 + c*x + d*y + e
+ assert expand(Circle(eq).equation()*a) == eq
+
+
+@slow
+def test_ellipse_geom():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ t = Symbol('t', real=True)
+ y1 = Symbol('y1', real=True)
+ half = S.Half
+ p1 = Point(0, 0)
+ p2 = Point(1, 1)
+ p4 = Point(0, 1)
+
+ e1 = Ellipse(p1, 1, 1)
+ e2 = Ellipse(p2, half, 1)
+ e3 = Ellipse(p1, y1, y1)
+ c1 = Circle(p1, 1)
+ c2 = Circle(p2, 1)
+ c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
+ l1 = Line(p1, p2)
+
+ # Test creation with three points
+ cen, rad = Point(3*half, 2), 5*half
+ assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
+ assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))
+
+ raises(ValueError, lambda: Ellipse(None, None, None, 1))
+ raises(ValueError, lambda: Ellipse())
+ raises(GeometryError, lambda: Circle(Point(0, 0)))
+ raises(GeometryError, lambda: Circle(Symbol('x')*Symbol('y')))
+
+ # Basic Stuff
+ assert Ellipse(None, 1, 1).center == Point(0, 0)
+ assert e1 == c1
+ assert e1 != e2
+ assert e1 != l1
+ assert p4 in e1
+ assert e1 in e1
+ assert e2 in e2
+ assert 1 not in e2
+ assert p2 not in e2
+ assert e1.area == pi
+ assert e2.area == pi/2
+ assert e3.area == pi*y1*abs(y1)
+ assert c1.area == e1.area
+ assert c1.circumference == e1.circumference
+ assert e3.circumference == 2*pi*y1
+ assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
+ assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
+
+ assert c1.minor == 1
+ assert c1.major == 1
+ assert c1.hradius == 1
+ assert c1.vradius == 1
+
+ assert Ellipse((1, 1), 0, 0) == Point(1, 1)
+ assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
+ assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))
+
+ # Private Functions
+ assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
+ assert c1 in e1
+ assert (Line(p1, p2) in e1) is False
+ assert e1.__cmp__(e1) == 0
+ assert e1.__cmp__(Point(0, 0)) > 0
+
+ # Encloses
+ assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
+ assert e1.encloses(Line(p1, p2)) is False
+ assert e1.encloses(Ray(p1, p2)) is False
+ assert e1.encloses(e1) is False
+ assert e1.encloses(
+ Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
+ assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
+ assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
+ assert e1.encloses(RegularPolygon(p2, 5, 3)) is False
+
+ assert e2.arbitrary_point() in e2
+ raises(ValueError, lambda: Ellipse(Point(x, y), 1, 1).arbitrary_point(parameter='x'))
+
+ # Foci
+ f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
+ ef = Ellipse(Point(0, 0), 4, 2)
+ assert ef.foci in [(f1, f2), (f2, f1)]
+
+ # Tangents
+ v = sqrt(2) / 2
+ p1_1 = Point(v, v)
+ p1_2 = p2 + Point(half, 0)
+ p1_3 = p2 + Point(0, 1)
+ assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
+ assert e2.tangent_lines(p1_2) == [Line(Point(Rational(3, 2), 1), Point(Rational(3, 2), S.Half))]
+ assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(Rational(5, 4), 2))]
+ assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
+ assert c1.tangent_lines(p1) == []
+ assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
+ assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
+ assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
+ assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
+ assert c1.is_tangent(e1) is True
+ assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
+ assert c1.is_tangent(
+ Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
+ assert c1.is_tangent(
+ Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
+ assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False
+
+ assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
+ [Line(Point(0, 0), Point(Rational(77, 25), Rational(132, 25))),
+ Line(Point(0, 0), Point(Rational(33, 5), Rational(22, 5)))]
+ assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
+ [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
+ assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
+ [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
+ assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
+ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
+ Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]
+ assert Circle(Point(5, 5), 5).tangent_lines(Point(4, 0)) == \
+ [Line(Point(4, 0), Point(Rational(40, 13), Rational(5, 13))),
+ Line(Point(4, 0), Point(5, 0))]
+ assert Circle(Point(5, 5), 5).tangent_lines(Point(0, 6)) == \
+ [Line(Point(0, 6), Point(0, 7)),
+ Line(Point(0, 6), Point(Rational(5, 13), Rational(90, 13)))]
+
+ # for numerical calculations, we shouldn't demand exact equality,
+ # so only test up to the desired precision
+ def lines_close(l1, l2, prec):
+ """ tests whether l1 and 12 are within 10**(-prec)
+ of each other """
+ return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec)
+ def line_list_close(ll1, ll2, prec):
+ return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))
+
+ e = Ellipse(Point(0, 0), 2, 1)
+ assert e.normal_lines(Point(0, 0)) == \
+ [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
+ assert e.normal_lines(Point(1, 0)) == \
+ [Line(Point(0, 0), Point(1, 0))]
+ assert e.normal_lines((0, 1)) == \
+ [Line(Point(0, 0), Point(0, 1))]
+ assert line_list_close(e.normal_lines(Point(1, 1), 2), [
+ Line(Point(Rational(-51, 26), Rational(-1, 5)), Point(Rational(-25, 26), Rational(17, 83))),
+ Line(Point(Rational(28, 29), Rational(-7, 8)), Point(Rational(57, 29), Rational(-9, 2)))], 2)
+ # test the failure of Poly.intervals and checks a point on the boundary
+ p = Point(sqrt(3), S.Half)
+ assert p in e
+ assert line_list_close(e.normal_lines(p, 2), [
+ Line(Point(Rational(-341, 171), Rational(-1, 13)), Point(Rational(-170, 171), Rational(5, 64))),
+ Line(Point(Rational(26, 15), Rational(-1, 2)), Point(Rational(41, 15), Rational(-43, 26)))], 2)
+ # be sure to use the slope that isn't undefined on boundary
+ e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
+ assert line_list_close(e.normal_lines((1, 1), 2), [
+ Line(Point(Rational(-64, 33), Rational(-20, 71)), Point(Rational(-31, 33), Rational(2, 13))),
+ Line(Point(1, -1), Point(2, -4))], 2)
+ # general ellipse fails except under certain conditions
+ e = Ellipse((0, 0), x, 1)
+ assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
+ raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))
+ # Properties
+ major = 3
+ minor = 1
+ e4 = Ellipse(p2, minor, major)
+ assert e4.focus_distance == sqrt(major**2 - minor**2)
+ ecc = e4.focus_distance / major
+ assert e4.eccentricity == ecc
+ assert e4.periapsis == major*(1 - ecc)
+ assert e4.apoapsis == major*(1 + ecc)
+ assert e4.semilatus_rectum == major*(1 - ecc ** 2)
+ # independent of orientation
+ e4 = Ellipse(p2, major, minor)
+ assert e4.focus_distance == sqrt(major**2 - minor**2)
+ ecc = e4.focus_distance / major
+ assert e4.eccentricity == ecc
+ assert e4.periapsis == major*(1 - ecc)
+ assert e4.apoapsis == major*(1 + ecc)
+
+ # Intersection
+ l1 = Line(Point(1, -5), Point(1, 5))
+ l2 = Line(Point(-5, -1), Point(5, -1))
+ l3 = Line(Point(-1, -1), Point(1, 1))
+ l4 = Line(Point(-10, 0), Point(0, 10))
+ pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]
+
+ assert intersection(e2, l4) == []
+ assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
+ assert intersection(c1, l1) == [Point(1, 0)]
+ assert intersection(c1, l2) == [Point(0, -1)]
+ assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
+ assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
+ assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
+ assert e1.intersection(l1) == [Point(1, 0)]
+ assert e2.intersection(l4) == []
+ assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
+ assert e1.intersection(Circle(Point(5, 0), 1)) == []
+ assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
+ assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == []
+ assert e1.intersection(Point(2, 0)) == []
+ assert e1.intersection(e1) == e1
+ assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
+ assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)]
+ assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
+ assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
+ assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == []
+ assert Circle((0, 0), S.Half).intersection(
+ Triangle((-1, 0), (1, 0), (0, 1))) == [
+ Point(Rational(-1, 2), 0), Point(S.Half, 0)]
+ raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1))))
+ raises(TypeError, lambda: intersection(e2, Rational(12)))
+ raises(TypeError, lambda: Ellipse.intersection(e2, 1))
+ # some special case intersections
+ csmall = Circle(p1, 3)
+ cbig = Circle(p1, 5)
+ cout = Circle(Point(5, 5), 1)
+ # one circle inside of another
+ assert csmall.intersection(cbig) == []
+ # separate circles
+ assert csmall.intersection(cout) == []
+ # coincident circles
+ assert csmall.intersection(csmall) == csmall
+
+ v = sqrt(2)
+ t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
+ points = intersection(t1, c1)
+ assert len(points) == 4
+ assert Point(0, 1) in points
+ assert Point(0, -1) in points
+ assert Point(v/2, v/2) in points
+ assert Point(v/2, -v/2) in points
+
+ circ = Circle(Point(0, 0), 5)
+ elip = Ellipse(Point(0, 0), 5, 20)
+ assert intersection(circ, elip) in \
+ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
+ assert elip.tangent_lines(Point(0, 0)) == []
+ elip = Ellipse(Point(0, 0), 3, 2)
+ assert elip.tangent_lines(Point(3, 0)) == \
+ [Line(Point(3, 0), Point(3, -12))]
+
+ e1 = Ellipse(Point(0, 0), 5, 10)
+ e2 = Ellipse(Point(2, 1), 4, 8)
+ a = Rational(53, 17)
+ c = 2*sqrt(3991)/17
+ ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
+ assert e1.intersection(e2) == ans
+ e2 = Ellipse(Point(x, y), 4, 8)
+ c = sqrt(3991)
+ ans = [Point(-c/68 + a, c*Rational(2, 17) + a/2), Point(c/68 + a, c*Rational(-2, 17) + a/2)]
+ assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans
+
+ # Combinations of above
+ assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])
+
+ e = Ellipse((1, 2), 3, 2)
+ assert e.tangent_lines(Point(10, 0)) == \
+ [Line(Point(10, 0), Point(1, 0)),
+ Line(Point(10, 0), Point(Rational(14, 5), Rational(18, 5)))]
+
+ # encloses_point
+ e = Ellipse((0, 0), 1, 2)
+ assert e.encloses_point(e.center)
+ assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
+ assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
+ assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
+ assert e.encloses_point(
+ e.center + Point(e.hradius + Rational(1, 10), 0)) is False
+ e = Ellipse((0, 0), 2, 1)
+ assert e.encloses_point(e.center)
+ assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
+ assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
+ assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
+ assert e.encloses_point(
+ e.center + Point(e.hradius + Rational(1, 10), 0)) is False
+ assert c1.encloses_point(Point(1, 0)) is False
+ assert c1.encloses_point(Point(0.3, 0.4)) is True
+
+ assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
+ assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
+ assert e.rotate(pi) == e
+ assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
+ raises(NotImplementedError, lambda: e.rotate(pi/3))
+
+ # Circle rotation tests (Issue #11743)
+ # Link - https://github.com/sympy/sympy/issues/11743
+ cir = Circle(Point(1, 0), 1)
+ assert cir.rotate(pi/2) == Circle(Point(0, 1), 1)
+ assert cir.rotate(pi/3) == Circle(Point(S.Half, sqrt(3)/2), 1)
+ assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1)
+ assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S.Half + sqrt(3)/2, S.Half + sqrt(3)/2), 1)
+
+
+def test_construction():
+ e1 = Ellipse(hradius=2, vradius=1, eccentricity=None)
+ assert e1.eccentricity == sqrt(3)/2
+
+ e2 = Ellipse(hradius=2, vradius=None, eccentricity=sqrt(3)/2)
+ assert e2.vradius == 1
+
+ e3 = Ellipse(hradius=None, vradius=1, eccentricity=sqrt(3)/2)
+ assert e3.hradius == 2
+
+ # filter(None, iterator) filters out anything falsey, including 0
+ # eccentricity would be filtered out in this case and the constructor would throw an error
+ e4 = Ellipse(Point(0, 0), hradius=1, eccentricity=0)
+ assert e4.vradius == 1
+
+ #tests for eccentricity > 1
+ raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = S(3)/2))
+ raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=sec(5)))
+ raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=S.Pi-S(2)))
+
+ #tests for eccentricity = 1
+ #if vradius is not defined
+ assert Ellipse(None, 1, None, 1).length == 2
+ #if hradius is not defined
+ raises(GeometryError, lambda: Ellipse(None, None, 1, eccentricity = 1))
+
+ #tests for eccentricity < 0
+ raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -3))
+ raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -0.5))
+
+def test_ellipse_random_point():
+ y1 = Symbol('y1', real=True)
+ e3 = Ellipse(Point(0, 0), y1, y1)
+ rx, ry = Symbol('rx'), Symbol('ry')
+ for ind in range(0, 5):
+ r = e3.random_point()
+ # substitution should give zero*y1**2
+ assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
+ # test for the case with seed
+ r = e3.random_point(seed=1)
+ assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
+
+
+def test_repr():
+ assert repr(Circle((0, 1), 2)) == 'Circle(Point2D(0, 1), 2)'
+
+
+def test_transform():
+ c = Circle((1, 1), 2)
+ assert c.scale(-1) == Circle((-1, 1), 2)
+ assert c.scale(y=-1) == Circle((1, -1), 2)
+ assert c.scale(2) == Ellipse((2, 1), 4, 2)
+
+ assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \
+ Ellipse(Point(-4, -10), 4, 9)
+ assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \
+ Ellipse(Point(-4, -10), 4, 6)
+ assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \
+ Ellipse(Point(-8, -10), 6, 9)
+ assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \
+ Circle(Point(-8, -10), 6)
+ assert Circle(Point(-8, -10), 6).scale(Rational(1, 3), Rational(1, 3), (4, 5)) == \
+ Circle((0, 0), 2)
+ assert Circle((0, 0), 2).translate(4, 5) == \
+ Circle((4, 5), 2)
+ assert Circle((0, 0), 2).scale(3, 3) == \
+ Circle((0, 0), 6)
+
+
+def test_bounds():
+ e1 = Ellipse(Point(0, 0), 3, 5)
+ e2 = Ellipse(Point(2, -2), 7, 7)
+ c1 = Circle(Point(2, -2), 7)
+ c2 = Circle(Point(-2, 0), Point(0, 2), Point(2, 0))
+ assert e1.bounds == (-3, -5, 3, 5)
+ assert e2.bounds == (-5, -9, 9, 5)
+ assert c1.bounds == (-5, -9, 9, 5)
+ assert c2.bounds == (-2, -2, 2, 2)
+
+
+def test_reflect():
+ b = Symbol('b')
+ m = Symbol('m')
+ l = Line((0, b), slope=m)
+ t1 = Triangle((0, 0), (1, 0), (2, 3))
+ assert t1.area == -t1.reflect(l).area
+ e = Ellipse((1, 0), 1, 2)
+ assert e.area == -e.reflect(Line((1, 0), slope=0)).area
+ assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
+ raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m)))
+ assert Circle((0, 1), 1).reflect(Line((0, 0), (1, 1))) == Circle(Point2D(1, 0), -1)
+
+
+def test_is_tangent():
+ e1 = Ellipse(Point(0, 0), 3, 5)
+ c1 = Circle(Point(2, -2), 7)
+ assert e1.is_tangent(Point(0, 0)) is False
+ assert e1.is_tangent(Point(3, 0)) is False
+ assert e1.is_tangent(e1) is True
+ assert e1.is_tangent(Ellipse((0, 0), 1, 2)) is False
+ assert e1.is_tangent(Ellipse((0, 0), 3, 2)) is True
+ assert c1.is_tangent(Ellipse((2, -2), 7, 1)) is True
+ assert c1.is_tangent(Circle((11, -2), 2)) is True
+ assert c1.is_tangent(Circle((7, -2), 2)) is True
+ assert c1.is_tangent(Ray((-5, -2), (-15, -20))) is False
+ assert c1.is_tangent(Ray((-3, -2), (-15, -20))) is False
+ assert c1.is_tangent(Ray((-3, -22), (15, 20))) is False
+ assert c1.is_tangent(Ray((9, 20), (9, -20))) is True
+ assert e1.is_tangent(Segment((2, 2), (-7, 7))) is False
+ assert e1.is_tangent(Segment((0, 0), (1, 2))) is False
+ assert c1.is_tangent(Segment((0, 0), (-5, -2))) is False
+ assert e1.is_tangent(Segment((3, 0), (12, 12))) is False
+ assert e1.is_tangent(Segment((12, 12), (3, 0))) is False
+ assert e1.is_tangent(Segment((-3, 0), (3, 0))) is False
+ assert e1.is_tangent(Segment((-3, 5), (3, 5))) is True
+ assert e1.is_tangent(Line((10, 0), (10, 10))) is False
+ assert e1.is_tangent(Line((0, 0), (1, 1))) is False
+ assert e1.is_tangent(Line((-3, 0), (-2.99, -0.001))) is False
+ assert e1.is_tangent(Line((-3, 0), (-3, 1))) is True
+ assert e1.is_tangent(Polygon((0, 0), (5, 5), (5, -5))) is False
+ assert e1.is_tangent(Polygon((-100, -50), (-40, -334), (-70, -52))) is False
+ assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 1))) is False
+ assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 5))) is False
+ assert e1.is_tangent(Polygon((-3, 0), (0, -5), (3, 0), (0, 5))) is False
+ assert e1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is True
+ assert c1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is False
+ assert e1.is_tangent(Polygon((0, 0), (3, 0), (7, 7), (0, 5))) is False
+ assert e1.is_tangent(Polygon((3, 12), (3, -12), (6, 5))) is True
+ assert e1.is_tangent(Polygon((3, 12), (3, -12), (0, -5), (0, 5))) is False
+ assert e1.is_tangent(Polygon((3, 0), (5, 7), (6, -5))) is False
+ raises(TypeError, lambda: e1.is_tangent(Point(0, 0, 0)))
+ raises(TypeError, lambda: e1.is_tangent(Rational(5)))
+
+
+def test_parameter_value():
+ t = Symbol('t')
+ e = Ellipse(Point(0, 0), 3, 5)
+ assert e.parameter_value((3, 0), t) == {t: 0}
+ raises(ValueError, lambda: e.parameter_value((4, 0), t))
+
+
+@slow
+def test_second_moment_of_area():
+ x, y = symbols('x, y')
+ e = Ellipse(Point(0, 0), 5, 4)
+ I_yy = 2*4*integrate(sqrt(25 - x**2)*x**2, (x, -5, 5))/5
+ I_xx = 2*5*integrate(sqrt(16 - y**2)*y**2, (y, -4, 4))/4
+ Y = 3*sqrt(1 - x**2/5**2)
+ I_xy = integrate(integrate(y, (y, -Y, Y))*x, (x, -5, 5))
+ assert I_yy == e.second_moment_of_area()[1]
+ assert I_xx == e.second_moment_of_area()[0]
+ assert I_xy == e.second_moment_of_area()[2]
+ #checking for other point
+ t1 = e.second_moment_of_area(Point(6,5))
+ t2 = (580*pi, 845*pi, 600*pi)
+ assert t1==t2
+
+
+def test_section_modulus_and_polar_second_moment_of_area():
+ d = Symbol('d', positive=True)
+ c = Circle((3, 7), 8)
+ assert c.polar_second_moment_of_area() == 2048*pi
+ assert c.section_modulus() == (128*pi, 128*pi)
+ c = Circle((2, 9), d/2)
+ assert c.polar_second_moment_of_area() == pi*d**3*Abs(d)/64 + pi*d*Abs(d)**3/64
+ assert c.section_modulus() == (pi*d**3/S(32), pi*d**3/S(32))
+
+ a, b = symbols('a, b', positive=True)
+ e = Ellipse((4, 6), a, b)
+ assert e.section_modulus() == (pi*a*b**2/S(4), pi*a**2*b/S(4))
+ assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4)
+ e = e.rotate(pi/2) # no change in polar and section modulus
+ assert e.section_modulus() == (pi*a**2*b/S(4), pi*a*b**2/S(4))
+ assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4)
+
+ e = Ellipse((a, b), 2, 6)
+ assert e.section_modulus() == (18*pi, 6*pi)
+ assert e.polar_second_moment_of_area() == 120*pi
+
+ e = Ellipse(Point(0, 0), 2, 2)
+ assert e.section_modulus() == (2*pi, 2*pi)
+ assert e.section_modulus(Point(2, 2)) == (2*pi, 2*pi)
+ assert e.section_modulus((2, 2)) == (2*pi, 2*pi)
+
+
+def test_circumference():
+ M = Symbol('M')
+ m = Symbol('m')
+ assert Ellipse(Point(0, 0), M, m).circumference == 4 * M * elliptic_e((M ** 2 - m ** 2) / M**2)
+
+ assert Ellipse(Point(0, 0), 5, 4).circumference == 20 * elliptic_e(S(9) / 25)
+
+ # circle
+ assert Ellipse(None, 1, None, 0).circumference == 2*pi
+
+ # test numerically
+ assert abs(Ellipse(None, hradius=5, vradius=3).circumference.evalf(16) - 25.52699886339813) < 1e-10
+
+
+def test_issue_15259():
+ assert Circle((1, 2), 0) == Point(1, 2)
+
+
+def test_issue_15797_equals():
+ Ri = 0.024127189424130748
+ Ci = (0.0864931002830291, 0.0819863295239654)
+ A = Point(0, 0.0578591400998346)
+ c = Circle(Ci, Ri) # evaluated
+ assert c.is_tangent(c.tangent_lines(A)[0]) == True
+ assert c.center.x.is_Rational
+ assert c.center.y.is_Rational
+ assert c.radius.is_Rational
+ u = Circle(Ci, Ri, evaluate=False) # unevaluated
+ assert u.center.x.is_Float
+ assert u.center.y.is_Float
+ assert u.radius.is_Float
+
+
+def test_auxiliary_circle():
+ x, y, a, b = symbols('x y a b')
+ e = Ellipse((x, y), a, b)
+ # the general result
+ assert e.auxiliary_circle() == Circle((x, y), Max(a, b))
+ # a special case where Ellipse is a Circle
+ assert Circle((3, 4), 8).auxiliary_circle() == Circle((3, 4), 8)
+
+
+def test_director_circle():
+ x, y, a, b = symbols('x y a b')
+ e = Ellipse((x, y), a, b)
+ # the general result
+ assert e.director_circle() == Circle((x, y), sqrt(a**2 + b**2))
+ # a special case where Ellipse is a Circle
+ assert Circle((3, 4), 8).director_circle() == Circle((3, 4), 8*sqrt(2))
+
+
+def test_evolute():
+ #ellipse centered at h,k
+ x, y, h, k = symbols('x y h k',real = True)
+ a, b = symbols('a b')
+ e = Ellipse(Point(h, k), a, b)
+ t1 = (e.hradius*(x - e.center.x))**Rational(2, 3)
+ t2 = (e.vradius*(y - e.center.y))**Rational(2, 3)
+ E = t1 + t2 - (e.hradius**2 - e.vradius**2)**Rational(2, 3)
+ assert e.evolute() == E
+ #Numerical Example
+ e = Ellipse(Point(1, 1), 6, 3)
+ t1 = (6*(x - 1))**Rational(2, 3)
+ t2 = (3*(y - 1))**Rational(2, 3)
+ E = t1 + t2 - (27)**Rational(2, 3)
+ assert e.evolute() == E
+
+
+def test_svg():
+ e1 = Ellipse(Point(1, 0), 3, 2)
+ assert e1._svg(2, "#FFAAFF") == ''
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_entity.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_entity.py
new file mode 100644
index 0000000000000000000000000000000000000000..cecfdb785506d1b2f4ef496703c430794f09e589
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_entity.py
@@ -0,0 +1,120 @@
+from sympy.core.numbers import (Rational, pi)
+from sympy.core.singleton import S
+from sympy.core.symbol import Symbol
+from sympy.geometry import (Circle, Ellipse, Point, Line, Parabola,
+ Polygon, Ray, RegularPolygon, Segment, Triangle, Plane, Curve)
+from sympy.geometry.entity import scale, GeometryEntity
+from sympy.testing.pytest import raises
+
+
+def test_entity():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+
+ assert GeometryEntity(x, y) in GeometryEntity(x, y)
+ raises(NotImplementedError, lambda: Point(0, 0) in GeometryEntity(x, y))
+
+ assert GeometryEntity(x, y) == GeometryEntity(x, y)
+ assert GeometryEntity(x, y).equals(GeometryEntity(x, y))
+
+ c = Circle((0, 0), 5)
+ assert GeometryEntity.encloses(c, Point(0, 0))
+ assert GeometryEntity.encloses(c, Segment((0, 0), (1, 1)))
+ assert GeometryEntity.encloses(c, Line((0, 0), (1, 1))) is False
+ assert GeometryEntity.encloses(c, Circle((0, 0), 4))
+ assert GeometryEntity.encloses(c, Polygon(Point(0, 0), Point(1, 0), Point(0, 1)))
+ assert GeometryEntity.encloses(c, RegularPolygon(Point(8, 8), 1, 3)) is False
+
+
+def test_svg():
+ a = Symbol('a')
+ b = Symbol('b')
+ d = Symbol('d')
+
+ entity = Circle(Point(a, b), d)
+ assert entity._repr_svg_() is None
+
+ entity = Circle(Point(0, 0), S.Infinity)
+ assert entity._repr_svg_() is None
+
+
+def test_subs():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ p = Point(x, 2)
+ q = Point(1, 1)
+ r = Point(3, 4)
+ for o in [p,
+ Segment(p, q),
+ Ray(p, q),
+ Line(p, q),
+ Triangle(p, q, r),
+ RegularPolygon(p, 3, 6),
+ Polygon(p, q, r, Point(5, 4)),
+ Circle(p, 3),
+ Ellipse(p, 3, 4)]:
+ assert 'y' in str(o.subs(x, y))
+ assert p.subs({x: 1}) == Point(1, 2)
+ assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
+ assert Point(1, 2).subs((1, 2), Point(3, 4)) == Point(3, 4)
+ assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
+ assert Point(1, 2).subs({(1, 2)}) == Point(2, 2)
+ raises(ValueError, lambda: Point(1, 2).subs(1))
+ raises(ValueError, lambda: Point(1, 1).subs((Point(1, 1), Point(1,
+ 2)), 1, 2))
+
+
+def test_transform():
+ assert scale(1, 2, (3, 4)).tolist() == \
+ [[1, 0, 0], [0, 2, 0], [0, -4, 1]]
+
+
+def test_reflect_entity_overrides():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ b = Symbol('b')
+ m = Symbol('m')
+ l = Line((0, b), slope=m)
+ p = Point(x, y)
+ r = p.reflect(l)
+ c = Circle((x, y), 3)
+ cr = c.reflect(l)
+ assert cr == Circle(r, -3)
+ assert c.area == -cr.area
+
+ pent = RegularPolygon((1, 2), 1, 5)
+ slope = S.ComplexInfinity
+ while slope is S.ComplexInfinity:
+ slope = Rational(*(x._random()/2).as_real_imag())
+ l = Line(pent.vertices[1], slope=slope)
+ rpent = pent.reflect(l)
+ assert rpent.center == pent.center.reflect(l)
+ rvert = [i.reflect(l) for i in pent.vertices]
+ for v in rpent.vertices:
+ for i in range(len(rvert)):
+ ri = rvert[i]
+ if ri.equals(v):
+ rvert.remove(ri)
+ break
+ assert not rvert
+ assert pent.area.equals(-rpent.area)
+
+
+def test_geometry_EvalfMixin():
+ x = pi
+ t = Symbol('t')
+ for g in [
+ Point(x, x),
+ Plane(Point(0, x, 0), (0, 0, x)),
+ Curve((x*t, x), (t, 0, x)),
+ Ellipse((x, x), x, -x),
+ Circle((x, x), x),
+ Line((0, x), (x, 0)),
+ Segment((0, x), (x, 0)),
+ Ray((0, x), (x, 0)),
+ Parabola((0, x), Line((-x, 0), (x, 0))),
+ Polygon((0, 0), (0, x), (x, 0), (x, x)),
+ RegularPolygon((0, x), x, 4, x),
+ Triangle((0, 0), (x, 0), (x, x)),
+ ]:
+ assert str(g).replace('pi', '3.1') == str(g.n(2))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_geometrysets.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_geometrysets.py
new file mode 100644
index 0000000000000000000000000000000000000000..c52898b3c9ba4e9db80c244db3aebf88db2cc8b4
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_geometrysets.py
@@ -0,0 +1,38 @@
+from sympy.core.numbers import Rational
+from sympy.core.singleton import S
+from sympy.geometry import Circle, Line, Point, Polygon, Segment
+from sympy.sets import FiniteSet, Union, Intersection, EmptySet
+
+
+def test_booleans():
+ """ test basic unions and intersections """
+ half = S.Half
+
+ p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
+ p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
+ l1 = Line(Point(0,0), Point(1,1))
+ l2 = Line(Point(half, half), Point(5,5))
+ l3 = Line(p2, p3)
+ l4 = Line(p3, p4)
+ poly1 = Polygon(p1, p2, p3, p4)
+ poly2 = Polygon(p5, p6, p7)
+ poly3 = Polygon(p1, p2, p5)
+ assert Union(l1, l2).equals(l1)
+ assert Intersection(l1, l2).equals(l1)
+ assert Intersection(l1, l4) == FiniteSet(Point(1,1))
+ assert Intersection(Union(l1, l4), l3) == FiniteSet(Point(Rational(-1, 3), Rational(-1, 3)), Point(5, 1))
+ assert Intersection(l1, FiniteSet(Point(7,-7))) == EmptySet
+ assert Intersection(Circle(Point(0,0), 3), Line(p1,p2)) == FiniteSet(Point(-3,0), Point(3,0))
+ assert Intersection(l1, FiniteSet(p1)) == FiniteSet(p1)
+ assert Union(l1, FiniteSet(p1)) == l1
+
+ fs = FiniteSet(Point(Rational(1, 3), 1), Point(Rational(2, 3), 0), Point(Rational(9, 5), Rational(1, 5)), Point(Rational(7, 3), 1))
+ # test the intersection of polygons
+ assert Intersection(poly1, poly2) == fs
+ # make sure if we union polygons with subsets, the subsets go away
+ assert Union(poly1, poly2, fs) == Union(poly1, poly2)
+ # make sure that if we union with a FiniteSet that isn't a subset,
+ # that the points in the intersection stop being listed
+ assert Union(poly1, FiniteSet(Point(0,0), Point(3,5))) == Union(poly1, FiniteSet(Point(3,5)))
+ # intersect two polygons that share an edge
+ assert Intersection(poly1, poly3) == Union(FiniteSet(Point(Rational(3, 2), 1), Point(2, 1)), Segment(Point(0, 0), Point(1, 0)))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_line.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_line.py
new file mode 100644
index 0000000000000000000000000000000000000000..5ad154ad18e0550f9eecc5d2e289c731aed6e990
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_line.py
@@ -0,0 +1,852 @@
+from sympy.core.numbers import (Float, Rational, oo, pi)
+from sympy.core.relational import Eq
+from sympy.core.singleton import S
+from sympy.core.symbol import (Symbol, symbols)
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.functions.elementary.trigonometric import (acos, cos, sin)
+from sympy.sets import EmptySet
+from sympy.simplify.simplify import simplify
+from sympy.functions.elementary.trigonometric import tan
+from sympy.geometry import (Circle, GeometryError, Line, Point, Ray,
+ Segment, Triangle, intersection, Point3D, Line3D, Ray3D, Segment3D,
+ Point2D, Line2D)
+from sympy.geometry.line import Undecidable
+from sympy.geometry.polygon import _asa as asa
+from sympy.utilities.iterables import cartes
+from sympy.testing.pytest import raises, warns
+
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+z = Symbol('z', real=True)
+k = Symbol('k', real=True)
+x1 = Symbol('x1', real=True)
+y1 = Symbol('y1', real=True)
+t = Symbol('t', real=True)
+a, b = symbols('a,b', real=True)
+m = symbols('m', real=True)
+
+
+def test_object_from_equation():
+ from sympy.abc import x, y, a, b
+ assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21))
+ assert Line(3*x + 5 * y + 1) == Line2D(
+ Point2D(0, Rational(-1, 5)), Point2D(1, Rational(-4, 5)))
+ assert Line(3*a + b + 18, x="a", y="b") == Line2D(
+ Point2D(0, -18), Point2D(1, -21))
+ assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3))
+ assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1))
+ assert Line(Eq(3*a + b, -18), x="a", y=b) == Line2D(
+ Point2D(0, -18), Point2D(1, -21))
+ # issue 22361
+ assert Line(x - 1) == Line2D(Point2D(1, 0), Point2D(1, 1))
+ assert Line(2*x - 2, y=x) == Line2D(Point2D(0, 1), Point2D(1, 1))
+ assert Line(y) == Line2D(Point2D(0, 0), Point2D(1, 0))
+ assert Line(2*y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1))
+ assert Line(y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1))
+ raises(ValueError, lambda: Line(x / y))
+ raises(ValueError, lambda: Line(a / b, x='a', y='b'))
+ raises(ValueError, lambda: Line(y / x))
+ raises(ValueError, lambda: Line(b / a, x='a', y='b'))
+ raises(ValueError, lambda: Line((x + 1)**2 + y))
+
+
+def feq(a, b):
+ """Test if two floating point values are 'equal'."""
+ t_float = Float("1.0E-10")
+ return -t_float < a - b < t_float
+
+
+def test_angle_between():
+ a = Point(1, 2, 3, 4)
+ b = a.orthogonal_direction
+ o = a.origin
+ assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)),
+ Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4)
+ assert Line(a, o).angle_between(Line(b, o)) == pi / 2
+ z = Point3D(0, 0, 0)
+ assert Line3D.angle_between(Line3D(z, Point3D(1, 1, 1)),
+ Line3D(z, Point3D(5, 0, 0))) == acos(sqrt(3) / 3)
+ # direction of points is used to determine angle
+ assert Line3D.angle_between(Line3D(z, Point3D(1, 1, 1)),
+ Line3D(Point3D(5, 0, 0), z)) == acos(-sqrt(3) / 3)
+
+
+def test_closing_angle():
+ a = Ray((0, 0), angle=0)
+ b = Ray((1, 2), angle=pi/2)
+ assert a.closing_angle(b) == -pi/2
+ assert b.closing_angle(a) == pi/2
+ assert a.closing_angle(a) == 0
+
+
+def test_smallest_angle():
+ a = Line(Point(1, 1), Point(1, 2))
+ b = Line(Point(1, 1),Point(2, 3))
+ assert a.smallest_angle_between(b) == acos(2*sqrt(5)/5)
+
+
+def test_svg():
+ a = Line(Point(1, 1),Point(1, 2))
+ assert a._svg() == ''
+ a = Segment(Point(1, 0),Point(1, 1))
+ assert a._svg() == ''
+ a = Ray(Point(2, 3), Point(3, 5))
+ assert a._svg() == ''
+
+
+def test_arbitrary_point():
+ l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
+ l2 = Line(Point(x1, x1), Point(y1, y1))
+ assert l2.arbitrary_point() in l2
+ assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \
+ Point(t + 1, t + 1)
+ assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
+ assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point()
+ assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
+ Point3D(t + 1, 2 * t + 1, 3 * t + 1)
+ assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \
+ Point3D(S.Half, S.Half, S.Half)
+ assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2)
+ assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
+ Point3D(t + 1, 2 * t + 1, 3 * t + 1)
+ raises(ValueError, (lambda: Line((x, 1), (2, 3)).arbitrary_point(x)))
+
+
+def test_are_concurrent_2d():
+ l1 = Line(Point(0, 0), Point(1, 1))
+ l2 = Line(Point(x1, x1), Point(x1, 1 + x1))
+ assert Line.are_concurrent(l1) is False
+ assert Line.are_concurrent(l1, l2)
+ assert Line.are_concurrent(l1, l1, l1, l2)
+ assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(Rational(-3, 5), x1)))
+ assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False
+
+
+def test_are_concurrent_3d():
+ p1 = Point3D(0, 0, 0)
+ l1 = Line(p1, Point3D(1, 1, 1))
+ parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
+ parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))
+ assert Line3D.are_concurrent(l1) is False
+ assert Line3D.are_concurrent(l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
+ assert Line3D.are_concurrent(l1, Line3D(p1, Point3D(x1, x1, x1)),
+ Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True
+ assert Line3D.are_concurrent(parallel_1, parallel_2) is False
+
+
+def test_arguments():
+ """Functions accepting `Point` objects in `geometry`
+ should also accept tuples, lists, and generators and
+ automatically convert them to points."""
+ from sympy.utilities.iterables import subsets
+
+ singles2d = ((1, 2), [1, 3], Point(1, 5))
+ doubles2d = subsets(singles2d, 2)
+ l2d = Line(Point2D(1, 2), Point2D(2, 3))
+ singles3d = ((1, 2, 3), [1, 2, 4], Point(1, 2, 6))
+ doubles3d = subsets(singles3d, 2)
+ l3d = Line(Point3D(1, 2, 3), Point3D(1, 1, 2))
+ singles4d = ((1, 2, 3, 4), [1, 2, 3, 5], Point(1, 2, 3, 7))
+ doubles4d = subsets(singles4d, 2)
+ l4d = Line(Point(1, 2, 3, 4), Point(2, 2, 2, 2))
+ # test 2D
+ test_single = ['contains', 'distance', 'equals', 'parallel_line', 'perpendicular_line', 'perpendicular_segment',
+ 'projection', 'intersection']
+ for p in doubles2d:
+ Line2D(*p)
+ for func in test_single:
+ for p in singles2d:
+ getattr(l2d, func)(p)
+ # test 3D
+ for p in doubles3d:
+ Line3D(*p)
+ for func in test_single:
+ for p in singles3d:
+ getattr(l3d, func)(p)
+ # test 4D
+ for p in doubles4d:
+ Line(*p)
+ for func in test_single:
+ for p in singles4d:
+ getattr(l4d, func)(p)
+
+
+def test_basic_properties_2d():
+ p1 = Point(0, 0)
+ p2 = Point(1, 1)
+ p10 = Point(2000, 2000)
+ p_r3 = Ray(p1, p2).random_point()
+ p_r4 = Ray(p2, p1).random_point()
+
+ l1 = Line(p1, p2)
+ l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
+ l4 = Line(p1, Point(1, 0))
+
+ r1 = Ray(p1, Point(0, 1))
+ r2 = Ray(Point(0, 1), p1)
+
+ s1 = Segment(p1, p10)
+ p_s1 = s1.random_point()
+
+ assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
+ assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
+ assert Line((1, 1), slope=oo).bounds == (1, 1, 1, 2)
+ assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
+ assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
+ assert Line(p1, p2) == Line(p1, p2)
+ assert Line(p1, p2) != Line(p2, p1)
+ assert l1 != Line(Point(x1, x1), Point(y1, y1))
+ assert l1 != l3
+ assert Line(p1, p10) != Line(p10, p1)
+ assert Line(p1, p10) != p1
+ assert p1 in l1 # is p1 on the line l1?
+ assert p1 not in l3
+ assert s1 in Line(p1, p10)
+ assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
+ assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
+ assert Ray(Point(0, 0), Point(0, 2)).xdirection == S.Zero
+ assert Ray(Point(0, 0), Point(1, 2)).xdirection == S.Infinity
+ assert Ray(Point(0, 0), Point(-1, 2)).xdirection == S.NegativeInfinity
+ assert Ray(Point(0, 0), Point(2, 0)).ydirection == S.Zero
+ assert Ray(Point(0, 0), Point(2, 2)).ydirection == S.Infinity
+ assert Ray(Point(0, 0), Point(2, -2)).ydirection == S.NegativeInfinity
+ assert (r1 in s1) is False
+ assert Segment(p1, p2) in s1
+ assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
+ assert Segment(p1, p2).midpoint == Point(S.Half, S.Half)
+ assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))
+
+ assert l1.slope == 1
+ assert l3.slope is oo
+ assert l4.slope == 0
+ assert Line(p1, Point(0, 1)).slope is oo
+ assert Line(r1.source, r1.random_point()).slope == r1.slope
+ assert Line(r2.source, r2.random_point()).slope == r2.slope
+ assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope
+
+ assert l4.coefficients == (0, 1, 0)
+ assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
+ assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
+ # issue 7963
+ r = Ray((0, 0), angle=x)
+ assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
+ assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
+ assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
+ assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
+ assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))
+
+ for ind in range(0, 5):
+ assert l3.random_point() in l3
+
+ assert p_r3.x >= p1.x and p_r3.y >= p1.y
+ assert p_r4.x <= p2.x and p_r4.y <= p2.y
+ assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
+ assert hash(s1) != hash(Segment(p10, p1))
+
+ assert s1.plot_interval() == [t, 0, 1]
+ assert Line(p1, p10).plot_interval() == [t, -5, 5]
+ assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
+
+
+def test_basic_properties_3d():
+ p1 = Point3D(0, 0, 0)
+ p2 = Point3D(1, 1, 1)
+ p3 = Point3D(x1, x1, x1)
+ p5 = Point3D(x1, 1 + x1, 1)
+
+ l1 = Line3D(p1, p2)
+ l3 = Line3D(p3, p5)
+
+ r1 = Ray3D(p1, Point3D(-1, 5, 0))
+ r3 = Ray3D(p1, p2)
+
+ s1 = Segment3D(p1, p2)
+
+ assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5))
+ assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8))
+ assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
+ assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).direction_cosine == [1, 0, 0]
+ assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0))
+ assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0))
+ assert Line3D(p1, p2) != Line3D(p2, p1)
+ assert l1 != l3
+ assert l1 != Line3D(p3, Point3D(y1, y1, y1))
+ assert r3 != r1
+ assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2))
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).xdirection == S.Infinity
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).ydirection == S.Infinity
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).zdirection == S.Infinity
+ assert Ray3D(Point3D(0, 0, 0), Point3D(-2, 2, 2)).xdirection == S.NegativeInfinity
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, -2, 2)).ydirection == S.NegativeInfinity
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, -2)).zdirection == S.NegativeInfinity
+ assert Ray3D(Point3D(0, 0, 0), Point3D(0, 2, 2)).xdirection == S.Zero
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 0, 2)).ydirection == S.Zero
+ assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 0)).zdirection == S.Zero
+ assert p1 in l1
+ assert p1 not in l3
+
+ assert l1.direction_ratio == [1, 1, 1]
+
+ assert s1.midpoint == Point3D(S.Half, S.Half, S.Half)
+ # Test zdirection
+ assert Ray3D(p1, Point3D(0, 0, -1)).zdirection is S.NegativeInfinity
+
+
+def test_contains():
+ p1 = Point(0, 0)
+
+ r = Ray(p1, Point(4, 4))
+ r1 = Ray3D(p1, Point3D(0, 0, -1))
+ r2 = Ray3D(p1, Point3D(0, 1, 0))
+ r3 = Ray3D(p1, Point3D(0, 0, 1))
+
+ l = Line(Point(0, 1), Point(3, 4))
+ # Segment contains
+ assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
+ assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
+ assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
+ assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
+ assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
+ assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
+ Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
+ # Line contains
+ assert l.contains(Point(0, 1)) is True
+ assert l.contains((0, 1)) is True
+ assert l.contains((0, 0)) is False
+ # Ray contains
+ assert r.contains(p1) is True
+ assert r.contains((1, 1)) is True
+ assert r.contains((1, 3)) is False
+ assert r.contains(Segment((1, 1), (2, 2))) is True
+ assert r.contains(Segment((1, 2), (2, 5))) is False
+ assert r.contains(Ray((2, 2), (3, 3))) is True
+ assert r.contains(Ray((2, 2), (3, 5))) is False
+ assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
+ assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
+ assert r2.contains(Point3D(0, 0, 0)) is True
+ assert r3.contains(Point3D(0, 0, 0)) is True
+ assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
+ assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
+ with warns(UserWarning, test_stacklevel=False):
+ assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
+
+ with warns(UserWarning, test_stacklevel=False):
+ assert r3.contains(Point(1.0, 1.0)) is False
+
+
+def test_contains_nonreal_symbols():
+ u, v, w, z = symbols('u, v, w, z')
+ l = Segment(Point(u, w), Point(v, z))
+ p = Point(u*Rational(2, 3) + v/3, w*Rational(2, 3) + z/3)
+ assert l.contains(p)
+
+
+def test_distance_2d():
+ p1 = Point(0, 0)
+ p2 = Point(1, 1)
+ half = S.Half
+
+ s1 = Segment(Point(0, 0), Point(1, 1))
+ s2 = Segment(Point(half, half), Point(1, 0))
+
+ r = Ray(p1, p2)
+
+ assert s1.distance(Point(0, 0)) == 0
+ assert s1.distance((0, 0)) == 0
+ assert s2.distance(Point(0, 0)) == 2 ** half / 2
+ assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half
+ assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2)
+ assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2)
+ assert Line(p1, p2).distance(Point(2, 2)) == 0
+ assert Line(p1, p2).distance((-1, 1)) == sqrt(2)
+ assert Line((0, 0), (0, 1)).distance(p1) == 0
+ assert Line((0, 0), (0, 1)).distance(p2) == 1
+ assert Line((0, 0), (1, 0)).distance(p1) == 0
+ assert Line((0, 0), (1, 0)).distance(p2) == 1
+ assert r.distance(Point(-1, -1)) == sqrt(2)
+ assert r.distance(Point(1, 1)) == 0
+ assert r.distance(Point(-1, 1)) == sqrt(2)
+ assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
+ assert r.distance((1, 1)) == 0
+
+
+def test_dimension_normalization():
+ with warns(UserWarning, test_stacklevel=False):
+ assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
+
+
+def test_distance_3d():
+ p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
+ p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2)
+
+ s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
+ s2 = Segment3D(Point3D(S.Half, S.Half, S.Half), Point3D(1, 0, 1))
+
+ r = Ray3D(p1, p2)
+
+ assert s1.distance(p1) == 0
+ assert s2.distance(p1) == sqrt(3) / 2
+ assert s2.distance(p3) == 2 * sqrt(6) / 3
+ assert s1.distance((0, 0, 0)) == 0
+ assert s2.distance((0, 0, 0)) == sqrt(3) / 2
+ assert s1.distance(p1) == 0
+ assert s2.distance(p1) == sqrt(3) / 2
+ assert s2.distance(p3) == 2 * sqrt(6) / 3
+ assert s1.distance((0, 0, 0)) == 0
+ assert s2.distance((0, 0, 0)) == sqrt(3) / 2
+ # Line to point
+ assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3
+ assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3
+ assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0
+ assert Line3D(p1, p2).distance((2, 2, 2)) == 0
+ assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3
+ assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0
+ assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2)
+ assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0
+ assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2)
+ # Ray to point
+ assert r.distance(Point3D(-1, -1, -1)) == sqrt(3)
+ assert r.distance(Point3D(1, 1, 1)) == 0
+ assert r.distance((-1, -1, -1)) == sqrt(3)
+ assert r.distance((1, 1, 1)) == 0
+ assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3
+ assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2
+ assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6
+
+
+def test_equals():
+ p1 = Point(0, 0)
+ p2 = Point(1, 1)
+
+ l1 = Line(p1, p2)
+ l2 = Line((0, 5), slope=m)
+ l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
+
+ assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
+ assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
+ assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
+ equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
+ assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
+ assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
+ assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
+ assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
+ assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
+ assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
+ assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
+ assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
+ assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
+ Line3D(Point3D(0, 1, 0), Point3D(S.Half, S.Half, 0)))
+ assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S.Half, S.Half)))
+ assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
+
+
+def test_equation():
+ p1 = Point(0, 0)
+ p2 = Point(1, 1)
+ l1 = Line(p1, p2)
+ l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
+
+ assert simplify(l1.equation()) in (x - y, y - x)
+ assert simplify(l3.equation()) in (x - x1, x1 - x)
+ assert simplify(l1.equation()) in (x - y, y - x)
+ assert simplify(l3.equation()) in (x - x1, x1 - x)
+
+ assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
+ assert Line(p1, Point(0, 1)).equation() == x
+ assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
+ assert Line(p2, Point(2, 1)).equation() == y - 1
+
+ assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1)
+ ).equation() == (-x + y, -x + z)
+ assert Line3D(Point(1, 2, 3), Point(2, 3, 4)
+ ).equation() == (-x + y - 1, -x + z - 2)
+ assert Line3D(Point(1, 2, 3), Point(1, 3, 4)
+ ).equation() == (x - 1, -y + z - 1)
+ assert Line3D(Point(1, 2, 3), Point(2, 2, 4)
+ ).equation() == (y - 2, -x + z - 2)
+ assert Line3D(Point(1, 2, 3), Point(2, 3, 3)
+ ).equation() == (-x + y - 1, z - 3)
+ assert Line3D(Point(1, 2, 3), Point(1, 2, 4)
+ ).equation() == (x - 1, y - 2)
+ assert Line3D(Point(1, 2, 3), Point(1, 3, 3)
+ ).equation() == (x - 1, z - 3)
+ assert Line3D(Point(1, 2, 3), Point(2, 2, 3)
+ ).equation() == (y - 2, z - 3)
+
+
+def test_intersection_2d():
+ p1 = Point(0, 0)
+ p2 = Point(1, 1)
+ p3 = Point(x1, x1)
+ p4 = Point(y1, y1)
+
+ l1 = Line(p1, p2)
+ l3 = Line(Point(0, 0), Point(3, 4))
+
+ r1 = Ray(Point(1, 1), Point(2, 2))
+ r2 = Ray(Point(0, 0), Point(3, 4))
+ r4 = Ray(p1, p2)
+ r6 = Ray(Point(0, 1), Point(1, 2))
+ r7 = Ray(Point(0.5, 0.5), Point(1, 1))
+
+ s1 = Segment(p1, p2)
+ s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
+ s3 = Segment(Point(0, 0), Point(3, 4))
+
+ assert intersection(l1, p1) == [p1]
+ assert intersection(l1, Point(x1, 1 + x1)) == []
+ assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
+ assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
+ assert intersection(l3, l3) == [l3]
+ assert intersection(l3, r2) == [r2]
+ assert intersection(l3, s3) == [s3]
+ assert intersection(s3, l3) == [s3]
+ assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
+ assert intersection(r2, l3) == [r2]
+ assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
+ assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
+ assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]
+
+ assert r4.intersection(s2) == [s2]
+ assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
+ assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
+ assert r4.intersection(Ray(p2, p1)) == [s1]
+ assert Ray(p2, p1).intersection(r6) == []
+ assert r4.intersection(r7) == r7.intersection(r4) == [r7]
+ assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
+ assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
+ assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
+ [Segment(Point(0, 0), Point(0, 1))]
+
+ assert Segment3D((0, 0), (3, 0)).intersection(
+ Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
+ assert Segment3D((1, 0), (2, 0)).intersection(
+ Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
+ assert Segment3D((0, 0), (3, 0)).intersection(
+ Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
+ assert Segment3D((0, 0), (3, 0)).intersection(
+ Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
+ assert Segment3D((0, 0), (3, 0)).intersection(
+ Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
+ assert Segment3D((0, 0), (3, 0)).intersection(
+ Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
+ assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
+ assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
+ assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
+ assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
+ assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
+ assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
+ assert s1.intersection(s2) == [s2]
+ assert s2.intersection(s1) == [s2]
+
+ assert asa(120, 8, 52) == \
+ Triangle(
+ Point(0, 0),
+ Point(8, 0),
+ Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
+ 4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
+ assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
+ assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
+ assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
+ assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
+ assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
+ assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
+ assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)]
+
+ # This test is disabled because it hangs after rref changes which simplify
+ # intermediate results and return a different representation from when the
+ # test was written.
+ # # 16628 - this should be fast
+ # p0 = Point2D(Rational(249, 5), Rational(497999, 10000))
+ # p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
+ # 20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
+ # /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
+ # + 1991998000*sqrt(630547164901) + 1622561172902000),
+ # (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
+ # 90004251917891999 +
+ # 496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
+ # + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
+ # 8112805864510000))
+ # p2 = Point2D(Rational(497, 10), Rational(-497, 10))
+ # p3 = Point2D(Rational(-497, 10), Rational(-497, 10))
+ # l = Line(p0, p1)
+ # s = Segment(p2, p3)
+ # n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
+ # 9803028531*sqrt(630547164901) +
+ # 33200*sqrt(255775022850776494562626))
+ # d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
+ # 630547164901) + sqrt(255775022850776494562626)
+ # assert intersection(l, s) == [
+ # Point2D(n/d*Rational(3, 2000), Rational(-497, 10))]
+
+
+def test_line_intersection():
+ # see also test_issue_11238 in test_matrices.py
+ x0 = tan(pi*Rational(13, 45))
+ x1 = sqrt(3)
+ x2 = x0**2
+ x, y = [8*x0/(x0 + x1), (24*x0 - 8*x1*x2)/(x2 - 3)]
+ assert Line(Point(0, 0), Point(1, -sqrt(3))).contains(Point(x, y)) is True
+
+
+def test_intersection_3d():
+ p1 = Point3D(0, 0, 0)
+ p2 = Point3D(1, 1, 1)
+
+ l1 = Line3D(p1, p2)
+ l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
+
+ r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
+ r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
+
+ s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
+
+ assert intersection(l1, p1) == [p1]
+ assert intersection(l1, Point3D(x1, 1 + x1, 1)) == []
+ assert intersection(l1, l1.parallel_line(p1)) == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))]
+ assert intersection(l2, r2) == [r2]
+ assert intersection(l2, s1) == [s1]
+ assert intersection(r2, l2) == [r2]
+ assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)]
+ assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))) == [
+ Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
+ assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \
+ == [Point3D(0, 0, 0)]
+ assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \
+ [Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
+ assert intersection(s1, r2) == [s1]
+
+ assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \
+ [Point3D(2, 2, 1)]
+ assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)]
+ assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \
+ [Point3D(t, t)]
+
+ assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection(Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == []
+
+
+def test_is_parallel():
+ p1 = Point3D(0, 0, 0)
+ p2 = Point3D(1, 1, 1)
+ p3 = Point3D(x1, x1, x1)
+
+ l2 = Line(Point(x1, x1), Point(y1, y1))
+ l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1))
+
+ assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2)
+ assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False
+ assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1)))
+ assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0)))
+ assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D
+ assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
+ assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1),
+ Point3D(x1 + 1, x1 + 1, x1 + 1))
+ assert Line3D(p1, p2).parallel_line(p3.args) == \
+ Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))
+ assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
+
+
+def test_is_perpendicular():
+ p1 = Point(0, 0)
+ p2 = Point(1, 1)
+
+ l1 = Line(p1, p2)
+ l2 = Line(Point(x1, x1), Point(y1, y1))
+ l1_1 = Line(p1, Point(-x1, x1))
+ # 2D
+ assert Line.is_perpendicular(l1, l1_1)
+ assert Line.is_perpendicular(l1, l2) is False
+ p = l1.random_point()
+ assert l1.perpendicular_segment(p) == p
+ # 3D
+ assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
+ Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True
+ assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
+ Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False
+ assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
+ Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
+
+
+def test_is_similar():
+ p1 = Point(2000, 2000)
+ p2 = p1.scale(2, 2)
+
+ r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0))
+ r2 = Ray(Point(0, 0), Point(0, 1))
+
+ s1 = Segment(Point(0, 0), p1)
+
+ assert s1.is_similar(Segment(p1, p2))
+ assert s1.is_similar(r2) is False
+ assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True
+ assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False
+
+
+def test_length():
+ s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))
+ assert Line(Point(0, 0), Point(1, 1)).length is oo
+ assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2)
+ assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length is oo
+
+
+def test_projection():
+ p1 = Point(0, 0)
+ p2 = Point3D(0, 0, 0)
+ p3 = Point(-x1, x1)
+
+ l1 = Line(p1, Point(1, 1))
+ l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
+ l3 = Line3D(p2, Point3D(1, 1, 1))
+
+ r1 = Ray(Point(1, 1), Point(2, 2))
+
+ s1 = Segment(Point2D(0, 0), Point2D(0, 1))
+ s2 = Segment(Point2D(1, 0), Point2D(2, 1/2))
+
+ assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
+ assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
+ assert Segment(Point(-2, 2), Point(0, 4)).projection(r1) == Segment(Point(-1, 3), Point(0, 4))
+ assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
+ assert s2.projection(s1) == EmptySet
+ assert l1.projection(p3) == p1
+ assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2))
+ assert l1.projection(Ray(p1, Point(-1, 1))) == p1
+ assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
+ assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
+ assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
+ assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
+ assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
+ assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
+
+ assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(4, 3), Rational(4, 3), Rational(4, 3)))
+ assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(1, 3), Rational(1, 3), Rational(1, 3)))
+ assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
+ assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
+
+
+def test_perpendicular_line():
+ # 3d - requires a particular orthogonal to be selected
+ p1, p2, p3 = Point(0, 0, 0), Point(2, 3, 4), Point(-2, 2, 0)
+ l = Line(p1, p2)
+ p = l.perpendicular_line(p3)
+ assert p.p1 == p3
+ assert p.p2 in l
+ # 2d - does not require special selection
+ p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
+ l = Line(p1, p2)
+ p = l.perpendicular_line(p3)
+ assert p.p1 == p3
+ # p is directed from l to p3
+ assert p.direction.unit == (p3 - l.projection(p3)).unit
+
+
+def test_perpendicular_bisector():
+ s1 = Segment(Point(0, 0), Point(1, 1))
+ aline = Line(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2)))
+ on_line = Segment(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2))).midpoint
+
+ assert s1.perpendicular_bisector().equals(aline)
+ assert s1.perpendicular_bisector(on_line).equals(Segment(s1.midpoint, on_line))
+ assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
+
+
+def test_raises():
+ d, e = symbols('a,b', real=True)
+ s = Segment((d, 0), (e, 0))
+
+ raises(TypeError, lambda: Line((1, 1), 1))
+ raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))
+ raises(Undecidable, lambda: Point(2 * d, 0) in s)
+ raises(ValueError, lambda: Ray3D(Point(1.0, 1.0)))
+ raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0)))
+ raises(TypeError, lambda: Line3D((1, 1), 1))
+ raises(ValueError, lambda: Line3D(Point3D(0, 0, 0)))
+ raises(TypeError, lambda: Ray((1, 1), 1))
+ raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
+ .projection(Circle(Point(0, 0), 1)))
+
+
+def test_ray_generation():
+ assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
+ assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
+ assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
+ assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
+ assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
+ assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
+ assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
+ assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
+ assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
+ assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
+ assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1),
+ Point(2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 - sqrt(
+ 2 * sqrt(5) + 10) / 4 + 2 + sqrt(5)))
+ assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1),
+ Point(2, 1 + tan(4.02 * pi)))
+ assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
+
+ assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5))
+ assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
+ assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
+
+
+def test_issue_7814():
+ circle = Circle(Point(x, 0), y)
+ line = Line(Point(k, z), slope=0)
+ _s = sqrt((y - z)*(y + z))
+ assert line.intersection(circle) == [Point2D(x + _s, z), Point2D(x - _s, z)]
+
+
+def test_issue_2941():
+ def _check():
+ for f, g in cartes(*[(Line, Ray, Segment)] * 2):
+ l1 = f(a, b)
+ l2 = g(c, d)
+ assert l1.intersection(l2) == l2.intersection(l1)
+ # intersect at end point
+ c, d = (-2, -2), (-2, 0)
+ a, b = (0, 0), (1, 1)
+ _check()
+ # midline intersection
+ c, d = (-2, -3), (-2, 0)
+ _check()
+
+
+def test_parameter_value():
+ t = Symbol('t')
+ p1, p2 = Point(0, 1), Point(5, 6)
+ l = Line(p1, p2)
+ assert l.parameter_value((5, 6), t) == {t: 1}
+ raises(ValueError, lambda: l.parameter_value((0, 0), t))
+
+
+def test_bisectors():
+ r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
+ r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
+ bisections = r1.bisectors(r2)
+ assert bisections == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)),
+ Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
+ ans = [Line3D(Point3D(0, 0, 0), Point3D(1, 0, 1)),
+ Line3D(Point3D(0, 0, 0), Point3D(-1, 0, 1))]
+ l1 = (0, 0, 0), (0, 0, 1)
+ l2 = (0, 0), (1, 0)
+ for a, b in cartes((Line, Segment, Ray), repeat=2):
+ assert a(*l1).bisectors(b(*l2)) == ans
+
+
+def test_issue_8615():
+ a = Line3D(Point3D(6, 5, 0), Point3D(6, -6, 0))
+ b = Line3D(Point3D(6, -1, 19/10), Point3D(6, -1, 0))
+ assert a.intersection(b) == [Point3D(6, -1, 0)]
+
+
+def test_issue_12598():
+ r1 = Ray(Point(0, 1), Point(0.98, 0.79).n(2))
+ r2 = Ray(Point(0, 0), Point(0.71, 0.71).n(2))
+ assert str(r1.intersection(r2)[0]) == 'Point2D(0.82, 0.82)'
+ l1 = Line((0, 0), (1, 1))
+ l2 = Segment((-1, 1), (0, -1)).n(2)
+ assert str(l1.intersection(l2)[0]) == 'Point2D(-0.33, -0.33)'
+ l2 = Segment((-1, 1), (-1/2, 1/2)).n(2)
+ assert not l1.intersection(l2)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_parabola.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_parabola.py
new file mode 100644
index 0000000000000000000000000000000000000000..2a683f26619952d93475aca9ebd3d47cfb3657a6
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_parabola.py
@@ -0,0 +1,143 @@
+from sympy.core.numbers import (Rational, oo)
+from sympy.core.singleton import S
+from sympy.core.symbol import symbols
+from sympy.functions.elementary.complexes import sign
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.geometry.ellipse import (Circle, Ellipse)
+from sympy.geometry.line import (Line, Ray2D, Segment2D)
+from sympy.geometry.parabola import Parabola
+from sympy.geometry.point import (Point, Point2D)
+from sympy.testing.pytest import raises
+
+from sympy.abc import x, y
+
+def test_parabola_geom():
+ a, b = symbols('a b')
+ p1 = Point(0, 0)
+ p2 = Point(3, 7)
+ p3 = Point(0, 4)
+ p4 = Point(6, 0)
+ p5 = Point(a, a)
+ d1 = Line(Point(4, 0), Point(4, 9))
+ d2 = Line(Point(7, 6), Point(3, 6))
+ d3 = Line(Point(4, 0), slope=oo)
+ d4 = Line(Point(7, 6), slope=0)
+ d5 = Line(Point(b, a), slope=oo)
+ d6 = Line(Point(a, b), slope=0)
+
+ half = S.Half
+
+ pa1 = Parabola(None, d2)
+ pa2 = Parabola(directrix=d1)
+ pa3 = Parabola(p1, d1)
+ pa4 = Parabola(p2, d2)
+ pa5 = Parabola(p2, d4)
+ pa6 = Parabola(p3, d2)
+ pa7 = Parabola(p2, d1)
+ pa8 = Parabola(p4, d1)
+ pa9 = Parabola(p4, d3)
+ pa10 = Parabola(p5, d5)
+ pa11 = Parabola(p5, d6)
+ d = Line(Point(3, 7), Point(2, 9))
+ pa12 = Parabola(Point(7, 8), d)
+ pa12r = Parabola(Point(7, 8).reflect(d), d)
+
+ raises(ValueError, lambda:
+ Parabola(Point(7, 8, 9), Line(Point(6, 7), Point(7, 7))))
+ raises(ValueError, lambda:
+ Parabola(Point(0, 2), Line(Point(7, 2), Point(6, 2))))
+ raises(ValueError, lambda: Parabola(Point(7, 8), Point(3, 8)))
+
+ # Basic Stuff
+ assert pa1.focus == Point(0, 0)
+ assert pa1.ambient_dimension == S(2)
+ assert pa2 == pa3
+ assert pa4 != pa7
+ assert pa6 != pa7
+ assert pa6.focus == Point2D(0, 4)
+ assert pa6.focal_length == 1
+ assert pa6.p_parameter == -1
+ assert pa6.vertex == Point2D(0, 5)
+ assert pa6.eccentricity == 1
+ assert pa7.focus == Point2D(3, 7)
+ assert pa7.focal_length == half
+ assert pa7.p_parameter == -half
+ assert pa7.vertex == Point2D(7*half, 7)
+ assert pa4.focal_length == half
+ assert pa4.p_parameter == half
+ assert pa4.vertex == Point2D(3, 13*half)
+ assert pa8.focal_length == 1
+ assert pa8.p_parameter == 1
+ assert pa8.vertex == Point2D(5, 0)
+ assert pa4.focal_length == pa5.focal_length
+ assert pa4.p_parameter == pa5.p_parameter
+ assert pa4.vertex == pa5.vertex
+ assert pa4.equation() == pa5.equation()
+ assert pa8.focal_length == pa9.focal_length
+ assert pa8.p_parameter == pa9.p_parameter
+ assert pa8.vertex == pa9.vertex
+ assert pa8.equation() == pa9.equation()
+ assert pa10.focal_length == pa11.focal_length == sqrt((a - b) ** 2) / 2 # if a, b real == abs(a - b)/2
+ assert pa11.vertex == Point(*pa10.vertex[::-1]) == Point(a,
+ a - sqrt((a - b)**2)*sign(a - b)/2) # change axis x->y, y->x on pa10
+ aos = pa12.axis_of_symmetry
+ assert aos == Line(Point(7, 8), Point(5, 7))
+ assert pa12.directrix == Line(Point(3, 7), Point(2, 9))
+ assert pa12.directrix.angle_between(aos) == S.Pi/2
+ assert pa12.eccentricity == 1
+ assert pa12.equation(x, y) == (x - 7)**2 + (y - 8)**2 - (-2*x - y + 13)**2/5
+ assert pa12.focal_length == 9*sqrt(5)/10
+ assert pa12.focus == Point(7, 8)
+ assert pa12.p_parameter == 9*sqrt(5)/10
+ assert pa12.vertex == Point2D(S(26)/5, S(71)/10)
+ assert pa12r.focal_length == 9*sqrt(5)/10
+ assert pa12r.focus == Point(-S(1)/5, S(22)/5)
+ assert pa12r.p_parameter == -9*sqrt(5)/10
+ assert pa12r.vertex == Point(S(8)/5, S(53)/10)
+
+
+def test_parabola_intersection():
+ l1 = Line(Point(1, -2), Point(-1,-2))
+ l2 = Line(Point(1, 2), Point(-1,2))
+ l3 = Line(Point(1, 0), Point(-1,0))
+
+ p1 = Point(0,0)
+ p2 = Point(0, -2)
+ p3 = Point(120, -12)
+ parabola1 = Parabola(p1, l1)
+
+ # parabola with parabola
+ assert parabola1.intersection(parabola1) == [parabola1]
+ assert parabola1.intersection(Parabola(p1, l2)) == [Point2D(-2, 0), Point2D(2, 0)]
+ assert parabola1.intersection(Parabola(p2, l3)) == [Point2D(0, -1)]
+ assert parabola1.intersection(Parabola(Point(16, 0), l1)) == [Point2D(8, 15)]
+ assert parabola1.intersection(Parabola(Point(0, 16), l1)) == [Point2D(-6, 8), Point2D(6, 8)]
+ assert parabola1.intersection(Parabola(p3, l3)) == []
+ # parabola with point
+ assert parabola1.intersection(p1) == []
+ assert parabola1.intersection(Point2D(0, -1)) == [Point2D(0, -1)]
+ assert parabola1.intersection(Point2D(4, 3)) == [Point2D(4, 3)]
+ # parabola with line
+ assert parabola1.intersection(Line(Point2D(-7, 3), Point(12, 3))) == [Point2D(-4, 3), Point2D(4, 3)]
+ assert parabola1.intersection(Line(Point(-4, -1), Point(4, -1))) == [Point(0, -1)]
+ assert parabola1.intersection(Line(Point(2, 0), Point(0, -2))) == [Point2D(2, 0)]
+ raises(TypeError, lambda: parabola1.intersection(Line(Point(0, 0, 0), Point(1, 1, 1))))
+ # parabola with segment
+ assert parabola1.intersection(Segment2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)]
+ assert parabola1.intersection(Segment2D((0, -5), (0, 6))) == [Point2D(0, -1)]
+ assert parabola1.intersection(Segment2D((-12, -65), (14, -68))) == []
+ # parabola with ray
+ assert parabola1.intersection(Ray2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)]
+ assert parabola1.intersection(Ray2D((0, 7), (1, 14))) == [Point2D(14 + 2*sqrt(57), 105 + 14*sqrt(57))]
+ assert parabola1.intersection(Ray2D((0, 7), (0, 14))) == []
+ # parabola with ellipse/circle
+ assert parabola1.intersection(Circle(p1, 2)) == [Point2D(-2, 0), Point2D(2, 0)]
+ assert parabola1.intersection(Circle(p2, 1)) == [Point2D(0, -1)]
+ assert parabola1.intersection(Ellipse(p2, 2, 1)) == [Point2D(0, -1)]
+ assert parabola1.intersection(Ellipse(Point(0, 19), 5, 7)) == []
+ assert parabola1.intersection(Ellipse((0, 3), 12, 4)) == [
+ Point2D(0, -1),
+ Point2D(-4*sqrt(17)/3, Rational(59, 9)),
+ Point2D(4*sqrt(17)/3, Rational(59, 9))]
+ # parabola with unsupported type
+ raises(TypeError, lambda: parabola1.intersection(2))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_plane.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_plane.py
new file mode 100644
index 0000000000000000000000000000000000000000..1010fce5c3bc68348eacee13f29c1d7588f17e39
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_plane.py
@@ -0,0 +1,268 @@
+from sympy.core.numbers import (Rational, pi)
+from sympy.core.singleton import S
+from sympy.core.symbol import (Dummy, symbols)
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.functions.elementary.trigonometric import (asin, cos, sin)
+from sympy.geometry import Line, Point, Ray, Segment, Point3D, Line3D, Ray3D, Segment3D, Plane, Circle
+from sympy.geometry.util import are_coplanar
+from sympy.testing.pytest import raises
+
+
+def test_plane():
+ x, y, z, u, v = symbols('x y z u v', real=True)
+ p1 = Point3D(0, 0, 0)
+ p2 = Point3D(1, 1, 1)
+ p3 = Point3D(1, 2, 3)
+ pl3 = Plane(p1, p2, p3)
+ pl4 = Plane(p1, normal_vector=(1, 1, 1))
+ pl4b = Plane(p1, p2)
+ pl5 = Plane(p3, normal_vector=(1, 2, 3))
+ pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
+ pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))
+ pl8 = Plane(p1, normal_vector=(0, 0, 1))
+ pl9 = Plane(p1, normal_vector=(0, 12, 0))
+ pl10 = Plane(p1, normal_vector=(-2, 0, 0))
+ pl11 = Plane(p2, normal_vector=(0, 0, 1))
+ l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
+ l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
+ l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
+
+ raises(ValueError, lambda: Plane(p1, p1, p1))
+
+ assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
+ assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
+ assert Plane(p1, p2, p3).is_coplanar(p1)
+ assert Plane(p1, p2, p3).is_coplanar(Circle(p1, 1)) is False
+ assert Plane(p1, normal_vector=(0, 0, 1)).is_coplanar(Circle(p1, 1))
+
+ assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
+ assert pl3 != pl4
+ assert pl4 == pl4b
+ assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))
+
+ assert pl5.equation(x, y, z) == x + 2*y + 3*z - 14
+ assert pl3.equation(x, y, z) == x - 2*y + z
+
+ assert pl3.p1 == p1
+ assert pl4.p1 == p1
+ assert pl5.p1 == p3
+
+ assert pl4.normal_vector == (1, 1, 1)
+ assert pl5.normal_vector == (1, 2, 3)
+
+ assert p1 in pl3
+ assert p1 in pl4
+ assert p3 in pl5
+
+ assert pl3.projection(Point(0, 0)) == p1
+ p = pl3.projection(Point3D(1, 1, 0))
+ assert p == Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))
+ assert p in pl3
+
+ l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
+ assert l == Line3D(Point3D(0, 0, 0), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
+ assert l in pl3
+ # get a segment that does not intersect the plane which is also
+ # parallel to pl3's normal veector
+ t = Dummy()
+ r = pl3.random_point()
+ a = pl3.perpendicular_line(r).arbitrary_point(t)
+ s = Segment3D(a.subs(t, 1), a.subs(t, 2))
+ assert s.p1 not in pl3 and s.p2 not in pl3
+ assert pl3.projection_line(s).equals(r)
+ assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
+ Segment3D(Point3D(Rational(5, 6), Rational(1, 3), Rational(-1, 6)), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
+ assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
+ Ray3D(Point3D(Rational(14, 3), Rational(11, 3), Rational(11, 3)), Point3D(Rational(13, 3), Rational(13, 3), Rational(10, 3)))
+ assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)
+
+ assert pl3.is_parallel(pl6) is False
+ assert pl4.is_parallel(pl6)
+ assert pl3.is_parallel(Line(p1, p2))
+ assert pl6.is_parallel(l1) is False
+
+ assert pl3.is_perpendicular(pl6)
+ assert pl4.is_perpendicular(pl7)
+ assert pl6.is_perpendicular(pl7)
+ assert pl6.is_perpendicular(pl4) is False
+ assert pl6.is_perpendicular(l1) is False
+ assert pl6.is_perpendicular(Line((0, 0, 0), (1, 1, 1)))
+ assert pl6.is_perpendicular((1, 1)) is False
+
+ assert pl6.distance(pl6.arbitrary_point(u, v)) == 0
+ assert pl7.distance(pl7.arbitrary_point(u, v)) == 0
+ assert pl6.distance(pl6.arbitrary_point(t)) == 0
+ assert pl7.distance(pl7.arbitrary_point(t)) == 0
+ assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1
+ assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1
+ assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \
+ 2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6)
+ assert pl3.arbitrary_point(u, v) == Point3D(2*u - v, u + 2*v, 5*v)
+
+ assert pl7.distance(Point3D(1, 3, 5)) == 5*sqrt(6)/6
+ assert pl6.distance(Point3D(0, 0, 0)) == 4*sqrt(3)
+ assert pl6.distance(pl6.p1) == 0
+ assert pl7.distance(pl6) == 0
+ assert pl7.distance(l1) == 0
+ assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == \
+ pl6.distance(Point3D(1, 3, 4)) == 4*sqrt(3)/3
+ assert pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7))) == \
+ pl6.distance(Point3D(0, 3, 7)) == 2*sqrt(3)/3
+ assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0
+ assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0
+ assert pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16))) == \
+ pl6.distance(Point3D(-2, 3, 13)) == 2*sqrt(3)/3
+ assert pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)
+ assert pl6.distance(Ray3D(Point3D(1, 3, 4), direction_ratio=[1, 0, -3])) == 4*sqrt(3)/3
+ assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0, 3])) == 0
+
+
+ assert pl6.angle_between(pl3) == pi/2
+ assert pl6.angle_between(pl6) == 0
+ assert pl6.angle_between(pl4) == 0
+ assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
+ -asin(sqrt(3)/6)
+ assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
+ asin(sqrt(7)/3)
+ assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
+ asin(7*sqrt(246)/246)
+
+ assert are_coplanar(l1, l2, l3) is False
+ assert are_coplanar(l1) is False
+ assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2),
+ Point3D(1, 1, 2), Point3D(1, 2, 2))
+ assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
+ assert Plane.are_concurrent(pl3, pl4, pl5) is False
+ assert Plane.are_concurrent(pl6) is False
+ raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))
+ raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0)))
+
+ assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \
+ normal_vector=(1, -2, 1))
+
+ # perpendicular_plane
+ p = Plane((0, 0, 0), (1, 0, 0))
+ # default
+ assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
+ # 1 pt
+ assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
+ Plane(Point3D(1, 0, 1), (0, 1, 0))
+ # pts as tuples
+ assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
+ Plane(Point3D(1, 0, 1), (0, 0, -1))
+ # more than two planes
+ raises(ValueError, lambda: p.perpendicular_plane((1, 0, 1), (1, 1, 1), (1, 1, 0)))
+
+ a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
+ Z = (0, 0, 1)
+ p = Plane(a, normal_vector=Z)
+ # case 4
+ assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
+ n = Point3D(*Z)
+ # case 1
+ assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
+ # case 2
+ assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
+ Plane(Point3D(0, 0, 0), (1, 0, 0))
+ # case 1&3
+ assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
+ Plane(Point3D(0, 1, 0), (-1, 0, 0))
+ # case 2&3
+ assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
+ Plane(Point3D(0, 0, 1), (1, 0, 0))
+
+ p = Plane(a, normal_vector=(0, 0, 1))
+ assert p.perpendicular_plane() == Plane(a, normal_vector=(1, 0, 0))
+
+ assert pl6.intersection(pl6) == [pl6]
+ assert pl4.intersection(pl4.p1) == [pl4.p1]
+ assert pl3.intersection(pl6) == [
+ Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))]
+ assert pl3.intersection(Line3D(Point3D(1,2,4), Point3D(4,4,2))) == [
+ Point3D(2, Rational(8, 3), Rational(10, 3))]
+ assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
+ ) == [Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))]
+ assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
+ Point3D(-1, 3, 10)]
+ assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == []
+ assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [
+ Point3D(Rational(13, 2), Rational(3, 4), 0)]
+ r = Ray(Point(2, 3), Point(4, 2))
+ assert Plane((1,2,0), normal_vector=(0,0,1)).intersection(r) == [
+ Ray3D(Point(2, 3), Point(4, 2))]
+ assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))]
+ assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))]
+ assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
+ assert pl11.intersection(pl8) == []
+ assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))]
+ assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))]
+ assert pl3.random_point() in pl3
+ assert pl3.random_point(seed=1) in pl3
+
+ # test geometrical entity using equals
+ assert pl4.intersection(pl4.p1)[0].equals(pl4.p1)
+ assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)))
+ pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1))
+ assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(Line((0, 0, 0), (0.1, 1.2, 0)))
+ assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0)))
+ assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(Segment3D(p1, (21, 1, 0)))
+ assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8)
+ assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals(
+ Line3D(p1, direction_ratio=(112 * pi, 0, 0)))
+ assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals(
+ Line3D(p1, direction_ratio=(0, -11, 0)))
+ assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals(
+ Line3D(p1, direction_ratio=(0, 11, 0)))
+ assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals(
+ Line3D(p1, direction_ratio=(1, -1, 0)))
+ assert pl3.random_point() in pl3
+ assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) == 0
+ # check if two plane are equals
+ assert pl6.intersection(pl6)[0].equals(pl6)
+ assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False
+ assert pl8.equals(pl8)
+ assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12)))
+ assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12*sqrt(3))))
+ assert pl8.equals(p1) is False
+
+ # issue 8570
+ l2 = Line3D(Point3D(Rational(50000004459633, 5000000000000),
+ Rational(-891926590718643, 1000000000000000),
+ Rational(231800966893633, 100000000000000)),
+ Point3D(Rational(50000004459633, 50000000000000),
+ Rational(-222981647679771, 250000000000000),
+ Rational(231800966893633, 100000000000000)))
+
+ p2 = Plane(Point3D(Rational(402775636372767, 100000000000000),
+ Rational(-97224357654973, 100000000000000),
+ Rational(216793600814789, 100000000000000)),
+ (-S('9.00000087501922'), -S('4.81170658872543e-13'),
+ S('0.0')))
+
+ assert str([i.n(2) for i in p2.intersection(l2)]) == \
+ '[Point3D(4.0, -0.89, 2.3)]'
+
+
+def test_dimension_normalization():
+ A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
+ b = Point(1, 1)
+ assert A.projection(b) == Point(Rational(5, 3), Rational(5, 3), Rational(2, 3))
+
+ a, b = Point(0, 0), Point3D(0, 1)
+ Z = (0, 0, 1)
+ p = Plane(a, normal_vector=Z)
+ assert p.perpendicular_plane(a, b) == Plane(Point3D(0, 0, 0), (1, 0, 0))
+ assert Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)
+ ).intersection((2, 1)) == [Point(2, 1, 0)]
+
+
+def test_parameter_value():
+ t, u, v = symbols("t, u v")
+ p1, p2, p3 = Point(0, 0, 0), Point(0, 0, 1), Point(0, 1, 0)
+ p = Plane(p1, p2, p3)
+ assert p.parameter_value((0, -3, 2), t) == {t: asin(2*sqrt(13)/13)}
+ assert p.parameter_value((0, -3, 2), u, v) == {u: 3, v: 2}
+ assert p.parameter_value(p1, t) == p1
+ raises(ValueError, lambda: p.parameter_value((1, 0, 0), t))
+ raises(ValueError, lambda: p.parameter_value(Line(Point(0, 0), Point(1, 1)), t))
+ raises(ValueError, lambda: p.parameter_value((0, -3, 2), t, 1))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_point.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_point.py
new file mode 100644
index 0000000000000000000000000000000000000000..abe63874a84ea9426c31bdd517b9282b779cc52b
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_point.py
@@ -0,0 +1,481 @@
+from sympy.core.basic import Basic
+from sympy.core.numbers import (I, Rational, pi)
+from sympy.core.parameters import evaluate
+from sympy.core.singleton import S
+from sympy.core.symbol import Symbol
+from sympy.core.sympify import sympify
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.geometry import Line, Point, Point2D, Point3D, Line3D, Plane
+from sympy.geometry.entity import rotate, scale, translate, GeometryEntity
+from sympy.matrices import Matrix
+from sympy.utilities.iterables import subsets, permutations, cartes
+from sympy.utilities.misc import Undecidable
+from sympy.testing.pytest import raises, warns
+
+
+def test_point():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ x1 = Symbol('x1', real=True)
+ x2 = Symbol('x2', real=True)
+ y1 = Symbol('y1', real=True)
+ y2 = Symbol('y2', real=True)
+ half = S.Half
+ p1 = Point(x1, x2)
+ p2 = Point(y1, y2)
+ p3 = Point(0, 0)
+ p4 = Point(1, 1)
+ p5 = Point(0, 1)
+ line = Line(Point(1, 0), slope=1)
+
+ assert p1 in p1
+ assert p1 not in p2
+ assert p2.y == y2
+ assert (p3 + p4) == p4
+ assert (p2 - p1) == Point(y1 - x1, y2 - x2)
+ assert -p2 == Point(-y1, -y2)
+ raises(TypeError, lambda: Point(1))
+ raises(ValueError, lambda: Point([1]))
+ raises(ValueError, lambda: Point(3, I))
+ raises(ValueError, lambda: Point(2*I, I))
+ raises(ValueError, lambda: Point(3 + I, I))
+
+ assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
+ assert Point.midpoint(p3, p4) == Point(half, half)
+ assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
+ assert Point.midpoint(p2, p2) == p2
+ assert p2.midpoint(p2) == p2
+ assert p1.origin == Point(0, 0)
+
+ assert Point.distance(p3, p4) == sqrt(2)
+ assert Point.distance(p1, p1) == 0
+ assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)
+ raises(TypeError, lambda: Point.distance(p1, 0))
+ raises(TypeError, lambda: Point.distance(p1, GeometryEntity()))
+
+ # distance should be symmetric
+ assert p1.distance(line) == line.distance(p1)
+ assert p4.distance(line) == line.distance(p4)
+
+ assert Point.taxicab_distance(p4, p3) == 2
+
+ assert Point.canberra_distance(p4, p5) == 1
+ raises(ValueError, lambda: Point.canberra_distance(p3, p3))
+
+ p1_1 = Point(x1, x1)
+ p1_2 = Point(y2, y2)
+ p1_3 = Point(x1 + 1, x1)
+ assert Point.is_collinear(p3)
+
+ with warns(UserWarning, test_stacklevel=False):
+ assert Point.is_collinear(p3, Point(p3, dim=4))
+ assert p3.is_collinear()
+ assert Point.is_collinear(p3, p4)
+ assert Point.is_collinear(p3, p4, p1_1, p1_2)
+ assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
+ assert Point.is_collinear(p3, p3, p4, p5) is False
+
+ raises(TypeError, lambda: Point.is_collinear(line))
+ raises(TypeError, lambda: p1_1.is_collinear(line))
+
+ assert p3.intersection(Point(0, 0)) == [p3]
+ assert p3.intersection(p4) == []
+ assert p3.intersection(line) == []
+ with warns(UserWarning, test_stacklevel=False):
+ assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)]
+
+ x_pos = Symbol('x', positive=True)
+ p2_1 = Point(x_pos, 0)
+ p2_2 = Point(0, x_pos)
+ p2_3 = Point(-x_pos, 0)
+ p2_4 = Point(0, -x_pos)
+ p2_5 = Point(x_pos, 5)
+ assert Point.is_concyclic(p2_1)
+ assert Point.is_concyclic(p2_1, p2_2)
+ assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
+ for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
+ assert Point.is_concyclic(*pts) is False
+ assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
+ assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False
+ assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False
+
+ assert p1.is_scalar_multiple(p1)
+ assert p1.is_scalar_multiple(2*p1)
+ assert not p1.is_scalar_multiple(p2)
+ assert Point.is_scalar_multiple(Point(1, 1), (-1, -1))
+ assert Point.is_scalar_multiple(Point(0, 0), (0, -1))
+ # test when is_scalar_multiple can't be determined
+ raises(Undecidable, lambda: Point.is_scalar_multiple(Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1)))
+
+ assert Point(0, 1).orthogonal_direction == Point(1, 0)
+ assert Point(1, 0).orthogonal_direction == Point(0, 1)
+
+ assert p1.is_zero is None
+ assert p3.is_zero
+ assert p4.is_zero is False
+ assert p1.is_nonzero is None
+ assert p3.is_nonzero is False
+ assert p4.is_nonzero
+
+ assert p4.scale(2, 3) == Point(2, 3)
+ assert p3.scale(2, 3) == p3
+
+ assert p4.rotate(pi, Point(0.5, 0.5)) == p3
+ assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
+ assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)
+
+ assert p4 * 5 == Point(5, 5)
+ assert p4 / 5 == Point(0.2, 0.2)
+ assert 5 * p4 == Point(5, 5)
+
+ raises(ValueError, lambda: Point(0, 0) + 10)
+
+ # Point differences should be simplified
+ assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)
+
+ a, b = S.Half, Rational(1, 3)
+ assert Point(a, b).evalf(2) == \
+ Point(a.n(2), b.n(2), evaluate=False)
+ raises(ValueError, lambda: Point(1, 2) + 1)
+
+ # test project
+ assert Point.project((0, 1), (1, 0)) == Point(0, 0)
+ assert Point.project((1, 1), (1, 0)) == Point(1, 0)
+ raises(ValueError, lambda: Point.project(p1, Point(0, 0)))
+
+ # test transformations
+ p = Point(1, 0)
+ assert p.rotate(pi/2) == Point(0, 1)
+ assert p.rotate(pi/2, p) == p
+ p = Point(1, 1)
+ assert p.scale(2, 3) == Point(2, 3)
+ assert p.translate(1, 2) == Point(2, 3)
+ assert p.translate(1) == Point(2, 1)
+ assert p.translate(y=1) == Point(1, 2)
+ assert p.translate(*p.args) == Point(2, 2)
+
+ # Check invalid input for transform
+ raises(ValueError, lambda: p3.transform(p3))
+ raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
+
+ # test __contains__
+ assert 0 in Point(0, 0, 0, 0)
+ assert 1 not in Point(0, 0, 0, 0)
+
+ # test affine_rank
+ assert Point.affine_rank() == -1
+
+
+def test_point3D():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ x1 = Symbol('x1', real=True)
+ x2 = Symbol('x2', real=True)
+ x3 = Symbol('x3', real=True)
+ y1 = Symbol('y1', real=True)
+ y2 = Symbol('y2', real=True)
+ y3 = Symbol('y3', real=True)
+ half = S.Half
+ p1 = Point3D(x1, x2, x3)
+ p2 = Point3D(y1, y2, y3)
+ p3 = Point3D(0, 0, 0)
+ p4 = Point3D(1, 1, 1)
+ p5 = Point3D(0, 1, 2)
+
+ assert p1 in p1
+ assert p1 not in p2
+ assert p2.y == y2
+ assert (p3 + p4) == p4
+ assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
+ assert -p2 == Point3D(-y1, -y2, -y3)
+
+ assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
+ assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
+ assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
+ half + half*x3)
+ assert Point3D.midpoint(p2, p2) == p2
+ assert p2.midpoint(p2) == p2
+
+ assert Point3D.distance(p3, p4) == sqrt(3)
+ assert Point3D.distance(p1, p1) == 0
+ assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)
+
+ p1_1 = Point3D(x1, x1, x1)
+ p1_2 = Point3D(y2, y2, y2)
+ p1_3 = Point3D(x1 + 1, x1, x1)
+ Point3D.are_collinear(p3)
+ assert Point3D.are_collinear(p3, p4)
+ assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
+ assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
+ assert Point3D.are_collinear(p3, p3, p4, p5) is False
+
+ assert p3.intersection(Point3D(0, 0, 0)) == [p3]
+ assert p3.intersection(p4) == []
+
+
+ assert p4 * 5 == Point3D(5, 5, 5)
+ assert p4 / 5 == Point3D(0.2, 0.2, 0.2)
+ assert 5 * p4 == Point3D(5, 5, 5)
+
+ raises(ValueError, lambda: Point3D(0, 0, 0) + 10)
+
+ # Test coordinate properties
+ assert p1.coordinates == (x1, x2, x3)
+ assert p2.coordinates == (y1, y2, y3)
+ assert p3.coordinates == (0, 0, 0)
+ assert p4.coordinates == (1, 1, 1)
+ assert p5.coordinates == (0, 1, 2)
+ assert p5.x == 0
+ assert p5.y == 1
+ assert p5.z == 2
+
+ # Point differences should be simplified
+ assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
+ Point3D(0, -1, 1)
+
+ a, b, c = S.Half, Rational(1, 3), Rational(1, 4)
+ assert Point3D(a, b, c).evalf(2) == \
+ Point(a.n(2), b.n(2), c.n(2), evaluate=False)
+ raises(ValueError, lambda: Point3D(1, 2, 3) + 1)
+
+ # test transformations
+ p = Point3D(1, 1, 1)
+ assert p.scale(2, 3) == Point3D(2, 3, 1)
+ assert p.translate(1, 2) == Point3D(2, 3, 1)
+ assert p.translate(1) == Point3D(2, 1, 1)
+ assert p.translate(z=1) == Point3D(1, 1, 2)
+ assert p.translate(*p.args) == Point3D(2, 2, 2)
+
+ # Test __new__
+ assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float
+
+ # Test length property returns correctly
+ assert p.length == 0
+ assert p1_1.length == 0
+ assert p1_2.length == 0
+
+ # Test are_colinear type error
+ raises(TypeError, lambda: Point3D.are_collinear(p, x))
+
+ # Test are_coplanar
+ assert Point.are_coplanar()
+ assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0))
+ assert Point.are_coplanar((1, 2, 0), (1, 2, 3))
+ with warns(UserWarning, test_stacklevel=False):
+ raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3)))
+ assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3))
+ assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False
+ planar2 = Point3D(1, -1, 1)
+ planar3 = Point3D(-1, 1, 1)
+ assert Point3D.are_coplanar(p, planar2, planar3) == True
+ assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
+ assert Point.are_coplanar(p, planar2)
+ planar2 = Point3D(1, 1, 2)
+ planar3 = Point3D(1, 1, 3)
+ assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane
+ plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2))
+ assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)])
+
+ # all 2D points are coplanar
+ assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True
+
+ # Test Intersection
+ assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]
+
+ # Test Scale
+ assert planar2.scale(1, 1, 1) == planar2
+ assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1)
+ assert planar2.scale(1, 1, 1, p3) == planar2
+
+ # Test Transform
+ identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
+ assert p.transform(identity) == p
+ trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])
+ assert p.transform(trans) == Point3D(2, 2, 2)
+ raises(ValueError, lambda: p.transform(p))
+ raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
+
+ # Test Equals
+ assert p.equals(x1) == False
+
+ # Test __sub__
+ p_4d = Point(0, 0, 0, 1)
+ with warns(UserWarning, test_stacklevel=False):
+ assert p - p_4d == Point(1, 1, 1, -1)
+ p_4d3d = Point(0, 0, 1, 0)
+ with warns(UserWarning, test_stacklevel=False):
+ assert p - p_4d3d == Point(1, 1, 0, 0)
+
+
+def test_Point2D():
+
+ # Test Distance
+ p1 = Point2D(1, 5)
+ p2 = Point2D(4, 2.5)
+ p3 = (6, 3)
+ assert p1.distance(p2) == sqrt(61)/2
+ assert p2.distance(p3) == sqrt(17)/2
+
+ # Test coordinates
+ assert p1.x == 1
+ assert p1.y == 5
+ assert p2.x == 4
+ assert p2.y == S(5)/2
+ assert p1.coordinates == (1, 5)
+ assert p2.coordinates == (4, S(5)/2)
+
+ # test bounds
+ assert p1.bounds == (1, 5, 1, 5)
+
+def test_issue_9214():
+ p1 = Point3D(4, -2, 6)
+ p2 = Point3D(1, 2, 3)
+ p3 = Point3D(7, 2, 3)
+
+ assert Point3D.are_collinear(p1, p2, p3) is False
+
+
+def test_issue_11617():
+ p1 = Point3D(1,0,2)
+ p2 = Point2D(2,0)
+
+ with warns(UserWarning, test_stacklevel=False):
+ assert p1.distance(p2) == sqrt(5)
+
+
+def test_transform():
+ p = Point(1, 1)
+ assert p.transform(rotate(pi/2)) == Point(-1, 1)
+ assert p.transform(scale(3, 2)) == Point(3, 2)
+ assert p.transform(translate(1, 2)) == Point(2, 3)
+ assert Point(1, 1).scale(2, 3, (4, 5)) == \
+ Point(-2, -7)
+ assert Point(1, 1).translate(4, 5) == \
+ Point(5, 6)
+
+
+def test_concyclic_doctest_bug():
+ p1, p2 = Point(-1, 0), Point(1, 0)
+ p3, p4 = Point(0, 1), Point(-1, 2)
+ assert Point.is_concyclic(p1, p2, p3)
+ assert not Point.is_concyclic(p1, p2, p3, p4)
+
+
+def test_arguments():
+ """Functions accepting `Point` objects in `geometry`
+ should also accept tuples and lists and
+ automatically convert them to points."""
+
+ singles2d = ((1,2), [1,2], Point(1,2))
+ singles2d2 = ((1,3), [1,3], Point(1,3))
+ doubles2d = cartes(singles2d, singles2d2)
+ p2d = Point2D(1,2)
+ singles3d = ((1,2,3), [1,2,3], Point(1,2,3))
+ doubles3d = subsets(singles3d, 2)
+ p3d = Point3D(1,2,3)
+ singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4))
+ doubles4d = subsets(singles4d, 2)
+ p4d = Point(1,2,3,4)
+
+ # test 2D
+ test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__']
+ test_double = ['is_concyclic', 'is_collinear']
+ for p in singles2d:
+ Point2D(p)
+ for func in test_single:
+ for p in singles2d:
+ getattr(p2d, func)(p)
+ for func in test_double:
+ for p in doubles2d:
+ getattr(p2d, func)(*p)
+
+ # test 3D
+ test_double = ['is_collinear']
+ for p in singles3d:
+ Point3D(p)
+ for func in test_single:
+ for p in singles3d:
+ getattr(p3d, func)(p)
+ for func in test_double:
+ for p in doubles3d:
+ getattr(p3d, func)(*p)
+
+ # test 4D
+ test_double = ['is_collinear']
+ for p in singles4d:
+ Point(p)
+ for func in test_single:
+ for p in singles4d:
+ getattr(p4d, func)(p)
+ for func in test_double:
+ for p in doubles4d:
+ getattr(p4d, func)(*p)
+
+ # test evaluate=False for ops
+ x = Symbol('x')
+ a = Point(0, 1)
+ assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False)
+ a = Point(0, 1)
+ assert a/10.0 == Point(0, 0.1, evaluate=False)
+ a = Point(0, 1)
+ assert a*10.0 == Point(0.0, 10.0, evaluate=False)
+
+ # test evaluate=False when changing dimensions
+ u = Point(.1, .2, evaluate=False)
+ u4 = Point(u, dim=4, on_morph='ignore')
+ assert u4.args == (.1, .2, 0, 0)
+ assert all(i.is_Float for i in u4.args[:2])
+ # and even when *not* changing dimensions
+ assert all(i.is_Float for i in Point(u).args)
+
+ # never raise error if creating an origin
+ assert Point(dim=3, on_morph='error')
+
+ # raise error with unmatched dimension
+ raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='error'))
+ # test unknown on_morph
+ raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='unknown'))
+ # test invalid expressions
+ raises(TypeError, lambda: Point(Basic(), Basic()))
+
+def test_unit():
+ assert Point(1, 1).unit == Point(sqrt(2)/2, sqrt(2)/2)
+
+
+def test_dot():
+ raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1))))
+
+
+def test__normalize_dimension():
+ assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [
+ Point(1, 2), Point(3, 4)]
+ assert Point._normalize_dimension(
+ Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [
+ Point(1, 2, 0), Point(3, 4, 0)]
+
+
+def test_issue_22684():
+ # Used to give an error
+ with evaluate(False):
+ Point(1, 2)
+
+
+def test_direction_cosine():
+ p1 = Point3D(0, 0, 0)
+ p2 = Point3D(1, 1, 1)
+
+ assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0]
+ assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0]
+ assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1]
+
+ assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0]
+ assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0]
+ assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1]
+
+ assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2)/2, sqrt(2)/2, 0]
+ assert p1.direction_cosine(Point3D(1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3]
+ assert p1.direction_cosine(Point3D(-12, 0 -15)) == [-4*sqrt(41)/41, -5*sqrt(41)/41, 0]
+
+ assert p2.direction_cosine(Point3D(0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3]
+ assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1]
+ assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_polygon.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_polygon.py
new file mode 100644
index 0000000000000000000000000000000000000000..08e0be1706ba3e3ce4d65c1024664ab96b05adc9
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_polygon.py
@@ -0,0 +1,664 @@
+from sympy.core.numbers import (Float, Rational, oo, pi)
+from sympy.core.singleton import S
+from sympy.core.symbol import (Symbol, symbols)
+from sympy.functions.elementary.complexes import Abs
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.functions.elementary.trigonometric import (acos, cos, sin)
+from sympy.functions.elementary.trigonometric import tan
+from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D,
+ Polygon, Ray, RegularPolygon, Segment, Triangle,
+ are_similar, convex_hull, intersection, Line, Ray2D)
+from sympy.testing.pytest import raises, slow, warns
+from sympy.core.random import verify_numerically
+from sympy.geometry.polygon import rad, deg
+from sympy.integrals.integrals import integrate
+
+
+def feq(a, b):
+ """Test if two floating point values are 'equal'."""
+ t_float = Float("1.0E-10")
+ return -t_float < a - b < t_float
+
+@slow
+def test_polygon():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ q = Symbol('q', real=True)
+ u = Symbol('u', real=True)
+ v = Symbol('v', real=True)
+ w = Symbol('w', real=True)
+ x1 = Symbol('x1', real=True)
+ half = S.Half
+ a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
+ t = Triangle(a, b, c)
+ assert Polygon(Point(0, 0)) == Point(0, 0)
+ assert Polygon(a, Point(1, 0), b, c) == t
+ assert Polygon(Point(1, 0), b, c, a) == t
+ assert Polygon(b, c, a, Point(1, 0)) == t
+ # 2 "remove folded" tests
+ assert Polygon(a, Point(3, 0), b, c) == t
+ assert Polygon(a, b, Point(3, -1), b, c) == t
+ # remove multiple collinear points
+ assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
+ Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
+ Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
+ Point(15, -3), Point(15, 10), Point(15, 15)) == \
+ Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15))
+
+ p1 = Polygon(
+ Point(0, 0), Point(3, -1),
+ Point(6, 0), Point(4, 5),
+ Point(2, 3), Point(0, 3))
+ p2 = Polygon(
+ Point(6, 0), Point(3, -1),
+ Point(0, 0), Point(0, 3),
+ Point(2, 3), Point(4, 5))
+ p3 = Polygon(
+ Point(0, 0), Point(3, 0),
+ Point(5, 2), Point(4, 4))
+ p4 = Polygon(
+ Point(0, 0), Point(4, 4),
+ Point(5, 2), Point(3, 0))
+ p5 = Polygon(
+ Point(0, 0), Point(4, 4),
+ Point(0, 4))
+ p6 = Polygon(
+ Point(-11, 1), Point(-9, 6.6),
+ Point(-4, -3), Point(-8.4, -8.7))
+ p7 = Polygon(
+ Point(x, y), Point(q, u),
+ Point(v, w))
+ p8 = Polygon(
+ Point(x, y), Point(v, w),
+ Point(q, u))
+ p9 = Polygon(
+ Point(0, 0), Point(4, 4),
+ Point(3, 0), Point(5, 2))
+ p10 = Polygon(
+ Point(0, 2), Point(2, 2),
+ Point(0, 0), Point(2, 0))
+ p11 = Polygon(Point(0, 0), 1, n=3)
+ p12 = Polygon(Point(0, 0), 1, 0, n=3)
+
+ r = Ray(Point(-9, 6.6), Point(-9, 5.5))
+ #
+ # General polygon
+ #
+ assert p1 == p2
+ assert len(p1.args) == 6
+ assert len(p1.sides) == 6
+ assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
+ assert p1.area == 22
+ assert not p1.is_convex()
+ assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0)
+ ).is_convex() is False
+ # ensure convex for both CW and CCW point specification
+ assert p3.is_convex()
+ assert p4.is_convex()
+ dict5 = p5.angles
+ assert dict5[Point(0, 0)] == pi / 4
+ assert dict5[Point(0, 4)] == pi / 2
+ assert p5.encloses_point(Point(x, y)) is None
+ assert p5.encloses_point(Point(1, 3))
+ assert p5.encloses_point(Point(0, 0)) is False
+ assert p5.encloses_point(Point(4, 0)) is False
+ assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False
+ assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False
+ assert p5.plot_interval('x') == [x, 0, 1]
+ assert p5.distance(
+ Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
+ assert p5.distance(
+ Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
+ with warns(UserWarning, \
+ match="Polygons may intersect producing erroneous output"):
+ Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
+ Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))
+ assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
+ assert hash(p1) == hash(p2)
+ assert hash(p7) == hash(p8)
+ assert hash(p3) != hash(p9)
+ assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
+ assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
+ assert p5 != Point(0, 4)
+ assert Point(0, 1) in p5
+ assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
+ Point(0, 0)
+ raises(ValueError, lambda: Polygon(
+ Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
+ assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))]
+ assert p10.area == 0
+ assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0)
+ assert p11 == p12
+ assert p11.vertices[0] == Point(1, 0)
+ assert p11.args[0] == Point(0, 0)
+ p11.spin(pi/2)
+ assert p11.vertices[0] == Point(0, 1)
+ #
+ # Regular polygon
+ #
+ p1 = RegularPolygon(Point(0, 0), 10, 5)
+ p2 = RegularPolygon(Point(0, 0), 5, 5)
+ raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
+ 1), Point(1, 1)))
+ raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
+ raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))
+
+ assert p1 != p2
+ assert p1.interior_angle == pi*Rational(3, 5)
+ assert p1.exterior_angle == pi*Rational(2, 5)
+ assert p2.apothem == 5*cos(pi/5)
+ assert p2.circumcenter == p1.circumcenter == Point(0, 0)
+ assert p1.circumradius == p1.radius == 10
+ assert p2.circumcircle == Circle(Point(0, 0), 5)
+ assert p2.incircle == Circle(Point(0, 0), p2.apothem)
+ assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
+ p2.spin(pi / 10)
+ dict1 = p2.angles
+ assert dict1[Point(0, 5)] == 3 * pi / 5
+ assert p1.is_convex()
+ assert p1.rotation == 0
+ assert p1.encloses_point(Point(0, 0))
+ assert p1.encloses_point(Point(11, 0)) is False
+ assert p2.encloses_point(Point(0, 4.9))
+ p1.spin(pi/3)
+ assert p1.rotation == pi/3
+ assert p1.vertices[0] == Point(5, 5*sqrt(3))
+ for var in p1.args:
+ if isinstance(var, Point):
+ assert var == Point(0, 0)
+ else:
+ assert var in (5, 10, pi / 3)
+ assert p1 != Point(0, 0)
+ assert p1 != p5
+
+ # while spin works in place (notice that rotation is 2pi/3 below)
+ # rotate returns a new object
+ p1_old = p1
+ assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3))
+ assert p1 == p1_old
+
+ assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
+ assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8))
+ assert p1.scale(2, 2) == \
+ RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
+ assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
+ Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))
+
+ assert repr(p1) == str(p1)
+
+ #
+ # Angles
+ #
+ angles = p4.angles
+ assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
+ assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
+ assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
+ assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
+
+ angles = p3.angles
+ assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
+ assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
+ assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
+ assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
+
+ #
+ # Triangle
+ #
+ p1 = Point(0, 0)
+ p2 = Point(5, 0)
+ p3 = Point(0, 5)
+ t1 = Triangle(p1, p2, p3)
+ t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
+ t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
+ s1 = t1.sides
+ assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
+ raises(GeometryError, lambda: Triangle(Point(0, 0)))
+
+ # Basic stuff
+ assert Triangle(p1, p1, p1) == p1
+ assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
+ assert t1.area == Rational(25, 2)
+ assert t1.is_right()
+ assert t2.is_right() is False
+ assert t3.is_right()
+ assert p1 in t1
+ assert t1.sides[0] in t1
+ assert Segment((0, 0), (1, 0)) in t1
+ assert Point(5, 5) not in t2
+ assert t1.is_convex()
+ assert feq(t1.angles[p1].evalf(), pi.evalf()/2)
+
+ assert t1.is_equilateral() is False
+ assert t2.is_equilateral()
+ assert t3.is_equilateral() is False
+ assert are_similar(t1, t2) is False
+ assert are_similar(t1, t3)
+ assert are_similar(t2, t3) is False
+ assert t1.is_similar(Point(0, 0)) is False
+ assert t1.is_similar(t2) is False
+
+ # Bisectors
+ bisectors = t1.bisectors()
+ assert bisectors[p1] == Segment(
+ p1, Point(Rational(5, 2), Rational(5, 2)))
+ assert t2.bisectors()[p2] == Segment(
+ Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4))
+ p4 = Point(0, x1)
+ assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0))
+ ic = (250 - 125*sqrt(2))/50
+ assert t1.incenter == Point(ic, ic)
+
+ # Inradius
+ assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
+ assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
+ assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))
+
+ # Exradius
+ assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2
+
+ # Excenters
+ assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2)
+
+ # Circumcircle
+ assert t1.circumcircle.center == Point(2.5, 2.5)
+
+ # Medians + Centroid
+ m = t1.medians
+ assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
+ assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
+ assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
+ assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
+ assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))
+
+ # Nine-point circle
+ assert t1.nine_point_circle == Circle(Point(2.5, 0),
+ Point(0, 2.5), Point(2.5, 2.5))
+ assert t1.nine_point_circle == Circle(Point(0, 0),
+ Point(0, 2.5), Point(2.5, 2.5))
+
+ # Perpendicular
+ altitudes = t1.altitudes
+ assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
+ assert altitudes[p2].equals(s1[0])
+ assert altitudes[p3] == s1[2]
+ assert t1.orthocenter == p1
+ t = S('''Triangle(
+ Point(100080156402737/5000000000000, 79782624633431/500000000000),
+ Point(39223884078253/2000000000000, 156345163124289/1000000000000),
+ Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
+ assert t.orthocenter == S('''Point(-780660869050599840216997'''
+ '''79471538701955848721853/80368430960602242240789074233100000000000000,'''
+ '''20151573611150265741278060334545897615974257/16073686192120448448157'''
+ '''8148466200000000000)''')
+
+ # Ensure
+ assert len(intersection(*bisectors.values())) == 1
+ assert len(intersection(*altitudes.values())) == 1
+ assert len(intersection(*m.values())) == 1
+
+ # Distance
+ p1 = Polygon(
+ Point(0, 0), Point(1, 0),
+ Point(1, 1), Point(0, 1))
+ p2 = Polygon(
+ Point(0, Rational(5)/4), Point(1, Rational(5)/4),
+ Point(1, Rational(9)/4), Point(0, Rational(9)/4))
+ p3 = Polygon(
+ Point(1, 2), Point(2, 2),
+ Point(2, 1))
+ p4 = Polygon(
+ Point(1, 1), Point(Rational(6)/5, 1),
+ Point(1, Rational(6)/5))
+ pt1 = Point(half, half)
+ pt2 = Point(1, 1)
+
+ '''Polygon to Point'''
+ assert p1.distance(pt1) == half
+ assert p1.distance(pt2) == 0
+ assert p2.distance(pt1) == Rational(3)/4
+ assert p3.distance(pt2) == sqrt(2)/2
+
+ '''Polygon to Polygon'''
+ # p1.distance(p2) emits a warning
+ with warns(UserWarning, \
+ match="Polygons may intersect producing erroneous output"):
+ assert p1.distance(p2) == half/2
+
+ assert p1.distance(p3) == sqrt(2)/2
+
+ # p3.distance(p4) emits a warning
+ with warns(UserWarning, \
+ match="Polygons may intersect producing erroneous output"):
+ assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
+
+
+def test_convex_hull():
+ p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \
+ Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \
+ Point(4, -1), Point(6, 2)]
+ ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
+ #test handling of duplicate points
+ p.append(p[3])
+
+ #more than 3 collinear points
+ another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \
+ Point(-45, -24)]
+ ch2 = Segment(another_p[0], another_p[1])
+
+ assert convex_hull(*another_p) == ch2
+ assert convex_hull(*p) == ch
+ assert convex_hull(p[0]) == p[0]
+ assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])
+
+ # no unique points
+ assert convex_hull(*[p[-1]]*3) == p[-1]
+
+ # collection of items
+ assert convex_hull(*[Point(0, 0), \
+ Segment(Point(1, 0), Point(1, 1)), \
+ RegularPolygon(Point(2, 0), 2, 4)]) == \
+ Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))
+
+
+def test_encloses():
+ # square with a dimpled left side
+ s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \
+ Point(S.Half, S.Half))
+ # the following is True if the polygon isn't treated as closing on itself
+ assert s.encloses(Point(0, S.Half)) is False
+ assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex
+ assert s.encloses(Point(Rational(3, 4), S.Half)) is True
+
+
+def test_triangle_kwargs():
+ assert Triangle(sss=(3, 4, 5)) == \
+ Triangle(Point(0, 0), Point(3, 0), Point(3, 4))
+ assert Triangle(asa=(30, 2, 30)) == \
+ Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3))
+ assert Triangle(sas=(1, 45, 2)) == \
+ Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2))
+ assert Triangle(sss=(1, 2, 5)) is None
+ assert deg(rad(180)) == 180
+
+
+def test_transform():
+ pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
+ pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
+ assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
+ assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
+ Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
+ # Checks for symmetric scaling
+ assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \
+ RegularPolygon(Point2D(0, 0), 2, 4, 0)
+
+def test_reflect():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ b = Symbol('b')
+ m = Symbol('m')
+ l = Line((0, b), slope=m)
+ p = Point(x, y)
+ r = p.reflect(l)
+ dp = l.perpendicular_segment(p).length
+ dr = l.perpendicular_segment(r).length
+
+ assert verify_numerically(dp, dr)
+
+ assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
+ == Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
+ assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
+ == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
+ assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
+ == Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
+ assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
+ == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
+
+def test_bisectors():
+ p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
+ p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
+ q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5))
+ poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19))
+ t = Triangle(p1, p2, p3)
+ assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
+ assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \
+ Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2)))
+ assert q.bisectors()[Point2D(-1, 5)] == \
+ Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \
+ 2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \
+ 2*sin(acos(9*sqrt(145)/145)/2))/29 + 5))
+ assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \
+ Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4)))
+
+def test_incenter():
+ assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \
+ == Point(1 - sqrt(2)/2, 1 - sqrt(2)/2)
+
+def test_inradius():
+ assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1
+
+def test_incircle():
+ assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \
+ == Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
+
+def test_exradii():
+ t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2))
+ assert t.exradii[t.sides[2]] == (-2 + sqrt(10))
+
+def test_medians():
+ t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
+ assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half))
+
+def test_medial():
+ assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
+ == Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half))
+
+def test_nine_point_circle():
+ assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
+ == Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4)
+
+def test_eulerline():
+ assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \
+ == Line(Point2D(0, 0), Point2D(S.Half, S.Half))
+ assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \
+ == Point2D(5, 5*sqrt(3)/3)
+ assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \
+ == Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2)))
+
+def test_intersection():
+ poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
+ poly2 = Polygon(Point(0, 1), Point(-5, 0),
+ Point(0, -4), Point(0, Rational(1, 5)),
+ Point(S.Half, -0.1), Point(1, 0), Point(0, 1))
+
+ assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0),
+ Segment(Point(0, Rational(1, 5)), Point(0, 0)),
+ Segment(Point(1, 0), Point(0, 1))]
+ assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0),
+ Segment(Point(0, 0), Point(0, Rational(1, 5))),
+ Segment(Point(1, 0), Point(0, 1))]
+ assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
+ assert poly1.intersection(Point(-12, -43)) == []
+ assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0),
+ Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)]
+ assert poly2.intersection(Line((-12, 12), (12, 12))) == []
+ assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0),
+ Point(0, 1))]
+ assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2),
+ Point(0, 0)]
+ assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)),
+ Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))]
+ assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)),
+ Segment(Point(0, -4), Point(0, Rational(1, 5))),
+ Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))),
+ Segment(Point(0, 1), Point(-5, 0)),
+ Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)),
+ Segment(Point(1, 0), Point(0, 1))]
+ assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
+ == [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))]
+ assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []
+
+
+def test_parameter_value():
+ t = Symbol('t')
+ sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0))
+ assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)}
+ q = Polygon((0, 0), (2, 1), (2, 4), (4, 0))
+ assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708
+
+ raises(ValueError, lambda: sq.parameter_value((5, 6), t))
+ raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t))
+
+
+def test_issue_12966():
+ poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5),
+ Point(10, 5), Point(10, 0))
+ t = Symbol('t')
+ pt = poly.arbitrary_point(t)
+ DELTA = 5/poly.perimeter
+ assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [
+ Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10),
+ Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)]
+
+
+def test_second_moment_of_area():
+ x, y = symbols('x, y')
+ # triangle
+ p1, p2, p3 = [(0, 0), (4, 0), (0, 2)]
+ p = (0, 0)
+ # equation of hypotenuse
+ eq_y = (1-x/4)*2
+ I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4))
+ I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4))
+ I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4))
+
+ triangle = Polygon(p1, p2, p3)
+
+ assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0
+ assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0
+ assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0
+
+ # rectangle
+ p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)]
+ I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4))
+ I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4))
+ I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4))
+
+ rectangle = Polygon(p1, p2, p3, p4)
+
+ assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0
+ assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0
+ assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0
+
+
+ r = RegularPolygon(Point(0, 0), 5, 3)
+ assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0)
+
+
+def test_first_moment():
+ a, b = symbols('a, b', positive=True)
+ # rectangle
+ p1 = Polygon((0, 0), (a, 0), (a, b), (0, b))
+ assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8)
+ assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9)
+
+ p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30))
+ assert p1.first_moment_of_area() == (4500, 6000)
+
+ # triangle
+ p2 = Polygon((0, 0), (a, 0), (a/2, b))
+ assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24)
+ assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768)
+
+ p2 = Polygon((0, 0), (12, 0), (12, 30))
+ assert p2.first_moment_of_area() == (S(1600)/3, -S(640)/3)
+
+
+def test_section_modulus_and_polar_second_moment_of_area():
+ a, b = symbols('a, b', positive=True)
+ x, y = symbols('x, y')
+ rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b))
+ assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x))
+ assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12
+
+ convex = RegularPolygon((0, 0), 1, 6)
+ assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16))
+ assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8)
+
+ concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1))
+ assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519))
+ assert concave.polar_second_moment_of_area() == Rational(-38669, 252)
+
+
+def test_cut_section():
+ # concave polygon
+ p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3))
+ l = Line((0, 0), (Rational(9, 2), 3))
+ p1 = p.cut_section(l)[0]
+ p2 = p.cut_section(l)[1]
+ assert p1 == Polygon(
+ Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)),
+ Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)),
+ Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3)))
+ assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)),
+ Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3),
+ Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3)))
+
+ # convex polygon
+ p = RegularPolygon(Point2D(0, 0), 6, 6)
+ s = p.cut_section(Line((0, 0), slope=1))
+ assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)),
+ Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)))
+ assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9),
+ Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3)))
+
+ # case where line does not intersects but coincides with the edge of polygon
+ a, b = 20, 10
+ t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)]
+ p = Polygon(t1, t2, t3, t4)
+ p1, p2 = p.cut_section(Line((0, b), slope=0))
+ assert p1 == None
+ assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
+
+ p3, p4 = p.cut_section(Line((0, 0), slope=0))
+ assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
+ assert p4 == None
+
+ # case where the line does not intersect with a polygon at all
+ raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0)))
+
+def test_type_of_triangle():
+ # Isoceles triangle
+ p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4))
+ assert p1.is_isosceles() == True
+ assert p1.is_scalene() == False
+ assert p1.is_equilateral() == False
+
+ # Scalene triangle
+ p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0))
+ assert p2.is_isosceles() == False
+ assert p2.is_scalene() == True
+ assert p2.is_equilateral() == False
+
+ # Equilateral triagle
+ p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27)))
+ assert p3.is_isosceles() == True
+ assert p3.is_scalene() == False
+ assert p3.is_equilateral() == True
+
+def test_do_poly_distance():
+ # Non-intersecting polygons
+ square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
+ triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
+ assert square1._do_poly_distance(triangle1) == sqrt(2)/2
+
+ # Polygons which sides intersect
+ square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1))
+ with warns(UserWarning, \
+ match="Polygons may intersect producing erroneous output", test_stacklevel=False):
+ assert square1._do_poly_distance(square2) == 0
+
+ # Polygons which bodies intersect
+ triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half))
+ with warns(UserWarning, \
+ match="Polygons may intersect producing erroneous output", test_stacklevel=False):
+ assert triangle2._do_poly_distance(square1) == 0
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_util.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_util.py
new file mode 100644
index 0000000000000000000000000000000000000000..a8440beadcc75d8c2ac2065519061e519765ec3a
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/tests/test_util.py
@@ -0,0 +1,151 @@
+from sympy.core.function import (Derivative, Function)
+from sympy.core.singleton import S
+from sympy.core.symbol import Symbol
+from sympy.functions import exp, cos, sin, tan, cosh, sinh
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.geometry import Point, Point2D, Line, Polygon, Segment, convex_hull,\
+ intersection, centroid, Point3D, Line3D
+from sympy.geometry.util import idiff, closest_points, farthest_points, _ordered_points, are_coplanar
+from sympy.solvers.solvers import solve
+from sympy.testing.pytest import raises
+
+
+def test_idiff():
+ x = Symbol('x', real=True)
+ y = Symbol('y', real=True)
+ t = Symbol('t', real=True)
+ f = Function('f')
+ g = Function('g')
+ # the use of idiff in ellipse also provides coverage
+ circ = x**2 + y**2 - 4
+ ans = -3*x*(x**2/y**2 + 1)/y**3
+ assert ans == idiff(circ, y, x, 3), idiff(circ, y, x, 3)
+ assert ans == idiff(circ, [y], x, 3)
+ assert idiff(circ, y, x, 3) == ans
+ explicit = 12*x/sqrt(-x**2 + 4)**5
+ assert ans.subs(y, solve(circ, y)[0]).equals(explicit)
+ assert True in [sol.diff(x, 3).equals(explicit) for sol in solve(circ, y)]
+ assert idiff(x + t + y, [y, t], x) == -Derivative(t, x) - 1
+ assert idiff(f(x) * exp(f(x)) - x * exp(x), f(x), x) == (x + 1)*exp(x)*exp(-f(x))/(f(x) + 1)
+ assert idiff(f(x) - y * exp(x), [f(x), y], x) == (y + Derivative(y, x))*exp(x)
+ assert idiff(f(x) - y * exp(x), [y, f(x)], x) == -y + Derivative(f(x), x)*exp(-x)
+ assert idiff(f(x) - g(x), [f(x), g(x)], x) == Derivative(g(x), x)
+ # this should be fast
+ fxy = y - (-10*(-sin(x) + 1/x)**2 + tan(x)**2 + 2*cosh(x/10))
+ assert idiff(fxy, y, x) == -20*sin(x)*cos(x) + 2*tan(x)**3 + \
+ 2*tan(x) + sinh(x/10)/5 + 20*cos(x)/x - 20*sin(x)/x**2 + 20/x**3
+
+
+def test_intersection():
+ assert intersection(Point(0, 0)) == []
+ raises(TypeError, lambda: intersection(Point(0, 0), 3))
+ assert intersection(
+ Segment((0, 0), (2, 0)),
+ Segment((-1, 0), (1, 0)),
+ Line((0, 0), (0, 1)), pairwise=True) == [
+ Point(0, 0), Segment((0, 0), (1, 0))]
+ assert intersection(
+ Line((0, 0), (0, 1)),
+ Segment((0, 0), (2, 0)),
+ Segment((-1, 0), (1, 0)), pairwise=True) == [
+ Point(0, 0), Segment((0, 0), (1, 0))]
+ assert intersection(
+ Line((0, 0), (0, 1)),
+ Segment((0, 0), (2, 0)),
+ Segment((-1, 0), (1, 0)),
+ Line((0, 0), slope=1), pairwise=True) == [
+ Point(0, 0), Segment((0, 0), (1, 0))]
+
+
+def test_convex_hull():
+ raises(TypeError, lambda: convex_hull(Point(0, 0), 3))
+ points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)]
+ assert convex_hull(*points, **{"polygon": False}) == (
+ [Point2D(-5, -2), Point2D(1, -1), Point2D(3, -1), Point2D(15, -4)],
+ [Point2D(-5, -2), Point2D(15, -4)])
+
+
+def test_centroid():
+ p = Polygon((0, 0), (10, 0), (10, 10))
+ q = p.translate(0, 20)
+ assert centroid(p, q) == Point(20, 40)/3
+ p = Segment((0, 0), (2, 0))
+ q = Segment((0, 0), (2, 2))
+ assert centroid(p, q) == Point(1, -sqrt(2) + 2)
+ assert centroid(Point(0, 0), Point(2, 0)) == Point(2, 0)/2
+ assert centroid(Point(0, 0), Point(0, 0), Point(2, 0)) == Point(2, 0)/3
+
+
+def test_farthest_points_closest_points():
+ from sympy.core.random import randint
+ from sympy.utilities.iterables import subsets
+
+ for how in (min, max):
+ if how == min:
+ func = closest_points
+ else:
+ func = farthest_points
+
+ raises(ValueError, lambda: func(Point2D(0, 0), Point2D(0, 0)))
+
+ # 3rd pt dx is close and pt is closer to 1st pt
+ p1 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 1)]
+ # 3rd pt dx is close and pt is closer to 2nd pt
+ p2 = [Point2D(0, 0), Point2D(3, 0), Point2D(2, 1)]
+ # 3rd pt dx is close and but pt is not closer
+ p3 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 10)]
+ # 3rd pt dx is not closer and it's closer to 2nd pt
+ p4 = [Point2D(0, 0), Point2D(3, 0), Point2D(4, 0)]
+ # 3rd pt dx is not closer and it's closer to 1st pt
+ p5 = [Point2D(0, 0), Point2D(3, 0), Point2D(-1, 0)]
+ # duplicate point doesn't affect outcome
+ dup = [Point2D(0, 0), Point2D(3, 0), Point2D(3, 0), Point2D(-1, 0)]
+ # symbolic
+ x = Symbol('x', positive=True)
+ s = [Point2D(a) for a in ((x, 1), (x + 3, 2), (x + 2, 2))]
+
+ for points in (p1, p2, p3, p4, p5, dup, s):
+ d = how(i.distance(j) for i, j in subsets(set(points), 2))
+ ans = a, b = list(func(*points))[0]
+ assert a.distance(b) == d
+ assert ans == _ordered_points(ans)
+
+ # if the following ever fails, the above tests were not sufficient
+ # and the logical error in the routine should be fixed
+ points = set()
+ while len(points) != 7:
+ points.add(Point2D(randint(1, 100), randint(1, 100)))
+ points = list(points)
+ d = how(i.distance(j) for i, j in subsets(points, 2))
+ ans = a, b = list(func(*points))[0]
+ assert a.distance(b) == d
+ assert ans == _ordered_points(ans)
+
+ # equidistant points
+ a, b, c = (
+ Point2D(0, 0), Point2D(1, 0), Point2D(S.Half, sqrt(3)/2))
+ ans = {_ordered_points((i, j))
+ for i, j in subsets((a, b, c), 2)}
+ assert closest_points(b, c, a) == ans
+ assert farthest_points(b, c, a) == ans
+
+ # unique to farthest
+ points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
+ assert farthest_points(*points) == {
+ (Point2D(-5, 2), Point2D(15, 4))}
+ points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)]
+ assert farthest_points(*points) == {
+ (Point2D(-5, -2), Point2D(15, -4))}
+ assert farthest_points((1, 1), (0, 0)) == {
+ (Point2D(0, 0), Point2D(1, 1))}
+ raises(ValueError, lambda: farthest_points((1, 1)))
+
+
+def test_are_coplanar():
+ a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
+ b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
+ c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
+ d = Line(Point2D(0, 3), Point2D(1, 5))
+
+ assert are_coplanar(a, b, c) == False
+ assert are_coplanar(a, d) == False
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/geometry/util.py b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..9252e649f0673a255a73a7772572a40900064709
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/geometry/util.py
@@ -0,0 +1,718 @@
+"""Utility functions for geometrical entities.
+
+Contains
+========
+intersection
+convex_hull
+closest_points
+farthest_points
+are_coplanar
+are_similar
+
+"""
+
+from collections import deque
+from math import sqrt as _sqrt
+
+
+from .entity import GeometryEntity
+from .exceptions import GeometryError
+from .point import Point, Point2D, Point3D
+from sympy.core.containers import OrderedSet
+from sympy.core.exprtools import factor_terms
+from sympy.core.function import Function, expand_mul
+from sympy.core.sorting import ordered
+from sympy.core.symbol import Symbol
+from sympy.core.singleton import S
+from sympy.polys.polytools import cancel
+from sympy.functions.elementary.miscellaneous import sqrt
+from sympy.utilities.iterables import is_sequence
+
+
+def find(x, equation):
+ """
+ Checks whether a Symbol matching ``x`` is present in ``equation``
+ or not. If present, the matching symbol is returned, else a
+ ValueError is raised. If ``x`` is a string the matching symbol
+ will have the same name; if ``x`` is a Symbol then it will be
+ returned if found.
+
+ Examples
+ ========
+
+ >>> from sympy.geometry.util import find
+ >>> from sympy import Dummy
+ >>> from sympy.abc import x
+ >>> find('x', x)
+ x
+ >>> find('x', Dummy('x'))
+ _x
+
+ The dummy symbol is returned since it has a matching name:
+
+ >>> _.name == 'x'
+ True
+ >>> find(x, Dummy('x'))
+ Traceback (most recent call last):
+ ...
+ ValueError: could not find x
+ """
+
+ free = equation.free_symbols
+ xs = [i for i in free if (i.name if isinstance(x, str) else i) == x]
+ if not xs:
+ raise ValueError('could not find %s' % x)
+ if len(xs) != 1:
+ raise ValueError('ambiguous %s' % x)
+ return xs[0]
+
+
+def _ordered_points(p):
+ """Return the tuple of points sorted numerically according to args"""
+ return tuple(sorted(p, key=lambda x: x.args))
+
+
+def are_coplanar(*e):
+ """ Returns True if the given entities are coplanar otherwise False
+
+ Parameters
+ ==========
+
+ e: entities to be checked for being coplanar
+
+ Returns
+ =======
+
+ Boolean
+
+ Examples
+ ========
+
+ >>> from sympy import Point3D, Line3D
+ >>> from sympy.geometry.util import are_coplanar
+ >>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
+ >>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
+ >>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
+ >>> are_coplanar(a, b, c)
+ False
+
+ """
+ from .line import LinearEntity3D
+ from .plane import Plane
+ # XXX update tests for coverage
+
+ e = set(e)
+ # first work with a Plane if present
+ for i in list(e):
+ if isinstance(i, Plane):
+ e.remove(i)
+ return all(p.is_coplanar(i) for p in e)
+
+ if all(isinstance(i, Point3D) for i in e):
+ if len(e) < 3:
+ return False
+
+ # remove pts that are collinear with 2 pts
+ a, b = e.pop(), e.pop()
+ for i in list(e):
+ if Point3D.are_collinear(a, b, i):
+ e.remove(i)
+
+ if not e:
+ return False
+ else:
+ # define a plane
+ p = Plane(a, b, e.pop())
+ for i in e:
+ if i not in p:
+ return False
+ return True
+ else:
+ pt3d = []
+ for i in e:
+ if isinstance(i, Point3D):
+ pt3d.append(i)
+ elif isinstance(i, LinearEntity3D):
+ pt3d.extend(i.args)
+ elif isinstance(i, GeometryEntity): # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't handle above, an error should be raised
+ # all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0
+ for p in i.args:
+ if isinstance(p, Point):
+ pt3d.append(Point3D(*(p.args + (0,))))
+ return are_coplanar(*pt3d)
+
+
+def are_similar(e1, e2):
+ """Are two geometrical entities similar.
+
+ Can one geometrical entity be uniformly scaled to the other?
+
+ Parameters
+ ==========
+
+ e1 : GeometryEntity
+ e2 : GeometryEntity
+
+ Returns
+ =======
+
+ are_similar : boolean
+
+ Raises
+ ======
+
+ GeometryError
+ When `e1` and `e2` cannot be compared.
+
+ Notes
+ =====
+
+ If the two objects are equal then they are similar.
+
+ See Also
+ ========
+
+ sympy.geometry.entity.GeometryEntity.is_similar
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Circle, Triangle, are_similar
+ >>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3)
+ >>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
+ >>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2))
+ >>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1))
+ >>> are_similar(t1, t2)
+ True
+ >>> are_similar(t1, t3)
+ False
+
+ """
+ if e1 == e2:
+ return True
+ is_similar1 = getattr(e1, 'is_similar', None)
+ if is_similar1:
+ return is_similar1(e2)
+ is_similar2 = getattr(e2, 'is_similar', None)
+ if is_similar2:
+ return is_similar2(e1)
+ n1 = e1.__class__.__name__
+ n2 = e2.__class__.__name__
+ raise GeometryError(
+ "Cannot test similarity between %s and %s" % (n1, n2))
+
+
+def centroid(*args):
+ """Find the centroid (center of mass) of the collection containing only Points,
+ Segments or Polygons. The centroid is the weighted average of the individual centroid
+ where the weights are the lengths (of segments) or areas (of polygons).
+ Overlapping regions will add to the weight of that region.
+
+ If there are no objects (or a mixture of objects) then None is returned.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.line.Segment,
+ sympy.geometry.polygon.Polygon
+
+ Examples
+ ========
+
+ >>> from sympy import Point, Segment, Polygon
+ >>> from sympy.geometry.util import centroid
+ >>> p = Polygon((0, 0), (10, 0), (10, 10))
+ >>> q = p.translate(0, 20)
+ >>> p.centroid, q.centroid
+ (Point2D(20/3, 10/3), Point2D(20/3, 70/3))
+ >>> centroid(p, q)
+ Point2D(20/3, 40/3)
+ >>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
+ >>> centroid(p, q)
+ Point2D(1, 2 - sqrt(2))
+ >>> centroid(Point(0, 0), Point(2, 0))
+ Point2D(1, 0)
+
+ Stacking 3 polygons on top of each other effectively triples the
+ weight of that polygon:
+
+ >>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
+ >>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
+ >>> centroid(p, q)
+ Point2D(3/2, 1/2)
+ >>> centroid(p, p, p, q) # centroid x-coord shifts left
+ Point2D(11/10, 1/2)
+
+ Stacking the squares vertically above and below p has the same
+ effect:
+
+ >>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
+ Point2D(11/10, 1/2)
+
+ """
+ from .line import Segment
+ from .polygon import Polygon
+ if args:
+ if all(isinstance(g, Point) for g in args):
+ c = Point(0, 0)
+ for g in args:
+ c += g
+ den = len(args)
+ elif all(isinstance(g, Segment) for g in args):
+ c = Point(0, 0)
+ L = 0
+ for g in args:
+ l = g.length
+ c += g.midpoint*l
+ L += l
+ den = L
+ elif all(isinstance(g, Polygon) for g in args):
+ c = Point(0, 0)
+ A = 0
+ for g in args:
+ a = g.area
+ c += g.centroid*a
+ A += a
+ den = A
+ c /= den
+ return c.func(*[i.simplify() for i in c.args])
+
+
+def closest_points(*args):
+ """Return the subset of points from a set of points that were
+ the closest to each other in the 2D plane.
+
+ Parameters
+ ==========
+
+ args
+ A collection of Points on 2D plane.
+
+ Notes
+ =====
+
+ This can only be performed on a set of points whose coordinates can
+ be ordered on the number line. If there are no ties then a single
+ pair of Points will be in the set.
+
+ Examples
+ ========
+
+ >>> from sympy import closest_points, Triangle
+ >>> Triangle(sss=(3, 4, 5)).args
+ (Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
+ >>> closest_points(*_)
+ {(Point2D(0, 0), Point2D(3, 0))}
+
+ References
+ ==========
+
+ .. [1] https://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html
+
+ .. [2] Sweep line algorithm
+ https://en.wikipedia.org/wiki/Sweep_line_algorithm
+
+ """
+ p = [Point2D(i) for i in set(args)]
+ if len(p) < 2:
+ raise ValueError('At least 2 distinct points must be given.')
+
+ try:
+ p.sort(key=lambda x: x.args)
+ except TypeError:
+ raise ValueError("The points could not be sorted.")
+
+ if not all(i.is_Rational for j in p for i in j.args):
+ def hypot(x, y):
+ arg = x*x + y*y
+ if arg.is_Rational:
+ return _sqrt(arg)
+ return sqrt(arg)
+ else:
+ from math import hypot
+
+ rv = [(0, 1)]
+ best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y)
+ i = 2
+ left = 0
+ box = deque([0, 1])
+ while i < len(p):
+ while left < i and p[i][0] - p[left][0] > best_dist:
+ box.popleft()
+ left += 1
+
+ for j in box:
+ d = hypot(p[i].x - p[j].x, p[i].y - p[j].y)
+ if d < best_dist:
+ rv = [(j, i)]
+ elif d == best_dist:
+ rv.append((j, i))
+ else:
+ continue
+ best_dist = d
+ box.append(i)
+ i += 1
+
+ return {tuple([p[i] for i in pair]) for pair in rv}
+
+
+def convex_hull(*args, polygon=True):
+ """The convex hull surrounding the Points contained in the list of entities.
+
+ Parameters
+ ==========
+
+ args : a collection of Points, Segments and/or Polygons
+
+ Optional parameters
+ ===================
+
+ polygon : Boolean. If True, returns a Polygon, if false a tuple, see below.
+ Default is True.
+
+ Returns
+ =======
+
+ convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where
+ ``L`` and ``U`` are the lower and upper hulls, respectively.
+
+ Notes
+ =====
+
+ This can only be performed on a set of points whose coordinates can
+ be ordered on the number line.
+
+ See Also
+ ========
+
+ sympy.geometry.point.Point, sympy.geometry.polygon.Polygon
+
+ Examples
+ ========
+
+ >>> from sympy import convex_hull
+ >>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
+ >>> convex_hull(*points)
+ Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4))
+ >>> convex_hull(*points, **dict(polygon=False))
+ ([Point2D(-5, 2), Point2D(15, 4)],
+ [Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)])
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Graham_scan
+
+ .. [2] Andrew's Monotone Chain Algorithm
+ (A.M. Andrew,
+ "Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979)
+ https://web.archive.org/web/20210511015444/http://geomalgorithms.com/a10-_hull-1.html
+
+ """
+ from .line import Segment
+ from .polygon import Polygon
+ p = OrderedSet()
+ for e in args:
+ if not isinstance(e, GeometryEntity):
+ try:
+ e = Point(e)
+ except NotImplementedError:
+ raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e))
+ if isinstance(e, Point):
+ p.add(e)
+ elif isinstance(e, Segment):
+ p.update(e.points)
+ elif isinstance(e, Polygon):
+ p.update(e.vertices)
+ else:
+ raise NotImplementedError(
+ 'Convex hull for %s not implemented.' % type(e))
+
+ # make sure all our points are of the same dimension
+ if any(len(x) != 2 for x in p):
+ raise ValueError('Can only compute the convex hull in two dimensions')
+
+ p = list(p)
+ if len(p) == 1:
+ return p[0] if polygon else (p[0], None)
+ elif len(p) == 2:
+ s = Segment(p[0], p[1])
+ return s if polygon else (s, None)
+
+ def _orientation(p, q, r):
+ '''Return positive if p-q-r are clockwise, neg if ccw, zero if
+ collinear.'''
+ return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y)
+
+ # scan to find upper and lower convex hulls of a set of 2d points.
+ U = []
+ L = []
+ try:
+ p.sort(key=lambda x: x.args)
+ except TypeError:
+ raise ValueError("The points could not be sorted.")
+ for p_i in p:
+ while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0:
+ U.pop()
+ while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0:
+ L.pop()
+ U.append(p_i)
+ L.append(p_i)
+ U.reverse()
+ convexHull = tuple(L + U[1:-1])
+
+ if len(convexHull) == 2:
+ s = Segment(convexHull[0], convexHull[1])
+ return s if polygon else (s, None)
+ if polygon:
+ return Polygon(*convexHull)
+ else:
+ U.reverse()
+ return (U, L)
+
+def farthest_points(*args):
+ """Return the subset of points from a set of points that were
+ the furthest apart from each other in the 2D plane.
+
+ Parameters
+ ==========
+
+ args
+ A collection of Points on 2D plane.
+
+ Notes
+ =====
+
+ This can only be performed on a set of points whose coordinates can
+ be ordered on the number line. If there are no ties then a single
+ pair of Points will be in the set.
+
+ Examples
+ ========
+
+ >>> from sympy.geometry import farthest_points, Triangle
+ >>> Triangle(sss=(3, 4, 5)).args
+ (Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
+ >>> farthest_points(*_)
+ {(Point2D(0, 0), Point2D(3, 4))}
+
+ References
+ ==========
+
+ .. [1] https://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/
+
+ .. [2] Rotating Callipers Technique
+ https://en.wikipedia.org/wiki/Rotating_calipers
+
+ """
+
+ def rotatingCalipers(Points):
+ U, L = convex_hull(*Points, **{"polygon": False})
+
+ if L is None:
+ if isinstance(U, Point):
+ raise ValueError('At least two distinct points must be given.')
+ yield U.args
+ else:
+ i = 0
+ j = len(L) - 1
+ while i < len(U) - 1 or j > 0:
+ yield U[i], L[j]
+ # if all the way through one side of hull, advance the other side
+ if i == len(U) - 1:
+ j -= 1
+ elif j == 0:
+ i += 1
+ # still points left on both lists, compare slopes of next hull edges
+ # being careful to avoid divide-by-zero in slope calculation
+ elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \
+ (L[j].y - L[j-1].y) * (U[i+1].x - U[i].x):
+ i += 1
+ else:
+ j -= 1
+
+ p = [Point2D(i) for i in set(args)]
+
+ if not all(i.is_Rational for j in p for i in j.args):
+ def hypot(x, y):
+ arg = x*x + y*y
+ if arg.is_Rational:
+ return _sqrt(arg)
+ return sqrt(arg)
+ else:
+ from math import hypot
+
+ rv = []
+ diam = 0
+ for pair in rotatingCalipers(args):
+ h, q = _ordered_points(pair)
+ d = hypot(h.x - q.x, h.y - q.y)
+ if d > diam:
+ rv = [(h, q)]
+ elif d == diam:
+ rv.append((h, q))
+ else:
+ continue
+ diam = d
+
+ return set(rv)
+
+
+def idiff(eq, y, x, n=1):
+ """Return ``dy/dx`` assuming that ``eq == 0``.
+
+ Parameters
+ ==========
+
+ y : the dependent variable or a list of dependent variables (with y first)
+ x : the variable that the derivative is being taken with respect to
+ n : the order of the derivative (default is 1)
+
+ Examples
+ ========
+
+ >>> from sympy.abc import x, y, a
+ >>> from sympy.geometry.util import idiff
+
+ >>> circ = x**2 + y**2 - 4
+ >>> idiff(circ, y, x)
+ -x/y
+ >>> idiff(circ, y, x, 2).simplify()
+ (-x**2 - y**2)/y**3
+
+ Here, ``a`` is assumed to be independent of ``x``:
+
+ >>> idiff(x + a + y, y, x)
+ -1
+
+ Now the x-dependence of ``a`` is made explicit by listing ``a`` after
+ ``y`` in a list.
+
+ >>> idiff(x + a + y, [y, a], x)
+ -Derivative(a, x) - 1
+
+ See Also
+ ========
+
+ sympy.core.function.Derivative: represents unevaluated derivatives
+ sympy.core.function.diff: explicitly differentiates wrt symbols
+
+ """
+ if is_sequence(y):
+ dep = set(y)
+ y = y[0]
+ elif isinstance(y, Symbol):
+ dep = {y}
+ elif isinstance(y, Function):
+ pass
+ else:
+ raise ValueError("expecting x-dependent symbol(s) or function(s) but got: %s" % y)
+
+ f = {s: Function(s.name)(x) for s in eq.free_symbols
+ if s != x and s in dep}
+
+ if isinstance(y, Symbol):
+ dydx = Function(y.name)(x).diff(x)
+ else:
+ dydx = y.diff(x)
+
+ eq = eq.subs(f)
+ derivs = {}
+ for i in range(n):
+ # equation will be linear in dydx, a*dydx + b, so dydx = -b/a
+ deq = eq.diff(x)
+ b = deq.xreplace({dydx: S.Zero})
+ a = (deq - b).xreplace({dydx: S.One})
+ yp = factor_terms(expand_mul(cancel((-b/a).subs(derivs)), deep=False))
+ if i == n - 1:
+ return yp.subs([(v, k) for k, v in f.items()])
+ derivs[dydx] = yp
+ eq = dydx - yp
+ dydx = dydx.diff(x)
+
+
+def intersection(*entities, pairwise=False, **kwargs):
+ """The intersection of a collection of GeometryEntity instances.
+
+ Parameters
+ ==========
+ entities : sequence of GeometryEntity
+ pairwise (keyword argument) : Can be either True or False
+
+ Returns
+ =======
+ intersection : list of GeometryEntity
+
+ Raises
+ ======
+ NotImplementedError
+ When unable to calculate intersection.
+
+ Notes
+ =====
+ The intersection of any geometrical entity with itself should return
+ a list with one item: the entity in question.
+ An intersection requires two or more entities. If only a single
+ entity is given then the function will return an empty list.
+ It is possible for `intersection` to miss intersections that one
+ knows exists because the required quantities were not fully
+ simplified internally.
+ Reals should be converted to Rationals, e.g. Rational(str(real_num))
+ or else failures due to floating point issues may result.
+
+ Case 1: When the keyword argument 'pairwise' is False (default value):
+ In this case, the function returns a list of intersections common to
+ all entities.
+
+ Case 2: When the keyword argument 'pairwise' is True:
+ In this case, the functions returns a list intersections that occur
+ between any pair of entities.
+
+ See Also
+ ========
+
+ sympy.geometry.entity.GeometryEntity.intersection
+
+ Examples
+ ========
+
+ >>> from sympy import Ray, Circle, intersection
+ >>> c = Circle((0, 1), 1)
+ >>> intersection(c, c.center)
+ []
+ >>> right = Ray((0, 0), (1, 0))
+ >>> up = Ray((0, 0), (0, 1))
+ >>> intersection(c, right, up)
+ [Point2D(0, 0)]
+ >>> intersection(c, right, up, pairwise=True)
+ [Point2D(0, 0), Point2D(0, 2)]
+ >>> left = Ray((1, 0), (0, 0))
+ >>> intersection(right, left)
+ [Segment2D(Point2D(0, 0), Point2D(1, 0))]
+
+ """
+ if len(entities) <= 1:
+ return []
+
+ # entities may be an immutable tuple
+ entities = list(entities)
+ for i, e in enumerate(entities):
+ if not isinstance(e, GeometryEntity):
+ entities[i] = Point(e)
+
+ if not pairwise:
+ # find the intersection common to all objects
+ res = entities[0].intersection(entities[1])
+ for entity in entities[2:]:
+ newres = []
+ for x in res:
+ newres.extend(x.intersection(entity))
+ res = newres
+ return res
+
+ # find all pairwise intersections
+ ans = []
+ for j in range(len(entities)):
+ for k in range(j + 1, len(entities)):
+ ans.extend(intersection(entities[j], entities[k]))
+ return list(ordered(set(ans)))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py b/env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d29b37bc9a1a26790ee88b5902951afe4fc4560
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py
@@ -0,0 +1,25 @@
+from .cartan_type import CartanType
+
+def CartanMatrix(ct):
+ """Access the Cartan matrix of a specific Lie algebra
+
+ Examples
+ ========
+
+ >>> from sympy.liealgebras.cartan_matrix import CartanMatrix
+ >>> CartanMatrix("A2")
+ Matrix([
+ [ 2, -1],
+ [-1, 2]])
+
+ >>> CartanMatrix(['C', 3])
+ Matrix([
+ [ 2, -1, 0],
+ [-1, 2, -1],
+ [ 0, -2, 2]])
+
+ This method works by returning the Cartan matrix
+ which corresponds to Cartan type t.
+ """
+
+ return CartanType(ct).cartan_matrix()
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/root_system.py b/env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/root_system.py
new file mode 100644
index 0000000000000000000000000000000000000000..60c516b07c7693a38bb8814f61917bd552cdfd70
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/liealgebras/root_system.py
@@ -0,0 +1,199 @@
+from .cartan_type import CartanType
+from sympy.core.basic import Atom
+
+class RootSystem(Atom):
+ """Represent the root system of a simple Lie algebra
+
+ Every simple Lie algebra has a unique root system. To find the root
+ system, we first consider the Cartan subalgebra of g, which is the maximal
+ abelian subalgebra, and consider the adjoint action of g on this
+ subalgebra. There is a root system associated with this action. Now, a
+ root system over a vector space V is a set of finite vectors Phi (called
+ roots), which satisfy:
+
+ 1. The roots span V
+ 2. The only scalar multiples of x in Phi are x and -x
+ 3. For every x in Phi, the set Phi is closed under reflection
+ through the hyperplane perpendicular to x.
+ 4. If x and y are roots in Phi, then the projection of y onto
+ the line through x is a half-integral multiple of x.
+
+ Now, there is a subset of Phi, which we will call Delta, such that:
+ 1. Delta is a basis of V
+ 2. Each root x in Phi can be written x = sum k_y y for y in Delta
+
+ The elements of Delta are called the simple roots.
+ Therefore, we see that the simple roots span the root space of a given
+ simple Lie algebra.
+
+ References
+ ==========
+
+ .. [1] https://en.wikipedia.org/wiki/Root_system
+ .. [2] Lie Algebras and Representation Theory - Humphreys
+
+ """
+
+ def __new__(cls, cartantype):
+ """Create a new RootSystem object
+
+ This method assigns an attribute called cartan_type to each instance of
+ a RootSystem object. When an instance of RootSystem is called, it
+ needs an argument, which should be an instance of a simple Lie algebra.
+ We then take the CartanType of this argument and set it as the
+ cartan_type attribute of the RootSystem instance.
+
+ """
+ obj = Atom.__new__(cls)
+ obj.cartan_type = CartanType(cartantype)
+ return obj
+
+ def simple_roots(self):
+ """Generate the simple roots of the Lie algebra
+
+ The rank of the Lie algebra determines the number of simple roots that
+ it has. This method obtains the rank of the Lie algebra, and then uses
+ the simple_root method from the Lie algebra classes to generate all the
+ simple roots.
+
+ Examples
+ ========
+
+ >>> from sympy.liealgebras.root_system import RootSystem
+ >>> c = RootSystem("A3")
+ >>> roots = c.simple_roots()
+ >>> roots
+ {1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
+
+ """
+ n = self.cartan_type.rank()
+ roots = {}
+ for i in range(1, n+1):
+ root = self.cartan_type.simple_root(i)
+ roots[i] = root
+ return roots
+
+
+ def all_roots(self):
+ """Generate all the roots of a given root system
+
+ The result is a dictionary where the keys are integer numbers. It
+ generates the roots by getting the dictionary of all positive roots
+ from the bases classes, and then taking each root, and multiplying it
+ by -1 and adding it to the dictionary. In this way all the negative
+ roots are generated.
+
+ """
+ alpha = self.cartan_type.positive_roots()
+ keys = list(alpha.keys())
+ k = max(keys)
+ for val in keys:
+ k += 1
+ root = alpha[val]
+ newroot = [-x for x in root]
+ alpha[k] = newroot
+ return alpha
+
+ def root_space(self):
+ """Return the span of the simple roots
+
+ The root space is the vector space spanned by the simple roots, i.e. it
+ is a vector space with a distinguished basis, the simple roots. This
+ method returns a string that represents the root space as the span of
+ the simple roots, alpha[1],...., alpha[n].
+
+ Examples
+ ========
+
+ >>> from sympy.liealgebras.root_system import RootSystem
+ >>> c = RootSystem("A3")
+ >>> c.root_space()
+ 'alpha[1] + alpha[2] + alpha[3]'
+
+ """
+ n = self.cartan_type.rank()
+ rs = " + ".join("alpha["+str(i) +"]" for i in range(1, n+1))
+ return rs
+
+ def add_simple_roots(self, root1, root2):
+ """Add two simple roots together
+
+ The function takes as input two integers, root1 and root2. It then
+ uses these integers as keys in the dictionary of simple roots, and gets
+ the corresponding simple roots, and then adds them together.
+
+ Examples
+ ========
+
+ >>> from sympy.liealgebras.root_system import RootSystem
+ >>> c = RootSystem("A3")
+ >>> newroot = c.add_simple_roots(1, 2)
+ >>> newroot
+ [1, 0, -1, 0]
+
+ """
+
+ alpha = self.simple_roots()
+ if root1 > len(alpha) or root2 > len(alpha):
+ raise ValueError("You've used a root that doesn't exist!")
+ a1 = alpha[root1]
+ a2 = alpha[root2]
+ newroot = [_a1 + _a2 for _a1, _a2 in zip(a1, a2)]
+ return newroot
+
+ def add_as_roots(self, root1, root2):
+ """Add two roots together if and only if their sum is also a root
+
+ It takes as input two vectors which should be roots. It then computes
+ their sum and checks if it is in the list of all possible roots. If it
+ is, it returns the sum. Otherwise it returns a string saying that the
+ sum is not a root.
+
+ Examples
+ ========
+
+ >>> from sympy.liealgebras.root_system import RootSystem
+ >>> c = RootSystem("A3")
+ >>> c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1])
+ [1, 0, 0, -1]
+ >>> c.add_as_roots([1, -1, 0, 0], [0, 0, -1, 1])
+ 'The sum of these two roots is not a root'
+
+ """
+ alpha = self.all_roots()
+ newroot = [r1 + r2 for r1, r2 in zip(root1, root2)]
+ if newroot in alpha.values():
+ return newroot
+ else:
+ return "The sum of these two roots is not a root"
+
+
+ def cartan_matrix(self):
+ """Cartan matrix of Lie algebra associated with this root system
+
+ Examples
+ ========
+
+ >>> from sympy.liealgebras.root_system import RootSystem
+ >>> c = RootSystem("A3")
+ >>> c.cartan_matrix()
+ Matrix([
+ [ 2, -1, 0],
+ [-1, 2, -1],
+ [ 0, -1, 2]])
+ """
+ return self.cartan_type.cartan_matrix()
+
+ def dynkin_diagram(self):
+ """Dynkin diagram of the Lie algebra associated with this root system
+
+ Examples
+ ========
+
+ >>> from sympy.liealgebras.root_system import RootSystem
+ >>> c = RootSystem("A3")
+ >>> print(c.dynkin_diagram())
+ 0---0---0
+ 1 2 3
+ """
+ return self.cartan_type.dynkin_diagram()
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5447651645e3e2e92df3002822e87a773ade0df8
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py
@@ -0,0 +1,11 @@
+from .core import dispatch
+from .dispatcher import (Dispatcher, halt_ordering, restart_ordering,
+ MDNotImplementedError)
+
+__version__ = '0.4.9'
+
+__all__ = [
+ 'dispatch',
+
+ 'Dispatcher', 'halt_ordering', 'restart_ordering', 'MDNotImplementedError',
+]
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/conflict.py b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/conflict.py
new file mode 100644
index 0000000000000000000000000000000000000000..98c6742c9c03860233ef0004b241ea3944ac6d4d
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/conflict.py
@@ -0,0 +1,68 @@
+from .utils import _toposort, groupby
+
+class AmbiguityWarning(Warning):
+ pass
+
+
+def supercedes(a, b):
+ """ A is consistent and strictly more specific than B """
+ return len(a) == len(b) and all(map(issubclass, a, b))
+
+
+def consistent(a, b):
+ """ It is possible for an argument list to satisfy both A and B """
+ return (len(a) == len(b) and
+ all(issubclass(aa, bb) or issubclass(bb, aa)
+ for aa, bb in zip(a, b)))
+
+
+def ambiguous(a, b):
+ """ A is consistent with B but neither is strictly more specific """
+ return consistent(a, b) and not (supercedes(a, b) or supercedes(b, a))
+
+
+def ambiguities(signatures):
+ """ All signature pairs such that A is ambiguous with B """
+ signatures = list(map(tuple, signatures))
+ return {(a, b) for a in signatures for b in signatures
+ if hash(a) < hash(b)
+ and ambiguous(a, b)
+ and not any(supercedes(c, a) and supercedes(c, b)
+ for c in signatures)}
+
+
+def super_signature(signatures):
+ """ A signature that would break ambiguities """
+ n = len(signatures[0])
+ assert all(len(s) == n for s in signatures)
+
+ return [max([type.mro(sig[i]) for sig in signatures], key=len)[0]
+ for i in range(n)]
+
+
+def edge(a, b, tie_breaker=hash):
+ """ A should be checked before B
+
+ Tie broken by tie_breaker, defaults to ``hash``
+ """
+ if supercedes(a, b):
+ if supercedes(b, a):
+ return tie_breaker(a) > tie_breaker(b)
+ else:
+ return True
+ return False
+
+
+def ordering(signatures):
+ """ A sane ordering of signatures to check, first to last
+
+ Topoological sort of edges as given by ``edge`` and ``supercedes``
+ """
+ signatures = list(map(tuple, signatures))
+ edges = [(a, b) for a in signatures for b in signatures if edge(a, b)]
+ edges = groupby(lambda x: x[0], edges)
+ for s in signatures:
+ if s not in edges:
+ edges[s] = []
+ edges = {k: [b for a, b in v] for k, v in edges.items()}
+ return _toposort(edges)
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/core.py b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/core.py
new file mode 100644
index 0000000000000000000000000000000000000000..2856ff728c4eb97c5a59fffabddb4bf3c8b4baf2
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/core.py
@@ -0,0 +1,83 @@
+from __future__ import annotations
+from typing import Any
+
+import inspect
+
+from .dispatcher import Dispatcher, MethodDispatcher, ambiguity_warn
+
+# XXX: This parameter to dispatch isn't documented and isn't used anywhere in
+# sympy. Maybe it should just be removed.
+global_namespace: dict[str, Any] = {}
+
+
+def dispatch(*types, namespace=global_namespace, on_ambiguity=ambiguity_warn):
+ """ Dispatch function on the types of the inputs
+
+ Supports dispatch on all non-keyword arguments.
+
+ Collects implementations based on the function name. Ignores namespaces.
+
+ If ambiguous type signatures occur a warning is raised when the function is
+ defined suggesting the additional method to break the ambiguity.
+
+ Examples
+ --------
+
+ >>> from sympy.multipledispatch import dispatch
+ >>> @dispatch(int)
+ ... def f(x):
+ ... return x + 1
+
+ >>> @dispatch(float)
+ ... def f(x): # noqa: F811
+ ... return x - 1
+
+ >>> f(3)
+ 4
+ >>> f(3.0)
+ 2.0
+
+ Specify an isolated namespace with the namespace keyword argument
+
+ >>> my_namespace = dict()
+ >>> @dispatch(int, namespace=my_namespace)
+ ... def foo(x):
+ ... return x + 1
+
+ Dispatch on instance methods within classes
+
+ >>> class MyClass(object):
+ ... @dispatch(list)
+ ... def __init__(self, data):
+ ... self.data = data
+ ... @dispatch(int)
+ ... def __init__(self, datum): # noqa: F811
+ ... self.data = [datum]
+ """
+ types = tuple(types)
+
+ def _(func):
+ name = func.__name__
+
+ if ismethod(func):
+ dispatcher = inspect.currentframe().f_back.f_locals.get(
+ name,
+ MethodDispatcher(name))
+ else:
+ if name not in namespace:
+ namespace[name] = Dispatcher(name)
+ dispatcher = namespace[name]
+
+ dispatcher.add(types, func, on_ambiguity=on_ambiguity)
+ return dispatcher
+ return _
+
+
+def ismethod(func):
+ """ Is func a method?
+
+ Note that this has to work as the method is defined but before the class is
+ defined. At this stage methods look like functions.
+ """
+ signature = inspect.signature(func)
+ return signature.parameters.get('self', None) is not None
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/dispatcher.py b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/dispatcher.py
new file mode 100644
index 0000000000000000000000000000000000000000..89471d678e1c330138a91ec6a41a324d29a037d7
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/dispatcher.py
@@ -0,0 +1,413 @@
+from __future__ import annotations
+
+from warnings import warn
+import inspect
+from .conflict import ordering, ambiguities, super_signature, AmbiguityWarning
+from .utils import expand_tuples
+import itertools as itl
+
+
+class MDNotImplementedError(NotImplementedError):
+ """ A NotImplementedError for multiple dispatch """
+
+
+### Functions for on_ambiguity
+
+def ambiguity_warn(dispatcher, ambiguities):
+ """ Raise warning when ambiguity is detected
+
+ Parameters
+ ----------
+ dispatcher : Dispatcher
+ The dispatcher on which the ambiguity was detected
+ ambiguities : set
+ Set of type signature pairs that are ambiguous within this dispatcher
+
+ See Also:
+ Dispatcher.add
+ warning_text
+ """
+ warn(warning_text(dispatcher.name, ambiguities), AmbiguityWarning)
+
+
+class RaiseNotImplementedError:
+ """Raise ``NotImplementedError`` when called."""
+
+ def __init__(self, dispatcher):
+ self.dispatcher = dispatcher
+
+ def __call__(self, *args, **kwargs):
+ types = tuple(type(a) for a in args)
+ raise NotImplementedError(
+ "Ambiguous signature for %s: <%s>" % (
+ self.dispatcher.name, str_signature(types)
+ ))
+
+def ambiguity_register_error_ignore_dup(dispatcher, ambiguities):
+ """
+ If super signature for ambiguous types is duplicate types, ignore it.
+ Else, register instance of ``RaiseNotImplementedError`` for ambiguous types.
+
+ Parameters
+ ----------
+ dispatcher : Dispatcher
+ The dispatcher on which the ambiguity was detected
+ ambiguities : set
+ Set of type signature pairs that are ambiguous within this dispatcher
+
+ See Also:
+ Dispatcher.add
+ ambiguity_warn
+ """
+ for amb in ambiguities:
+ signature = tuple(super_signature(amb))
+ if len(set(signature)) == 1:
+ continue
+ dispatcher.add(
+ signature, RaiseNotImplementedError(dispatcher),
+ on_ambiguity=ambiguity_register_error_ignore_dup
+ )
+
+###
+
+
+_unresolved_dispatchers: set[Dispatcher] = set()
+_resolve = [True]
+
+
+def halt_ordering():
+ _resolve[0] = False
+
+
+def restart_ordering(on_ambiguity=ambiguity_warn):
+ _resolve[0] = True
+ while _unresolved_dispatchers:
+ dispatcher = _unresolved_dispatchers.pop()
+ dispatcher.reorder(on_ambiguity=on_ambiguity)
+
+
+class Dispatcher:
+ """ Dispatch methods based on type signature
+
+ Use ``dispatch`` to add implementations
+
+ Examples
+ --------
+
+ >>> from sympy.multipledispatch import dispatch
+ >>> @dispatch(int)
+ ... def f(x):
+ ... return x + 1
+
+ >>> @dispatch(float)
+ ... def f(x): # noqa: F811
+ ... return x - 1
+
+ >>> f(3)
+ 4
+ >>> f(3.0)
+ 2.0
+ """
+ __slots__ = '__name__', 'name', 'funcs', 'ordering', '_cache', 'doc'
+
+ def __init__(self, name, doc=None):
+ self.name = self.__name__ = name
+ self.funcs = {}
+ self._cache = {}
+ self.ordering = []
+ self.doc = doc
+
+ def register(self, *types, **kwargs):
+ """ Register dispatcher with new implementation
+
+ >>> from sympy.multipledispatch.dispatcher import Dispatcher
+ >>> f = Dispatcher('f')
+ >>> @f.register(int)
+ ... def inc(x):
+ ... return x + 1
+
+ >>> @f.register(float)
+ ... def dec(x):
+ ... return x - 1
+
+ >>> @f.register(list)
+ ... @f.register(tuple)
+ ... def reverse(x):
+ ... return x[::-1]
+
+ >>> f(1)
+ 2
+
+ >>> f(1.0)
+ 0.0
+
+ >>> f([1, 2, 3])
+ [3, 2, 1]
+ """
+ def _(func):
+ self.add(types, func, **kwargs)
+ return func
+ return _
+
+ @classmethod
+ def get_func_params(cls, func):
+ if hasattr(inspect, "signature"):
+ sig = inspect.signature(func)
+ return sig.parameters.values()
+
+ @classmethod
+ def get_func_annotations(cls, func):
+ """ Get annotations of function positional parameters
+ """
+ params = cls.get_func_params(func)
+ if params:
+ Parameter = inspect.Parameter
+
+ params = (param for param in params
+ if param.kind in
+ (Parameter.POSITIONAL_ONLY,
+ Parameter.POSITIONAL_OR_KEYWORD))
+
+ annotations = tuple(
+ param.annotation
+ for param in params)
+
+ if not any(ann is Parameter.empty for ann in annotations):
+ return annotations
+
+ def add(self, signature, func, on_ambiguity=ambiguity_warn):
+ """ Add new types/method pair to dispatcher
+
+ >>> from sympy.multipledispatch import Dispatcher
+ >>> D = Dispatcher('add')
+ >>> D.add((int, int), lambda x, y: x + y)
+ >>> D.add((float, float), lambda x, y: x + y)
+
+ >>> D(1, 2)
+ 3
+ >>> D(1, 2.0)
+ Traceback (most recent call last):
+ ...
+ NotImplementedError: Could not find signature for add:
+
+ When ``add`` detects a warning it calls the ``on_ambiguity`` callback
+ with a dispatcher/itself, and a set of ambiguous type signature pairs
+ as inputs. See ``ambiguity_warn`` for an example.
+ """
+ # Handle annotations
+ if not signature:
+ annotations = self.get_func_annotations(func)
+ if annotations:
+ signature = annotations
+
+ # Handle union types
+ if any(isinstance(typ, tuple) for typ in signature):
+ for typs in expand_tuples(signature):
+ self.add(typs, func, on_ambiguity)
+ return
+
+ for typ in signature:
+ if not isinstance(typ, type):
+ str_sig = ', '.join(c.__name__ if isinstance(c, type)
+ else str(c) for c in signature)
+ raise TypeError("Tried to dispatch on non-type: %s\n"
+ "In signature: <%s>\n"
+ "In function: %s" %
+ (typ, str_sig, self.name))
+
+ self.funcs[signature] = func
+ self.reorder(on_ambiguity=on_ambiguity)
+ self._cache.clear()
+
+ def reorder(self, on_ambiguity=ambiguity_warn):
+ if _resolve[0]:
+ self.ordering = ordering(self.funcs)
+ amb = ambiguities(self.funcs)
+ if amb:
+ on_ambiguity(self, amb)
+ else:
+ _unresolved_dispatchers.add(self)
+
+ def __call__(self, *args, **kwargs):
+ types = tuple([type(arg) for arg in args])
+ try:
+ func = self._cache[types]
+ except KeyError:
+ func = self.dispatch(*types)
+ if not func:
+ raise NotImplementedError(
+ 'Could not find signature for %s: <%s>' %
+ (self.name, str_signature(types)))
+ self._cache[types] = func
+ try:
+ return func(*args, **kwargs)
+
+ except MDNotImplementedError:
+ funcs = self.dispatch_iter(*types)
+ next(funcs) # burn first
+ for func in funcs:
+ try:
+ return func(*args, **kwargs)
+ except MDNotImplementedError:
+ pass
+ raise NotImplementedError("Matching functions for "
+ "%s: <%s> found, but none completed successfully"
+ % (self.name, str_signature(types)))
+
+ def __str__(self):
+ return "" % self.name
+ __repr__ = __str__
+
+ def dispatch(self, *types):
+ """ Deterimine appropriate implementation for this type signature
+
+ This method is internal. Users should call this object as a function.
+ Implementation resolution occurs within the ``__call__`` method.
+
+ >>> from sympy.multipledispatch import dispatch
+ >>> @dispatch(int)
+ ... def inc(x):
+ ... return x + 1
+
+ >>> implementation = inc.dispatch(int)
+ >>> implementation(3)
+ 4
+
+ >>> print(inc.dispatch(float))
+ None
+
+ See Also:
+ ``sympy.multipledispatch.conflict`` - module to determine resolution order
+ """
+
+ if types in self.funcs:
+ return self.funcs[types]
+
+ try:
+ return next(self.dispatch_iter(*types))
+ except StopIteration:
+ return None
+
+ def dispatch_iter(self, *types):
+ n = len(types)
+ for signature in self.ordering:
+ if len(signature) == n and all(map(issubclass, types, signature)):
+ result = self.funcs[signature]
+ yield result
+
+ def resolve(self, types):
+ """ Deterimine appropriate implementation for this type signature
+
+ .. deprecated:: 0.4.4
+ Use ``dispatch(*types)`` instead
+ """
+ warn("resolve() is deprecated, use dispatch(*types)",
+ DeprecationWarning)
+
+ return self.dispatch(*types)
+
+ def __getstate__(self):
+ return {'name': self.name,
+ 'funcs': self.funcs}
+
+ def __setstate__(self, d):
+ self.name = d['name']
+ self.funcs = d['funcs']
+ self.ordering = ordering(self.funcs)
+ self._cache = {}
+
+ @property
+ def __doc__(self):
+ docs = ["Multiply dispatched method: %s" % self.name]
+
+ if self.doc:
+ docs.append(self.doc)
+
+ other = []
+ for sig in self.ordering[::-1]:
+ func = self.funcs[sig]
+ if func.__doc__:
+ s = 'Inputs: <%s>\n' % str_signature(sig)
+ s += '-' * len(s) + '\n'
+ s += func.__doc__.strip()
+ docs.append(s)
+ else:
+ other.append(str_signature(sig))
+
+ if other:
+ docs.append('Other signatures:\n ' + '\n '.join(other))
+
+ return '\n\n'.join(docs)
+
+ def _help(self, *args):
+ return self.dispatch(*map(type, args)).__doc__
+
+ def help(self, *args, **kwargs):
+ """ Print docstring for the function corresponding to inputs """
+ print(self._help(*args))
+
+ def _source(self, *args):
+ func = self.dispatch(*map(type, args))
+ if not func:
+ raise TypeError("No function found")
+ return source(func)
+
+ def source(self, *args, **kwargs):
+ """ Print source code for the function corresponding to inputs """
+ print(self._source(*args))
+
+
+def source(func):
+ s = 'File: %s\n\n' % inspect.getsourcefile(func)
+ s = s + inspect.getsource(func)
+ return s
+
+
+class MethodDispatcher(Dispatcher):
+ """ Dispatch methods based on type signature
+
+ See Also:
+ Dispatcher
+ """
+
+ @classmethod
+ def get_func_params(cls, func):
+ if hasattr(inspect, "signature"):
+ sig = inspect.signature(func)
+ return itl.islice(sig.parameters.values(), 1, None)
+
+ def __get__(self, instance, owner):
+ self.obj = instance
+ self.cls = owner
+ return self
+
+ def __call__(self, *args, **kwargs):
+ types = tuple([type(arg) for arg in args])
+ func = self.dispatch(*types)
+ if not func:
+ raise NotImplementedError('Could not find signature for %s: <%s>' %
+ (self.name, str_signature(types)))
+ return func(self.obj, *args, **kwargs)
+
+
+def str_signature(sig):
+ """ String representation of type signature
+
+ >>> from sympy.multipledispatch.dispatcher import str_signature
+ >>> str_signature((int, float))
+ 'int, float'
+ """
+ return ', '.join(cls.__name__ for cls in sig)
+
+
+def warning_text(name, amb):
+ """ The text for ambiguity warnings """
+ text = "\nAmbiguities exist in dispatched function %s\n\n" % (name)
+ text += "The following signatures may result in ambiguous behavior:\n"
+ for pair in amb:
+ text += "\t" + \
+ ', '.join('[' + str_signature(s) + ']' for s in pair) + "\n"
+ text += "\n\nConsider making the following additions:\n\n"
+ text += '\n\n'.join(['@dispatch(' + str_signature(super_signature(s))
+ + ')\ndef %s(...)' % name for s in amb])
+ return text
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a7ac749dde2b0465cbc803c4022280b014653f8a
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_core.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_core.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..19980c9fec87999087aaa54ef4f18052dd1e022c
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_core.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_dispatcher.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_dispatcher.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..645e7b70ac40a31acb0d84d60002a57fcf9db9f9
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_dispatcher.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_conflict.py b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_conflict.py
new file mode 100644
index 0000000000000000000000000000000000000000..5d2292c460585ae2a65a01795b38499e67706ff0
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_conflict.py
@@ -0,0 +1,62 @@
+from sympy.multipledispatch.conflict import (supercedes, ordering, ambiguities,
+ ambiguous, super_signature, consistent)
+
+
+class A: pass
+class B(A): pass
+class C: pass
+
+
+def test_supercedes():
+ assert supercedes([B], [A])
+ assert supercedes([B, A], [A, A])
+ assert not supercedes([B, A], [A, B])
+ assert not supercedes([A], [B])
+
+
+def test_consistent():
+ assert consistent([A], [A])
+ assert consistent([B], [B])
+ assert not consistent([A], [C])
+ assert consistent([A, B], [A, B])
+ assert consistent([B, A], [A, B])
+ assert not consistent([B, A], [B])
+ assert not consistent([B, A], [B, C])
+
+
+def test_super_signature():
+ assert super_signature([[A]]) == [A]
+ assert super_signature([[A], [B]]) == [B]
+ assert super_signature([[A, B], [B, A]]) == [B, B]
+ assert super_signature([[A, A, B], [A, B, A], [B, A, A]]) == [B, B, B]
+
+
+def test_ambiguous():
+ assert not ambiguous([A], [A])
+ assert not ambiguous([A], [B])
+ assert not ambiguous([B], [B])
+ assert not ambiguous([A, B], [B, B])
+ assert ambiguous([A, B], [B, A])
+
+
+def test_ambiguities():
+ signatures = [[A], [B], [A, B], [B, A], [A, C]]
+ expected = {((A, B), (B, A))}
+ result = ambiguities(signatures)
+ assert set(map(frozenset, expected)) == set(map(frozenset, result))
+
+ signatures = [[A], [B], [A, B], [B, A], [A, C], [B, B]]
+ expected = set()
+ result = ambiguities(signatures)
+ assert set(map(frozenset, expected)) == set(map(frozenset, result))
+
+
+def test_ordering():
+ signatures = [[A, A], [A, B], [B, A], [B, B], [A, C]]
+ ord = ordering(signatures)
+ assert ord[0] == (B, B) or ord[0] == (A, C)
+ assert ord[-1] == (A, A) or ord[-1] == (A, C)
+
+
+def test_type_mro():
+ assert super_signature([[object], [type]]) == [type]
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_core.py b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_core.py
new file mode 100644
index 0000000000000000000000000000000000000000..016270fecc8cda644fc71b5c310b1430b50361f6
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_core.py
@@ -0,0 +1,213 @@
+from __future__ import annotations
+from typing import Any
+
+from sympy.multipledispatch import dispatch
+from sympy.multipledispatch.conflict import AmbiguityWarning
+from sympy.testing.pytest import raises, warns
+from functools import partial
+
+test_namespace: dict[str, Any] = {}
+
+orig_dispatch = dispatch
+dispatch = partial(dispatch, namespace=test_namespace)
+
+
+def test_singledispatch():
+ @dispatch(int)
+ def f(x): # noqa:F811
+ return x + 1
+
+ @dispatch(int)
+ def g(x): # noqa:F811
+ return x + 2
+
+ @dispatch(float) # noqa:F811
+ def f(x): # noqa:F811
+ return x - 1
+
+ assert f(1) == 2
+ assert g(1) == 3
+ assert f(1.0) == 0
+
+ assert raises(NotImplementedError, lambda: f('hello'))
+
+
+def test_multipledispatch():
+ @dispatch(int, int)
+ def f(x, y): # noqa:F811
+ return x + y
+
+ @dispatch(float, float) # noqa:F811
+ def f(x, y): # noqa:F811
+ return x - y
+
+ assert f(1, 2) == 3
+ assert f(1.0, 2.0) == -1.0
+
+
+class A: pass
+class B: pass
+class C(A): pass
+class D(C): pass
+class E(C): pass
+
+
+def test_inheritance():
+ @dispatch(A)
+ def f(x): # noqa:F811
+ return 'a'
+
+ @dispatch(B) # noqa:F811
+ def f(x): # noqa:F811
+ return 'b'
+
+ assert f(A()) == 'a'
+ assert f(B()) == 'b'
+ assert f(C()) == 'a'
+
+
+def test_inheritance_and_multiple_dispatch():
+ @dispatch(A, A)
+ def f(x, y): # noqa:F811
+ return type(x), type(y)
+
+ @dispatch(A, B) # noqa:F811
+ def f(x, y): # noqa:F811
+ return 0
+
+ assert f(A(), A()) == (A, A)
+ assert f(A(), C()) == (A, C)
+ assert f(A(), B()) == 0
+ assert f(C(), B()) == 0
+ assert raises(NotImplementedError, lambda: f(B(), B()))
+
+
+def test_competing_solutions():
+ @dispatch(A)
+ def h(x): # noqa:F811
+ return 1
+
+ @dispatch(C) # noqa:F811
+ def h(x): # noqa:F811
+ return 2
+
+ assert h(D()) == 2
+
+
+def test_competing_multiple():
+ @dispatch(A, B)
+ def h(x, y): # noqa:F811
+ return 1
+
+ @dispatch(C, B) # noqa:F811
+ def h(x, y): # noqa:F811
+ return 2
+
+ assert h(D(), B()) == 2
+
+
+def test_competing_ambiguous():
+ test_namespace = {}
+ dispatch = partial(orig_dispatch, namespace=test_namespace)
+
+ @dispatch(A, C)
+ def f(x, y): # noqa:F811
+ return 2
+
+ with warns(AmbiguityWarning, test_stacklevel=False):
+ @dispatch(C, A) # noqa:F811
+ def f(x, y): # noqa:F811
+ return 2
+
+ assert f(A(), C()) == f(C(), A()) == 2
+ # assert raises(Warning, lambda : f(C(), C()))
+
+
+def test_caching_correct_behavior():
+ @dispatch(A)
+ def f(x): # noqa:F811
+ return 1
+
+ assert f(C()) == 1
+
+ @dispatch(C)
+ def f(x): # noqa:F811
+ return 2
+
+ assert f(C()) == 2
+
+
+def test_union_types():
+ @dispatch((A, C))
+ def f(x): # noqa:F811
+ return 1
+
+ assert f(A()) == 1
+ assert f(C()) == 1
+
+
+def test_namespaces():
+ ns1 = {}
+ ns2 = {}
+
+ def foo(x):
+ return 1
+ foo1 = orig_dispatch(int, namespace=ns1)(foo)
+
+ def foo(x):
+ return 2
+ foo2 = orig_dispatch(int, namespace=ns2)(foo)
+
+ assert foo1(0) == 1
+ assert foo2(0) == 2
+
+
+"""
+Fails
+def test_dispatch_on_dispatch():
+ @dispatch(A)
+ @dispatch(C)
+ def q(x): # noqa:F811
+ return 1
+
+ assert q(A()) == 1
+ assert q(C()) == 1
+"""
+
+
+def test_methods():
+ class Foo:
+ @dispatch(float)
+ def f(self, x): # noqa:F811
+ return x - 1
+
+ @dispatch(int) # noqa:F811
+ def f(self, x): # noqa:F811
+ return x + 1
+
+ @dispatch(int)
+ def g(self, x): # noqa:F811
+ return x + 3
+
+
+ foo = Foo()
+ assert foo.f(1) == 2
+ assert foo.f(1.0) == 0.0
+ assert foo.g(1) == 4
+
+
+def test_methods_multiple_dispatch():
+ class Foo:
+ @dispatch(A, A)
+ def f(x, y): # noqa:F811
+ return 1
+
+ @dispatch(A, C) # noqa:F811
+ def f(x, y): # noqa:F811
+ return 2
+
+
+ foo = Foo()
+ assert foo.f(A(), A()) == 1
+ assert foo.f(A(), C()) == 2
+ assert foo.f(C(), C()) == 2
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_dispatcher.py b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_dispatcher.py
new file mode 100644
index 0000000000000000000000000000000000000000..e31ca8a5486b87eb43fc5e6f887caf50d6bfbe20
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_dispatcher.py
@@ -0,0 +1,284 @@
+from sympy.multipledispatch.dispatcher import (Dispatcher, MDNotImplementedError,
+ MethodDispatcher, halt_ordering,
+ restart_ordering,
+ ambiguity_register_error_ignore_dup)
+from sympy.testing.pytest import raises, warns
+
+
+def identity(x):
+ return x
+
+
+def inc(x):
+ return x + 1
+
+
+def dec(x):
+ return x - 1
+
+
+def test_dispatcher():
+ f = Dispatcher('f')
+ f.add((int,), inc)
+ f.add((float,), dec)
+
+ with warns(DeprecationWarning, test_stacklevel=False):
+ assert f.resolve((int,)) == inc
+ assert f.dispatch(int) is inc
+
+ assert f(1) == 2
+ assert f(1.0) == 0.0
+
+
+def test_union_types():
+ f = Dispatcher('f')
+ f.register((int, float))(inc)
+
+ assert f(1) == 2
+ assert f(1.0) == 2.0
+
+
+def test_dispatcher_as_decorator():
+ f = Dispatcher('f')
+
+ @f.register(int)
+ def inc(x): # noqa:F811
+ return x + 1
+
+ @f.register(float) # noqa:F811
+ def inc(x): # noqa:F811
+ return x - 1
+
+ assert f(1) == 2
+ assert f(1.0) == 0.0
+
+
+def test_register_instance_method():
+
+ class Test:
+ __init__ = MethodDispatcher('f')
+
+ @__init__.register(list)
+ def _init_list(self, data):
+ self.data = data
+
+ @__init__.register(object)
+ def _init_obj(self, datum):
+ self.data = [datum]
+
+ a = Test(3)
+ b = Test([3])
+ assert a.data == b.data
+
+
+def test_on_ambiguity():
+ f = Dispatcher('f')
+
+ def identity(x): return x
+
+ ambiguities = [False]
+
+ def on_ambiguity(dispatcher, amb):
+ ambiguities[0] = True
+
+ f.add((object, object), identity, on_ambiguity=on_ambiguity)
+ assert not ambiguities[0]
+ f.add((object, float), identity, on_ambiguity=on_ambiguity)
+ assert not ambiguities[0]
+ f.add((float, object), identity, on_ambiguity=on_ambiguity)
+ assert ambiguities[0]
+
+
+def test_raise_error_on_non_class():
+ f = Dispatcher('f')
+ assert raises(TypeError, lambda: f.add((1,), inc))
+
+
+def test_docstring():
+
+ def one(x, y):
+ """ Docstring number one """
+ return x + y
+
+ def two(x, y):
+ """ Docstring number two """
+ return x + y
+
+ def three(x, y):
+ return x + y
+
+ master_doc = 'Doc of the multimethod itself'
+
+ f = Dispatcher('f', doc=master_doc)
+ f.add((object, object), one)
+ f.add((int, int), two)
+ f.add((float, float), three)
+
+ assert one.__doc__.strip() in f.__doc__
+ assert two.__doc__.strip() in f.__doc__
+ assert f.__doc__.find(one.__doc__.strip()) < \
+ f.__doc__.find(two.__doc__.strip())
+ assert 'object, object' in f.__doc__
+ assert master_doc in f.__doc__
+
+
+def test_help():
+ def one(x, y):
+ """ Docstring number one """
+ return x + y
+
+ def two(x, y):
+ """ Docstring number two """
+ return x + y
+
+ def three(x, y):
+ """ Docstring number three """
+ return x + y
+
+ master_doc = 'Doc of the multimethod itself'
+
+ f = Dispatcher('f', doc=master_doc)
+ f.add((object, object), one)
+ f.add((int, int), two)
+ f.add((float, float), three)
+
+ assert f._help(1, 1) == two.__doc__
+ assert f._help(1.0, 2.0) == three.__doc__
+
+
+def test_source():
+ def one(x, y):
+ """ Docstring number one """
+ return x + y
+
+ def two(x, y):
+ """ Docstring number two """
+ return x - y
+
+ master_doc = 'Doc of the multimethod itself'
+
+ f = Dispatcher('f', doc=master_doc)
+ f.add((int, int), one)
+ f.add((float, float), two)
+
+ assert 'x + y' in f._source(1, 1)
+ assert 'x - y' in f._source(1.0, 1.0)
+
+
+def test_source_raises_on_missing_function():
+ f = Dispatcher('f')
+
+ assert raises(TypeError, lambda: f.source(1))
+
+
+def test_halt_method_resolution():
+ g = [0]
+
+ def on_ambiguity(a, b):
+ g[0] += 1
+
+ f = Dispatcher('f')
+
+ halt_ordering()
+
+ def func(*args):
+ pass
+
+ f.add((int, object), func)
+ f.add((object, int), func)
+
+ assert g == [0]
+
+ restart_ordering(on_ambiguity=on_ambiguity)
+
+ assert g == [1]
+
+ assert set(f.ordering) == {(int, object), (object, int)}
+
+
+def test_no_implementations():
+ f = Dispatcher('f')
+ assert raises(NotImplementedError, lambda: f('hello'))
+
+
+def test_register_stacking():
+ f = Dispatcher('f')
+
+ @f.register(list)
+ @f.register(tuple)
+ def rev(x):
+ return x[::-1]
+
+ assert f((1, 2, 3)) == (3, 2, 1)
+ assert f([1, 2, 3]) == [3, 2, 1]
+
+ assert raises(NotImplementedError, lambda: f('hello'))
+ assert rev('hello') == 'olleh'
+
+
+def test_dispatch_method():
+ f = Dispatcher('f')
+
+ @f.register(list)
+ def rev(x):
+ return x[::-1]
+
+ @f.register(int, int)
+ def add(x, y):
+ return x + y
+
+ class MyList(list):
+ pass
+
+ assert f.dispatch(list) is rev
+ assert f.dispatch(MyList) is rev
+ assert f.dispatch(int, int) is add
+
+
+def test_not_implemented():
+ f = Dispatcher('f')
+
+ @f.register(object)
+ def _(x):
+ return 'default'
+
+ @f.register(int)
+ def _(x):
+ if x % 2 == 0:
+ return 'even'
+ else:
+ raise MDNotImplementedError()
+
+ assert f('hello') == 'default' # default behavior
+ assert f(2) == 'even' # specialized behavior
+ assert f(3) == 'default' # fall bac to default behavior
+ assert raises(NotImplementedError, lambda: f(1, 2))
+
+
+def test_not_implemented_error():
+ f = Dispatcher('f')
+
+ @f.register(float)
+ def _(a):
+ raise MDNotImplementedError()
+
+ assert raises(NotImplementedError, lambda: f(1.0))
+
+def test_ambiguity_register_error_ignore_dup():
+ f = Dispatcher('f')
+
+ class A:
+ pass
+ class B(A):
+ pass
+ class C(A):
+ pass
+
+ # suppress warning for registering ambiguous signal
+ f.add((A, B), lambda x,y: None, ambiguity_register_error_ignore_dup)
+ f.add((B, A), lambda x,y: None, ambiguity_register_error_ignore_dup)
+ f.add((A, C), lambda x,y: None, ambiguity_register_error_ignore_dup)
+ f.add((C, A), lambda x,y: None, ambiguity_register_error_ignore_dup)
+
+ # raises error if ambiguous signal is passed
+ assert raises(NotImplementedError, lambda: f(B(), C()))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/utils.py b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..11f563772385124c2fc0d285f7aa6e0747b8b412
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/multipledispatch/utils.py
@@ -0,0 +1,105 @@
+from collections import OrderedDict
+
+
+def expand_tuples(L):
+ """
+ >>> from sympy.multipledispatch.utils import expand_tuples
+ >>> expand_tuples([1, (2, 3)])
+ [(1, 2), (1, 3)]
+
+ >>> expand_tuples([1, 2])
+ [(1, 2)]
+ """
+ if not L:
+ return [()]
+ elif not isinstance(L[0], tuple):
+ rest = expand_tuples(L[1:])
+ return [(L[0],) + t for t in rest]
+ else:
+ rest = expand_tuples(L[1:])
+ return [(item,) + t for t in rest for item in L[0]]
+
+
+# Taken from theano/theano/gof/sched.py
+# Avoids licensing issues because this was written by Matthew Rocklin
+def _toposort(edges):
+ """ Topological sort algorithm by Kahn [1] - O(nodes + vertices)
+
+ inputs:
+ edges - a dict of the form {a: {b, c}} where b and c depend on a
+ outputs:
+ L - an ordered list of nodes that satisfy the dependencies of edges
+
+ >>> from sympy.multipledispatch.utils import _toposort
+ >>> _toposort({1: (2, 3), 2: (3, )})
+ [1, 2, 3]
+
+ Closely follows the wikipedia page [2]
+
+ [1] Kahn, Arthur B. (1962), "Topological sorting of large networks",
+ Communications of the ACM
+ [2] https://en.wikipedia.org/wiki/Toposort#Algorithms
+ """
+ incoming_edges = reverse_dict(edges)
+ incoming_edges = {k: set(val) for k, val in incoming_edges.items()}
+ S = OrderedDict.fromkeys(v for v in edges if v not in incoming_edges)
+ L = []
+
+ while S:
+ n, _ = S.popitem()
+ L.append(n)
+ for m in edges.get(n, ()):
+ assert n in incoming_edges[m]
+ incoming_edges[m].remove(n)
+ if not incoming_edges[m]:
+ S[m] = None
+ if any(incoming_edges.get(v, None) for v in edges):
+ raise ValueError("Input has cycles")
+ return L
+
+
+def reverse_dict(d):
+ """Reverses direction of dependence dict
+
+ >>> d = {'a': (1, 2), 'b': (2, 3), 'c':()}
+ >>> reverse_dict(d) # doctest: +SKIP
+ {1: ('a',), 2: ('a', 'b'), 3: ('b',)}
+
+ :note: dict order are not deterministic. As we iterate on the
+ input dict, it make the output of this function depend on the
+ dict order. So this function output order should be considered
+ as undeterministic.
+
+ """
+ result = {}
+ for key in d:
+ for val in d[key]:
+ result[val] = result.get(val, ()) + (key, )
+ return result
+
+
+# Taken from toolz
+# Avoids licensing issues because this version was authored by Matthew Rocklin
+def groupby(func, seq):
+ """ Group a collection by a key function
+
+ >>> from sympy.multipledispatch.utils import groupby
+ >>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank']
+ >>> groupby(len, names) # doctest: +SKIP
+ {3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']}
+
+ >>> iseven = lambda x: x % 2 == 0
+ >>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP
+ {False: [1, 3, 5, 7], True: [2, 4, 6, 8]}
+
+ See Also:
+ ``countby``
+ """
+
+ d = {}
+ for item in seq:
+ key = func(item)
+ if key not in d:
+ d[key] = []
+ d[key].append(item)
+ return d
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/fancysets.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/fancysets.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8f606e20a40771328ceea21a75e94d9af1293e93
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/fancysets.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/powerset.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/powerset.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3d9422a5f2ba342e7d75191d1d436809e35b2b68
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/powerset.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/setexpr.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/setexpr.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ba83522ffadd780f2873a307f6b98e1e89990643
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/setexpr.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/sets.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/sets.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..636714b1055385b5ad729b90339034ba3dc0f2b5
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/__pycache__/sets.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..489d3da0c964930e2bf3e66da65aff030aedd9c9
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/add.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/add.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..762622e1e74c6131594650c70620b7899ac1d254
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/add.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/intersection.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/intersection.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0087c9738c14003a5f4bd226d3c82573f61909c6
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/intersection.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/issubset.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/issubset.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4ff8d31b344dfb413e2c725e5a04664bc2b09048
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/issubset.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/power.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/power.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..43e8e3565921902f06db0f79f2f9027e5c620974
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/power.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/union.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/union.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..12efeec8c717f276f0fcf51ca555e796e9b1ceac
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/sets/handlers/__pycache__/union.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..440b7a462e1048c46bf41d86b7a91b45831e8d18
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/core.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/core.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4870ee673fe8b2efa977e8a8f1e66a6b23b231ce
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/core.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/rewrite.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/rewrite.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1c0e3a8c326b3f58d0cfe1c25b84da06cb6fc13a
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/rewrite.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/usympy.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/usympy.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3e8864817662b46963a6ee2a27bbfbae6e990a57
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/unify/__pycache__/usympy.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__init__.py b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6e363694c6e601be9f68d99ff44a0550b87816da
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/test_rewrite.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/test_rewrite.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fe5b4fa0b35dcb220865547e6e594ea17ea4d807
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/test_rewrite.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/test_sympy.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/test_sympy.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d1510c7415031ac84e04f125957b0c6675569ec5
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/test_sympy.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/test_unify.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/test_unify.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..eddd280c513960f2f781068d2473cbfa196279a1
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/__pycache__/test_unify.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/test_rewrite.py b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/test_rewrite.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b73e2856d5f6380c576220fa2780324df98091a
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/test_rewrite.py
@@ -0,0 +1,74 @@
+from sympy.unify.rewrite import rewriterule
+from sympy.core.basic import Basic
+from sympy.core.singleton import S
+from sympy.core.symbol import Symbol
+from sympy.functions.elementary.trigonometric import sin
+from sympy.abc import x, y
+from sympy.strategies.rl import rebuild
+from sympy.assumptions import Q
+
+p, q = Symbol('p'), Symbol('q')
+
+def test_simple():
+ rl = rewriterule(Basic(p, S(1)), Basic(p, S(2)), variables=(p,))
+ assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))]
+
+ p1 = p**2
+ p2 = p**3
+ rl = rewriterule(p1, p2, variables=(p,))
+
+ expr = x**2
+ assert list(rl(expr)) == [x**3]
+
+def test_simple_variables():
+ rl = rewriterule(Basic(x, S(1)), Basic(x, S(2)), variables=(x,))
+ assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))]
+
+ rl = rewriterule(x**2, x**3, variables=(x,))
+ assert list(rl(y**2)) == [y**3]
+
+def test_moderate():
+ p1 = p**2 + q**3
+ p2 = (p*q)**4
+ rl = rewriterule(p1, p2, (p, q))
+
+ expr = x**2 + y**3
+ assert list(rl(expr)) == [(x*y)**4]
+
+def test_sincos():
+ p1 = sin(p)**2 + sin(p)**2
+ p2 = 1
+ rl = rewriterule(p1, p2, (p, q))
+
+ assert list(rl(sin(x)**2 + sin(x)**2)) == [1]
+ assert list(rl(sin(y)**2 + sin(y)**2)) == [1]
+
+def test_Exprs_ok():
+ rl = rewriterule(p+q, q+p, (p, q))
+ next(rl(x+y)).is_commutative
+ str(next(rl(x+y)))
+
+def test_condition_simple():
+ rl = rewriterule(x, x+1, [x], lambda x: x < 10)
+ assert not list(rl(S(15)))
+ assert rebuild(next(rl(S(5)))) == 6
+
+
+def test_condition_multiple():
+ rl = rewriterule(x + y, x**y, [x,y], lambda x, y: x.is_integer)
+
+ a = Symbol('a')
+ b = Symbol('b', integer=True)
+ expr = a + b
+ assert list(rl(expr)) == [b**a]
+
+ c = Symbol('c', integer=True)
+ d = Symbol('d', integer=True)
+ assert set(rl(c + d)) == {c**d, d**c}
+
+def test_assumptions():
+ rl = rewriterule(x + y, x**y, [x, y], assume=Q.integer(x))
+
+ a, b = map(Symbol, 'ab')
+ expr = a + b
+ assert list(rl(expr, Q.integer(b))) == [b**a]
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/test_sympy.py b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/test_sympy.py
new file mode 100644
index 0000000000000000000000000000000000000000..eca3933a91abfabdbad96f626e4da761a41b3fd2
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/test_sympy.py
@@ -0,0 +1,162 @@
+from sympy.core.add import Add
+from sympy.core.basic import Basic
+from sympy.core.containers import Tuple
+from sympy.core.singleton import S
+from sympy.core.symbol import (Symbol, symbols)
+from sympy.logic.boolalg import And
+from sympy.core.symbol import Str
+from sympy.unify.core import Compound, Variable
+from sympy.unify.usympy import (deconstruct, construct, unify, is_associative,
+ is_commutative)
+from sympy.abc import x, y, z, n
+
+def test_deconstruct():
+ expr = Basic(S(1), S(2), S(3))
+ expected = Compound(Basic, (1, 2, 3))
+ assert deconstruct(expr) == expected
+
+ assert deconstruct(1) == 1
+ assert deconstruct(x) == x
+ assert deconstruct(x, variables=(x,)) == Variable(x)
+ assert deconstruct(Add(1, x, evaluate=False)) == Compound(Add, (1, x))
+ assert deconstruct(Add(1, x, evaluate=False), variables=(x,)) == \
+ Compound(Add, (1, Variable(x)))
+
+def test_construct():
+ expr = Compound(Basic, (S(1), S(2), S(3)))
+ expected = Basic(S(1), S(2), S(3))
+ assert construct(expr) == expected
+
+def test_nested():
+ expr = Basic(S(1), Basic(S(2)), S(3))
+ cmpd = Compound(Basic, (S(1), Compound(Basic, Tuple(2)), S(3)))
+ assert deconstruct(expr) == cmpd
+ assert construct(cmpd) == expr
+
+def test_unify():
+ expr = Basic(S(1), S(2), S(3))
+ a, b, c = map(Symbol, 'abc')
+ pattern = Basic(a, b, c)
+ assert list(unify(expr, pattern, {}, (a, b, c))) == [{a: 1, b: 2, c: 3}]
+ assert list(unify(expr, pattern, variables=(a, b, c))) == \
+ [{a: 1, b: 2, c: 3}]
+
+def test_unify_variables():
+ assert list(unify(Basic(S(1), S(2)), Basic(S(1), x), {}, variables=(x,))) == [{x: 2}]
+
+def test_s_input():
+ expr = Basic(S(1), S(2))
+ a, b = map(Symbol, 'ab')
+ pattern = Basic(a, b)
+ assert list(unify(expr, pattern, {}, (a, b))) == [{a: 1, b: 2}]
+ assert list(unify(expr, pattern, {a: 5}, (a, b))) == []
+
+def iterdicteq(a, b):
+ a = tuple(a)
+ b = tuple(b)
+ return len(a) == len(b) and all(x in b for x in a)
+
+def test_unify_commutative():
+ expr = Add(1, 2, 3, evaluate=False)
+ a, b, c = map(Symbol, 'abc')
+ pattern = Add(a, b, c, evaluate=False)
+
+ result = tuple(unify(expr, pattern, {}, (a, b, c)))
+ expected = ({a: 1, b: 2, c: 3},
+ {a: 1, b: 3, c: 2},
+ {a: 2, b: 1, c: 3},
+ {a: 2, b: 3, c: 1},
+ {a: 3, b: 1, c: 2},
+ {a: 3, b: 2, c: 1})
+
+ assert iterdicteq(result, expected)
+
+def test_unify_iter():
+ expr = Add(1, 2, 3, evaluate=False)
+ a, b, c = map(Symbol, 'abc')
+ pattern = Add(a, c, evaluate=False)
+ assert is_associative(deconstruct(pattern))
+ assert is_commutative(deconstruct(pattern))
+
+ result = list(unify(expr, pattern, {}, (a, c)))
+ expected = [{a: 1, c: Add(2, 3, evaluate=False)},
+ {a: 1, c: Add(3, 2, evaluate=False)},
+ {a: 2, c: Add(1, 3, evaluate=False)},
+ {a: 2, c: Add(3, 1, evaluate=False)},
+ {a: 3, c: Add(1, 2, evaluate=False)},
+ {a: 3, c: Add(2, 1, evaluate=False)},
+ {a: Add(1, 2, evaluate=False), c: 3},
+ {a: Add(2, 1, evaluate=False), c: 3},
+ {a: Add(1, 3, evaluate=False), c: 2},
+ {a: Add(3, 1, evaluate=False), c: 2},
+ {a: Add(2, 3, evaluate=False), c: 1},
+ {a: Add(3, 2, evaluate=False), c: 1}]
+
+ assert iterdicteq(result, expected)
+
+def test_hard_match():
+ from sympy.functions.elementary.trigonometric import (cos, sin)
+ expr = sin(x) + cos(x)**2
+ p, q = map(Symbol, 'pq')
+ pattern = sin(p) + cos(p)**2
+ assert list(unify(expr, pattern, {}, (p, q))) == [{p: x}]
+
+def test_matrix():
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
+ X = MatrixSymbol('X', n, n)
+ Y = MatrixSymbol('Y', 2, 2)
+ Z = MatrixSymbol('Z', 2, 3)
+ assert list(unify(X, Y, {}, variables=[n, Str('X')])) == [{Str('X'): Str('Y'), n: 2}]
+ assert list(unify(X, Z, {}, variables=[n, Str('X')])) == []
+
+def test_non_frankenAdds():
+ # the is_commutative property used to fail because of Basic.__new__
+ # This caused is_commutative and str calls to fail
+ expr = x+y*2
+ rebuilt = construct(deconstruct(expr))
+ # Ensure that we can run these commands without causing an error
+ str(rebuilt)
+ rebuilt.is_commutative
+
+def test_FiniteSet_commutivity():
+ from sympy.sets.sets import FiniteSet
+ a, b, c, x, y = symbols('a,b,c,x,y')
+ s = FiniteSet(a, b, c)
+ t = FiniteSet(x, y)
+ variables = (x, y)
+ assert {x: FiniteSet(a, c), y: b} in tuple(unify(s, t, variables=variables))
+
+def test_FiniteSet_complex():
+ from sympy.sets.sets import FiniteSet
+ a, b, c, x, y, z = symbols('a,b,c,x,y,z')
+ expr = FiniteSet(Basic(S(1), x), y, Basic(x, z))
+ pattern = FiniteSet(a, Basic(x, b))
+ variables = a, b
+ expected = ({b: 1, a: FiniteSet(y, Basic(x, z))},
+ {b: z, a: FiniteSet(y, Basic(S(1), x))})
+ assert iterdicteq(unify(expr, pattern, variables=variables), expected)
+
+
+def test_and():
+ variables = x, y
+ expected = ({x: z > 0, y: n < 3},)
+ assert iterdicteq(unify((z>0) & (n<3), And(x, y), variables=variables),
+ expected)
+
+def test_Union():
+ from sympy.sets.sets import Interval
+ assert list(unify(Interval(0, 1) + Interval(10, 11),
+ Interval(0, 1) + Interval(12, 13),
+ variables=(Interval(12, 13),)))
+
+def test_is_commutative():
+ assert is_commutative(deconstruct(x+y))
+ assert is_commutative(deconstruct(x*y))
+ assert not is_commutative(deconstruct(x**y))
+
+def test_commutative_in_commutative():
+ from sympy.abc import a,b,c,d
+ from sympy.functions.elementary.trigonometric import (cos, sin)
+ eq = sin(3)*sin(4)*sin(5) + 4*cos(3)*cos(4)
+ pat = a*cos(b)*cos(c) + d*sin(b)*sin(c)
+ assert next(unify(eq, pat, variables=(a,b,c,d)))
diff --git a/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/test_unify.py b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/test_unify.py
new file mode 100644
index 0000000000000000000000000000000000000000..31153242576e1ff55dd3097efbc985aced5d574a
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/sympy/unify/tests/test_unify.py
@@ -0,0 +1,88 @@
+from sympy.unify.core import Compound, Variable, CondVariable, allcombinations
+from sympy.unify import core
+
+a,b,c = 'a', 'b', 'c'
+w,x,y,z = map(Variable, 'wxyz')
+
+C = Compound
+
+def is_associative(x):
+ return isinstance(x, Compound) and (x.op in ('Add', 'Mul', 'CAdd', 'CMul'))
+def is_commutative(x):
+ return isinstance(x, Compound) and (x.op in ('CAdd', 'CMul'))
+
+
+def unify(a, b, s={}):
+ return core.unify(a, b, s=s, is_associative=is_associative,
+ is_commutative=is_commutative)
+
+def test_basic():
+ assert list(unify(a, x, {})) == [{x: a}]
+ assert list(unify(a, x, {x: 10})) == []
+ assert list(unify(1, x, {})) == [{x: 1}]
+ assert list(unify(a, a, {})) == [{}]
+ assert list(unify((w, x), (y, z), {})) == [{w: y, x: z}]
+ assert list(unify(x, (a, b), {})) == [{x: (a, b)}]
+
+ assert list(unify((a, b), (x, x), {})) == []
+ assert list(unify((y, z), (x, x), {}))!= []
+ assert list(unify((a, (b, c)), (a, (x, y)), {})) == [{x: b, y: c}]
+
+def test_ops():
+ assert list(unify(C('Add', (a,b,c)), C('Add', (a,x,y)), {})) == \
+ [{x:b, y:c}]
+ assert list(unify(C('Add', (C('Mul', (1,2)), b,c)), C('Add', (x,y,c)), {})) == \
+ [{x: C('Mul', (1,2)), y:b}]
+
+def test_associative():
+ c1 = C('Add', (1,2,3))
+ c2 = C('Add', (x,y))
+ assert tuple(unify(c1, c2, {})) == ({x: 1, y: C('Add', (2, 3))},
+ {x: C('Add', (1, 2)), y: 3})
+
+def test_commutative():
+ c1 = C('CAdd', (1,2,3))
+ c2 = C('CAdd', (x,y))
+ result = list(unify(c1, c2, {}))
+ assert {x: 1, y: C('CAdd', (2, 3))} in result
+ assert ({x: 2, y: C('CAdd', (1, 3))} in result or
+ {x: 2, y: C('CAdd', (3, 1))} in result)
+
+def _test_combinations_assoc():
+ assert set(allcombinations((1,2,3), (a,b), True)) == \
+ {(((1, 2), (3,)), (a, b)), (((1,), (2, 3)), (a, b))}
+
+def _test_combinations_comm():
+ assert set(allcombinations((1,2,3), (a,b), None)) == \
+ {(((1,), (2, 3)), ('a', 'b')), (((2,), (3, 1)), ('a', 'b')),
+ (((3,), (1, 2)), ('a', 'b')), (((1, 2), (3,)), ('a', 'b')),
+ (((2, 3), (1,)), ('a', 'b')), (((3, 1), (2,)), ('a', 'b'))}
+
+def test_allcombinations():
+ assert set(allcombinations((1,2), (1,2), 'commutative')) ==\
+ {(((1,),(2,)), ((1,),(2,))), (((1,),(2,)), ((2,),(1,)))}
+
+
+def test_commutativity():
+ c1 = Compound('CAdd', (a, b))
+ c2 = Compound('CAdd', (x, y))
+ assert is_commutative(c1) and is_commutative(c2)
+ assert len(list(unify(c1, c2, {}))) == 2
+
+
+def test_CondVariable():
+ expr = C('CAdd', (1, 2))
+ x = Variable('x')
+ y = CondVariable('y', lambda a: a % 2 == 0)
+ z = CondVariable('z', lambda a: a > 3)
+ pattern = C('CAdd', (x, y))
+ assert list(unify(expr, pattern, {})) == \
+ [{x: 1, y: 2}]
+
+ z = CondVariable('z', lambda a: a > 3)
+ pattern = C('CAdd', (z, y))
+
+ assert list(unify(expr, pattern, {})) == []
+
+def test_defaultdict():
+ assert next(unify(Variable('x'), 'foo')) == {Variable('x'): 'foo'}