diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/_add_newdocs.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/_add_newdocs.py new file mode 100644 index 0000000000000000000000000000000000000000..6e29fcf59f2ec14cd81f0f6fa19a5674741025ee --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/_add_newdocs.py @@ -0,0 +1,7080 @@ +""" +This is only meant to add docs to objects defined in C-extension modules. +The purpose is to allow easier editing of the docstrings without +requiring a re-compile. + +NOTE: Many of the methods of ndarray have corresponding functions. + If you update these docstrings, please keep also the ones in + core/fromnumeric.py, core/defmatrix.py up-to-date. + +""" + +from numpy.core.function_base import add_newdoc +from numpy.core.overrides import array_function_like_doc + + +############################################################################### +# +# flatiter +# +# flatiter needs a toplevel description +# +############################################################################### + +add_newdoc('numpy.core', 'flatiter', + """ + Flat iterator object to iterate over arrays. + + A `flatiter` iterator is returned by ``x.flat`` for any array `x`. + It allows iterating over the array as if it were a 1-D array, + either in a for-loop or by calling its `next` method. + + Iteration is done in row-major, C-style order (the last + index varying the fastest). The iterator can also be indexed using + basic slicing or advanced indexing. + + See Also + -------- + ndarray.flat : Return a flat iterator over an array. + ndarray.flatten : Returns a flattened copy of an array. + + Notes + ----- + A `flatiter` iterator can not be constructed directly from Python code + by calling the `flatiter` constructor. + + Examples + -------- + >>> x = np.arange(6).reshape(2, 3) + >>> fl = x.flat + >>> type(fl) + + >>> for item in fl: + ... print(item) + ... + 0 + 1 + 2 + 3 + 4 + 5 + + >>> fl[2:4] + array([2, 3]) + + """) + +# flatiter attributes + +add_newdoc('numpy.core', 'flatiter', ('base', + """ + A reference to the array that is iterated over. + + Examples + -------- + >>> x = np.arange(5) + >>> fl = x.flat + >>> fl.base is x + True + + """)) + + + +add_newdoc('numpy.core', 'flatiter', ('coords', + """ + An N-dimensional tuple of current coordinates. + + Examples + -------- + >>> x = np.arange(6).reshape(2, 3) + >>> fl = x.flat + >>> fl.coords + (0, 0) + >>> next(fl) + 0 + >>> fl.coords + (0, 1) + + """)) + + + +add_newdoc('numpy.core', 'flatiter', ('index', + """ + Current flat index into the array. + + Examples + -------- + >>> x = np.arange(6).reshape(2, 3) + >>> fl = x.flat + >>> fl.index + 0 + >>> next(fl) + 0 + >>> fl.index + 1 + + """)) + +# flatiter functions + +add_newdoc('numpy.core', 'flatiter', ('__array__', + """__array__(type=None) Get array from iterator + + """)) + + +add_newdoc('numpy.core', 'flatiter', ('copy', + """ + copy() + + Get a copy of the iterator as a 1-D array. + + Examples + -------- + >>> x = np.arange(6).reshape(2, 3) + >>> x + array([[0, 1, 2], + [3, 4, 5]]) + >>> fl = x.flat + >>> fl.copy() + array([0, 1, 2, 3, 4, 5]) + + """)) + + +############################################################################### +# +# nditer +# +############################################################################### + +add_newdoc('numpy.core', 'nditer', + """ + nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K', casting='safe', op_axes=None, itershape=None, buffersize=0) + + Efficient multi-dimensional iterator object to iterate over arrays. + To get started using this object, see the + :ref:`introductory guide to array iteration `. + + Parameters + ---------- + op : ndarray or sequence of array_like + The array(s) to iterate over. + + flags : sequence of str, optional + Flags to control the behavior of the iterator. + + * ``buffered`` enables buffering when required. + * ``c_index`` causes a C-order index to be tracked. + * ``f_index`` causes a Fortran-order index to be tracked. + * ``multi_index`` causes a multi-index, or a tuple of indices + with one per iteration dimension, to be tracked. + * ``common_dtype`` causes all the operands to be converted to + a common data type, with copying or buffering as necessary. + * ``copy_if_overlap`` causes the iterator to determine if read + operands have overlap with write operands, and make temporary + copies as necessary to avoid overlap. False positives (needless + copying) are possible in some cases. + * ``delay_bufalloc`` delays allocation of the buffers until + a reset() call is made. Allows ``allocate`` operands to + be initialized before their values are copied into the buffers. + * ``external_loop`` causes the ``values`` given to be + one-dimensional arrays with multiple values instead of + zero-dimensional arrays. + * ``grow_inner`` allows the ``value`` array sizes to be made + larger than the buffer size when both ``buffered`` and + ``external_loop`` is used. + * ``ranged`` allows the iterator to be restricted to a sub-range + of the iterindex values. + * ``refs_ok`` enables iteration of reference types, such as + object arrays. + * ``reduce_ok`` enables iteration of ``readwrite`` operands + which are broadcasted, also known as reduction operands. + * ``zerosize_ok`` allows `itersize` to be zero. + op_flags : list of list of str, optional + This is a list of flags for each operand. At minimum, one of + ``readonly``, ``readwrite``, or ``writeonly`` must be specified. + + * ``readonly`` indicates the operand will only be read from. + * ``readwrite`` indicates the operand will be read from and written to. + * ``writeonly`` indicates the operand will only be written to. + * ``no_broadcast`` prevents the operand from being broadcasted. + * ``contig`` forces the operand data to be contiguous. + * ``aligned`` forces the operand data to be aligned. + * ``nbo`` forces the operand data to be in native byte order. + * ``copy`` allows a temporary read-only copy if required. + * ``updateifcopy`` allows a temporary read-write copy if required. + * ``allocate`` causes the array to be allocated if it is None + in the ``op`` parameter. + * ``no_subtype`` prevents an ``allocate`` operand from using a subtype. + * ``arraymask`` indicates that this operand is the mask to use + for selecting elements when writing to operands with the + 'writemasked' flag set. The iterator does not enforce this, + but when writing from a buffer back to the array, it only + copies those elements indicated by this mask. + * ``writemasked`` indicates that only elements where the chosen + ``arraymask`` operand is True will be written to. + * ``overlap_assume_elementwise`` can be used to mark operands that are + accessed only in the iterator order, to allow less conservative + copying when ``copy_if_overlap`` is present. + op_dtypes : dtype or tuple of dtype(s), optional + The required data type(s) of the operands. If copying or buffering + is enabled, the data will be converted to/from their original types. + order : {'C', 'F', 'A', 'K'}, optional + Controls the iteration order. 'C' means C order, 'F' means + Fortran order, 'A' means 'F' order if all the arrays are Fortran + contiguous, 'C' order otherwise, and 'K' means as close to the + order the array elements appear in memory as possible. This also + affects the element memory order of ``allocate`` operands, as they + are allocated to be compatible with iteration order. + Default is 'K'. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur when making a copy + or buffering. Setting this to 'unsafe' is not recommended, + as it can adversely affect accumulations. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + op_axes : list of list of ints, optional + If provided, is a list of ints or None for each operands. + The list of axes for an operand is a mapping from the dimensions + of the iterator to the dimensions of the operand. A value of + -1 can be placed for entries, causing that dimension to be + treated as `newaxis`. + itershape : tuple of ints, optional + The desired shape of the iterator. This allows ``allocate`` operands + with a dimension mapped by op_axes not corresponding to a dimension + of a different operand to get a value not equal to 1 for that + dimension. + buffersize : int, optional + When buffering is enabled, controls the size of the temporary + buffers. Set to 0 for the default value. + + Attributes + ---------- + dtypes : tuple of dtype(s) + The data types of the values provided in `value`. This may be + different from the operand data types if buffering is enabled. + Valid only before the iterator is closed. + finished : bool + Whether the iteration over the operands is finished or not. + has_delayed_bufalloc : bool + If True, the iterator was created with the ``delay_bufalloc`` flag, + and no reset() function was called on it yet. + has_index : bool + If True, the iterator was created with either the ``c_index`` or + the ``f_index`` flag, and the property `index` can be used to + retrieve it. + has_multi_index : bool + If True, the iterator was created with the ``multi_index`` flag, + and the property `multi_index` can be used to retrieve it. + index + When the ``c_index`` or ``f_index`` flag was used, this property + provides access to the index. Raises a ValueError if accessed + and ``has_index`` is False. + iterationneedsapi : bool + Whether iteration requires access to the Python API, for example + if one of the operands is an object array. + iterindex : int + An index which matches the order of iteration. + itersize : int + Size of the iterator. + itviews + Structured view(s) of `operands` in memory, matching the reordered + and optimized iterator access pattern. Valid only before the iterator + is closed. + multi_index + When the ``multi_index`` flag was used, this property + provides access to the index. Raises a ValueError if accessed + accessed and ``has_multi_index`` is False. + ndim : int + The dimensions of the iterator. + nop : int + The number of iterator operands. + operands : tuple of operand(s) + The array(s) to be iterated over. Valid only before the iterator is + closed. + shape : tuple of ints + Shape tuple, the shape of the iterator. + value + Value of ``operands`` at current iteration. Normally, this is a + tuple of array scalars, but if the flag ``external_loop`` is used, + it is a tuple of one dimensional arrays. + + Notes + ----- + `nditer` supersedes `flatiter`. The iterator implementation behind + `nditer` is also exposed by the NumPy C API. + + The Python exposure supplies two iteration interfaces, one which follows + the Python iterator protocol, and another which mirrors the C-style + do-while pattern. The native Python approach is better in most cases, but + if you need the coordinates or index of an iterator, use the C-style pattern. + + Examples + -------- + Here is how we might write an ``iter_add`` function, using the + Python iterator protocol: + + >>> def iter_add_py(x, y, out=None): + ... addop = np.add + ... it = np.nditer([x, y, out], [], + ... [['readonly'], ['readonly'], ['writeonly','allocate']]) + ... with it: + ... for (a, b, c) in it: + ... addop(a, b, out=c) + ... return it.operands[2] + + Here is the same function, but following the C-style pattern: + + >>> def iter_add(x, y, out=None): + ... addop = np.add + ... it = np.nditer([x, y, out], [], + ... [['readonly'], ['readonly'], ['writeonly','allocate']]) + ... with it: + ... while not it.finished: + ... addop(it[0], it[1], out=it[2]) + ... it.iternext() + ... return it.operands[2] + + Here is an example outer product function: + + >>> def outer_it(x, y, out=None): + ... mulop = np.multiply + ... it = np.nditer([x, y, out], ['external_loop'], + ... [['readonly'], ['readonly'], ['writeonly', 'allocate']], + ... op_axes=[list(range(x.ndim)) + [-1] * y.ndim, + ... [-1] * x.ndim + list(range(y.ndim)), + ... None]) + ... with it: + ... for (a, b, c) in it: + ... mulop(a, b, out=c) + ... return it.operands[2] + + >>> a = np.arange(2)+1 + >>> b = np.arange(3)+1 + >>> outer_it(a,b) + array([[1, 2, 3], + [2, 4, 6]]) + + Here is an example function which operates like a "lambda" ufunc: + + >>> def luf(lamdaexpr, *args, **kwargs): + ... '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)''' + ... nargs = len(args) + ... op = (kwargs.get('out',None),) + args + ... it = np.nditer(op, ['buffered','external_loop'], + ... [['writeonly','allocate','no_broadcast']] + + ... [['readonly','nbo','aligned']]*nargs, + ... order=kwargs.get('order','K'), + ... casting=kwargs.get('casting','safe'), + ... buffersize=kwargs.get('buffersize',0)) + ... while not it.finished: + ... it[0] = lamdaexpr(*it[1:]) + ... it.iternext() + ... return it.operands[0] + + >>> a = np.arange(5) + >>> b = np.ones(5) + >>> luf(lambda i,j:i*i + j/2, a, b) + array([ 0.5, 1.5, 4.5, 9.5, 16.5]) + + If operand flags ``"writeonly"`` or ``"readwrite"`` are used the + operands may be views into the original data with the + `WRITEBACKIFCOPY` flag. In this case `nditer` must be used as a + context manager or the `nditer.close` method must be called before + using the result. The temporary data will be written back to the + original data when the `__exit__` function is called but not before: + + >>> a = np.arange(6, dtype='i4')[::-2] + >>> with np.nditer(a, [], + ... [['writeonly', 'updateifcopy']], + ... casting='unsafe', + ... op_dtypes=[np.dtype('f4')]) as i: + ... x = i.operands[0] + ... x[:] = [-1, -2, -3] + ... # a still unchanged here + >>> a, x + (array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32)) + + It is important to note that once the iterator is exited, dangling + references (like `x` in the example) may or may not share data with + the original data `a`. If writeback semantics were active, i.e. if + `x.base.flags.writebackifcopy` is `True`, then exiting the iterator + will sever the connection between `x` and `a`, writing to `x` will + no longer write to `a`. If writeback semantics are not active, then + `x.data` will still point at some part of `a.data`, and writing to + one will affect the other. + + Context management and the `close` method appeared in version 1.15.0. + + """) + +# nditer methods + +add_newdoc('numpy.core', 'nditer', ('copy', + """ + copy() + + Get a copy of the iterator in its current state. + + Examples + -------- + >>> x = np.arange(10) + >>> y = x + 1 + >>> it = np.nditer([x, y]) + >>> next(it) + (array(0), array(1)) + >>> it2 = it.copy() + >>> next(it2) + (array(1), array(2)) + + """)) + +add_newdoc('numpy.core', 'nditer', ('operands', + """ + operands[`Slice`] + + The array(s) to be iterated over. Valid only before the iterator is closed. + """)) + +add_newdoc('numpy.core', 'nditer', ('debug_print', + """ + debug_print() + + Print the current state of the `nditer` instance and debug info to stdout. + + """)) + +add_newdoc('numpy.core', 'nditer', ('enable_external_loop', + """ + enable_external_loop() + + When the "external_loop" was not used during construction, but + is desired, this modifies the iterator to behave as if the flag + was specified. + + """)) + +add_newdoc('numpy.core', 'nditer', ('iternext', + """ + iternext() + + Check whether iterations are left, and perform a single internal iteration + without returning the result. Used in the C-style pattern do-while + pattern. For an example, see `nditer`. + + Returns + ------- + iternext : bool + Whether or not there are iterations left. + + """)) + +add_newdoc('numpy.core', 'nditer', ('remove_axis', + """ + remove_axis(i, /) + + Removes axis `i` from the iterator. Requires that the flag "multi_index" + be enabled. + + """)) + +add_newdoc('numpy.core', 'nditer', ('remove_multi_index', + """ + remove_multi_index() + + When the "multi_index" flag was specified, this removes it, allowing + the internal iteration structure to be optimized further. + + """)) + +add_newdoc('numpy.core', 'nditer', ('reset', + """ + reset() + + Reset the iterator to its initial state. + + """)) + +add_newdoc('numpy.core', 'nested_iters', + """ + nested_iters(op, axes, flags=None, op_flags=None, op_dtypes=None, \ + order="K", casting="safe", buffersize=0) + + Create nditers for use in nested loops + + Create a tuple of `nditer` objects which iterate in nested loops over + different axes of the op argument. The first iterator is used in the + outermost loop, the last in the innermost loop. Advancing one will change + the subsequent iterators to point at its new element. + + Parameters + ---------- + op : ndarray or sequence of array_like + The array(s) to iterate over. + + axes : list of list of int + Each item is used as an "op_axes" argument to an nditer + + flags, op_flags, op_dtypes, order, casting, buffersize (optional) + See `nditer` parameters of the same name + + Returns + ------- + iters : tuple of nditer + An nditer for each item in `axes`, outermost first + + See Also + -------- + nditer + + Examples + -------- + + Basic usage. Note how y is the "flattened" version of + [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified + the first iter's axes as [1] + + >>> a = np.arange(12).reshape(2, 3, 2) + >>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"]) + >>> for x in i: + ... print(i.multi_index) + ... for y in j: + ... print('', j.multi_index, y) + (0,) + (0, 0) 0 + (0, 1) 1 + (1, 0) 6 + (1, 1) 7 + (1,) + (0, 0) 2 + (0, 1) 3 + (1, 0) 8 + (1, 1) 9 + (2,) + (0, 0) 4 + (0, 1) 5 + (1, 0) 10 + (1, 1) 11 + + """) + +add_newdoc('numpy.core', 'nditer', ('close', + """ + close() + + Resolve all writeback semantics in writeable operands. + + .. versionadded:: 1.15.0 + + See Also + -------- + + :ref:`nditer-context-manager` + + """)) + + +############################################################################### +# +# broadcast +# +############################################################################### + +add_newdoc('numpy.core', 'broadcast', + """ + Produce an object that mimics broadcasting. + + Parameters + ---------- + in1, in2, ... : array_like + Input parameters. + + Returns + ------- + b : broadcast object + Broadcast the input parameters against one another, and + return an object that encapsulates the result. + Amongst others, it has ``shape`` and ``nd`` properties, and + may be used as an iterator. + + See Also + -------- + broadcast_arrays + broadcast_to + broadcast_shapes + + Examples + -------- + + Manually adding two vectors, using broadcasting: + + >>> x = np.array([[1], [2], [3]]) + >>> y = np.array([4, 5, 6]) + >>> b = np.broadcast(x, y) + + >>> out = np.empty(b.shape) + >>> out.flat = [u+v for (u,v) in b] + >>> out + array([[5., 6., 7.], + [6., 7., 8.], + [7., 8., 9.]]) + + Compare against built-in broadcasting: + + >>> x + y + array([[5, 6, 7], + [6, 7, 8], + [7, 8, 9]]) + + """) + +# attributes + +add_newdoc('numpy.core', 'broadcast', ('index', + """ + current index in broadcasted result + + Examples + -------- + >>> x = np.array([[1], [2], [3]]) + >>> y = np.array([4, 5, 6]) + >>> b = np.broadcast(x, y) + >>> b.index + 0 + >>> next(b), next(b), next(b) + ((1, 4), (1, 5), (1, 6)) + >>> b.index + 3 + + """)) + +add_newdoc('numpy.core', 'broadcast', ('iters', + """ + tuple of iterators along ``self``'s "components." + + Returns a tuple of `numpy.flatiter` objects, one for each "component" + of ``self``. + + See Also + -------- + numpy.flatiter + + Examples + -------- + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> row, col = b.iters + >>> next(row), next(col) + (1, 4) + + """)) + +add_newdoc('numpy.core', 'broadcast', ('ndim', + """ + Number of dimensions of broadcasted result. Alias for `nd`. + + .. versionadded:: 1.12.0 + + Examples + -------- + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.ndim + 2 + + """)) + +add_newdoc('numpy.core', 'broadcast', ('nd', + """ + Number of dimensions of broadcasted result. For code intended for NumPy + 1.12.0 and later the more consistent `ndim` is preferred. + + Examples + -------- + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.nd + 2 + + """)) + +add_newdoc('numpy.core', 'broadcast', ('numiter', + """ + Number of iterators possessed by the broadcasted result. + + Examples + -------- + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.numiter + 2 + + """)) + +add_newdoc('numpy.core', 'broadcast', ('shape', + """ + Shape of broadcasted result. + + Examples + -------- + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.shape + (3, 3) + + """)) + +add_newdoc('numpy.core', 'broadcast', ('size', + """ + Total size of broadcasted result. + + Examples + -------- + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.size + 9 + + """)) + +add_newdoc('numpy.core', 'broadcast', ('reset', + """ + reset() + + Reset the broadcasted result's iterator(s). + + Parameters + ---------- + None + + Returns + ------- + None + + Examples + -------- + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.index + 0 + >>> next(b), next(b), next(b) + ((1, 4), (2, 4), (3, 4)) + >>> b.index + 3 + >>> b.reset() + >>> b.index + 0 + + """)) + +############################################################################### +# +# numpy functions +# +############################################################################### + +add_newdoc('numpy.core.multiarray', 'array', + """ + array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, + like=None) + + Create an array. + + Parameters + ---------- + object : array_like + An array, any object exposing the array interface, an object whose + ``__array__`` method returns an array, or any (nested) sequence. + If object is a scalar, a 0-dimensional array containing object is + returned. + dtype : data-type, optional + The desired data-type for the array. If not given, NumPy will try to use + a default ``dtype`` that can represent the values (by applying promotion + rules when necessary.) + copy : bool, optional + If true (default), then the object is copied. Otherwise, a copy will + only be made if ``__array__`` returns a copy, if obj is a nested + sequence, or if a copy is needed to satisfy any of the other + requirements (``dtype``, ``order``, etc.). + order : {'K', 'A', 'C', 'F'}, optional + Specify the memory layout of the array. If object is not an array, the + newly created array will be in C order (row major) unless 'F' is + specified, in which case it will be in Fortran order (column major). + If object is an array the following holds. + + ===== ========= =================================================== + order no copy copy=True + ===== ========= =================================================== + 'K' unchanged F & C order preserved, otherwise most similar order + 'A' unchanged F order if input is F and not C, otherwise C order + 'C' C order C order + 'F' F order F order + ===== ========= =================================================== + + When ``copy=False`` and a copy is made for other reasons, the result is + the same as if ``copy=True``, with some exceptions for 'A', see the + Notes section. The default order is 'K'. + subok : bool, optional + If True, then sub-classes will be passed-through, otherwise + the returned array will be forced to be a base-class array (default). + ndmin : int, optional + Specifies the minimum number of dimensions that the resulting + array should have. Ones will be prepended to the shape as + needed to meet this requirement. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + An array object satisfying the specified requirements. + + See Also + -------- + empty_like : Return an empty array with shape and type of input. + ones_like : Return an array of ones with shape and type of input. + zeros_like : Return an array of zeros with shape and type of input. + full_like : Return a new array with shape of input filled with value. + empty : Return a new uninitialized array. + ones : Return a new array setting values to one. + zeros : Return a new array setting values to zero. + full : Return a new array of given shape filled with value. + + + Notes + ----- + When order is 'A' and ``object`` is an array in neither 'C' nor 'F' order, + and a copy is forced by a change in dtype, then the order of the result is + not necessarily 'C' as expected. This is likely a bug. + + Examples + -------- + >>> np.array([1, 2, 3]) + array([1, 2, 3]) + + Upcasting: + + >>> np.array([1, 2, 3.0]) + array([ 1., 2., 3.]) + + More than one dimension: + + >>> np.array([[1, 2], [3, 4]]) + array([[1, 2], + [3, 4]]) + + Minimum dimensions 2: + + >>> np.array([1, 2, 3], ndmin=2) + array([[1, 2, 3]]) + + Type provided: + + >>> np.array([1, 2, 3], dtype=complex) + array([ 1.+0.j, 2.+0.j, 3.+0.j]) + + Data-type consisting of more than one element: + + >>> x = np.array([(1,2),(3,4)],dtype=[('a','>> x['a'] + array([1, 3]) + + Creating an array from sub-classes: + + >>> np.array(np.mat('1 2; 3 4')) + array([[1, 2], + [3, 4]]) + + >>> np.array(np.mat('1 2; 3 4'), subok=True) + matrix([[1, 2], + [3, 4]]) + + """.replace( + "${ARRAY_FUNCTION_LIKE}", + array_function_like_doc, + )) + +add_newdoc('numpy.core.multiarray', 'asarray', + """ + asarray(a, dtype=None, order=None, *, like=None) + + Convert the input to an array. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. This + includes lists, lists of tuples, tuples, tuples of tuples, tuples + of lists and ndarrays. + dtype : data-type, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F', 'A', 'K'}, optional + Memory layout. 'A' and 'K' depend on the order of input array a. + 'C' row-major (C-style), + 'F' column-major (Fortran-style) memory representation. + 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise + 'K' (keep) preserve input order + Defaults to 'K'. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array interpretation of `a`. No copy is performed if the input + is already an ndarray with matching dtype and order. If `a` is a + subclass of ndarray, a base class ndarray is returned. + + See Also + -------- + asanyarray : Similar function which passes through subclasses. + ascontiguousarray : Convert input to a contiguous array. + asfarray : Convert input to a floating point ndarray. + asfortranarray : Convert input to an ndarray with column-major + memory order. + asarray_chkfinite : Similar function which checks input for NaNs and Infs. + fromiter : Create an array from an iterator. + fromfunction : Construct an array by executing a function on grid + positions. + + Examples + -------- + Convert a list into an array: + + >>> a = [1, 2] + >>> np.asarray(a) + array([1, 2]) + + Existing arrays are not copied: + + >>> a = np.array([1, 2]) + >>> np.asarray(a) is a + True + + If `dtype` is set, array is copied only if dtype does not match: + + >>> a = np.array([1, 2], dtype=np.float32) + >>> np.asarray(a, dtype=np.float32) is a + True + >>> np.asarray(a, dtype=np.float64) is a + False + + Contrary to `asanyarray`, ndarray subclasses are not passed through: + + >>> issubclass(np.recarray, np.ndarray) + True + >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) + >>> np.asarray(a) is a + False + >>> np.asanyarray(a) is a + True + + """.replace( + "${ARRAY_FUNCTION_LIKE}", + array_function_like_doc, + )) + +add_newdoc('numpy.core.multiarray', 'asanyarray', + """ + asanyarray(a, dtype=None, order=None, *, like=None) + + Convert the input to an ndarray, but pass ndarray subclasses through. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. This + includes scalars, lists, lists of tuples, tuples, tuples of tuples, + tuples of lists, and ndarrays. + dtype : data-type, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F', 'A', 'K'}, optional + Memory layout. 'A' and 'K' depend on the order of input array a. + 'C' row-major (C-style), + 'F' column-major (Fortran-style) memory representation. + 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise + 'K' (keep) preserve input order + Defaults to 'C'. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray or an ndarray subclass + Array interpretation of `a`. If `a` is an ndarray or a subclass + of ndarray, it is returned as-is and no copy is performed. + + See Also + -------- + asarray : Similar function which always returns ndarrays. + ascontiguousarray : Convert input to a contiguous array. + asfarray : Convert input to a floating point ndarray. + asfortranarray : Convert input to an ndarray with column-major + memory order. + asarray_chkfinite : Similar function which checks input for NaNs and + Infs. + fromiter : Create an array from an iterator. + fromfunction : Construct an array by executing a function on grid + positions. + + Examples + -------- + Convert a list into an array: + + >>> a = [1, 2] + >>> np.asanyarray(a) + array([1, 2]) + + Instances of `ndarray` subclasses are passed through as-is: + + >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) + >>> np.asanyarray(a) is a + True + + """.replace( + "${ARRAY_FUNCTION_LIKE}", + array_function_like_doc, + )) + +add_newdoc('numpy.core.multiarray', 'ascontiguousarray', + """ + ascontiguousarray(a, dtype=None, *, like=None) + + Return a contiguous array (ndim >= 1) in memory (C order). + + Parameters + ---------- + a : array_like + Input array. + dtype : str or dtype object, optional + Data-type of returned array. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Contiguous array of same shape and content as `a`, with type `dtype` + if specified. + + See Also + -------- + asfortranarray : Convert input to an ndarray with column-major + memory order. + require : Return an ndarray that satisfies requirements. + ndarray.flags : Information about the memory layout of the array. + + Examples + -------- + Starting with a Fortran-contiguous array: + + >>> x = np.ones((2, 3), order='F') + >>> x.flags['F_CONTIGUOUS'] + True + + Calling ``ascontiguousarray`` makes a C-contiguous copy: + + >>> y = np.ascontiguousarray(x) + >>> y.flags['C_CONTIGUOUS'] + True + >>> np.may_share_memory(x, y) + False + + Now, starting with a C-contiguous array: + + >>> x = np.ones((2, 3), order='C') + >>> x.flags['C_CONTIGUOUS'] + True + + Then, calling ``ascontiguousarray`` returns the same object: + + >>> y = np.ascontiguousarray(x) + >>> x is y + True + + Note: This function returns an array with at least one-dimension (1-d) + so it will not preserve 0-d arrays. + + """.replace( + "${ARRAY_FUNCTION_LIKE}", + array_function_like_doc, + )) + +add_newdoc('numpy.core.multiarray', 'asfortranarray', + """ + asfortranarray(a, dtype=None, *, like=None) + + Return an array (ndim >= 1) laid out in Fortran order in memory. + + Parameters + ---------- + a : array_like + Input array. + dtype : str or dtype object, optional + By default, the data-type is inferred from the input data. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + The input `a` in Fortran, or column-major, order. + + See Also + -------- + ascontiguousarray : Convert input to a contiguous (C order) array. + asanyarray : Convert input to an ndarray with either row or + column-major memory order. + require : Return an ndarray that satisfies requirements. + ndarray.flags : Information about the memory layout of the array. + + Examples + -------- + Starting with a C-contiguous array: + + >>> x = np.ones((2, 3), order='C') + >>> x.flags['C_CONTIGUOUS'] + True + + Calling ``asfortranarray`` makes a Fortran-contiguous copy: + + >>> y = np.asfortranarray(x) + >>> y.flags['F_CONTIGUOUS'] + True + >>> np.may_share_memory(x, y) + False + + Now, starting with a Fortran-contiguous array: + + >>> x = np.ones((2, 3), order='F') + >>> x.flags['F_CONTIGUOUS'] + True + + Then, calling ``asfortranarray`` returns the same object: + + >>> y = np.asfortranarray(x) + >>> x is y + True + + Note: This function returns an array with at least one-dimension (1-d) + so it will not preserve 0-d arrays. + + """.replace( + "${ARRAY_FUNCTION_LIKE}", + array_function_like_doc, + )) + +add_newdoc('numpy.core.multiarray', 'empty', + """ + empty(shape, dtype=float, order='C', *, like=None) + + Return a new array of given shape and type, without initializing entries. + + Parameters + ---------- + shape : int or tuple of int + Shape of the empty array, e.g., ``(2, 3)`` or ``2``. + dtype : data-type, optional + Desired output data-type for the array, e.g, `numpy.int8`. Default is + `numpy.float64`. + order : {'C', 'F'}, optional, default: 'C' + Whether to store multi-dimensional data in row-major + (C-style) or column-major (Fortran-style) order in + memory. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array of uninitialized (arbitrary) data of the given shape, dtype, and + order. Object arrays will be initialized to None. + + See Also + -------- + empty_like : Return an empty array with shape and type of input. + ones : Return a new array setting values to one. + zeros : Return a new array setting values to zero. + full : Return a new array of given shape filled with value. + + + Notes + ----- + `empty`, unlike `zeros`, does not set the array values to zero, + and may therefore be marginally faster. On the other hand, it requires + the user to manually set all the values in the array, and should be + used with caution. + + Examples + -------- + >>> np.empty([2, 2]) + array([[ -9.74499359e+001, 6.69583040e-309], + [ 2.13182611e-314, 3.06959433e-309]]) #uninitialized + + >>> np.empty([2, 2], dtype=int) + array([[-1073741821, -1067949133], + [ 496041986, 19249760]]) #uninitialized + + """.replace( + "${ARRAY_FUNCTION_LIKE}", + array_function_like_doc, + )) + +add_newdoc('numpy.core.multiarray', 'scalar', + """ + scalar(dtype, obj) + + Return a new scalar array of the given type initialized with obj. + + This function is meant mainly for pickle support. `dtype` must be a + valid data-type descriptor. If `dtype` corresponds to an object + descriptor, then `obj` can be any object, otherwise `obj` must be a + string. If `obj` is not given, it will be interpreted as None for object + type and as zeros for all other types. + + """) + +add_newdoc('numpy.core.multiarray', 'zeros', + """ + zeros(shape, dtype=float, order='C', *, like=None) + + Return a new array of given shape and type, filled with zeros. + + Parameters + ---------- + shape : int or tuple of ints + Shape of the new array, e.g., ``(2, 3)`` or ``2``. + dtype : data-type, optional + The desired data-type for the array, e.g., `numpy.int8`. Default is + `numpy.float64`. + order : {'C', 'F'}, optional, default: 'C' + Whether to store multi-dimensional data in row-major + (C-style) or column-major (Fortran-style) order in + memory. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array of zeros with the given shape, dtype, and order. + + See Also + -------- + zeros_like : Return an array of zeros with shape and type of input. + empty : Return a new uninitialized array. + ones : Return a new array setting values to one. + full : Return a new array of given shape filled with value. + + Examples + -------- + >>> np.zeros(5) + array([ 0., 0., 0., 0., 0.]) + + >>> np.zeros((5,), dtype=int) + array([0, 0, 0, 0, 0]) + + >>> np.zeros((2, 1)) + array([[ 0.], + [ 0.]]) + + >>> s = (2,2) + >>> np.zeros(s) + array([[ 0., 0.], + [ 0., 0.]]) + + >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype + array([(0, 0), (0, 0)], + dtype=[('x', '>> np.fromstring('1 2', dtype=int, sep=' ') + array([1, 2]) + >>> np.fromstring('1, 2', dtype=int, sep=',') + array([1, 2]) + + """.replace( + "${ARRAY_FUNCTION_LIKE}", + array_function_like_doc, + )) + +add_newdoc('numpy.core.multiarray', 'compare_chararrays', + """ + compare_chararrays(a1, a2, cmp, rstrip) + + Performs element-wise comparison of two string arrays using the + comparison operator specified by `cmp_op`. + + Parameters + ---------- + a1, a2 : array_like + Arrays to be compared. + cmp : {"<", "<=", "==", ">=", ">", "!="} + Type of comparison. + rstrip : Boolean + If True, the spaces at the end of Strings are removed before the comparison. + + Returns + ------- + out : ndarray + The output array of type Boolean with the same shape as a and b. + + Raises + ------ + ValueError + If `cmp_op` is not valid. + TypeError + If at least one of `a` or `b` is a non-string array + + Examples + -------- + >>> a = np.array(["a", "b", "cde"]) + >>> b = np.array(["a", "a", "dec"]) + >>> np.compare_chararrays(a, b, ">", True) + array([False, True, False]) + + """) + +add_newdoc('numpy.core.multiarray', 'fromiter', + """ + fromiter(iter, dtype, count=-1, *, like=None) + + Create a new 1-dimensional array from an iterable object. + + Parameters + ---------- + iter : iterable object + An iterable object providing data for the array. + dtype : data-type + The data-type of the returned array. + + .. versionchanged:: 1.23 + Object and subarray dtypes are now supported (note that the final + result is not 1-D for a subarray dtype). + + count : int, optional + The number of items to read from *iterable*. The default is -1, + which means all data is read. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + The output array. + + Notes + ----- + Specify `count` to improve performance. It allows ``fromiter`` to + pre-allocate the output array, instead of resizing it on demand. + + Examples + -------- + >>> iterable = (x*x for x in range(5)) + >>> np.fromiter(iterable, float) + array([ 0., 1., 4., 9., 16.]) + + A carefully constructed subarray dtype will lead to higher dimensional + results: + + >>> iterable = ((x+1, x+2) for x in range(5)) + >>> np.fromiter(iterable, dtype=np.dtype((int, 2))) + array([[1, 2], + [2, 3], + [3, 4], + [4, 5], + [5, 6]]) + + + """.replace( + "${ARRAY_FUNCTION_LIKE}", + array_function_like_doc, + )) + +add_newdoc('numpy.core.multiarray', 'fromfile', + """ + fromfile(file, dtype=float, count=-1, sep='', offset=0, *, like=None) + + Construct an array from data in a text or binary file. + + A highly efficient way of reading binary data with a known data-type, + as well as parsing simply formatted text files. Data written using the + `tofile` method can be read using this function. + + Parameters + ---------- + file : file or str or Path + Open file object or filename. + + .. versionchanged:: 1.17.0 + `pathlib.Path` objects are now accepted. + + dtype : data-type + Data type of the returned array. + For binary files, it is used to determine the size and byte-order + of the items in the file. + Most builtin numeric types are supported and extension types may be supported. + + .. versionadded:: 1.18.0 + Complex dtypes. + + count : int + Number of items to read. ``-1`` means all items (i.e., the complete + file). + sep : str + Separator between items if file is a text file. + Empty ("") separator means the file should be treated as binary. + Spaces (" ") in the separator match zero or more whitespace characters. + A separator consisting only of spaces must match at least one + whitespace. + offset : int + The offset (in bytes) from the file's current position. Defaults to 0. + Only permitted for binary files. + + .. versionadded:: 1.17.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + See also + -------- + load, save + ndarray.tofile + loadtxt : More flexible way of loading data from a text file. + + Notes + ----- + Do not rely on the combination of `tofile` and `fromfile` for + data storage, as the binary files generated are not platform + independent. In particular, no byte-order or data-type information is + saved. Data can be stored in the platform independent ``.npy`` format + using `save` and `load` instead. + + Examples + -------- + Construct an ndarray: + + >>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]), + ... ('temp', float)]) + >>> x = np.zeros((1,), dtype=dt) + >>> x['time']['min'] = 10; x['temp'] = 98.25 + >>> x + array([((10, 0), 98.25)], + dtype=[('time', [('min', '>> import tempfile + >>> fname = tempfile.mkstemp()[1] + >>> x.tofile(fname) + + Read the raw data from disk: + + >>> np.fromfile(fname, dtype=dt) + array([((10, 0), 98.25)], + dtype=[('time', [('min', '>> np.save(fname, x) + >>> np.load(fname + '.npy') + array([((10, 0), 98.25)], + dtype=[('time', [('min', '>> dt = np.dtype(int) + >>> dt = dt.newbyteorder('>') + >>> np.frombuffer(buf, dtype=dt) # doctest: +SKIP + + The data of the resulting array will not be byteswapped, but will be + interpreted correctly. + + This function creates a view into the original object. This should be safe + in general, but it may make sense to copy the result when the original + object is mutable or untrusted. + + Examples + -------- + >>> s = b'hello world' + >>> np.frombuffer(s, dtype='S1', count=5, offset=6) + array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1') + + >>> np.frombuffer(b'\\x01\\x02', dtype=np.uint8) + array([1, 2], dtype=uint8) + >>> np.frombuffer(b'\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3) + array([1, 2, 3], dtype=uint8) + + """.replace( + "${ARRAY_FUNCTION_LIKE}", + array_function_like_doc, + )) + +add_newdoc('numpy.core.multiarray', 'from_dlpack', + """ + from_dlpack(x, /) + + Create a NumPy array from an object implementing the ``__dlpack__`` + protocol. Generally, the returned NumPy array is a read-only view + of the input object. See [1]_ and [2]_ for more details. + + Parameters + ---------- + x : object + A Python object that implements the ``__dlpack__`` and + ``__dlpack_device__`` methods. + + Returns + ------- + out : ndarray + + References + ---------- + .. [1] Array API documentation, + https://data-apis.org/array-api/latest/design_topics/data_interchange.html#syntax-for-data-interchange-with-dlpack + + .. [2] Python specification for DLPack, + https://dmlc.github.io/dlpack/latest/python_spec.html + + Examples + -------- + >>> import torch + >>> x = torch.arange(10) + >>> # create a view of the torch tensor "x" in NumPy + >>> y = np.from_dlpack(x) + """) + +add_newdoc('numpy.core', 'fastCopyAndTranspose', + """ + fastCopyAndTranspose(a) + + .. deprecated:: 1.24 + + fastCopyAndTranspose is deprecated and will be removed. Use the copy and + transpose methods instead, e.g. ``arr.T.copy()`` + """) + +add_newdoc('numpy.core.multiarray', 'correlate', + """cross_correlate(a,v, mode=0)""") + +add_newdoc('numpy.core.multiarray', 'arange', + """ + arange([start,] stop[, step,], dtype=None, *, like=None) + + Return evenly spaced values within a given interval. + + ``arange`` can be called with a varying number of positional arguments: + + * ``arange(stop)``: Values are generated within the half-open interval + ``[0, stop)`` (in other words, the interval including `start` but + excluding `stop`). + * ``arange(start, stop)``: Values are generated within the half-open + interval ``[start, stop)``. + * ``arange(start, stop, step)`` Values are generated within the half-open + interval ``[start, stop)``, with spacing between values given by + ``step``. + + For integer arguments the function is roughly equivalent to the Python + built-in :py:class:`range`, but returns an ndarray rather than a ``range`` + instance. + + When using a non-integer step, such as 0.1, it is often better to use + `numpy.linspace`. + + See the Warning sections below for more information. + + Parameters + ---------- + start : integer or real, optional + Start of interval. The interval includes this value. The default + start value is 0. + stop : integer or real + End of interval. The interval does not include this value, except + in some cases where `step` is not an integer and floating point + round-off affects the length of `out`. + step : integer or real, optional + Spacing between values. For any output `out`, this is the distance + between two adjacent values, ``out[i+1] - out[i]``. The default + step size is 1. If `step` is specified as a position argument, + `start` must also be given. + dtype : dtype, optional + The type of the output array. If `dtype` is not given, infer the data + type from the other input arguments. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + arange : ndarray + Array of evenly spaced values. + + For floating point arguments, the length of the result is + ``ceil((stop - start)/step)``. Because of floating point overflow, + this rule may result in the last element of `out` being greater + than `stop`. + + Warnings + -------- + The length of the output might not be numerically stable. + + Another stability issue is due to the internal implementation of + `numpy.arange`. + The actual step value used to populate the array is + ``dtype(start + step) - dtype(start)`` and not `step`. Precision loss + can occur here, due to casting or due to using floating points when + `start` is much larger than `step`. This can lead to unexpected + behaviour. For example:: + + >>> np.arange(0, 5, 0.5, dtype=int) + array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) + >>> np.arange(-3, 3, 0.5, dtype=int) + array([-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) + + In such cases, the use of `numpy.linspace` should be preferred. + + The built-in :py:class:`range` generates :std:doc:`Python built-in integers + that have arbitrary size `, while `numpy.arange` + produces `numpy.int32` or `numpy.int64` numbers. This may result in + incorrect results for large integer values:: + + >>> power = 40 + >>> modulo = 10000 + >>> x1 = [(n ** power) % modulo for n in range(8)] + >>> x2 = [(n ** power) % modulo for n in np.arange(8)] + >>> print(x1) + [0, 1, 7776, 8801, 6176, 625, 6576, 4001] # correct + >>> print(x2) + [0, 1, 7776, 7185, 0, 5969, 4816, 3361] # incorrect + + See Also + -------- + numpy.linspace : Evenly spaced numbers with careful handling of endpoints. + numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions. + numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions. + :ref:`how-to-partition` + + Examples + -------- + >>> np.arange(3) + array([0, 1, 2]) + >>> np.arange(3.0) + array([ 0., 1., 2.]) + >>> np.arange(3,7) + array([3, 4, 5, 6]) + >>> np.arange(3,7,2) + array([3, 5]) + + """.replace( + "${ARRAY_FUNCTION_LIKE}", + array_function_like_doc, + )) + +add_newdoc('numpy.core.multiarray', '_get_ndarray_c_version', + """_get_ndarray_c_version() + + Return the compile time NPY_VERSION (formerly called NDARRAY_VERSION) number. + + """) + +add_newdoc('numpy.core.multiarray', '_reconstruct', + """_reconstruct(subtype, shape, dtype) + + Construct an empty array. Used by Pickles. + + """) + + +add_newdoc('numpy.core.multiarray', 'set_string_function', + """ + set_string_function(f, repr=1) + + Internal method to set a function to be used when pretty printing arrays. + + """) + +add_newdoc('numpy.core.multiarray', 'set_numeric_ops', + """ + set_numeric_ops(op1=func1, op2=func2, ...) + + Set numerical operators for array objects. + + .. deprecated:: 1.16 + + For the general case, use :c:func:`PyUFunc_ReplaceLoopBySignature`. + For ndarray subclasses, define the ``__array_ufunc__`` method and + override the relevant ufunc. + + Parameters + ---------- + op1, op2, ... : callable + Each ``op = func`` pair describes an operator to be replaced. + For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace + addition by modulus 5 addition. + + Returns + ------- + saved_ops : list of callables + A list of all operators, stored before making replacements. + + Notes + ----- + .. warning:: + Use with care! Incorrect usage may lead to memory errors. + + A function replacing an operator cannot make use of that operator. + For example, when replacing add, you may not use ``+``. Instead, + directly call ufuncs. + + Examples + -------- + >>> def add_mod5(x, y): + ... return np.add(x, y) % 5 + ... + >>> old_funcs = np.set_numeric_ops(add=add_mod5) + + >>> x = np.arange(12).reshape((3, 4)) + >>> x + x + array([[0, 2, 4, 1], + [3, 0, 2, 4], + [1, 3, 0, 2]]) + + >>> ignore = np.set_numeric_ops(**old_funcs) # restore operators + + """) + +add_newdoc('numpy.core.multiarray', 'promote_types', + """ + promote_types(type1, type2) + + Returns the data type with the smallest size and smallest scalar + kind to which both ``type1`` and ``type2`` may be safely cast. + The returned data type is always considered "canonical", this mainly + means that the promoted dtype will always be in native byte order. + + This function is symmetric, but rarely associative. + + Parameters + ---------- + type1 : dtype or dtype specifier + First data type. + type2 : dtype or dtype specifier + Second data type. + + Returns + ------- + out : dtype + The promoted data type. + + Notes + ----- + Please see `numpy.result_type` for additional information about promotion. + + .. versionadded:: 1.6.0 + + Starting in NumPy 1.9, promote_types function now returns a valid string + length when given an integer or float dtype as one argument and a string + dtype as another argument. Previously it always returned the input string + dtype, even if it wasn't long enough to store the max integer/float value + converted to a string. + + .. versionchanged:: 1.23.0 + + NumPy now supports promotion for more structured dtypes. It will now + remove unnecessary padding from a structure dtype and promote included + fields individually. + + See Also + -------- + result_type, dtype, can_cast + + Examples + -------- + >>> np.promote_types('f4', 'f8') + dtype('float64') + + >>> np.promote_types('i8', 'f4') + dtype('float64') + + >>> np.promote_types('>i8', '>> np.promote_types('i4', 'S8') + dtype('S11') + + An example of a non-associative case: + + >>> p = np.promote_types + >>> p('S', p('i1', 'u1')) + dtype('S6') + >>> p(p('S', 'i1'), 'u1') + dtype('S4') + + """) + +add_newdoc('numpy.core.multiarray', 'c_einsum', + """ + c_einsum(subscripts, *operands, out=None, dtype=None, order='K', + casting='safe') + + *This documentation shadows that of the native python implementation of the `einsum` function, + except all references and examples related to the `optimize` argument (v 0.12.0) have been removed.* + + Evaluates the Einstein summation convention on the operands. + + Using the Einstein summation convention, many common multi-dimensional, + linear algebraic array operations can be represented in a simple fashion. + In *implicit* mode `einsum` computes these values. + + In *explicit* mode, `einsum` provides further flexibility to compute + other array operations that might not be considered classical Einstein + summation operations, by disabling, or forcing summation over specified + subscript labels. + + See the notes and examples for clarification. + + Parameters + ---------- + subscripts : str + Specifies the subscripts for summation as comma separated list of + subscript labels. An implicit (classical Einstein summation) + calculation is performed unless the explicit indicator '->' is + included as well as subscript labels of the precise output form. + operands : list of array_like + These are the arrays for the operation. + out : ndarray, optional + If provided, the calculation is done into this array. + dtype : {data-type, None}, optional + If provided, forces the calculation to use the data type specified. + Note that you may have to also give a more liberal `casting` + parameter to allow the conversions. Default is None. + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout of the output. 'C' means it should + be C contiguous. 'F' means it should be Fortran contiguous, + 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise. + 'K' means it should be as close to the layout of the inputs as + is possible, including arbitrarily permuted axes. + Default is 'K'. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Setting this to + 'unsafe' is not recommended, as it can adversely affect accumulations. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + + Default is 'safe'. + optimize : {False, True, 'greedy', 'optimal'}, optional + Controls if intermediate optimization should occur. No optimization + will occur if False and True will default to the 'greedy' algorithm. + Also accepts an explicit contraction list from the ``np.einsum_path`` + function. See ``np.einsum_path`` for more details. Defaults to False. + + Returns + ------- + output : ndarray + The calculation based on the Einstein summation convention. + + See Also + -------- + einsum_path, dot, inner, outer, tensordot, linalg.multi_dot + + Notes + ----- + .. versionadded:: 1.6.0 + + The Einstein summation convention can be used to compute + many multi-dimensional, linear algebraic array operations. `einsum` + provides a succinct way of representing these. + + A non-exhaustive list of these operations, + which can be computed by `einsum`, is shown below along with examples: + + * Trace of an array, :py:func:`numpy.trace`. + * Return a diagonal, :py:func:`numpy.diag`. + * Array axis summations, :py:func:`numpy.sum`. + * Transpositions and permutations, :py:func:`numpy.transpose`. + * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`. + * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`. + * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`. + * Tensor contractions, :py:func:`numpy.tensordot`. + * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`. + + The subscripts string is a comma-separated list of subscript labels, + where each label refers to a dimension of the corresponding operand. + Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)`` + is equivalent to :py:func:`np.inner(a,b) `. If a label + appears only once, it is not summed, so ``np.einsum('i', a)`` produces a + view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)`` + describes traditional matrix multiplication and is equivalent to + :py:func:`np.matmul(a,b) `. Repeated subscript labels in one + operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent + to :py:func:`np.trace(a) `. + + In *implicit mode*, the chosen subscripts are important + since the axes of the output are reordered alphabetically. This + means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while + ``np.einsum('ji', a)`` takes its transpose. Additionally, + ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while, + ``np.einsum('ij,jh', a, b)`` returns the transpose of the + multiplication since subscript 'h' precedes subscript 'i'. + + In *explicit mode* the output can be directly controlled by + specifying output subscript labels. This requires the + identifier '->' as well as the list of output subscript labels. + This feature increases the flexibility of the function since + summing can be disabled or forced when required. The call + ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) `, + and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) `. + The difference is that `einsum` does not allow broadcasting by default. + Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the + order of the output subscript labels and therefore returns matrix + multiplication, unlike the example above in implicit mode. + + To enable and control broadcasting, use an ellipsis. Default + NumPy-style broadcasting is done by adding an ellipsis + to the left of each term, like ``np.einsum('...ii->...i', a)``. + To take the trace along the first and last axes, + you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix + product with the left-most indices instead of rightmost, one can do + ``np.einsum('ij...,jk...->ik...', a, b)``. + + When there is only one operand, no axes are summed, and no output + parameter is provided, a view into the operand is returned instead + of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` + produces a view (changed in version 1.10.0). + + `einsum` also provides an alternative way to provide the subscripts + and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. + If the output shape is not provided in this format `einsum` will be + calculated in implicit mode, otherwise it will be performed explicitly. + The examples below have corresponding `einsum` calls with the two + parameter methods. + + .. versionadded:: 1.10.0 + + Views returned from einsum are now writeable whenever the input array + is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now + have the same effect as :py:func:`np.swapaxes(a, 0, 2) ` + and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal + of a 2D array. + + Examples + -------- + >>> a = np.arange(25).reshape(5,5) + >>> b = np.arange(5) + >>> c = np.arange(6).reshape(2,3) + + Trace of a matrix: + + >>> np.einsum('ii', a) + 60 + >>> np.einsum(a, [0,0]) + 60 + >>> np.trace(a) + 60 + + Extract the diagonal (requires explicit form): + + >>> np.einsum('ii->i', a) + array([ 0, 6, 12, 18, 24]) + >>> np.einsum(a, [0,0], [0]) + array([ 0, 6, 12, 18, 24]) + >>> np.diag(a) + array([ 0, 6, 12, 18, 24]) + + Sum over an axis (requires explicit form): + + >>> np.einsum('ij->i', a) + array([ 10, 35, 60, 85, 110]) + >>> np.einsum(a, [0,1], [0]) + array([ 10, 35, 60, 85, 110]) + >>> np.sum(a, axis=1) + array([ 10, 35, 60, 85, 110]) + + For higher dimensional arrays summing a single axis can be done with ellipsis: + + >>> np.einsum('...j->...', a) + array([ 10, 35, 60, 85, 110]) + >>> np.einsum(a, [Ellipsis,1], [Ellipsis]) + array([ 10, 35, 60, 85, 110]) + + Compute a matrix transpose, or reorder any number of axes: + + >>> np.einsum('ji', c) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.einsum('ij->ji', c) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.einsum(c, [1,0]) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.transpose(c) + array([[0, 3], + [1, 4], + [2, 5]]) + + Vector inner products: + + >>> np.einsum('i,i', b, b) + 30 + >>> np.einsum(b, [0], b, [0]) + 30 + >>> np.inner(b,b) + 30 + + Matrix vector multiplication: + + >>> np.einsum('ij,j', a, b) + array([ 30, 80, 130, 180, 230]) + >>> np.einsum(a, [0,1], b, [1]) + array([ 30, 80, 130, 180, 230]) + >>> np.dot(a, b) + array([ 30, 80, 130, 180, 230]) + >>> np.einsum('...j,j', a, b) + array([ 30, 80, 130, 180, 230]) + + Broadcasting and scalar multiplication: + + >>> np.einsum('..., ...', 3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.einsum(',ij', 3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.einsum(3, [Ellipsis], c, [Ellipsis]) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.multiply(3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + + Vector outer product: + + >>> np.einsum('i,j', np.arange(2)+1, b) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + >>> np.einsum(np.arange(2)+1, [0], b, [1]) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + >>> np.outer(np.arange(2)+1, b) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + + Tensor contraction: + + >>> a = np.arange(60.).reshape(3,4,5) + >>> b = np.arange(24.).reshape(4,3,2) + >>> np.einsum('ijk,jil->kl', a, b) + array([[ 4400., 4730.], + [ 4532., 4874.], + [ 4664., 5018.], + [ 4796., 5162.], + [ 4928., 5306.]]) + >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) + array([[ 4400., 4730.], + [ 4532., 4874.], + [ 4664., 5018.], + [ 4796., 5162.], + [ 4928., 5306.]]) + >>> np.tensordot(a,b, axes=([1,0],[0,1])) + array([[ 4400., 4730.], + [ 4532., 4874.], + [ 4664., 5018.], + [ 4796., 5162.], + [ 4928., 5306.]]) + + Writeable returned arrays (since version 1.10.0): + + >>> a = np.zeros((3, 3)) + >>> np.einsum('ii->i', a)[:] = 1 + >>> a + array([[ 1., 0., 0.], + [ 0., 1., 0.], + [ 0., 0., 1.]]) + + Example of ellipsis use: + + >>> a = np.arange(6).reshape((3,2)) + >>> b = np.arange(12).reshape((4,3)) + >>> np.einsum('ki,jk->ij', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + >>> np.einsum('ki,...k->i...', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + >>> np.einsum('k...,jk', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + + """) + + +############################################################################## +# +# Documentation for ndarray attributes and methods +# +############################################################################## + + +############################################################################## +# +# ndarray object +# +############################################################################## + + +add_newdoc('numpy.core.multiarray', 'ndarray', + """ + ndarray(shape, dtype=float, buffer=None, offset=0, + strides=None, order=None) + + An array object represents a multidimensional, homogeneous array + of fixed-size items. An associated data-type object describes the + format of each element in the array (its byte-order, how many bytes it + occupies in memory, whether it is an integer, a floating point number, + or something else, etc.) + + Arrays should be constructed using `array`, `zeros` or `empty` (refer + to the See Also section below). The parameters given here refer to + a low-level method (`ndarray(...)`) for instantiating an array. + + For more information, refer to the `numpy` module and examine the + methods and attributes of an array. + + Parameters + ---------- + (for the __new__ method; see Notes below) + + shape : tuple of ints + Shape of created array. + dtype : data-type, optional + Any object that can be interpreted as a numpy data type. + buffer : object exposing buffer interface, optional + Used to fill the array with data. + offset : int, optional + Offset of array data in buffer. + strides : tuple of ints, optional + Strides of data in memory. + order : {'C', 'F'}, optional + Row-major (C-style) or column-major (Fortran-style) order. + + Attributes + ---------- + T : ndarray + Transpose of the array. + data : buffer + The array's elements, in memory. + dtype : dtype object + Describes the format of the elements in the array. + flags : dict + Dictionary containing information related to memory use, e.g., + 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc. + flat : numpy.flatiter object + Flattened version of the array as an iterator. The iterator + allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for + assignment examples; TODO). + imag : ndarray + Imaginary part of the array. + real : ndarray + Real part of the array. + size : int + Number of elements in the array. + itemsize : int + The memory use of each array element in bytes. + nbytes : int + The total number of bytes required to store the array data, + i.e., ``itemsize * size``. + ndim : int + The array's number of dimensions. + shape : tuple of ints + Shape of the array. + strides : tuple of ints + The step-size required to move from one element to the next in + memory. For example, a contiguous ``(3, 4)`` array of type + ``int16`` in C-order has strides ``(8, 2)``. This implies that + to move from element to element in memory requires jumps of 2 bytes. + To move from row-to-row, one needs to jump 8 bytes at a time + (``2 * 4``). + ctypes : ctypes object + Class containing properties of the array needed for interaction + with ctypes. + base : ndarray + If the array is a view into another array, that array is its `base` + (unless that array is also a view). The `base` array is where the + array data is actually stored. + + See Also + -------- + array : Construct an array. + zeros : Create an array, each element of which is zero. + empty : Create an array, but leave its allocated memory unchanged (i.e., + it contains "garbage"). + dtype : Create a data-type. + numpy.typing.NDArray : An ndarray alias :term:`generic ` + w.r.t. its `dtype.type `. + + Notes + ----- + There are two modes of creating an array using ``__new__``: + + 1. If `buffer` is None, then only `shape`, `dtype`, and `order` + are used. + 2. If `buffer` is an object exposing the buffer interface, then + all keywords are interpreted. + + No ``__init__`` method is needed because the array is fully initialized + after the ``__new__`` method. + + Examples + -------- + These examples illustrate the low-level `ndarray` constructor. Refer + to the `See Also` section above for easier ways of constructing an + ndarray. + + First mode, `buffer` is None: + + >>> np.ndarray(shape=(2,2), dtype=float, order='F') + array([[0.0e+000, 0.0e+000], # random + [ nan, 2.5e-323]]) + + Second mode: + + >>> np.ndarray((2,), buffer=np.array([1,2,3]), + ... offset=np.int_().itemsize, + ... dtype=int) # offset = 1*itemsize, i.e. skip first element + array([2, 3]) + + """) + + +############################################################################## +# +# ndarray attributes +# +############################################################################## + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__', + """Array protocol: Python side.""")) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__', + """Array priority.""")) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__', + """Array protocol: C-struct side.""")) + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__dlpack__', + """a.__dlpack__(*, stream=None) + + DLPack Protocol: Part of the Array API.""")) + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__dlpack_device__', + """a.__dlpack_device__() + + DLPack Protocol: Part of the Array API.""")) + +add_newdoc('numpy.core.multiarray', 'ndarray', ('base', + """ + Base object if memory is from some other object. + + Examples + -------- + The base of an array that owns its memory is None: + + >>> x = np.array([1,2,3,4]) + >>> x.base is None + True + + Slicing creates a view, whose memory is shared with x: + + >>> y = x[2:] + >>> y.base is x + True + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes', + """ + An object to simplify the interaction of the array with the ctypes + module. + + This attribute creates an object that makes it easier to use arrays + when calling shared libraries with the ctypes module. The returned + object has, among others, data, shape, and strides attributes (see + Notes below) which themselves return ctypes objects that can be used + as arguments to a shared library. + + Parameters + ---------- + None + + Returns + ------- + c : Python object + Possessing attributes data, shape, strides, etc. + + See Also + -------- + numpy.ctypeslib + + Notes + ----- + Below are the public attributes of this object which were documented + in "Guide to NumPy" (we have omitted undocumented public attributes, + as well as documented private attributes): + + .. autoattribute:: numpy.core._internal._ctypes.data + :noindex: + + .. autoattribute:: numpy.core._internal._ctypes.shape + :noindex: + + .. autoattribute:: numpy.core._internal._ctypes.strides + :noindex: + + .. automethod:: numpy.core._internal._ctypes.data_as + :noindex: + + .. automethod:: numpy.core._internal._ctypes.shape_as + :noindex: + + .. automethod:: numpy.core._internal._ctypes.strides_as + :noindex: + + If the ctypes module is not available, then the ctypes attribute + of array objects still returns something useful, but ctypes objects + are not returned and errors may be raised instead. In particular, + the object will still have the ``as_parameter`` attribute which will + return an integer equal to the data attribute. + + Examples + -------- + >>> import ctypes + >>> x = np.array([[0, 1], [2, 3]], dtype=np.int32) + >>> x + array([[0, 1], + [2, 3]], dtype=int32) + >>> x.ctypes.data + 31962608 # may vary + >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)) + <__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary + >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents + c_uint(0) + >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents + c_ulong(4294967296) + >>> x.ctypes.shape + # may vary + >>> x.ctypes.strides + # may vary + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('data', + """Python buffer object pointing to the start of the array's data.""")) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype', + """ + Data-type of the array's elements. + + .. warning:: + + Setting ``arr.dtype`` is discouraged and may be deprecated in the + future. Setting will replace the ``dtype`` without modifying the + memory (see also `ndarray.view` and `ndarray.astype`). + + Parameters + ---------- + None + + Returns + ------- + d : numpy dtype object + + See Also + -------- + ndarray.astype : Cast the values contained in the array to a new data-type. + ndarray.view : Create a view of the same data but a different data-type. + numpy.dtype + + Examples + -------- + >>> x + array([[0, 1], + [2, 3]]) + >>> x.dtype + dtype('int32') + >>> type(x.dtype) + + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('imag', + """ + The imaginary part of the array. + + Examples + -------- + >>> x = np.sqrt([1+0j, 0+1j]) + >>> x.imag + array([ 0. , 0.70710678]) + >>> x.imag.dtype + dtype('float64') + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize', + """ + Length of one array element in bytes. + + Examples + -------- + >>> x = np.array([1,2,3], dtype=np.float64) + >>> x.itemsize + 8 + >>> x = np.array([1,2,3], dtype=np.complex128) + >>> x.itemsize + 16 + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('flags', + """ + Information about the memory layout of the array. + + Attributes + ---------- + C_CONTIGUOUS (C) + The data is in a single, C-style contiguous segment. + F_CONTIGUOUS (F) + The data is in a single, Fortran-style contiguous segment. + OWNDATA (O) + The array owns the memory it uses or borrows it from another object. + WRITEABLE (W) + The data area can be written to. Setting this to False locks + the data, making it read-only. A view (slice, etc.) inherits WRITEABLE + from its base array at creation time, but a view of a writeable + array may be subsequently locked while the base array remains writeable. + (The opposite is not true, in that a view of a locked array may not + be made writeable. However, currently, locking a base object does not + lock any views that already reference it, so under that circumstance it + is possible to alter the contents of a locked array via a previously + created writeable view onto it.) Attempting to change a non-writeable + array raises a RuntimeError exception. + ALIGNED (A) + The data and all elements are aligned appropriately for the hardware. + WRITEBACKIFCOPY (X) + This array is a copy of some other array. The C-API function + PyArray_ResolveWritebackIfCopy must be called before deallocating + to the base array will be updated with the contents of this array. + FNC + F_CONTIGUOUS and not C_CONTIGUOUS. + FORC + F_CONTIGUOUS or C_CONTIGUOUS (one-segment test). + BEHAVED (B) + ALIGNED and WRITEABLE. + CARRAY (CA) + BEHAVED and C_CONTIGUOUS. + FARRAY (FA) + BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS. + + Notes + ----- + The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``), + or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag + names are only supported in dictionary access. + + Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be + changed by the user, via direct assignment to the attribute or dictionary + entry, or by calling `ndarray.setflags`. + + The array flags cannot be set arbitrarily: + + - WRITEBACKIFCOPY can only be set ``False``. + - ALIGNED can only be set ``True`` if the data is truly aligned. + - WRITEABLE can only be set ``True`` if the array owns its own memory + or the ultimate owner of the memory exposes a writeable buffer + interface or is a string. + + Arrays can be both C-style and Fortran-style contiguous simultaneously. + This is clear for 1-dimensional arrays, but can also be true for higher + dimensional arrays. + + Even for contiguous arrays a stride for a given dimension + ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1`` + or the array has no elements. + It does *not* generally hold that ``self.strides[-1] == self.itemsize`` + for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for + Fortran-style contiguous arrays is true. + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('flat', + """ + A 1-D iterator over the array. + + This is a `numpy.flatiter` instance, which acts similarly to, but is not + a subclass of, Python's built-in iterator object. + + See Also + -------- + flatten : Return a copy of the array collapsed into one dimension. + + flatiter + + Examples + -------- + >>> x = np.arange(1, 7).reshape(2, 3) + >>> x + array([[1, 2, 3], + [4, 5, 6]]) + >>> x.flat[3] + 4 + >>> x.T + array([[1, 4], + [2, 5], + [3, 6]]) + >>> x.T.flat[3] + 5 + >>> type(x.flat) + + + An assignment example: + + >>> x.flat = 3; x + array([[3, 3, 3], + [3, 3, 3]]) + >>> x.flat[[1,4]] = 1; x + array([[3, 1, 3], + [3, 1, 3]]) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes', + """ + Total bytes consumed by the elements of the array. + + Notes + ----- + Does not include memory consumed by non-element attributes of the + array object. + + See Also + -------- + sys.getsizeof + Memory consumed by the object itself without parents in case view. + This does include memory consumed by non-element attributes. + + Examples + -------- + >>> x = np.zeros((3,5,2), dtype=np.complex128) + >>> x.nbytes + 480 + >>> np.prod(x.shape) * x.itemsize + 480 + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim', + """ + Number of array dimensions. + + Examples + -------- + >>> x = np.array([1, 2, 3]) + >>> x.ndim + 1 + >>> y = np.zeros((2, 3, 4)) + >>> y.ndim + 3 + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('real', + """ + The real part of the array. + + Examples + -------- + >>> x = np.sqrt([1+0j, 0+1j]) + >>> x.real + array([ 1. , 0.70710678]) + >>> x.real.dtype + dtype('float64') + + See Also + -------- + numpy.real : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('shape', + """ + Tuple of array dimensions. + + The shape property is usually used to get the current shape of an array, + but may also be used to reshape the array in-place by assigning a tuple of + array dimensions to it. As with `numpy.reshape`, one of the new shape + dimensions can be -1, in which case its value is inferred from the size of + the array and the remaining dimensions. Reshaping an array in-place will + fail if a copy is required. + + .. warning:: + + Setting ``arr.shape`` is discouraged and may be deprecated in the + future. Using `ndarray.reshape` is the preferred approach. + + Examples + -------- + >>> x = np.array([1, 2, 3, 4]) + >>> x.shape + (4,) + >>> y = np.zeros((2, 3, 4)) + >>> y.shape + (2, 3, 4) + >>> y.shape = (3, 8) + >>> y + array([[ 0., 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0.]]) + >>> y.shape = (3, 6) + Traceback (most recent call last): + File "", line 1, in + ValueError: total size of new array must be unchanged + >>> np.zeros((4,2))[::2].shape = (-1,) + Traceback (most recent call last): + File "", line 1, in + AttributeError: Incompatible shape for in-place modification. Use + `.reshape()` to make a copy with the desired shape. + + See Also + -------- + numpy.shape : Equivalent getter function. + numpy.reshape : Function similar to setting ``shape``. + ndarray.reshape : Method similar to setting ``shape``. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('size', + """ + Number of elements in the array. + + Equal to ``np.prod(a.shape)``, i.e., the product of the array's + dimensions. + + Notes + ----- + `a.size` returns a standard arbitrary precision Python integer. This + may not be the case with other methods of obtaining the same value + (like the suggested ``np.prod(a.shape)``, which returns an instance + of ``np.int_``), and may be relevant if the value is used further in + calculations that may overflow a fixed size integer type. + + Examples + -------- + >>> x = np.zeros((3, 5, 2), dtype=np.complex128) + >>> x.size + 30 + >>> np.prod(x.shape) + 30 + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('strides', + """ + Tuple of bytes to step in each dimension when traversing an array. + + The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a` + is:: + + offset = sum(np.array(i) * a.strides) + + A more detailed explanation of strides can be found in the + "ndarray.rst" file in the NumPy reference guide. + + .. warning:: + + Setting ``arr.strides`` is discouraged and may be deprecated in the + future. `numpy.lib.stride_tricks.as_strided` should be preferred + to create a new view of the same data in a safer way. + + Notes + ----- + Imagine an array of 32-bit integers (each 4 bytes):: + + x = np.array([[0, 1, 2, 3, 4], + [5, 6, 7, 8, 9]], dtype=np.int32) + + This array is stored in memory as 40 bytes, one after the other + (known as a contiguous block of memory). The strides of an array tell + us how many bytes we have to skip in memory to move to the next position + along a certain axis. For example, we have to skip 4 bytes (1 value) to + move to the next column, but 20 bytes (5 values) to get to the same + position in the next row. As such, the strides for the array `x` will be + ``(20, 4)``. + + See Also + -------- + numpy.lib.stride_tricks.as_strided + + Examples + -------- + >>> y = np.reshape(np.arange(2*3*4), (2,3,4)) + >>> y + array([[[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]], + [[12, 13, 14, 15], + [16, 17, 18, 19], + [20, 21, 22, 23]]]) + >>> y.strides + (48, 16, 4) + >>> y[1,1,1] + 17 + >>> offset=sum(y.strides * np.array((1,1,1))) + >>> offset/y.itemsize + 17 + + >>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0) + >>> x.strides + (32, 4, 224, 1344) + >>> i = np.array([3,5,2,2]) + >>> offset = sum(i * x.strides) + >>> x[3,5,2,2] + 813 + >>> offset / x.itemsize + 813 + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('T', + """ + View of the transposed array. + + Same as ``self.transpose()``. + + Examples + -------- + >>> a = np.array([[1, 2], [3, 4]]) + >>> a + array([[1, 2], + [3, 4]]) + >>> a.T + array([[1, 3], + [2, 4]]) + + >>> a = np.array([1, 2, 3, 4]) + >>> a + array([1, 2, 3, 4]) + >>> a.T + array([1, 2, 3, 4]) + + See Also + -------- + transpose + + """)) + + +############################################################################## +# +# ndarray methods +# +############################################################################## + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__', + """ a.__array__([dtype], /) + + Returns either a new reference to self if dtype is not given or a new array + of provided data type if dtype is different from the current dtype of the + array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__', + """a.__array_finalize__(obj, /) + + Present so subclasses can call super. Does nothing. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_prepare__', + """a.__array_prepare__(array[, context], /) + + Returns a view of `array` with the same type as self. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__', + """a.__array_wrap__(array[, context], /) + + Returns a view of `array` with the same type as self. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__', + """a.__copy__() + + Used if :func:`copy.copy` is called on an array. Returns a copy of the array. + + Equivalent to ``a.copy(order='K')``. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__class_getitem__', + """a.__class_getitem__(item, /) + + Return a parametrized wrapper around the `~numpy.ndarray` type. + + .. versionadded:: 1.22 + + Returns + ------- + alias : types.GenericAlias + A parametrized `~numpy.ndarray` type. + + Examples + -------- + >>> from typing import Any + >>> import numpy as np + + >>> np.ndarray[Any, np.dtype[Any]] + numpy.ndarray[typing.Any, numpy.dtype[typing.Any]] + + See Also + -------- + :pep:`585` : Type hinting generics in standard collections. + numpy.typing.NDArray : An ndarray alias :term:`generic ` + w.r.t. its `dtype.type `. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__', + """a.__deepcopy__(memo, /) + + Used if :func:`copy.deepcopy` is called on an array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__', + """a.__reduce__() + + For pickling. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__', + """a.__setstate__(state, /) + + For unpickling. + + The `state` argument must be a sequence that contains the following + elements: + + Parameters + ---------- + version : int + optional pickle version. If omitted defaults to 0. + shape : tuple + dtype : data-type + isFortran : bool + rawdata : string or list + a binary string with the data (or a list if 'a' is an object array) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('all', + """ + a.all(axis=None, out=None, keepdims=False, *, where=True) + + Returns True if all elements evaluate to True. + + Refer to `numpy.all` for full documentation. + + See Also + -------- + numpy.all : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('any', + """ + a.any(axis=None, out=None, keepdims=False, *, where=True) + + Returns True if any of the elements of `a` evaluate to True. + + Refer to `numpy.any` for full documentation. + + See Also + -------- + numpy.any : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax', + """ + a.argmax(axis=None, out=None, *, keepdims=False) + + Return indices of the maximum values along the given axis. + + Refer to `numpy.argmax` for full documentation. + + See Also + -------- + numpy.argmax : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin', + """ + a.argmin(axis=None, out=None, *, keepdims=False) + + Return indices of the minimum values along the given axis. + + Refer to `numpy.argmin` for detailed documentation. + + See Also + -------- + numpy.argmin : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort', + """ + a.argsort(axis=-1, kind=None, order=None) + + Returns the indices that would sort this array. + + Refer to `numpy.argsort` for full documentation. + + See Also + -------- + numpy.argsort : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('argpartition', + """ + a.argpartition(kth, axis=-1, kind='introselect', order=None) + + Returns the indices that would partition this array. + + Refer to `numpy.argpartition` for full documentation. + + .. versionadded:: 1.8.0 + + See Also + -------- + numpy.argpartition : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('astype', + """ + a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True) + + Copy of the array, cast to a specified type. + + Parameters + ---------- + dtype : str or dtype + Typecode or data-type to which the array is cast. + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout order of the result. + 'C' means C order, 'F' means Fortran order, 'A' + means 'F' order if all the arrays are Fortran contiguous, + 'C' order otherwise, and 'K' means as close to the + order the array elements appear in memory as possible. + Default is 'K'. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Defaults to 'unsafe' + for backwards compatibility. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + subok : bool, optional + If True, then sub-classes will be passed-through (default), otherwise + the returned array will be forced to be a base-class array. + copy : bool, optional + By default, astype always returns a newly allocated array. If this + is set to false, and the `dtype`, `order`, and `subok` + requirements are satisfied, the input array is returned instead + of a copy. + + Returns + ------- + arr_t : ndarray + Unless `copy` is False and the other conditions for returning the input + array are satisfied (see description for `copy` input parameter), `arr_t` + is a new array of the same shape as the input array, with dtype, order + given by `dtype`, `order`. + + Notes + ----- + .. versionchanged:: 1.17.0 + Casting between a simple data type and a structured one is possible only + for "unsafe" casting. Casting to multiple fields is allowed, but + casting from multiple fields is not. + + .. versionchanged:: 1.9.0 + Casting from numeric to string types in 'safe' casting mode requires + that the string dtype length is long enough to store the max + integer/float value converted. + + Raises + ------ + ComplexWarning + When casting from complex to float or int. To avoid this, + one should use ``a.real.astype(t)``. + + Examples + -------- + >>> x = np.array([1, 2, 2.5]) + >>> x + array([1. , 2. , 2.5]) + + >>> x.astype(int) + array([1, 2, 2]) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap', + """ + a.byteswap(inplace=False) + + Swap the bytes of the array elements + + Toggle between low-endian and big-endian data representation by + returning a byteswapped array, optionally swapped in-place. + Arrays of byte-strings are not swapped. The real and imaginary + parts of a complex number are swapped individually. + + Parameters + ---------- + inplace : bool, optional + If ``True``, swap bytes in-place, default is ``False``. + + Returns + ------- + out : ndarray + The byteswapped array. If `inplace` is ``True``, this is + a view to self. + + Examples + -------- + >>> A = np.array([1, 256, 8755], dtype=np.int16) + >>> list(map(hex, A)) + ['0x1', '0x100', '0x2233'] + >>> A.byteswap(inplace=True) + array([ 256, 1, 13090], dtype=int16) + >>> list(map(hex, A)) + ['0x100', '0x1', '0x3322'] + + Arrays of byte-strings are not swapped + + >>> A = np.array([b'ceg', b'fac']) + >>> A.byteswap() + array([b'ceg', b'fac'], dtype='|S3') + + ``A.newbyteorder().byteswap()`` produces an array with the same values + but different representation in memory + + >>> A = np.array([1, 2, 3]) + >>> A.view(np.uint8) + array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, + 0, 0], dtype=uint8) + >>> A.newbyteorder().byteswap(inplace=True) + array([1, 2, 3]) + >>> A.view(np.uint8) + array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, + 0, 3], dtype=uint8) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('choose', + """ + a.choose(choices, out=None, mode='raise') + + Use an index array to construct a new array from a set of choices. + + Refer to `numpy.choose` for full documentation. + + See Also + -------- + numpy.choose : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('clip', + """ + a.clip(min=None, max=None, out=None, **kwargs) + + Return an array whose values are limited to ``[min, max]``. + One of max or min must be given. + + Refer to `numpy.clip` for full documentation. + + See Also + -------- + numpy.clip : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('compress', + """ + a.compress(condition, axis=None, out=None) + + Return selected slices of this array along given axis. + + Refer to `numpy.compress` for full documentation. + + See Also + -------- + numpy.compress : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('conj', + """ + a.conj() + + Complex-conjugate all elements. + + Refer to `numpy.conjugate` for full documentation. + + See Also + -------- + numpy.conjugate : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate', + """ + a.conjugate() + + Return the complex conjugate, element-wise. + + Refer to `numpy.conjugate` for full documentation. + + See Also + -------- + numpy.conjugate : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('copy', + """ + a.copy(order='C') + + Return a copy of the array. + + Parameters + ---------- + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout of the copy. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. (Note that this function and :func:`numpy.copy` are very + similar but have different default values for their order= + arguments, and this function always passes sub-classes through.) + + See also + -------- + numpy.copy : Similar function with different default behavior + numpy.copyto + + Notes + ----- + This function is the preferred method for creating an array copy. The + function :func:`numpy.copy` is similar, but it defaults to using order 'K', + and will not pass sub-classes through by default. + + Examples + -------- + >>> x = np.array([[1,2,3],[4,5,6]], order='F') + + >>> y = x.copy() + + >>> x.fill(0) + + >>> x + array([[0, 0, 0], + [0, 0, 0]]) + + >>> y + array([[1, 2, 3], + [4, 5, 6]]) + + >>> y.flags['C_CONTIGUOUS'] + True + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod', + """ + a.cumprod(axis=None, dtype=None, out=None) + + Return the cumulative product of the elements along the given axis. + + Refer to `numpy.cumprod` for full documentation. + + See Also + -------- + numpy.cumprod : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum', + """ + a.cumsum(axis=None, dtype=None, out=None) + + Return the cumulative sum of the elements along the given axis. + + Refer to `numpy.cumsum` for full documentation. + + See Also + -------- + numpy.cumsum : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal', + """ + a.diagonal(offset=0, axis1=0, axis2=1) + + Return specified diagonals. In NumPy 1.9 the returned array is a + read-only view instead of a copy as in previous NumPy versions. In + a future version the read-only restriction will be removed. + + Refer to :func:`numpy.diagonal` for full documentation. + + See Also + -------- + numpy.diagonal : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('dot')) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('dump', + """a.dump(file) + + Dump a pickle of the array to the specified file. + The array can be read back with pickle.load or numpy.load. + + Parameters + ---------- + file : str or Path + A string naming the dump file. + + .. versionchanged:: 1.17.0 + `pathlib.Path` objects are now accepted. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps', + """ + a.dumps() + + Returns the pickle of the array as a string. + pickle.loads will convert the string back to an array. + + Parameters + ---------- + None + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('fill', + """ + a.fill(value) + + Fill the array with a scalar value. + + Parameters + ---------- + value : scalar + All elements of `a` will be assigned this value. + + Examples + -------- + >>> a = np.array([1, 2]) + >>> a.fill(0) + >>> a + array([0, 0]) + >>> a = np.empty(2) + >>> a.fill(1) + >>> a + array([1., 1.]) + + Fill expects a scalar value and always behaves the same as assigning + to a single array element. The following is a rare example where this + distinction is important: + + >>> a = np.array([None, None], dtype=object) + >>> a[0] = np.array(3) + >>> a + array([array(3), None], dtype=object) + >>> a.fill(np.array(3)) + >>> a + array([array(3), array(3)], dtype=object) + + Where other forms of assignments will unpack the array being assigned: + + >>> a[...] = np.array(3) + >>> a + array([3, 3], dtype=object) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten', + """ + a.flatten(order='C') + + Return a copy of the array collapsed into one dimension. + + Parameters + ---------- + order : {'C', 'F', 'A', 'K'}, optional + 'C' means to flatten in row-major (C-style) order. + 'F' means to flatten in column-major (Fortran- + style) order. 'A' means to flatten in column-major + order if `a` is Fortran *contiguous* in memory, + row-major order otherwise. 'K' means to flatten + `a` in the order the elements occur in memory. + The default is 'C'. + + Returns + ------- + y : ndarray + A copy of the input array, flattened to one dimension. + + See Also + -------- + ravel : Return a flattened array. + flat : A 1-D flat iterator over the array. + + Examples + -------- + >>> a = np.array([[1,2], [3,4]]) + >>> a.flatten() + array([1, 2, 3, 4]) + >>> a.flatten('F') + array([1, 3, 2, 4]) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield', + """ + a.getfield(dtype, offset=0) + + Returns a field of the given array as a certain type. + + A field is a view of the array data with a given data-type. The values in + the view are determined by the given type and the offset into the current + array in bytes. The offset needs to be such that the view dtype fits in the + array dtype; for example an array of dtype complex128 has 16-byte elements. + If taking a view with a 32-bit integer (4 bytes), the offset needs to be + between 0 and 12 bytes. + + Parameters + ---------- + dtype : str or dtype + The data type of the view. The dtype size of the view can not be larger + than that of the array itself. + offset : int + Number of bytes to skip before beginning the element view. + + Examples + -------- + >>> x = np.diag([1.+1.j]*2) + >>> x[1, 1] = 2 + 4.j + >>> x + array([[1.+1.j, 0.+0.j], + [0.+0.j, 2.+4.j]]) + >>> x.getfield(np.float64) + array([[1., 0.], + [0., 2.]]) + + By choosing an offset of 8 bytes we can select the complex part of the + array for our view: + + >>> x.getfield(np.float64, offset=8) + array([[1., 0.], + [0., 4.]]) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('item', + """ + a.item(*args) + + Copy an element of an array to a standard Python scalar and return it. + + Parameters + ---------- + \\*args : Arguments (variable number and type) + + * none: in this case, the method only works for arrays + with one element (`a.size == 1`), which element is + copied into a standard Python scalar object and returned. + + * int_type: this argument is interpreted as a flat index into + the array, specifying which element to copy and return. + + * tuple of int_types: functions as does a single int_type argument, + except that the argument is interpreted as an nd-index into the + array. + + Returns + ------- + z : Standard Python scalar object + A copy of the specified element of the array as a suitable + Python scalar + + Notes + ----- + When the data type of `a` is longdouble or clongdouble, item() returns + a scalar array object because there is no available Python scalar that + would not lose information. Void arrays return a buffer object for item(), + unless fields are defined, in which case a tuple is returned. + + `item` is very similar to a[args], except, instead of an array scalar, + a standard Python scalar is returned. This can be useful for speeding up + access to elements of the array and doing arithmetic on elements of the + array using Python's optimized math. + + Examples + -------- + >>> np.random.seed(123) + >>> x = np.random.randint(9, size=(3, 3)) + >>> x + array([[2, 2, 6], + [1, 3, 6], + [1, 0, 1]]) + >>> x.item(3) + 1 + >>> x.item(7) + 0 + >>> x.item((0, 1)) + 2 + >>> x.item((2, 2)) + 1 + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('itemset', + """ + a.itemset(*args) + + Insert scalar into an array (scalar is cast to array's dtype, if possible) + + There must be at least 1 argument, and define the last argument + as *item*. Then, ``a.itemset(*args)`` is equivalent to but faster + than ``a[args] = item``. The item should be a scalar value and `args` + must select a single item in the array `a`. + + Parameters + ---------- + \\*args : Arguments + If one argument: a scalar, only used in case `a` is of size 1. + If two arguments: the last argument is the value to be set + and must be a scalar, the first argument specifies a single array + element location. It is either an int or a tuple. + + Notes + ----- + Compared to indexing syntax, `itemset` provides some speed increase + for placing a scalar into a particular location in an `ndarray`, + if you must do this. However, generally this is discouraged: + among other problems, it complicates the appearance of the code. + Also, when using `itemset` (and `item`) inside a loop, be sure + to assign the methods to a local variable to avoid the attribute + look-up at each loop iteration. + + Examples + -------- + >>> np.random.seed(123) + >>> x = np.random.randint(9, size=(3, 3)) + >>> x + array([[2, 2, 6], + [1, 3, 6], + [1, 0, 1]]) + >>> x.itemset(4, 0) + >>> x.itemset((2, 2), 9) + >>> x + array([[2, 2, 6], + [1, 0, 6], + [1, 0, 9]]) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('max', + """ + a.max(axis=None, out=None, keepdims=False, initial=, where=True) + + Return the maximum along a given axis. + + Refer to `numpy.amax` for full documentation. + + See Also + -------- + numpy.amax : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('mean', + """ + a.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True) + + Returns the average of the array elements along given axis. + + Refer to `numpy.mean` for full documentation. + + See Also + -------- + numpy.mean : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('min', + """ + a.min(axis=None, out=None, keepdims=False, initial=, where=True) + + Return the minimum along a given axis. + + Refer to `numpy.amin` for full documentation. + + See Also + -------- + numpy.amin : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder', + """ + arr.newbyteorder(new_order='S', /) + + Return the array with the same data viewed with a different byte order. + + Equivalent to:: + + arr.view(arr.dtype.newbytorder(new_order)) + + Changes are also made in all fields and sub-arrays of the array data + type. + + + + Parameters + ---------- + new_order : string, optional + Byte order to force; a value from the byte order specifications + below. `new_order` codes can be any of: + + * 'S' - swap dtype from current to opposite endian + * {'<', 'little'} - little endian + * {'>', 'big'} - big endian + * {'=', 'native'} - native order, equivalent to `sys.byteorder` + * {'|', 'I'} - ignore (no change to byte order) + + The default value ('S') results in swapping the current + byte order. + + + Returns + ------- + new_arr : array + New array object with the dtype reflecting given change to the + byte order. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero', + """ + a.nonzero() + + Return the indices of the elements that are non-zero. + + Refer to `numpy.nonzero` for full documentation. + + See Also + -------- + numpy.nonzero : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('prod', + """ + a.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True) + + Return the product of the array elements over the given axis + + Refer to `numpy.prod` for full documentation. + + See Also + -------- + numpy.prod : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp', + """ + a.ptp(axis=None, out=None, keepdims=False) + + Peak to peak (maximum - minimum) value along a given axis. + + Refer to `numpy.ptp` for full documentation. + + See Also + -------- + numpy.ptp : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('put', + """ + a.put(indices, values, mode='raise') + + Set ``a.flat[n] = values[n]`` for all `n` in indices. + + Refer to `numpy.put` for full documentation. + + See Also + -------- + numpy.put : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel', + """ + a.ravel([order]) + + Return a flattened array. + + Refer to `numpy.ravel` for full documentation. + + See Also + -------- + numpy.ravel : equivalent function + + ndarray.flat : a flat iterator on the array. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat', + """ + a.repeat(repeats, axis=None) + + Repeat elements of an array. + + Refer to `numpy.repeat` for full documentation. + + See Also + -------- + numpy.repeat : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape', + """ + a.reshape(shape, order='C') + + Returns an array containing the same data with a new shape. + + Refer to `numpy.reshape` for full documentation. + + See Also + -------- + numpy.reshape : equivalent function + + Notes + ----- + Unlike the free function `numpy.reshape`, this method on `ndarray` allows + the elements of the shape parameter to be passed in as separate arguments. + For example, ``a.reshape(10, 11)`` is equivalent to + ``a.reshape((10, 11))``. + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('resize', + """ + a.resize(new_shape, refcheck=True) + + Change shape and size of array in-place. + + Parameters + ---------- + new_shape : tuple of ints, or `n` ints + Shape of resized array. + refcheck : bool, optional + If False, reference count will not be checked. Default is True. + + Returns + ------- + None + + Raises + ------ + ValueError + If `a` does not own its own data or references or views to it exist, + and the data memory must be changed. + PyPy only: will always raise if the data memory must be changed, since + there is no reliable way to determine if references or views to it + exist. + + SystemError + If the `order` keyword argument is specified. This behaviour is a + bug in NumPy. + + See Also + -------- + resize : Return a new array with the specified shape. + + Notes + ----- + This reallocates space for the data area if necessary. + + Only contiguous arrays (data elements consecutive in memory) can be + resized. + + The purpose of the reference count check is to make sure you + do not use this array as a buffer for another Python object and then + reallocate the memory. However, reference counts can increase in + other ways so if you are sure that you have not shared the memory + for this array with another Python object, then you may safely set + `refcheck` to False. + + Examples + -------- + Shrinking an array: array is flattened (in the order that the data are + stored in memory), resized, and reshaped: + + >>> a = np.array([[0, 1], [2, 3]], order='C') + >>> a.resize((2, 1)) + >>> a + array([[0], + [1]]) + + >>> a = np.array([[0, 1], [2, 3]], order='F') + >>> a.resize((2, 1)) + >>> a + array([[0], + [2]]) + + Enlarging an array: as above, but missing entries are filled with zeros: + + >>> b = np.array([[0, 1], [2, 3]]) + >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple + >>> b + array([[0, 1, 2], + [3, 0, 0]]) + + Referencing an array prevents resizing... + + >>> c = a + >>> a.resize((1, 1)) + Traceback (most recent call last): + ... + ValueError: cannot resize an array that references or is referenced ... + + Unless `refcheck` is False: + + >>> a.resize((1, 1), refcheck=False) + >>> a + array([[0]]) + >>> c + array([[0]]) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('round', + """ + a.round(decimals=0, out=None) + + Return `a` with each element rounded to the given number of decimals. + + Refer to `numpy.around` for full documentation. + + See Also + -------- + numpy.around : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted', + """ + a.searchsorted(v, side='left', sorter=None) + + Find indices where elements of v should be inserted in a to maintain order. + + For full documentation, see `numpy.searchsorted` + + See Also + -------- + numpy.searchsorted : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield', + """ + a.setfield(val, dtype, offset=0) + + Put a value into a specified place in a field defined by a data-type. + + Place `val` into `a`'s field defined by `dtype` and beginning `offset` + bytes into the field. + + Parameters + ---------- + val : object + Value to be placed in field. + dtype : dtype object + Data-type of the field in which to place `val`. + offset : int, optional + The number of bytes into the field at which to place `val`. + + Returns + ------- + None + + See Also + -------- + getfield + + Examples + -------- + >>> x = np.eye(3) + >>> x.getfield(np.float64) + array([[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]]) + >>> x.setfield(3, np.int32) + >>> x.getfield(np.int32) + array([[3, 3, 3], + [3, 3, 3], + [3, 3, 3]], dtype=int32) + >>> x + array([[1.0e+000, 1.5e-323, 1.5e-323], + [1.5e-323, 1.0e+000, 1.5e-323], + [1.5e-323, 1.5e-323, 1.0e+000]]) + >>> x.setfield(np.eye(3), np.int32) + >>> x + array([[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]]) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags', + """ + a.setflags(write=None, align=None, uic=None) + + Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, + respectively. + + These Boolean-valued flags affect how numpy interprets the memory + area used by `a` (see Notes below). The ALIGNED flag can only + be set to True if the data is actually aligned according to the type. + The WRITEBACKIFCOPY and flag can never be set + to True. The flag WRITEABLE can only be set to True if the array owns its + own memory, or the ultimate owner of the memory exposes a writeable buffer + interface, or is a string. (The exception for string is made so that + unpickling can be done without copying memory.) + + Parameters + ---------- + write : bool, optional + Describes whether or not `a` can be written to. + align : bool, optional + Describes whether or not `a` is aligned properly for its type. + uic : bool, optional + Describes whether or not `a` is a copy of another "base" array. + + Notes + ----- + Array flags provide information about how the memory area used + for the array is to be interpreted. There are 7 Boolean flags + in use, only four of which can be changed by the user: + WRITEBACKIFCOPY, WRITEABLE, and ALIGNED. + + WRITEABLE (W) the data area can be written to; + + ALIGNED (A) the data and strides are aligned appropriately for the hardware + (as determined by the compiler); + + WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced + by .base). When the C-API function PyArray_ResolveWritebackIfCopy is + called, the base array will be updated with the contents of this array. + + All flags can be accessed using the single (upper case) letter as well + as the full name. + + Examples + -------- + >>> y = np.array([[3, 1, 7], + ... [2, 0, 0], + ... [8, 5, 9]]) + >>> y + array([[3, 1, 7], + [2, 0, 0], + [8, 5, 9]]) + >>> y.flags + C_CONTIGUOUS : True + F_CONTIGUOUS : False + OWNDATA : True + WRITEABLE : True + ALIGNED : True + WRITEBACKIFCOPY : False + >>> y.setflags(write=0, align=0) + >>> y.flags + C_CONTIGUOUS : True + F_CONTIGUOUS : False + OWNDATA : True + WRITEABLE : False + ALIGNED : False + WRITEBACKIFCOPY : False + >>> y.setflags(uic=1) + Traceback (most recent call last): + File "", line 1, in + ValueError: cannot set WRITEBACKIFCOPY flag to True + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('sort', + """ + a.sort(axis=-1, kind=None, order=None) + + Sort an array in-place. Refer to `numpy.sort` for full documentation. + + Parameters + ---------- + axis : int, optional + Axis along which to sort. Default is -1, which means sort along the + last axis. + kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional + Sorting algorithm. The default is 'quicksort'. Note that both 'stable' + and 'mergesort' use timsort under the covers and, in general, the + actual implementation will vary with datatype. The 'mergesort' option + is retained for backwards compatibility. + + .. versionchanged:: 1.15.0 + The 'stable' option was added. + + order : str or list of str, optional + When `a` is an array with fields defined, this argument specifies + which fields to compare first, second, etc. A single field can + be specified as a string, and not all fields need be specified, + but unspecified fields will still be used, in the order in which + they come up in the dtype, to break ties. + + See Also + -------- + numpy.sort : Return a sorted copy of an array. + numpy.argsort : Indirect sort. + numpy.lexsort : Indirect stable sort on multiple keys. + numpy.searchsorted : Find elements in sorted array. + numpy.partition: Partial sort. + + Notes + ----- + See `numpy.sort` for notes on the different sorting algorithms. + + Examples + -------- + >>> a = np.array([[1,4], [3,1]]) + >>> a.sort(axis=1) + >>> a + array([[1, 4], + [1, 3]]) + >>> a.sort(axis=0) + >>> a + array([[1, 3], + [1, 4]]) + + Use the `order` keyword to specify a field to use when sorting a + structured array: + + >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)]) + >>> a.sort(order='y') + >>> a + array([(b'c', 1), (b'a', 2)], + dtype=[('x', 'S1'), ('y', '>> a = np.array([3, 4, 2, 1]) + >>> a.partition(3) + >>> a + array([2, 1, 3, 4]) + + >>> a.partition((1, 3)) + >>> a + array([1, 2, 3, 4]) + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze', + """ + a.squeeze(axis=None) + + Remove axes of length one from `a`. + + Refer to `numpy.squeeze` for full documentation. + + See Also + -------- + numpy.squeeze : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('std', + """ + a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) + + Returns the standard deviation of the array elements along given axis. + + Refer to `numpy.std` for full documentation. + + See Also + -------- + numpy.std : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('sum', + """ + a.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True) + + Return the sum of the array elements over the given axis. + + Refer to `numpy.sum` for full documentation. + + See Also + -------- + numpy.sum : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes', + """ + a.swapaxes(axis1, axis2) + + Return a view of the array with `axis1` and `axis2` interchanged. + + Refer to `numpy.swapaxes` for full documentation. + + See Also + -------- + numpy.swapaxes : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('take', + """ + a.take(indices, axis=None, out=None, mode='raise') + + Return an array formed from the elements of `a` at the given indices. + + Refer to `numpy.take` for full documentation. + + See Also + -------- + numpy.take : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile', + """ + a.tofile(fid, sep="", format="%s") + + Write array to a file as text or binary (default). + + Data is always written in 'C' order, independent of the order of `a`. + The data produced by this method can be recovered using the function + fromfile(). + + Parameters + ---------- + fid : file or str or Path + An open file object, or a string containing a filename. + + .. versionchanged:: 1.17.0 + `pathlib.Path` objects are now accepted. + + sep : str + Separator between array items for text output. + If "" (empty), a binary file is written, equivalent to + ``file.write(a.tobytes())``. + format : str + Format string for text file output. + Each entry in the array is formatted to text by first converting + it to the closest Python type, and then using "format" % item. + + Notes + ----- + This is a convenience function for quick storage of array data. + Information on endianness and precision is lost, so this method is not a + good choice for files intended to archive data or transport data between + machines with different endianness. Some of these problems can be overcome + by outputting the data as text files, at the expense of speed and file + size. + + When fid is a file object, array contents are directly written to the + file, bypassing the file object's ``write`` method. As a result, tofile + cannot be used with files objects supporting compression (e.g., GzipFile) + or file-like objects that do not support ``fileno()`` (e.g., BytesIO). + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist', + """ + a.tolist() + + Return the array as an ``a.ndim``-levels deep nested list of Python scalars. + + Return a copy of the array data as a (nested) Python list. + Data items are converted to the nearest compatible builtin Python type, via + the `~numpy.ndarray.item` function. + + If ``a.ndim`` is 0, then since the depth of the nested list is 0, it will + not be a list at all, but a simple Python scalar. + + Parameters + ---------- + none + + Returns + ------- + y : object, or list of object, or list of list of object, or ... + The possibly nested list of array elements. + + Notes + ----- + The array may be recreated via ``a = np.array(a.tolist())``, although this + may sometimes lose precision. + + Examples + -------- + For a 1D array, ``a.tolist()`` is almost the same as ``list(a)``, + except that ``tolist`` changes numpy scalars to Python scalars: + + >>> a = np.uint32([1, 2]) + >>> a_list = list(a) + >>> a_list + [1, 2] + >>> type(a_list[0]) + + >>> a_tolist = a.tolist() + >>> a_tolist + [1, 2] + >>> type(a_tolist[0]) + + + Additionally, for a 2D array, ``tolist`` applies recursively: + + >>> a = np.array([[1, 2], [3, 4]]) + >>> list(a) + [array([1, 2]), array([3, 4])] + >>> a.tolist() + [[1, 2], [3, 4]] + + The base case for this recursion is a 0D array: + + >>> a = np.array(1) + >>> list(a) + Traceback (most recent call last): + ... + TypeError: iteration over a 0-d array + >>> a.tolist() + 1 + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('tobytes', """ + a.tobytes(order='C') + + Construct Python bytes containing the raw data bytes in the array. + + Constructs Python bytes showing a copy of the raw contents of + data memory. The bytes object is produced in C-order by default. + This behavior is controlled by the ``order`` parameter. + + .. versionadded:: 1.9.0 + + Parameters + ---------- + order : {'C', 'F', 'A'}, optional + Controls the memory layout of the bytes object. 'C' means C-order, + 'F' means F-order, 'A' (short for *Any*) means 'F' if `a` is + Fortran contiguous, 'C' otherwise. Default is 'C'. + + Returns + ------- + s : bytes + Python bytes exhibiting a copy of `a`'s raw data. + + See also + -------- + frombuffer + Inverse of this operation, construct a 1-dimensional array from Python + bytes. + + Examples + -------- + >>> x = np.array([[0, 1], [2, 3]], dtype='>> x.tobytes() + b'\\x00\\x00\\x01\\x00\\x02\\x00\\x03\\x00' + >>> x.tobytes('C') == x.tobytes() + True + >>> x.tobytes('F') + b'\\x00\\x00\\x02\\x00\\x01\\x00\\x03\\x00' + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring', r""" + a.tostring(order='C') + + A compatibility alias for `tobytes`, with exactly the same behavior. + + Despite its name, it returns `bytes` not `str`\ s. + + .. deprecated:: 1.19.0 + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('trace', + """ + a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) + + Return the sum along diagonals of the array. + + Refer to `numpy.trace` for full documentation. + + See Also + -------- + numpy.trace : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose', + """ + a.transpose(*axes) + + Returns a view of the array with axes transposed. + + Refer to `numpy.transpose` for full documentation. + + Parameters + ---------- + axes : None, tuple of ints, or `n` ints + + * None or no argument: reverses the order of the axes. + + * tuple of ints: `i` in the `j`-th place in the tuple means that the + array's `i`-th axis becomes the transposed array's `j`-th axis. + + * `n` ints: same as an n-tuple of the same ints (this form is + intended simply as a "convenience" alternative to the tuple form). + + Returns + ------- + p : ndarray + View of the array with its axes suitably permuted. + + See Also + -------- + transpose : Equivalent function. + ndarray.T : Array property returning the array transposed. + ndarray.reshape : Give a new shape to an array without changing its data. + + Examples + -------- + >>> a = np.array([[1, 2], [3, 4]]) + >>> a + array([[1, 2], + [3, 4]]) + >>> a.transpose() + array([[1, 3], + [2, 4]]) + >>> a.transpose((1, 0)) + array([[1, 3], + [2, 4]]) + >>> a.transpose(1, 0) + array([[1, 3], + [2, 4]]) + + >>> a = np.array([1, 2, 3, 4]) + >>> a + array([1, 2, 3, 4]) + >>> a.transpose() + array([1, 2, 3, 4]) + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('var', + """ + a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) + + Returns the variance of the array elements, along given axis. + + Refer to `numpy.var` for full documentation. + + See Also + -------- + numpy.var : equivalent function + + """)) + + +add_newdoc('numpy.core.multiarray', 'ndarray', ('view', + """ + a.view([dtype][, type]) + + New view of array with the same data. + + .. note:: + Passing None for ``dtype`` is different from omitting the parameter, + since the former invokes ``dtype(None)`` which is an alias for + ``dtype('float_')``. + + Parameters + ---------- + dtype : data-type or ndarray sub-class, optional + Data-type descriptor of the returned view, e.g., float32 or int16. + Omitting it results in the view having the same data-type as `a`. + This argument can also be specified as an ndarray sub-class, which + then specifies the type of the returned object (this is equivalent to + setting the ``type`` parameter). + type : Python type, optional + Type of the returned view, e.g., ndarray or matrix. Again, omission + of the parameter results in type preservation. + + Notes + ----- + ``a.view()`` is used two different ways: + + ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view + of the array's memory with a different data-type. This can cause a + reinterpretation of the bytes of memory. + + ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just + returns an instance of `ndarray_subclass` that looks at the same array + (same shape, dtype, etc.) This does not cause a reinterpretation of the + memory. + + For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of + bytes per entry than the previous dtype (for example, converting a regular + array to a structured array), then the last axis of ``a`` must be + contiguous. This axis will be resized in the result. + + .. versionchanged:: 1.23.0 + Only the last axis needs to be contiguous. Previously, the entire array + had to be C-contiguous. + + Examples + -------- + >>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)]) + + Viewing array data using a different type and dtype: + + >>> y = x.view(dtype=np.int16, type=np.matrix) + >>> y + matrix([[513]], dtype=int16) + >>> print(type(y)) + + + Creating a view on a structured array so it can be used in calculations + + >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)]) + >>> xv = x.view(dtype=np.int8).reshape(-1,2) + >>> xv + array([[1, 2], + [3, 4]], dtype=int8) + >>> xv.mean(0) + array([2., 3.]) + + Making changes to the view changes the underlying array + + >>> xv[0,1] = 20 + >>> x + array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')]) + + Using a view to convert an array to a recarray: + + >>> z = x.view(np.recarray) + >>> z.a + array([1, 3], dtype=int8) + + Views share data: + + >>> x[0] = (9, 10) + >>> z[0] + (9, 10) + + Views that change the dtype size (bytes per entry) should normally be + avoided on arrays defined by slices, transposes, fortran-ordering, etc.: + + >>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16) + >>> y = x[:, ::2] + >>> y + array([[1, 3], + [4, 6]], dtype=int16) + >>> y.view(dtype=[('width', np.int16), ('length', np.int16)]) + Traceback (most recent call last): + ... + ValueError: To change to a dtype of a different size, the last axis must be contiguous + >>> z = y.copy() + >>> z.view(dtype=[('width', np.int16), ('length', np.int16)]) + array([[(1, 3)], + [(4, 6)]], dtype=[('width', '>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4) + >>> x.transpose(1, 0, 2).view(np.int16) + array([[[ 256, 770], + [3340, 3854]], + + [[1284, 1798], + [4368, 4882]], + + [[2312, 2826], + [5396, 5910]]], dtype=int16) + + """)) + + +############################################################################## +# +# umath functions +# +############################################################################## + +add_newdoc('numpy.core.umath', 'frompyfunc', + """ + frompyfunc(func, /, nin, nout, *[, identity]) + + Takes an arbitrary Python function and returns a NumPy ufunc. + + Can be used, for example, to add broadcasting to a built-in Python + function (see Examples section). + + Parameters + ---------- + func : Python function object + An arbitrary Python function. + nin : int + The number of input arguments. + nout : int + The number of objects returned by `func`. + identity : object, optional + The value to use for the `~numpy.ufunc.identity` attribute of the resulting + object. If specified, this is equivalent to setting the underlying + C ``identity`` field to ``PyUFunc_IdentityValue``. + If omitted, the identity is set to ``PyUFunc_None``. Note that this is + _not_ equivalent to setting the identity to ``None``, which implies the + operation is reorderable. + + Returns + ------- + out : ufunc + Returns a NumPy universal function (``ufunc``) object. + + See Also + -------- + vectorize : Evaluates pyfunc over input arrays using broadcasting rules of numpy. + + Notes + ----- + The returned ufunc always returns PyObject arrays. + + Examples + -------- + Use frompyfunc to add broadcasting to the Python function ``oct``: + + >>> oct_array = np.frompyfunc(oct, 1, 1) + >>> oct_array(np.array((10, 30, 100))) + array(['0o12', '0o36', '0o144'], dtype=object) + >>> np.array((oct(10), oct(30), oct(100))) # for comparison + array(['0o12', '0o36', '0o144'], dtype='>> np.geterrobj() # first get the defaults + [8192, 521, None] + + >>> def err_handler(type, flag): + ... print("Floating point error (%s), with flag %s" % (type, flag)) + ... + >>> old_bufsize = np.setbufsize(20000) + >>> old_err = np.seterr(divide='raise') + >>> old_handler = np.seterrcall(err_handler) + >>> np.geterrobj() + [8192, 521, ] + + >>> old_err = np.seterr(all='ignore') + >>> np.base_repr(np.geterrobj()[1], 8) + '0' + >>> old_err = np.seterr(divide='warn', over='log', under='call', + ... invalid='print') + >>> np.base_repr(np.geterrobj()[1], 8) + '4351' + + """) + +add_newdoc('numpy.core.umath', 'seterrobj', + """ + seterrobj(errobj, /) + + Set the object that defines floating-point error handling. + + The error object contains all information that defines the error handling + behavior in NumPy. `seterrobj` is used internally by the other + functions that set error handling behavior (`seterr`, `seterrcall`). + + Parameters + ---------- + errobj : list + The error object, a list containing three elements: + [internal numpy buffer size, error mask, error callback function]. + + The error mask is a single integer that holds the treatment information + on all four floating point errors. The information for each error type + is contained in three bits of the integer. If we print it in base 8, we + can see what treatment is set for "invalid", "under", "over", and + "divide" (in that order). The printed string can be interpreted with + + * 0 : 'ignore' + * 1 : 'warn' + * 2 : 'raise' + * 3 : 'call' + * 4 : 'print' + * 5 : 'log' + + See Also + -------- + geterrobj, seterr, geterr, seterrcall, geterrcall + getbufsize, setbufsize + + Notes + ----- + For complete documentation of the types of floating-point exceptions and + treatment options, see `seterr`. + + Examples + -------- + >>> old_errobj = np.geterrobj() # first get the defaults + >>> old_errobj + [8192, 521, None] + + >>> def err_handler(type, flag): + ... print("Floating point error (%s), with flag %s" % (type, flag)) + ... + >>> new_errobj = [20000, 12, err_handler] + >>> np.seterrobj(new_errobj) + >>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn') + '14' + >>> np.geterr() + {'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'} + >>> np.geterrcall() is err_handler + True + + """) + + +############################################################################## +# +# compiled_base functions +# +############################################################################## + +add_newdoc('numpy.core.multiarray', 'add_docstring', + """ + add_docstring(obj, docstring) + + Add a docstring to a built-in obj if possible. + If the obj already has a docstring raise a RuntimeError + If this routine does not know how to add a docstring to the object + raise a TypeError + """) + +add_newdoc('numpy.core.umath', '_add_newdoc_ufunc', + """ + add_ufunc_docstring(ufunc, new_docstring) + + Replace the docstring for a ufunc with new_docstring. + This method will only work if the current docstring for + the ufunc is NULL. (At the C level, i.e. when ufunc->doc is NULL.) + + Parameters + ---------- + ufunc : numpy.ufunc + A ufunc whose current doc is NULL. + new_docstring : string + The new docstring for the ufunc. + + Notes + ----- + This method allocates memory for new_docstring on + the heap. Technically this creates a mempory leak, since this + memory will not be reclaimed until the end of the program + even if the ufunc itself is removed. However this will only + be a problem if the user is repeatedly creating ufuncs with + no documentation, adding documentation via add_newdoc_ufunc, + and then throwing away the ufunc. + """) + +add_newdoc('numpy.core.multiarray', 'get_handler_name', + """ + get_handler_name(a: ndarray) -> str,None + + Return the name of the memory handler used by `a`. If not provided, return + the name of the memory handler that will be used to allocate data for the + next `ndarray` in this context. May return None if `a` does not own its + memory, in which case you can traverse ``a.base`` for a memory handler. + """) + +add_newdoc('numpy.core.multiarray', 'get_handler_version', + """ + get_handler_version(a: ndarray) -> int,None + + Return the version of the memory handler used by `a`. If not provided, + return the version of the memory handler that will be used to allocate data + for the next `ndarray` in this context. May return None if `a` does not own + its memory, in which case you can traverse ``a.base`` for a memory handler. + """) + +add_newdoc('numpy.core.multiarray', '_get_madvise_hugepage', + """ + _get_madvise_hugepage() -> bool + + Get use of ``madvise (2)`` MADV_HUGEPAGE support when + allocating the array data. Returns the currently set value. + See `global_state` for more information. + """) + +add_newdoc('numpy.core.multiarray', '_set_madvise_hugepage', + """ + _set_madvise_hugepage(enabled: bool) -> bool + + Set or unset use of ``madvise (2)`` MADV_HUGEPAGE support when + allocating the array data. Returns the previously set value. + See `global_state` for more information. + """) + +add_newdoc('numpy.core._multiarray_tests', 'format_float_OSprintf_g', + """ + format_float_OSprintf_g(val, precision) + + Print a floating point scalar using the system's printf function, + equivalent to: + + printf("%.*g", precision, val); + + for half/float/double, or replacing 'g' by 'Lg' for longdouble. This + method is designed to help cross-validate the format_float_* methods. + + Parameters + ---------- + val : python float or numpy floating scalar + Value to format. + + precision : non-negative integer, optional + Precision given to printf. + + Returns + ------- + rep : string + The string representation of the floating point value + + See Also + -------- + format_float_scientific + format_float_positional + """) + + +############################################################################## +# +# Documentation for ufunc attributes and methods +# +############################################################################## + + +############################################################################## +# +# ufunc object +# +############################################################################## + +add_newdoc('numpy.core', 'ufunc', + """ + Functions that operate element by element on whole arrays. + + To see the documentation for a specific ufunc, use `info`. For + example, ``np.info(np.sin)``. Because ufuncs are written in C + (for speed) and linked into Python with NumPy's ufunc facility, + Python's help() function finds this page whenever help() is called + on a ufunc. + + A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`. + + **Calling ufuncs:** ``op(*x[, out], where=True, **kwargs)`` + + Apply `op` to the arguments `*x` elementwise, broadcasting the arguments. + + The broadcasting rules are: + + * Dimensions of length 1 may be prepended to either array. + * Arrays may be repeated along dimensions of length 1. + + Parameters + ---------- + *x : array_like + Input arrays. + out : ndarray, None, or tuple of ndarray and None, optional + Alternate array object(s) in which to put the result; if provided, it + must have a shape that the inputs broadcast to. A tuple of arrays + (possible only as a keyword argument) must have length equal to the + number of outputs; use None for uninitialized outputs to be + allocated by the ufunc. + where : array_like, optional + This condition is broadcast over the input. At locations where the + condition is True, the `out` array will be set to the ufunc result. + Elsewhere, the `out` array will retain its original value. + Note that if an uninitialized `out` array is created via the default + ``out=None``, locations within it where the condition is False will + remain uninitialized. + **kwargs + For other keyword-only arguments, see the :ref:`ufunc docs `. + + Returns + ------- + r : ndarray or tuple of ndarray + `r` will have the shape that the arrays in `x` broadcast to; if `out` is + provided, it will be returned. If not, `r` will be allocated and + may contain uninitialized values. If the function has more than one + output, then the result will be a tuple of arrays. + + """) + + +############################################################################## +# +# ufunc attributes +# +############################################################################## + +add_newdoc('numpy.core', 'ufunc', ('identity', + """ + The identity value. + + Data attribute containing the identity element for the ufunc, if it has one. + If it does not, the attribute value is None. + + Examples + -------- + >>> np.add.identity + 0 + >>> np.multiply.identity + 1 + >>> np.power.identity + 1 + >>> print(np.exp.identity) + None + """)) + +add_newdoc('numpy.core', 'ufunc', ('nargs', + """ + The number of arguments. + + Data attribute containing the number of arguments the ufunc takes, including + optional ones. + + Notes + ----- + Typically this value will be one more than what you might expect because all + ufuncs take the optional "out" argument. + + Examples + -------- + >>> np.add.nargs + 3 + >>> np.multiply.nargs + 3 + >>> np.power.nargs + 3 + >>> np.exp.nargs + 2 + """)) + +add_newdoc('numpy.core', 'ufunc', ('nin', + """ + The number of inputs. + + Data attribute containing the number of arguments the ufunc treats as input. + + Examples + -------- + >>> np.add.nin + 2 + >>> np.multiply.nin + 2 + >>> np.power.nin + 2 + >>> np.exp.nin + 1 + """)) + +add_newdoc('numpy.core', 'ufunc', ('nout', + """ + The number of outputs. + + Data attribute containing the number of arguments the ufunc treats as output. + + Notes + ----- + Since all ufuncs can take output arguments, this will always be (at least) 1. + + Examples + -------- + >>> np.add.nout + 1 + >>> np.multiply.nout + 1 + >>> np.power.nout + 1 + >>> np.exp.nout + 1 + + """)) + +add_newdoc('numpy.core', 'ufunc', ('ntypes', + """ + The number of types. + + The number of numerical NumPy types - of which there are 18 total - on which + the ufunc can operate. + + See Also + -------- + numpy.ufunc.types + + Examples + -------- + >>> np.add.ntypes + 18 + >>> np.multiply.ntypes + 18 + >>> np.power.ntypes + 17 + >>> np.exp.ntypes + 7 + >>> np.remainder.ntypes + 14 + + """)) + +add_newdoc('numpy.core', 'ufunc', ('types', + """ + Returns a list with types grouped input->output. + + Data attribute listing the data-type "Domain-Range" groupings the ufunc can + deliver. The data-types are given using the character codes. + + See Also + -------- + numpy.ufunc.ntypes + + Examples + -------- + >>> np.add.types + ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', + 'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', + 'GG->G', 'OO->O'] + + >>> np.multiply.types + ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', + 'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', + 'GG->G', 'OO->O'] + + >>> np.power.types + ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', + 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G', + 'OO->O'] + + >>> np.exp.types + ['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O'] + + >>> np.remainder.types + ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', + 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O'] + + """)) + +add_newdoc('numpy.core', 'ufunc', ('signature', + """ + Definition of the core elements a generalized ufunc operates on. + + The signature determines how the dimensions of each input/output array + are split into core and loop dimensions: + + 1. Each dimension in the signature is matched to a dimension of the + corresponding passed-in array, starting from the end of the shape tuple. + 2. Core dimensions assigned to the same label in the signature must have + exactly matching sizes, no broadcasting is performed. + 3. The core dimensions are removed from all inputs and the remaining + dimensions are broadcast together, defining the loop dimensions. + + Notes + ----- + Generalized ufuncs are used internally in many linalg functions, and in + the testing suite; the examples below are taken from these. + For ufuncs that operate on scalars, the signature is None, which is + equivalent to '()' for every argument. + + Examples + -------- + >>> np.core.umath_tests.matrix_multiply.signature + '(m,n),(n,p)->(m,p)' + >>> np.linalg._umath_linalg.det.signature + '(m,m)->()' + >>> np.add.signature is None + True # equivalent to '(),()->()' + """)) + +############################################################################## +# +# ufunc methods +# +############################################################################## + +add_newdoc('numpy.core', 'ufunc', ('reduce', + """ + reduce(array, axis=0, dtype=None, out=None, keepdims=False, initial=, where=True) + + Reduces `array`'s dimension by one, by applying ufunc along one axis. + + Let :math:`array.shape = (N_0, ..., N_i, ..., N_{M-1})`. Then + :math:`ufunc.reduce(array, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` = + the result of iterating `j` over :math:`range(N_i)`, cumulatively applying + ufunc to each :math:`array[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`. + For a one-dimensional array, reduce produces results equivalent to: + :: + + r = op.identity # op = ufunc + for i in range(len(A)): + r = op(r, A[i]) + return r + + For example, add.reduce() is equivalent to sum(). + + Parameters + ---------- + array : array_like + The array to act on. + axis : None or int or tuple of ints, optional + Axis or axes along which a reduction is performed. + The default (`axis` = 0) is perform a reduction over the first + dimension of the input array. `axis` may be negative, in + which case it counts from the last to the first axis. + + .. versionadded:: 1.7.0 + + If this is None, a reduction is performed over all the axes. + If this is a tuple of ints, a reduction is performed on multiple + axes, instead of a single axis or all the axes as before. + + For operations which are either not commutative or not associative, + doing a reduction over multiple axes is not well-defined. The + ufuncs do not currently raise an exception in this case, but will + likely do so in the future. + dtype : data-type code, optional + The type used to represent the intermediate results. Defaults + to the data-type of the output array if this is provided, or + the data-type of the input array if no output array is provided. + out : ndarray, None, or tuple of ndarray and None, optional + A location into which the result is stored. If not provided or None, + a freshly-allocated array is returned. For consistency with + ``ufunc.__call__``, if given as a keyword, this may be wrapped in a + 1-element tuple. + + .. versionchanged:: 1.13.0 + Tuples are allowed for keyword argument. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `array`. + + .. versionadded:: 1.7.0 + initial : scalar, optional + The value with which to start the reduction. + If the ufunc has no identity or the dtype is object, this defaults + to None - otherwise it defaults to ufunc.identity. + If ``None`` is given, the first element of the reduction is used, + and an error is thrown if the reduction is empty. + + .. versionadded:: 1.15.0 + + where : array_like of bool, optional + A boolean array which is broadcasted to match the dimensions + of `array`, and selects elements to include in the reduction. Note + that for ufuncs like ``minimum`` that do not have an identity + defined, one has to pass in also ``initial``. + + .. versionadded:: 1.17.0 + + Returns + ------- + r : ndarray + The reduced array. If `out` was supplied, `r` is a reference to it. + + Examples + -------- + >>> np.multiply.reduce([2,3,5]) + 30 + + A multi-dimensional array example: + + >>> X = np.arange(8).reshape((2,2,2)) + >>> X + array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + >>> np.add.reduce(X, 0) + array([[ 4, 6], + [ 8, 10]]) + >>> np.add.reduce(X) # confirm: default axis value is 0 + array([[ 4, 6], + [ 8, 10]]) + >>> np.add.reduce(X, 1) + array([[ 2, 4], + [10, 12]]) + >>> np.add.reduce(X, 2) + array([[ 1, 5], + [ 9, 13]]) + + You can use the ``initial`` keyword argument to initialize the reduction + with a different value, and ``where`` to select specific elements to include: + + >>> np.add.reduce([10], initial=5) + 15 + >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10) + array([14., 14.]) + >>> a = np.array([10., np.nan, 10]) + >>> np.add.reduce(a, where=~np.isnan(a)) + 20.0 + + Allows reductions of empty arrays where they would normally fail, i.e. + for ufuncs without an identity. + + >>> np.minimum.reduce([], initial=np.inf) + inf + >>> np.minimum.reduce([[1., 2.], [3., 4.]], initial=10., where=[True, False]) + array([ 1., 10.]) + >>> np.minimum.reduce([]) + Traceback (most recent call last): + ... + ValueError: zero-size array to reduction operation minimum which has no identity + """)) + +add_newdoc('numpy.core', 'ufunc', ('accumulate', + """ + accumulate(array, axis=0, dtype=None, out=None) + + Accumulate the result of applying the operator to all elements. + + For a one-dimensional array, accumulate produces results equivalent to:: + + r = np.empty(len(A)) + t = op.identity # op = the ufunc being applied to A's elements + for i in range(len(A)): + t = op(t, A[i]) + r[i] = t + return r + + For example, add.accumulate() is equivalent to np.cumsum(). + + For a multi-dimensional array, accumulate is applied along only one + axis (axis zero by default; see Examples below) so repeated use is + necessary if one wants to accumulate over multiple axes. + + Parameters + ---------- + array : array_like + The array to act on. + axis : int, optional + The axis along which to apply the accumulation; default is zero. + dtype : data-type code, optional + The data-type used to represent the intermediate results. Defaults + to the data-type of the output array if such is provided, or the + data-type of the input array if no output array is provided. + out : ndarray, None, or tuple of ndarray and None, optional + A location into which the result is stored. If not provided or None, + a freshly-allocated array is returned. For consistency with + ``ufunc.__call__``, if given as a keyword, this may be wrapped in a + 1-element tuple. + + .. versionchanged:: 1.13.0 + Tuples are allowed for keyword argument. + + Returns + ------- + r : ndarray + The accumulated values. If `out` was supplied, `r` is a reference to + `out`. + + Examples + -------- + 1-D array examples: + + >>> np.add.accumulate([2, 3, 5]) + array([ 2, 5, 10]) + >>> np.multiply.accumulate([2, 3, 5]) + array([ 2, 6, 30]) + + 2-D array examples: + + >>> I = np.eye(2) + >>> I + array([[1., 0.], + [0., 1.]]) + + Accumulate along axis 0 (rows), down columns: + + >>> np.add.accumulate(I, 0) + array([[1., 0.], + [1., 1.]]) + >>> np.add.accumulate(I) # no axis specified = axis zero + array([[1., 0.], + [1., 1.]]) + + Accumulate along axis 1 (columns), through rows: + + >>> np.add.accumulate(I, 1) + array([[1., 1.], + [0., 1.]]) + + """)) + +add_newdoc('numpy.core', 'ufunc', ('reduceat', + """ + reduceat(array, indices, axis=0, dtype=None, out=None) + + Performs a (local) reduce with specified slices over a single axis. + + For i in ``range(len(indices))``, `reduceat` computes + ``ufunc.reduce(array[indices[i]:indices[i+1]])``, which becomes the i-th + generalized "row" parallel to `axis` in the final result (i.e., in a + 2-D array, for example, if `axis = 0`, it becomes the i-th row, but if + `axis = 1`, it becomes the i-th column). There are three exceptions to this: + + * when ``i = len(indices) - 1`` (so for the last index), + ``indices[i+1] = array.shape[axis]``. + * if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is + simply ``array[indices[i]]``. + * if ``indices[i] >= len(array)`` or ``indices[i] < 0``, an error is raised. + + The shape of the output depends on the size of `indices`, and may be + larger than `array` (this happens if ``len(indices) > array.shape[axis]``). + + Parameters + ---------- + array : array_like + The array to act on. + indices : array_like + Paired indices, comma separated (not colon), specifying slices to + reduce. + axis : int, optional + The axis along which to apply the reduceat. + dtype : data-type code, optional + The type used to represent the intermediate results. Defaults + to the data type of the output array if this is provided, or + the data type of the input array if no output array is provided. + out : ndarray, None, or tuple of ndarray and None, optional + A location into which the result is stored. If not provided or None, + a freshly-allocated array is returned. For consistency with + ``ufunc.__call__``, if given as a keyword, this may be wrapped in a + 1-element tuple. + + .. versionchanged:: 1.13.0 + Tuples are allowed for keyword argument. + + Returns + ------- + r : ndarray + The reduced values. If `out` was supplied, `r` is a reference to + `out`. + + Notes + ----- + A descriptive example: + + If `array` is 1-D, the function `ufunc.accumulate(array)` is the same as + ``ufunc.reduceat(array, indices)[::2]`` where `indices` is + ``range(len(array) - 1)`` with a zero placed + in every other element: + ``indices = zeros(2 * len(array) - 1)``, + ``indices[1::2] = range(1, len(array))``. + + Don't be fooled by this attribute's name: `reduceat(array)` is not + necessarily smaller than `array`. + + Examples + -------- + To take the running sum of four successive values: + + >>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2] + array([ 6, 10, 14, 18]) + + A 2-D example: + + >>> x = np.linspace(0, 15, 16).reshape(4,4) + >>> x + array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [12., 13., 14., 15.]]) + + :: + + # reduce such that the result has the following five rows: + # [row1 + row2 + row3] + # [row4] + # [row2] + # [row3] + # [row1 + row2 + row3 + row4] + + >>> np.add.reduceat(x, [0, 3, 1, 2, 0]) + array([[12., 15., 18., 21.], + [12., 13., 14., 15.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [24., 28., 32., 36.]]) + + :: + + # reduce such that result has the following two columns: + # [col1 * col2 * col3, col4] + + >>> np.multiply.reduceat(x, [0, 3], 1) + array([[ 0., 3.], + [ 120., 7.], + [ 720., 11.], + [2184., 15.]]) + + """)) + +add_newdoc('numpy.core', 'ufunc', ('outer', + r""" + outer(A, B, /, **kwargs) + + Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`. + + Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of + ``op.outer(A, B)`` is an array of dimension M + N such that: + + .. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] = + op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}]) + + For `A` and `B` one-dimensional, this is equivalent to:: + + r = empty(len(A),len(B)) + for i in range(len(A)): + for j in range(len(B)): + r[i,j] = op(A[i], B[j]) # op = ufunc in question + + Parameters + ---------- + A : array_like + First array + B : array_like + Second array + kwargs : any + Arguments to pass on to the ufunc. Typically `dtype` or `out`. + See `ufunc` for a comprehensive overview of all available arguments. + + Returns + ------- + r : ndarray + Output array + + See Also + -------- + numpy.outer : A less powerful version of ``np.multiply.outer`` + that `ravel`\ s all inputs to 1D. This exists + primarily for compatibility with old code. + + tensordot : ``np.tensordot(a, b, axes=((), ()))`` and + ``np.multiply.outer(a, b)`` behave same for all + dimensions of a and b. + + Examples + -------- + >>> np.multiply.outer([1, 2, 3], [4, 5, 6]) + array([[ 4, 5, 6], + [ 8, 10, 12], + [12, 15, 18]]) + + A multi-dimensional example: + + >>> A = np.array([[1, 2, 3], [4, 5, 6]]) + >>> A.shape + (2, 3) + >>> B = np.array([[1, 2, 3, 4]]) + >>> B.shape + (1, 4) + >>> C = np.multiply.outer(A, B) + >>> C.shape; C + (2, 3, 1, 4) + array([[[[ 1, 2, 3, 4]], + [[ 2, 4, 6, 8]], + [[ 3, 6, 9, 12]]], + [[[ 4, 8, 12, 16]], + [[ 5, 10, 15, 20]], + [[ 6, 12, 18, 24]]]]) + + """)) + +add_newdoc('numpy.core', 'ufunc', ('at', + """ + at(a, indices, b=None, /) + + Performs unbuffered in place operation on operand 'a' for elements + specified by 'indices'. For addition ufunc, this method is equivalent to + ``a[indices] += b``, except that results are accumulated for elements that + are indexed more than once. For example, ``a[[0,0]] += 1`` will only + increment the first element once because of buffering, whereas + ``add.at(a, [0,0], 1)`` will increment the first element twice. + + .. versionadded:: 1.8.0 + + Parameters + ---------- + a : array_like + The array to perform in place operation on. + indices : array_like or tuple + Array like index object or slice object for indexing into first + operand. If first operand has multiple dimensions, indices can be a + tuple of array like index objects or slice objects. + b : array_like + Second operand for ufuncs requiring two operands. Operand must be + broadcastable over first operand after indexing or slicing. + + Examples + -------- + Set items 0 and 1 to their negative values: + + >>> a = np.array([1, 2, 3, 4]) + >>> np.negative.at(a, [0, 1]) + >>> a + array([-1, -2, 3, 4]) + + Increment items 0 and 1, and increment item 2 twice: + + >>> a = np.array([1, 2, 3, 4]) + >>> np.add.at(a, [0, 1, 2, 2], 1) + >>> a + array([2, 3, 5, 4]) + + Add items 0 and 1 in first array to second array, + and store results in first array: + + >>> a = np.array([1, 2, 3, 4]) + >>> b = np.array([1, 2]) + >>> np.add.at(a, [0, 1], b) + >>> a + array([2, 4, 3, 4]) + + """)) + +add_newdoc('numpy.core', 'ufunc', ('resolve_dtypes', + """ + resolve_dtypes(dtypes, *, signature=None, casting=None, reduction=False) + + Find the dtypes NumPy will use for the operation. Both input and + output dtypes are returned and may differ from those provided. + + .. note:: + + This function always applies NEP 50 rules since it is not provided + any actual values. The Python types ``int``, ``float``, and + ``complex`` thus behave weak and should be passed for "untyped" + Python input. + + Parameters + ---------- + dtypes : tuple of dtypes, None, or literal int, float, complex + The input dtypes for each operand. Output operands can be + None, indicating that the dtype must be found. + signature : tuple of DTypes or None, optional + If given, enforces exact DType (classes) of the specific operand. + The ufunc ``dtype`` argument is equivalent to passing a tuple with + only output dtypes set. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + The casting mode when casting is necessary. This is identical to + the ufunc call casting modes. + reduction : boolean + If given, the resolution assumes a reduce operation is happening + which slightly changes the promotion and type resolution rules. + `dtypes` is usually something like ``(None, np.dtype("i2"), None)`` + for reductions (first input is also the output). + + .. note:: + + The default casting mode is "same_kind", however, as of + NumPy 1.24, NumPy uses "unsafe" for reductions. + + Returns + ------- + dtypes : tuple of dtypes + The dtypes which NumPy would use for the calculation. Note that + dtypes may not match the passed in ones (casting is necessary). + + See Also + -------- + numpy.ufunc._resolve_dtypes_and_context : + Similar function to this, but returns additional information which + give access to the core C functionality of NumPy. + + Examples + -------- + This API requires passing dtypes, define them for convenience: + + >>> int32 = np.dtype("int32") + >>> float32 = np.dtype("float32") + + The typical ufunc call does not pass an output dtype. `np.add` has two + inputs and one output, so leave the output as ``None`` (not provided): + + >>> np.add.resolve_dtypes((int32, float32, None)) + (dtype('float64'), dtype('float64'), dtype('float64')) + + The loop found uses "float64" for all operands (including the output), the + first input would be cast. + + ``resolve_dtypes`` supports "weak" handling for Python scalars by passing + ``int``, ``float``, or ``complex``: + + >>> np.add.resolve_dtypes((float32, float, None)) + (dtype('float32'), dtype('float32'), dtype('float32')) + + Where the Python ``float`` behaves samilar to a Python value ``0.0`` + in a ufunc call. (See :ref:`NEP 50 ` for details.) + + """)) + +add_newdoc('numpy.core', 'ufunc', ('_resolve_dtypes_and_context', + """ + _resolve_dtypes_and_context(dtypes, *, signature=None, casting=None, reduction=False) + + See `numpy.ufunc.resolve_dtypes` for parameter information. This + function is considered *unstable*. You may use it, but the returned + information is NumPy version specific and expected to change. + Large API/ABI changes are not expected, but a new NumPy version is + expected to require updating code using this functionality. + + This function is designed to be used in conjunction with + `numpy.ufunc._get_strided_loop`. The calls are split to mirror the C API + and allow future improvements. + + Returns + ------- + dtypes : tuple of dtypes + call_info : + PyCapsule with all necessary information to get access to low level + C calls. See `numpy.ufunc._get_strided_loop` for more information. + + """)) + +add_newdoc('numpy.core', 'ufunc', ('_get_strided_loop', + """ + _get_strided_loop(call_info, /, *, fixed_strides=None) + + This function fills in the ``call_info`` capsule to include all + information necessary to call the low-level strided loop from NumPy. + + See notes for more information. + + Parameters + ---------- + call_info : PyCapsule + The PyCapsule returned by `numpy.ufunc._resolve_dtypes_and_context`. + fixed_strides : tuple of int or None, optional + A tuple with fixed byte strides of all input arrays. NumPy may use + this information to find specialized loops, so any call must follow + the given stride. Use ``None`` to indicate that the stride is not + known (or not fixed) for all calls. + + Notes + ----- + Together with `numpy.ufunc._resolve_dtypes_and_context` this function + gives low-level access to the NumPy ufunc loops. + The first function does general preparation and returns the required + information. It returns this as a C capsule with the version specific + name ``numpy_1.24_ufunc_call_info``. + The NumPy 1.24 ufunc call info capsule has the following layout:: + + typedef struct { + PyArrayMethod_StridedLoop *strided_loop; + PyArrayMethod_Context *context; + NpyAuxData *auxdata; + + /* Flag information (expected to change) */ + npy_bool requires_pyapi; /* GIL is required by loop */ + + /* Loop doesn't set FPE flags; if not set check FPE flags */ + npy_bool no_floatingpoint_errors; + } ufunc_call_info; + + Note that the first call only fills in the ``context``. The call to + ``_get_strided_loop`` fills in all other data. + Please see the ``numpy/experimental_dtype_api.h`` header for exact + call information; the main thing to note is that the new-style loops + return 0 on success, -1 on failure. They are passed context as new + first input and ``auxdata`` as (replaced) last. + + Only the ``strided_loop``signature is considered guaranteed stable + for NumPy bug-fix releases. All other API is tied to the experimental + API versioning. + + The reason for the split call is that cast information is required to + decide what the fixed-strides will be. + + NumPy ties the lifetime of the ``auxdata`` information to the capsule. + + """)) + + + +############################################################################## +# +# Documentation for dtype attributes and methods +# +############################################################################## + +############################################################################## +# +# dtype object +# +############################################################################## + +add_newdoc('numpy.core.multiarray', 'dtype', + """ + dtype(dtype, align=False, copy=False, [metadata]) + + Create a data type object. + + A numpy array is homogeneous, and contains elements described by a + dtype object. A dtype object can be constructed from different + combinations of fundamental numeric types. + + Parameters + ---------- + dtype + Object to be converted to a data type object. + align : bool, optional + Add padding to the fields to match what a C compiler would output + for a similar C-struct. Can be ``True`` only if `obj` is a dictionary + or a comma-separated string. If a struct dtype is being created, + this also sets a sticky alignment flag ``isalignedstruct``. + copy : bool, optional + Make a new copy of the data-type object. If ``False``, the result + may just be a reference to a built-in data-type object. + metadata : dict, optional + An optional dictionary with dtype metadata. + + See also + -------- + result_type + + Examples + -------- + Using array-scalar type: + + >>> np.dtype(np.int16) + dtype('int16') + + Structured type, one field name 'f1', containing int16: + + >>> np.dtype([('f1', np.int16)]) + dtype([('f1', '>> np.dtype([('f1', [('f1', np.int16)])]) + dtype([('f1', [('f1', '>> np.dtype([('f1', np.uint64), ('f2', np.int32)]) + dtype([('f1', '>> np.dtype([('a','f8'),('b','S10')]) + dtype([('a', '>> np.dtype("i4, (2,3)f8") + dtype([('f0', '>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)]) + dtype([('hello', '>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) + dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')])) + + Using dictionaries. Two fields named 'gender' and 'age': + + >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) + dtype([('gender', 'S1'), ('age', 'u1')]) + + Offsets in bytes, here 0 and 25: + + >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) + dtype([('surname', 'S25'), ('age', 'u1')]) + + """) + +############################################################################## +# +# dtype attributes +# +############################################################################## + +add_newdoc('numpy.core.multiarray', 'dtype', ('alignment', + """ + The required alignment (bytes) of this data-type according to the compiler. + + More information is available in the C-API section of the manual. + + Examples + -------- + + >>> x = np.dtype('i4') + >>> x.alignment + 4 + + >>> x = np.dtype(float) + >>> x.alignment + 8 + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder', + """ + A character indicating the byte-order of this data-type object. + + One of: + + === ============== + '=' native + '<' little-endian + '>' big-endian + '|' not applicable + === ============== + + All built-in data-type objects have byteorder either '=' or '|'. + + Examples + -------- + + >>> dt = np.dtype('i2') + >>> dt.byteorder + '=' + >>> # endian is not relevant for 8 bit numbers + >>> np.dtype('i1').byteorder + '|' + >>> # or ASCII strings + >>> np.dtype('S2').byteorder + '|' + >>> # Even if specific code is given, and it is native + >>> # '=' is the byteorder + >>> import sys + >>> sys_is_le = sys.byteorder == 'little' + >>> native_code = '<' if sys_is_le else '>' + >>> swapped_code = '>' if sys_is_le else '<' + >>> dt = np.dtype(native_code + 'i2') + >>> dt.byteorder + '=' + >>> # Swapped code shows up as itself + >>> dt = np.dtype(swapped_code + 'i2') + >>> dt.byteorder == swapped_code + True + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('char', + """A unique character code for each of the 21 different built-in types. + + Examples + -------- + + >>> x = np.dtype(float) + >>> x.char + 'd' + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('descr', + """ + `__array_interface__` description of the data-type. + + The format is that required by the 'descr' key in the + `__array_interface__` attribute. + + Warning: This attribute exists specifically for `__array_interface__`, + and passing it directly to `np.dtype` will not accurately reconstruct + some dtypes (e.g., scalar and subarray dtypes). + + Examples + -------- + + >>> x = np.dtype(float) + >>> x.descr + [('', '>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) + >>> dt.descr + [('name', '>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) + >>> print(dt.fields) + {'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)} + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('flags', + """ + Bit-flags describing how this data type is to be interpreted. + + Bit-masks are in `numpy.core.multiarray` as the constants + `ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`, + `NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation + of these flags is in C-API documentation; they are largely useful + for user-defined data-types. + + The following example demonstrates that operations on this particular + dtype requires Python C-API. + + Examples + -------- + + >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)]) + >>> x.flags + 16 + >>> np.core.multiarray.NEEDS_PYAPI + 16 + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject', + """ + Boolean indicating whether this dtype contains any reference-counted + objects in any fields or sub-dtypes. + + Recall that what is actually in the ndarray memory representing + the Python object is the memory address of that object (a pointer). + Special handling may be required, and this attribute is useful for + distinguishing data types that may contain arbitrary Python objects + and data-types that won't. + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin', + """ + Integer indicating how this dtype relates to the built-in dtypes. + + Read-only. + + = ======================================================================== + 0 if this is a structured array type, with fields + 1 if this is a dtype compiled into numpy (such as ints, floats etc) + 2 if the dtype is for a user-defined numpy type + A user-defined type uses the numpy C-API machinery to extend + numpy to handle a new array type. See + :ref:`user.user-defined-data-types` in the NumPy manual. + = ======================================================================== + + Examples + -------- + >>> dt = np.dtype('i2') + >>> dt.isbuiltin + 1 + >>> dt = np.dtype('f8') + >>> dt.isbuiltin + 1 + >>> dt = np.dtype([('field1', 'f8')]) + >>> dt.isbuiltin + 0 + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('isnative', + """ + Boolean indicating whether the byte order of this dtype is native + to the platform. + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('isalignedstruct', + """ + Boolean indicating whether the dtype is a struct which maintains + field alignment. This flag is sticky, so when combining multiple + structs together, it is preserved and produces new dtypes which + are also aligned. + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize', + """ + The element size of this data-type object. + + For 18 of the 21 types this number is fixed by the data-type. + For the flexible data-types, this number can be anything. + + Examples + -------- + + >>> arr = np.array([[1, 2], [3, 4]]) + >>> arr.dtype + dtype('int64') + >>> arr.itemsize + 8 + + >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) + >>> dt.itemsize + 80 + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('kind', + """ + A character code (one of 'biufcmMOSUV') identifying the general kind of data. + + = ====================== + b boolean + i signed integer + u unsigned integer + f floating-point + c complex floating-point + m timedelta + M datetime + O object + S (byte-)string + U Unicode + V void + = ====================== + + Examples + -------- + + >>> dt = np.dtype('i4') + >>> dt.kind + 'i' + >>> dt = np.dtype('f8') + >>> dt.kind + 'f' + >>> dt = np.dtype([('field1', 'f8')]) + >>> dt.kind + 'V' + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('metadata', + """ + Either ``None`` or a readonly dictionary of metadata (mappingproxy). + + The metadata field can be set using any dictionary at data-type + creation. NumPy currently has no uniform approach to propagating + metadata; although some array operations preserve it, there is no + guarantee that others will. + + .. warning:: + + Although used in certain projects, this feature was long undocumented + and is not well supported. Some aspects of metadata propagation + are expected to change in the future. + + Examples + -------- + + >>> dt = np.dtype(float, metadata={"key": "value"}) + >>> dt.metadata["key"] + 'value' + >>> arr = np.array([1, 2, 3], dtype=dt) + >>> arr.dtype.metadata + mappingproxy({'key': 'value'}) + + Adding arrays with identical datatypes currently preserves the metadata: + + >>> (arr + arr).dtype.metadata + mappingproxy({'key': 'value'}) + + But if the arrays have different dtype metadata, the metadata may be + dropped: + + >>> dt2 = np.dtype(float, metadata={"key2": "value2"}) + >>> arr2 = np.array([3, 2, 1], dtype=dt2) + >>> (arr + arr2).dtype.metadata is None + True # The metadata field is cleared so None is returned + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('name', + """ + A bit-width name for this data-type. + + Un-sized flexible data-type objects do not have this attribute. + + Examples + -------- + + >>> x = np.dtype(float) + >>> x.name + 'float64' + >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)]) + >>> x.name + 'void640' + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('names', + """ + Ordered list of field names, or ``None`` if there are no fields. + + The names are ordered according to increasing byte offset. This can be + used, for example, to walk through all of the named fields in offset order. + + Examples + -------- + >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) + >>> dt.names + ('name', 'grades') + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('num', + """ + A unique number for each of the 21 different built-in types. + + These are roughly ordered from least-to-most precision. + + Examples + -------- + + >>> dt = np.dtype(str) + >>> dt.num + 19 + + >>> dt = np.dtype(float) + >>> dt.num + 12 + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('shape', + """ + Shape tuple of the sub-array if this data type describes a sub-array, + and ``()`` otherwise. + + Examples + -------- + + >>> dt = np.dtype(('i4', 4)) + >>> dt.shape + (4,) + + >>> dt = np.dtype(('i4', (2, 3))) + >>> dt.shape + (2, 3) + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('ndim', + """ + Number of dimensions of the sub-array if this data type describes a + sub-array, and ``0`` otherwise. + + .. versionadded:: 1.13.0 + + Examples + -------- + >>> x = np.dtype(float) + >>> x.ndim + 0 + + >>> x = np.dtype((float, 8)) + >>> x.ndim + 1 + + >>> x = np.dtype(('i4', (3, 4))) + >>> x.ndim + 2 + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('str', + """The array-protocol typestring of this data-type object.""")) + +add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype', + """ + Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and + None otherwise. + + The *shape* is the fixed shape of the sub-array described by this + data type, and *item_dtype* the data type of the array. + + If a field whose dtype object has this attribute is retrieved, + then the extra dimensions implied by *shape* are tacked on to + the end of the retrieved array. + + See Also + -------- + dtype.base + + Examples + -------- + >>> x = numpy.dtype('8f') + >>> x.subdtype + (dtype('float32'), (8,)) + + >>> x = numpy.dtype('i2') + >>> x.subdtype + >>> + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('base', + """ + Returns dtype for the base element of the subarrays, + regardless of their dimension or shape. + + See Also + -------- + dtype.subdtype + + Examples + -------- + >>> x = numpy.dtype('8f') + >>> x.base + dtype('float32') + + >>> x = numpy.dtype('i2') + >>> x.base + dtype('int16') + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('type', + """The type object used to instantiate a scalar of this data-type.""")) + +############################################################################## +# +# dtype methods +# +############################################################################## + +add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder', + """ + newbyteorder(new_order='S', /) + + Return a new dtype with a different byte order. + + Changes are also made in all fields and sub-arrays of the data type. + + Parameters + ---------- + new_order : string, optional + Byte order to force; a value from the byte order specifications + below. The default value ('S') results in swapping the current + byte order. `new_order` codes can be any of: + + * 'S' - swap dtype from current to opposite endian + * {'<', 'little'} - little endian + * {'>', 'big'} - big endian + * {'=', 'native'} - native order + * {'|', 'I'} - ignore (no change to byte order) + + Returns + ------- + new_dtype : dtype + New dtype object with the given change to the byte order. + + Notes + ----- + Changes are also made in all fields and sub-arrays of the data type. + + Examples + -------- + >>> import sys + >>> sys_is_le = sys.byteorder == 'little' + >>> native_code = '<' if sys_is_le else '>' + >>> swapped_code = '>' if sys_is_le else '<' + >>> native_dt = np.dtype(native_code+'i2') + >>> swapped_dt = np.dtype(swapped_code+'i2') + >>> native_dt.newbyteorder('S') == swapped_dt + True + >>> native_dt.newbyteorder() == swapped_dt + True + >>> native_dt == swapped_dt.newbyteorder('S') + True + >>> native_dt == swapped_dt.newbyteorder('=') + True + >>> native_dt == swapped_dt.newbyteorder('N') + True + >>> native_dt == native_dt.newbyteorder('|') + True + >>> np.dtype('>> np.dtype('>> np.dtype('>i2') == native_dt.newbyteorder('>') + True + >>> np.dtype('>i2') == native_dt.newbyteorder('B') + True + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('__class_getitem__', + """ + __class_getitem__(item, /) + + Return a parametrized wrapper around the `~numpy.dtype` type. + + .. versionadded:: 1.22 + + Returns + ------- + alias : types.GenericAlias + A parametrized `~numpy.dtype` type. + + Examples + -------- + >>> import numpy as np + + >>> np.dtype[np.int64] + numpy.dtype[numpy.int64] + + See Also + -------- + :pep:`585` : Type hinting generics in standard collections. + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('__ge__', + """ + __ge__(value, /) + + Return ``self >= value``. + + Equivalent to ``np.can_cast(value, self, casting="safe")``. + + See Also + -------- + can_cast : Returns True if cast between data types can occur according to + the casting rule. + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('__le__', + """ + __le__(value, /) + + Return ``self <= value``. + + Equivalent to ``np.can_cast(self, value, casting="safe")``. + + See Also + -------- + can_cast : Returns True if cast between data types can occur according to + the casting rule. + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('__gt__', + """ + __ge__(value, /) + + Return ``self > value``. + + Equivalent to + ``self != value and np.can_cast(value, self, casting="safe")``. + + See Also + -------- + can_cast : Returns True if cast between data types can occur according to + the casting rule. + + """)) + +add_newdoc('numpy.core.multiarray', 'dtype', ('__lt__', + """ + __lt__(value, /) + + Return ``self < value``. + + Equivalent to + ``self != value and np.can_cast(self, value, casting="safe")``. + + See Also + -------- + can_cast : Returns True if cast between data types can occur according to + the casting rule. + + """)) + +############################################################################## +# +# Datetime-related Methods +# +############################################################################## + +add_newdoc('numpy.core.multiarray', 'busdaycalendar', + """ + busdaycalendar(weekmask='1111100', holidays=None) + + A business day calendar object that efficiently stores information + defining valid days for the busday family of functions. + + The default valid days are Monday through Friday ("business days"). + A busdaycalendar object can be specified with any set of weekly + valid days, plus an optional "holiday" dates that always will be invalid. + + Once a busdaycalendar object is created, the weekmask and holidays + cannot be modified. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + weekmask : str or array_like of bool, optional + A seven-element array indicating which of Monday through Sunday are + valid days. May be specified as a length-seven list or array, like + [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string + like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for + weekdays, optionally separated by white space. Valid abbreviations + are: Mon Tue Wed Thu Fri Sat Sun + holidays : array_like of datetime64[D], optional + An array of dates to consider as invalid dates, no matter which + weekday they fall upon. Holiday dates may be specified in any + order, and NaT (not-a-time) dates are ignored. This list is + saved in a normalized form that is suited for fast calculations + of valid days. + + Returns + ------- + out : busdaycalendar + A business day calendar object containing the specified + weekmask and holidays values. + + See Also + -------- + is_busday : Returns a boolean array indicating valid days. + busday_offset : Applies an offset counted in valid days. + busday_count : Counts how many valid days are in a half-open date range. + + Attributes + ---------- + Note: once a busdaycalendar object is created, you cannot modify the + weekmask or holidays. The attributes return copies of internal data. + weekmask : (copy) seven-element array of bool + holidays : (copy) sorted array of datetime64[D] + + Examples + -------- + >>> # Some important days in July + ... bdd = np.busdaycalendar( + ... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) + >>> # Default is Monday to Friday weekdays + ... bdd.weekmask + array([ True, True, True, True, True, False, False]) + >>> # Any holidays already on the weekend are removed + ... bdd.holidays + array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]') + """) + +add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('weekmask', + """A copy of the seven-element boolean mask indicating valid days.""")) + +add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('holidays', + """A copy of the holiday array indicating additional invalid days.""")) + +add_newdoc('numpy.core.multiarray', 'normalize_axis_index', + """ + normalize_axis_index(axis, ndim, msg_prefix=None) + + Normalizes an axis index, `axis`, such that is a valid positive index into + the shape of array with `ndim` dimensions. Raises an AxisError with an + appropriate message if this is not possible. + + Used internally by all axis-checking logic. + + .. versionadded:: 1.13.0 + + Parameters + ---------- + axis : int + The un-normalized index of the axis. Can be negative + ndim : int + The number of dimensions of the array that `axis` should be normalized + against + msg_prefix : str + A prefix to put before the message, typically the name of the argument + + Returns + ------- + normalized_axis : int + The normalized axis index, such that `0 <= normalized_axis < ndim` + + Raises + ------ + AxisError + If the axis index is invalid, when `-ndim <= axis < ndim` is false. + + Examples + -------- + >>> normalize_axis_index(0, ndim=3) + 0 + >>> normalize_axis_index(1, ndim=3) + 1 + >>> normalize_axis_index(-1, ndim=3) + 2 + + >>> normalize_axis_index(3, ndim=3) + Traceback (most recent call last): + ... + AxisError: axis 3 is out of bounds for array of dimension 3 + >>> normalize_axis_index(-4, ndim=3, msg_prefix='axes_arg') + Traceback (most recent call last): + ... + AxisError: axes_arg: axis -4 is out of bounds for array of dimension 3 + """) + +add_newdoc('numpy.core.multiarray', 'datetime_data', + """ + datetime_data(dtype, /) + + Get information about the step size of a date or time type. + + The returned tuple can be passed as the second argument of `numpy.datetime64` and + `numpy.timedelta64`. + + Parameters + ---------- + dtype : dtype + The dtype object, which must be a `datetime64` or `timedelta64` type. + + Returns + ------- + unit : str + The :ref:`datetime unit ` on which this dtype + is based. + count : int + The number of base units in a step. + + Examples + -------- + >>> dt_25s = np.dtype('timedelta64[25s]') + >>> np.datetime_data(dt_25s) + ('s', 25) + >>> np.array(10, dt_25s).astype('timedelta64[s]') + array(250, dtype='timedelta64[s]') + + The result can be used to construct a datetime that uses the same units + as a timedelta + + >>> np.datetime64('2010', np.datetime_data(dt_25s)) + numpy.datetime64('2010-01-01T00:00:00','25s') + """) + + +############################################################################## +# +# Documentation for `generic` attributes and methods +# +############################################################################## + +add_newdoc('numpy.core.numerictypes', 'generic', + """ + Base class for numpy scalar types. + + Class from which most (all?) numpy scalar types are derived. For + consistency, exposes the same API as `ndarray`, despite many + consequent attributes being either "get-only," or completely irrelevant. + This is the class from which it is strongly suggested users should derive + custom scalar types. + + """) + +# Attributes + +def refer_to_array_attribute(attr, method=True): + docstring = """ + Scalar {} identical to the corresponding array attribute. + + Please see `ndarray.{}`. + """ + + return attr, docstring.format("method" if method else "attribute", attr) + + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('T', method=False)) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('base', method=False)) + +add_newdoc('numpy.core.numerictypes', 'generic', ('data', + """Pointer to start of data.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('dtype', + """Get array data-descriptor.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('flags', + """The integer value of flags.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('flat', + """A 1-D view of the scalar.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('imag', + """The imaginary part of the scalar.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize', + """The length of one element in bytes.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes', + """The length of the scalar in bytes.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('ndim', + """The number of array dimensions.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('real', + """The real part of the scalar.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('shape', + """Tuple of array dimensions.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('size', + """The number of elements in the gentype.""")) + +add_newdoc('numpy.core.numerictypes', 'generic', ('strides', + """Tuple of bytes steps in each dimension.""")) + +# Methods + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('all')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('any')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('argmax')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('argmin')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('argsort')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('astype')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('byteswap')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('choose')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('clip')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('compress')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('conjugate')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('copy')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('cumprod')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('cumsum')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('diagonal')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('dump')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('dumps')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('fill')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('flatten')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('getfield')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('item')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('itemset')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('max')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('mean')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('min')) + +add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder', + """ + newbyteorder(new_order='S', /) + + Return a new `dtype` with a different byte order. + + Changes are also made in all fields and sub-arrays of the data type. + + The `new_order` code can be any from the following: + + * 'S' - swap dtype from current to opposite endian + * {'<', 'little'} - little endian + * {'>', 'big'} - big endian + * {'=', 'native'} - native order + * {'|', 'I'} - ignore (no change to byte order) + + Parameters + ---------- + new_order : str, optional + Byte order to force; a value from the byte order specifications + above. The default value ('S') results in swapping the current + byte order. + + + Returns + ------- + new_dtype : dtype + New `dtype` object with the given change to the byte order. + + """)) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('nonzero')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('prod')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('ptp')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('put')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('ravel')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('repeat')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('reshape')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('resize')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('round')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('searchsorted')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('setfield')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('setflags')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('sort')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('squeeze')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('std')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('sum')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('swapaxes')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('take')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('tofile')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('tolist')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('tostring')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('trace')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('transpose')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('var')) + +add_newdoc('numpy.core.numerictypes', 'generic', + refer_to_array_attribute('view')) + +add_newdoc('numpy.core.numerictypes', 'number', ('__class_getitem__', + """ + __class_getitem__(item, /) + + Return a parametrized wrapper around the `~numpy.number` type. + + .. versionadded:: 1.22 + + Returns + ------- + alias : types.GenericAlias + A parametrized `~numpy.number` type. + + Examples + -------- + >>> from typing import Any + >>> import numpy as np + + >>> np.signedinteger[Any] + numpy.signedinteger[typing.Any] + + See Also + -------- + :pep:`585` : Type hinting generics in standard collections. + + """)) + +############################################################################## +# +# Documentation for scalar type abstract base classes in type hierarchy +# +############################################################################## + + +add_newdoc('numpy.core.numerictypes', 'number', + """ + Abstract base class of all numeric scalar types. + + """) + +add_newdoc('numpy.core.numerictypes', 'integer', + """ + Abstract base class of all integer scalar types. + + """) + +add_newdoc('numpy.core.numerictypes', 'signedinteger', + """ + Abstract base class of all signed integer scalar types. + + """) + +add_newdoc('numpy.core.numerictypes', 'unsignedinteger', + """ + Abstract base class of all unsigned integer scalar types. + + """) + +add_newdoc('numpy.core.numerictypes', 'inexact', + """ + Abstract base class of all numeric scalar types with a (potentially) + inexact representation of the values in its range, such as + floating-point numbers. + + """) + +add_newdoc('numpy.core.numerictypes', 'floating', + """ + Abstract base class of all floating-point scalar types. + + """) + +add_newdoc('numpy.core.numerictypes', 'complexfloating', + """ + Abstract base class of all complex number scalar types that are made up of + floating-point numbers. + + """) + +add_newdoc('numpy.core.numerictypes', 'flexible', + """ + Abstract base class of all scalar types without predefined length. + The actual size of these types depends on the specific `np.dtype` + instantiation. + + """) + +add_newdoc('numpy.core.numerictypes', 'character', + """ + Abstract base class of all character string scalar types. + + """) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/_add_newdocs_scalars.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/_add_newdocs_scalars.py new file mode 100644 index 0000000000000000000000000000000000000000..f9a6ad963ec3c04d4e6c9dd57255b323e2959cfe --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/_add_newdocs_scalars.py @@ -0,0 +1,372 @@ +""" +This file is separate from ``_add_newdocs.py`` so that it can be mocked out by +our sphinx ``conf.py`` during doc builds, where we want to avoid showing +platform-dependent information. +""" +import sys +import os +from numpy.core import dtype +from numpy.core import numerictypes as _numerictypes +from numpy.core.function_base import add_newdoc + +############################################################################## +# +# Documentation for concrete scalar classes +# +############################################################################## + +def numeric_type_aliases(aliases): + def type_aliases_gen(): + for alias, doc in aliases: + try: + alias_type = getattr(_numerictypes, alias) + except AttributeError: + # The set of aliases that actually exist varies between platforms + pass + else: + yield (alias_type, alias, doc) + return list(type_aliases_gen()) + + +possible_aliases = numeric_type_aliases([ + ('int8', '8-bit signed integer (``-128`` to ``127``)'), + ('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'), + ('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'), + ('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'), + ('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'), + ('uint8', '8-bit unsigned integer (``0`` to ``255``)'), + ('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'), + ('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'), + ('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'), + ('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'), + ('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'), + ('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'), + ('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'), + ('float96', '96-bit extended-precision floating-point number type'), + ('float128', '128-bit extended-precision floating-point number type'), + ('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'), + ('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'), + ('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'), + ('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'), + ]) + + +def _get_platform_and_machine(): + try: + system, _, _, _, machine = os.uname() + except AttributeError: + system = sys.platform + if system == 'win32': + machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \ + or os.environ.get('PROCESSOR_ARCHITECTURE', '') + else: + machine = 'unknown' + return system, machine + + +_system, _machine = _get_platform_and_machine() +_doc_alias_string = f":Alias on this platform ({_system} {_machine}):" + + +def add_newdoc_for_scalar_type(obj, fixed_aliases, doc): + # note: `:field: value` is rST syntax which renders as field lists. + o = getattr(_numerictypes, obj) + + character_code = dtype(o).char + canonical_name_doc = "" if obj == o.__name__ else \ + f":Canonical name: `numpy.{obj}`\n " + if fixed_aliases: + alias_doc = ''.join(f":Alias: `numpy.{alias}`\n " + for alias in fixed_aliases) + else: + alias_doc = '' + alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n " + for (alias_type, alias, doc) in possible_aliases if alias_type is o) + + docstring = f""" + {doc.strip()} + + :Character code: ``'{character_code}'`` + {canonical_name_doc}{alias_doc} + """ + + add_newdoc('numpy.core.numerictypes', obj, docstring) + + +add_newdoc_for_scalar_type('bool_', [], + """ + Boolean type (True or False), stored as a byte. + + .. warning:: + + The :class:`bool_` type is not a subclass of the :class:`int_` type + (the :class:`bool_` is not even a number type). This is different + than Python's default implementation of :class:`bool` as a + sub-class of :class:`int`. + """) + +add_newdoc_for_scalar_type('byte', [], + """ + Signed integer type, compatible with C ``char``. + """) + +add_newdoc_for_scalar_type('short', [], + """ + Signed integer type, compatible with C ``short``. + """) + +add_newdoc_for_scalar_type('intc', [], + """ + Signed integer type, compatible with C ``int``. + """) + +add_newdoc_for_scalar_type('int_', [], + """ + Signed integer type, compatible with Python `int` and C ``long``. + """) + +add_newdoc_for_scalar_type('longlong', [], + """ + Signed integer type, compatible with C ``long long``. + """) + +add_newdoc_for_scalar_type('ubyte', [], + """ + Unsigned integer type, compatible with C ``unsigned char``. + """) + +add_newdoc_for_scalar_type('ushort', [], + """ + Unsigned integer type, compatible with C ``unsigned short``. + """) + +add_newdoc_for_scalar_type('uintc', [], + """ + Unsigned integer type, compatible with C ``unsigned int``. + """) + +add_newdoc_for_scalar_type('uint', [], + """ + Unsigned integer type, compatible with C ``unsigned long``. + """) + +add_newdoc_for_scalar_type('ulonglong', [], + """ + Signed integer type, compatible with C ``unsigned long long``. + """) + +add_newdoc_for_scalar_type('half', [], + """ + Half-precision floating-point number type. + """) + +add_newdoc_for_scalar_type('single', [], + """ + Single-precision floating-point number type, compatible with C ``float``. + """) + +add_newdoc_for_scalar_type('double', ['float_'], + """ + Double-precision floating-point number type, compatible with Python `float` + and C ``double``. + """) + +add_newdoc_for_scalar_type('longdouble', ['longfloat'], + """ + Extended-precision floating-point number type, compatible with C + ``long double`` but not necessarily with IEEE 754 quadruple-precision. + """) + +add_newdoc_for_scalar_type('csingle', ['singlecomplex'], + """ + Complex number type composed of two single-precision floating-point + numbers. + """) + +add_newdoc_for_scalar_type('cdouble', ['cfloat', 'complex_'], + """ + Complex number type composed of two double-precision floating-point + numbers, compatible with Python `complex`. + """) + +add_newdoc_for_scalar_type('clongdouble', ['clongfloat', 'longcomplex'], + """ + Complex number type composed of two extended-precision floating-point + numbers. + """) + +add_newdoc_for_scalar_type('object_', [], + """ + Any Python object. + """) + +add_newdoc_for_scalar_type('str_', ['unicode_'], + r""" + A unicode string. + + This type strips trailing null codepoints. + + >>> s = np.str_("abc\x00") + >>> s + 'abc' + + Unlike the builtin `str`, this supports the :ref:`python:bufferobjects`, exposing its + contents as UCS4: + + >>> m = memoryview(np.str_("abc")) + >>> m.format + '3w' + >>> m.tobytes() + b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00' + """) + +add_newdoc_for_scalar_type('bytes_', ['string_'], + r""" + A byte string. + + When used in arrays, this type strips trailing null bytes. + """) + +add_newdoc_for_scalar_type('void', [], + r""" + np.void(length_or_data, /, dtype=None) + + Create a new structured or unstructured void scalar. + + Parameters + ---------- + length_or_data : int, array-like, bytes-like, object + One of multiple meanings (see notes). The length or + bytes data of an unstructured void. Or alternatively, + the data to be stored in the new scalar when `dtype` + is provided. + This can be an array-like, in which case an array may + be returned. + dtype : dtype, optional + If provided the dtype of the new scalar. This dtype must + be "void" dtype (i.e. a structured or unstructured void, + see also :ref:`defining-structured-types`). + + ..versionadded:: 1.24 + + Notes + ----- + For historical reasons and because void scalars can represent both + arbitrary byte data and structured dtypes, the void constructor + has three calling conventions: + + 1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five + ``\0`` bytes. The 5 can be a Python or NumPy integer. + 2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string. + The dtype itemsize will match the byte string length, here ``"V10"``. + 3. When a ``dtype=`` is passed the call is roughly the same as an + array creation. However, a void scalar rather than array is returned. + + Please see the examples which show all three different conventions. + + Examples + -------- + >>> np.void(5) + void(b'\x00\x00\x00\x00\x00') + >>> np.void(b'abcd') + void(b'\x61\x62\x63\x64') + >>> np.void((5, 3.2, "eggs"), dtype="i,d,S5") + (5, 3.2, b'eggs') # looks like a tuple, but is `np.void` + >>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)]) + (3, 3) # looks like a tuple, but is `np.void` + + """) + +add_newdoc_for_scalar_type('datetime64', [], + """ + If created from a 64-bit integer, it represents an offset from + ``1970-01-01T00:00:00``. + If created from string, the string can be in ISO 8601 date + or datetime format. + + >>> np.datetime64(10, 'Y') + numpy.datetime64('1980') + >>> np.datetime64('1980', 'Y') + numpy.datetime64('1980') + >>> np.datetime64(10, 'D') + numpy.datetime64('1970-01-11') + + See :ref:`arrays.datetime` for more information. + """) + +add_newdoc_for_scalar_type('timedelta64', [], + """ + A timedelta stored as a 64-bit integer. + + See :ref:`arrays.datetime` for more information. + """) + +add_newdoc('numpy.core.numerictypes', "integer", ('is_integer', + """ + integer.is_integer() -> bool + + Return ``True`` if the number is finite with integral value. + + .. versionadded:: 1.22 + + Examples + -------- + >>> np.int64(-2).is_integer() + True + >>> np.uint32(5).is_integer() + True + """)) + +# TODO: work out how to put this on the base class, np.floating +for float_name in ('half', 'single', 'double', 'longdouble'): + add_newdoc('numpy.core.numerictypes', float_name, ('as_integer_ratio', + """ + {ftype}.as_integer_ratio() -> (int, int) + + Return a pair of integers, whose ratio is exactly equal to the original + floating point number, and with a positive denominator. + Raise `OverflowError` on infinities and a `ValueError` on NaNs. + + >>> np.{ftype}(10.0).as_integer_ratio() + (10, 1) + >>> np.{ftype}(0.0).as_integer_ratio() + (0, 1) + >>> np.{ftype}(-.25).as_integer_ratio() + (-1, 4) + """.format(ftype=float_name))) + + add_newdoc('numpy.core.numerictypes', float_name, ('is_integer', + f""" + {float_name}.is_integer() -> bool + + Return ``True`` if the floating point number is finite with integral + value, and ``False`` otherwise. + + .. versionadded:: 1.22 + + Examples + -------- + >>> np.{float_name}(-2.0).is_integer() + True + >>> np.{float_name}(3.2).is_integer() + False + """)) + +for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', + 'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'): + # Add negative examples for signed cases by checking typecode + add_newdoc('numpy.core.numerictypes', int_name, ('bit_count', + f""" + {int_name}.bit_count() -> int + + Computes the number of 1-bits in the absolute value of the input. + Analogous to the builtin `int.bit_count` or ``popcount`` in C++. + + Examples + -------- + >>> np.{int_name}(127).bit_count() + 7""" + + (f""" + >>> np.{int_name}(-127).bit_count() + 7 + """ if dtype(int_name).char.islower() else ""))) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/_asarray.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/_asarray.py new file mode 100644 index 0000000000000000000000000000000000000000..a9abc5a88ca38cf248996db806f789bb49b5f68b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/_asarray.py @@ -0,0 +1,134 @@ +""" +Functions in the ``as*array`` family that promote array-likes into arrays. + +`require` fits this category despite its name not matching this pattern. +""" +from .overrides import ( + array_function_dispatch, + set_array_function_like_doc, + set_module, +) +from .multiarray import array, asanyarray + + +__all__ = ["require"] + + +POSSIBLE_FLAGS = { + 'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C', + 'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F', + 'A': 'A', 'ALIGNED': 'A', + 'W': 'W', 'WRITEABLE': 'W', + 'O': 'O', 'OWNDATA': 'O', + 'E': 'E', 'ENSUREARRAY': 'E' +} + + +@set_array_function_like_doc +@set_module('numpy') +def require(a, dtype=None, requirements=None, *, like=None): + """ + Return an ndarray of the provided type that satisfies requirements. + + This function is useful to be sure that an array with the correct flags + is returned for passing to compiled code (perhaps through ctypes). + + Parameters + ---------- + a : array_like + The object to be converted to a type-and-requirement-satisfying array. + dtype : data-type + The required data-type. If None preserve the current dtype. If your + application requires the data to be in native byteorder, include + a byteorder specification as a part of the dtype specification. + requirements : str or sequence of str + The requirements list can be any of the following + + * 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array + * 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array + * 'ALIGNED' ('A') - ensure a data-type aligned array + * 'WRITEABLE' ('W') - ensure a writable array + * 'OWNDATA' ('O') - ensure an array that owns its own data + * 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array with specified requirements and type if given. + + See Also + -------- + asarray : Convert input to an ndarray. + asanyarray : Convert to an ndarray, but pass through ndarray subclasses. + ascontiguousarray : Convert input to a contiguous array. + asfortranarray : Convert input to an ndarray with column-major + memory order. + ndarray.flags : Information about the memory layout of the array. + + Notes + ----- + The returned array will be guaranteed to have the listed requirements + by making a copy if needed. + + Examples + -------- + >>> x = np.arange(6).reshape(2,3) + >>> x.flags + C_CONTIGUOUS : True + F_CONTIGUOUS : False + OWNDATA : False + WRITEABLE : True + ALIGNED : True + WRITEBACKIFCOPY : False + + >>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F']) + >>> y.flags + C_CONTIGUOUS : False + F_CONTIGUOUS : True + OWNDATA : True + WRITEABLE : True + ALIGNED : True + WRITEBACKIFCOPY : False + + """ + if like is not None: + return _require_with_like( + like, + a, + dtype=dtype, + requirements=requirements, + ) + + if not requirements: + return asanyarray(a, dtype=dtype) + + requirements = {POSSIBLE_FLAGS[x.upper()] for x in requirements} + + if 'E' in requirements: + requirements.remove('E') + subok = False + else: + subok = True + + order = 'A' + if requirements >= {'C', 'F'}: + raise ValueError('Cannot specify both "C" and "F" order') + elif 'F' in requirements: + order = 'F' + requirements.remove('F') + elif 'C' in requirements: + order = 'C' + requirements.remove('C') + + arr = array(a, dtype=dtype, order=order, copy=False, subok=subok) + + for prop in requirements: + if not arr.flags[prop]: + return arr.copy(order) + return arr + + +_require_with_like = array_function_dispatch()(require) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/_exceptions.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/_exceptions.py new file mode 100644 index 0000000000000000000000000000000000000000..87d4213a6d42cf090f8db75571244840dd68cd5a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/_exceptions.py @@ -0,0 +1,172 @@ +""" +Various richly-typed exceptions, that also help us deal with string formatting +in python where it's easier. + +By putting the formatting in `__str__`, we also avoid paying the cost for +users who silence the exceptions. +""" +from .._utils import set_module + +def _unpack_tuple(tup): + if len(tup) == 1: + return tup[0] + else: + return tup + + +def _display_as_base(cls): + """ + A decorator that makes an exception class look like its base. + + We use this to hide subclasses that are implementation details - the user + should catch the base type, which is what the traceback will show them. + + Classes decorated with this decorator are subject to removal without a + deprecation warning. + """ + assert issubclass(cls, Exception) + cls.__name__ = cls.__base__.__name__ + return cls + + +class UFuncTypeError(TypeError): + """ Base class for all ufunc exceptions """ + def __init__(self, ufunc): + self.ufunc = ufunc + + +@_display_as_base +class _UFuncNoLoopError(UFuncTypeError): + """ Thrown when a ufunc loop cannot be found """ + def __init__(self, ufunc, dtypes): + super().__init__(ufunc) + self.dtypes = tuple(dtypes) + + def __str__(self): + return ( + "ufunc {!r} did not contain a loop with signature matching types " + "{!r} -> {!r}" + ).format( + self.ufunc.__name__, + _unpack_tuple(self.dtypes[:self.ufunc.nin]), + _unpack_tuple(self.dtypes[self.ufunc.nin:]) + ) + + +@_display_as_base +class _UFuncBinaryResolutionError(_UFuncNoLoopError): + """ Thrown when a binary resolution fails """ + def __init__(self, ufunc, dtypes): + super().__init__(ufunc, dtypes) + assert len(self.dtypes) == 2 + + def __str__(self): + return ( + "ufunc {!r} cannot use operands with types {!r} and {!r}" + ).format( + self.ufunc.__name__, *self.dtypes + ) + + +@_display_as_base +class _UFuncCastingError(UFuncTypeError): + def __init__(self, ufunc, casting, from_, to): + super().__init__(ufunc) + self.casting = casting + self.from_ = from_ + self.to = to + + +@_display_as_base +class _UFuncInputCastingError(_UFuncCastingError): + """ Thrown when a ufunc input cannot be casted """ + def __init__(self, ufunc, casting, from_, to, i): + super().__init__(ufunc, casting, from_, to) + self.in_i = i + + def __str__(self): + # only show the number if more than one input exists + i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else "" + return ( + "Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting " + "rule {!r}" + ).format( + self.ufunc.__name__, i_str, self.from_, self.to, self.casting + ) + + +@_display_as_base +class _UFuncOutputCastingError(_UFuncCastingError): + """ Thrown when a ufunc output cannot be casted """ + def __init__(self, ufunc, casting, from_, to, i): + super().__init__(ufunc, casting, from_, to) + self.out_i = i + + def __str__(self): + # only show the number if more than one output exists + i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else "" + return ( + "Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting " + "rule {!r}" + ).format( + self.ufunc.__name__, i_str, self.from_, self.to, self.casting + ) + + +@_display_as_base +class _ArrayMemoryError(MemoryError): + """ Thrown when an array cannot be allocated""" + def __init__(self, shape, dtype): + self.shape = shape + self.dtype = dtype + + @property + def _total_size(self): + num_bytes = self.dtype.itemsize + for dim in self.shape: + num_bytes *= dim + return num_bytes + + @staticmethod + def _size_to_string(num_bytes): + """ Convert a number of bytes into a binary size string """ + + # https://en.wikipedia.org/wiki/Binary_prefix + LOG2_STEP = 10 + STEP = 1024 + units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB'] + + unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP + unit_val = 1 << (unit_i * LOG2_STEP) + n_units = num_bytes / unit_val + del unit_val + + # ensure we pick a unit that is correct after rounding + if round(n_units) == STEP: + unit_i += 1 + n_units /= STEP + + # deal with sizes so large that we don't have units for them + if unit_i >= len(units): + new_unit_i = len(units) - 1 + n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP) + unit_i = new_unit_i + + unit_name = units[unit_i] + # format with a sensible number of digits + if unit_i == 0: + # no decimal point on bytes + return '{:.0f} {}'.format(n_units, unit_name) + elif round(n_units) < 1000: + # 3 significant figures, if none are dropped to the left of the . + return '{:#.3g} {}'.format(n_units, unit_name) + else: + # just give all the digits otherwise + return '{:#.0f} {}'.format(n_units, unit_name) + + def __str__(self): + size_str = self._size_to_string(self._total_size) + return ( + "Unable to allocate {} for an array with shape {} and data type {}" + .format(size_str, self.shape, self.dtype) + ) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/_machar.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/_machar.py new file mode 100644 index 0000000000000000000000000000000000000000..59d71014ff20053fecd69bf3448b152030842491 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/_machar.py @@ -0,0 +1,356 @@ +""" +Machine arithmetic - determine the parameters of the +floating-point arithmetic system + +Author: Pearu Peterson, September 2003 + +""" +__all__ = ['MachAr'] + +from .fromnumeric import any +from ._ufunc_config import errstate +from .._utils import set_module + +# Need to speed this up...especially for longfloat + +# Deprecated 2021-10-20, NumPy 1.22 +class MachAr: + """ + Diagnosing machine parameters. + + Attributes + ---------- + ibeta : int + Radix in which numbers are represented. + it : int + Number of base-`ibeta` digits in the floating point mantissa M. + machep : int + Exponent of the smallest (most negative) power of `ibeta` that, + added to 1.0, gives something different from 1.0 + eps : float + Floating-point number ``beta**machep`` (floating point precision) + negep : int + Exponent of the smallest power of `ibeta` that, subtracted + from 1.0, gives something different from 1.0. + epsneg : float + Floating-point number ``beta**negep``. + iexp : int + Number of bits in the exponent (including its sign and bias). + minexp : int + Smallest (most negative) power of `ibeta` consistent with there + being no leading zeros in the mantissa. + xmin : float + Floating-point number ``beta**minexp`` (the smallest [in + magnitude] positive floating point number with full precision). + maxexp : int + Smallest (positive) power of `ibeta` that causes overflow. + xmax : float + ``(1-epsneg) * beta**maxexp`` (the largest [in magnitude] + usable floating value). + irnd : int + In ``range(6)``, information on what kind of rounding is done + in addition, and on how underflow is handled. + ngrd : int + Number of 'guard digits' used when truncating the product + of two mantissas to fit the representation. + epsilon : float + Same as `eps`. + tiny : float + An alias for `smallest_normal`, kept for backwards compatibility. + huge : float + Same as `xmax`. + precision : float + ``- int(-log10(eps))`` + resolution : float + ``- 10**(-precision)`` + smallest_normal : float + The smallest positive floating point number with 1 as leading bit in + the mantissa following IEEE-754. Same as `xmin`. + smallest_subnormal : float + The smallest positive floating point number with 0 as leading bit in + the mantissa following IEEE-754. + + Parameters + ---------- + float_conv : function, optional + Function that converts an integer or integer array to a float + or float array. Default is `float`. + int_conv : function, optional + Function that converts a float or float array to an integer or + integer array. Default is `int`. + float_to_float : function, optional + Function that converts a float array to float. Default is `float`. + Note that this does not seem to do anything useful in the current + implementation. + float_to_str : function, optional + Function that converts a single float to a string. Default is + ``lambda v:'%24.16e' %v``. + title : str, optional + Title that is printed in the string representation of `MachAr`. + + See Also + -------- + finfo : Machine limits for floating point types. + iinfo : Machine limits for integer types. + + References + ---------- + .. [1] Press, Teukolsky, Vetterling and Flannery, + "Numerical Recipes in C++," 2nd ed, + Cambridge University Press, 2002, p. 31. + + """ + + def __init__(self, float_conv=float,int_conv=int, + float_to_float=float, + float_to_str=lambda v:'%24.16e' % v, + title='Python floating point number'): + """ + + float_conv - convert integer to float (array) + int_conv - convert float (array) to integer + float_to_float - convert float array to float + float_to_str - convert array float to str + title - description of used floating point numbers + + """ + # We ignore all errors here because we are purposely triggering + # underflow to detect the properties of the runninng arch. + with errstate(under='ignore'): + self._do_init(float_conv, int_conv, float_to_float, float_to_str, title) + + def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title): + max_iterN = 10000 + msg = "Did not converge after %d tries with %s" + one = float_conv(1) + two = one + one + zero = one - one + + # Do we really need to do this? Aren't they 2 and 2.0? + # Determine ibeta and beta + a = one + for _ in range(max_iterN): + a = a + a + temp = a + one + temp1 = temp - a + if any(temp1 - one != zero): + break + else: + raise RuntimeError(msg % (_, one.dtype)) + b = one + for _ in range(max_iterN): + b = b + b + temp = a + b + itemp = int_conv(temp-a) + if any(itemp != 0): + break + else: + raise RuntimeError(msg % (_, one.dtype)) + ibeta = itemp + beta = float_conv(ibeta) + + # Determine it and irnd + it = -1 + b = one + for _ in range(max_iterN): + it = it + 1 + b = b * beta + temp = b + one + temp1 = temp - b + if any(temp1 - one != zero): + break + else: + raise RuntimeError(msg % (_, one.dtype)) + + betah = beta / two + a = one + for _ in range(max_iterN): + a = a + a + temp = a + one + temp1 = temp - a + if any(temp1 - one != zero): + break + else: + raise RuntimeError(msg % (_, one.dtype)) + temp = a + betah + irnd = 0 + if any(temp-a != zero): + irnd = 1 + tempa = a + beta + temp = tempa + betah + if irnd == 0 and any(temp-tempa != zero): + irnd = 2 + + # Determine negep and epsneg + negep = it + 3 + betain = one / beta + a = one + for i in range(negep): + a = a * betain + b = a + for _ in range(max_iterN): + temp = one - a + if any(temp-one != zero): + break + a = a * beta + negep = negep - 1 + # Prevent infinite loop on PPC with gcc 4.0: + if negep < 0: + raise RuntimeError("could not determine machine tolerance " + "for 'negep', locals() -> %s" % (locals())) + else: + raise RuntimeError(msg % (_, one.dtype)) + negep = -negep + epsneg = a + + # Determine machep and eps + machep = - it - 3 + a = b + + for _ in range(max_iterN): + temp = one + a + if any(temp-one != zero): + break + a = a * beta + machep = machep + 1 + else: + raise RuntimeError(msg % (_, one.dtype)) + eps = a + + # Determine ngrd + ngrd = 0 + temp = one + eps + if irnd == 0 and any(temp*one - one != zero): + ngrd = 1 + + # Determine iexp + i = 0 + k = 1 + z = betain + t = one + eps + nxres = 0 + for _ in range(max_iterN): + y = z + z = y*y + a = z*one # Check here for underflow + temp = z*t + if any(a+a == zero) or any(abs(z) >= y): + break + temp1 = temp * betain + if any(temp1*beta == z): + break + i = i + 1 + k = k + k + else: + raise RuntimeError(msg % (_, one.dtype)) + if ibeta != 10: + iexp = i + 1 + mx = k + k + else: + iexp = 2 + iz = ibeta + while k >= iz: + iz = iz * ibeta + iexp = iexp + 1 + mx = iz + iz - 1 + + # Determine minexp and xmin + for _ in range(max_iterN): + xmin = y + y = y * betain + a = y * one + temp = y * t + if any((a + a) != zero) and any(abs(y) < xmin): + k = k + 1 + temp1 = temp * betain + if any(temp1*beta == y) and any(temp != y): + nxres = 3 + xmin = y + break + else: + break + else: + raise RuntimeError(msg % (_, one.dtype)) + minexp = -k + + # Determine maxexp, xmax + if mx <= k + k - 3 and ibeta != 10: + mx = mx + mx + iexp = iexp + 1 + maxexp = mx + minexp + irnd = irnd + nxres + if irnd >= 2: + maxexp = maxexp - 2 + i = maxexp + minexp + if ibeta == 2 and not i: + maxexp = maxexp - 1 + if i > 20: + maxexp = maxexp - 1 + if any(a != y): + maxexp = maxexp - 2 + xmax = one - epsneg + if any(xmax*one != xmax): + xmax = one - beta*epsneg + xmax = xmax / (xmin*beta*beta*beta) + i = maxexp + minexp + 3 + for j in range(i): + if ibeta == 2: + xmax = xmax + xmax + else: + xmax = xmax * beta + + smallest_subnormal = abs(xmin / beta ** (it)) + + self.ibeta = ibeta + self.it = it + self.negep = negep + self.epsneg = float_to_float(epsneg) + self._str_epsneg = float_to_str(epsneg) + self.machep = machep + self.eps = float_to_float(eps) + self._str_eps = float_to_str(eps) + self.ngrd = ngrd + self.iexp = iexp + self.minexp = minexp + self.xmin = float_to_float(xmin) + self._str_xmin = float_to_str(xmin) + self.maxexp = maxexp + self.xmax = float_to_float(xmax) + self._str_xmax = float_to_str(xmax) + self.irnd = irnd + + self.title = title + # Commonly used parameters + self.epsilon = self.eps + self.tiny = self.xmin + self.huge = self.xmax + self.smallest_normal = self.xmin + self._str_smallest_normal = float_to_str(self.xmin) + self.smallest_subnormal = float_to_float(smallest_subnormal) + self._str_smallest_subnormal = float_to_str(smallest_subnormal) + + import math + self.precision = int(-math.log10(float_to_float(self.eps))) + ten = two + two + two + two + two + resolution = ten ** (-self.precision) + self.resolution = float_to_float(resolution) + self._str_resolution = float_to_str(resolution) + + def __str__(self): + fmt = ( + 'Machine parameters for %(title)s\n' + '---------------------------------------------------------------------\n' + 'ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s\n' + 'machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)\n' + 'negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)\n' + 'minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)\n' + 'maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)\n' + 'smallest_normal=%(smallest_normal)s ' + 'smallest_subnormal=%(smallest_subnormal)s\n' + '---------------------------------------------------------------------\n' + ) + return fmt % self.__dict__ + + +if __name__ == '__main__': + print(MachAr()) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/_operand_flag_tests.cpython-310-x86_64-linux-gnu.so b/env-llmeval/lib/python3.10/site-packages/numpy/core/_operand_flag_tests.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..7a672f9eb4108313e7ca19ec65b1967652c5923b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/numpy/core/_operand_flag_tests.cpython-310-x86_64-linux-gnu.so differ diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/_rational_tests.cpython-310-x86_64-linux-gnu.so b/env-llmeval/lib/python3.10/site-packages/numpy/core/_rational_tests.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..88ae1fbc7c171d8b69a2f46317560b1a6d86a7b2 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/numpy/core/_rational_tests.cpython-310-x86_64-linux-gnu.so differ diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/_string_helpers.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/_string_helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..1f757cc0734fe1db9528a0ecec47731009c57c6c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/_string_helpers.py @@ -0,0 +1,100 @@ +""" +String-handling utilities to avoid locale-dependence. + +Used primarily to generate type name aliases. +""" +# "import string" is costly to import! +# Construct the translation tables directly +# "A" = chr(65), "a" = chr(97) +_all_chars = tuple(map(chr, range(256))) +_ascii_upper = _all_chars[65:65+26] +_ascii_lower = _all_chars[97:97+26] +LOWER_TABLE = "".join(_all_chars[:65] + _ascii_lower + _all_chars[65+26:]) +UPPER_TABLE = "".join(_all_chars[:97] + _ascii_upper + _all_chars[97+26:]) + + +def english_lower(s): + """ Apply English case rules to convert ASCII strings to all lower case. + + This is an internal utility function to replace calls to str.lower() such + that we can avoid changing behavior with changing locales. In particular, + Turkish has distinct dotted and dotless variants of the Latin letter "I" in + both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale. + + Parameters + ---------- + s : str + + Returns + ------- + lowered : str + + Examples + -------- + >>> from numpy.core.numerictypes import english_lower + >>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_') + 'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_' + >>> english_lower('') + '' + """ + lowered = s.translate(LOWER_TABLE) + return lowered + + +def english_upper(s): + """ Apply English case rules to convert ASCII strings to all upper case. + + This is an internal utility function to replace calls to str.upper() such + that we can avoid changing behavior with changing locales. In particular, + Turkish has distinct dotted and dotless variants of the Latin letter "I" in + both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale. + + Parameters + ---------- + s : str + + Returns + ------- + uppered : str + + Examples + -------- + >>> from numpy.core.numerictypes import english_upper + >>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_') + 'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_' + >>> english_upper('') + '' + """ + uppered = s.translate(UPPER_TABLE) + return uppered + + +def english_capitalize(s): + """ Apply English case rules to convert the first character of an ASCII + string to upper case. + + This is an internal utility function to replace calls to str.capitalize() + such that we can avoid changing behavior with changing locales. + + Parameters + ---------- + s : str + + Returns + ------- + capitalized : str + + Examples + -------- + >>> from numpy.core.numerictypes import english_capitalize + >>> english_capitalize('int8') + 'Int8' + >>> english_capitalize('Int8') + 'Int8' + >>> english_capitalize('') + '' + """ + if s: + return english_upper(s[0]) + s[1:] + else: + return s diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/_ufunc_config.pyi b/env-llmeval/lib/python3.10/site-packages/numpy/core/_ufunc_config.pyi new file mode 100644 index 0000000000000000000000000000000000000000..f56504507ac02995b740e49a9073e0e351b7abf5 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/_ufunc_config.pyi @@ -0,0 +1,37 @@ +from collections.abc import Callable +from typing import Any, Literal, TypedDict + +from numpy import _SupportsWrite + +_ErrKind = Literal["ignore", "warn", "raise", "call", "print", "log"] +_ErrFunc = Callable[[str, int], Any] + +class _ErrDict(TypedDict): + divide: _ErrKind + over: _ErrKind + under: _ErrKind + invalid: _ErrKind + +class _ErrDictOptional(TypedDict, total=False): + all: None | _ErrKind + divide: None | _ErrKind + over: None | _ErrKind + under: None | _ErrKind + invalid: None | _ErrKind + +def seterr( + all: None | _ErrKind = ..., + divide: None | _ErrKind = ..., + over: None | _ErrKind = ..., + under: None | _ErrKind = ..., + invalid: None | _ErrKind = ..., +) -> _ErrDict: ... +def geterr() -> _ErrDict: ... +def setbufsize(size: int) -> int: ... +def getbufsize() -> int: ... +def seterrcall( + func: None | _ErrFunc | _SupportsWrite[str] +) -> None | _ErrFunc | _SupportsWrite[str]: ... +def geterrcall() -> None | _ErrFunc | _SupportsWrite[str]: ... + +# See `numpy/__init__.pyi` for the `errstate` class and `no_nep5_warnings` diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/arrayprint.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/arrayprint.py new file mode 100644 index 0000000000000000000000000000000000000000..62cd527073a615458b12619545f4da76664c4bc0 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/arrayprint.py @@ -0,0 +1,1725 @@ +"""Array printing function + +$Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $ + +""" +__all__ = ["array2string", "array_str", "array_repr", "set_string_function", + "set_printoptions", "get_printoptions", "printoptions", + "format_float_positional", "format_float_scientific"] +__docformat__ = 'restructuredtext' + +# +# Written by Konrad Hinsen +# last revision: 1996-3-13 +# modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details) +# and by Perry Greenfield 2000-4-1 for numarray +# and by Travis Oliphant 2005-8-22 for numpy + + +# Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy +# scalars but for different purposes. scalartypes.c.src has str/reprs for when +# the scalar is printed on its own, while arrayprint.py has strs for when +# scalars are printed inside an ndarray. Only the latter strs are currently +# user-customizable. + +import functools +import numbers +import sys +try: + from _thread import get_ident +except ImportError: + from _dummy_thread import get_ident + +import numpy as np +from . import numerictypes as _nt +from .umath import absolute, isinf, isfinite, isnat +from . import multiarray +from .multiarray import (array, dragon4_positional, dragon4_scientific, + datetime_as_string, datetime_data, ndarray, + set_legacy_print_mode) +from .fromnumeric import any +from .numeric import concatenate, asarray, errstate +from .numerictypes import (longlong, intc, int_, float_, complex_, bool_, + flexible) +from .overrides import array_function_dispatch, set_module +import operator +import warnings +import contextlib + +_format_options = { + 'edgeitems': 3, # repr N leading and trailing items of each dimension + 'threshold': 1000, # total items > triggers array summarization + 'floatmode': 'maxprec', + 'precision': 8, # precision of floating point representations + 'suppress': False, # suppress printing small floating values in exp format + 'linewidth': 75, + 'nanstr': 'nan', + 'infstr': 'inf', + 'sign': '-', + 'formatter': None, + # Internally stored as an int to simplify comparisons; converted from/to + # str/False on the way in/out. + 'legacy': sys.maxsize} + +def _make_options_dict(precision=None, threshold=None, edgeitems=None, + linewidth=None, suppress=None, nanstr=None, infstr=None, + sign=None, formatter=None, floatmode=None, legacy=None): + """ + Make a dictionary out of the non-None arguments, plus conversion of + *legacy* and sanity checks. + """ + + options = {k: v for k, v in locals().items() if v is not None} + + if suppress is not None: + options['suppress'] = bool(suppress) + + modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal'] + if floatmode not in modes + [None]: + raise ValueError("floatmode option must be one of " + + ", ".join('"{}"'.format(m) for m in modes)) + + if sign not in [None, '-', '+', ' ']: + raise ValueError("sign option must be one of ' ', '+', or '-'") + + if legacy == False: + options['legacy'] = sys.maxsize + elif legacy == '1.13': + options['legacy'] = 113 + elif legacy == '1.21': + options['legacy'] = 121 + elif legacy is None: + pass # OK, do nothing. + else: + warnings.warn( + "legacy printing option can currently only be '1.13', '1.21', or " + "`False`", stacklevel=3) + + if threshold is not None: + # forbid the bad threshold arg suggested by stack overflow, gh-12351 + if not isinstance(threshold, numbers.Number): + raise TypeError("threshold must be numeric") + if np.isnan(threshold): + raise ValueError("threshold must be non-NAN, try " + "sys.maxsize for untruncated representation") + + if precision is not None: + # forbid the bad precision arg as suggested by issue #18254 + try: + options['precision'] = operator.index(precision) + except TypeError as e: + raise TypeError('precision must be an integer') from e + + return options + + +@set_module('numpy') +def set_printoptions(precision=None, threshold=None, edgeitems=None, + linewidth=None, suppress=None, nanstr=None, infstr=None, + formatter=None, sign=None, floatmode=None, *, legacy=None): + """ + Set printing options. + + These options determine the way floating point numbers, arrays and + other NumPy objects are displayed. + + Parameters + ---------- + precision : int or None, optional + Number of digits of precision for floating point output (default 8). + May be None if `floatmode` is not `fixed`, to print as many digits as + necessary to uniquely specify the value. + threshold : int, optional + Total number of array elements which trigger summarization + rather than full repr (default 1000). + To always use the full repr without summarization, pass `sys.maxsize`. + edgeitems : int, optional + Number of array items in summary at beginning and end of + each dimension (default 3). + linewidth : int, optional + The number of characters per line for the purpose of inserting + line breaks (default 75). + suppress : bool, optional + If True, always print floating point numbers using fixed point + notation, in which case numbers equal to zero in the current precision + will print as zero. If False, then scientific notation is used when + absolute value of the smallest number is < 1e-4 or the ratio of the + maximum absolute value to the minimum is > 1e3. The default is False. + nanstr : str, optional + String representation of floating point not-a-number (default nan). + infstr : str, optional + String representation of floating point infinity (default inf). + sign : string, either '-', '+', or ' ', optional + Controls printing of the sign of floating-point types. If '+', always + print the sign of positive values. If ' ', always prints a space + (whitespace character) in the sign position of positive values. If + '-', omit the sign character of positive values. (default '-') + formatter : dict of callables, optional + If not None, the keys should indicate the type(s) that the respective + formatting function applies to. Callables should return a string. + Types that are not specified (by their corresponding keys) are handled + by the default formatters. Individual types for which a formatter + can be set are: + + - 'bool' + - 'int' + - 'timedelta' : a `numpy.timedelta64` + - 'datetime' : a `numpy.datetime64` + - 'float' + - 'longfloat' : 128-bit floats + - 'complexfloat' + - 'longcomplexfloat' : composed of two 128-bit floats + - 'numpystr' : types `numpy.bytes_` and `numpy.str_` + - 'object' : `np.object_` arrays + + Other keys that can be used to set a group of types at once are: + + - 'all' : sets all types + - 'int_kind' : sets 'int' + - 'float_kind' : sets 'float' and 'longfloat' + - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat' + - 'str_kind' : sets 'numpystr' + floatmode : str, optional + Controls the interpretation of the `precision` option for + floating-point types. Can take the following values + (default maxprec_equal): + + * 'fixed': Always print exactly `precision` fractional digits, + even if this would print more or fewer digits than + necessary to specify the value uniquely. + * 'unique': Print the minimum number of fractional digits necessary + to represent each value uniquely. Different elements may + have a different number of digits. The value of the + `precision` option is ignored. + * 'maxprec': Print at most `precision` fractional digits, but if + an element can be uniquely represented with fewer digits + only print it with that many. + * 'maxprec_equal': Print at most `precision` fractional digits, + but if every element in the array can be uniquely + represented with an equal number of fewer digits, use that + many digits for all elements. + legacy : string or `False`, optional + If set to the string `'1.13'` enables 1.13 legacy printing mode. This + approximates numpy 1.13 print output by including a space in the sign + position of floats and different behavior for 0d arrays. This also + enables 1.21 legacy printing mode (described below). + + If set to the string `'1.21'` enables 1.21 legacy printing mode. This + approximates numpy 1.21 print output of complex structured dtypes + by not inserting spaces after commas that separate fields and after + colons. + + If set to `False`, disables legacy mode. + + Unrecognized strings will be ignored with a warning for forward + compatibility. + + .. versionadded:: 1.14.0 + .. versionchanged:: 1.22.0 + + See Also + -------- + get_printoptions, printoptions, set_string_function, array2string + + Notes + ----- + `formatter` is always reset with a call to `set_printoptions`. + + Use `printoptions` as a context manager to set the values temporarily. + + Examples + -------- + Floating point precision can be set: + + >>> np.set_printoptions(precision=4) + >>> np.array([1.123456789]) + [1.1235] + + Long arrays can be summarised: + + >>> np.set_printoptions(threshold=5) + >>> np.arange(10) + array([0, 1, 2, ..., 7, 8, 9]) + + Small results can be suppressed: + + >>> eps = np.finfo(float).eps + >>> x = np.arange(4.) + >>> x**2 - (x + eps)**2 + array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00]) + >>> np.set_printoptions(suppress=True) + >>> x**2 - (x + eps)**2 + array([-0., -0., 0., 0.]) + + A custom formatter can be used to display array elements as desired: + + >>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)}) + >>> x = np.arange(3) + >>> x + array([int: 0, int: -1, int: -2]) + >>> np.set_printoptions() # formatter gets reset + >>> x + array([0, 1, 2]) + + To put back the default options, you can use: + + >>> np.set_printoptions(edgeitems=3, infstr='inf', + ... linewidth=75, nanstr='nan', precision=8, + ... suppress=False, threshold=1000, formatter=None) + + Also to temporarily override options, use `printoptions` as a context manager: + + >>> with np.printoptions(precision=2, suppress=True, threshold=5): + ... np.linspace(0, 10, 10) + array([ 0. , 1.11, 2.22, ..., 7.78, 8.89, 10. ]) + + """ + opt = _make_options_dict(precision, threshold, edgeitems, linewidth, + suppress, nanstr, infstr, sign, formatter, + floatmode, legacy) + # formatter is always reset + opt['formatter'] = formatter + _format_options.update(opt) + + # set the C variable for legacy mode + if _format_options['legacy'] == 113: + set_legacy_print_mode(113) + # reset the sign option in legacy mode to avoid confusion + _format_options['sign'] = '-' + elif _format_options['legacy'] == 121: + set_legacy_print_mode(121) + elif _format_options['legacy'] == sys.maxsize: + set_legacy_print_mode(0) + + +@set_module('numpy') +def get_printoptions(): + """ + Return the current print options. + + Returns + ------- + print_opts : dict + Dictionary of current print options with keys + + - precision : int + - threshold : int + - edgeitems : int + - linewidth : int + - suppress : bool + - nanstr : str + - infstr : str + - formatter : dict of callables + - sign : str + + For a full description of these options, see `set_printoptions`. + + See Also + -------- + set_printoptions, printoptions, set_string_function + + """ + opts = _format_options.copy() + opts['legacy'] = { + 113: '1.13', 121: '1.21', sys.maxsize: False, + }[opts['legacy']] + return opts + + +def _get_legacy_print_mode(): + """Return the legacy print mode as an int.""" + return _format_options['legacy'] + + +@set_module('numpy') +@contextlib.contextmanager +def printoptions(*args, **kwargs): + """Context manager for setting print options. + + Set print options for the scope of the `with` block, and restore the old + options at the end. See `set_printoptions` for the full description of + available options. + + Examples + -------- + + >>> from numpy.testing import assert_equal + >>> with np.printoptions(precision=2): + ... np.array([2.0]) / 3 + array([0.67]) + + The `as`-clause of the `with`-statement gives the current print options: + + >>> with np.printoptions(precision=2) as opts: + ... assert_equal(opts, np.get_printoptions()) + + See Also + -------- + set_printoptions, get_printoptions + + """ + opts = np.get_printoptions() + try: + np.set_printoptions(*args, **kwargs) + yield np.get_printoptions() + finally: + np.set_printoptions(**opts) + + +def _leading_trailing(a, edgeitems, index=()): + """ + Keep only the N-D corners (leading and trailing edges) of an array. + + Should be passed a base-class ndarray, since it makes no guarantees about + preserving subclasses. + """ + axis = len(index) + if axis == a.ndim: + return a[index] + + if a.shape[axis] > 2*edgeitems: + return concatenate(( + _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), + _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) + ), axis=axis) + else: + return _leading_trailing(a, edgeitems, index + np.index_exp[:]) + + +def _object_format(o): + """ Object arrays containing lists should be printed unambiguously """ + if type(o) is list: + fmt = 'list({!r})' + else: + fmt = '{!r}' + return fmt.format(o) + +def repr_format(x): + return repr(x) + +def str_format(x): + return str(x) + +def _get_formatdict(data, *, precision, floatmode, suppress, sign, legacy, + formatter, **kwargs): + # note: extra arguments in kwargs are ignored + + # wrapped in lambdas to avoid taking a code path with the wrong type of data + formatdict = { + 'bool': lambda: BoolFormat(data), + 'int': lambda: IntegerFormat(data), + 'float': lambda: FloatingFormat( + data, precision, floatmode, suppress, sign, legacy=legacy), + 'longfloat': lambda: FloatingFormat( + data, precision, floatmode, suppress, sign, legacy=legacy), + 'complexfloat': lambda: ComplexFloatingFormat( + data, precision, floatmode, suppress, sign, legacy=legacy), + 'longcomplexfloat': lambda: ComplexFloatingFormat( + data, precision, floatmode, suppress, sign, legacy=legacy), + 'datetime': lambda: DatetimeFormat(data, legacy=legacy), + 'timedelta': lambda: TimedeltaFormat(data), + 'object': lambda: _object_format, + 'void': lambda: str_format, + 'numpystr': lambda: repr_format} + + # we need to wrap values in `formatter` in a lambda, so that the interface + # is the same as the above values. + def indirect(x): + return lambda: x + + if formatter is not None: + fkeys = [k for k in formatter.keys() if formatter[k] is not None] + if 'all' in fkeys: + for key in formatdict.keys(): + formatdict[key] = indirect(formatter['all']) + if 'int_kind' in fkeys: + for key in ['int']: + formatdict[key] = indirect(formatter['int_kind']) + if 'float_kind' in fkeys: + for key in ['float', 'longfloat']: + formatdict[key] = indirect(formatter['float_kind']) + if 'complex_kind' in fkeys: + for key in ['complexfloat', 'longcomplexfloat']: + formatdict[key] = indirect(formatter['complex_kind']) + if 'str_kind' in fkeys: + formatdict['numpystr'] = indirect(formatter['str_kind']) + for key in formatdict.keys(): + if key in fkeys: + formatdict[key] = indirect(formatter[key]) + + return formatdict + +def _get_format_function(data, **options): + """ + find the right formatting function for the dtype_ + """ + dtype_ = data.dtype + dtypeobj = dtype_.type + formatdict = _get_formatdict(data, **options) + if dtypeobj is None: + return formatdict["numpystr"]() + elif issubclass(dtypeobj, _nt.bool_): + return formatdict['bool']() + elif issubclass(dtypeobj, _nt.integer): + if issubclass(dtypeobj, _nt.timedelta64): + return formatdict['timedelta']() + else: + return formatdict['int']() + elif issubclass(dtypeobj, _nt.floating): + if issubclass(dtypeobj, _nt.longfloat): + return formatdict['longfloat']() + else: + return formatdict['float']() + elif issubclass(dtypeobj, _nt.complexfloating): + if issubclass(dtypeobj, _nt.clongfloat): + return formatdict['longcomplexfloat']() + else: + return formatdict['complexfloat']() + elif issubclass(dtypeobj, (_nt.str_, _nt.bytes_)): + return formatdict['numpystr']() + elif issubclass(dtypeobj, _nt.datetime64): + return formatdict['datetime']() + elif issubclass(dtypeobj, _nt.object_): + return formatdict['object']() + elif issubclass(dtypeobj, _nt.void): + if dtype_.names is not None: + return StructuredVoidFormat.from_data(data, **options) + else: + return formatdict['void']() + else: + return formatdict['numpystr']() + + +def _recursive_guard(fillvalue='...'): + """ + Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs + + Decorates a function such that if it calls itself with the same first + argument, it returns `fillvalue` instead of recursing. + + Largely copied from reprlib.recursive_repr + """ + + def decorating_function(f): + repr_running = set() + + @functools.wraps(f) + def wrapper(self, *args, **kwargs): + key = id(self), get_ident() + if key in repr_running: + return fillvalue + repr_running.add(key) + try: + return f(self, *args, **kwargs) + finally: + repr_running.discard(key) + + return wrapper + + return decorating_function + + +# gracefully handle recursive calls, when object arrays contain themselves +@_recursive_guard() +def _array2string(a, options, separator=' ', prefix=""): + # The formatter __init__s in _get_format_function cannot deal with + # subclasses yet, and we also need to avoid recursion issues in + # _formatArray with subclasses which return 0d arrays in place of scalars + data = asarray(a) + if a.shape == (): + a = data + + if a.size > options['threshold']: + summary_insert = "..." + data = _leading_trailing(data, options['edgeitems']) + else: + summary_insert = "" + + # find the right formatting function for the array + format_function = _get_format_function(data, **options) + + # skip over "[" + next_line_prefix = " " + # skip over array( + next_line_prefix += " "*len(prefix) + + lst = _formatArray(a, format_function, options['linewidth'], + next_line_prefix, separator, options['edgeitems'], + summary_insert, options['legacy']) + return lst + + +def _array2string_dispatcher( + a, max_line_width=None, precision=None, + suppress_small=None, separator=None, prefix=None, + style=None, formatter=None, threshold=None, + edgeitems=None, sign=None, floatmode=None, suffix=None, + *, legacy=None): + return (a,) + + +@array_function_dispatch(_array2string_dispatcher, module='numpy') +def array2string(a, max_line_width=None, precision=None, + suppress_small=None, separator=' ', prefix="", + style=np._NoValue, formatter=None, threshold=None, + edgeitems=None, sign=None, floatmode=None, suffix="", + *, legacy=None): + """ + Return a string representation of an array. + + Parameters + ---------- + a : ndarray + Input array. + max_line_width : int, optional + Inserts newlines if text is longer than `max_line_width`. + Defaults to ``numpy.get_printoptions()['linewidth']``. + precision : int or None, optional + Floating point precision. + Defaults to ``numpy.get_printoptions()['precision']``. + suppress_small : bool, optional + Represent numbers "very close" to zero as zero; default is False. + Very close is defined by precision: if the precision is 8, e.g., + numbers smaller (in absolute value) than 5e-9 are represented as + zero. + Defaults to ``numpy.get_printoptions()['suppress']``. + separator : str, optional + Inserted between elements. + prefix : str, optional + suffix : str, optional + The length of the prefix and suffix strings are used to respectively + align and wrap the output. An array is typically printed as:: + + prefix + array2string(a) + suffix + + The output is left-padded by the length of the prefix string, and + wrapping is forced at the column ``max_line_width - len(suffix)``. + It should be noted that the content of prefix and suffix strings are + not included in the output. + style : _NoValue, optional + Has no effect, do not use. + + .. deprecated:: 1.14.0 + formatter : dict of callables, optional + If not None, the keys should indicate the type(s) that the respective + formatting function applies to. Callables should return a string. + Types that are not specified (by their corresponding keys) are handled + by the default formatters. Individual types for which a formatter + can be set are: + + - 'bool' + - 'int' + - 'timedelta' : a `numpy.timedelta64` + - 'datetime' : a `numpy.datetime64` + - 'float' + - 'longfloat' : 128-bit floats + - 'complexfloat' + - 'longcomplexfloat' : composed of two 128-bit floats + - 'void' : type `numpy.void` + - 'numpystr' : types `numpy.bytes_` and `numpy.str_` + + Other keys that can be used to set a group of types at once are: + + - 'all' : sets all types + - 'int_kind' : sets 'int' + - 'float_kind' : sets 'float' and 'longfloat' + - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat' + - 'str_kind' : sets 'numpystr' + threshold : int, optional + Total number of array elements which trigger summarization + rather than full repr. + Defaults to ``numpy.get_printoptions()['threshold']``. + edgeitems : int, optional + Number of array items in summary at beginning and end of + each dimension. + Defaults to ``numpy.get_printoptions()['edgeitems']``. + sign : string, either '-', '+', or ' ', optional + Controls printing of the sign of floating-point types. If '+', always + print the sign of positive values. If ' ', always prints a space + (whitespace character) in the sign position of positive values. If + '-', omit the sign character of positive values. + Defaults to ``numpy.get_printoptions()['sign']``. + floatmode : str, optional + Controls the interpretation of the `precision` option for + floating-point types. + Defaults to ``numpy.get_printoptions()['floatmode']``. + Can take the following values: + + - 'fixed': Always print exactly `precision` fractional digits, + even if this would print more or fewer digits than + necessary to specify the value uniquely. + - 'unique': Print the minimum number of fractional digits necessary + to represent each value uniquely. Different elements may + have a different number of digits. The value of the + `precision` option is ignored. + - 'maxprec': Print at most `precision` fractional digits, but if + an element can be uniquely represented with fewer digits + only print it with that many. + - 'maxprec_equal': Print at most `precision` fractional digits, + but if every element in the array can be uniquely + represented with an equal number of fewer digits, use that + many digits for all elements. + legacy : string or `False`, optional + If set to the string `'1.13'` enables 1.13 legacy printing mode. This + approximates numpy 1.13 print output by including a space in the sign + position of floats and different behavior for 0d arrays. If set to + `False`, disables legacy mode. Unrecognized strings will be ignored + with a warning for forward compatibility. + + .. versionadded:: 1.14.0 + + Returns + ------- + array_str : str + String representation of the array. + + Raises + ------ + TypeError + if a callable in `formatter` does not return a string. + + See Also + -------- + array_str, array_repr, set_printoptions, get_printoptions + + Notes + ----- + If a formatter is specified for a certain type, the `precision` keyword is + ignored for that type. + + This is a very flexible function; `array_repr` and `array_str` are using + `array2string` internally so keywords with the same name should work + identically in all three functions. + + Examples + -------- + >>> x = np.array([1e-16,1,2,3]) + >>> np.array2string(x, precision=2, separator=',', + ... suppress_small=True) + '[0.,1.,2.,3.]' + + >>> x = np.arange(3.) + >>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) + '[0.00 1.00 2.00]' + + >>> x = np.arange(3) + >>> np.array2string(x, formatter={'int':lambda x: hex(x)}) + '[0x0 0x1 0x2]' + + """ + + overrides = _make_options_dict(precision, threshold, edgeitems, + max_line_width, suppress_small, None, None, + sign, formatter, floatmode, legacy) + options = _format_options.copy() + options.update(overrides) + + if options['legacy'] <= 113: + if style is np._NoValue: + style = repr + + if a.shape == () and a.dtype.names is None: + return style(a.item()) + elif style is not np._NoValue: + # Deprecation 11-9-2017 v1.14 + warnings.warn("'style' argument is deprecated and no longer functional" + " except in 1.13 'legacy' mode", + DeprecationWarning, stacklevel=2) + + if options['legacy'] > 113: + options['linewidth'] -= len(suffix) + + # treat as a null array if any of shape elements == 0 + if a.size == 0: + return "[]" + + return _array2string(a, options, separator, prefix) + + +def _extendLine(s, line, word, line_width, next_line_prefix, legacy): + needs_wrap = len(line) + len(word) > line_width + if legacy > 113: + # don't wrap lines if it won't help + if len(line) <= len(next_line_prefix): + needs_wrap = False + + if needs_wrap: + s += line.rstrip() + "\n" + line = next_line_prefix + line += word + return s, line + + +def _extendLine_pretty(s, line, word, line_width, next_line_prefix, legacy): + """ + Extends line with nicely formatted (possibly multi-line) string ``word``. + """ + words = word.splitlines() + if len(words) == 1 or legacy <= 113: + return _extendLine(s, line, word, line_width, next_line_prefix, legacy) + + max_word_length = max(len(word) for word in words) + if (len(line) + max_word_length > line_width and + len(line) > len(next_line_prefix)): + s += line.rstrip() + '\n' + line = next_line_prefix + words[0] + indent = next_line_prefix + else: + indent = len(line)*' ' + line += words[0] + + for word in words[1::]: + s += line.rstrip() + '\n' + line = indent + word + + suffix_length = max_word_length - len(words[-1]) + line += suffix_length*' ' + + return s, line + +def _formatArray(a, format_function, line_width, next_line_prefix, + separator, edge_items, summary_insert, legacy): + """formatArray is designed for two modes of operation: + + 1. Full output + + 2. Summarized output + + """ + def recurser(index, hanging_indent, curr_width): + """ + By using this local function, we don't need to recurse with all the + arguments. Since this function is not created recursively, the cost is + not significant + """ + axis = len(index) + axes_left = a.ndim - axis + + if axes_left == 0: + return format_function(a[index]) + + # when recursing, add a space to align with the [ added, and reduce the + # length of the line by 1 + next_hanging_indent = hanging_indent + ' ' + if legacy <= 113: + next_width = curr_width + else: + next_width = curr_width - len(']') + + a_len = a.shape[axis] + show_summary = summary_insert and 2*edge_items < a_len + if show_summary: + leading_items = edge_items + trailing_items = edge_items + else: + leading_items = 0 + trailing_items = a_len + + # stringify the array with the hanging indent on the first line too + s = '' + + # last axis (rows) - wrap elements if they would not fit on one line + if axes_left == 1: + # the length up until the beginning of the separator / bracket + if legacy <= 113: + elem_width = curr_width - len(separator.rstrip()) + else: + elem_width = curr_width - max(len(separator.rstrip()), len(']')) + + line = hanging_indent + for i in range(leading_items): + word = recurser(index + (i,), next_hanging_indent, next_width) + s, line = _extendLine_pretty( + s, line, word, elem_width, hanging_indent, legacy) + line += separator + + if show_summary: + s, line = _extendLine( + s, line, summary_insert, elem_width, hanging_indent, legacy) + if legacy <= 113: + line += ", " + else: + line += separator + + for i in range(trailing_items, 1, -1): + word = recurser(index + (-i,), next_hanging_indent, next_width) + s, line = _extendLine_pretty( + s, line, word, elem_width, hanging_indent, legacy) + line += separator + + if legacy <= 113: + # width of the separator is not considered on 1.13 + elem_width = curr_width + word = recurser(index + (-1,), next_hanging_indent, next_width) + s, line = _extendLine_pretty( + s, line, word, elem_width, hanging_indent, legacy) + + s += line + + # other axes - insert newlines between rows + else: + s = '' + line_sep = separator.rstrip() + '\n'*(axes_left - 1) + + for i in range(leading_items): + nested = recurser(index + (i,), next_hanging_indent, next_width) + s += hanging_indent + nested + line_sep + + if show_summary: + if legacy <= 113: + # trailing space, fixed nbr of newlines, and fixed separator + s += hanging_indent + summary_insert + ", \n" + else: + s += hanging_indent + summary_insert + line_sep + + for i in range(trailing_items, 1, -1): + nested = recurser(index + (-i,), next_hanging_indent, + next_width) + s += hanging_indent + nested + line_sep + + nested = recurser(index + (-1,), next_hanging_indent, next_width) + s += hanging_indent + nested + + # remove the hanging indent, and wrap in [] + s = '[' + s[len(hanging_indent):] + ']' + return s + + try: + # invoke the recursive part with an initial index and prefix + return recurser(index=(), + hanging_indent=next_line_prefix, + curr_width=line_width) + finally: + # recursive closures have a cyclic reference to themselves, which + # requires gc to collect (gh-10620). To avoid this problem, for + # performance and PyPy friendliness, we break the cycle: + recurser = None + +def _none_or_positive_arg(x, name): + if x is None: + return -1 + if x < 0: + raise ValueError("{} must be >= 0".format(name)) + return x + +class FloatingFormat: + """ Formatter for subtypes of np.floating """ + def __init__(self, data, precision, floatmode, suppress_small, sign=False, + *, legacy=None): + # for backcompatibility, accept bools + if isinstance(sign, bool): + sign = '+' if sign else '-' + + self._legacy = legacy + if self._legacy <= 113: + # when not 0d, legacy does not support '-' + if data.shape != () and sign == '-': + sign = ' ' + + self.floatmode = floatmode + if floatmode == 'unique': + self.precision = None + else: + self.precision = precision + + self.precision = _none_or_positive_arg(self.precision, 'precision') + + self.suppress_small = suppress_small + self.sign = sign + self.exp_format = False + self.large_exponent = False + + self.fillFormat(data) + + def fillFormat(self, data): + # only the finite values are used to compute the number of digits + finite_vals = data[isfinite(data)] + + # choose exponential mode based on the non-zero finite values: + abs_non_zero = absolute(finite_vals[finite_vals != 0]) + if len(abs_non_zero) != 0: + max_val = np.max(abs_non_zero) + min_val = np.min(abs_non_zero) + with errstate(over='ignore'): # division can overflow + if max_val >= 1.e8 or (not self.suppress_small and + (min_val < 0.0001 or max_val/min_val > 1000.)): + self.exp_format = True + + # do a first pass of printing all the numbers, to determine sizes + if len(finite_vals) == 0: + self.pad_left = 0 + self.pad_right = 0 + self.trim = '.' + self.exp_size = -1 + self.unique = True + self.min_digits = None + elif self.exp_format: + trim, unique = '.', True + if self.floatmode == 'fixed' or self._legacy <= 113: + trim, unique = 'k', False + strs = (dragon4_scientific(x, precision=self.precision, + unique=unique, trim=trim, sign=self.sign == '+') + for x in finite_vals) + frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs)) + int_part, frac_part = zip(*(s.split('.') for s in frac_strs)) + self.exp_size = max(len(s) for s in exp_strs) - 1 + + self.trim = 'k' + self.precision = max(len(s) for s in frac_part) + self.min_digits = self.precision + self.unique = unique + + # for back-compat with np 1.13, use 2 spaces & sign and full prec + if self._legacy <= 113: + self.pad_left = 3 + else: + # this should be only 1 or 2. Can be calculated from sign. + self.pad_left = max(len(s) for s in int_part) + # pad_right is only needed for nan length calculation + self.pad_right = self.exp_size + 2 + self.precision + else: + trim, unique = '.', True + if self.floatmode == 'fixed': + trim, unique = 'k', False + strs = (dragon4_positional(x, precision=self.precision, + fractional=True, + unique=unique, trim=trim, + sign=self.sign == '+') + for x in finite_vals) + int_part, frac_part = zip(*(s.split('.') for s in strs)) + if self._legacy <= 113: + self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part) + else: + self.pad_left = max(len(s) for s in int_part) + self.pad_right = max(len(s) for s in frac_part) + self.exp_size = -1 + self.unique = unique + + if self.floatmode in ['fixed', 'maxprec_equal']: + self.precision = self.min_digits = self.pad_right + self.trim = 'k' + else: + self.trim = '.' + self.min_digits = 0 + + if self._legacy > 113: + # account for sign = ' ' by adding one to pad_left + if self.sign == ' ' and not any(np.signbit(finite_vals)): + self.pad_left += 1 + + # if there are non-finite values, may need to increase pad_left + if data.size != finite_vals.size: + neginf = self.sign != '-' or any(data[isinf(data)] < 0) + nanlen = len(_format_options['nanstr']) + inflen = len(_format_options['infstr']) + neginf + offset = self.pad_right + 1 # +1 for decimal pt + self.pad_left = max(self.pad_left, nanlen - offset, inflen - offset) + + def __call__(self, x): + if not np.isfinite(x): + with errstate(invalid='ignore'): + if np.isnan(x): + sign = '+' if self.sign == '+' else '' + ret = sign + _format_options['nanstr'] + else: # isinf + sign = '-' if x < 0 else '+' if self.sign == '+' else '' + ret = sign + _format_options['infstr'] + return ' '*(self.pad_left + self.pad_right + 1 - len(ret)) + ret + + if self.exp_format: + return dragon4_scientific(x, + precision=self.precision, + min_digits=self.min_digits, + unique=self.unique, + trim=self.trim, + sign=self.sign == '+', + pad_left=self.pad_left, + exp_digits=self.exp_size) + else: + return dragon4_positional(x, + precision=self.precision, + min_digits=self.min_digits, + unique=self.unique, + fractional=True, + trim=self.trim, + sign=self.sign == '+', + pad_left=self.pad_left, + pad_right=self.pad_right) + + +@set_module('numpy') +def format_float_scientific(x, precision=None, unique=True, trim='k', + sign=False, pad_left=None, exp_digits=None, + min_digits=None): + """ + Format a floating-point scalar as a decimal string in scientific notation. + + Provides control over rounding, trimming and padding. Uses and assumes + IEEE unbiased rounding. Uses the "Dragon4" algorithm. + + Parameters + ---------- + x : python float or numpy floating scalar + Value to format. + precision : non-negative integer or None, optional + Maximum number of digits to print. May be None if `unique` is + `True`, but must be an integer if unique is `False`. + unique : boolean, optional + If `True`, use a digit-generation strategy which gives the shortest + representation which uniquely identifies the floating-point number from + other values of the same type, by judicious rounding. If `precision` + is given fewer digits than necessary can be printed. If `min_digits` + is given more can be printed, in which cases the last digit is rounded + with unbiased rounding. + If `False`, digits are generated as if printing an infinite-precision + value and stopping after `precision` digits, rounding the remaining + value with unbiased rounding + trim : one of 'k', '.', '0', '-', optional + Controls post-processing trimming of trailing digits, as follows: + + * 'k' : keep trailing zeros, keep decimal point (no trimming) + * '.' : trim all trailing zeros, leave decimal point + * '0' : trim all but the zero before the decimal point. Insert the + zero if it is missing. + * '-' : trim trailing zeros and any trailing decimal point + sign : boolean, optional + Whether to show the sign for positive values. + pad_left : non-negative integer, optional + Pad the left side of the string with whitespace until at least that + many characters are to the left of the decimal point. + exp_digits : non-negative integer, optional + Pad the exponent with zeros until it contains at least this many digits. + If omitted, the exponent will be at least 2 digits. + min_digits : non-negative integer or None, optional + Minimum number of digits to print. This only has an effect for + `unique=True`. In that case more digits than necessary to uniquely + identify the value may be printed and rounded unbiased. + + -- versionadded:: 1.21.0 + + Returns + ------- + rep : string + The string representation of the floating point value + + See Also + -------- + format_float_positional + + Examples + -------- + >>> np.format_float_scientific(np.float32(np.pi)) + '3.1415927e+00' + >>> s = np.float32(1.23e24) + >>> np.format_float_scientific(s, unique=False, precision=15) + '1.230000071797338e+24' + >>> np.format_float_scientific(s, exp_digits=4) + '1.23e+0024' + """ + precision = _none_or_positive_arg(precision, 'precision') + pad_left = _none_or_positive_arg(pad_left, 'pad_left') + exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits') + min_digits = _none_or_positive_arg(min_digits, 'min_digits') + if min_digits > 0 and precision > 0 and min_digits > precision: + raise ValueError("min_digits must be less than or equal to precision") + return dragon4_scientific(x, precision=precision, unique=unique, + trim=trim, sign=sign, pad_left=pad_left, + exp_digits=exp_digits, min_digits=min_digits) + + +@set_module('numpy') +def format_float_positional(x, precision=None, unique=True, + fractional=True, trim='k', sign=False, + pad_left=None, pad_right=None, min_digits=None): + """ + Format a floating-point scalar as a decimal string in positional notation. + + Provides control over rounding, trimming and padding. Uses and assumes + IEEE unbiased rounding. Uses the "Dragon4" algorithm. + + Parameters + ---------- + x : python float or numpy floating scalar + Value to format. + precision : non-negative integer or None, optional + Maximum number of digits to print. May be None if `unique` is + `True`, but must be an integer if unique is `False`. + unique : boolean, optional + If `True`, use a digit-generation strategy which gives the shortest + representation which uniquely identifies the floating-point number from + other values of the same type, by judicious rounding. If `precision` + is given fewer digits than necessary can be printed, or if `min_digits` + is given more can be printed, in which cases the last digit is rounded + with unbiased rounding. + If `False`, digits are generated as if printing an infinite-precision + value and stopping after `precision` digits, rounding the remaining + value with unbiased rounding + fractional : boolean, optional + If `True`, the cutoffs of `precision` and `min_digits` refer to the + total number of digits after the decimal point, including leading + zeros. + If `False`, `precision` and `min_digits` refer to the total number of + significant digits, before or after the decimal point, ignoring leading + zeros. + trim : one of 'k', '.', '0', '-', optional + Controls post-processing trimming of trailing digits, as follows: + + * 'k' : keep trailing zeros, keep decimal point (no trimming) + * '.' : trim all trailing zeros, leave decimal point + * '0' : trim all but the zero before the decimal point. Insert the + zero if it is missing. + * '-' : trim trailing zeros and any trailing decimal point + sign : boolean, optional + Whether to show the sign for positive values. + pad_left : non-negative integer, optional + Pad the left side of the string with whitespace until at least that + many characters are to the left of the decimal point. + pad_right : non-negative integer, optional + Pad the right side of the string with whitespace until at least that + many characters are to the right of the decimal point. + min_digits : non-negative integer or None, optional + Minimum number of digits to print. Only has an effect if `unique=True` + in which case additional digits past those necessary to uniquely + identify the value may be printed, rounding the last additional digit. + + -- versionadded:: 1.21.0 + + Returns + ------- + rep : string + The string representation of the floating point value + + See Also + -------- + format_float_scientific + + Examples + -------- + >>> np.format_float_positional(np.float32(np.pi)) + '3.1415927' + >>> np.format_float_positional(np.float16(np.pi)) + '3.14' + >>> np.format_float_positional(np.float16(0.3)) + '0.3' + >>> np.format_float_positional(np.float16(0.3), unique=False, precision=10) + '0.3000488281' + """ + precision = _none_or_positive_arg(precision, 'precision') + pad_left = _none_or_positive_arg(pad_left, 'pad_left') + pad_right = _none_or_positive_arg(pad_right, 'pad_right') + min_digits = _none_or_positive_arg(min_digits, 'min_digits') + if not fractional and precision == 0: + raise ValueError("precision must be greater than 0 if " + "fractional=False") + if min_digits > 0 and precision > 0 and min_digits > precision: + raise ValueError("min_digits must be less than or equal to precision") + return dragon4_positional(x, precision=precision, unique=unique, + fractional=fractional, trim=trim, + sign=sign, pad_left=pad_left, + pad_right=pad_right, min_digits=min_digits) + + +class IntegerFormat: + def __init__(self, data): + if data.size > 0: + max_str_len = max(len(str(np.max(data))), + len(str(np.min(data)))) + else: + max_str_len = 0 + self.format = '%{}d'.format(max_str_len) + + def __call__(self, x): + return self.format % x + + +class BoolFormat: + def __init__(self, data, **kwargs): + # add an extra space so " True" and "False" have the same length and + # array elements align nicely when printed, except in 0d arrays + self.truestr = ' True' if data.shape != () else 'True' + + def __call__(self, x): + return self.truestr if x else "False" + + +class ComplexFloatingFormat: + """ Formatter for subtypes of np.complexfloating """ + def __init__(self, x, precision, floatmode, suppress_small, + sign=False, *, legacy=None): + # for backcompatibility, accept bools + if isinstance(sign, bool): + sign = '+' if sign else '-' + + floatmode_real = floatmode_imag = floatmode + if legacy <= 113: + floatmode_real = 'maxprec_equal' + floatmode_imag = 'maxprec' + + self.real_format = FloatingFormat( + x.real, precision, floatmode_real, suppress_small, + sign=sign, legacy=legacy + ) + self.imag_format = FloatingFormat( + x.imag, precision, floatmode_imag, suppress_small, + sign='+', legacy=legacy + ) + + def __call__(self, x): + r = self.real_format(x.real) + i = self.imag_format(x.imag) + + # add the 'j' before the terminal whitespace in i + sp = len(i.rstrip()) + i = i[:sp] + 'j' + i[sp:] + + return r + i + + +class _TimelikeFormat: + def __init__(self, data): + non_nat = data[~isnat(data)] + if len(non_nat) > 0: + # Max str length of non-NaT elements + max_str_len = max(len(self._format_non_nat(np.max(non_nat))), + len(self._format_non_nat(np.min(non_nat)))) + else: + max_str_len = 0 + if len(non_nat) < data.size: + # data contains a NaT + max_str_len = max(max_str_len, 5) + self._format = '%{}s'.format(max_str_len) + self._nat = "'NaT'".rjust(max_str_len) + + def _format_non_nat(self, x): + # override in subclass + raise NotImplementedError + + def __call__(self, x): + if isnat(x): + return self._nat + else: + return self._format % self._format_non_nat(x) + + +class DatetimeFormat(_TimelikeFormat): + def __init__(self, x, unit=None, timezone=None, casting='same_kind', + legacy=False): + # Get the unit from the dtype + if unit is None: + if x.dtype.kind == 'M': + unit = datetime_data(x.dtype)[0] + else: + unit = 's' + + if timezone is None: + timezone = 'naive' + self.timezone = timezone + self.unit = unit + self.casting = casting + self.legacy = legacy + + # must be called after the above are configured + super().__init__(x) + + def __call__(self, x): + if self.legacy <= 113: + return self._format_non_nat(x) + return super().__call__(x) + + def _format_non_nat(self, x): + return "'%s'" % datetime_as_string(x, + unit=self.unit, + timezone=self.timezone, + casting=self.casting) + + +class TimedeltaFormat(_TimelikeFormat): + def _format_non_nat(self, x): + return str(x.astype('i8')) + + +class SubArrayFormat: + def __init__(self, format_function, **options): + self.format_function = format_function + self.threshold = options['threshold'] + self.edge_items = options['edgeitems'] + + def __call__(self, a): + self.summary_insert = "..." if a.size > self.threshold else "" + return self.format_array(a) + + def format_array(self, a): + if np.ndim(a) == 0: + return self.format_function(a) + + if self.summary_insert and a.shape[0] > 2*self.edge_items: + formatted = ( + [self.format_array(a_) for a_ in a[:self.edge_items]] + + [self.summary_insert] + + [self.format_array(a_) for a_ in a[-self.edge_items:]] + ) + else: + formatted = [self.format_array(a_) for a_ in a] + + return "[" + ", ".join(formatted) + "]" + + +class StructuredVoidFormat: + """ + Formatter for structured np.void objects. + + This does not work on structured alias types like np.dtype(('i4', 'i2,i2')), + as alias scalars lose their field information, and the implementation + relies upon np.void.__getitem__. + """ + def __init__(self, format_functions): + self.format_functions = format_functions + + @classmethod + def from_data(cls, data, **options): + """ + This is a second way to initialize StructuredVoidFormat, using the raw data + as input. Added to avoid changing the signature of __init__. + """ + format_functions = [] + for field_name in data.dtype.names: + format_function = _get_format_function(data[field_name], **options) + if data.dtype[field_name].shape != (): + format_function = SubArrayFormat(format_function, **options) + format_functions.append(format_function) + return cls(format_functions) + + def __call__(self, x): + str_fields = [ + format_function(field) + for field, format_function in zip(x, self.format_functions) + ] + if len(str_fields) == 1: + return "({},)".format(str_fields[0]) + else: + return "({})".format(", ".join(str_fields)) + + +def _void_scalar_repr(x): + """ + Implements the repr for structured-void scalars. It is called from the + scalartypes.c.src code, and is placed here because it uses the elementwise + formatters defined above. + """ + return StructuredVoidFormat.from_data(array(x), **_format_options)(x) + + +_typelessdata = [int_, float_, complex_, bool_] + + +def dtype_is_implied(dtype): + """ + Determine if the given dtype is implied by the representation of its values. + + Parameters + ---------- + dtype : dtype + Data type + + Returns + ------- + implied : bool + True if the dtype is implied by the representation of its values. + + Examples + -------- + >>> np.core.arrayprint.dtype_is_implied(int) + True + >>> np.array([1, 2, 3], int) + array([1, 2, 3]) + >>> np.core.arrayprint.dtype_is_implied(np.int8) + False + >>> np.array([1, 2, 3], np.int8) + array([1, 2, 3], dtype=int8) + """ + dtype = np.dtype(dtype) + if _format_options['legacy'] <= 113 and dtype.type == bool_: + return False + + # not just void types can be structured, and names are not part of the repr + if dtype.names is not None: + return False + + # should care about endianness *unless size is 1* (e.g., int8, bool) + if not dtype.isnative: + return False + + return dtype.type in _typelessdata + + +def dtype_short_repr(dtype): + """ + Convert a dtype to a short form which evaluates to the same dtype. + + The intent is roughly that the following holds + + >>> from numpy import * + >>> dt = np.int64([1, 2]).dtype + >>> assert eval(dtype_short_repr(dt)) == dt + """ + if type(dtype).__repr__ != np.dtype.__repr__: + # TODO: Custom repr for user DTypes, logic should likely move. + return repr(dtype) + if dtype.names is not None: + # structured dtypes give a list or tuple repr + return str(dtype) + elif issubclass(dtype.type, flexible): + # handle these separately so they don't give garbage like str256 + return "'%s'" % str(dtype) + + typename = dtype.name + if not dtype.isnative: + # deal with cases like dtype(' 0 + + prefix = class_name + "(" + suffix = ")" if skipdtype else "," + + if (_format_options['legacy'] <= 113 and + arr.shape == () and not arr.dtype.names): + lst = repr(arr.item()) + elif arr.size > 0 or arr.shape == (0,): + lst = array2string(arr, max_line_width, precision, suppress_small, + ', ', prefix, suffix=suffix) + else: # show zero-length shape unless it is (0,) + lst = "[], shape=%s" % (repr(arr.shape),) + + arr_str = prefix + lst + suffix + + if skipdtype: + return arr_str + + dtype_str = "dtype={})".format(dtype_short_repr(arr.dtype)) + + # compute whether we should put dtype on a new line: Do so if adding the + # dtype would extend the last line past max_line_width. + # Note: This line gives the correct result even when rfind returns -1. + last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1) + spacer = " " + if _format_options['legacy'] <= 113: + if issubclass(arr.dtype.type, flexible): + spacer = '\n' + ' '*len(class_name + "(") + elif last_line_len + len(dtype_str) + 1 > max_line_width: + spacer = '\n' + ' '*len(class_name + "(") + + return arr_str + spacer + dtype_str + + +def _array_repr_dispatcher( + arr, max_line_width=None, precision=None, suppress_small=None): + return (arr,) + + +@array_function_dispatch(_array_repr_dispatcher, module='numpy') +def array_repr(arr, max_line_width=None, precision=None, suppress_small=None): + """ + Return the string representation of an array. + + Parameters + ---------- + arr : ndarray + Input array. + max_line_width : int, optional + Inserts newlines if text is longer than `max_line_width`. + Defaults to ``numpy.get_printoptions()['linewidth']``. + precision : int, optional + Floating point precision. + Defaults to ``numpy.get_printoptions()['precision']``. + suppress_small : bool, optional + Represent numbers "very close" to zero as zero; default is False. + Very close is defined by precision: if the precision is 8, e.g., + numbers smaller (in absolute value) than 5e-9 are represented as + zero. + Defaults to ``numpy.get_printoptions()['suppress']``. + + Returns + ------- + string : str + The string representation of an array. + + See Also + -------- + array_str, array2string, set_printoptions + + Examples + -------- + >>> np.array_repr(np.array([1,2])) + 'array([1, 2])' + >>> np.array_repr(np.ma.array([0.])) + 'MaskedArray([0.])' + >>> np.array_repr(np.array([], np.int32)) + 'array([], dtype=int32)' + + >>> x = np.array([1e-6, 4e-7, 2, 3]) + >>> np.array_repr(x, precision=6, suppress_small=True) + 'array([0.000001, 0. , 2. , 3. ])' + + """ + return _array_repr_implementation( + arr, max_line_width, precision, suppress_small) + + +@_recursive_guard() +def _guarded_repr_or_str(v): + if isinstance(v, bytes): + return repr(v) + return str(v) + + +def _array_str_implementation( + a, max_line_width=None, precision=None, suppress_small=None, + array2string=array2string): + """Internal version of array_str() that allows overriding array2string.""" + if (_format_options['legacy'] <= 113 and + a.shape == () and not a.dtype.names): + return str(a.item()) + + # the str of 0d arrays is a special case: It should appear like a scalar, + # so floats are not truncated by `precision`, and strings are not wrapped + # in quotes. So we return the str of the scalar value. + if a.shape == (): + # obtain a scalar and call str on it, avoiding problems for subclasses + # for which indexing with () returns a 0d instead of a scalar by using + # ndarray's getindex. Also guard against recursive 0d object arrays. + return _guarded_repr_or_str(np.ndarray.__getitem__(a, ())) + + return array2string(a, max_line_width, precision, suppress_small, ' ', "") + + +def _array_str_dispatcher( + a, max_line_width=None, precision=None, suppress_small=None): + return (a,) + + +@array_function_dispatch(_array_str_dispatcher, module='numpy') +def array_str(a, max_line_width=None, precision=None, suppress_small=None): + """ + Return a string representation of the data in an array. + + The data in the array is returned as a single string. This function is + similar to `array_repr`, the difference being that `array_repr` also + returns information on the kind of array and its data type. + + Parameters + ---------- + a : ndarray + Input array. + max_line_width : int, optional + Inserts newlines if text is longer than `max_line_width`. + Defaults to ``numpy.get_printoptions()['linewidth']``. + precision : int, optional + Floating point precision. + Defaults to ``numpy.get_printoptions()['precision']``. + suppress_small : bool, optional + Represent numbers "very close" to zero as zero; default is False. + Very close is defined by precision: if the precision is 8, e.g., + numbers smaller (in absolute value) than 5e-9 are represented as + zero. + Defaults to ``numpy.get_printoptions()['suppress']``. + + See Also + -------- + array2string, array_repr, set_printoptions + + Examples + -------- + >>> np.array_str(np.arange(3)) + '[0 1 2]' + + """ + return _array_str_implementation( + a, max_line_width, precision, suppress_small) + + +# needed if __array_function__ is disabled +_array2string_impl = getattr(array2string, '__wrapped__', array2string) +_default_array_str = functools.partial(_array_str_implementation, + array2string=_array2string_impl) +_default_array_repr = functools.partial(_array_repr_implementation, + array2string=_array2string_impl) + + +def set_string_function(f, repr=True): + """ + Set a Python function to be used when pretty printing arrays. + + Parameters + ---------- + f : function or None + Function to be used to pretty print arrays. The function should expect + a single array argument and return a string of the representation of + the array. If None, the function is reset to the default NumPy function + to print arrays. + repr : bool, optional + If True (default), the function for pretty printing (``__repr__``) + is set, if False the function that returns the default string + representation (``__str__``) is set. + + See Also + -------- + set_printoptions, get_printoptions + + Examples + -------- + >>> def pprint(arr): + ... return 'HA! - What are you going to do now?' + ... + >>> np.set_string_function(pprint) + >>> a = np.arange(10) + >>> a + HA! - What are you going to do now? + >>> _ = a + >>> # [0 1 2 3 4 5 6 7 8 9] + + We can reset the function to the default: + + >>> np.set_string_function(None) + >>> a + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + + `repr` affects either pretty printing or normal string representation. + Note that ``__repr__`` is still affected by setting ``__str__`` + because the width of each array element in the returned string becomes + equal to the length of the result of ``__str__()``. + + >>> x = np.arange(4) + >>> np.set_string_function(lambda x:'random', repr=False) + >>> x.__str__() + 'random' + >>> x.__repr__() + 'array([0, 1, 2, 3])' + + """ + if f is None: + if repr: + return multiarray.set_string_function(_default_array_repr, 1) + else: + return multiarray.set_string_function(_default_array_str, 0) + else: + return multiarray.set_string_function(f, repr) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/defchararray.pyi b/env-llmeval/lib/python3.10/site-packages/numpy/core/defchararray.pyi new file mode 100644 index 0000000000000000000000000000000000000000..73d90bb2fc531a1c38dce4feb0c8ac97c0e17e24 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/defchararray.pyi @@ -0,0 +1,421 @@ +from typing import ( + Literal as L, + overload, + TypeVar, + Any, +) + +from numpy import ( + chararray as chararray, + dtype, + str_, + bytes_, + int_, + bool_, + object_, + _OrderKACF, +) + +from numpy._typing import ( + NDArray, + _ArrayLikeStr_co as U_co, + _ArrayLikeBytes_co as S_co, + _ArrayLikeInt_co as i_co, + _ArrayLikeBool_co as b_co, +) + +from numpy.core.multiarray import compare_chararrays as compare_chararrays + +_SCT = TypeVar("_SCT", str_, bytes_) +_CharArray = chararray[Any, dtype[_SCT]] + +__all__: list[str] + +# Comparison +@overload +def equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ... +@overload +def equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ... + +@overload +def not_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ... +@overload +def not_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ... + +@overload +def greater_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ... +@overload +def greater_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ... + +@overload +def less_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ... +@overload +def less_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ... + +@overload +def greater(x1: U_co, x2: U_co) -> NDArray[bool_]: ... +@overload +def greater(x1: S_co, x2: S_co) -> NDArray[bool_]: ... + +@overload +def less(x1: U_co, x2: U_co) -> NDArray[bool_]: ... +@overload +def less(x1: S_co, x2: S_co) -> NDArray[bool_]: ... + +# String operations +@overload +def add(x1: U_co, x2: U_co) -> NDArray[str_]: ... +@overload +def add(x1: S_co, x2: S_co) -> NDArray[bytes_]: ... + +@overload +def multiply(a: U_co, i: i_co) -> NDArray[str_]: ... +@overload +def multiply(a: S_co, i: i_co) -> NDArray[bytes_]: ... + +@overload +def mod(a: U_co, value: Any) -> NDArray[str_]: ... +@overload +def mod(a: S_co, value: Any) -> NDArray[bytes_]: ... + +@overload +def capitalize(a: U_co) -> NDArray[str_]: ... +@overload +def capitalize(a: S_co) -> NDArray[bytes_]: ... + +@overload +def center(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ... +@overload +def center(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ... + +def decode( + a: S_co, + encoding: None | str = ..., + errors: None | str = ..., +) -> NDArray[str_]: ... + +def encode( + a: U_co, + encoding: None | str = ..., + errors: None | str = ..., +) -> NDArray[bytes_]: ... + +@overload +def expandtabs(a: U_co, tabsize: i_co = ...) -> NDArray[str_]: ... +@overload +def expandtabs(a: S_co, tabsize: i_co = ...) -> NDArray[bytes_]: ... + +@overload +def join(sep: U_co, seq: U_co) -> NDArray[str_]: ... +@overload +def join(sep: S_co, seq: S_co) -> NDArray[bytes_]: ... + +@overload +def ljust(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ... +@overload +def ljust(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ... + +@overload +def lower(a: U_co) -> NDArray[str_]: ... +@overload +def lower(a: S_co) -> NDArray[bytes_]: ... + +@overload +def lstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ... +@overload +def lstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ... + +@overload +def partition(a: U_co, sep: U_co) -> NDArray[str_]: ... +@overload +def partition(a: S_co, sep: S_co) -> NDArray[bytes_]: ... + +@overload +def replace( + a: U_co, + old: U_co, + new: U_co, + count: None | i_co = ..., +) -> NDArray[str_]: ... +@overload +def replace( + a: S_co, + old: S_co, + new: S_co, + count: None | i_co = ..., +) -> NDArray[bytes_]: ... + +@overload +def rjust( + a: U_co, + width: i_co, + fillchar: U_co = ..., +) -> NDArray[str_]: ... +@overload +def rjust( + a: S_co, + width: i_co, + fillchar: S_co = ..., +) -> NDArray[bytes_]: ... + +@overload +def rpartition(a: U_co, sep: U_co) -> NDArray[str_]: ... +@overload +def rpartition(a: S_co, sep: S_co) -> NDArray[bytes_]: ... + +@overload +def rsplit( + a: U_co, + sep: None | U_co = ..., + maxsplit: None | i_co = ..., +) -> NDArray[object_]: ... +@overload +def rsplit( + a: S_co, + sep: None | S_co = ..., + maxsplit: None | i_co = ..., +) -> NDArray[object_]: ... + +@overload +def rstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ... +@overload +def rstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ... + +@overload +def split( + a: U_co, + sep: None | U_co = ..., + maxsplit: None | i_co = ..., +) -> NDArray[object_]: ... +@overload +def split( + a: S_co, + sep: None | S_co = ..., + maxsplit: None | i_co = ..., +) -> NDArray[object_]: ... + +@overload +def splitlines(a: U_co, keepends: None | b_co = ...) -> NDArray[object_]: ... +@overload +def splitlines(a: S_co, keepends: None | b_co = ...) -> NDArray[object_]: ... + +@overload +def strip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ... +@overload +def strip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ... + +@overload +def swapcase(a: U_co) -> NDArray[str_]: ... +@overload +def swapcase(a: S_co) -> NDArray[bytes_]: ... + +@overload +def title(a: U_co) -> NDArray[str_]: ... +@overload +def title(a: S_co) -> NDArray[bytes_]: ... + +@overload +def translate( + a: U_co, + table: U_co, + deletechars: None | U_co = ..., +) -> NDArray[str_]: ... +@overload +def translate( + a: S_co, + table: S_co, + deletechars: None | S_co = ..., +) -> NDArray[bytes_]: ... + +@overload +def upper(a: U_co) -> NDArray[str_]: ... +@overload +def upper(a: S_co) -> NDArray[bytes_]: ... + +@overload +def zfill(a: U_co, width: i_co) -> NDArray[str_]: ... +@overload +def zfill(a: S_co, width: i_co) -> NDArray[bytes_]: ... + +# String information +@overload +def count( + a: U_co, + sub: U_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[int_]: ... +@overload +def count( + a: S_co, + sub: S_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[int_]: ... + +@overload +def endswith( + a: U_co, + suffix: U_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[bool_]: ... +@overload +def endswith( + a: S_co, + suffix: S_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[bool_]: ... + +@overload +def find( + a: U_co, + sub: U_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[int_]: ... +@overload +def find( + a: S_co, + sub: S_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[int_]: ... + +@overload +def index( + a: U_co, + sub: U_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[int_]: ... +@overload +def index( + a: S_co, + sub: S_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[int_]: ... + +def isalpha(a: U_co | S_co) -> NDArray[bool_]: ... +def isalnum(a: U_co | S_co) -> NDArray[bool_]: ... +def isdecimal(a: U_co | S_co) -> NDArray[bool_]: ... +def isdigit(a: U_co | S_co) -> NDArray[bool_]: ... +def islower(a: U_co | S_co) -> NDArray[bool_]: ... +def isnumeric(a: U_co | S_co) -> NDArray[bool_]: ... +def isspace(a: U_co | S_co) -> NDArray[bool_]: ... +def istitle(a: U_co | S_co) -> NDArray[bool_]: ... +def isupper(a: U_co | S_co) -> NDArray[bool_]: ... + +@overload +def rfind( + a: U_co, + sub: U_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[int_]: ... +@overload +def rfind( + a: S_co, + sub: S_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[int_]: ... + +@overload +def rindex( + a: U_co, + sub: U_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[int_]: ... +@overload +def rindex( + a: S_co, + sub: S_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[int_]: ... + +@overload +def startswith( + a: U_co, + prefix: U_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[bool_]: ... +@overload +def startswith( + a: S_co, + prefix: S_co, + start: i_co = ..., + end: None | i_co = ..., +) -> NDArray[bool_]: ... + +def str_len(A: U_co | S_co) -> NDArray[int_]: ... + +# Overload 1 and 2: str- or bytes-based array-likes +# overload 3: arbitrary object with unicode=False (-> bytes_) +# overload 4: arbitrary object with unicode=True (-> str_) +@overload +def array( + obj: U_co, + itemsize: None | int = ..., + copy: bool = ..., + unicode: L[False] = ..., + order: _OrderKACF = ..., +) -> _CharArray[str_]: ... +@overload +def array( + obj: S_co, + itemsize: None | int = ..., + copy: bool = ..., + unicode: L[False] = ..., + order: _OrderKACF = ..., +) -> _CharArray[bytes_]: ... +@overload +def array( + obj: object, + itemsize: None | int = ..., + copy: bool = ..., + unicode: L[False] = ..., + order: _OrderKACF = ..., +) -> _CharArray[bytes_]: ... +@overload +def array( + obj: object, + itemsize: None | int = ..., + copy: bool = ..., + unicode: L[True] = ..., + order: _OrderKACF = ..., +) -> _CharArray[str_]: ... + +@overload +def asarray( + obj: U_co, + itemsize: None | int = ..., + unicode: L[False] = ..., + order: _OrderKACF = ..., +) -> _CharArray[str_]: ... +@overload +def asarray( + obj: S_co, + itemsize: None | int = ..., + unicode: L[False] = ..., + order: _OrderKACF = ..., +) -> _CharArray[bytes_]: ... +@overload +def asarray( + obj: object, + itemsize: None | int = ..., + unicode: L[False] = ..., + order: _OrderKACF = ..., +) -> _CharArray[bytes_]: ... +@overload +def asarray( + obj: object, + itemsize: None | int = ..., + unicode: L[True] = ..., + order: _OrderKACF = ..., +) -> _CharArray[str_]: ... diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/einsumfunc.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/einsumfunc.py new file mode 100644 index 0000000000000000000000000000000000000000..01966f0fe75b7e336a4237372e2d4cb0db0fbc84 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/einsumfunc.py @@ -0,0 +1,1443 @@ +""" +Implementation of optimized einsum. + +""" +import itertools +import operator + +from numpy.core.multiarray import c_einsum +from numpy.core.numeric import asanyarray, tensordot +from numpy.core.overrides import array_function_dispatch + +__all__ = ['einsum', 'einsum_path'] + +einsum_symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' +einsum_symbols_set = set(einsum_symbols) + + +def _flop_count(idx_contraction, inner, num_terms, size_dictionary): + """ + Computes the number of FLOPS in the contraction. + + Parameters + ---------- + idx_contraction : iterable + The indices involved in the contraction + inner : bool + Does this contraction require an inner product? + num_terms : int + The number of terms in a contraction + size_dictionary : dict + The size of each of the indices in idx_contraction + + Returns + ------- + flop_count : int + The total number of FLOPS required for the contraction. + + Examples + -------- + + >>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5}) + 30 + + >>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5}) + 60 + + """ + + overall_size = _compute_size_by_dict(idx_contraction, size_dictionary) + op_factor = max(1, num_terms - 1) + if inner: + op_factor += 1 + + return overall_size * op_factor + +def _compute_size_by_dict(indices, idx_dict): + """ + Computes the product of the elements in indices based on the dictionary + idx_dict. + + Parameters + ---------- + indices : iterable + Indices to base the product on. + idx_dict : dictionary + Dictionary of index sizes + + Returns + ------- + ret : int + The resulting product. + + Examples + -------- + >>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5}) + 90 + + """ + ret = 1 + for i in indices: + ret *= idx_dict[i] + return ret + + +def _find_contraction(positions, input_sets, output_set): + """ + Finds the contraction for a given set of input and output sets. + + Parameters + ---------- + positions : iterable + Integer positions of terms used in the contraction. + input_sets : list + List of sets that represent the lhs side of the einsum subscript + output_set : set + Set that represents the rhs side of the overall einsum subscript + + Returns + ------- + new_result : set + The indices of the resulting contraction + remaining : list + List of sets that have not been contracted, the new set is appended to + the end of this list + idx_removed : set + Indices removed from the entire contraction + idx_contraction : set + The indices used in the current contraction + + Examples + -------- + + # A simple dot product test case + >>> pos = (0, 1) + >>> isets = [set('ab'), set('bc')] + >>> oset = set('ac') + >>> _find_contraction(pos, isets, oset) + ({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'}) + + # A more complex case with additional terms in the contraction + >>> pos = (0, 2) + >>> isets = [set('abd'), set('ac'), set('bdc')] + >>> oset = set('ac') + >>> _find_contraction(pos, isets, oset) + ({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'}) + """ + + idx_contract = set() + idx_remain = output_set.copy() + remaining = [] + for ind, value in enumerate(input_sets): + if ind in positions: + idx_contract |= value + else: + remaining.append(value) + idx_remain |= value + + new_result = idx_remain & idx_contract + idx_removed = (idx_contract - new_result) + remaining.append(new_result) + + return (new_result, remaining, idx_removed, idx_contract) + + +def _optimal_path(input_sets, output_set, idx_dict, memory_limit): + """ + Computes all possible pair contractions, sieves the results based + on ``memory_limit`` and returns the lowest cost path. This algorithm + scales factorial with respect to the elements in the list ``input_sets``. + + Parameters + ---------- + input_sets : list + List of sets that represent the lhs side of the einsum subscript + output_set : set + Set that represents the rhs side of the overall einsum subscript + idx_dict : dictionary + Dictionary of index sizes + memory_limit : int + The maximum number of elements in a temporary array + + Returns + ------- + path : list + The optimal contraction order within the memory limit constraint. + + Examples + -------- + >>> isets = [set('abd'), set('ac'), set('bdc')] + >>> oset = set() + >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} + >>> _optimal_path(isets, oset, idx_sizes, 5000) + [(0, 2), (0, 1)] + """ + + full_results = [(0, [], input_sets)] + for iteration in range(len(input_sets) - 1): + iter_results = [] + + # Compute all unique pairs + for curr in full_results: + cost, positions, remaining = curr + for con in itertools.combinations(range(len(input_sets) - iteration), 2): + + # Find the contraction + cont = _find_contraction(con, remaining, output_set) + new_result, new_input_sets, idx_removed, idx_contract = cont + + # Sieve the results based on memory_limit + new_size = _compute_size_by_dict(new_result, idx_dict) + if new_size > memory_limit: + continue + + # Build (total_cost, positions, indices_remaining) + total_cost = cost + _flop_count(idx_contract, idx_removed, len(con), idx_dict) + new_pos = positions + [con] + iter_results.append((total_cost, new_pos, new_input_sets)) + + # Update combinatorial list, if we did not find anything return best + # path + remaining contractions + if iter_results: + full_results = iter_results + else: + path = min(full_results, key=lambda x: x[0])[1] + path += [tuple(range(len(input_sets) - iteration))] + return path + + # If we have not found anything return single einsum contraction + if len(full_results) == 0: + return [tuple(range(len(input_sets)))] + + path = min(full_results, key=lambda x: x[0])[1] + return path + +def _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, naive_cost): + """Compute the cost (removed size + flops) and resultant indices for + performing the contraction specified by ``positions``. + + Parameters + ---------- + positions : tuple of int + The locations of the proposed tensors to contract. + input_sets : list of sets + The indices found on each tensors. + output_set : set + The output indices of the expression. + idx_dict : dict + Mapping of each index to its size. + memory_limit : int + The total allowed size for an intermediary tensor. + path_cost : int + The contraction cost so far. + naive_cost : int + The cost of the unoptimized expression. + + Returns + ------- + cost : (int, int) + A tuple containing the size of any indices removed, and the flop cost. + positions : tuple of int + The locations of the proposed tensors to contract. + new_input_sets : list of sets + The resulting new list of indices if this proposed contraction is performed. + + """ + + # Find the contraction + contract = _find_contraction(positions, input_sets, output_set) + idx_result, new_input_sets, idx_removed, idx_contract = contract + + # Sieve the results based on memory_limit + new_size = _compute_size_by_dict(idx_result, idx_dict) + if new_size > memory_limit: + return None + + # Build sort tuple + old_sizes = (_compute_size_by_dict(input_sets[p], idx_dict) for p in positions) + removed_size = sum(old_sizes) - new_size + + # NB: removed_size used to be just the size of any removed indices i.e.: + # helpers.compute_size_by_dict(idx_removed, idx_dict) + cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict) + sort = (-removed_size, cost) + + # Sieve based on total cost as well + if (path_cost + cost) > naive_cost: + return None + + # Add contraction to possible choices + return [sort, positions, new_input_sets] + + +def _update_other_results(results, best): + """Update the positions and provisional input_sets of ``results`` based on + performing the contraction result ``best``. Remove any involving the tensors + contracted. + + Parameters + ---------- + results : list + List of contraction results produced by ``_parse_possible_contraction``. + best : list + The best contraction of ``results`` i.e. the one that will be performed. + + Returns + ------- + mod_results : list + The list of modified results, updated with outcome of ``best`` contraction. + """ + + best_con = best[1] + bx, by = best_con + mod_results = [] + + for cost, (x, y), con_sets in results: + + # Ignore results involving tensors just contracted + if x in best_con or y in best_con: + continue + + # Update the input_sets + del con_sets[by - int(by > x) - int(by > y)] + del con_sets[bx - int(bx > x) - int(bx > y)] + con_sets.insert(-1, best[2][-1]) + + # Update the position indices + mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by) + mod_results.append((cost, mod_con, con_sets)) + + return mod_results + +def _greedy_path(input_sets, output_set, idx_dict, memory_limit): + """ + Finds the path by contracting the best pair until the input list is + exhausted. The best pair is found by minimizing the tuple + ``(-prod(indices_removed), cost)``. What this amounts to is prioritizing + matrix multiplication or inner product operations, then Hadamard like + operations, and finally outer operations. Outer products are limited by + ``memory_limit``. This algorithm scales cubically with respect to the + number of elements in the list ``input_sets``. + + Parameters + ---------- + input_sets : list + List of sets that represent the lhs side of the einsum subscript + output_set : set + Set that represents the rhs side of the overall einsum subscript + idx_dict : dictionary + Dictionary of index sizes + memory_limit : int + The maximum number of elements in a temporary array + + Returns + ------- + path : list + The greedy contraction order within the memory limit constraint. + + Examples + -------- + >>> isets = [set('abd'), set('ac'), set('bdc')] + >>> oset = set() + >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} + >>> _greedy_path(isets, oset, idx_sizes, 5000) + [(0, 2), (0, 1)] + """ + + # Handle trivial cases that leaked through + if len(input_sets) == 1: + return [(0,)] + elif len(input_sets) == 2: + return [(0, 1)] + + # Build up a naive cost + contract = _find_contraction(range(len(input_sets)), input_sets, output_set) + idx_result, new_input_sets, idx_removed, idx_contract = contract + naive_cost = _flop_count(idx_contract, idx_removed, len(input_sets), idx_dict) + + # Initially iterate over all pairs + comb_iter = itertools.combinations(range(len(input_sets)), 2) + known_contractions = [] + + path_cost = 0 + path = [] + + for iteration in range(len(input_sets) - 1): + + # Iterate over all pairs on first step, only previously found pairs on subsequent steps + for positions in comb_iter: + + # Always initially ignore outer products + if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]): + continue + + result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, + naive_cost) + if result is not None: + known_contractions.append(result) + + # If we do not have a inner contraction, rescan pairs including outer products + if len(known_contractions) == 0: + + # Then check the outer products + for positions in itertools.combinations(range(len(input_sets)), 2): + result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, + path_cost, naive_cost) + if result is not None: + known_contractions.append(result) + + # If we still did not find any remaining contractions, default back to einsum like behavior + if len(known_contractions) == 0: + path.append(tuple(range(len(input_sets)))) + break + + # Sort based on first index + best = min(known_contractions, key=lambda x: x[0]) + + # Now propagate as many unused contractions as possible to next iteration + known_contractions = _update_other_results(known_contractions, best) + + # Next iteration only compute contractions with the new tensor + # All other contractions have been accounted for + input_sets = best[2] + new_tensor_pos = len(input_sets) - 1 + comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos)) + + # Update path and total cost + path.append(best[1]) + path_cost += best[0][1] + + return path + + +def _can_dot(inputs, result, idx_removed): + """ + Checks if we can use BLAS (np.tensordot) call and its beneficial to do so. + + Parameters + ---------- + inputs : list of str + Specifies the subscripts for summation. + result : str + Resulting summation. + idx_removed : set + Indices that are removed in the summation + + + Returns + ------- + type : bool + Returns true if BLAS should and can be used, else False + + Notes + ----- + If the operations is BLAS level 1 or 2 and is not already aligned + we default back to einsum as the memory movement to copy is more + costly than the operation itself. + + + Examples + -------- + + # Standard GEMM operation + >>> _can_dot(['ij', 'jk'], 'ik', set('j')) + True + + # Can use the standard BLAS, but requires odd data movement + >>> _can_dot(['ijj', 'jk'], 'ik', set('j')) + False + + # DDOT where the memory is not aligned + >>> _can_dot(['ijk', 'ikj'], '', set('ijk')) + False + + """ + + # All `dot` calls remove indices + if len(idx_removed) == 0: + return False + + # BLAS can only handle two operands + if len(inputs) != 2: + return False + + input_left, input_right = inputs + + for c in set(input_left + input_right): + # can't deal with repeated indices on same input or more than 2 total + nl, nr = input_left.count(c), input_right.count(c) + if (nl > 1) or (nr > 1) or (nl + nr > 2): + return False + + # can't do implicit summation or dimension collapse e.g. + # "ab,bc->c" (implicitly sum over 'a') + # "ab,ca->ca" (take diagonal of 'a') + if nl + nr - 1 == int(c in result): + return False + + # Build a few temporaries + set_left = set(input_left) + set_right = set(input_right) + keep_left = set_left - idx_removed + keep_right = set_right - idx_removed + rs = len(idx_removed) + + # At this point we are a DOT, GEMV, or GEMM operation + + # Handle inner products + + # DDOT with aligned data + if input_left == input_right: + return True + + # DDOT without aligned data (better to use einsum) + if set_left == set_right: + return False + + # Handle the 4 possible (aligned) GEMV or GEMM cases + + # GEMM or GEMV no transpose + if input_left[-rs:] == input_right[:rs]: + return True + + # GEMM or GEMV transpose both + if input_left[:rs] == input_right[-rs:]: + return True + + # GEMM or GEMV transpose right + if input_left[-rs:] == input_right[-rs:]: + return True + + # GEMM or GEMV transpose left + if input_left[:rs] == input_right[:rs]: + return True + + # Einsum is faster than GEMV if we have to copy data + if not keep_left or not keep_right: + return False + + # We are a matrix-matrix product, but we need to copy data + return True + + +def _parse_einsum_input(operands): + """ + A reproduction of einsum c side einsum parsing in python. + + Returns + ------- + input_strings : str + Parsed input strings + output_string : str + Parsed output string + operands : list of array_like + The operands to use in the numpy contraction + + Examples + -------- + The operand list is simplified to reduce printing: + + >>> np.random.seed(123) + >>> a = np.random.rand(4, 4) + >>> b = np.random.rand(4, 4, 4) + >>> _parse_einsum_input(('...a,...a->...', a, b)) + ('za,xza', 'xz', [a, b]) # may vary + + >>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0])) + ('za,xza', 'xz', [a, b]) # may vary + """ + + if len(operands) == 0: + raise ValueError("No input operands") + + if isinstance(operands[0], str): + subscripts = operands[0].replace(" ", "") + operands = [asanyarray(v) for v in operands[1:]] + + # Ensure all characters are valid + for s in subscripts: + if s in '.,->': + continue + if s not in einsum_symbols: + raise ValueError("Character %s is not a valid symbol." % s) + + else: + tmp_operands = list(operands) + operand_list = [] + subscript_list = [] + for p in range(len(operands) // 2): + operand_list.append(tmp_operands.pop(0)) + subscript_list.append(tmp_operands.pop(0)) + + output_list = tmp_operands[-1] if len(tmp_operands) else None + operands = [asanyarray(v) for v in operand_list] + subscripts = "" + last = len(subscript_list) - 1 + for num, sub in enumerate(subscript_list): + for s in sub: + if s is Ellipsis: + subscripts += "..." + else: + try: + s = operator.index(s) + except TypeError as e: + raise TypeError("For this input type lists must contain " + "either int or Ellipsis") from e + subscripts += einsum_symbols[s] + if num != last: + subscripts += "," + + if output_list is not None: + subscripts += "->" + for s in output_list: + if s is Ellipsis: + subscripts += "..." + else: + try: + s = operator.index(s) + except TypeError as e: + raise TypeError("For this input type lists must contain " + "either int or Ellipsis") from e + subscripts += einsum_symbols[s] + # Check for proper "->" + if ("-" in subscripts) or (">" in subscripts): + invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1) + if invalid or (subscripts.count("->") != 1): + raise ValueError("Subscripts can only contain one '->'.") + + # Parse ellipses + if "." in subscripts: + used = subscripts.replace(".", "").replace(",", "").replace("->", "") + unused = list(einsum_symbols_set - set(used)) + ellipse_inds = "".join(unused) + longest = 0 + + if "->" in subscripts: + input_tmp, output_sub = subscripts.split("->") + split_subscripts = input_tmp.split(",") + out_sub = True + else: + split_subscripts = subscripts.split(',') + out_sub = False + + for num, sub in enumerate(split_subscripts): + if "." in sub: + if (sub.count(".") != 3) or (sub.count("...") != 1): + raise ValueError("Invalid Ellipses.") + + # Take into account numerical values + if operands[num].shape == (): + ellipse_count = 0 + else: + ellipse_count = max(operands[num].ndim, 1) + ellipse_count -= (len(sub) - 3) + + if ellipse_count > longest: + longest = ellipse_count + + if ellipse_count < 0: + raise ValueError("Ellipses lengths do not match.") + elif ellipse_count == 0: + split_subscripts[num] = sub.replace('...', '') + else: + rep_inds = ellipse_inds[-ellipse_count:] + split_subscripts[num] = sub.replace('...', rep_inds) + + subscripts = ",".join(split_subscripts) + if longest == 0: + out_ellipse = "" + else: + out_ellipse = ellipse_inds[-longest:] + + if out_sub: + subscripts += "->" + output_sub.replace("...", out_ellipse) + else: + # Special care for outputless ellipses + output_subscript = "" + tmp_subscripts = subscripts.replace(",", "") + for s in sorted(set(tmp_subscripts)): + if s not in (einsum_symbols): + raise ValueError("Character %s is not a valid symbol." % s) + if tmp_subscripts.count(s) == 1: + output_subscript += s + normal_inds = ''.join(sorted(set(output_subscript) - + set(out_ellipse))) + + subscripts += "->" + out_ellipse + normal_inds + + # Build output string if does not exist + if "->" in subscripts: + input_subscripts, output_subscript = subscripts.split("->") + else: + input_subscripts = subscripts + # Build output subscripts + tmp_subscripts = subscripts.replace(",", "") + output_subscript = "" + for s in sorted(set(tmp_subscripts)): + if s not in einsum_symbols: + raise ValueError("Character %s is not a valid symbol." % s) + if tmp_subscripts.count(s) == 1: + output_subscript += s + + # Make sure output subscripts are in the input + for char in output_subscript: + if char not in input_subscripts: + raise ValueError("Output character %s did not appear in the input" + % char) + + # Make sure number operands is equivalent to the number of terms + if len(input_subscripts.split(',')) != len(operands): + raise ValueError("Number of einsum subscripts must be equal to the " + "number of operands.") + + return (input_subscripts, output_subscript, operands) + + +def _einsum_path_dispatcher(*operands, optimize=None, einsum_call=None): + # NOTE: technically, we should only dispatch on array-like arguments, not + # subscripts (given as strings). But separating operands into + # arrays/subscripts is a little tricky/slow (given einsum's two supported + # signatures), so as a practical shortcut we dispatch on everything. + # Strings will be ignored for dispatching since they don't define + # __array_function__. + return operands + + +@array_function_dispatch(_einsum_path_dispatcher, module='numpy') +def einsum_path(*operands, optimize='greedy', einsum_call=False): + """ + einsum_path(subscripts, *operands, optimize='greedy') + + Evaluates the lowest cost contraction order for an einsum expression by + considering the creation of intermediate arrays. + + Parameters + ---------- + subscripts : str + Specifies the subscripts for summation. + *operands : list of array_like + These are the arrays for the operation. + optimize : {bool, list, tuple, 'greedy', 'optimal'} + Choose the type of path. If a tuple is provided, the second argument is + assumed to be the maximum intermediate size created. If only a single + argument is provided the largest input or output array size is used + as a maximum intermediate size. + + * if a list is given that starts with ``einsum_path``, uses this as the + contraction path + * if False no optimization is taken + * if True defaults to the 'greedy' algorithm + * 'optimal' An algorithm that combinatorially explores all possible + ways of contracting the listed tensors and chooses the least costly + path. Scales exponentially with the number of terms in the + contraction. + * 'greedy' An algorithm that chooses the best pair contraction + at each step. Effectively, this algorithm searches the largest inner, + Hadamard, and then outer products at each step. Scales cubically with + the number of terms in the contraction. Equivalent to the 'optimal' + path for most contractions. + + Default is 'greedy'. + + Returns + ------- + path : list of tuples + A list representation of the einsum path. + string_repr : str + A printable representation of the einsum path. + + Notes + ----- + The resulting path indicates which terms of the input contraction should be + contracted first, the result of this contraction is then appended to the + end of the contraction list. This list can then be iterated over until all + intermediate contractions are complete. + + See Also + -------- + einsum, linalg.multi_dot + + Examples + -------- + + We can begin with a chain dot example. In this case, it is optimal to + contract the ``b`` and ``c`` tensors first as represented by the first + element of the path ``(1, 2)``. The resulting tensor is added to the end + of the contraction and the remaining contraction ``(0, 1)`` is then + completed. + + >>> np.random.seed(123) + >>> a = np.random.rand(2, 2) + >>> b = np.random.rand(2, 5) + >>> c = np.random.rand(5, 2) + >>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy') + >>> print(path_info[0]) + ['einsum_path', (1, 2), (0, 1)] + >>> print(path_info[1]) + Complete contraction: ij,jk,kl->il # may vary + Naive scaling: 4 + Optimized scaling: 3 + Naive FLOP count: 1.600e+02 + Optimized FLOP count: 5.600e+01 + Theoretical speedup: 2.857 + Largest intermediate: 4.000e+00 elements + ------------------------------------------------------------------------- + scaling current remaining + ------------------------------------------------------------------------- + 3 kl,jk->jl ij,jl->il + 3 jl,ij->il il->il + + + A more complex index transformation example. + + >>> I = np.random.rand(10, 10, 10, 10) + >>> C = np.random.rand(10, 10) + >>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C, + ... optimize='greedy') + + >>> print(path_info[0]) + ['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)] + >>> print(path_info[1]) + Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary + Naive scaling: 8 + Optimized scaling: 5 + Naive FLOP count: 8.000e+08 + Optimized FLOP count: 8.000e+05 + Theoretical speedup: 1000.000 + Largest intermediate: 1.000e+04 elements + -------------------------------------------------------------------------- + scaling current remaining + -------------------------------------------------------------------------- + 5 abcd,ea->bcde fb,gc,hd,bcde->efgh + 5 bcde,fb->cdef gc,hd,cdef->efgh + 5 cdef,gc->defg hd,defg->efgh + 5 defg,hd->efgh efgh->efgh + """ + + # Figure out what the path really is + path_type = optimize + if path_type is True: + path_type = 'greedy' + if path_type is None: + path_type = False + + explicit_einsum_path = False + memory_limit = None + + # No optimization or a named path algorithm + if (path_type is False) or isinstance(path_type, str): + pass + + # Given an explicit path + elif len(path_type) and (path_type[0] == 'einsum_path'): + explicit_einsum_path = True + + # Path tuple with memory limit + elif ((len(path_type) == 2) and isinstance(path_type[0], str) and + isinstance(path_type[1], (int, float))): + memory_limit = int(path_type[1]) + path_type = path_type[0] + + else: + raise TypeError("Did not understand the path: %s" % str(path_type)) + + # Hidden option, only einsum should call this + einsum_call_arg = einsum_call + + # Python side parsing + input_subscripts, output_subscript, operands = _parse_einsum_input(operands) + + # Build a few useful list and sets + input_list = input_subscripts.split(',') + input_sets = [set(x) for x in input_list] + output_set = set(output_subscript) + indices = set(input_subscripts.replace(',', '')) + + # Get length of each unique dimension and ensure all dimensions are correct + dimension_dict = {} + broadcast_indices = [[] for x in range(len(input_list))] + for tnum, term in enumerate(input_list): + sh = operands[tnum].shape + if len(sh) != len(term): + raise ValueError("Einstein sum subscript %s does not contain the " + "correct number of indices for operand %d." + % (input_subscripts[tnum], tnum)) + for cnum, char in enumerate(term): + dim = sh[cnum] + + # Build out broadcast indices + if dim == 1: + broadcast_indices[tnum].append(char) + + if char in dimension_dict.keys(): + # For broadcasting cases we always want the largest dim size + if dimension_dict[char] == 1: + dimension_dict[char] = dim + elif dim not in (1, dimension_dict[char]): + raise ValueError("Size of label '%s' for operand %d (%d) " + "does not match previous terms (%d)." + % (char, tnum, dimension_dict[char], dim)) + else: + dimension_dict[char] = dim + + # Convert broadcast inds to sets + broadcast_indices = [set(x) for x in broadcast_indices] + + # Compute size of each input array plus the output array + size_list = [_compute_size_by_dict(term, dimension_dict) + for term in input_list + [output_subscript]] + max_size = max(size_list) + + if memory_limit is None: + memory_arg = max_size + else: + memory_arg = memory_limit + + # Compute naive cost + # This isn't quite right, need to look into exactly how einsum does this + inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0 + naive_cost = _flop_count(indices, inner_product, len(input_list), dimension_dict) + + # Compute the path + if explicit_einsum_path: + path = path_type[1:] + elif ( + (path_type is False) + or (len(input_list) in [1, 2]) + or (indices == output_set) + ): + # Nothing to be optimized, leave it to einsum + path = [tuple(range(len(input_list)))] + elif path_type == "greedy": + path = _greedy_path(input_sets, output_set, dimension_dict, memory_arg) + elif path_type == "optimal": + path = _optimal_path(input_sets, output_set, dimension_dict, memory_arg) + else: + raise KeyError("Path name %s not found", path_type) + + cost_list, scale_list, size_list, contraction_list = [], [], [], [] + + # Build contraction tuple (positions, gemm, einsum_str, remaining) + for cnum, contract_inds in enumerate(path): + # Make sure we remove inds from right to left + contract_inds = tuple(sorted(list(contract_inds), reverse=True)) + + contract = _find_contraction(contract_inds, input_sets, output_set) + out_inds, input_sets, idx_removed, idx_contract = contract + + cost = _flop_count(idx_contract, idx_removed, len(contract_inds), dimension_dict) + cost_list.append(cost) + scale_list.append(len(idx_contract)) + size_list.append(_compute_size_by_dict(out_inds, dimension_dict)) + + bcast = set() + tmp_inputs = [] + for x in contract_inds: + tmp_inputs.append(input_list.pop(x)) + bcast |= broadcast_indices.pop(x) + + new_bcast_inds = bcast - idx_removed + + # If we're broadcasting, nix blas + if not len(idx_removed & bcast): + do_blas = _can_dot(tmp_inputs, out_inds, idx_removed) + else: + do_blas = False + + # Last contraction + if (cnum - len(path)) == -1: + idx_result = output_subscript + else: + sort_result = [(dimension_dict[ind], ind) for ind in out_inds] + idx_result = "".join([x[1] for x in sorted(sort_result)]) + + input_list.append(idx_result) + broadcast_indices.append(new_bcast_inds) + einsum_str = ",".join(tmp_inputs) + "->" + idx_result + + contraction = (contract_inds, idx_removed, einsum_str, input_list[:], do_blas) + contraction_list.append(contraction) + + opt_cost = sum(cost_list) + 1 + + if len(input_list) != 1: + # Explicit "einsum_path" is usually trusted, but we detect this kind of + # mistake in order to prevent from returning an intermediate value. + raise RuntimeError( + "Invalid einsum_path is specified: {} more operands has to be " + "contracted.".format(len(input_list) - 1)) + + if einsum_call_arg: + return (operands, contraction_list) + + # Return the path along with a nice string representation + overall_contraction = input_subscripts + "->" + output_subscript + header = ("scaling", "current", "remaining") + + speedup = naive_cost / opt_cost + max_i = max(size_list) + + path_print = " Complete contraction: %s\n" % overall_contraction + path_print += " Naive scaling: %d\n" % len(indices) + path_print += " Optimized scaling: %d\n" % max(scale_list) + path_print += " Naive FLOP count: %.3e\n" % naive_cost + path_print += " Optimized FLOP count: %.3e\n" % opt_cost + path_print += " Theoretical speedup: %3.3f\n" % speedup + path_print += " Largest intermediate: %.3e elements\n" % max_i + path_print += "-" * 74 + "\n" + path_print += "%6s %24s %40s\n" % header + path_print += "-" * 74 + + for n, contraction in enumerate(contraction_list): + inds, idx_rm, einsum_str, remaining, blas = contraction + remaining_str = ",".join(remaining) + "->" + output_subscript + path_run = (scale_list[n], einsum_str, remaining_str) + path_print += "\n%4d %24s %40s" % path_run + + path = ['einsum_path'] + path + return (path, path_print) + + +def _einsum_dispatcher(*operands, out=None, optimize=None, **kwargs): + # Arguably we dispatch on more arguments than we really should; see note in + # _einsum_path_dispatcher for why. + yield from operands + yield out + + +# Rewrite einsum to handle different cases +@array_function_dispatch(_einsum_dispatcher, module='numpy') +def einsum(*operands, out=None, optimize=False, **kwargs): + """ + einsum(subscripts, *operands, out=None, dtype=None, order='K', + casting='safe', optimize=False) + + Evaluates the Einstein summation convention on the operands. + + Using the Einstein summation convention, many common multi-dimensional, + linear algebraic array operations can be represented in a simple fashion. + In *implicit* mode `einsum` computes these values. + + In *explicit* mode, `einsum` provides further flexibility to compute + other array operations that might not be considered classical Einstein + summation operations, by disabling, or forcing summation over specified + subscript labels. + + See the notes and examples for clarification. + + Parameters + ---------- + subscripts : str + Specifies the subscripts for summation as comma separated list of + subscript labels. An implicit (classical Einstein summation) + calculation is performed unless the explicit indicator '->' is + included as well as subscript labels of the precise output form. + operands : list of array_like + These are the arrays for the operation. + out : ndarray, optional + If provided, the calculation is done into this array. + dtype : {data-type, None}, optional + If provided, forces the calculation to use the data type specified. + Note that you may have to also give a more liberal `casting` + parameter to allow the conversions. Default is None. + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout of the output. 'C' means it should + be C contiguous. 'F' means it should be Fortran contiguous, + 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise. + 'K' means it should be as close to the layout as the inputs as + is possible, including arbitrarily permuted axes. + Default is 'K'. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Setting this to + 'unsafe' is not recommended, as it can adversely affect accumulations. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + + Default is 'safe'. + optimize : {False, True, 'greedy', 'optimal'}, optional + Controls if intermediate optimization should occur. No optimization + will occur if False and True will default to the 'greedy' algorithm. + Also accepts an explicit contraction list from the ``np.einsum_path`` + function. See ``np.einsum_path`` for more details. Defaults to False. + + Returns + ------- + output : ndarray + The calculation based on the Einstein summation convention. + + See Also + -------- + einsum_path, dot, inner, outer, tensordot, linalg.multi_dot + einops : + similar verbose interface is provided by + `einops `_ package to cover + additional operations: transpose, reshape/flatten, repeat/tile, + squeeze/unsqueeze and reductions. + opt_einsum : + `opt_einsum `_ + optimizes contraction order for einsum-like expressions + in backend-agnostic manner. + + Notes + ----- + .. versionadded:: 1.6.0 + + The Einstein summation convention can be used to compute + many multi-dimensional, linear algebraic array operations. `einsum` + provides a succinct way of representing these. + + A non-exhaustive list of these operations, + which can be computed by `einsum`, is shown below along with examples: + + * Trace of an array, :py:func:`numpy.trace`. + * Return a diagonal, :py:func:`numpy.diag`. + * Array axis summations, :py:func:`numpy.sum`. + * Transpositions and permutations, :py:func:`numpy.transpose`. + * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`. + * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`. + * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`. + * Tensor contractions, :py:func:`numpy.tensordot`. + * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`. + + The subscripts string is a comma-separated list of subscript labels, + where each label refers to a dimension of the corresponding operand. + Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)`` + is equivalent to :py:func:`np.inner(a,b) `. If a label + appears only once, it is not summed, so ``np.einsum('i', a)`` produces a + view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)`` + describes traditional matrix multiplication and is equivalent to + :py:func:`np.matmul(a,b) `. Repeated subscript labels in one + operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent + to :py:func:`np.trace(a) `. + + In *implicit mode*, the chosen subscripts are important + since the axes of the output are reordered alphabetically. This + means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while + ``np.einsum('ji', a)`` takes its transpose. Additionally, + ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while, + ``np.einsum('ij,jh', a, b)`` returns the transpose of the + multiplication since subscript 'h' precedes subscript 'i'. + + In *explicit mode* the output can be directly controlled by + specifying output subscript labels. This requires the + identifier '->' as well as the list of output subscript labels. + This feature increases the flexibility of the function since + summing can be disabled or forced when required. The call + ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) `, + and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) `. + The difference is that `einsum` does not allow broadcasting by default. + Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the + order of the output subscript labels and therefore returns matrix + multiplication, unlike the example above in implicit mode. + + To enable and control broadcasting, use an ellipsis. Default + NumPy-style broadcasting is done by adding an ellipsis + to the left of each term, like ``np.einsum('...ii->...i', a)``. + To take the trace along the first and last axes, + you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix + product with the left-most indices instead of rightmost, one can do + ``np.einsum('ij...,jk...->ik...', a, b)``. + + When there is only one operand, no axes are summed, and no output + parameter is provided, a view into the operand is returned instead + of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` + produces a view (changed in version 1.10.0). + + `einsum` also provides an alternative way to provide the subscripts + and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. + If the output shape is not provided in this format `einsum` will be + calculated in implicit mode, otherwise it will be performed explicitly. + The examples below have corresponding `einsum` calls with the two + parameter methods. + + .. versionadded:: 1.10.0 + + Views returned from einsum are now writeable whenever the input array + is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now + have the same effect as :py:func:`np.swapaxes(a, 0, 2) ` + and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal + of a 2D array. + + .. versionadded:: 1.12.0 + + Added the ``optimize`` argument which will optimize the contraction order + of an einsum expression. For a contraction with three or more operands this + can greatly increase the computational efficiency at the cost of a larger + memory footprint during computation. + + Typically a 'greedy' algorithm is applied which empirical tests have shown + returns the optimal path in the majority of cases. In some cases 'optimal' + will return the superlative path through a more expensive, exhaustive search. + For iterative calculations it may be advisable to calculate the optimal path + once and reuse that path by supplying it as an argument. An example is given + below. + + See :py:func:`numpy.einsum_path` for more details. + + Examples + -------- + >>> a = np.arange(25).reshape(5,5) + >>> b = np.arange(5) + >>> c = np.arange(6).reshape(2,3) + + Trace of a matrix: + + >>> np.einsum('ii', a) + 60 + >>> np.einsum(a, [0,0]) + 60 + >>> np.trace(a) + 60 + + Extract the diagonal (requires explicit form): + + >>> np.einsum('ii->i', a) + array([ 0, 6, 12, 18, 24]) + >>> np.einsum(a, [0,0], [0]) + array([ 0, 6, 12, 18, 24]) + >>> np.diag(a) + array([ 0, 6, 12, 18, 24]) + + Sum over an axis (requires explicit form): + + >>> np.einsum('ij->i', a) + array([ 10, 35, 60, 85, 110]) + >>> np.einsum(a, [0,1], [0]) + array([ 10, 35, 60, 85, 110]) + >>> np.sum(a, axis=1) + array([ 10, 35, 60, 85, 110]) + + For higher dimensional arrays summing a single axis can be done with ellipsis: + + >>> np.einsum('...j->...', a) + array([ 10, 35, 60, 85, 110]) + >>> np.einsum(a, [Ellipsis,1], [Ellipsis]) + array([ 10, 35, 60, 85, 110]) + + Compute a matrix transpose, or reorder any number of axes: + + >>> np.einsum('ji', c) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.einsum('ij->ji', c) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.einsum(c, [1,0]) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.transpose(c) + array([[0, 3], + [1, 4], + [2, 5]]) + + Vector inner products: + + >>> np.einsum('i,i', b, b) + 30 + >>> np.einsum(b, [0], b, [0]) + 30 + >>> np.inner(b,b) + 30 + + Matrix vector multiplication: + + >>> np.einsum('ij,j', a, b) + array([ 30, 80, 130, 180, 230]) + >>> np.einsum(a, [0,1], b, [1]) + array([ 30, 80, 130, 180, 230]) + >>> np.dot(a, b) + array([ 30, 80, 130, 180, 230]) + >>> np.einsum('...j,j', a, b) + array([ 30, 80, 130, 180, 230]) + + Broadcasting and scalar multiplication: + + >>> np.einsum('..., ...', 3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.einsum(',ij', 3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.einsum(3, [Ellipsis], c, [Ellipsis]) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.multiply(3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + + Vector outer product: + + >>> np.einsum('i,j', np.arange(2)+1, b) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + >>> np.einsum(np.arange(2)+1, [0], b, [1]) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + >>> np.outer(np.arange(2)+1, b) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + + Tensor contraction: + + >>> a = np.arange(60.).reshape(3,4,5) + >>> b = np.arange(24.).reshape(4,3,2) + >>> np.einsum('ijk,jil->kl', a, b) + array([[4400., 4730.], + [4532., 4874.], + [4664., 5018.], + [4796., 5162.], + [4928., 5306.]]) + >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) + array([[4400., 4730.], + [4532., 4874.], + [4664., 5018.], + [4796., 5162.], + [4928., 5306.]]) + >>> np.tensordot(a,b, axes=([1,0],[0,1])) + array([[4400., 4730.], + [4532., 4874.], + [4664., 5018.], + [4796., 5162.], + [4928., 5306.]]) + + Writeable returned arrays (since version 1.10.0): + + >>> a = np.zeros((3, 3)) + >>> np.einsum('ii->i', a)[:] = 1 + >>> a + array([[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]]) + + Example of ellipsis use: + + >>> a = np.arange(6).reshape((3,2)) + >>> b = np.arange(12).reshape((4,3)) + >>> np.einsum('ki,jk->ij', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + >>> np.einsum('ki,...k->i...', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + >>> np.einsum('k...,jk', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + + Chained array operations. For more complicated contractions, speed ups + might be achieved by repeatedly computing a 'greedy' path or pre-computing the + 'optimal' path and repeatedly applying it, using an + `einsum_path` insertion (since version 1.12.0). Performance improvements can be + particularly significant with larger arrays: + + >>> a = np.ones(64).reshape(2,4,8) + + Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.) + + >>> for iteration in range(500): + ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a) + + Sub-optimal `einsum` (due to repeated path calculation time): ~330ms + + >>> for iteration in range(500): + ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal') + + Greedy `einsum` (faster optimal path approximation): ~160ms + + >>> for iteration in range(500): + ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy') + + Optimal `einsum` (best usage pattern in some use cases): ~110ms + + >>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0] + >>> for iteration in range(500): + ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path) + + """ + # Special handling if out is specified + specified_out = out is not None + + # If no optimization, run pure einsum + if optimize is False: + if specified_out: + kwargs['out'] = out + return c_einsum(*operands, **kwargs) + + # Check the kwargs to avoid a more cryptic error later, without having to + # repeat default values here + valid_einsum_kwargs = ['dtype', 'order', 'casting'] + unknown_kwargs = [k for (k, v) in kwargs.items() if + k not in valid_einsum_kwargs] + if len(unknown_kwargs): + raise TypeError("Did not understand the following kwargs: %s" + % unknown_kwargs) + + # Build the contraction list and operand + operands, contraction_list = einsum_path(*operands, optimize=optimize, + einsum_call=True) + + # Handle order kwarg for output array, c_einsum allows mixed case + output_order = kwargs.pop('order', 'K') + if output_order.upper() == 'A': + if all(arr.flags.f_contiguous for arr in operands): + output_order = 'F' + else: + output_order = 'C' + + # Start contraction loop + for num, contraction in enumerate(contraction_list): + inds, idx_rm, einsum_str, remaining, blas = contraction + tmp_operands = [operands.pop(x) for x in inds] + + # Do we need to deal with the output? + handle_out = specified_out and ((num + 1) == len(contraction_list)) + + # Call tensordot if still possible + if blas: + # Checks have already been handled + input_str, results_index = einsum_str.split('->') + input_left, input_right = input_str.split(',') + + tensor_result = input_left + input_right + for s in idx_rm: + tensor_result = tensor_result.replace(s, "") + + # Find indices to contract over + left_pos, right_pos = [], [] + for s in sorted(idx_rm): + left_pos.append(input_left.find(s)) + right_pos.append(input_right.find(s)) + + # Contract! + new_view = tensordot(*tmp_operands, axes=(tuple(left_pos), tuple(right_pos))) + + # Build a new view if needed + if (tensor_result != results_index) or handle_out: + if handle_out: + kwargs["out"] = out + new_view = c_einsum(tensor_result + '->' + results_index, new_view, **kwargs) + + # Call einsum + else: + # If out was specified + if handle_out: + kwargs["out"] = out + + # Do the contraction + new_view = c_einsum(einsum_str, *tmp_operands, **kwargs) + + # Append new items and dereference what we can + operands.append(new_view) + del tmp_operands, new_view + + if specified_out: + return out + else: + return asanyarray(operands[0], order=output_order) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/getlimits.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/getlimits.py new file mode 100644 index 0000000000000000000000000000000000000000..13414c2a64d688aa96c9cece79bc187210e19589 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/getlimits.py @@ -0,0 +1,735 @@ +"""Machine limits for Float32 and Float64 and (long double) if available... + +""" +__all__ = ['finfo', 'iinfo'] + +import warnings + +from .._utils import set_module +from ._machar import MachAr +from . import numeric +from . import numerictypes as ntypes +from .numeric import array, inf, NaN +from .umath import log10, exp2, nextafter, isnan + + +def _fr0(a): + """fix rank-0 --> rank-1""" + if a.ndim == 0: + a = a.copy() + a.shape = (1,) + return a + + +def _fr1(a): + """fix rank > 0 --> rank-0""" + if a.size == 1: + a = a.copy() + a.shape = () + return a + + +class MachArLike: + """ Object to simulate MachAr instance """ + def __init__(self, ftype, *, eps, epsneg, huge, tiny, + ibeta, smallest_subnormal=None, **kwargs): + self.params = _MACHAR_PARAMS[ftype] + self.ftype = ftype + self.title = self.params['title'] + # Parameter types same as for discovered MachAr object. + if not smallest_subnormal: + self._smallest_subnormal = nextafter( + self.ftype(0), self.ftype(1), dtype=self.ftype) + else: + self._smallest_subnormal = smallest_subnormal + self.epsilon = self.eps = self._float_to_float(eps) + self.epsneg = self._float_to_float(epsneg) + self.xmax = self.huge = self._float_to_float(huge) + self.xmin = self._float_to_float(tiny) + self.smallest_normal = self.tiny = self._float_to_float(tiny) + self.ibeta = self.params['itype'](ibeta) + self.__dict__.update(kwargs) + self.precision = int(-log10(self.eps)) + self.resolution = self._float_to_float( + self._float_conv(10) ** (-self.precision)) + self._str_eps = self._float_to_str(self.eps) + self._str_epsneg = self._float_to_str(self.epsneg) + self._str_xmin = self._float_to_str(self.xmin) + self._str_xmax = self._float_to_str(self.xmax) + self._str_resolution = self._float_to_str(self.resolution) + self._str_smallest_normal = self._float_to_str(self.xmin) + + @property + def smallest_subnormal(self): + """Return the value for the smallest subnormal. + + Returns + ------- + smallest_subnormal : float + value for the smallest subnormal. + + Warns + ----- + UserWarning + If the calculated value for the smallest subnormal is zero. + """ + # Check that the calculated value is not zero, in case it raises a + # warning. + value = self._smallest_subnormal + if self.ftype(0) == value: + warnings.warn( + 'The value of the smallest subnormal for {} type ' + 'is zero.'.format(self.ftype), UserWarning, stacklevel=2) + + return self._float_to_float(value) + + @property + def _str_smallest_subnormal(self): + """Return the string representation of the smallest subnormal.""" + return self._float_to_str(self.smallest_subnormal) + + def _float_to_float(self, value): + """Converts float to float. + + Parameters + ---------- + value : float + value to be converted. + """ + return _fr1(self._float_conv(value)) + + def _float_conv(self, value): + """Converts float to conv. + + Parameters + ---------- + value : float + value to be converted. + """ + return array([value], self.ftype) + + def _float_to_str(self, value): + """Converts float to str. + + Parameters + ---------- + value : float + value to be converted. + """ + return self.params['fmt'] % array(_fr0(value)[0], self.ftype) + + +_convert_to_float = { + ntypes.csingle: ntypes.single, + ntypes.complex_: ntypes.float_, + ntypes.clongfloat: ntypes.longfloat + } + +# Parameters for creating MachAr / MachAr-like objects +_title_fmt = 'numpy {} precision floating point number' +_MACHAR_PARAMS = { + ntypes.double: dict( + itype = ntypes.int64, + fmt = '%24.16e', + title = _title_fmt.format('double')), + ntypes.single: dict( + itype = ntypes.int32, + fmt = '%15.7e', + title = _title_fmt.format('single')), + ntypes.longdouble: dict( + itype = ntypes.longlong, + fmt = '%s', + title = _title_fmt.format('long double')), + ntypes.half: dict( + itype = ntypes.int16, + fmt = '%12.5e', + title = _title_fmt.format('half'))} + +# Key to identify the floating point type. Key is result of +# ftype('-0.1').newbyteorder('<').tobytes() +# +# 20230201 - use (ftype(-1.0) / ftype(10.0)).newbyteorder('<').tobytes() +# instead because stold may have deficiencies on some platforms. +# See: +# https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure + +_KNOWN_TYPES = {} +def _register_type(machar, bytepat): + _KNOWN_TYPES[bytepat] = machar +_float_ma = {} + + +def _register_known_types(): + # Known parameters for float16 + # See docstring of MachAr class for description of parameters. + f16 = ntypes.float16 + float16_ma = MachArLike(f16, + machep=-10, + negep=-11, + minexp=-14, + maxexp=16, + it=10, + iexp=5, + ibeta=2, + irnd=5, + ngrd=0, + eps=exp2(f16(-10)), + epsneg=exp2(f16(-11)), + huge=f16(65504), + tiny=f16(2 ** -14)) + _register_type(float16_ma, b'f\xae') + _float_ma[16] = float16_ma + + # Known parameters for float32 + f32 = ntypes.float32 + float32_ma = MachArLike(f32, + machep=-23, + negep=-24, + minexp=-126, + maxexp=128, + it=23, + iexp=8, + ibeta=2, + irnd=5, + ngrd=0, + eps=exp2(f32(-23)), + epsneg=exp2(f32(-24)), + huge=f32((1 - 2 ** -24) * 2**128), + tiny=exp2(f32(-126))) + _register_type(float32_ma, b'\xcd\xcc\xcc\xbd') + _float_ma[32] = float32_ma + + # Known parameters for float64 + f64 = ntypes.float64 + epsneg_f64 = 2.0 ** -53.0 + tiny_f64 = 2.0 ** -1022.0 + float64_ma = MachArLike(f64, + machep=-52, + negep=-53, + minexp=-1022, + maxexp=1024, + it=52, + iexp=11, + ibeta=2, + irnd=5, + ngrd=0, + eps=2.0 ** -52.0, + epsneg=epsneg_f64, + huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4), + tiny=tiny_f64) + _register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf') + _float_ma[64] = float64_ma + + # Known parameters for IEEE 754 128-bit binary float + ld = ntypes.longdouble + epsneg_f128 = exp2(ld(-113)) + tiny_f128 = exp2(ld(-16382)) + # Ignore runtime error when this is not f128 + with numeric.errstate(all='ignore'): + huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4) + float128_ma = MachArLike(ld, + machep=-112, + negep=-113, + minexp=-16382, + maxexp=16384, + it=112, + iexp=15, + ibeta=2, + irnd=5, + ngrd=0, + eps=exp2(ld(-112)), + epsneg=epsneg_f128, + huge=huge_f128, + tiny=tiny_f128) + # IEEE 754 128-bit binary float + _register_type(float128_ma, + b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf') + _float_ma[128] = float128_ma + + # Known parameters for float80 (Intel 80-bit extended precision) + epsneg_f80 = exp2(ld(-64)) + tiny_f80 = exp2(ld(-16382)) + # Ignore runtime error when this is not f80 + with numeric.errstate(all='ignore'): + huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4) + float80_ma = MachArLike(ld, + machep=-63, + negep=-64, + minexp=-16382, + maxexp=16384, + it=63, + iexp=15, + ibeta=2, + irnd=5, + ngrd=0, + eps=exp2(ld(-63)), + epsneg=epsneg_f80, + huge=huge_f80, + tiny=tiny_f80) + # float80, first 10 bytes containing actual storage + _register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf') + _float_ma[80] = float80_ma + + # Guessed / known parameters for double double; see: + # https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic + # These numbers have the same exponent range as float64, but extended number of + # digits in the significand. + huge_dd = nextafter(ld(inf), ld(0), dtype=ld) + # As the smallest_normal in double double is so hard to calculate we set + # it to NaN. + smallest_normal_dd = NaN + # Leave the same value for the smallest subnormal as double + smallest_subnormal_dd = ld(nextafter(0., 1.)) + float_dd_ma = MachArLike(ld, + machep=-105, + negep=-106, + minexp=-1022, + maxexp=1024, + it=105, + iexp=11, + ibeta=2, + irnd=5, + ngrd=0, + eps=exp2(ld(-105)), + epsneg=exp2(ld(-106)), + huge=huge_dd, + tiny=smallest_normal_dd, + smallest_subnormal=smallest_subnormal_dd) + # double double; low, high order (e.g. PPC 64) + _register_type(float_dd_ma, + b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf') + # double double; high, low order (e.g. PPC 64 le) + _register_type(float_dd_ma, + b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<') + _float_ma['dd'] = float_dd_ma + + +def _get_machar(ftype): + """ Get MachAr instance or MachAr-like instance + + Get parameters for floating point type, by first trying signatures of + various known floating point types, then, if none match, attempting to + identify parameters by analysis. + + Parameters + ---------- + ftype : class + Numpy floating point type class (e.g. ``np.float64``) + + Returns + ------- + ma_like : instance of :class:`MachAr` or :class:`MachArLike` + Object giving floating point parameters for `ftype`. + + Warns + ----- + UserWarning + If the binary signature of the float type is not in the dictionary of + known float types. + """ + params = _MACHAR_PARAMS.get(ftype) + if params is None: + raise ValueError(repr(ftype)) + # Detect known / suspected types + # ftype(-1.0) / ftype(10.0) is better than ftype('-0.1') because stold + # may be deficient + key = (ftype(-1.0) / ftype(10.)).newbyteorder('<').tobytes() + ma_like = None + if ftype == ntypes.longdouble: + # Could be 80 bit == 10 byte extended precision, where last bytes can + # be random garbage. + # Comparing first 10 bytes to pattern first to avoid branching on the + # random garbage. + ma_like = _KNOWN_TYPES.get(key[:10]) + if ma_like is None: + # see if the full key is known. + ma_like = _KNOWN_TYPES.get(key) + if ma_like is None and len(key) == 16: + # machine limits could be f80 masquerading as np.float128, + # find all keys with length 16 and make new dict, but make the keys + # only 10 bytes long, the last bytes can be random garbage + _kt = {k[:10]: v for k, v in _KNOWN_TYPES.items() if len(k) == 16} + ma_like = _kt.get(key[:10]) + if ma_like is not None: + return ma_like + # Fall back to parameter discovery + warnings.warn( + f'Signature {key} for {ftype} does not match any known type: ' + 'falling back to type probe function.\n' + 'This warnings indicates broken support for the dtype!', + UserWarning, stacklevel=2) + return _discovered_machar(ftype) + + +def _discovered_machar(ftype): + """ Create MachAr instance with found information on float types + + TODO: MachAr should be retired completely ideally. We currently only + ever use it system with broken longdouble (valgrind, WSL). + """ + params = _MACHAR_PARAMS[ftype] + return MachAr(lambda v: array([v], ftype), + lambda v:_fr0(v.astype(params['itype']))[0], + lambda v:array(_fr0(v)[0], ftype), + lambda v: params['fmt'] % array(_fr0(v)[0], ftype), + params['title']) + + +@set_module('numpy') +class finfo: + """ + finfo(dtype) + + Machine limits for floating point types. + + Attributes + ---------- + bits : int + The number of bits occupied by the type. + dtype : dtype + Returns the dtype for which `finfo` returns information. For complex + input, the returned dtype is the associated ``float*`` dtype for its + real and complex components. + eps : float + The difference between 1.0 and the next smallest representable float + larger than 1.0. For example, for 64-bit binary floats in the IEEE-754 + standard, ``eps = 2**-52``, approximately 2.22e-16. + epsneg : float + The difference between 1.0 and the next smallest representable float + less than 1.0. For example, for 64-bit binary floats in the IEEE-754 + standard, ``epsneg = 2**-53``, approximately 1.11e-16. + iexp : int + The number of bits in the exponent portion of the floating point + representation. + machep : int + The exponent that yields `eps`. + max : floating point number of the appropriate type + The largest representable number. + maxexp : int + The smallest positive power of the base (2) that causes overflow. + min : floating point number of the appropriate type + The smallest representable number, typically ``-max``. + minexp : int + The most negative power of the base (2) consistent with there + being no leading 0's in the mantissa. + negep : int + The exponent that yields `epsneg`. + nexp : int + The number of bits in the exponent including its sign and bias. + nmant : int + The number of bits in the mantissa. + precision : int + The approximate number of decimal digits to which this kind of + float is precise. + resolution : floating point number of the appropriate type + The approximate decimal resolution of this type, i.e., + ``10**-precision``. + tiny : float + An alias for `smallest_normal`, kept for backwards compatibility. + smallest_normal : float + The smallest positive floating point number with 1 as leading bit in + the mantissa following IEEE-754 (see Notes). + smallest_subnormal : float + The smallest positive floating point number with 0 as leading bit in + the mantissa following IEEE-754. + + Parameters + ---------- + dtype : float, dtype, or instance + Kind of floating point or complex floating point + data-type about which to get information. + + See Also + -------- + iinfo : The equivalent for integer data types. + spacing : The distance between a value and the nearest adjacent number + nextafter : The next floating point value after x1 towards x2 + + Notes + ----- + For developers of NumPy: do not instantiate this at the module level. + The initial calculation of these parameters is expensive and negatively + impacts import times. These objects are cached, so calling ``finfo()`` + repeatedly inside your functions is not a problem. + + Note that ``smallest_normal`` is not actually the smallest positive + representable value in a NumPy floating point type. As in the IEEE-754 + standard [1]_, NumPy floating point types make use of subnormal numbers to + fill the gap between 0 and ``smallest_normal``. However, subnormal numbers + may have significantly reduced precision [2]_. + + This function can also be used for complex data types as well. If used, + the output will be the same as the corresponding real float type + (e.g. numpy.finfo(numpy.csingle) is the same as numpy.finfo(numpy.single)). + However, the output is true for the real and imaginary components. + + References + ---------- + .. [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, + pp.1-70, 2008, http://www.doi.org/10.1109/IEEESTD.2008.4610935 + .. [2] Wikipedia, "Denormal Numbers", + https://en.wikipedia.org/wiki/Denormal_number + + Examples + -------- + >>> np.finfo(np.float64).dtype + dtype('float64') + >>> np.finfo(np.complex64).dtype + dtype('float32') + + """ + + _finfo_cache = {} + + def __new__(cls, dtype): + try: + obj = cls._finfo_cache.get(dtype) # most common path + if obj is not None: + return obj + except TypeError: + pass + + if dtype is None: + # Deprecated in NumPy 1.25, 2023-01-16 + warnings.warn( + "finfo() dtype cannot be None. This behavior will " + "raise an error in the future. (Deprecated in NumPy 1.25)", + DeprecationWarning, + stacklevel=2 + ) + + try: + dtype = numeric.dtype(dtype) + except TypeError: + # In case a float instance was given + dtype = numeric.dtype(type(dtype)) + + obj = cls._finfo_cache.get(dtype) + if obj is not None: + return obj + dtypes = [dtype] + newdtype = numeric.obj2sctype(dtype) + if newdtype is not dtype: + dtypes.append(newdtype) + dtype = newdtype + if not issubclass(dtype, numeric.inexact): + raise ValueError("data type %r not inexact" % (dtype)) + obj = cls._finfo_cache.get(dtype) + if obj is not None: + return obj + if not issubclass(dtype, numeric.floating): + newdtype = _convert_to_float[dtype] + if newdtype is not dtype: + # dtype changed, for example from complex128 to float64 + dtypes.append(newdtype) + dtype = newdtype + + obj = cls._finfo_cache.get(dtype, None) + if obj is not None: + # the original dtype was not in the cache, but the new + # dtype is in the cache. we add the original dtypes to + # the cache and return the result + for dt in dtypes: + cls._finfo_cache[dt] = obj + return obj + obj = object.__new__(cls)._init(dtype) + for dt in dtypes: + cls._finfo_cache[dt] = obj + return obj + + def _init(self, dtype): + self.dtype = numeric.dtype(dtype) + machar = _get_machar(dtype) + + for word in ['precision', 'iexp', + 'maxexp', 'minexp', 'negep', + 'machep']: + setattr(self, word, getattr(machar, word)) + for word in ['resolution', 'epsneg', 'smallest_subnormal']: + setattr(self, word, getattr(machar, word).flat[0]) + self.bits = self.dtype.itemsize * 8 + self.max = machar.huge.flat[0] + self.min = -self.max + self.eps = machar.eps.flat[0] + self.nexp = machar.iexp + self.nmant = machar.it + self._machar = machar + self._str_tiny = machar._str_xmin.strip() + self._str_max = machar._str_xmax.strip() + self._str_epsneg = machar._str_epsneg.strip() + self._str_eps = machar._str_eps.strip() + self._str_resolution = machar._str_resolution.strip() + self._str_smallest_normal = machar._str_smallest_normal.strip() + self._str_smallest_subnormal = machar._str_smallest_subnormal.strip() + return self + + def __str__(self): + fmt = ( + 'Machine parameters for %(dtype)s\n' + '---------------------------------------------------------------\n' + 'precision = %(precision)3s resolution = %(_str_resolution)s\n' + 'machep = %(machep)6s eps = %(_str_eps)s\n' + 'negep = %(negep)6s epsneg = %(_str_epsneg)s\n' + 'minexp = %(minexp)6s tiny = %(_str_tiny)s\n' + 'maxexp = %(maxexp)6s max = %(_str_max)s\n' + 'nexp = %(nexp)6s min = -max\n' + 'smallest_normal = %(_str_smallest_normal)s ' + 'smallest_subnormal = %(_str_smallest_subnormal)s\n' + '---------------------------------------------------------------\n' + ) + return fmt % self.__dict__ + + def __repr__(self): + c = self.__class__.__name__ + d = self.__dict__.copy() + d['klass'] = c + return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s," + " max=%(_str_max)s, dtype=%(dtype)s)") % d) + + @property + def smallest_normal(self): + """Return the value for the smallest normal. + + Returns + ------- + smallest_normal : float + Value for the smallest normal. + + Warns + ----- + UserWarning + If the calculated value for the smallest normal is requested for + double-double. + """ + # This check is necessary because the value for smallest_normal is + # platform dependent for longdouble types. + if isnan(self._machar.smallest_normal.flat[0]): + warnings.warn( + 'The value of smallest normal is undefined for double double', + UserWarning, stacklevel=2) + return self._machar.smallest_normal.flat[0] + + @property + def tiny(self): + """Return the value for tiny, alias of smallest_normal. + + Returns + ------- + tiny : float + Value for the smallest normal, alias of smallest_normal. + + Warns + ----- + UserWarning + If the calculated value for the smallest normal is requested for + double-double. + """ + return self.smallest_normal + + +@set_module('numpy') +class iinfo: + """ + iinfo(type) + + Machine limits for integer types. + + Attributes + ---------- + bits : int + The number of bits occupied by the type. + dtype : dtype + Returns the dtype for which `iinfo` returns information. + min : int + The smallest integer expressible by the type. + max : int + The largest integer expressible by the type. + + Parameters + ---------- + int_type : integer type, dtype, or instance + The kind of integer data type to get information about. + + See Also + -------- + finfo : The equivalent for floating point data types. + + Examples + -------- + With types: + + >>> ii16 = np.iinfo(np.int16) + >>> ii16.min + -32768 + >>> ii16.max + 32767 + >>> ii32 = np.iinfo(np.int32) + >>> ii32.min + -2147483648 + >>> ii32.max + 2147483647 + + With instances: + + >>> ii32 = np.iinfo(np.int32(10)) + >>> ii32.min + -2147483648 + >>> ii32.max + 2147483647 + + """ + + _min_vals = {} + _max_vals = {} + + def __init__(self, int_type): + try: + self.dtype = numeric.dtype(int_type) + except TypeError: + self.dtype = numeric.dtype(type(int_type)) + self.kind = self.dtype.kind + self.bits = self.dtype.itemsize * 8 + self.key = "%s%d" % (self.kind, self.bits) + if self.kind not in 'iu': + raise ValueError("Invalid integer data type %r." % (self.kind,)) + + @property + def min(self): + """Minimum value of given dtype.""" + if self.kind == 'u': + return 0 + else: + try: + val = iinfo._min_vals[self.key] + except KeyError: + val = int(-(1 << (self.bits-1))) + iinfo._min_vals[self.key] = val + return val + + @property + def max(self): + """Maximum value of given dtype.""" + try: + val = iinfo._max_vals[self.key] + except KeyError: + if self.kind == 'u': + val = int((1 << self.bits) - 1) + else: + val = int((1 << (self.bits-1)) - 1) + iinfo._max_vals[self.key] = val + return val + + def __str__(self): + """String representation.""" + fmt = ( + 'Machine parameters for %(dtype)s\n' + '---------------------------------------------------------------\n' + 'min = %(min)s\n' + 'max = %(max)s\n' + '---------------------------------------------------------------\n' + ) + return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max} + + def __repr__(self): + return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__, + self.min, self.max, self.dtype) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/getlimits.pyi b/env-llmeval/lib/python3.10/site-packages/numpy/core/getlimits.pyi new file mode 100644 index 0000000000000000000000000000000000000000..da5e3c23ea724bfeca0d83ff2550febe1aade2f0 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/getlimits.pyi @@ -0,0 +1,6 @@ +from numpy import ( + finfo as finfo, + iinfo as iinfo, +) + +__all__: list[str] diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/multiarray.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/multiarray.py new file mode 100644 index 0000000000000000000000000000000000000000..d11283345952d4302ee67bcb700cd325854f6414 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/multiarray.py @@ -0,0 +1,1715 @@ +""" +Create the numpy.core.multiarray namespace for backward compatibility. In v1.16 +the multiarray and umath c-extension modules were merged into a single +_multiarray_umath extension module. So we replicate the old namespace +by importing from the extension module. + +""" + +import functools +from . import overrides +from . import _multiarray_umath +from ._multiarray_umath import * # noqa: F403 +# These imports are needed for backward compatibility, +# do not change them. issue gh-15518 +# _get_ndarray_c_version is semi-public, on purpose not added to __all__ +from ._multiarray_umath import ( + fastCopyAndTranspose, _flagdict, from_dlpack, _place, _reconstruct, + _vec_string, _ARRAY_API, _monotonicity, _get_ndarray_c_version, + _get_madvise_hugepage, _set_madvise_hugepage, + _get_promotion_state, _set_promotion_state, _using_numpy2_behavior + ) + +__all__ = [ + '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS', + 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS', + 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI', + 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP', + '_flagdict', 'from_dlpack', '_place', '_reconstruct', '_vec_string', + '_monotonicity', 'add_docstring', 'arange', 'array', 'asarray', + 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'bincount', + 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast', + 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2', + 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data', + 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype', + 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat', + 'frombuffer', 'fromfile', 'fromiter', 'fromstring', + 'get_handler_name', 'get_handler_version', 'inner', 'interp', + 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'may_share_memory', + 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters', + 'normalize_axis_index', 'packbits', 'promote_types', 'putmask', + 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function', + 'set_legacy_print_mode', 'set_numeric_ops', 'set_string_function', + 'set_typeDict', 'shares_memory', 'tracemalloc_domain', 'typeinfo', + 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros', + '_get_promotion_state', '_set_promotion_state', '_using_numpy2_behavior'] + +# For backward compatibility, make sure pickle imports these functions from here +_reconstruct.__module__ = 'numpy.core.multiarray' +scalar.__module__ = 'numpy.core.multiarray' + + +from_dlpack.__module__ = 'numpy' +arange.__module__ = 'numpy' +array.__module__ = 'numpy' +asarray.__module__ = 'numpy' +asanyarray.__module__ = 'numpy' +ascontiguousarray.__module__ = 'numpy' +asfortranarray.__module__ = 'numpy' +datetime_data.__module__ = 'numpy' +empty.__module__ = 'numpy' +frombuffer.__module__ = 'numpy' +fromfile.__module__ = 'numpy' +fromiter.__module__ = 'numpy' +frompyfunc.__module__ = 'numpy' +fromstring.__module__ = 'numpy' +geterrobj.__module__ = 'numpy' +may_share_memory.__module__ = 'numpy' +nested_iters.__module__ = 'numpy' +promote_types.__module__ = 'numpy' +set_numeric_ops.__module__ = 'numpy' +seterrobj.__module__ = 'numpy' +zeros.__module__ = 'numpy' +_get_promotion_state.__module__ = 'numpy' +_set_promotion_state.__module__ = 'numpy' +_using_numpy2_behavior.__module__ = 'numpy' + + +# We can't verify dispatcher signatures because NumPy's C functions don't +# support introspection. +array_function_from_c_func_and_dispatcher = functools.partial( + overrides.array_function_from_dispatcher, + module='numpy', docs_from_dispatcher=True, verify=False) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like) +def empty_like(prototype, dtype=None, order=None, subok=None, shape=None): + """ + empty_like(prototype, dtype=None, order='K', subok=True, shape=None) + + Return a new array with the same shape and type as a given array. + + Parameters + ---------- + prototype : array_like + The shape and data-type of `prototype` define these same attributes + of the returned array. + dtype : data-type, optional + Overrides the data type of the result. + + .. versionadded:: 1.6.0 + order : {'C', 'F', 'A', or 'K'}, optional + Overrides the memory layout of the result. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `prototype` is Fortran + contiguous, 'C' otherwise. 'K' means match the layout of `prototype` + as closely as possible. + + .. versionadded:: 1.6.0 + subok : bool, optional. + If True, then the newly created array will use the sub-class + type of `prototype`, otherwise it will be a base-class array. Defaults + to True. + shape : int or sequence of ints, optional. + Overrides the shape of the result. If order='K' and the number of + dimensions is unchanged, will try to keep order, otherwise, + order='C' is implied. + + .. versionadded:: 1.17.0 + + Returns + ------- + out : ndarray + Array of uninitialized (arbitrary) data with the same + shape and type as `prototype`. + + See Also + -------- + ones_like : Return an array of ones with shape and type of input. + zeros_like : Return an array of zeros with shape and type of input. + full_like : Return a new array with shape of input filled with value. + empty : Return a new uninitialized array. + + Notes + ----- + This function does *not* initialize the returned array; to do that use + `zeros_like` or `ones_like` instead. It may be marginally faster than + the functions that do set the array values. + + Examples + -------- + >>> a = ([1,2,3], [4,5,6]) # a is array-like + >>> np.empty_like(a) + array([[-1073741821, -1073741821, 3], # uninitialized + [ 0, 0, -1073741821]]) + >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) + >>> np.empty_like(a) + array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized + [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]]) + + """ + return (prototype,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate) +def concatenate(arrays, axis=None, out=None, *, dtype=None, casting=None): + """ + concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind") + + Join a sequence of arrays along an existing axis. + + Parameters + ---------- + a1, a2, ... : sequence of array_like + The arrays must have the same shape, except in the dimension + corresponding to `axis` (the first, by default). + axis : int, optional + The axis along which the arrays will be joined. If axis is None, + arrays are flattened before use. Default is 0. + out : ndarray, optional + If provided, the destination to place the result. The shape must be + correct, matching that of what concatenate would have returned if no + out argument were specified. + dtype : str or dtype + If provided, the destination array will have this dtype. Cannot be + provided together with `out`. + + .. versionadded:: 1.20.0 + + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Defaults to 'same_kind'. + + .. versionadded:: 1.20.0 + + Returns + ------- + res : ndarray + The concatenated array. + + See Also + -------- + ma.concatenate : Concatenate function that preserves input masks. + array_split : Split an array into multiple sub-arrays of equal or + near-equal size. + split : Split array into a list of multiple sub-arrays of equal size. + hsplit : Split array into multiple sub-arrays horizontally (column wise). + vsplit : Split array into multiple sub-arrays vertically (row wise). + dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). + stack : Stack a sequence of arrays along a new axis. + block : Assemble arrays from blocks. + hstack : Stack arrays in sequence horizontally (column wise). + vstack : Stack arrays in sequence vertically (row wise). + dstack : Stack arrays in sequence depth wise (along third dimension). + column_stack : Stack 1-D arrays as columns into a 2-D array. + + Notes + ----- + When one or more of the arrays to be concatenated is a MaskedArray, + this function will return a MaskedArray object instead of an ndarray, + but the input masks are *not* preserved. In cases where a MaskedArray + is expected as input, use the ma.concatenate function from the masked + array module instead. + + Examples + -------- + >>> a = np.array([[1, 2], [3, 4]]) + >>> b = np.array([[5, 6]]) + >>> np.concatenate((a, b), axis=0) + array([[1, 2], + [3, 4], + [5, 6]]) + >>> np.concatenate((a, b.T), axis=1) + array([[1, 2, 5], + [3, 4, 6]]) + >>> np.concatenate((a, b), axis=None) + array([1, 2, 3, 4, 5, 6]) + + This function will not preserve masking of MaskedArray inputs. + + >>> a = np.ma.arange(3) + >>> a[1] = np.ma.masked + >>> b = np.arange(2, 5) + >>> a + masked_array(data=[0, --, 2], + mask=[False, True, False], + fill_value=999999) + >>> b + array([2, 3, 4]) + >>> np.concatenate([a, b]) + masked_array(data=[0, 1, 2, 2, 3, 4], + mask=False, + fill_value=999999) + >>> np.ma.concatenate([a, b]) + masked_array(data=[0, --, 2, 2, 3, 4], + mask=[False, True, False, False, False, False], + fill_value=999999) + + """ + if out is not None: + # optimize for the typical case where only arrays is provided + arrays = list(arrays) + arrays.append(out) + return arrays + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.inner) +def inner(a, b): + """ + inner(a, b, /) + + Inner product of two arrays. + + Ordinary inner product of vectors for 1-D arrays (without complex + conjugation), in higher dimensions a sum product over the last axes. + + Parameters + ---------- + a, b : array_like + If `a` and `b` are nonscalar, their last dimensions must match. + + Returns + ------- + out : ndarray + If `a` and `b` are both + scalars or both 1-D arrays then a scalar is returned; otherwise + an array is returned. + ``out.shape = (*a.shape[:-1], *b.shape[:-1])`` + + Raises + ------ + ValueError + If both `a` and `b` are nonscalar and their last dimensions have + different sizes. + + See Also + -------- + tensordot : Sum products over arbitrary axes. + dot : Generalised matrix product, using second last dimension of `b`. + einsum : Einstein summation convention. + + Notes + ----- + For vectors (1-D arrays) it computes the ordinary inner-product:: + + np.inner(a, b) = sum(a[:]*b[:]) + + More generally, if ``ndim(a) = r > 0`` and ``ndim(b) = s > 0``:: + + np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) + + or explicitly:: + + np.inner(a, b)[i0,...,ir-2,j0,...,js-2] + = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:]) + + In addition `a` or `b` may be scalars, in which case:: + + np.inner(a,b) = a*b + + Examples + -------- + Ordinary inner product for vectors: + + >>> a = np.array([1,2,3]) + >>> b = np.array([0,1,0]) + >>> np.inner(a, b) + 2 + + Some multidimensional examples: + + >>> a = np.arange(24).reshape((2,3,4)) + >>> b = np.arange(4) + >>> c = np.inner(a, b) + >>> c.shape + (2, 3) + >>> c + array([[ 14, 38, 62], + [ 86, 110, 134]]) + + >>> a = np.arange(2).reshape((1,1,2)) + >>> b = np.arange(6).reshape((3,2)) + >>> c = np.inner(a, b) + >>> c.shape + (1, 1, 3) + >>> c + array([[[1, 3, 5]]]) + + An example where `b` is a scalar: + + >>> np.inner(np.eye(2), 7) + array([[7., 0.], + [0., 7.]]) + + """ + return (a, b) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.where) +def where(condition, x=None, y=None): + """ + where(condition, [x, y], /) + + Return elements chosen from `x` or `y` depending on `condition`. + + .. note:: + When only `condition` is provided, this function is a shorthand for + ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be + preferred, as it behaves correctly for subclasses. The rest of this + documentation covers only the case where all three arguments are + provided. + + Parameters + ---------- + condition : array_like, bool + Where True, yield `x`, otherwise yield `y`. + x, y : array_like + Values from which to choose. `x`, `y` and `condition` need to be + broadcastable to some shape. + + Returns + ------- + out : ndarray + An array with elements from `x` where `condition` is True, and elements + from `y` elsewhere. + + See Also + -------- + choose + nonzero : The function that is called when x and y are omitted + + Notes + ----- + If all the arrays are 1-D, `where` is equivalent to:: + + [xv if c else yv + for c, xv, yv in zip(condition, x, y)] + + Examples + -------- + >>> a = np.arange(10) + >>> a + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + >>> np.where(a < 5, a, 10*a) + array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90]) + + This can be used on multidimensional arrays too: + + >>> np.where([[True, False], [True, True]], + ... [[1, 2], [3, 4]], + ... [[9, 8], [7, 6]]) + array([[1, 8], + [3, 4]]) + + The shapes of x, y, and the condition are broadcast together: + + >>> x, y = np.ogrid[:3, :4] + >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast + array([[10, 0, 0, 0], + [10, 11, 1, 1], + [10, 11, 12, 2]]) + + >>> a = np.array([[0, 1, 2], + ... [0, 2, 4], + ... [0, 3, 6]]) + >>> np.where(a < 4, a, -1) # -1 is broadcast + array([[ 0, 1, 2], + [ 0, 2, -1], + [ 0, 3, -1]]) + """ + return (condition, x, y) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort) +def lexsort(keys, axis=None): + """ + lexsort(keys, axis=-1) + + Perform an indirect stable sort using a sequence of keys. + + Given multiple sorting keys, which can be interpreted as columns in a + spreadsheet, lexsort returns an array of integer indices that describes + the sort order by multiple columns. The last key in the sequence is used + for the primary sort order, the second-to-last key for the secondary sort + order, and so on. The keys argument must be a sequence of objects that + can be converted to arrays of the same shape. If a 2D array is provided + for the keys argument, its rows are interpreted as the sorting keys and + sorting is according to the last row, second last row etc. + + Parameters + ---------- + keys : (k, N) array or tuple containing k (N,)-shaped sequences + The `k` different "columns" to be sorted. The last column (or row if + `keys` is a 2D array) is the primary sort key. + axis : int, optional + Axis to be indirectly sorted. By default, sort over the last axis. + + Returns + ------- + indices : (N,) ndarray of ints + Array of indices that sort the keys along the specified axis. + + See Also + -------- + argsort : Indirect sort. + ndarray.sort : In-place sort. + sort : Return a sorted copy of an array. + + Examples + -------- + Sort names: first by surname, then by name. + + >>> surnames = ('Hertz', 'Galilei', 'Hertz') + >>> first_names = ('Heinrich', 'Galileo', 'Gustav') + >>> ind = np.lexsort((first_names, surnames)) + >>> ind + array([1, 2, 0]) + + >>> [surnames[i] + ", " + first_names[i] for i in ind] + ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich'] + + Sort two columns of numbers: + + >>> a = [1,5,1,4,3,4,4] # First column + >>> b = [9,4,0,4,0,2,1] # Second column + >>> ind = np.lexsort((b,a)) # Sort by a, then by b + >>> ind + array([2, 0, 4, 6, 5, 3, 1]) + + >>> [(a[i],b[i]) for i in ind] + [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)] + + Note that sorting is first according to the elements of ``a``. + Secondary sorting is according to the elements of ``b``. + + A normal ``argsort`` would have yielded: + + >>> [(a[i],b[i]) for i in np.argsort(a)] + [(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)] + + Structured arrays are sorted lexically by ``argsort``: + + >>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)], + ... dtype=np.dtype([('x', int), ('y', int)])) + + >>> np.argsort(x) # or np.argsort(x, order=('x', 'y')) + array([2, 0, 4, 6, 5, 3, 1]) + + """ + if isinstance(keys, tuple): + return keys + else: + return (keys,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast) +def can_cast(from_, to, casting=None): + """ + can_cast(from_, to, casting='safe') + + Returns True if cast between data types can occur according to the + casting rule. If from is a scalar or array scalar, also returns + True if the scalar value can be cast without overflow or truncation + to an integer. + + Parameters + ---------- + from_ : dtype, dtype specifier, scalar, or array + Data type, scalar, or array to cast from. + to : dtype or dtype specifier + Data type to cast to. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + + Returns + ------- + out : bool + True if cast can occur according to the casting rule. + + Notes + ----- + .. versionchanged:: 1.17.0 + Casting between a simple data type and a structured one is possible only + for "unsafe" casting. Casting to multiple fields is allowed, but + casting from multiple fields is not. + + .. versionchanged:: 1.9.0 + Casting from numeric to string types in 'safe' casting mode requires + that the string dtype length is long enough to store the maximum + integer/float value converted. + + See also + -------- + dtype, result_type + + Examples + -------- + Basic examples + + >>> np.can_cast(np.int32, np.int64) + True + >>> np.can_cast(np.float64, complex) + True + >>> np.can_cast(complex, float) + False + + >>> np.can_cast('i8', 'f8') + True + >>> np.can_cast('i8', 'f4') + False + >>> np.can_cast('i4', 'S4') + False + + Casting scalars + + >>> np.can_cast(100, 'i1') + True + >>> np.can_cast(150, 'i1') + False + >>> np.can_cast(150, 'u1') + True + + >>> np.can_cast(3.5e100, np.float32) + False + >>> np.can_cast(1000.0, np.float32) + True + + Array scalar checks the value, array does not + + >>> np.can_cast(np.array(1000.0), np.float32) + True + >>> np.can_cast(np.array([1000.0]), np.float32) + False + + Using the casting rules + + >>> np.can_cast('i8', 'i8', 'no') + True + >>> np.can_cast('i8', 'no') + False + + >>> np.can_cast('i8', 'equiv') + True + >>> np.can_cast('i8', 'equiv') + False + + >>> np.can_cast('i8', 'safe') + True + >>> np.can_cast('i4', 'safe') + False + + >>> np.can_cast('i4', 'same_kind') + True + >>> np.can_cast('u4', 'same_kind') + False + + >>> np.can_cast('u4', 'unsafe') + True + + """ + return (from_,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type) +def min_scalar_type(a): + """ + min_scalar_type(a, /) + + For scalar ``a``, returns the data type with the smallest size + and smallest scalar kind which can hold its value. For non-scalar + array ``a``, returns the vector's dtype unmodified. + + Floating point values are not demoted to integers, + and complex values are not demoted to floats. + + Parameters + ---------- + a : scalar or array_like + The value whose minimal data type is to be found. + + Returns + ------- + out : dtype + The minimal data type. + + Notes + ----- + .. versionadded:: 1.6.0 + + See Also + -------- + result_type, promote_types, dtype, can_cast + + Examples + -------- + >>> np.min_scalar_type(10) + dtype('uint8') + + >>> np.min_scalar_type(-260) + dtype('int16') + + >>> np.min_scalar_type(3.1) + dtype('float16') + + >>> np.min_scalar_type(1e50) + dtype('float64') + + >>> np.min_scalar_type(np.arange(4,dtype='f8')) + dtype('float64') + + """ + return (a,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type) +def result_type(*arrays_and_dtypes): + """ + result_type(*arrays_and_dtypes) + + Returns the type that results from applying the NumPy + type promotion rules to the arguments. + + Type promotion in NumPy works similarly to the rules in languages + like C++, with some slight differences. When both scalars and + arrays are used, the array's type takes precedence and the actual value + of the scalar is taken into account. + + For example, calculating 3*a, where a is an array of 32-bit floats, + intuitively should result in a 32-bit float output. If the 3 is a + 32-bit integer, the NumPy rules indicate it can't convert losslessly + into a 32-bit float, so a 64-bit float should be the result type. + By examining the value of the constant, '3', we see that it fits in + an 8-bit integer, which can be cast losslessly into the 32-bit float. + + Parameters + ---------- + arrays_and_dtypes : list of arrays and dtypes + The operands of some operation whose result type is needed. + + Returns + ------- + out : dtype + The result type. + + See also + -------- + dtype, promote_types, min_scalar_type, can_cast + + Notes + ----- + .. versionadded:: 1.6.0 + + The specific algorithm used is as follows. + + Categories are determined by first checking which of boolean, + integer (int/uint), or floating point (float/complex) the maximum + kind of all the arrays and the scalars are. + + If there are only scalars or the maximum category of the scalars + is higher than the maximum category of the arrays, + the data types are combined with :func:`promote_types` + to produce the return value. + + Otherwise, `min_scalar_type` is called on each scalar, and + the resulting data types are all combined with :func:`promote_types` + to produce the return value. + + The set of int values is not a subset of the uint values for types + with the same number of bits, something not reflected in + :func:`min_scalar_type`, but handled as a special case in `result_type`. + + Examples + -------- + >>> np.result_type(3, np.arange(7, dtype='i1')) + dtype('int8') + + >>> np.result_type('i4', 'c8') + dtype('complex128') + + >>> np.result_type(3.0, -2) + dtype('float64') + + """ + return arrays_and_dtypes + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.dot) +def dot(a, b, out=None): + """ + dot(a, b, out=None) + + Dot product of two arrays. Specifically, + + - If both `a` and `b` are 1-D arrays, it is inner product of vectors + (without complex conjugation). + + - If both `a` and `b` are 2-D arrays, it is matrix multiplication, + but using :func:`matmul` or ``a @ b`` is preferred. + + - If either `a` or `b` is 0-D (scalar), it is equivalent to + :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is + preferred. + + - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over + the last axis of `a` and `b`. + + - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a + sum product over the last axis of `a` and the second-to-last axis of + `b`:: + + dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) + + It uses an optimized BLAS library when possible (see `numpy.linalg`). + + Parameters + ---------- + a : array_like + First argument. + b : array_like + Second argument. + out : ndarray, optional + Output argument. This must have the exact kind that would be returned + if it was not used. In particular, it must have the right type, must be + C-contiguous, and its dtype must be the dtype that would be returned + for `dot(a,b)`. This is a performance feature. Therefore, if these + conditions are not met, an exception is raised, instead of attempting + to be flexible. + + Returns + ------- + output : ndarray + Returns the dot product of `a` and `b`. If `a` and `b` are both + scalars or both 1-D arrays then a scalar is returned; otherwise + an array is returned. + If `out` is given, then it is returned. + + Raises + ------ + ValueError + If the last dimension of `a` is not the same size as + the second-to-last dimension of `b`. + + See Also + -------- + vdot : Complex-conjugating dot product. + tensordot : Sum products over arbitrary axes. + einsum : Einstein summation convention. + matmul : '@' operator as method with out parameter. + linalg.multi_dot : Chained dot product. + + Examples + -------- + >>> np.dot(3, 4) + 12 + + Neither argument is complex-conjugated: + + >>> np.dot([2j, 3j], [2j, 3j]) + (-13+0j) + + For 2-D arrays it is the matrix product: + + >>> a = [[1, 0], [0, 1]] + >>> b = [[4, 1], [2, 2]] + >>> np.dot(a, b) + array([[4, 1], + [2, 2]]) + + >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) + >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) + >>> np.dot(a, b)[2,3,2,1,2,2] + 499128 + >>> sum(a[2,3,2,:] * b[1,2,:,2]) + 499128 + + """ + return (a, b, out) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot) +def vdot(a, b): + """ + vdot(a, b, /) + + Return the dot product of two vectors. + + The vdot(`a`, `b`) function handles complex numbers differently than + dot(`a`, `b`). If the first argument is complex the complex conjugate + of the first argument is used for the calculation of the dot product. + + Note that `vdot` handles multidimensional arrays differently than `dot`: + it does *not* perform a matrix product, but flattens input arguments + to 1-D vectors first. Consequently, it should only be used for vectors. + + Parameters + ---------- + a : array_like + If `a` is complex the complex conjugate is taken before calculation + of the dot product. + b : array_like + Second argument to the dot product. + + Returns + ------- + output : ndarray + Dot product of `a` and `b`. Can be an int, float, or + complex depending on the types of `a` and `b`. + + See Also + -------- + dot : Return the dot product without using the complex conjugate of the + first argument. + + Examples + -------- + >>> a = np.array([1+2j,3+4j]) + >>> b = np.array([5+6j,7+8j]) + >>> np.vdot(a, b) + (70-8j) + >>> np.vdot(b, a) + (70+8j) + + Note that higher-dimensional arrays are flattened! + + >>> a = np.array([[1, 4], [5, 6]]) + >>> b = np.array([[4, 1], [2, 2]]) + >>> np.vdot(a, b) + 30 + >>> np.vdot(b, a) + 30 + >>> 1*4 + 4*1 + 5*2 + 6*2 + 30 + + """ + return (a, b) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount) +def bincount(x, weights=None, minlength=None): + """ + bincount(x, /, weights=None, minlength=0) + + Count number of occurrences of each value in array of non-negative ints. + + The number of bins (of size 1) is one larger than the largest value in + `x`. If `minlength` is specified, there will be at least this number + of bins in the output array (though it will be longer if necessary, + depending on the contents of `x`). + Each bin gives the number of occurrences of its index value in `x`. + If `weights` is specified the input array is weighted by it, i.e. if a + value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead + of ``out[n] += 1``. + + Parameters + ---------- + x : array_like, 1 dimension, nonnegative ints + Input array. + weights : array_like, optional + Weights, array of the same shape as `x`. + minlength : int, optional + A minimum number of bins for the output array. + + .. versionadded:: 1.6.0 + + Returns + ------- + out : ndarray of ints + The result of binning the input array. + The length of `out` is equal to ``np.amax(x)+1``. + + Raises + ------ + ValueError + If the input is not 1-dimensional, or contains elements with negative + values, or if `minlength` is negative. + TypeError + If the type of the input is float or complex. + + See Also + -------- + histogram, digitize, unique + + Examples + -------- + >>> np.bincount(np.arange(5)) + array([1, 1, 1, 1, 1]) + >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) + array([1, 3, 1, 1, 0, 0, 0, 1]) + + >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) + >>> np.bincount(x).size == np.amax(x)+1 + True + + The input array needs to be of integer dtype, otherwise a + TypeError is raised: + + >>> np.bincount(np.arange(5, dtype=float)) + Traceback (most recent call last): + ... + TypeError: Cannot cast array data from dtype('float64') to dtype('int64') + according to the rule 'safe' + + A possible use of ``bincount`` is to perform sums over + variable-size chunks of an array, using the ``weights`` keyword. + + >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights + >>> x = np.array([0, 1, 1, 2, 2, 2]) + >>> np.bincount(x, weights=w) + array([ 0.3, 0.7, 1.1]) + + """ + return (x, weights) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index) +def ravel_multi_index(multi_index, dims, mode=None, order=None): + """ + ravel_multi_index(multi_index, dims, mode='raise', order='C') + + Converts a tuple of index arrays into an array of flat + indices, applying boundary modes to the multi-index. + + Parameters + ---------- + multi_index : tuple of array_like + A tuple of integer arrays, one array for each dimension. + dims : tuple of ints + The shape of array into which the indices from ``multi_index`` apply. + mode : {'raise', 'wrap', 'clip'}, optional + Specifies how out-of-bounds indices are handled. Can specify + either one mode or a tuple of modes, one mode per index. + + * 'raise' -- raise an error (default) + * 'wrap' -- wrap around + * 'clip' -- clip to the range + + In 'clip' mode, a negative index which would normally + wrap will clip to 0 instead. + order : {'C', 'F'}, optional + Determines whether the multi-index should be viewed as + indexing in row-major (C-style) or column-major + (Fortran-style) order. + + Returns + ------- + raveled_indices : ndarray + An array of indices into the flattened version of an array + of dimensions ``dims``. + + See Also + -------- + unravel_index + + Notes + ----- + .. versionadded:: 1.6.0 + + Examples + -------- + >>> arr = np.array([[3,6,6],[4,5,1]]) + >>> np.ravel_multi_index(arr, (7,6)) + array([22, 41, 37]) + >>> np.ravel_multi_index(arr, (7,6), order='F') + array([31, 41, 13]) + >>> np.ravel_multi_index(arr, (4,6), mode='clip') + array([22, 23, 19]) + >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap')) + array([12, 13, 13]) + + >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9)) + 1621 + """ + return multi_index + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index) +def unravel_index(indices, shape=None, order=None): + """ + unravel_index(indices, shape, order='C') + + Converts a flat index or array of flat indices into a tuple + of coordinate arrays. + + Parameters + ---------- + indices : array_like + An integer array whose elements are indices into the flattened + version of an array of dimensions ``shape``. Before version 1.6.0, + this function accepted just one index value. + shape : tuple of ints + The shape of the array to use for unraveling ``indices``. + + .. versionchanged:: 1.16.0 + Renamed from ``dims`` to ``shape``. + + order : {'C', 'F'}, optional + Determines whether the indices should be viewed as indexing in + row-major (C-style) or column-major (Fortran-style) order. + + .. versionadded:: 1.6.0 + + Returns + ------- + unraveled_coords : tuple of ndarray + Each array in the tuple has the same shape as the ``indices`` + array. + + See Also + -------- + ravel_multi_index + + Examples + -------- + >>> np.unravel_index([22, 41, 37], (7,6)) + (array([3, 6, 6]), array([4, 5, 1])) + >>> np.unravel_index([31, 41, 13], (7,6), order='F') + (array([3, 6, 6]), array([4, 5, 1])) + + >>> np.unravel_index(1621, (6,7,8,9)) + (3, 1, 4, 1) + + """ + return (indices,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto) +def copyto(dst, src, casting=None, where=None): + """ + copyto(dst, src, casting='same_kind', where=True) + + Copies values from one array to another, broadcasting as necessary. + + Raises a TypeError if the `casting` rule is violated, and if + `where` is provided, it selects which elements to copy. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + dst : ndarray + The array into which values are copied. + src : array_like + The array from which values are copied. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur when copying. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + where : array_like of bool, optional + A boolean array which is broadcasted to match the dimensions + of `dst`, and selects elements to copy from `src` to `dst` + wherever it contains the value True. + + Examples + -------- + >>> A = np.array([4, 5, 6]) + >>> B = [1, 2, 3] + >>> np.copyto(A, B) + >>> A + array([1, 2, 3]) + + >>> A = np.array([[1, 2, 3], [4, 5, 6]]) + >>> B = [[4, 5, 6], [7, 8, 9]] + >>> np.copyto(A, B) + >>> A + array([[4, 5, 6], + [7, 8, 9]]) + + """ + return (dst, src, where) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask) +def putmask(a, /, mask, values): + """ + putmask(a, mask, values) + + Changes elements of an array based on conditional and input values. + + Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``. + + If `values` is not the same size as `a` and `mask` then it will repeat. + This gives behavior different from ``a[mask] = values``. + + Parameters + ---------- + a : ndarray + Target array. + mask : array_like + Boolean mask array. It has to be the same shape as `a`. + values : array_like + Values to put into `a` where `mask` is True. If `values` is smaller + than `a` it will be repeated. + + See Also + -------- + place, put, take, copyto + + Examples + -------- + >>> x = np.arange(6).reshape(2, 3) + >>> np.putmask(x, x>2, x**2) + >>> x + array([[ 0, 1, 2], + [ 9, 16, 25]]) + + If `values` is smaller than `a` it is repeated: + + >>> x = np.arange(5) + >>> np.putmask(x, x>1, [-33, -44]) + >>> x + array([ 0, 1, -33, -44, -33]) + + """ + return (a, mask, values) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits) +def packbits(a, axis=None, bitorder='big'): + """ + packbits(a, /, axis=None, bitorder='big') + + Packs the elements of a binary-valued array into bits in a uint8 array. + + The result is padded to full bytes by inserting zero bits at the end. + + Parameters + ---------- + a : array_like + An array of integers or booleans whose elements should be packed to + bits. + axis : int, optional + The dimension over which bit-packing is done. + ``None`` implies packing the flattened array. + bitorder : {'big', 'little'}, optional + The order of the input bits. 'big' will mimic bin(val), + ``[0, 0, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011``, 'little' will + reverse the order so ``[1, 1, 0, 0, 0, 0, 0, 0] => 3``. + Defaults to 'big'. + + .. versionadded:: 1.17.0 + + Returns + ------- + packed : ndarray + Array of type uint8 whose elements represent bits corresponding to the + logical (0 or nonzero) value of the input elements. The shape of + `packed` has the same number of dimensions as the input (unless `axis` + is None, in which case the output is 1-D). + + See Also + -------- + unpackbits: Unpacks elements of a uint8 array into a binary-valued output + array. + + Examples + -------- + >>> a = np.array([[[1,0,1], + ... [0,1,0]], + ... [[1,1,0], + ... [0,0,1]]]) + >>> b = np.packbits(a, axis=-1) + >>> b + array([[[160], + [ 64]], + [[192], + [ 32]]], dtype=uint8) + + Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, + and 32 = 0010 0000. + + """ + return (a,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits) +def unpackbits(a, axis=None, count=None, bitorder='big'): + """ + unpackbits(a, /, axis=None, count=None, bitorder='big') + + Unpacks elements of a uint8 array into a binary-valued output array. + + Each element of `a` represents a bit-field that should be unpacked + into a binary-valued output array. The shape of the output array is + either 1-D (if `axis` is ``None``) or the same shape as the input + array with unpacking done along the axis specified. + + Parameters + ---------- + a : ndarray, uint8 type + Input array. + axis : int, optional + The dimension over which bit-unpacking is done. + ``None`` implies unpacking the flattened array. + count : int or None, optional + The number of elements to unpack along `axis`, provided as a way + of undoing the effect of packing a size that is not a multiple + of eight. A non-negative number means to only unpack `count` + bits. A negative number means to trim off that many bits from + the end. ``None`` means to unpack the entire array (the + default). Counts larger than the available number of bits will + add zero padding to the output. Negative counts must not + exceed the available number of bits. + + .. versionadded:: 1.17.0 + + bitorder : {'big', 'little'}, optional + The order of the returned bits. 'big' will mimic bin(val), + ``3 = 0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1]``, 'little' will reverse + the order to ``[1, 1, 0, 0, 0, 0, 0, 0]``. + Defaults to 'big'. + + .. versionadded:: 1.17.0 + + Returns + ------- + unpacked : ndarray, uint8 type + The elements are binary-valued (0 or 1). + + See Also + -------- + packbits : Packs the elements of a binary-valued array into bits in + a uint8 array. + + Examples + -------- + >>> a = np.array([[2], [7], [23]], dtype=np.uint8) + >>> a + array([[ 2], + [ 7], + [23]], dtype=uint8) + >>> b = np.unpackbits(a, axis=1) + >>> b + array([[0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8) + >>> c = np.unpackbits(a, axis=1, count=-3) + >>> c + array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0]], dtype=uint8) + + >>> p = np.packbits(b, axis=0) + >>> np.unpackbits(p, axis=0) + array([[0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 0, 1, 0, 1, 1, 1], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) + >>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0])) + True + + """ + return (a,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory) +def shares_memory(a, b, max_work=None): + """ + shares_memory(a, b, /, max_work=None) + + Determine if two arrays share memory. + + .. warning:: + + This function can be exponentially slow for some inputs, unless + `max_work` is set to a finite number or ``MAY_SHARE_BOUNDS``. + If in doubt, use `numpy.may_share_memory` instead. + + Parameters + ---------- + a, b : ndarray + Input arrays + max_work : int, optional + Effort to spend on solving the overlap problem (maximum number + of candidate solutions to consider). The following special + values are recognized: + + max_work=MAY_SHARE_EXACT (default) + The problem is solved exactly. In this case, the function returns + True only if there is an element shared between the arrays. Finding + the exact solution may take extremely long in some cases. + max_work=MAY_SHARE_BOUNDS + Only the memory bounds of a and b are checked. + + Raises + ------ + numpy.exceptions.TooHardError + Exceeded max_work. + + Returns + ------- + out : bool + + See Also + -------- + may_share_memory + + Examples + -------- + >>> x = np.array([1, 2, 3, 4]) + >>> np.shares_memory(x, np.array([5, 6, 7])) + False + >>> np.shares_memory(x[::2], x) + True + >>> np.shares_memory(x[::2], x[1::2]) + False + + Checking whether two arrays share memory is NP-complete, and + runtime may increase exponentially in the number of + dimensions. Hence, `max_work` should generally be set to a finite + number, as it is possible to construct examples that take + extremely long to run: + + >>> from numpy.lib.stride_tricks import as_strided + >>> x = np.zeros([192163377], dtype=np.int8) + >>> x1 = as_strided(x, strides=(36674, 61119, 85569), shape=(1049, 1049, 1049)) + >>> x2 = as_strided(x[64023025:], strides=(12223, 12224, 1), shape=(1049, 1049, 1)) + >>> np.shares_memory(x1, x2, max_work=1000) + Traceback (most recent call last): + ... + numpy.exceptions.TooHardError: Exceeded max_work + + Running ``np.shares_memory(x1, x2)`` without `max_work` set takes + around 1 minute for this case. It is possible to find problems + that take still significantly longer. + + """ + return (a, b) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory) +def may_share_memory(a, b, max_work=None): + """ + may_share_memory(a, b, /, max_work=None) + + Determine if two arrays might share memory + + A return of True does not necessarily mean that the two arrays + share any element. It just means that they *might*. + + Only the memory bounds of a and b are checked by default. + + Parameters + ---------- + a, b : ndarray + Input arrays + max_work : int, optional + Effort to spend on solving the overlap problem. See + `shares_memory` for details. Default for ``may_share_memory`` + is to do a bounds check. + + Returns + ------- + out : bool + + See Also + -------- + shares_memory + + Examples + -------- + >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) + False + >>> x = np.zeros([3, 4]) + >>> np.may_share_memory(x[:,0], x[:,1]) + True + + """ + return (a, b) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday) +def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None): + """ + is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None) + + Calculates which of the given dates are valid days, and which are not. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + dates : array_like of datetime64[D] + The array of dates to process. + weekmask : str or array_like of bool, optional + A seven-element array indicating which of Monday through Sunday are + valid days. May be specified as a length-seven list or array, like + [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string + like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for + weekdays, optionally separated by white space. Valid abbreviations + are: Mon Tue Wed Thu Fri Sat Sun + holidays : array_like of datetime64[D], optional + An array of dates to consider as invalid dates. They may be + specified in any order, and NaT (not-a-time) dates are ignored. + This list is saved in a normalized form that is suited for + fast calculations of valid days. + busdaycal : busdaycalendar, optional + A `busdaycalendar` object which specifies the valid days. If this + parameter is provided, neither weekmask nor holidays may be + provided. + out : array of bool, optional + If provided, this array is filled with the result. + + Returns + ------- + out : array of bool + An array with the same shape as ``dates``, containing True for + each valid day, and False for each invalid day. + + See Also + -------- + busdaycalendar : An object that specifies a custom set of valid days. + busday_offset : Applies an offset counted in valid days. + busday_count : Counts how many valid days are in a half-open date range. + + Examples + -------- + >>> # The weekdays are Friday, Saturday, and Monday + ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'], + ... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) + array([False, False, True]) + """ + return (dates, weekmask, holidays, out) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset) +def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None, + busdaycal=None, out=None): + """ + busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None) + + First adjusts the date to fall on a valid day according to + the ``roll`` rule, then applies offsets to the given dates + counted in valid days. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + dates : array_like of datetime64[D] + The array of dates to process. + offsets : array_like of int + The array of offsets, which is broadcast with ``dates``. + roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional + How to treat dates that do not fall on a valid day. The default + is 'raise'. + + * 'raise' means to raise an exception for an invalid day. + * 'nat' means to return a NaT (not-a-time) for an invalid day. + * 'forward' and 'following' mean to take the first valid day + later in time. + * 'backward' and 'preceding' mean to take the first valid day + earlier in time. + * 'modifiedfollowing' means to take the first valid day + later in time unless it is across a Month boundary, in which + case to take the first valid day earlier in time. + * 'modifiedpreceding' means to take the first valid day + earlier in time unless it is across a Month boundary, in which + case to take the first valid day later in time. + weekmask : str or array_like of bool, optional + A seven-element array indicating which of Monday through Sunday are + valid days. May be specified as a length-seven list or array, like + [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string + like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for + weekdays, optionally separated by white space. Valid abbreviations + are: Mon Tue Wed Thu Fri Sat Sun + holidays : array_like of datetime64[D], optional + An array of dates to consider as invalid dates. They may be + specified in any order, and NaT (not-a-time) dates are ignored. + This list is saved in a normalized form that is suited for + fast calculations of valid days. + busdaycal : busdaycalendar, optional + A `busdaycalendar` object which specifies the valid days. If this + parameter is provided, neither weekmask nor holidays may be + provided. + out : array of datetime64[D], optional + If provided, this array is filled with the result. + + Returns + ------- + out : array of datetime64[D] + An array with a shape from broadcasting ``dates`` and ``offsets`` + together, containing the dates with offsets applied. + + See Also + -------- + busdaycalendar : An object that specifies a custom set of valid days. + is_busday : Returns a boolean array indicating valid days. + busday_count : Counts how many valid days are in a half-open date range. + + Examples + -------- + >>> # First business day in October 2011 (not accounting for holidays) + ... np.busday_offset('2011-10', 0, roll='forward') + numpy.datetime64('2011-10-03') + >>> # Last business day in February 2012 (not accounting for holidays) + ... np.busday_offset('2012-03', -1, roll='forward') + numpy.datetime64('2012-02-29') + >>> # Third Wednesday in January 2011 + ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed') + numpy.datetime64('2011-01-19') + >>> # 2012 Mother's Day in Canada and the U.S. + ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun') + numpy.datetime64('2012-05-13') + + >>> # First business day on or after a date + ... np.busday_offset('2011-03-20', 0, roll='forward') + numpy.datetime64('2011-03-21') + >>> np.busday_offset('2011-03-22', 0, roll='forward') + numpy.datetime64('2011-03-22') + >>> # First business day after a date + ... np.busday_offset('2011-03-20', 1, roll='backward') + numpy.datetime64('2011-03-21') + >>> np.busday_offset('2011-03-22', 1, roll='backward') + numpy.datetime64('2011-03-23') + """ + return (dates, offsets, weekmask, holidays, out) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count) +def busday_count(begindates, enddates, weekmask=None, holidays=None, + busdaycal=None, out=None): + """ + busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None) + + Counts the number of valid days between `begindates` and + `enddates`, not including the day of `enddates`. + + If ``enddates`` specifies a date value that is earlier than the + corresponding ``begindates`` date value, the count will be negative. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + begindates : array_like of datetime64[D] + The array of the first dates for counting. + enddates : array_like of datetime64[D] + The array of the end dates for counting, which are excluded + from the count themselves. + weekmask : str or array_like of bool, optional + A seven-element array indicating which of Monday through Sunday are + valid days. May be specified as a length-seven list or array, like + [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string + like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for + weekdays, optionally separated by white space. Valid abbreviations + are: Mon Tue Wed Thu Fri Sat Sun + holidays : array_like of datetime64[D], optional + An array of dates to consider as invalid dates. They may be + specified in any order, and NaT (not-a-time) dates are ignored. + This list is saved in a normalized form that is suited for + fast calculations of valid days. + busdaycal : busdaycalendar, optional + A `busdaycalendar` object which specifies the valid days. If this + parameter is provided, neither weekmask nor holidays may be + provided. + out : array of int, optional + If provided, this array is filled with the result. + + Returns + ------- + out : array of int + An array with a shape from broadcasting ``begindates`` and ``enddates`` + together, containing the number of valid days between + the begin and end dates. + + See Also + -------- + busdaycalendar : An object that specifies a custom set of valid days. + is_busday : Returns a boolean array indicating valid days. + busday_offset : Applies an offset counted in valid days. + + Examples + -------- + >>> # Number of weekdays in January 2011 + ... np.busday_count('2011-01', '2011-02') + 21 + >>> # Number of weekdays in 2011 + >>> np.busday_count('2011', '2012') + 260 + >>> # Number of Saturdays in 2011 + ... np.busday_count('2011', '2012', weekmask='Sat') + 53 + """ + return (begindates, enddates, weekmask, holidays, out) + + +@array_function_from_c_func_and_dispatcher( + _multiarray_umath.datetime_as_string) +def datetime_as_string(arr, unit=None, timezone=None, casting=None): + """ + datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind') + + Convert an array of datetimes into an array of strings. + + Parameters + ---------- + arr : array_like of datetime64 + The array of UTC timestamps to format. + unit : str + One of None, 'auto', or a :ref:`datetime unit `. + timezone : {'naive', 'UTC', 'local'} or tzinfo + Timezone information to use when displaying the datetime. If 'UTC', end + with a Z to indicate UTC time. If 'local', convert to the local timezone + first, and suffix with a +-#### timezone offset. If a tzinfo object, + then do as with 'local', but use the specified timezone. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'} + Casting to allow when changing between datetime units. + + Returns + ------- + str_arr : ndarray + An array of strings the same shape as `arr`. + + Examples + -------- + >>> import pytz + >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]') + >>> d + array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30', + '2002-10-27T07:30'], dtype='datetime64[m]') + + Setting the timezone to UTC shows the same information, but with a Z suffix + + >>> np.datetime_as_string(d, timezone='UTC') + array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z', + '2002-10-27T07:30Z'], dtype='>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern')) + array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400', + '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='>> np.datetime_as_string(d, unit='h') + array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'], + dtype='>> np.datetime_as_string(d, unit='s') + array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00', + '2002-10-27T07:30:00'], dtype='>> np.datetime_as_string(d, unit='h', casting='safe') + Traceback (most recent call last): + ... + TypeError: Cannot create a datetime string as units 'h' from a NumPy + datetime with units 'm' according to the rule 'safe' + """ + return (arr,) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/numeric.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/numeric.py new file mode 100644 index 0000000000000000000000000000000000000000..91ac3f8606fedbf9c57edf5b1ec64693a9c3edd7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/numeric.py @@ -0,0 +1,2530 @@ +import functools +import itertools +import operator +import sys +import warnings +import numbers +import builtins + +import numpy as np +from . import multiarray +from .multiarray import ( + fastCopyAndTranspose, ALLOW_THREADS, + BUFSIZE, CLIP, MAXDIMS, MAY_SHARE_BOUNDS, MAY_SHARE_EXACT, RAISE, + WRAP, arange, array, asarray, asanyarray, ascontiguousarray, + asfortranarray, broadcast, can_cast, compare_chararrays, + concatenate, copyto, dot, dtype, empty, + empty_like, flatiter, frombuffer, from_dlpack, fromfile, fromiter, + fromstring, inner, lexsort, matmul, may_share_memory, + min_scalar_type, ndarray, nditer, nested_iters, promote_types, + putmask, result_type, set_numeric_ops, shares_memory, vdot, where, + zeros, normalize_axis_index, _get_promotion_state, _set_promotion_state, + _using_numpy2_behavior) + +from . import overrides +from . import umath +from . import shape_base +from .overrides import set_array_function_like_doc, set_module +from .umath import (multiply, invert, sin, PINF, NAN) +from . import numerictypes +from .numerictypes import longlong, intc, int_, float_, complex_, bool_ +from ..exceptions import ComplexWarning, TooHardError, AxisError +from ._ufunc_config import errstate, _no_nep50_warning + +bitwise_not = invert +ufunc = type(sin) +newaxis = None + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +__all__ = [ + 'newaxis', 'ndarray', 'flatiter', 'nditer', 'nested_iters', 'ufunc', + 'arange', 'array', 'asarray', 'asanyarray', 'ascontiguousarray', + 'asfortranarray', 'zeros', 'count_nonzero', 'empty', 'broadcast', 'dtype', + 'fromstring', 'fromfile', 'frombuffer', 'from_dlpack', 'where', + 'argwhere', 'copyto', 'concatenate', 'fastCopyAndTranspose', 'lexsort', + 'set_numeric_ops', 'can_cast', 'promote_types', 'min_scalar_type', + 'result_type', 'isfortran', 'empty_like', 'zeros_like', 'ones_like', + 'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot', 'roll', + 'rollaxis', 'moveaxis', 'cross', 'tensordot', 'little_endian', + 'fromiter', 'array_equal', 'array_equiv', 'indices', 'fromfunction', + 'isclose', 'isscalar', 'binary_repr', 'base_repr', 'ones', + 'identity', 'allclose', 'compare_chararrays', 'putmask', + 'flatnonzero', 'Inf', 'inf', 'infty', 'Infinity', 'nan', 'NaN', + 'False_', 'True_', 'bitwise_not', 'CLIP', 'RAISE', 'WRAP', 'MAXDIMS', + 'BUFSIZE', 'ALLOW_THREADS', 'full', 'full_like', + 'matmul', 'shares_memory', 'may_share_memory', 'MAY_SHARE_BOUNDS', + 'MAY_SHARE_EXACT', '_get_promotion_state', '_set_promotion_state', + '_using_numpy2_behavior'] + + +def _zeros_like_dispatcher(a, dtype=None, order=None, subok=None, shape=None): + return (a,) + + +@array_function_dispatch(_zeros_like_dispatcher) +def zeros_like(a, dtype=None, order='K', subok=True, shape=None): + """ + Return an array of zeros with the same shape and type as a given array. + + Parameters + ---------- + a : array_like + The shape and data-type of `a` define these same attributes of + the returned array. + dtype : data-type, optional + Overrides the data type of the result. + + .. versionadded:: 1.6.0 + order : {'C', 'F', 'A', or 'K'}, optional + Overrides the memory layout of the result. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. + + .. versionadded:: 1.6.0 + subok : bool, optional. + If True, then the newly created array will use the sub-class + type of `a`, otherwise it will be a base-class array. Defaults + to True. + shape : int or sequence of ints, optional. + Overrides the shape of the result. If order='K' and the number of + dimensions is unchanged, will try to keep order, otherwise, + order='C' is implied. + + .. versionadded:: 1.17.0 + + Returns + ------- + out : ndarray + Array of zeros with the same shape and type as `a`. + + See Also + -------- + empty_like : Return an empty array with shape and type of input. + ones_like : Return an array of ones with shape and type of input. + full_like : Return a new array with shape of input filled with value. + zeros : Return a new array setting values to zero. + + Examples + -------- + >>> x = np.arange(6) + >>> x = x.reshape((2, 3)) + >>> x + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.zeros_like(x) + array([[0, 0, 0], + [0, 0, 0]]) + + >>> y = np.arange(3, dtype=float) + >>> y + array([0., 1., 2.]) + >>> np.zeros_like(y) + array([0., 0., 0.]) + + """ + res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape) + # needed instead of a 0 to get same result as zeros for string dtypes + z = zeros(1, dtype=res.dtype) + multiarray.copyto(res, z, casting='unsafe') + return res + + +@set_array_function_like_doc +@set_module('numpy') +def ones(shape, dtype=None, order='C', *, like=None): + """ + Return a new array of given shape and type, filled with ones. + + Parameters + ---------- + shape : int or sequence of ints + Shape of the new array, e.g., ``(2, 3)`` or ``2``. + dtype : data-type, optional + The desired data-type for the array, e.g., `numpy.int8`. Default is + `numpy.float64`. + order : {'C', 'F'}, optional, default: C + Whether to store multi-dimensional data in row-major + (C-style) or column-major (Fortran-style) order in + memory. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array of ones with the given shape, dtype, and order. + + See Also + -------- + ones_like : Return an array of ones with shape and type of input. + empty : Return a new uninitialized array. + zeros : Return a new array setting values to zero. + full : Return a new array of given shape filled with value. + + + Examples + -------- + >>> np.ones(5) + array([1., 1., 1., 1., 1.]) + + >>> np.ones((5,), dtype=int) + array([1, 1, 1, 1, 1]) + + >>> np.ones((2, 1)) + array([[1.], + [1.]]) + + >>> s = (2,2) + >>> np.ones(s) + array([[1., 1.], + [1., 1.]]) + + """ + if like is not None: + return _ones_with_like(like, shape, dtype=dtype, order=order) + + a = empty(shape, dtype, order) + multiarray.copyto(a, 1, casting='unsafe') + return a + + +_ones_with_like = array_function_dispatch()(ones) + + +def _ones_like_dispatcher(a, dtype=None, order=None, subok=None, shape=None): + return (a,) + + +@array_function_dispatch(_ones_like_dispatcher) +def ones_like(a, dtype=None, order='K', subok=True, shape=None): + """ + Return an array of ones with the same shape and type as a given array. + + Parameters + ---------- + a : array_like + The shape and data-type of `a` define these same attributes of + the returned array. + dtype : data-type, optional + Overrides the data type of the result. + + .. versionadded:: 1.6.0 + order : {'C', 'F', 'A', or 'K'}, optional + Overrides the memory layout of the result. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. + + .. versionadded:: 1.6.0 + subok : bool, optional. + If True, then the newly created array will use the sub-class + type of `a`, otherwise it will be a base-class array. Defaults + to True. + shape : int or sequence of ints, optional. + Overrides the shape of the result. If order='K' and the number of + dimensions is unchanged, will try to keep order, otherwise, + order='C' is implied. + + .. versionadded:: 1.17.0 + + Returns + ------- + out : ndarray + Array of ones with the same shape and type as `a`. + + See Also + -------- + empty_like : Return an empty array with shape and type of input. + zeros_like : Return an array of zeros with shape and type of input. + full_like : Return a new array with shape of input filled with value. + ones : Return a new array setting values to one. + + Examples + -------- + >>> x = np.arange(6) + >>> x = x.reshape((2, 3)) + >>> x + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.ones_like(x) + array([[1, 1, 1], + [1, 1, 1]]) + + >>> y = np.arange(3, dtype=float) + >>> y + array([0., 1., 2.]) + >>> np.ones_like(y) + array([1., 1., 1.]) + + """ + res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape) + multiarray.copyto(res, 1, casting='unsafe') + return res + + +def _full_dispatcher(shape, fill_value, dtype=None, order=None, *, like=None): + return(like,) + + +@set_array_function_like_doc +@set_module('numpy') +def full(shape, fill_value, dtype=None, order='C', *, like=None): + """ + Return a new array of given shape and type, filled with `fill_value`. + + Parameters + ---------- + shape : int or sequence of ints + Shape of the new array, e.g., ``(2, 3)`` or ``2``. + fill_value : scalar or array_like + Fill value. + dtype : data-type, optional + The desired data-type for the array The default, None, means + ``np.array(fill_value).dtype``. + order : {'C', 'F'}, optional + Whether to store multidimensional data in C- or Fortran-contiguous + (row- or column-wise) order in memory. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array of `fill_value` with the given shape, dtype, and order. + + See Also + -------- + full_like : Return a new array with shape of input filled with value. + empty : Return a new uninitialized array. + ones : Return a new array setting values to one. + zeros : Return a new array setting values to zero. + + Examples + -------- + >>> np.full((2, 2), np.inf) + array([[inf, inf], + [inf, inf]]) + >>> np.full((2, 2), 10) + array([[10, 10], + [10, 10]]) + + >>> np.full((2, 2), [1, 2]) + array([[1, 2], + [1, 2]]) + + """ + if like is not None: + return _full_with_like( + like, shape, fill_value, dtype=dtype, order=order) + + if dtype is None: + fill_value = asarray(fill_value) + dtype = fill_value.dtype + a = empty(shape, dtype, order) + multiarray.copyto(a, fill_value, casting='unsafe') + return a + + +_full_with_like = array_function_dispatch()(full) + + +def _full_like_dispatcher(a, fill_value, dtype=None, order=None, subok=None, shape=None): + return (a,) + + +@array_function_dispatch(_full_like_dispatcher) +def full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None): + """ + Return a full array with the same shape and type as a given array. + + Parameters + ---------- + a : array_like + The shape and data-type of `a` define these same attributes of + the returned array. + fill_value : array_like + Fill value. + dtype : data-type, optional + Overrides the data type of the result. + order : {'C', 'F', 'A', or 'K'}, optional + Overrides the memory layout of the result. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. + subok : bool, optional. + If True, then the newly created array will use the sub-class + type of `a`, otherwise it will be a base-class array. Defaults + to True. + shape : int or sequence of ints, optional. + Overrides the shape of the result. If order='K' and the number of + dimensions is unchanged, will try to keep order, otherwise, + order='C' is implied. + + .. versionadded:: 1.17.0 + + Returns + ------- + out : ndarray + Array of `fill_value` with the same shape and type as `a`. + + See Also + -------- + empty_like : Return an empty array with shape and type of input. + ones_like : Return an array of ones with shape and type of input. + zeros_like : Return an array of zeros with shape and type of input. + full : Return a new array of given shape filled with value. + + Examples + -------- + >>> x = np.arange(6, dtype=int) + >>> np.full_like(x, 1) + array([1, 1, 1, 1, 1, 1]) + >>> np.full_like(x, 0.1) + array([0, 0, 0, 0, 0, 0]) + >>> np.full_like(x, 0.1, dtype=np.double) + array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) + >>> np.full_like(x, np.nan, dtype=np.double) + array([nan, nan, nan, nan, nan, nan]) + + >>> y = np.arange(6, dtype=np.double) + >>> np.full_like(y, 0.1) + array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) + + >>> y = np.zeros([2, 2, 3], dtype=int) + >>> np.full_like(y, [0, 0, 255]) + array([[[ 0, 0, 255], + [ 0, 0, 255]], + [[ 0, 0, 255], + [ 0, 0, 255]]]) + """ + res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape) + multiarray.copyto(res, fill_value, casting='unsafe') + return res + + +def _count_nonzero_dispatcher(a, axis=None, *, keepdims=None): + return (a,) + + +@array_function_dispatch(_count_nonzero_dispatcher) +def count_nonzero(a, axis=None, *, keepdims=False): + """ + Counts the number of non-zero values in the array ``a``. + + The word "non-zero" is in reference to the Python 2.x + built-in method ``__nonzero__()`` (renamed ``__bool__()`` + in Python 3.x) of Python objects that tests an object's + "truthfulness". For example, any number is considered + truthful if it is nonzero, whereas any string is considered + truthful if it is not the empty string. Thus, this function + (recursively) counts how many elements in ``a`` (and in + sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` + method evaluated to ``True``. + + Parameters + ---------- + a : array_like + The array for which to count non-zeros. + axis : int or tuple, optional + Axis or tuple of axes along which to count non-zeros. + Default is None, meaning that non-zeros will be counted + along a flattened version of ``a``. + + .. versionadded:: 1.12.0 + + keepdims : bool, optional + If this is set to True, the axes that are counted are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + .. versionadded:: 1.19.0 + + Returns + ------- + count : int or array of int + Number of non-zero values in the array along a given axis. + Otherwise, the total number of non-zero values in the array + is returned. + + See Also + -------- + nonzero : Return the coordinates of all the non-zero values. + + Examples + -------- + >>> np.count_nonzero(np.eye(4)) + 4 + >>> a = np.array([[0, 1, 7, 0], + ... [3, 0, 2, 19]]) + >>> np.count_nonzero(a) + 5 + >>> np.count_nonzero(a, axis=0) + array([1, 1, 2, 1]) + >>> np.count_nonzero(a, axis=1) + array([2, 3]) + >>> np.count_nonzero(a, axis=1, keepdims=True) + array([[2], + [3]]) + """ + if axis is None and not keepdims: + return multiarray.count_nonzero(a) + + a = asanyarray(a) + + # TODO: this works around .astype(bool) not working properly (gh-9847) + if np.issubdtype(a.dtype, np.character): + a_bool = a != a.dtype.type() + else: + a_bool = a.astype(np.bool_, copy=False) + + return a_bool.sum(axis=axis, dtype=np.intp, keepdims=keepdims) + + +@set_module('numpy') +def isfortran(a): + """ + Check if the array is Fortran contiguous but *not* C contiguous. + + This function is obsolete and, because of changes due to relaxed stride + checking, its return value for the same array may differ for versions + of NumPy >= 1.10.0 and previous versions. If you only want to check if an + array is Fortran contiguous use ``a.flags.f_contiguous`` instead. + + Parameters + ---------- + a : ndarray + Input array. + + Returns + ------- + isfortran : bool + Returns True if the array is Fortran contiguous but *not* C contiguous. + + + Examples + -------- + + np.array allows to specify whether the array is written in C-contiguous + order (last index varies the fastest), or FORTRAN-contiguous order in + memory (first index varies the fastest). + + >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C') + >>> a + array([[1, 2, 3], + [4, 5, 6]]) + >>> np.isfortran(a) + False + + >>> b = np.array([[1, 2, 3], [4, 5, 6]], order='F') + >>> b + array([[1, 2, 3], + [4, 5, 6]]) + >>> np.isfortran(b) + True + + + The transpose of a C-ordered array is a FORTRAN-ordered array. + + >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C') + >>> a + array([[1, 2, 3], + [4, 5, 6]]) + >>> np.isfortran(a) + False + >>> b = a.T + >>> b + array([[1, 4], + [2, 5], + [3, 6]]) + >>> np.isfortran(b) + True + + C-ordered arrays evaluate as False even if they are also FORTRAN-ordered. + + >>> np.isfortran(np.array([1, 2], order='F')) + False + + """ + return a.flags.fnc + + +def _argwhere_dispatcher(a): + return (a,) + + +@array_function_dispatch(_argwhere_dispatcher) +def argwhere(a): + """ + Find the indices of array elements that are non-zero, grouped by element. + + Parameters + ---------- + a : array_like + Input data. + + Returns + ------- + index_array : (N, a.ndim) ndarray + Indices of elements that are non-zero. Indices are grouped by element. + This array will have shape ``(N, a.ndim)`` where ``N`` is the number of + non-zero items. + + See Also + -------- + where, nonzero + + Notes + ----- + ``np.argwhere(a)`` is almost the same as ``np.transpose(np.nonzero(a))``, + but produces a result of the correct shape for a 0D array. + + The output of ``argwhere`` is not suitable for indexing arrays. + For this purpose use ``nonzero(a)`` instead. + + Examples + -------- + >>> x = np.arange(6).reshape(2,3) + >>> x + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.argwhere(x>1) + array([[0, 2], + [1, 0], + [1, 1], + [1, 2]]) + + """ + # nonzero does not behave well on 0d, so promote to 1d + if np.ndim(a) == 0: + a = shape_base.atleast_1d(a) + # then remove the added dimension + return argwhere(a)[:,:0] + return transpose(nonzero(a)) + + +def _flatnonzero_dispatcher(a): + return (a,) + + +@array_function_dispatch(_flatnonzero_dispatcher) +def flatnonzero(a): + """ + Return indices that are non-zero in the flattened version of a. + + This is equivalent to ``np.nonzero(np.ravel(a))[0]``. + + Parameters + ---------- + a : array_like + Input data. + + Returns + ------- + res : ndarray + Output array, containing the indices of the elements of ``a.ravel()`` + that are non-zero. + + See Also + -------- + nonzero : Return the indices of the non-zero elements of the input array. + ravel : Return a 1-D array containing the elements of the input array. + + Examples + -------- + >>> x = np.arange(-2, 3) + >>> x + array([-2, -1, 0, 1, 2]) + >>> np.flatnonzero(x) + array([0, 1, 3, 4]) + + Use the indices of the non-zero elements as an index array to extract + these elements: + + >>> x.ravel()[np.flatnonzero(x)] + array([-2, -1, 1, 2]) + + """ + return np.nonzero(np.ravel(a))[0] + + +def _correlate_dispatcher(a, v, mode=None): + return (a, v) + + +@array_function_dispatch(_correlate_dispatcher) +def correlate(a, v, mode='valid'): + r""" + Cross-correlation of two 1-dimensional sequences. + + This function computes the correlation as generally defined in signal + processing texts: + + .. math:: c_k = \sum_n a_{n+k} \cdot \overline{v}_n + + with a and v sequences being zero-padded where necessary and + :math:`\overline x` denoting complex conjugation. + + Parameters + ---------- + a, v : array_like + Input sequences. + mode : {'valid', 'same', 'full'}, optional + Refer to the `convolve` docstring. Note that the default + is 'valid', unlike `convolve`, which uses 'full'. + old_behavior : bool + `old_behavior` was removed in NumPy 1.10. If you need the old + behavior, use `multiarray.correlate`. + + Returns + ------- + out : ndarray + Discrete cross-correlation of `a` and `v`. + + See Also + -------- + convolve : Discrete, linear convolution of two one-dimensional sequences. + multiarray.correlate : Old, no conjugate, version of correlate. + scipy.signal.correlate : uses FFT which has superior performance on large arrays. + + Notes + ----- + The definition of correlation above is not unique and sometimes correlation + may be defined differently. Another common definition is: + + .. math:: c'_k = \sum_n a_{n} \cdot \overline{v_{n+k}} + + which is related to :math:`c_k` by :math:`c'_k = c_{-k}`. + + `numpy.correlate` may perform slowly in large arrays (i.e. n = 1e5) because it does + not use the FFT to compute the convolution; in that case, `scipy.signal.correlate` might + be preferable. + + + Examples + -------- + >>> np.correlate([1, 2, 3], [0, 1, 0.5]) + array([3.5]) + >>> np.correlate([1, 2, 3], [0, 1, 0.5], "same") + array([2. , 3.5, 3. ]) + >>> np.correlate([1, 2, 3], [0, 1, 0.5], "full") + array([0.5, 2. , 3.5, 3. , 0. ]) + + Using complex sequences: + + >>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full') + array([ 0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j ]) + + Note that you get the time reversed, complex conjugated result + (:math:`\overline{c_{-k}}`) when the two input sequences a and v change + places: + + >>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full') + array([ 0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j]) + + """ + return multiarray.correlate2(a, v, mode) + + +def _convolve_dispatcher(a, v, mode=None): + return (a, v) + + +@array_function_dispatch(_convolve_dispatcher) +def convolve(a, v, mode='full'): + """ + Returns the discrete, linear convolution of two one-dimensional sequences. + + The convolution operator is often seen in signal processing, where it + models the effect of a linear time-invariant system on a signal [1]_. In + probability theory, the sum of two independent random variables is + distributed according to the convolution of their individual + distributions. + + If `v` is longer than `a`, the arrays are swapped before computation. + + Parameters + ---------- + a : (N,) array_like + First one-dimensional input array. + v : (M,) array_like + Second one-dimensional input array. + mode : {'full', 'valid', 'same'}, optional + 'full': + By default, mode is 'full'. This returns the convolution + at each point of overlap, with an output shape of (N+M-1,). At + the end-points of the convolution, the signals do not overlap + completely, and boundary effects may be seen. + + 'same': + Mode 'same' returns output of length ``max(M, N)``. Boundary + effects are still visible. + + 'valid': + Mode 'valid' returns output of length + ``max(M, N) - min(M, N) + 1``. The convolution product is only given + for points where the signals overlap completely. Values outside + the signal boundary have no effect. + + Returns + ------- + out : ndarray + Discrete, linear convolution of `a` and `v`. + + See Also + -------- + scipy.signal.fftconvolve : Convolve two arrays using the Fast Fourier + Transform. + scipy.linalg.toeplitz : Used to construct the convolution operator. + polymul : Polynomial multiplication. Same output as convolve, but also + accepts poly1d objects as input. + + Notes + ----- + The discrete convolution operation is defined as + + .. math:: (a * v)_n = \\sum_{m = -\\infty}^{\\infty} a_m v_{n - m} + + It can be shown that a convolution :math:`x(t) * y(t)` in time/space + is equivalent to the multiplication :math:`X(f) Y(f)` in the Fourier + domain, after appropriate padding (padding is necessary to prevent + circular convolution). Since multiplication is more efficient (faster) + than convolution, the function `scipy.signal.fftconvolve` exploits the + FFT to calculate the convolution of large data-sets. + + References + ---------- + .. [1] Wikipedia, "Convolution", + https://en.wikipedia.org/wiki/Convolution + + Examples + -------- + Note how the convolution operator flips the second array + before "sliding" the two across one another: + + >>> np.convolve([1, 2, 3], [0, 1, 0.5]) + array([0. , 1. , 2.5, 4. , 1.5]) + + Only return the middle values of the convolution. + Contains boundary effects, where zeros are taken + into account: + + >>> np.convolve([1,2,3],[0,1,0.5], 'same') + array([1. , 2.5, 4. ]) + + The two arrays are of the same length, so there + is only one position where they completely overlap: + + >>> np.convolve([1,2,3],[0,1,0.5], 'valid') + array([2.5]) + + """ + a, v = array(a, copy=False, ndmin=1), array(v, copy=False, ndmin=1) + if (len(v) > len(a)): + a, v = v, a + if len(a) == 0: + raise ValueError('a cannot be empty') + if len(v) == 0: + raise ValueError('v cannot be empty') + return multiarray.correlate(a, v[::-1], mode) + + +def _outer_dispatcher(a, b, out=None): + return (a, b, out) + + +@array_function_dispatch(_outer_dispatcher) +def outer(a, b, out=None): + """ + Compute the outer product of two vectors. + + Given two vectors `a` and `b` of length ``M`` and ``N``, repsectively, + the outer product [1]_ is:: + + [[a_0*b_0 a_0*b_1 ... a_0*b_{N-1} ] + [a_1*b_0 . + [ ... . + [a_{M-1}*b_0 a_{M-1}*b_{N-1} ]] + + Parameters + ---------- + a : (M,) array_like + First input vector. Input is flattened if + not already 1-dimensional. + b : (N,) array_like + Second input vector. Input is flattened if + not already 1-dimensional. + out : (M, N) ndarray, optional + A location where the result is stored + + .. versionadded:: 1.9.0 + + Returns + ------- + out : (M, N) ndarray + ``out[i, j] = a[i] * b[j]`` + + See also + -------- + inner + einsum : ``einsum('i,j->ij', a.ravel(), b.ravel())`` is the equivalent. + ufunc.outer : A generalization to dimensions other than 1D and other + operations. ``np.multiply.outer(a.ravel(), b.ravel())`` + is the equivalent. + tensordot : ``np.tensordot(a.ravel(), b.ravel(), axes=((), ()))`` + is the equivalent. + + References + ---------- + .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd + ed., Baltimore, MD, Johns Hopkins University Press, 1996, + pg. 8. + + Examples + -------- + Make a (*very* coarse) grid for computing a Mandelbrot set: + + >>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5)) + >>> rl + array([[-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.]]) + >>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,))) + >>> im + array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j], + [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j], + [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], + [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j], + [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]]) + >>> grid = rl + im + >>> grid + array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j], + [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j], + [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j], + [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j], + [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]]) + + An example using a "vector" of letters: + + >>> x = np.array(['a', 'b', 'c'], dtype=object) + >>> np.outer(x, [1, 2, 3]) + array([['a', 'aa', 'aaa'], + ['b', 'bb', 'bbb'], + ['c', 'cc', 'ccc']], dtype=object) + + """ + a = asarray(a) + b = asarray(b) + return multiply(a.ravel()[:, newaxis], b.ravel()[newaxis, :], out) + + +def _tensordot_dispatcher(a, b, axes=None): + return (a, b) + + +@array_function_dispatch(_tensordot_dispatcher) +def tensordot(a, b, axes=2): + """ + Compute tensor dot product along specified axes. + + Given two tensors, `a` and `b`, and an array_like object containing + two array_like objects, ``(a_axes, b_axes)``, sum the products of + `a`'s and `b`'s elements (components) over the axes specified by + ``a_axes`` and ``b_axes``. The third argument can be a single non-negative + integer_like scalar, ``N``; if it is such, then the last ``N`` dimensions + of `a` and the first ``N`` dimensions of `b` are summed over. + + Parameters + ---------- + a, b : array_like + Tensors to "dot". + + axes : int or (2,) array_like + * integer_like + If an int N, sum over the last N axes of `a` and the first N axes + of `b` in order. The sizes of the corresponding axes must match. + * (2,) array_like + Or, a list of axes to be summed over, first sequence applying to `a`, + second to `b`. Both elements array_like must be of the same length. + + Returns + ------- + output : ndarray + The tensor dot product of the input. + + See Also + -------- + dot, einsum + + Notes + ----- + Three common use cases are: + * ``axes = 0`` : tensor product :math:`a\\otimes b` + * ``axes = 1`` : tensor dot product :math:`a\\cdot b` + * ``axes = 2`` : (default) tensor double contraction :math:`a:b` + + When `axes` is integer_like, the sequence for evaluation will be: first + the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and + Nth axis in `b` last. + + When there is more than one axis to sum over - and they are not the last + (first) axes of `a` (`b`) - the argument `axes` should consist of + two sequences of the same length, with the first axis to sum over given + first in both sequences, the second axis second, and so forth. + + The shape of the result consists of the non-contracted axes of the + first tensor, followed by the non-contracted axes of the second. + + Examples + -------- + A "traditional" example: + + >>> a = np.arange(60.).reshape(3,4,5) + >>> b = np.arange(24.).reshape(4,3,2) + >>> c = np.tensordot(a,b, axes=([1,0],[0,1])) + >>> c.shape + (5, 2) + >>> c + array([[4400., 4730.], + [4532., 4874.], + [4664., 5018.], + [4796., 5162.], + [4928., 5306.]]) + >>> # A slower but equivalent way of computing the same... + >>> d = np.zeros((5,2)) + >>> for i in range(5): + ... for j in range(2): + ... for k in range(3): + ... for n in range(4): + ... d[i,j] += a[k,n,i] * b[n,k,j] + >>> c == d + array([[ True, True], + [ True, True], + [ True, True], + [ True, True], + [ True, True]]) + + An extended example taking advantage of the overloading of + and \\*: + + >>> a = np.array(range(1, 9)) + >>> a.shape = (2, 2, 2) + >>> A = np.array(('a', 'b', 'c', 'd'), dtype=object) + >>> A.shape = (2, 2) + >>> a; A + array([[[1, 2], + [3, 4]], + [[5, 6], + [7, 8]]]) + array([['a', 'b'], + ['c', 'd']], dtype=object) + + >>> np.tensordot(a, A) # third argument default is 2 for double-contraction + array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object) + + >>> np.tensordot(a, A, 1) + array([[['acc', 'bdd'], + ['aaacccc', 'bbbdddd']], + [['aaaaacccccc', 'bbbbbdddddd'], + ['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object) + + >>> np.tensordot(a, A, 0) # tensor product (result too long to incl.) + array([[[[['a', 'b'], + ['c', 'd']], + ... + + >>> np.tensordot(a, A, (0, 1)) + array([[['abbbbb', 'cddddd'], + ['aabbbbbb', 'ccdddddd']], + [['aaabbbbbbb', 'cccddddddd'], + ['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object) + + >>> np.tensordot(a, A, (2, 1)) + array([[['abb', 'cdd'], + ['aaabbbb', 'cccdddd']], + [['aaaaabbbbbb', 'cccccdddddd'], + ['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object) + + >>> np.tensordot(a, A, ((0, 1), (0, 1))) + array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object) + + >>> np.tensordot(a, A, ((2, 1), (1, 0))) + array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object) + + """ + try: + iter(axes) + except Exception: + axes_a = list(range(-axes, 0)) + axes_b = list(range(0, axes)) + else: + axes_a, axes_b = axes + try: + na = len(axes_a) + axes_a = list(axes_a) + except TypeError: + axes_a = [axes_a] + na = 1 + try: + nb = len(axes_b) + axes_b = list(axes_b) + except TypeError: + axes_b = [axes_b] + nb = 1 + + a, b = asarray(a), asarray(b) + as_ = a.shape + nda = a.ndim + bs = b.shape + ndb = b.ndim + equal = True + if na != nb: + equal = False + else: + for k in range(na): + if as_[axes_a[k]] != bs[axes_b[k]]: + equal = False + break + if axes_a[k] < 0: + axes_a[k] += nda + if axes_b[k] < 0: + axes_b[k] += ndb + if not equal: + raise ValueError("shape-mismatch for sum") + + # Move the axes to sum over to the end of "a" + # and to the front of "b" + notin = [k for k in range(nda) if k not in axes_a] + newaxes_a = notin + axes_a + N2 = 1 + for axis in axes_a: + N2 *= as_[axis] + newshape_a = (int(multiply.reduce([as_[ax] for ax in notin])), N2) + olda = [as_[axis] for axis in notin] + + notin = [k for k in range(ndb) if k not in axes_b] + newaxes_b = axes_b + notin + N2 = 1 + for axis in axes_b: + N2 *= bs[axis] + newshape_b = (N2, int(multiply.reduce([bs[ax] for ax in notin]))) + oldb = [bs[axis] for axis in notin] + + at = a.transpose(newaxes_a).reshape(newshape_a) + bt = b.transpose(newaxes_b).reshape(newshape_b) + res = dot(at, bt) + return res.reshape(olda + oldb) + + +def _roll_dispatcher(a, shift, axis=None): + return (a,) + + +@array_function_dispatch(_roll_dispatcher) +def roll(a, shift, axis=None): + """ + Roll array elements along a given axis. + + Elements that roll beyond the last position are re-introduced at + the first. + + Parameters + ---------- + a : array_like + Input array. + shift : int or tuple of ints + The number of places by which elements are shifted. If a tuple, + then `axis` must be a tuple of the same size, and each of the + given axes is shifted by the corresponding number. If an int + while `axis` is a tuple of ints, then the same value is used for + all given axes. + axis : int or tuple of ints, optional + Axis or axes along which elements are shifted. By default, the + array is flattened before shifting, after which the original + shape is restored. + + Returns + ------- + res : ndarray + Output array, with the same shape as `a`. + + See Also + -------- + rollaxis : Roll the specified axis backwards, until it lies in a + given position. + + Notes + ----- + .. versionadded:: 1.12.0 + + Supports rolling over multiple dimensions simultaneously. + + Examples + -------- + >>> x = np.arange(10) + >>> np.roll(x, 2) + array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]) + >>> np.roll(x, -2) + array([2, 3, 4, 5, 6, 7, 8, 9, 0, 1]) + + >>> x2 = np.reshape(x, (2, 5)) + >>> x2 + array([[0, 1, 2, 3, 4], + [5, 6, 7, 8, 9]]) + >>> np.roll(x2, 1) + array([[9, 0, 1, 2, 3], + [4, 5, 6, 7, 8]]) + >>> np.roll(x2, -1) + array([[1, 2, 3, 4, 5], + [6, 7, 8, 9, 0]]) + >>> np.roll(x2, 1, axis=0) + array([[5, 6, 7, 8, 9], + [0, 1, 2, 3, 4]]) + >>> np.roll(x2, -1, axis=0) + array([[5, 6, 7, 8, 9], + [0, 1, 2, 3, 4]]) + >>> np.roll(x2, 1, axis=1) + array([[4, 0, 1, 2, 3], + [9, 5, 6, 7, 8]]) + >>> np.roll(x2, -1, axis=1) + array([[1, 2, 3, 4, 0], + [6, 7, 8, 9, 5]]) + >>> np.roll(x2, (1, 1), axis=(1, 0)) + array([[9, 5, 6, 7, 8], + [4, 0, 1, 2, 3]]) + >>> np.roll(x2, (2, 1), axis=(1, 0)) + array([[8, 9, 5, 6, 7], + [3, 4, 0, 1, 2]]) + + """ + a = asanyarray(a) + if axis is None: + return roll(a.ravel(), shift, 0).reshape(a.shape) + + else: + axis = normalize_axis_tuple(axis, a.ndim, allow_duplicate=True) + broadcasted = broadcast(shift, axis) + if broadcasted.ndim > 1: + raise ValueError( + "'shift' and 'axis' should be scalars or 1D sequences") + shifts = {ax: 0 for ax in range(a.ndim)} + for sh, ax in broadcasted: + shifts[ax] += sh + + rolls = [((slice(None), slice(None)),)] * a.ndim + for ax, offset in shifts.items(): + offset %= a.shape[ax] or 1 # If `a` is empty, nothing matters. + if offset: + # (original, result), (original, result) + rolls[ax] = ((slice(None, -offset), slice(offset, None)), + (slice(-offset, None), slice(None, offset))) + + result = empty_like(a) + for indices in itertools.product(*rolls): + arr_index, res_index = zip(*indices) + result[res_index] = a[arr_index] + + return result + + +def _rollaxis_dispatcher(a, axis, start=None): + return (a,) + + +@array_function_dispatch(_rollaxis_dispatcher) +def rollaxis(a, axis, start=0): + """ + Roll the specified axis backwards, until it lies in a given position. + + This function continues to be supported for backward compatibility, but you + should prefer `moveaxis`. The `moveaxis` function was added in NumPy + 1.11. + + Parameters + ---------- + a : ndarray + Input array. + axis : int + The axis to be rolled. The positions of the other axes do not + change relative to one another. + start : int, optional + When ``start <= axis``, the axis is rolled back until it lies in + this position. When ``start > axis``, the axis is rolled until it + lies before this position. The default, 0, results in a "complete" + roll. The following table describes how negative values of ``start`` + are interpreted: + + .. table:: + :align: left + + +-------------------+----------------------+ + | ``start`` | Normalized ``start`` | + +===================+======================+ + | ``-(arr.ndim+1)`` | raise ``AxisError`` | + +-------------------+----------------------+ + | ``-arr.ndim`` | 0 | + +-------------------+----------------------+ + | |vdots| | |vdots| | + +-------------------+----------------------+ + | ``-1`` | ``arr.ndim-1`` | + +-------------------+----------------------+ + | ``0`` | ``0`` | + +-------------------+----------------------+ + | |vdots| | |vdots| | + +-------------------+----------------------+ + | ``arr.ndim`` | ``arr.ndim`` | + +-------------------+----------------------+ + | ``arr.ndim + 1`` | raise ``AxisError`` | + +-------------------+----------------------+ + + .. |vdots| unicode:: U+22EE .. Vertical Ellipsis + + Returns + ------- + res : ndarray + For NumPy >= 1.10.0 a view of `a` is always returned. For earlier + NumPy versions a view of `a` is returned only if the order of the + axes is changed, otherwise the input array is returned. + + See Also + -------- + moveaxis : Move array axes to new positions. + roll : Roll the elements of an array by a number of positions along a + given axis. + + Examples + -------- + >>> a = np.ones((3,4,5,6)) + >>> np.rollaxis(a, 3, 1).shape + (3, 6, 4, 5) + >>> np.rollaxis(a, 2).shape + (5, 3, 4, 6) + >>> np.rollaxis(a, 1, 4).shape + (3, 5, 6, 4) + + """ + n = a.ndim + axis = normalize_axis_index(axis, n) + if start < 0: + start += n + msg = "'%s' arg requires %d <= %s < %d, but %d was passed in" + if not (0 <= start < n + 1): + raise AxisError(msg % ('start', -n, 'start', n + 1, start)) + if axis < start: + # it's been removed + start -= 1 + if axis == start: + return a[...] + axes = list(range(0, n)) + axes.remove(axis) + axes.insert(start, axis) + return a.transpose(axes) + + +def normalize_axis_tuple(axis, ndim, argname=None, allow_duplicate=False): + """ + Normalizes an axis argument into a tuple of non-negative integer axes. + + This handles shorthands such as ``1`` and converts them to ``(1,)``, + as well as performing the handling of negative indices covered by + `normalize_axis_index`. + + By default, this forbids axes from being specified multiple times. + + Used internally by multi-axis-checking logic. + + .. versionadded:: 1.13.0 + + Parameters + ---------- + axis : int, iterable of int + The un-normalized index or indices of the axis. + ndim : int + The number of dimensions of the array that `axis` should be normalized + against. + argname : str, optional + A prefix to put before the error message, typically the name of the + argument. + allow_duplicate : bool, optional + If False, the default, disallow an axis from being specified twice. + + Returns + ------- + normalized_axes : tuple of int + The normalized axis index, such that `0 <= normalized_axis < ndim` + + Raises + ------ + AxisError + If any axis provided is out of range + ValueError + If an axis is repeated + + See also + -------- + normalize_axis_index : normalizing a single scalar axis + """ + # Optimization to speed-up the most common cases. + if type(axis) not in (tuple, list): + try: + axis = [operator.index(axis)] + except TypeError: + pass + # Going via an iterator directly is slower than via list comprehension. + axis = tuple([normalize_axis_index(ax, ndim, argname) for ax in axis]) + if not allow_duplicate and len(set(axis)) != len(axis): + if argname: + raise ValueError('repeated axis in `{}` argument'.format(argname)) + else: + raise ValueError('repeated axis') + return axis + + +def _moveaxis_dispatcher(a, source, destination): + return (a,) + + +@array_function_dispatch(_moveaxis_dispatcher) +def moveaxis(a, source, destination): + """ + Move axes of an array to new positions. + + Other axes remain in their original order. + + .. versionadded:: 1.11.0 + + Parameters + ---------- + a : np.ndarray + The array whose axes should be reordered. + source : int or sequence of int + Original positions of the axes to move. These must be unique. + destination : int or sequence of int + Destination positions for each of the original axes. These must also be + unique. + + Returns + ------- + result : np.ndarray + Array with moved axes. This array is a view of the input array. + + See Also + -------- + transpose : Permute the dimensions of an array. + swapaxes : Interchange two axes of an array. + + Examples + -------- + >>> x = np.zeros((3, 4, 5)) + >>> np.moveaxis(x, 0, -1).shape + (4, 5, 3) + >>> np.moveaxis(x, -1, 0).shape + (5, 3, 4) + + These all achieve the same result: + + >>> np.transpose(x).shape + (5, 4, 3) + >>> np.swapaxes(x, 0, -1).shape + (5, 4, 3) + >>> np.moveaxis(x, [0, 1], [-1, -2]).shape + (5, 4, 3) + >>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape + (5, 4, 3) + + """ + try: + # allow duck-array types if they define transpose + transpose = a.transpose + except AttributeError: + a = asarray(a) + transpose = a.transpose + + source = normalize_axis_tuple(source, a.ndim, 'source') + destination = normalize_axis_tuple(destination, a.ndim, 'destination') + if len(source) != len(destination): + raise ValueError('`source` and `destination` arguments must have ' + 'the same number of elements') + + order = [n for n in range(a.ndim) if n not in source] + + for dest, src in sorted(zip(destination, source)): + order.insert(dest, src) + + result = transpose(order) + return result + + +def _cross_dispatcher(a, b, axisa=None, axisb=None, axisc=None, axis=None): + return (a, b) + + +@array_function_dispatch(_cross_dispatcher) +def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None): + """ + Return the cross product of two (arrays of) vectors. + + The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular + to both `a` and `b`. If `a` and `b` are arrays of vectors, the vectors + are defined by the last axis of `a` and `b` by default, and these axes + can have dimensions 2 or 3. Where the dimension of either `a` or `b` is + 2, the third component of the input vector is assumed to be zero and the + cross product calculated accordingly. In cases where both input vectors + have dimension 2, the z-component of the cross product is returned. + + Parameters + ---------- + a : array_like + Components of the first vector(s). + b : array_like + Components of the second vector(s). + axisa : int, optional + Axis of `a` that defines the vector(s). By default, the last axis. + axisb : int, optional + Axis of `b` that defines the vector(s). By default, the last axis. + axisc : int, optional + Axis of `c` containing the cross product vector(s). Ignored if + both input vectors have dimension 2, as the return is scalar. + By default, the last axis. + axis : int, optional + If defined, the axis of `a`, `b` and `c` that defines the vector(s) + and cross product(s). Overrides `axisa`, `axisb` and `axisc`. + + Returns + ------- + c : ndarray + Vector cross product(s). + + Raises + ------ + ValueError + When the dimension of the vector(s) in `a` and/or `b` does not + equal 2 or 3. + + See Also + -------- + inner : Inner product + outer : Outer product. + ix_ : Construct index arrays. + + Notes + ----- + .. versionadded:: 1.9.0 + + Supports full broadcasting of the inputs. + + Examples + -------- + Vector cross-product. + + >>> x = [1, 2, 3] + >>> y = [4, 5, 6] + >>> np.cross(x, y) + array([-3, 6, -3]) + + One vector with dimension 2. + + >>> x = [1, 2] + >>> y = [4, 5, 6] + >>> np.cross(x, y) + array([12, -6, -3]) + + Equivalently: + + >>> x = [1, 2, 0] + >>> y = [4, 5, 6] + >>> np.cross(x, y) + array([12, -6, -3]) + + Both vectors with dimension 2. + + >>> x = [1,2] + >>> y = [4,5] + >>> np.cross(x, y) + array(-3) + + Multiple vector cross-products. Note that the direction of the cross + product vector is defined by the *right-hand rule*. + + >>> x = np.array([[1,2,3], [4,5,6]]) + >>> y = np.array([[4,5,6], [1,2,3]]) + >>> np.cross(x, y) + array([[-3, 6, -3], + [ 3, -6, 3]]) + + The orientation of `c` can be changed using the `axisc` keyword. + + >>> np.cross(x, y, axisc=0) + array([[-3, 3], + [ 6, -6], + [-3, 3]]) + + Change the vector definition of `x` and `y` using `axisa` and `axisb`. + + >>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]]) + >>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]]) + >>> np.cross(x, y) + array([[ -6, 12, -6], + [ 0, 0, 0], + [ 6, -12, 6]]) + >>> np.cross(x, y, axisa=0, axisb=0) + array([[-24, 48, -24], + [-30, 60, -30], + [-36, 72, -36]]) + + """ + if axis is not None: + axisa, axisb, axisc = (axis,) * 3 + a = asarray(a) + b = asarray(b) + # Check axisa and axisb are within bounds + axisa = normalize_axis_index(axisa, a.ndim, msg_prefix='axisa') + axisb = normalize_axis_index(axisb, b.ndim, msg_prefix='axisb') + + # Move working axis to the end of the shape + a = moveaxis(a, axisa, -1) + b = moveaxis(b, axisb, -1) + msg = ("incompatible dimensions for cross product\n" + "(dimension must be 2 or 3)") + if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3): + raise ValueError(msg) + + # Create the output array + shape = broadcast(a[..., 0], b[..., 0]).shape + if a.shape[-1] == 3 or b.shape[-1] == 3: + shape += (3,) + # Check axisc is within bounds + axisc = normalize_axis_index(axisc, len(shape), msg_prefix='axisc') + dtype = promote_types(a.dtype, b.dtype) + cp = empty(shape, dtype) + + # recast arrays as dtype + a = a.astype(dtype) + b = b.astype(dtype) + + # create local aliases for readability + a0 = a[..., 0] + a1 = a[..., 1] + if a.shape[-1] == 3: + a2 = a[..., 2] + b0 = b[..., 0] + b1 = b[..., 1] + if b.shape[-1] == 3: + b2 = b[..., 2] + if cp.ndim != 0 and cp.shape[-1] == 3: + cp0 = cp[..., 0] + cp1 = cp[..., 1] + cp2 = cp[..., 2] + + if a.shape[-1] == 2: + if b.shape[-1] == 2: + # a0 * b1 - a1 * b0 + multiply(a0, b1, out=cp) + cp -= a1 * b0 + return cp + else: + assert b.shape[-1] == 3 + # cp0 = a1 * b2 - 0 (a2 = 0) + # cp1 = 0 - a0 * b2 (a2 = 0) + # cp2 = a0 * b1 - a1 * b0 + multiply(a1, b2, out=cp0) + multiply(a0, b2, out=cp1) + negative(cp1, out=cp1) + multiply(a0, b1, out=cp2) + cp2 -= a1 * b0 + else: + assert a.shape[-1] == 3 + if b.shape[-1] == 3: + # cp0 = a1 * b2 - a2 * b1 + # cp1 = a2 * b0 - a0 * b2 + # cp2 = a0 * b1 - a1 * b0 + multiply(a1, b2, out=cp0) + tmp = array(a2 * b1) + cp0 -= tmp + multiply(a2, b0, out=cp1) + multiply(a0, b2, out=tmp) + cp1 -= tmp + multiply(a0, b1, out=cp2) + multiply(a1, b0, out=tmp) + cp2 -= tmp + else: + assert b.shape[-1] == 2 + # cp0 = 0 - a2 * b1 (b2 = 0) + # cp1 = a2 * b0 - 0 (b2 = 0) + # cp2 = a0 * b1 - a1 * b0 + multiply(a2, b1, out=cp0) + negative(cp0, out=cp0) + multiply(a2, b0, out=cp1) + multiply(a0, b1, out=cp2) + cp2 -= a1 * b0 + + return moveaxis(cp, -1, axisc) + + +little_endian = (sys.byteorder == 'little') + + +@set_module('numpy') +def indices(dimensions, dtype=int, sparse=False): + """ + Return an array representing the indices of a grid. + + Compute an array where the subarrays contain index values 0, 1, ... + varying only along the corresponding axis. + + Parameters + ---------- + dimensions : sequence of ints + The shape of the grid. + dtype : dtype, optional + Data type of the result. + sparse : boolean, optional + Return a sparse representation of the grid instead of a dense + representation. Default is False. + + .. versionadded:: 1.17 + + Returns + ------- + grid : one ndarray or tuple of ndarrays + If sparse is False: + Returns one array of grid indices, + ``grid.shape = (len(dimensions),) + tuple(dimensions)``. + If sparse is True: + Returns a tuple of arrays, with + ``grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1)`` with + dimensions[i] in the ith place + + See Also + -------- + mgrid, ogrid, meshgrid + + Notes + ----- + The output shape in the dense case is obtained by prepending the number + of dimensions in front of the tuple of dimensions, i.e. if `dimensions` + is a tuple ``(r0, ..., rN-1)`` of length ``N``, the output shape is + ``(N, r0, ..., rN-1)``. + + The subarrays ``grid[k]`` contains the N-D array of indices along the + ``k-th`` axis. Explicitly:: + + grid[k, i0, i1, ..., iN-1] = ik + + Examples + -------- + >>> grid = np.indices((2, 3)) + >>> grid.shape + (2, 2, 3) + >>> grid[0] # row indices + array([[0, 0, 0], + [1, 1, 1]]) + >>> grid[1] # column indices + array([[0, 1, 2], + [0, 1, 2]]) + + The indices can be used as an index into an array. + + >>> x = np.arange(20).reshape(5, 4) + >>> row, col = np.indices((2, 3)) + >>> x[row, col] + array([[0, 1, 2], + [4, 5, 6]]) + + Note that it would be more straightforward in the above example to + extract the required elements directly with ``x[:2, :3]``. + + If sparse is set to true, the grid will be returned in a sparse + representation. + + >>> i, j = np.indices((2, 3), sparse=True) + >>> i.shape + (2, 1) + >>> j.shape + (1, 3) + >>> i # row indices + array([[0], + [1]]) + >>> j # column indices + array([[0, 1, 2]]) + + """ + dimensions = tuple(dimensions) + N = len(dimensions) + shape = (1,)*N + if sparse: + res = tuple() + else: + res = empty((N,)+dimensions, dtype=dtype) + for i, dim in enumerate(dimensions): + idx = arange(dim, dtype=dtype).reshape( + shape[:i] + (dim,) + shape[i+1:] + ) + if sparse: + res = res + (idx,) + else: + res[i] = idx + return res + + +@set_array_function_like_doc +@set_module('numpy') +def fromfunction(function, shape, *, dtype=float, like=None, **kwargs): + """ + Construct an array by executing a function over each coordinate. + + The resulting array therefore has a value ``fn(x, y, z)`` at + coordinate ``(x, y, z)``. + + Parameters + ---------- + function : callable + The function is called with N parameters, where N is the rank of + `shape`. Each parameter represents the coordinates of the array + varying along a specific axis. For example, if `shape` + were ``(2, 2)``, then the parameters would be + ``array([[0, 0], [1, 1]])`` and ``array([[0, 1], [0, 1]])`` + shape : (N,) tuple of ints + Shape of the output array, which also determines the shape of + the coordinate arrays passed to `function`. + dtype : data-type, optional + Data-type of the coordinate arrays passed to `function`. + By default, `dtype` is float. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + fromfunction : any + The result of the call to `function` is passed back directly. + Therefore the shape of `fromfunction` is completely determined by + `function`. If `function` returns a scalar value, the shape of + `fromfunction` would not match the `shape` parameter. + + See Also + -------- + indices, meshgrid + + Notes + ----- + Keywords other than `dtype` and `like` are passed to `function`. + + Examples + -------- + >>> np.fromfunction(lambda i, j: i, (2, 2), dtype=float) + array([[0., 0.], + [1., 1.]]) + + >>> np.fromfunction(lambda i, j: j, (2, 2), dtype=float) + array([[0., 1.], + [0., 1.]]) + + >>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int) + array([[ True, False, False], + [False, True, False], + [False, False, True]]) + + >>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int) + array([[0, 1, 2], + [1, 2, 3], + [2, 3, 4]]) + + """ + if like is not None: + return _fromfunction_with_like( + like, function, shape, dtype=dtype, **kwargs) + + args = indices(shape, dtype=dtype) + return function(*args, **kwargs) + + +_fromfunction_with_like = array_function_dispatch()(fromfunction) + + +def _frombuffer(buf, dtype, shape, order): + return frombuffer(buf, dtype=dtype).reshape(shape, order=order) + + +@set_module('numpy') +def isscalar(element): + """ + Returns True if the type of `element` is a scalar type. + + Parameters + ---------- + element : any + Input argument, can be of any type and shape. + + Returns + ------- + val : bool + True if `element` is a scalar type, False if it is not. + + See Also + -------- + ndim : Get the number of dimensions of an array + + Notes + ----- + If you need a stricter way to identify a *numerical* scalar, use + ``isinstance(x, numbers.Number)``, as that returns ``False`` for most + non-numerical elements such as strings. + + In most cases ``np.ndim(x) == 0`` should be used instead of this function, + as that will also return true for 0d arrays. This is how numpy overloads + functions in the style of the ``dx`` arguments to `gradient` and the ``bins`` + argument to `histogram`. Some key differences: + + +--------------------------------------+---------------+-------------------+ + | x |``isscalar(x)``|``np.ndim(x) == 0``| + +======================================+===============+===================+ + | PEP 3141 numeric objects (including | ``True`` | ``True`` | + | builtins) | | | + +--------------------------------------+---------------+-------------------+ + | builtin string and buffer objects | ``True`` | ``True`` | + +--------------------------------------+---------------+-------------------+ + | other builtin objects, like | ``False`` | ``True`` | + | `pathlib.Path`, `Exception`, | | | + | the result of `re.compile` | | | + +--------------------------------------+---------------+-------------------+ + | third-party objects like | ``False`` | ``True`` | + | `matplotlib.figure.Figure` | | | + +--------------------------------------+---------------+-------------------+ + | zero-dimensional numpy arrays | ``False`` | ``True`` | + +--------------------------------------+---------------+-------------------+ + | other numpy arrays | ``False`` | ``False`` | + +--------------------------------------+---------------+-------------------+ + | `list`, `tuple`, and other sequence | ``False`` | ``False`` | + | objects | | | + +--------------------------------------+---------------+-------------------+ + + Examples + -------- + >>> np.isscalar(3.1) + True + >>> np.isscalar(np.array(3.1)) + False + >>> np.isscalar([3.1]) + False + >>> np.isscalar(False) + True + >>> np.isscalar('numpy') + True + + NumPy supports PEP 3141 numbers: + + >>> from fractions import Fraction + >>> np.isscalar(Fraction(5, 17)) + True + >>> from numbers import Number + >>> np.isscalar(Number()) + True + + """ + return (isinstance(element, generic) + or type(element) in ScalarType + or isinstance(element, numbers.Number)) + + +@set_module('numpy') +def binary_repr(num, width=None): + """ + Return the binary representation of the input number as a string. + + For negative numbers, if width is not given, a minus sign is added to the + front. If width is given, the two's complement of the number is + returned, with respect to that width. + + In a two's-complement system negative numbers are represented by the two's + complement of the absolute value. This is the most common method of + representing signed integers on computers [1]_. A N-bit two's-complement + system can represent every integer in the range + :math:`-2^{N-1}` to :math:`+2^{N-1}-1`. + + Parameters + ---------- + num : int + Only an integer decimal number can be used. + width : int, optional + The length of the returned string if `num` is positive, or the length + of the two's complement if `num` is negative, provided that `width` is + at least a sufficient number of bits for `num` to be represented in the + designated form. + + If the `width` value is insufficient, it will be ignored, and `num` will + be returned in binary (`num` > 0) or two's complement (`num` < 0) form + with its width equal to the minimum number of bits needed to represent + the number in the designated form. This behavior is deprecated and will + later raise an error. + + .. deprecated:: 1.12.0 + + Returns + ------- + bin : str + Binary representation of `num` or two's complement of `num`. + + See Also + -------- + base_repr: Return a string representation of a number in the given base + system. + bin: Python's built-in binary representation generator of an integer. + + Notes + ----- + `binary_repr` is equivalent to using `base_repr` with base 2, but about 25x + faster. + + References + ---------- + .. [1] Wikipedia, "Two's complement", + https://en.wikipedia.org/wiki/Two's_complement + + Examples + -------- + >>> np.binary_repr(3) + '11' + >>> np.binary_repr(-3) + '-11' + >>> np.binary_repr(3, width=4) + '0011' + + The two's complement is returned when the input number is negative and + width is specified: + + >>> np.binary_repr(-3, width=3) + '101' + >>> np.binary_repr(-3, width=5) + '11101' + + """ + def warn_if_insufficient(width, binwidth): + if width is not None and width < binwidth: + warnings.warn( + "Insufficient bit width provided. This behavior " + "will raise an error in the future.", DeprecationWarning, + stacklevel=3) + + # Ensure that num is a Python integer to avoid overflow or unwanted + # casts to floating point. + num = operator.index(num) + + if num == 0: + return '0' * (width or 1) + + elif num > 0: + binary = bin(num)[2:] + binwidth = len(binary) + outwidth = (binwidth if width is None + else builtins.max(binwidth, width)) + warn_if_insufficient(width, binwidth) + return binary.zfill(outwidth) + + else: + if width is None: + return '-' + bin(-num)[2:] + + else: + poswidth = len(bin(-num)[2:]) + + # See gh-8679: remove extra digit + # for numbers at boundaries. + if 2**(poswidth - 1) == -num: + poswidth -= 1 + + twocomp = 2**(poswidth + 1) + num + binary = bin(twocomp)[2:] + binwidth = len(binary) + + outwidth = builtins.max(binwidth, width) + warn_if_insufficient(width, binwidth) + return '1' * (outwidth - binwidth) + binary + + +@set_module('numpy') +def base_repr(number, base=2, padding=0): + """ + Return a string representation of a number in the given base system. + + Parameters + ---------- + number : int + The value to convert. Positive and negative values are handled. + base : int, optional + Convert `number` to the `base` number system. The valid range is 2-36, + the default value is 2. + padding : int, optional + Number of zeros padded on the left. Default is 0 (no padding). + + Returns + ------- + out : str + String representation of `number` in `base` system. + + See Also + -------- + binary_repr : Faster version of `base_repr` for base 2. + + Examples + -------- + >>> np.base_repr(5) + '101' + >>> np.base_repr(6, 5) + '11' + >>> np.base_repr(7, base=5, padding=3) + '00012' + + >>> np.base_repr(10, base=16) + 'A' + >>> np.base_repr(32, base=16) + '20' + + """ + digits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' + if base > len(digits): + raise ValueError("Bases greater than 36 not handled in base_repr.") + elif base < 2: + raise ValueError("Bases less than 2 not handled in base_repr.") + + num = abs(number) + res = [] + while num: + res.append(digits[num % base]) + num //= base + if padding: + res.append('0' * padding) + if number < 0: + res.append('-') + return ''.join(reversed(res or '0')) + + +# These are all essentially abbreviations +# These might wind up in a special abbreviations module + + +def _maketup(descr, val): + dt = dtype(descr) + # Place val in all scalar tuples: + fields = dt.fields + if fields is None: + return val + else: + res = [_maketup(fields[name][0], val) for name in dt.names] + return tuple(res) + + +@set_array_function_like_doc +@set_module('numpy') +def identity(n, dtype=None, *, like=None): + """ + Return the identity array. + + The identity array is a square array with ones on + the main diagonal. + + Parameters + ---------- + n : int + Number of rows (and columns) in `n` x `n` output. + dtype : data-type, optional + Data-type of the output. Defaults to ``float``. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + `n` x `n` array with its main diagonal set to one, + and all other elements 0. + + Examples + -------- + >>> np.identity(3) + array([[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]]) + + """ + if like is not None: + return _identity_with_like(like, n, dtype=dtype) + + from numpy import eye + return eye(n, dtype=dtype, like=like) + + +_identity_with_like = array_function_dispatch()(identity) + + +def _allclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None): + return (a, b) + + +@array_function_dispatch(_allclose_dispatcher) +def allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): + """ + Returns True if two arrays are element-wise equal within a tolerance. + + The tolerance values are positive, typically very small numbers. The + relative difference (`rtol` * abs(`b`)) and the absolute difference + `atol` are added together to compare against the absolute difference + between `a` and `b`. + + NaNs are treated as equal if they are in the same place and if + ``equal_nan=True``. Infs are treated as equal if they are in the same + place and of the same sign in both arrays. + + Parameters + ---------- + a, b : array_like + Input arrays to compare. + rtol : float + The relative tolerance parameter (see Notes). + atol : float + The absolute tolerance parameter (see Notes). + equal_nan : bool + Whether to compare NaN's as equal. If True, NaN's in `a` will be + considered equal to NaN's in `b` in the output array. + + .. versionadded:: 1.10.0 + + Returns + ------- + allclose : bool + Returns True if the two arrays are equal within the given + tolerance; False otherwise. + + See Also + -------- + isclose, all, any, equal + + Notes + ----- + If the following equation is element-wise True, then allclose returns + True. + + absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) + + The above equation is not symmetric in `a` and `b`, so that + ``allclose(a, b)`` might be different from ``allclose(b, a)`` in + some rare cases. + + The comparison of `a` and `b` uses standard broadcasting, which + means that `a` and `b` need not have the same shape in order for + ``allclose(a, b)`` to evaluate to True. The same is true for + `equal` but not `array_equal`. + + `allclose` is not defined for non-numeric data types. + `bool` is considered a numeric data-type for this purpose. + + Examples + -------- + >>> np.allclose([1e10,1e-7], [1.00001e10,1e-8]) + False + >>> np.allclose([1e10,1e-8], [1.00001e10,1e-9]) + True + >>> np.allclose([1e10,1e-8], [1.0001e10,1e-9]) + False + >>> np.allclose([1.0, np.nan], [1.0, np.nan]) + False + >>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) + True + + """ + res = all(isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)) + return bool(res) + + +def _isclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None): + return (a, b) + + +@array_function_dispatch(_isclose_dispatcher) +def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): + """ + Returns a boolean array where two arrays are element-wise equal within a + tolerance. + + The tolerance values are positive, typically very small numbers. The + relative difference (`rtol` * abs(`b`)) and the absolute difference + `atol` are added together to compare against the absolute difference + between `a` and `b`. + + .. warning:: The default `atol` is not appropriate for comparing numbers + that are much smaller than one (see Notes). + + Parameters + ---------- + a, b : array_like + Input arrays to compare. + rtol : float + The relative tolerance parameter (see Notes). + atol : float + The absolute tolerance parameter (see Notes). + equal_nan : bool + Whether to compare NaN's as equal. If True, NaN's in `a` will be + considered equal to NaN's in `b` in the output array. + + Returns + ------- + y : array_like + Returns a boolean array of where `a` and `b` are equal within the + given tolerance. If both `a` and `b` are scalars, returns a single + boolean value. + + See Also + -------- + allclose + math.isclose + + Notes + ----- + .. versionadded:: 1.7.0 + + For finite values, isclose uses the following equation to test whether + two floating point values are equivalent. + + absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) + + Unlike the built-in `math.isclose`, the above equation is not symmetric + in `a` and `b` -- it assumes `b` is the reference value -- so that + `isclose(a, b)` might be different from `isclose(b, a)`. Furthermore, + the default value of atol is not zero, and is used to determine what + small values should be considered close to zero. The default value is + appropriate for expected values of order unity: if the expected values + are significantly smaller than one, it can result in false positives. + `atol` should be carefully selected for the use case at hand. A zero value + for `atol` will result in `False` if either `a` or `b` is zero. + + `isclose` is not defined for non-numeric data types. + `bool` is considered a numeric data-type for this purpose. + + Examples + -------- + >>> np.isclose([1e10,1e-7], [1.00001e10,1e-8]) + array([ True, False]) + >>> np.isclose([1e10,1e-8], [1.00001e10,1e-9]) + array([ True, True]) + >>> np.isclose([1e10,1e-8], [1.0001e10,1e-9]) + array([False, True]) + >>> np.isclose([1.0, np.nan], [1.0, np.nan]) + array([ True, False]) + >>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) + array([ True, True]) + >>> np.isclose([1e-8, 1e-7], [0.0, 0.0]) + array([ True, False]) + >>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0) + array([False, False]) + >>> np.isclose([1e-10, 1e-10], [1e-20, 0.0]) + array([ True, True]) + >>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0) + array([False, True]) + """ + def within_tol(x, y, atol, rtol): + with errstate(invalid='ignore'), _no_nep50_warning(): + return less_equal(abs(x-y), atol + rtol * abs(y)) + + x = asanyarray(a) + y = asanyarray(b) + + # Make sure y is an inexact type to avoid bad behavior on abs(MIN_INT). + # This will cause casting of x later. Also, make sure to allow subclasses + # (e.g., for numpy.ma). + # NOTE: We explicitly allow timedelta, which used to work. This could + # possibly be deprecated. See also gh-18286. + # timedelta works if `atol` is an integer or also a timedelta. + # Although, the default tolerances are unlikely to be useful + if y.dtype.kind != "m": + dt = multiarray.result_type(y, 1.) + y = asanyarray(y, dtype=dt) + + xfin = isfinite(x) + yfin = isfinite(y) + if all(xfin) and all(yfin): + return within_tol(x, y, atol, rtol) + else: + finite = xfin & yfin + cond = zeros_like(finite, subok=True) + # Because we're using boolean indexing, x & y must be the same shape. + # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in + # lib.stride_tricks, though, so we can't import it here. + x = x * ones_like(cond) + y = y * ones_like(cond) + # Avoid subtraction with infinite/nan values... + cond[finite] = within_tol(x[finite], y[finite], atol, rtol) + # Check for equality of infinite values... + cond[~finite] = (x[~finite] == y[~finite]) + if equal_nan: + # Make NaN == NaN + both_nan = isnan(x) & isnan(y) + + # Needed to treat masked arrays correctly. = True would not work. + cond[both_nan] = both_nan[both_nan] + + return cond[()] # Flatten 0d arrays to scalars + + +def _array_equal_dispatcher(a1, a2, equal_nan=None): + return (a1, a2) + + +@array_function_dispatch(_array_equal_dispatcher) +def array_equal(a1, a2, equal_nan=False): + """ + True if two arrays have the same shape and elements, False otherwise. + + Parameters + ---------- + a1, a2 : array_like + Input arrays. + equal_nan : bool + Whether to compare NaN's as equal. If the dtype of a1 and a2 is + complex, values will be considered equal if either the real or the + imaginary component of a given value is ``nan``. + + .. versionadded:: 1.19.0 + + Returns + ------- + b : bool + Returns True if the arrays are equal. + + See Also + -------- + allclose: Returns True if two arrays are element-wise equal within a + tolerance. + array_equiv: Returns True if input arrays are shape consistent and all + elements equal. + + Examples + -------- + >>> np.array_equal([1, 2], [1, 2]) + True + >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) + True + >>> np.array_equal([1, 2], [1, 2, 3]) + False + >>> np.array_equal([1, 2], [1, 4]) + False + >>> a = np.array([1, np.nan]) + >>> np.array_equal(a, a) + False + >>> np.array_equal(a, a, equal_nan=True) + True + + When ``equal_nan`` is True, complex values with nan components are + considered equal if either the real *or* the imaginary components are nan. + + >>> a = np.array([1 + 1j]) + >>> b = a.copy() + >>> a.real = np.nan + >>> b.imag = np.nan + >>> np.array_equal(a, b, equal_nan=True) + True + """ + try: + a1, a2 = asarray(a1), asarray(a2) + except Exception: + return False + if a1.shape != a2.shape: + return False + if not equal_nan: + return bool(asarray(a1 == a2).all()) + # Handling NaN values if equal_nan is True + a1nan, a2nan = isnan(a1), isnan(a2) + # NaN's occur at different locations + if not (a1nan == a2nan).all(): + return False + # Shapes of a1, a2 and masks are guaranteed to be consistent by this point + return bool(asarray(a1[~a1nan] == a2[~a1nan]).all()) + + +def _array_equiv_dispatcher(a1, a2): + return (a1, a2) + + +@array_function_dispatch(_array_equiv_dispatcher) +def array_equiv(a1, a2): + """ + Returns True if input arrays are shape consistent and all elements equal. + + Shape consistent means they are either the same shape, or one input array + can be broadcasted to create the same shape as the other one. + + Parameters + ---------- + a1, a2 : array_like + Input arrays. + + Returns + ------- + out : bool + True if equivalent, False otherwise. + + Examples + -------- + >>> np.array_equiv([1, 2], [1, 2]) + True + >>> np.array_equiv([1, 2], [1, 3]) + False + + Showing the shape equivalence: + + >>> np.array_equiv([1, 2], [[1, 2], [1, 2]]) + True + >>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]]) + False + + >>> np.array_equiv([1, 2], [[1, 2], [1, 3]]) + False + + """ + try: + a1, a2 = asarray(a1), asarray(a2) + except Exception: + return False + try: + multiarray.broadcast(a1, a2) + except Exception: + return False + + return bool(asarray(a1 == a2).all()) + + +Inf = inf = infty = Infinity = PINF +nan = NaN = NAN +False_ = bool_(False) +True_ = bool_(True) + + +def extend_all(module): + existing = set(__all__) + mall = getattr(module, '__all__') + for a in mall: + if a not in existing: + __all__.append(a) + + +from .umath import * +from .numerictypes import * +from . import fromnumeric +from .fromnumeric import * +from . import arrayprint +from .arrayprint import * +from . import _asarray +from ._asarray import * +from . import _ufunc_config +from ._ufunc_config import * +extend_all(fromnumeric) +extend_all(umath) +extend_all(numerictypes) +extend_all(arrayprint) +extend_all(_asarray) +extend_all(_ufunc_config) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/numeric.pyi b/env-llmeval/lib/python3.10/site-packages/numpy/core/numeric.pyi new file mode 100644 index 0000000000000000000000000000000000000000..fc10bb88f54a1737e77db5d45e3df0579d6f84da --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/numeric.pyi @@ -0,0 +1,660 @@ +from collections.abc import Callable, Sequence +from typing import ( + Any, + overload, + TypeVar, + Literal, + SupportsAbs, + SupportsIndex, + NoReturn, +) +if sys.version_info >= (3, 10): + from typing import TypeGuard +else: + from typing_extensions import TypeGuard + +from numpy import ( + ComplexWarning as ComplexWarning, + generic, + unsignedinteger, + signedinteger, + floating, + complexfloating, + bool_, + int_, + intp, + float64, + timedelta64, + object_, + _OrderKACF, + _OrderCF, +) + +from numpy._typing import ( + ArrayLike, + NDArray, + DTypeLike, + _ShapeLike, + _DTypeLike, + _ArrayLike, + _SupportsArrayFunc, + _ScalarLike_co, + _ArrayLikeBool_co, + _ArrayLikeUInt_co, + _ArrayLikeInt_co, + _ArrayLikeFloat_co, + _ArrayLikeComplex_co, + _ArrayLikeTD64_co, + _ArrayLikeObject_co, + _ArrayLikeUnknown, +) + +_T = TypeVar("_T") +_SCT = TypeVar("_SCT", bound=generic) +_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any]) + +_CorrelateMode = Literal["valid", "same", "full"] + +__all__: list[str] + +@overload +def zeros_like( + a: _ArrayType, + dtype: None = ..., + order: _OrderKACF = ..., + subok: Literal[True] = ..., + shape: None = ..., +) -> _ArrayType: ... +@overload +def zeros_like( + a: _ArrayLike[_SCT], + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike = ..., +) -> NDArray[_SCT]: ... +@overload +def zeros_like( + a: object, + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike= ..., +) -> NDArray[Any]: ... +@overload +def zeros_like( + a: Any, + dtype: _DTypeLike[_SCT], + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike= ..., +) -> NDArray[_SCT]: ... +@overload +def zeros_like( + a: Any, + dtype: DTypeLike, + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike= ..., +) -> NDArray[Any]: ... + +@overload +def ones( + shape: _ShapeLike, + dtype: None = ..., + order: _OrderCF = ..., + *, + like: _SupportsArrayFunc = ..., +) -> NDArray[float64]: ... +@overload +def ones( + shape: _ShapeLike, + dtype: _DTypeLike[_SCT], + order: _OrderCF = ..., + *, + like: _SupportsArrayFunc = ..., +) -> NDArray[_SCT]: ... +@overload +def ones( + shape: _ShapeLike, + dtype: DTypeLike, + order: _OrderCF = ..., + *, + like: _SupportsArrayFunc = ..., +) -> NDArray[Any]: ... + +@overload +def ones_like( + a: _ArrayType, + dtype: None = ..., + order: _OrderKACF = ..., + subok: Literal[True] = ..., + shape: None = ..., +) -> _ArrayType: ... +@overload +def ones_like( + a: _ArrayLike[_SCT], + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike = ..., +) -> NDArray[_SCT]: ... +@overload +def ones_like( + a: object, + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike= ..., +) -> NDArray[Any]: ... +@overload +def ones_like( + a: Any, + dtype: _DTypeLike[_SCT], + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike= ..., +) -> NDArray[_SCT]: ... +@overload +def ones_like( + a: Any, + dtype: DTypeLike, + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike= ..., +) -> NDArray[Any]: ... + +@overload +def full( + shape: _ShapeLike, + fill_value: Any, + dtype: None = ..., + order: _OrderCF = ..., + *, + like: _SupportsArrayFunc = ..., +) -> NDArray[Any]: ... +@overload +def full( + shape: _ShapeLike, + fill_value: Any, + dtype: _DTypeLike[_SCT], + order: _OrderCF = ..., + *, + like: _SupportsArrayFunc = ..., +) -> NDArray[_SCT]: ... +@overload +def full( + shape: _ShapeLike, + fill_value: Any, + dtype: DTypeLike, + order: _OrderCF = ..., + *, + like: _SupportsArrayFunc = ..., +) -> NDArray[Any]: ... + +@overload +def full_like( + a: _ArrayType, + fill_value: Any, + dtype: None = ..., + order: _OrderKACF = ..., + subok: Literal[True] = ..., + shape: None = ..., +) -> _ArrayType: ... +@overload +def full_like( + a: _ArrayLike[_SCT], + fill_value: Any, + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike = ..., +) -> NDArray[_SCT]: ... +@overload +def full_like( + a: object, + fill_value: Any, + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike= ..., +) -> NDArray[Any]: ... +@overload +def full_like( + a: Any, + fill_value: Any, + dtype: _DTypeLike[_SCT], + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike= ..., +) -> NDArray[_SCT]: ... +@overload +def full_like( + a: Any, + fill_value: Any, + dtype: DTypeLike, + order: _OrderKACF = ..., + subok: bool = ..., + shape: None | _ShapeLike= ..., +) -> NDArray[Any]: ... + +@overload +def count_nonzero( + a: ArrayLike, + axis: None = ..., + *, + keepdims: Literal[False] = ..., +) -> int: ... +@overload +def count_nonzero( + a: ArrayLike, + axis: _ShapeLike = ..., + *, + keepdims: bool = ..., +) -> Any: ... # TODO: np.intp or ndarray[np.intp] + +def isfortran(a: NDArray[Any] | generic) -> bool: ... + +def argwhere(a: ArrayLike) -> NDArray[intp]: ... + +def flatnonzero(a: ArrayLike) -> NDArray[intp]: ... + +@overload +def correlate( + a: _ArrayLikeUnknown, + v: _ArrayLikeUnknown, + mode: _CorrelateMode = ..., +) -> NDArray[Any]: ... +@overload +def correlate( + a: _ArrayLikeBool_co, + v: _ArrayLikeBool_co, + mode: _CorrelateMode = ..., +) -> NDArray[bool_]: ... +@overload +def correlate( + a: _ArrayLikeUInt_co, + v: _ArrayLikeUInt_co, + mode: _CorrelateMode = ..., +) -> NDArray[unsignedinteger[Any]]: ... +@overload +def correlate( + a: _ArrayLikeInt_co, + v: _ArrayLikeInt_co, + mode: _CorrelateMode = ..., +) -> NDArray[signedinteger[Any]]: ... +@overload +def correlate( + a: _ArrayLikeFloat_co, + v: _ArrayLikeFloat_co, + mode: _CorrelateMode = ..., +) -> NDArray[floating[Any]]: ... +@overload +def correlate( + a: _ArrayLikeComplex_co, + v: _ArrayLikeComplex_co, + mode: _CorrelateMode = ..., +) -> NDArray[complexfloating[Any, Any]]: ... +@overload +def correlate( + a: _ArrayLikeTD64_co, + v: _ArrayLikeTD64_co, + mode: _CorrelateMode = ..., +) -> NDArray[timedelta64]: ... +@overload +def correlate( + a: _ArrayLikeObject_co, + v: _ArrayLikeObject_co, + mode: _CorrelateMode = ..., +) -> NDArray[object_]: ... + +@overload +def convolve( + a: _ArrayLikeUnknown, + v: _ArrayLikeUnknown, + mode: _CorrelateMode = ..., +) -> NDArray[Any]: ... +@overload +def convolve( + a: _ArrayLikeBool_co, + v: _ArrayLikeBool_co, + mode: _CorrelateMode = ..., +) -> NDArray[bool_]: ... +@overload +def convolve( + a: _ArrayLikeUInt_co, + v: _ArrayLikeUInt_co, + mode: _CorrelateMode = ..., +) -> NDArray[unsignedinteger[Any]]: ... +@overload +def convolve( + a: _ArrayLikeInt_co, + v: _ArrayLikeInt_co, + mode: _CorrelateMode = ..., +) -> NDArray[signedinteger[Any]]: ... +@overload +def convolve( + a: _ArrayLikeFloat_co, + v: _ArrayLikeFloat_co, + mode: _CorrelateMode = ..., +) -> NDArray[floating[Any]]: ... +@overload +def convolve( + a: _ArrayLikeComplex_co, + v: _ArrayLikeComplex_co, + mode: _CorrelateMode = ..., +) -> NDArray[complexfloating[Any, Any]]: ... +@overload +def convolve( + a: _ArrayLikeTD64_co, + v: _ArrayLikeTD64_co, + mode: _CorrelateMode = ..., +) -> NDArray[timedelta64]: ... +@overload +def convolve( + a: _ArrayLikeObject_co, + v: _ArrayLikeObject_co, + mode: _CorrelateMode = ..., +) -> NDArray[object_]: ... + +@overload +def outer( + a: _ArrayLikeUnknown, + b: _ArrayLikeUnknown, + out: None = ..., +) -> NDArray[Any]: ... +@overload +def outer( + a: _ArrayLikeBool_co, + b: _ArrayLikeBool_co, + out: None = ..., +) -> NDArray[bool_]: ... +@overload +def outer( + a: _ArrayLikeUInt_co, + b: _ArrayLikeUInt_co, + out: None = ..., +) -> NDArray[unsignedinteger[Any]]: ... +@overload +def outer( + a: _ArrayLikeInt_co, + b: _ArrayLikeInt_co, + out: None = ..., +) -> NDArray[signedinteger[Any]]: ... +@overload +def outer( + a: _ArrayLikeFloat_co, + b: _ArrayLikeFloat_co, + out: None = ..., +) -> NDArray[floating[Any]]: ... +@overload +def outer( + a: _ArrayLikeComplex_co, + b: _ArrayLikeComplex_co, + out: None = ..., +) -> NDArray[complexfloating[Any, Any]]: ... +@overload +def outer( + a: _ArrayLikeTD64_co, + b: _ArrayLikeTD64_co, + out: None = ..., +) -> NDArray[timedelta64]: ... +@overload +def outer( + a: _ArrayLikeObject_co, + b: _ArrayLikeObject_co, + out: None = ..., +) -> NDArray[object_]: ... +@overload +def outer( + a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + b: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + out: _ArrayType, +) -> _ArrayType: ... + +@overload +def tensordot( + a: _ArrayLikeUnknown, + b: _ArrayLikeUnknown, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[Any]: ... +@overload +def tensordot( + a: _ArrayLikeBool_co, + b: _ArrayLikeBool_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[bool_]: ... +@overload +def tensordot( + a: _ArrayLikeUInt_co, + b: _ArrayLikeUInt_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[unsignedinteger[Any]]: ... +@overload +def tensordot( + a: _ArrayLikeInt_co, + b: _ArrayLikeInt_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[signedinteger[Any]]: ... +@overload +def tensordot( + a: _ArrayLikeFloat_co, + b: _ArrayLikeFloat_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[floating[Any]]: ... +@overload +def tensordot( + a: _ArrayLikeComplex_co, + b: _ArrayLikeComplex_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[complexfloating[Any, Any]]: ... +@overload +def tensordot( + a: _ArrayLikeTD64_co, + b: _ArrayLikeTD64_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[timedelta64]: ... +@overload +def tensordot( + a: _ArrayLikeObject_co, + b: _ArrayLikeObject_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[object_]: ... + +@overload +def roll( + a: _ArrayLike[_SCT], + shift: _ShapeLike, + axis: None | _ShapeLike = ..., +) -> NDArray[_SCT]: ... +@overload +def roll( + a: ArrayLike, + shift: _ShapeLike, + axis: None | _ShapeLike = ..., +) -> NDArray[Any]: ... + +def rollaxis( + a: NDArray[_SCT], + axis: int, + start: int = ..., +) -> NDArray[_SCT]: ... + +def moveaxis( + a: NDArray[_SCT], + source: _ShapeLike, + destination: _ShapeLike, +) -> NDArray[_SCT]: ... + +@overload +def cross( + a: _ArrayLikeUnknown, + b: _ArrayLikeUnknown, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: None | int = ..., +) -> NDArray[Any]: ... +@overload +def cross( + a: _ArrayLikeBool_co, + b: _ArrayLikeBool_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: None | int = ..., +) -> NoReturn: ... +@overload +def cross( + a: _ArrayLikeUInt_co, + b: _ArrayLikeUInt_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: None | int = ..., +) -> NDArray[unsignedinteger[Any]]: ... +@overload +def cross( + a: _ArrayLikeInt_co, + b: _ArrayLikeInt_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: None | int = ..., +) -> NDArray[signedinteger[Any]]: ... +@overload +def cross( + a: _ArrayLikeFloat_co, + b: _ArrayLikeFloat_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: None | int = ..., +) -> NDArray[floating[Any]]: ... +@overload +def cross( + a: _ArrayLikeComplex_co, + b: _ArrayLikeComplex_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: None | int = ..., +) -> NDArray[complexfloating[Any, Any]]: ... +@overload +def cross( + a: _ArrayLikeObject_co, + b: _ArrayLikeObject_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: None | int = ..., +) -> NDArray[object_]: ... + +@overload +def indices( + dimensions: Sequence[int], + dtype: type[int] = ..., + sparse: Literal[False] = ..., +) -> NDArray[int_]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: type[int] = ..., + sparse: Literal[True] = ..., +) -> tuple[NDArray[int_], ...]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: _DTypeLike[_SCT], + sparse: Literal[False] = ..., +) -> NDArray[_SCT]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: _DTypeLike[_SCT], + sparse: Literal[True], +) -> tuple[NDArray[_SCT], ...]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: DTypeLike, + sparse: Literal[False] = ..., +) -> NDArray[Any]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: DTypeLike, + sparse: Literal[True], +) -> tuple[NDArray[Any], ...]: ... + +def fromfunction( + function: Callable[..., _T], + shape: Sequence[int], + *, + dtype: DTypeLike = ..., + like: _SupportsArrayFunc = ..., + **kwargs: Any, +) -> _T: ... + +def isscalar(element: object) -> TypeGuard[ + generic | bool | int | float | complex | str | bytes | memoryview +]: ... + +def binary_repr(num: SupportsIndex, width: None | int = ...) -> str: ... + +def base_repr( + number: SupportsAbs[float], + base: float = ..., + padding: SupportsIndex = ..., +) -> str: ... + +@overload +def identity( + n: int, + dtype: None = ..., + *, + like: _SupportsArrayFunc = ..., +) -> NDArray[float64]: ... +@overload +def identity( + n: int, + dtype: _DTypeLike[_SCT], + *, + like: _SupportsArrayFunc = ..., +) -> NDArray[_SCT]: ... +@overload +def identity( + n: int, + dtype: DTypeLike, + *, + like: _SupportsArrayFunc = ..., +) -> NDArray[Any]: ... + +def allclose( + a: ArrayLike, + b: ArrayLike, + rtol: float = ..., + atol: float = ..., + equal_nan: bool = ..., +) -> bool: ... + +@overload +def isclose( + a: _ScalarLike_co, + b: _ScalarLike_co, + rtol: float = ..., + atol: float = ..., + equal_nan: bool = ..., +) -> bool_: ... +@overload +def isclose( + a: ArrayLike, + b: ArrayLike, + rtol: float = ..., + atol: float = ..., + equal_nan: bool = ..., +) -> NDArray[bool_]: ... + +def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan: bool = ...) -> bool: ... + +def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool: ... diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/shape_base.pyi b/env-llmeval/lib/python3.10/site-packages/numpy/core/shape_base.pyi new file mode 100644 index 0000000000000000000000000000000000000000..10116f1ee9e71c623d6aa31b3dc6c254b64c521a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/shape_base.pyi @@ -0,0 +1,123 @@ +from collections.abc import Sequence +from typing import TypeVar, overload, Any, SupportsIndex + +from numpy import generic, _CastingKind +from numpy._typing import ( + NDArray, + ArrayLike, + DTypeLike, + _ArrayLike, + _DTypeLike, +) + +_SCT = TypeVar("_SCT", bound=generic) +_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any]) + +__all__: list[str] + +@overload +def atleast_1d(arys: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ... +@overload +def atleast_1d(arys: ArrayLike, /) -> NDArray[Any]: ... +@overload +def atleast_1d(*arys: ArrayLike) -> list[NDArray[Any]]: ... + +@overload +def atleast_2d(arys: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ... +@overload +def atleast_2d(arys: ArrayLike, /) -> NDArray[Any]: ... +@overload +def atleast_2d(*arys: ArrayLike) -> list[NDArray[Any]]: ... + +@overload +def atleast_3d(arys: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ... +@overload +def atleast_3d(arys: ArrayLike, /) -> NDArray[Any]: ... +@overload +def atleast_3d(*arys: ArrayLike) -> list[NDArray[Any]]: ... + +@overload +def vstack( + tup: Sequence[_ArrayLike[_SCT]], + *, + dtype: None = ..., + casting: _CastingKind = ... +) -> NDArray[_SCT]: ... +@overload +def vstack( + tup: Sequence[ArrayLike], + *, + dtype: _DTypeLike[_SCT], + casting: _CastingKind = ... +) -> NDArray[_SCT]: ... +@overload +def vstack( + tup: Sequence[ArrayLike], + *, + dtype: DTypeLike = ..., + casting: _CastingKind = ... +) -> NDArray[Any]: ... + +@overload +def hstack( + tup: Sequence[_ArrayLike[_SCT]], + *, + dtype: None = ..., + casting: _CastingKind = ... +) -> NDArray[_SCT]: ... +@overload +def hstack( + tup: Sequence[ArrayLike], + *, + dtype: _DTypeLike[_SCT], + casting: _CastingKind = ... +) -> NDArray[_SCT]: ... +@overload +def hstack( + tup: Sequence[ArrayLike], + *, + dtype: DTypeLike = ..., + casting: _CastingKind = ... +) -> NDArray[Any]: ... + +@overload +def stack( + arrays: Sequence[_ArrayLike[_SCT]], + axis: SupportsIndex = ..., + out: None = ..., + *, + dtype: None = ..., + casting: _CastingKind = ... +) -> NDArray[_SCT]: ... +@overload +def stack( + arrays: Sequence[ArrayLike], + axis: SupportsIndex = ..., + out: None = ..., + *, + dtype: _DTypeLike[_SCT], + casting: _CastingKind = ... +) -> NDArray[_SCT]: ... +@overload +def stack( + arrays: Sequence[ArrayLike], + axis: SupportsIndex = ..., + out: None = ..., + *, + dtype: DTypeLike = ..., + casting: _CastingKind = ... +) -> NDArray[Any]: ... +@overload +def stack( + arrays: Sequence[ArrayLike], + axis: SupportsIndex = ..., + out: _ArrayType = ..., + *, + dtype: DTypeLike = ..., + casting: _CastingKind = ... +) -> _ArrayType: ... + +@overload +def block(arrays: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... +@overload +def block(arrays: ArrayLike) -> NDArray[Any]: ... diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/umath.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/umath.py new file mode 100644 index 0000000000000000000000000000000000000000..6a5474ffed1433978428021f8cec1be0ab0222fb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/umath.py @@ -0,0 +1,36 @@ +""" +Create the numpy.core.umath namespace for backward compatibility. In v1.16 +the multiarray and umath c-extension modules were merged into a single +_multiarray_umath extension module. So we replicate the old namespace +by importing from the extension module. + +""" + +from . import _multiarray_umath +from ._multiarray_umath import * # noqa: F403 +# These imports are needed for backward compatibility, +# do not change them. issue gh-11862 +# _ones_like is semi-public, on purpose not added to __all__ +from ._multiarray_umath import _UFUNC_API, _add_newdoc_ufunc, _ones_like + +__all__ = [ + '_UFUNC_API', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG', + 'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT', + 'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'NAN', + 'NINF', 'NZERO', 'PINF', 'PZERO', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID', + 'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'UFUNC_BUFSIZE_DEFAULT', + 'UFUNC_PYVALS_NAME', '_add_newdoc_ufunc', 'absolute', 'add', + 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', + 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'cbrt', 'ceil', 'conj', + 'conjugate', 'copysign', 'cos', 'cosh', 'deg2rad', 'degrees', 'divide', + 'divmod', 'e', 'equal', 'euler_gamma', 'exp', 'exp2', 'expm1', 'fabs', + 'floor', 'floor_divide', 'float_power', 'fmax', 'fmin', 'fmod', 'frexp', + 'frompyfunc', 'gcd', 'geterrobj', 'greater', 'greater_equal', 'heaviside', + 'hypot', 'invert', 'isfinite', 'isinf', 'isnan', 'isnat', 'lcm', 'ldexp', + 'left_shift', 'less', 'less_equal', 'log', 'log10', 'log1p', 'log2', + 'logaddexp', 'logaddexp2', 'logical_and', 'logical_not', 'logical_or', + 'logical_xor', 'maximum', 'minimum', 'mod', 'modf', 'multiply', 'negative', + 'nextafter', 'not_equal', 'pi', 'positive', 'power', 'rad2deg', 'radians', + 'reciprocal', 'remainder', 'right_shift', 'rint', 'seterrobj', 'sign', + 'signbit', 'sin', 'sinh', 'spacing', 'sqrt', 'square', 'subtract', 'tan', + 'tanh', 'true_divide', 'trunc'] diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/core/umath_tests.py b/env-llmeval/lib/python3.10/site-packages/numpy/core/umath_tests.py new file mode 100644 index 0000000000000000000000000000000000000000..90ab17e6744a751c4d60e9b86e150cdbc3f6ff2e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/core/umath_tests.py @@ -0,0 +1,13 @@ +""" +Shim for _umath_tests to allow a deprecation period for the new name. + +""" +import warnings + +# 2018-04-04, numpy 1.15.0 +warnings.warn(("numpy.core.umath_tests is an internal NumPy " + "module and should not be imported. It will " + "be removed in a future NumPy release."), + category=DeprecationWarning, stacklevel=2) + +from ._umath_tests import * diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimd.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimd.c new file mode 100644 index 0000000000000000000000000000000000000000..6bc9022a58d3cd087d167d354224ded89be91884 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimd.c @@ -0,0 +1,27 @@ +#ifdef _MSC_VER + #include +#endif +#include + +int main(int argc, char **argv) +{ + float *src = (float*)argv[argc-1]; + float32x4_t v1 = vdupq_n_f32(src[0]), v2 = vdupq_n_f32(src[1]); + /* MAXMIN */ + int ret = (int)vgetq_lane_f32(vmaxnmq_f32(v1, v2), 0); + ret += (int)vgetq_lane_f32(vminnmq_f32(v1, v2), 0); + /* ROUNDING */ + ret += (int)vgetq_lane_f32(vrndq_f32(v1), 0); +#ifdef __aarch64__ + { + double *src2 = (double*)argv[argc-1]; + float64x2_t vd1 = vdupq_n_f64(src2[0]), vd2 = vdupq_n_f64(src2[1]); + /* MAXMIN */ + ret += (int)vgetq_lane_f64(vmaxnmq_f64(vd1, vd2), 0); + ret += (int)vgetq_lane_f64(vminnmq_f64(vd1, vd2), 0); + /* ROUNDING */ + ret += (int)vgetq_lane_f64(vrndq_f64(vd1), 0); + } +#endif + return ret; +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimdhp.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimdhp.c new file mode 100644 index 0000000000000000000000000000000000000000..e2de0306e0acaeda3b861756e598a132f8e1ca9f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimdhp.c @@ -0,0 +1,15 @@ +#ifdef _MSC_VER + #include +#endif +#include + +int main(int argc, char **argv) +{ + float16_t *src = (float16_t*)argv[argc-1]; + float16x8_t vhp = vdupq_n_f16(src[0]); + float16x4_t vlhp = vdup_n_f16(src[1]); + + int ret = (int)vgetq_lane_f16(vabdq_f16(vhp, vhp), 0); + ret += (int)vget_lane_f16(vabd_f16(vlhp, vlhp), 0); + return ret; +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx.c new file mode 100644 index 0000000000000000000000000000000000000000..26ae18466740b230f9b964ebb4c72c54f13c73ee --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx.c @@ -0,0 +1,20 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __AVX__ + #error "HOST/ARCH doesn't support AVX" + #endif +#endif + +#include + +int main(int argc, char **argv) +{ + __m256 a = _mm256_add_ps(_mm256_loadu_ps((const float*)argv[argc-1]), _mm256_loadu_ps((const float*)argv[1])); + return (int)_mm_cvtss_f32(_mm256_castps256_ps128(a)); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx2.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx2.c new file mode 100644 index 0000000000000000000000000000000000000000..ddde868f1b586c7b066c2284556b65ec5fef834e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx2.c @@ -0,0 +1,20 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __AVX2__ + #error "HOST/ARCH doesn't support AVX2" + #endif +#endif + +#include + +int main(int argc, char **argv) +{ + __m256i a = _mm256_abs_epi16(_mm256_loadu_si256((const __m256i*)argv[argc-1])); + return _mm_cvtsi128_si32(_mm256_castsi256_si128(a)); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_clx.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_clx.c new file mode 100644 index 0000000000000000000000000000000000000000..81edcd06700518269420f0cf6192e552581c17d8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_clx.c @@ -0,0 +1,22 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __AVX512VNNI__ + #error "HOST/ARCH doesn't support CascadeLake AVX512 features" + #endif +#endif + +#include + +int main(int argc, char **argv) +{ + /* VNNI */ + __m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]); + a = _mm512_dpbusd_epi32(a, _mm512_setzero_si512(), a); + return _mm_cvtsi128_si32(_mm512_castsi512_si128(a)); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_cnl.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_cnl.c new file mode 100644 index 0000000000000000000000000000000000000000..5799f122b511420eb16d066c31dc218bc4fae110 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_cnl.c @@ -0,0 +1,24 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #if !defined(__AVX512VBMI__) || !defined(__AVX512IFMA__) + #error "HOST/ARCH doesn't support CannonLake AVX512 features" + #endif +#endif + +#include + +int main(int argc, char **argv) +{ + __m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]); + /* IFMA */ + a = _mm512_madd52hi_epu64(a, a, _mm512_setzero_si512()); + /* VMBI */ + a = _mm512_permutex2var_epi8(a, _mm512_setzero_si512(), a); + return _mm_cvtsi128_si32(_mm512_castsi512_si128(a)); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_icl.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_icl.c new file mode 100644 index 0000000000000000000000000000000000000000..3cf44d73164b6a80eca5f23f699bd00dba1f623e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_icl.c @@ -0,0 +1,26 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #if !defined(__AVX512VPOPCNTDQ__) || !defined(__AVX512BITALG__) || !defined(__AVX512VPOPCNTDQ__) + #error "HOST/ARCH doesn't support IceLake AVX512 features" + #endif +#endif + +#include + +int main(int argc, char **argv) +{ + __m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]); + /* VBMI2 */ + a = _mm512_shrdv_epi64(a, a, _mm512_setzero_si512()); + /* BITLAG */ + a = _mm512_popcnt_epi8(a); + /* VPOPCNTDQ */ + a = _mm512_popcnt_epi64(a); + return _mm_cvtsi128_si32(_mm512_castsi512_si128(a)); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knl.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knl.c new file mode 100644 index 0000000000000000000000000000000000000000..cb55e57aa220ebc8e1b638f7bfb470cff6725ea2 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knl.c @@ -0,0 +1,25 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #if !defined(__AVX512ER__) || !defined(__AVX512PF__) + #error "HOST/ARCH doesn't support Knights Landing AVX512 features" + #endif +#endif + +#include + +int main(int argc, char **argv) +{ + int base[128]={}; + __m512d ad = _mm512_loadu_pd((const __m512d*)argv[argc-1]); + /* ER */ + __m512i a = _mm512_castpd_si512(_mm512_exp2a23_pd(ad)); + /* PF */ + _mm512_mask_prefetch_i64scatter_pd(base, _mm512_cmpeq_epi64_mask(a, a), a, 1, _MM_HINT_T1); + return base[0]; +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knm.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knm.c new file mode 100644 index 0000000000000000000000000000000000000000..2c426462bd34e00f9a0b04e01fb124784c2afb7b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knm.c @@ -0,0 +1,30 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #if !defined(__AVX5124FMAPS__) || !defined(__AVX5124VNNIW__) || !defined(__AVX512VPOPCNTDQ__) + #error "HOST/ARCH doesn't support Knights Mill AVX512 features" + #endif +#endif + +#include + +int main(int argc, char **argv) +{ + __m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]); + __m512 b = _mm512_loadu_ps((const __m512*)argv[argc-2]); + + /* 4FMAPS */ + b = _mm512_4fmadd_ps(b, b, b, b, b, NULL); + /* 4VNNIW */ + a = _mm512_4dpwssd_epi32(a, a, a, a, a, NULL); + /* VPOPCNTDQ */ + a = _mm512_popcnt_epi64(a); + + a = _mm512_add_epi32(a, _mm512_castps_si512(b)); + return _mm_cvtsi128_si32(_mm512_castsi512_si128(a)); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_skx.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_skx.c new file mode 100644 index 0000000000000000000000000000000000000000..8840efb7e5eefcb762b69bf8d40b79406f6798a5 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_skx.c @@ -0,0 +1,26 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #if !defined(__AVX512VL__) || !defined(__AVX512BW__) || !defined(__AVX512DQ__) + #error "HOST/ARCH doesn't support SkyLake AVX512 features" + #endif +#endif + +#include + +int main(int argc, char **argv) +{ + __m512i aa = _mm512_abs_epi32(_mm512_loadu_si512((const __m512i*)argv[argc-1])); + /* VL */ + __m256i a = _mm256_abs_epi64(_mm512_extracti64x4_epi64(aa, 1)); + /* DQ */ + __m512i b = _mm512_broadcast_i32x8(a); + /* BW */ + b = _mm512_abs_epi16(b); + return _mm_cvtsi128_si32(_mm512_castsi512_si128(b)); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512cd.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512cd.c new file mode 100644 index 0000000000000000000000000000000000000000..5e29c79e34a73bdfbbcc2571333bfdd28007e07f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512cd.c @@ -0,0 +1,20 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __AVX512CD__ + #error "HOST/ARCH doesn't support AVX512CD" + #endif +#endif + +#include + +int main(int argc, char **argv) +{ + __m512i a = _mm512_lzcnt_epi32(_mm512_loadu_si512((const __m512i*)argv[argc-1])); + return _mm_cvtsi128_si32(_mm512_castsi512_si128(a)); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512f.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512f.c new file mode 100644 index 0000000000000000000000000000000000000000..d0eb7b1ad5c63995a995c8fe80f59fd8131538d1 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512f.c @@ -0,0 +1,20 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __AVX512F__ + #error "HOST/ARCH doesn't support AVX512F" + #endif +#endif + +#include + +int main(int argc, char **argv) +{ + __m512i a = _mm512_abs_epi32(_mm512_loadu_si512((const __m512i*)argv[argc-1])); + return _mm_cvtsi128_si32(_mm512_castsi512_si128(a)); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_f16c.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_f16c.c new file mode 100644 index 0000000000000000000000000000000000000000..fdf36cec580ce9c24fbb9d2a60fdfcaa824b3f11 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_f16c.c @@ -0,0 +1,22 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __F16C__ + #error "HOST/ARCH doesn't support F16C" + #endif +#endif + +#include +#include + +int main(int argc, char **argv) +{ + __m128 a = _mm_cvtph_ps(_mm_loadu_si128((const __m128i*)argv[argc-1])); + __m256 a8 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*)argv[argc-2])); + return (int)(_mm_cvtss_f32(a) + _mm_cvtss_f32(_mm256_castps256_ps128(a8))); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_fma3.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_fma3.c new file mode 100644 index 0000000000000000000000000000000000000000..bfeef22b5f0e86becd6b9f7a8b5b0f4bdea73202 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_fma3.c @@ -0,0 +1,22 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #if !defined(__FMA__) && !defined(__AVX2__) + #error "HOST/ARCH doesn't support FMA3" + #endif +#endif + +#include +#include + +int main(int argc, char **argv) +{ + __m256 a = _mm256_loadu_ps((const float*)argv[argc-1]); + a = _mm256_fmadd_ps(a, a, a); + return (int)_mm_cvtss_f32(_mm256_castps256_ps128(a)); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon.c new file mode 100644 index 0000000000000000000000000000000000000000..8c64f864dea63cb9c4ee60249e52b1ad528751c7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon.c @@ -0,0 +1,19 @@ +#ifdef _MSC_VER + #include +#endif +#include + +int main(int argc, char **argv) +{ + // passing from untraced pointers to avoid optimizing out any constants + // so we can test against the linker. + float *src = (float*)argv[argc-1]; + float32x4_t v1 = vdupq_n_f32(src[0]), v2 = vdupq_n_f32(src[1]); + int ret = (int)vgetq_lane_f32(vmulq_f32(v1, v2), 0); +#ifdef __aarch64__ + double *src2 = (double*)argv[argc-2]; + float64x2_t vd1 = vdupq_n_f64(src2[0]), vd2 = vdupq_n_f64(src2[1]); + ret += (int)vgetq_lane_f64(vmulq_f64(vd1, vd2), 0); +#endif + return ret; +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_fp16.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_fp16.c new file mode 100644 index 0000000000000000000000000000000000000000..f3b949770db66a03a6221a230e75e87f67359759 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_fp16.c @@ -0,0 +1,11 @@ +#ifdef _MSC_VER + #include +#endif +#include + +int main(int argc, char **argv) +{ + short *src = (short*)argv[argc-1]; + float32x4_t v_z4 = vcvt_f32_f16((float16x4_t)vld1_s16(src)); + return (int)vgetq_lane_f32(v_z4, 0); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_vfpv4.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_vfpv4.c new file mode 100644 index 0000000000000000000000000000000000000000..a039159ddeed006d62f07250a3a1dbb5abfcb6ac --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_vfpv4.c @@ -0,0 +1,21 @@ +#ifdef _MSC_VER + #include +#endif +#include + +int main(int argc, char **argv) +{ + float *src = (float*)argv[argc-1]; + float32x4_t v1 = vdupq_n_f32(src[0]); + float32x4_t v2 = vdupq_n_f32(src[1]); + float32x4_t v3 = vdupq_n_f32(src[2]); + int ret = (int)vgetq_lane_f32(vfmaq_f32(v1, v2, v3), 0); +#ifdef __aarch64__ + double *src2 = (double*)argv[argc-2]; + float64x2_t vd1 = vdupq_n_f64(src2[0]); + float64x2_t vd2 = vdupq_n_f64(src2[1]); + float64x2_t vd3 = vdupq_n_f64(src2[2]); + ret += (int)vgetq_lane_f64(vfmaq_f64(vd1, vd2, vd3), 0); +#endif + return ret; +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_popcnt.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_popcnt.c new file mode 100644 index 0000000000000000000000000000000000000000..813c461f05b36b52c855f31d621a23ab7ee0c642 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_popcnt.c @@ -0,0 +1,32 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env vr `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #if !defined(__SSE4_2__) && !defined(__POPCNT__) + #error "HOST/ARCH doesn't support POPCNT" + #endif +#endif + +#ifdef _MSC_VER + #include +#else + #include +#endif + +int main(int argc, char **argv) +{ + // To make sure popcnt instructions are generated + // and been tested against the assembler + unsigned long long a = *((unsigned long long*)argv[argc-1]); + unsigned int b = *((unsigned int*)argv[argc-2]); + +#if defined(_M_X64) || defined(__x86_64__) + a = _mm_popcnt_u64(a); +#endif + b = _mm_popcnt_u32(b); + return (int)a + b; +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse.c new file mode 100644 index 0000000000000000000000000000000000000000..602b74e7bc437ee4fdfbc375280f423700caa49e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse.c @@ -0,0 +1,20 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __SSE__ + #error "HOST/ARCH doesn't support SSE" + #endif +#endif + +#include + +int main(void) +{ + __m128 a = _mm_add_ps(_mm_setzero_ps(), _mm_setzero_ps()); + return (int)_mm_cvtss_f32(a); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse2.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse2.c new file mode 100644 index 0000000000000000000000000000000000000000..33826a9ed1a53ef27e9c686d870d31d4b12f1736 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse2.c @@ -0,0 +1,20 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __SSE2__ + #error "HOST/ARCH doesn't support SSE2" + #endif +#endif + +#include + +int main(void) +{ + __m128i a = _mm_add_epi16(_mm_setzero_si128(), _mm_setzero_si128()); + return _mm_cvtsi128_si32(a); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse3.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse3.c new file mode 100644 index 0000000000000000000000000000000000000000..d47c20f74be1f83afd1962917438507c609e5413 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse3.c @@ -0,0 +1,20 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __SSE3__ + #error "HOST/ARCH doesn't support SSE3" + #endif +#endif + +#include + +int main(void) +{ + __m128 a = _mm_hadd_ps(_mm_setzero_ps(), _mm_setzero_ps()); + return (int)_mm_cvtss_f32(a); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse41.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse41.c new file mode 100644 index 0000000000000000000000000000000000000000..7c80238a3bc1809cdec133c057b1bf0ff46ce64e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse41.c @@ -0,0 +1,20 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __SSE4_1__ + #error "HOST/ARCH doesn't support SSE41" + #endif +#endif + +#include + +int main(void) +{ + __m128 a = _mm_floor_ps(_mm_setzero_ps()); + return (int)_mm_cvtss_f32(a); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_ssse3.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_ssse3.c new file mode 100644 index 0000000000000000000000000000000000000000..fde390d6a37d3e2c929b7a6841efa42e618742e5 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_ssse3.c @@ -0,0 +1,20 @@ +#if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER) + /* + * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics, + * whether or not the build options for those features are specified. + * Therefore, we must test #definitions of CPU features when option native/host + * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise + * the test will be broken and leads to enable all possible features. + */ + #ifndef __SSSE3__ + #error "HOST/ARCH doesn't support SSSE3" + #endif +#endif + +#include + +int main(void) +{ + __m128i a = _mm_hadd_epi16(_mm_setzero_si128(), _mm_setzero_si128()); + return (int)_mm_cvtsi128_si32(a); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx.c new file mode 100644 index 0000000000000000000000000000000000000000..0b3f30d6a1f43ff32d5c6545560ef3aa41c828fb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx.c @@ -0,0 +1,21 @@ +#ifndef __VSX__ + #error "VSX is not supported" +#endif +#include + +#if (defined(__GNUC__) && !defined(vec_xl)) || (defined(__clang__) && !defined(__IBMC__)) + #define vsx_ld vec_vsx_ld + #define vsx_st vec_vsx_st +#else + #define vsx_ld vec_xl + #define vsx_st vec_xst +#endif + +int main(void) +{ + unsigned int zout[4]; + unsigned int z4[] = {0, 0, 0, 0}; + __vector unsigned int v_z4 = vsx_ld(0, z4); + vsx_st(v_z4, 0, zout); + return zout[0]; +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx3.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx3.c new file mode 100644 index 0000000000000000000000000000000000000000..857526535aa8ff728d8ccd055d766bf4581c6eed --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx3.c @@ -0,0 +1,13 @@ +#ifndef __VSX__ + #error "VSX is not supported" +#endif +#include + +typedef __vector unsigned int v_uint32x4; + +int main(void) +{ + v_uint32x4 z4 = (v_uint32x4){0, 0, 0, 0}; + z4 = vec_absd(z4, z4); + return (int)vec_extract(z4, 0); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx4.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx4.c new file mode 100644 index 0000000000000000000000000000000000000000..a6acc7384dd95f7ef51d17c85492342dde353d0d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx4.c @@ -0,0 +1,14 @@ +#ifndef __VSX__ + #error "VSX is not supported" +#endif +#include + +typedef __vector unsigned int v_uint32x4; + +int main(void) +{ + v_uint32x4 v1 = (v_uint32x4){2, 4, 8, 16}; + v_uint32x4 v2 = (v_uint32x4){2, 2, 2, 2}; + v_uint32x4 v3 = vec_mod(v1, v2); + return (int)vec_extractm(v3); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vx.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vx.c new file mode 100644 index 0000000000000000000000000000000000000000..18fb7ef94a248d0de890bafa9cae67a5559e47f9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vx.c @@ -0,0 +1,16 @@ +#if (__VEC__ < 10301) || (__ARCH__ < 11) + #error VX not supported +#endif + +#include +int main(int argc, char **argv) +{ + __vector double x = vec_abs(vec_xl(argc, (double*)argv)); + __vector double y = vec_load_len((double*)argv, (unsigned int)argc); + + x = vec_round(vec_ceil(x) + vec_floor(y)); + __vector bool long long m = vec_cmpge(x, y); + __vector long long i = vec_signed(vec_sel(x, y, m)); + + return (int)vec_extract(i, 0); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vxe2.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vxe2.c new file mode 100644 index 0000000000000000000000000000000000000000..f36d57129af67f111fa9dccca55f76dc52e6001d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vxe2.c @@ -0,0 +1,21 @@ +#if (__VEC__ < 10303) || (__ARCH__ < 13) + #error VXE2 not supported +#endif + +#include + +int main(int argc, char **argv) +{ + int val; + __vector signed short large = { 'a', 'b', 'c', 'a', 'g', 'h', 'g', 'o' }; + __vector signed short search = { 'g', 'h', 'g', 'o' }; + __vector unsigned char len = { 0 }; + __vector unsigned char res = vec_search_string_cc(large, search, len, &val); + __vector float x = vec_xl(argc, (float*)argv); + __vector int i = vec_signed(x); + + i = vec_srdb(vec_sldb(i, i, 2), i, 3); + val += (int)vec_extract(res, 1); + val += vec_extract(i, 0); + return val; +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_xop.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_xop.c new file mode 100644 index 0000000000000000000000000000000000000000..51d70cf2b6d85eae5be6bd08625dbff865530f84 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_xop.c @@ -0,0 +1,12 @@ +#include +#ifdef _MSC_VER + #include +#else + #include +#endif + +int main(void) +{ + __m128i a = _mm_comge_epu32(_mm_setzero_si128(), _mm_setzero_si128()); + return _mm_cvtsi128_si32(a); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_avx512bw_mask.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_avx512bw_mask.c new file mode 100644 index 0000000000000000000000000000000000000000..9cfd0c2a57f355cea353abd24d21343543017191 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_avx512bw_mask.c @@ -0,0 +1,18 @@ +#include +/** + * Test BW mask operations due to: + * - MSVC has supported it since vs2019 see, + * https://developercommunity.visualstudio.com/content/problem/518298/missing-avx512bw-mask-intrinsics.html + * - Clang >= v8.0 + * - GCC >= v7.1 + */ +int main(void) +{ + __mmask64 m64 = _mm512_cmpeq_epi8_mask(_mm512_set1_epi8((char)1), _mm512_set1_epi8((char)1)); + m64 = _kor_mask64(m64, m64); + m64 = _kxor_mask64(m64, m64); + m64 = _cvtu64_mask64(_cvtmask64_u64(m64)); + m64 = _mm512_kunpackd(m64, m64); + m64 = (__mmask64)_mm512_kunpackw((__mmask32)m64, (__mmask32)m64); + return (int)_cvtmask64_u64(m64); +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_vsx3_half_double.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_vsx3_half_double.c new file mode 100644 index 0000000000000000000000000000000000000000..514a2b18f96cb089bb3c96f6420356c892adefdf --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_vsx3_half_double.c @@ -0,0 +1,12 @@ +/** + * Assembler may not fully support the following VSX3 scalar + * instructions, even though compilers report VSX3 support. + */ +int main(void) +{ + unsigned short bits = 0xFF; + double f; + __asm__ __volatile__("xscvhpdp %x0,%x1" : "=wa"(f) : "wa"(bits)); + __asm__ __volatile__ ("xscvdphp %x0,%x1" : "=wa" (bits) : "wa" (f)); + return bits; +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_vsx4_mma.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_vsx4_mma.c new file mode 100644 index 0000000000000000000000000000000000000000..a70b2a9f6f95408eb7cfe59c056f114cc363869b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_vsx4_mma.c @@ -0,0 +1,21 @@ +#ifndef __VSX__ + #error "VSX is not supported" +#endif +#include + +typedef __vector float fv4sf_t; +typedef __vector unsigned char vec_t; + +int main(void) +{ + __vector_quad acc0; + float a[4] = {0,1,2,3}; + float b[4] = {0,1,2,3}; + vec_t *va = (vec_t *) a; + vec_t *vb = (vec_t *) b; + __builtin_mma_xvf32ger(&acc0, va[0], vb[0]); + fv4sf_t result[4]; + __builtin_mma_disassemble_acc((void *)result, &acc0); + fv4sf_t c0 = result[0]; + return (int)((float*)&c0)[0]; +} diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/test_flags.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/test_flags.c new file mode 100644 index 0000000000000000000000000000000000000000..4cd09d42a6503780087632aae9ea5b458671fa57 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/test_flags.c @@ -0,0 +1 @@ +int test_flags; diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/mingw/gfortran_vs2003_hack.c b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/mingw/gfortran_vs2003_hack.c new file mode 100644 index 0000000000000000000000000000000000000000..485a675d8a1fb80bc4927fe236ba3fe550f5a0c9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/mingw/gfortran_vs2003_hack.c @@ -0,0 +1,6 @@ +int _get_output_format(void) +{ + return 0; +} + +int _imp____lc_codepage = 0; diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__init__.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c4137baf9ead1d2ce1cd342ce5bed52b62f522af Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_fcompiler_intel.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_fcompiler_intel.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fc978501f1e2177eaf4ce8fddbb0340cb35aa5f4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_fcompiler_intel.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_from_template.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_from_template.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cdc514f7b0db4f47999a71102ec17a4897e2f514 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_from_template.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_shell_utils.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_shell_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..248f7930931a521eadcefd31c0a6cc8b4fa61452 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_shell_utils.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_system_info.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_system_info.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4c64b56176ea3539c54c3ae6a5fa69884cab6fba Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/__pycache__/test_system_info.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_build_ext.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_build_ext.py new file mode 100644 index 0000000000000000000000000000000000000000..372100fc06c84d5364c8f6dbb3f285489c83fc2f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_build_ext.py @@ -0,0 +1,74 @@ +'''Tests for numpy.distutils.build_ext.''' + +import os +import subprocess +import sys +from textwrap import indent, dedent +import pytest +from numpy.testing import IS_WASM + +@pytest.mark.skipif(IS_WASM, reason="cannot start subprocess in wasm") +@pytest.mark.slow +def test_multi_fortran_libs_link(tmp_path): + ''' + Ensures multiple "fake" static libraries are correctly linked. + see gh-18295 + ''' + + # We need to make sure we actually have an f77 compiler. + # This is nontrivial, so we'll borrow the utilities + # from f2py tests: + from numpy.f2py.tests.util import has_f77_compiler + if not has_f77_compiler(): + pytest.skip('No F77 compiler found') + + # make some dummy sources + with open(tmp_path / '_dummy1.f', 'w') as fid: + fid.write(indent(dedent('''\ + FUNCTION dummy_one() + RETURN + END FUNCTION'''), prefix=' '*6)) + with open(tmp_path / '_dummy2.f', 'w') as fid: + fid.write(indent(dedent('''\ + FUNCTION dummy_two() + RETURN + END FUNCTION'''), prefix=' '*6)) + with open(tmp_path / '_dummy.c', 'w') as fid: + # doesn't need to load - just needs to exist + fid.write('int PyInit_dummyext;') + + # make a setup file + with open(tmp_path / 'setup.py', 'w') as fid: + srctree = os.path.join(os.path.dirname(__file__), '..', '..', '..') + fid.write(dedent(f'''\ + def configuration(parent_package="", top_path=None): + from numpy.distutils.misc_util import Configuration + config = Configuration("", parent_package, top_path) + config.add_library("dummy1", sources=["_dummy1.f"]) + config.add_library("dummy2", sources=["_dummy2.f"]) + config.add_extension("dummyext", sources=["_dummy.c"], libraries=["dummy1", "dummy2"]) + return config + + + if __name__ == "__main__": + import sys + sys.path.insert(0, r"{srctree}") + from numpy.distutils.core import setup + setup(**configuration(top_path="").todict())''')) + + # build the test extensino and "install" into a temporary directory + build_dir = tmp_path + subprocess.check_call([sys.executable, 'setup.py', 'build', 'install', + '--prefix', str(tmp_path / 'installdir'), + '--record', str(tmp_path / 'tmp_install_log.txt'), + ], + cwd=str(build_dir), + ) + # get the path to the so + so = None + with open(tmp_path /'tmp_install_log.txt') as fid: + for line in fid: + if 'dummyext' in line: + so = line.strip() + break + assert so is not None diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_ccompiler_opt.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_ccompiler_opt.py new file mode 100644 index 0000000000000000000000000000000000000000..3714aea0e12e05ac8346e51d169664e9c62f4293 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_ccompiler_opt.py @@ -0,0 +1,808 @@ +import re, textwrap, os +from os import sys, path +from distutils.errors import DistutilsError + +is_standalone = __name__ == '__main__' and __package__ is None +if is_standalone: + import unittest, contextlib, tempfile, shutil + sys.path.append(path.abspath(path.join(path.dirname(__file__), ".."))) + from ccompiler_opt import CCompilerOpt + + # from numpy/testing/_private/utils.py + @contextlib.contextmanager + def tempdir(*args, **kwargs): + tmpdir = tempfile.mkdtemp(*args, **kwargs) + try: + yield tmpdir + finally: + shutil.rmtree(tmpdir) + + def assert_(expr, msg=''): + if not expr: + raise AssertionError(msg) +else: + from numpy.distutils.ccompiler_opt import CCompilerOpt + from numpy.testing import assert_, tempdir + +# architectures and compilers to test +arch_compilers = dict( + x86 = ("gcc", "clang", "icc", "iccw", "msvc"), + x64 = ("gcc", "clang", "icc", "iccw", "msvc"), + ppc64 = ("gcc", "clang"), + ppc64le = ("gcc", "clang"), + armhf = ("gcc", "clang"), + aarch64 = ("gcc", "clang", "fcc"), + s390x = ("gcc", "clang"), + noarch = ("gcc",) +) + +class FakeCCompilerOpt(CCompilerOpt): + fake_info = "" + def __init__(self, trap_files="", trap_flags="", *args, **kwargs): + self.fake_trap_files = trap_files + self.fake_trap_flags = trap_flags + CCompilerOpt.__init__(self, None, **kwargs) + + def __repr__(self): + return textwrap.dedent("""\ + <<<< + march : {} + compiler : {} + ---------------- + {} + >>>> + """).format(self.cc_march, self.cc_name, self.report()) + + def dist_compile(self, sources, flags, **kwargs): + assert(isinstance(sources, list)) + assert(isinstance(flags, list)) + if self.fake_trap_files: + for src in sources: + if re.match(self.fake_trap_files, src): + self.dist_error("source is trapped by a fake interface") + if self.fake_trap_flags: + for f in flags: + if re.match(self.fake_trap_flags, f): + self.dist_error("flag is trapped by a fake interface") + # fake objects + return zip(sources, [' '.join(flags)] * len(sources)) + + def dist_info(self): + return FakeCCompilerOpt.fake_info + + @staticmethod + def dist_log(*args, stderr=False): + pass + +class _Test_CCompilerOpt: + arch = None # x86_64 + cc = None # gcc + + def setup_class(self): + FakeCCompilerOpt.conf_nocache = True + self._opt = None + + def nopt(self, *args, **kwargs): + FakeCCompilerOpt.fake_info = (self.arch, self.cc, "") + return FakeCCompilerOpt(*args, **kwargs) + + def opt(self): + if not self._opt: + self._opt = self.nopt() + return self._opt + + def march(self): + return self.opt().cc_march + + def cc_name(self): + return self.opt().cc_name + + def get_targets(self, targets, groups, **kwargs): + FakeCCompilerOpt.conf_target_groups = groups + opt = self.nopt( + cpu_baseline=kwargs.get("baseline", "min"), + cpu_dispatch=kwargs.get("dispatch", "max"), + trap_files=kwargs.get("trap_files", ""), + trap_flags=kwargs.get("trap_flags", "") + ) + with tempdir() as tmpdir: + file = os.path.join(tmpdir, "test_targets.c") + with open(file, 'w') as f: + f.write(targets) + gtargets = [] + gflags = {} + fake_objects = opt.try_dispatch([file]) + for source, flags in fake_objects: + gtar = path.basename(source).split('.')[1:-1] + glen = len(gtar) + if glen == 0: + gtar = "baseline" + elif glen == 1: + gtar = gtar[0].upper() + else: + # converting multi-target into parentheses str format to be equivalent + # to the configuration statements syntax. + gtar = ('('+' '.join(gtar)+')').upper() + gtargets.append(gtar) + gflags[gtar] = flags + + has_baseline, targets = opt.sources_status[file] + targets = targets + ["baseline"] if has_baseline else targets + # convert tuple that represent multi-target into parentheses str format + targets = [ + '('+' '.join(tar)+')' if isinstance(tar, tuple) else tar + for tar in targets + ] + if len(targets) != len(gtargets) or not all(t in gtargets for t in targets): + raise AssertionError( + "'sources_status' returns different targets than the compiled targets\n" + "%s != %s" % (targets, gtargets) + ) + # return targets from 'sources_status' since the order is matters + return targets, gflags + + def arg_regex(self, **kwargs): + map2origin = dict( + x64 = "x86", + ppc64le = "ppc64", + aarch64 = "armhf", + clang = "gcc", + ) + march = self.march(); cc_name = self.cc_name() + map_march = map2origin.get(march, march) + map_cc = map2origin.get(cc_name, cc_name) + for key in ( + march, cc_name, map_march, map_cc, + march + '_' + cc_name, + map_march + '_' + cc_name, + march + '_' + map_cc, + map_march + '_' + map_cc, + ) : + regex = kwargs.pop(key, None) + if regex is not None: + break + if regex: + if isinstance(regex, dict): + for k, v in regex.items(): + if v[-1:] not in ')}$?\\.+*': + regex[k] = v + '$' + else: + assert(isinstance(regex, str)) + if regex[-1:] not in ')}$?\\.+*': + regex += '$' + return regex + + def expect(self, dispatch, baseline="", **kwargs): + match = self.arg_regex(**kwargs) + if match is None: + return + opt = self.nopt( + cpu_baseline=baseline, cpu_dispatch=dispatch, + trap_files=kwargs.get("trap_files", ""), + trap_flags=kwargs.get("trap_flags", "") + ) + features = ' '.join(opt.cpu_dispatch_names()) + if not match: + if len(features) != 0: + raise AssertionError( + 'expected empty features, not "%s"' % features + ) + return + if not re.match(match, features, re.IGNORECASE): + raise AssertionError( + 'dispatch features "%s" not match "%s"' % (features, match) + ) + + def expect_baseline(self, baseline, dispatch="", **kwargs): + match = self.arg_regex(**kwargs) + if match is None: + return + opt = self.nopt( + cpu_baseline=baseline, cpu_dispatch=dispatch, + trap_files=kwargs.get("trap_files", ""), + trap_flags=kwargs.get("trap_flags", "") + ) + features = ' '.join(opt.cpu_baseline_names()) + if not match: + if len(features) != 0: + raise AssertionError( + 'expected empty features, not "%s"' % features + ) + return + if not re.match(match, features, re.IGNORECASE): + raise AssertionError( + 'baseline features "%s" not match "%s"' % (features, match) + ) + + def expect_flags(self, baseline, dispatch="", **kwargs): + match = self.arg_regex(**kwargs) + if match is None: + return + opt = self.nopt( + cpu_baseline=baseline, cpu_dispatch=dispatch, + trap_files=kwargs.get("trap_files", ""), + trap_flags=kwargs.get("trap_flags", "") + ) + flags = ' '.join(opt.cpu_baseline_flags()) + if not match: + if len(flags) != 0: + raise AssertionError( + 'expected empty flags not "%s"' % flags + ) + return + if not re.match(match, flags): + raise AssertionError( + 'flags "%s" not match "%s"' % (flags, match) + ) + + def expect_targets(self, targets, groups={}, **kwargs): + match = self.arg_regex(**kwargs) + if match is None: + return + targets, _ = self.get_targets(targets=targets, groups=groups, **kwargs) + targets = ' '.join(targets) + if not match: + if len(targets) != 0: + raise AssertionError( + 'expected empty targets, not "%s"' % targets + ) + return + if not re.match(match, targets, re.IGNORECASE): + raise AssertionError( + 'targets "%s" not match "%s"' % (targets, match) + ) + + def expect_target_flags(self, targets, groups={}, **kwargs): + match_dict = self.arg_regex(**kwargs) + if match_dict is None: + return + assert(isinstance(match_dict, dict)) + _, tar_flags = self.get_targets(targets=targets, groups=groups) + + for match_tar, match_flags in match_dict.items(): + if match_tar not in tar_flags: + raise AssertionError( + 'expected to find target "%s"' % match_tar + ) + flags = tar_flags[match_tar] + if not match_flags: + if len(flags) != 0: + raise AssertionError( + 'expected to find empty flags in target "%s"' % match_tar + ) + if not re.match(match_flags, flags): + raise AssertionError( + '"%s" flags "%s" not match "%s"' % (match_tar, flags, match_flags) + ) + + def test_interface(self): + wrong_arch = "ppc64" if self.arch != "ppc64" else "x86" + wrong_cc = "clang" if self.cc != "clang" else "icc" + opt = self.opt() + assert_(getattr(opt, "cc_on_" + self.arch)) + assert_(not getattr(opt, "cc_on_" + wrong_arch)) + assert_(getattr(opt, "cc_is_" + self.cc)) + assert_(not getattr(opt, "cc_is_" + wrong_cc)) + + def test_args_empty(self): + for baseline, dispatch in ( + ("", "none"), + (None, ""), + ("none +none", "none - none"), + ("none -max", "min - max"), + ("+vsx2 -VSX2", "vsx avx2 avx512f -max"), + ("max -vsx - avx + avx512f neon -MAX ", + "min -min + max -max -vsx + avx2 -avx2 +NONE") + ) : + opt = self.nopt(cpu_baseline=baseline, cpu_dispatch=dispatch) + assert(len(opt.cpu_baseline_names()) == 0) + assert(len(opt.cpu_dispatch_names()) == 0) + + def test_args_validation(self): + if self.march() == "unknown": + return + # check sanity of argument's validation + for baseline, dispatch in ( + ("unkown_feature - max +min", "unknown max min"), # unknowing features + ("#avx2", "$vsx") # groups and polices aren't acceptable + ) : + try: + self.nopt(cpu_baseline=baseline, cpu_dispatch=dispatch) + raise AssertionError("excepted an exception for invalid arguments") + except DistutilsError: + pass + + def test_skip(self): + # only takes what platform supports and skip the others + # without casing exceptions + self.expect( + "sse vsx neon", + x86="sse", ppc64="vsx", armhf="neon", unknown="" + ) + self.expect( + "sse41 avx avx2 vsx2 vsx3 neon_vfpv4 asimd", + x86 = "sse41 avx avx2", + ppc64 = "vsx2 vsx3", + armhf = "neon_vfpv4 asimd", + unknown = "" + ) + # any features in cpu_dispatch must be ignored if it's part of baseline + self.expect( + "sse neon vsx", baseline="sse neon vsx", + x86="", ppc64="", armhf="" + ) + self.expect( + "avx2 vsx3 asimdhp", baseline="avx2 vsx3 asimdhp", + x86="", ppc64="", armhf="" + ) + + def test_implies(self): + # baseline combining implied features, so we count + # on it instead of testing 'feature_implies()'' directly + self.expect_baseline( + "fma3 avx2 asimd vsx3", + # .* between two spaces can validate features in between + x86 = "sse .* sse41 .* fma3.*avx2", + ppc64 = "vsx vsx2 vsx3", + armhf = "neon neon_fp16 neon_vfpv4 asimd" + ) + """ + special cases + """ + # in icc and msvc, FMA3 and AVX2 can't be separated + # both need to implies each other, same for avx512f & cd + for f0, f1 in ( + ("fma3", "avx2"), + ("avx512f", "avx512cd"), + ): + diff = ".* sse42 .* %s .*%s$" % (f0, f1) + self.expect_baseline(f0, + x86_gcc=".* sse42 .* %s$" % f0, + x86_icc=diff, x86_iccw=diff + ) + self.expect_baseline(f1, + x86_gcc=".* avx .* %s$" % f1, + x86_icc=diff, x86_iccw=diff + ) + # in msvc, following features can't be separated too + for f in (("fma3", "avx2"), ("avx512f", "avx512cd", "avx512_skx")): + for ff in f: + self.expect_baseline(ff, + x86_msvc=".*%s" % ' '.join(f) + ) + + # in ppc64le VSX and VSX2 can't be separated + self.expect_baseline("vsx", ppc64le="vsx vsx2") + # in aarch64 following features can't be separated + for f in ("neon", "neon_fp16", "neon_vfpv4", "asimd"): + self.expect_baseline(f, aarch64="neon neon_fp16 neon_vfpv4 asimd") + + def test_args_options(self): + # max & native + for o in ("max", "native"): + if o == "native" and self.cc_name() == "msvc": + continue + self.expect(o, + trap_files=".*cpu_(sse|vsx|neon|vx).c", + x86="", ppc64="", armhf="", s390x="" + ) + self.expect(o, + trap_files=".*cpu_(sse3|vsx2|neon_vfpv4|vxe).c", + x86="sse sse2", ppc64="vsx", armhf="neon neon_fp16", + aarch64="", ppc64le="", s390x="vx" + ) + self.expect(o, + trap_files=".*cpu_(popcnt|vsx3).c", + x86="sse .* sse41", ppc64="vsx vsx2", + armhf="neon neon_fp16 .* asimd .*", + s390x="vx vxe vxe2" + ) + self.expect(o, + x86_gcc=".* xop fma4 .* avx512f .* avx512_knl avx512_knm avx512_skx .*", + # in icc, xop and fam4 aren't supported + x86_icc=".* avx512f .* avx512_knl avx512_knm avx512_skx .*", + x86_iccw=".* avx512f .* avx512_knl avx512_knm avx512_skx .*", + # in msvc, avx512_knl avx512_knm aren't supported + x86_msvc=".* xop fma4 .* avx512f .* avx512_skx .*", + armhf=".* asimd asimdhp asimddp .*", + ppc64="vsx vsx2 vsx3 vsx4.*", + s390x="vx vxe vxe2.*" + ) + # min + self.expect("min", + x86="sse sse2", x64="sse sse2 sse3", + armhf="", aarch64="neon neon_fp16 .* asimd", + ppc64="", ppc64le="vsx vsx2", s390x="" + ) + self.expect( + "min", trap_files=".*cpu_(sse2|vsx2).c", + x86="", ppc64le="" + ) + # an exception must triggered if native flag isn't supported + # when option "native" is activated through the args + try: + self.expect("native", + trap_flags=".*(-march=native|-xHost|/QxHost|-mcpu=a64fx).*", + x86=".*", ppc64=".*", armhf=".*", s390x=".*", aarch64=".*", + ) + if self.march() != "unknown": + raise AssertionError( + "excepted an exception for %s" % self.march() + ) + except DistutilsError: + if self.march() == "unknown": + raise AssertionError("excepted no exceptions") + + def test_flags(self): + self.expect_flags( + "sse sse2 vsx vsx2 neon neon_fp16 vx vxe", + x86_gcc="-msse -msse2", x86_icc="-msse -msse2", + x86_iccw="/arch:SSE2", + x86_msvc="/arch:SSE2" if self.march() == "x86" else "", + ppc64_gcc= "-mcpu=power8", + ppc64_clang="-mcpu=power8", + armhf_gcc="-mfpu=neon-fp16 -mfp16-format=ieee", + aarch64="", + s390x="-mzvector -march=arch12" + ) + # testing normalize -march + self.expect_flags( + "asimd", + aarch64="", + armhf_gcc=r"-mfp16-format=ieee -mfpu=neon-fp-armv8 -march=armv8-a\+simd" + ) + self.expect_flags( + "asimdhp", + aarch64_gcc=r"-march=armv8.2-a\+fp16", + armhf_gcc=r"-mfp16-format=ieee -mfpu=neon-fp-armv8 -march=armv8.2-a\+fp16" + ) + self.expect_flags( + "asimddp", aarch64_gcc=r"-march=armv8.2-a\+dotprod" + ) + self.expect_flags( + # asimdfhm implies asimdhp + "asimdfhm", aarch64_gcc=r"-march=armv8.2-a\+fp16\+fp16fml" + ) + self.expect_flags( + "asimddp asimdhp asimdfhm", + aarch64_gcc=r"-march=armv8.2-a\+dotprod\+fp16\+fp16fml" + ) + self.expect_flags( + "vx vxe vxe2", + s390x=r"-mzvector -march=arch13" + ) + + def test_targets_exceptions(self): + for targets in ( + "bla bla", "/*@targets", + "/*@targets */", + "/*@targets unknown */", + "/*@targets $unknown_policy avx2 */", + "/*@targets #unknown_group avx2 */", + "/*@targets $ */", + "/*@targets # vsx */", + "/*@targets #$ vsx */", + "/*@targets vsx avx2 ) */", + "/*@targets vsx avx2 (avx2 */", + "/*@targets vsx avx2 () */", + "/*@targets vsx avx2 ($autovec) */", # no features + "/*@targets vsx avx2 (xxx) */", + "/*@targets vsx avx2 (baseline) */", + ) : + try: + self.expect_targets( + targets, + x86="", armhf="", ppc64="", s390x="" + ) + if self.march() != "unknown": + raise AssertionError( + "excepted an exception for %s" % self.march() + ) + except DistutilsError: + if self.march() == "unknown": + raise AssertionError("excepted no exceptions") + + def test_targets_syntax(self): + for targets in ( + "/*@targets $keep_baseline sse vsx neon vx*/", + "/*@targets,$keep_baseline,sse,vsx,neon vx*/", + "/*@targets*$keep_baseline*sse*vsx*neon*vx*/", + """ + /* + ** @targets + ** $keep_baseline, sse vsx,neon, vx + */ + """, + """ + /* + ************@targets**************** + ** $keep_baseline, sse vsx, neon, vx + ************************************ + */ + """, + """ + /* + /////////////@targets///////////////// + //$keep_baseline//sse//vsx//neon//vx + ///////////////////////////////////// + */ + """, + """ + /* + @targets + $keep_baseline + SSE VSX NEON VX*/ + """ + ) : + self.expect_targets(targets, + x86="sse", ppc64="vsx", armhf="neon", s390x="vx", unknown="" + ) + + def test_targets(self): + # test skipping baseline features + self.expect_targets( + """ + /*@targets + sse sse2 sse41 avx avx2 avx512f + vsx vsx2 vsx3 vsx4 + neon neon_fp16 asimdhp asimddp + vx vxe vxe2 + */ + """, + baseline="avx vsx2 asimd vx vxe", + x86="avx512f avx2", armhf="asimddp asimdhp", ppc64="vsx4 vsx3", + s390x="vxe2" + ) + # test skipping non-dispatch features + self.expect_targets( + """ + /*@targets + sse41 avx avx2 avx512f + vsx2 vsx3 vsx4 + asimd asimdhp asimddp + vx vxe vxe2 + */ + """, + baseline="", dispatch="sse41 avx2 vsx2 asimd asimddp vxe2", + x86="avx2 sse41", armhf="asimddp asimd", ppc64="vsx2", s390x="vxe2" + ) + # test skipping features that not supported + self.expect_targets( + """ + /*@targets + sse2 sse41 avx2 avx512f + vsx2 vsx3 vsx4 + neon asimdhp asimddp + vx vxe vxe2 + */ + """, + baseline="", + trap_files=".*(avx2|avx512f|vsx3|vsx4|asimddp|vxe2).c", + x86="sse41 sse2", ppc64="vsx2", armhf="asimdhp neon", + s390x="vxe vx" + ) + # test skipping features that implies each other + self.expect_targets( + """ + /*@targets + sse sse2 avx fma3 avx2 avx512f avx512cd + vsx vsx2 vsx3 + neon neon_vfpv4 neon_fp16 neon_fp16 asimd asimdhp + asimddp asimdfhm + */ + """, + baseline="", + x86_gcc="avx512cd avx512f avx2 fma3 avx sse2", + x86_msvc="avx512cd avx2 avx sse2", + x86_icc="avx512cd avx2 avx sse2", + x86_iccw="avx512cd avx2 avx sse2", + ppc64="vsx3 vsx2 vsx", + ppc64le="vsx3 vsx2", + armhf="asimdfhm asimddp asimdhp asimd neon_vfpv4 neon_fp16 neon", + aarch64="asimdfhm asimddp asimdhp asimd" + ) + + def test_targets_policies(self): + # 'keep_baseline', generate objects for baseline features + self.expect_targets( + """ + /*@targets + $keep_baseline + sse2 sse42 avx2 avx512f + vsx2 vsx3 + neon neon_vfpv4 asimd asimddp + vx vxe vxe2 + */ + """, + baseline="sse41 avx2 vsx2 asimd vsx3 vxe", + x86="avx512f avx2 sse42 sse2", + ppc64="vsx3 vsx2", + armhf="asimddp asimd neon_vfpv4 neon", + # neon, neon_vfpv4, asimd implies each other + aarch64="asimddp asimd", + s390x="vxe2 vxe vx" + ) + # 'keep_sort', leave the sort as-is + self.expect_targets( + """ + /*@targets + $keep_baseline $keep_sort + avx512f sse42 avx2 sse2 + vsx2 vsx3 + asimd neon neon_vfpv4 asimddp + vxe vxe2 + */ + """, + x86="avx512f sse42 avx2 sse2", + ppc64="vsx2 vsx3", + armhf="asimd neon neon_vfpv4 asimddp", + # neon, neon_vfpv4, asimd implies each other + aarch64="asimd asimddp", + s390x="vxe vxe2" + ) + # 'autovec', skipping features that can't be + # vectorized by the compiler + self.expect_targets( + """ + /*@targets + $keep_baseline $keep_sort $autovec + avx512f avx2 sse42 sse41 sse2 + vsx3 vsx2 + asimddp asimd neon_vfpv4 neon + */ + """, + x86_gcc="avx512f avx2 sse42 sse41 sse2", + x86_icc="avx512f avx2 sse42 sse41 sse2", + x86_iccw="avx512f avx2 sse42 sse41 sse2", + x86_msvc="avx512f avx2 sse2" + if self.march() == 'x86' else "avx512f avx2", + ppc64="vsx3 vsx2", + armhf="asimddp asimd neon_vfpv4 neon", + # neon, neon_vfpv4, asimd implies each other + aarch64="asimddp asimd" + ) + for policy in ("$maxopt", "$autovec"): + # 'maxopt' and autovec set the max acceptable optimization flags + self.expect_target_flags( + "/*@targets baseline %s */" % policy, + gcc={"baseline":".*-O3.*"}, icc={"baseline":".*-O3.*"}, + iccw={"baseline":".*/O3.*"}, msvc={"baseline":".*/O2.*"}, + unknown={"baseline":".*"} + ) + + # 'werror', force compilers to treat warnings as errors + self.expect_target_flags( + "/*@targets baseline $werror */", + gcc={"baseline":".*-Werror.*"}, icc={"baseline":".*-Werror.*"}, + iccw={"baseline":".*/Werror.*"}, msvc={"baseline":".*/WX.*"}, + unknown={"baseline":".*"} + ) + + def test_targets_groups(self): + self.expect_targets( + """ + /*@targets $keep_baseline baseline #test_group */ + """, + groups=dict( + test_group=(""" + $keep_baseline + asimddp sse2 vsx2 avx2 vsx3 + avx512f asimdhp + """) + ), + x86="avx512f avx2 sse2 baseline", + ppc64="vsx3 vsx2 baseline", + armhf="asimddp asimdhp baseline" + ) + # test skip duplicating and sorting + self.expect_targets( + """ + /*@targets + * sse42 avx avx512f + * #test_group_1 + * vsx2 + * #test_group_2 + * asimddp asimdfhm + */ + """, + groups=dict( + test_group_1=(""" + VSX2 vsx3 asimd avx2 SSE41 + """), + test_group_2=(""" + vsx2 vsx3 asImd aVx2 sse41 + """) + ), + x86="avx512f avx2 avx sse42 sse41", + ppc64="vsx3 vsx2", + # vsx2 part of the default baseline of ppc64le, option ("min") + ppc64le="vsx3", + armhf="asimdfhm asimddp asimd", + # asimd part of the default baseline of aarch64, option ("min") + aarch64="asimdfhm asimddp" + ) + + def test_targets_multi(self): + self.expect_targets( + """ + /*@targets + (avx512_clx avx512_cnl) (asimdhp asimddp) + */ + """, + x86=r"\(avx512_clx avx512_cnl\)", + armhf=r"\(asimdhp asimddp\)", + ) + # test skipping implied features and auto-sort + self.expect_targets( + """ + /*@targets + f16c (sse41 avx sse42) (sse3 avx2 avx512f) + vsx2 (vsx vsx3 vsx2) + (neon neon_vfpv4 asimd asimdhp asimddp) + */ + """, + x86="avx512f f16c avx", + ppc64="vsx3 vsx2", + ppc64le="vsx3", # vsx2 part of baseline + armhf=r"\(asimdhp asimddp\)", + ) + # test skipping implied features and keep sort + self.expect_targets( + """ + /*@targets $keep_sort + (sse41 avx sse42) (sse3 avx2 avx512f) + (vsx vsx3 vsx2) + (asimddp neon neon_vfpv4 asimd asimdhp) + (vx vxe vxe2) + */ + """, + x86="avx avx512f", + ppc64="vsx3", + armhf=r"\(asimdhp asimddp\)", + s390x="vxe2" + ) + # test compiler variety and avoiding duplicating + self.expect_targets( + """ + /*@targets $keep_sort + fma3 avx2 (fma3 avx2) (avx2 fma3) avx2 fma3 + */ + """, + x86_gcc=r"fma3 avx2 \(fma3 avx2\)", + x86_icc="avx2", x86_iccw="avx2", + x86_msvc="avx2" + ) + +def new_test(arch, cc): + if is_standalone: return textwrap.dedent("""\ + class TestCCompilerOpt_{class_name}(_Test_CCompilerOpt, unittest.TestCase): + arch = '{arch}' + cc = '{cc}' + def __init__(self, methodName="runTest"): + unittest.TestCase.__init__(self, methodName) + self.setup_class() + """).format( + class_name=arch + '_' + cc, arch=arch, cc=cc + ) + return textwrap.dedent("""\ + class TestCCompilerOpt_{class_name}(_Test_CCompilerOpt): + arch = '{arch}' + cc = '{cc}' + """).format( + class_name=arch + '_' + cc, arch=arch, cc=cc + ) +""" +if 1 and is_standalone: + FakeCCompilerOpt.fake_info = "x86_icc" + cco = FakeCCompilerOpt(None, cpu_baseline="avx2") + print(' '.join(cco.cpu_baseline_names())) + print(cco.cpu_baseline_flags()) + unittest.main() + sys.exit() +""" +for arch, compilers in arch_compilers.items(): + for cc in compilers: + exec(new_test(arch, cc)) + +if is_standalone: + unittest.main() diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_ccompiler_opt_conf.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_ccompiler_opt_conf.py new file mode 100644 index 0000000000000000000000000000000000000000..d9e8b2b0a8342237b0efd2cc116827a451177fa3 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_ccompiler_opt_conf.py @@ -0,0 +1,176 @@ +import unittest +from os import sys, path + +is_standalone = __name__ == '__main__' and __package__ is None +if is_standalone: + sys.path.append(path.abspath(path.join(path.dirname(__file__), ".."))) + from ccompiler_opt import CCompilerOpt +else: + from numpy.distutils.ccompiler_opt import CCompilerOpt + +arch_compilers = dict( + x86 = ("gcc", "clang", "icc", "iccw", "msvc"), + x64 = ("gcc", "clang", "icc", "iccw", "msvc"), + ppc64 = ("gcc", "clang"), + ppc64le = ("gcc", "clang"), + armhf = ("gcc", "clang"), + aarch64 = ("gcc", "clang"), + narch = ("gcc",) +) + +class FakeCCompilerOpt(CCompilerOpt): + fake_info = ("arch", "compiler", "extra_args") + def __init__(self, *args, **kwargs): + CCompilerOpt.__init__(self, None, **kwargs) + def dist_compile(self, sources, flags, **kwargs): + return sources + def dist_info(self): + return FakeCCompilerOpt.fake_info + @staticmethod + def dist_log(*args, stderr=False): + pass + +class _TestConfFeatures(FakeCCompilerOpt): + """A hook to check the sanity of configured features +- before it called by the abstract class '_Feature' + """ + + def conf_features_partial(self): + conf_all = self.conf_features + for feature_name, feature in conf_all.items(): + self.test_feature( + "attribute conf_features", + conf_all, feature_name, feature + ) + + conf_partial = FakeCCompilerOpt.conf_features_partial(self) + for feature_name, feature in conf_partial.items(): + self.test_feature( + "conf_features_partial()", + conf_partial, feature_name, feature + ) + return conf_partial + + def test_feature(self, log, search_in, feature_name, feature_dict): + error_msg = ( + "during validate '{}' within feature '{}', " + "march '{}' and compiler '{}'\n>> " + ).format(log, feature_name, self.cc_march, self.cc_name) + + if not feature_name.isupper(): + raise AssertionError(error_msg + "feature name must be in uppercase") + + for option, val in feature_dict.items(): + self.test_option_types(error_msg, option, val) + self.test_duplicates(error_msg, option, val) + + self.test_implies(error_msg, search_in, feature_name, feature_dict) + self.test_group(error_msg, search_in, feature_name, feature_dict) + self.test_extra_checks(error_msg, search_in, feature_name, feature_dict) + + def test_option_types(self, error_msg, option, val): + for tp, available in ( + ((str, list), ( + "implies", "headers", "flags", "group", "detect", "extra_checks" + )), + ((str,), ("disable",)), + ((int,), ("interest",)), + ((bool,), ("implies_detect",)), + ((bool, type(None)), ("autovec",)), + ) : + found_it = option in available + if not found_it: + continue + if not isinstance(val, tp): + error_tp = [t.__name__ for t in (*tp,)] + error_tp = ' or '.join(error_tp) + raise AssertionError(error_msg + + "expected '%s' type for option '%s' not '%s'" % ( + error_tp, option, type(val).__name__ + )) + break + + if not found_it: + raise AssertionError(error_msg + "invalid option name '%s'" % option) + + def test_duplicates(self, error_msg, option, val): + if option not in ( + "implies", "headers", "flags", "group", "detect", "extra_checks" + ) : return + + if isinstance(val, str): + val = val.split() + + if len(val) != len(set(val)): + raise AssertionError(error_msg + "duplicated values in option '%s'" % option) + + def test_implies(self, error_msg, search_in, feature_name, feature_dict): + if feature_dict.get("disabled") is not None: + return + implies = feature_dict.get("implies", "") + if not implies: + return + if isinstance(implies, str): + implies = implies.split() + + if feature_name in implies: + raise AssertionError(error_msg + "feature implies itself") + + for impl in implies: + impl_dict = search_in.get(impl) + if impl_dict is not None: + if "disable" in impl_dict: + raise AssertionError(error_msg + "implies disabled feature '%s'" % impl) + continue + raise AssertionError(error_msg + "implies non-exist feature '%s'" % impl) + + def test_group(self, error_msg, search_in, feature_name, feature_dict): + if feature_dict.get("disabled") is not None: + return + group = feature_dict.get("group", "") + if not group: + return + if isinstance(group, str): + group = group.split() + + for f in group: + impl_dict = search_in.get(f) + if not impl_dict or "disable" in impl_dict: + continue + raise AssertionError(error_msg + + "in option 'group', '%s' already exists as a feature name" % f + ) + + def test_extra_checks(self, error_msg, search_in, feature_name, feature_dict): + if feature_dict.get("disabled") is not None: + return + extra_checks = feature_dict.get("extra_checks", "") + if not extra_checks: + return + if isinstance(extra_checks, str): + extra_checks = extra_checks.split() + + for f in extra_checks: + impl_dict = search_in.get(f) + if not impl_dict or "disable" in impl_dict: + continue + raise AssertionError(error_msg + + "in option 'extra_checks', extra test case '%s' already exists as a feature name" % f + ) + +class TestConfFeatures(unittest.TestCase): + def __init__(self, methodName="runTest"): + unittest.TestCase.__init__(self, methodName) + self._setup() + + def _setup(self): + FakeCCompilerOpt.conf_nocache = True + + def test_features(self): + for arch, compilers in arch_compilers.items(): + for cc in compilers: + FakeCCompilerOpt.fake_info = (arch, cc, "") + _TestConfFeatures() + +if is_standalone: + unittest.main() diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_exec_command.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_exec_command.py new file mode 100644 index 0000000000000000000000000000000000000000..d1a20056a5a2a78a76cf36d1bde31a0e82cbb873 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_exec_command.py @@ -0,0 +1,217 @@ +import os +import pytest +import sys +from tempfile import TemporaryFile + +from numpy.distutils import exec_command +from numpy.distutils.exec_command import get_pythonexe +from numpy.testing import tempdir, assert_, assert_warns, IS_WASM + + +# In python 3 stdout, stderr are text (unicode compliant) devices, so to +# emulate them import StringIO from the io module. +from io import StringIO + +class redirect_stdout: + """Context manager to redirect stdout for exec_command test.""" + def __init__(self, stdout=None): + self._stdout = stdout or sys.stdout + + def __enter__(self): + self.old_stdout = sys.stdout + sys.stdout = self._stdout + + def __exit__(self, exc_type, exc_value, traceback): + self._stdout.flush() + sys.stdout = self.old_stdout + # note: closing sys.stdout won't close it. + self._stdout.close() + +class redirect_stderr: + """Context manager to redirect stderr for exec_command test.""" + def __init__(self, stderr=None): + self._stderr = stderr or sys.stderr + + def __enter__(self): + self.old_stderr = sys.stderr + sys.stderr = self._stderr + + def __exit__(self, exc_type, exc_value, traceback): + self._stderr.flush() + sys.stderr = self.old_stderr + # note: closing sys.stderr won't close it. + self._stderr.close() + +class emulate_nonposix: + """Context manager to emulate os.name != 'posix' """ + def __init__(self, osname='non-posix'): + self._new_name = osname + + def __enter__(self): + self._old_name = os.name + os.name = self._new_name + + def __exit__(self, exc_type, exc_value, traceback): + os.name = self._old_name + + +def test_exec_command_stdout(): + # Regression test for gh-2999 and gh-2915. + # There are several packages (nose, scipy.weave.inline, Sage inline + # Fortran) that replace stdout, in which case it doesn't have a fileno + # method. This is tested here, with a do-nothing command that fails if the + # presence of fileno() is assumed in exec_command. + + # The code has a special case for posix systems, so if we are on posix test + # both that the special case works and that the generic code works. + + # Test posix version: + with redirect_stdout(StringIO()): + with redirect_stderr(TemporaryFile()): + with assert_warns(DeprecationWarning): + exec_command.exec_command("cd '.'") + + if os.name == 'posix': + # Test general (non-posix) version: + with emulate_nonposix(): + with redirect_stdout(StringIO()): + with redirect_stderr(TemporaryFile()): + with assert_warns(DeprecationWarning): + exec_command.exec_command("cd '.'") + +def test_exec_command_stderr(): + # Test posix version: + with redirect_stdout(TemporaryFile(mode='w+')): + with redirect_stderr(StringIO()): + with assert_warns(DeprecationWarning): + exec_command.exec_command("cd '.'") + + if os.name == 'posix': + # Test general (non-posix) version: + with emulate_nonposix(): + with redirect_stdout(TemporaryFile()): + with redirect_stderr(StringIO()): + with assert_warns(DeprecationWarning): + exec_command.exec_command("cd '.'") + + +@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess") +class TestExecCommand: + def setup_method(self): + self.pyexe = get_pythonexe() + + def check_nt(self, **kws): + s, o = exec_command.exec_command('cmd /C echo path=%path%') + assert_(s == 0) + assert_(o != '') + + s, o = exec_command.exec_command( + '"%s" -c "import sys;sys.stderr.write(sys.platform)"' % self.pyexe) + assert_(s == 0) + assert_(o == 'win32') + + def check_posix(self, **kws): + s, o = exec_command.exec_command("echo Hello", **kws) + assert_(s == 0) + assert_(o == 'Hello') + + s, o = exec_command.exec_command('echo $AAA', **kws) + assert_(s == 0) + assert_(o == '') + + s, o = exec_command.exec_command('echo "$AAA"', AAA='Tere', **kws) + assert_(s == 0) + assert_(o == 'Tere') + + s, o = exec_command.exec_command('echo "$AAA"', **kws) + assert_(s == 0) + assert_(o == '') + + if 'BBB' not in os.environ: + os.environ['BBB'] = 'Hi' + s, o = exec_command.exec_command('echo "$BBB"', **kws) + assert_(s == 0) + assert_(o == 'Hi') + + s, o = exec_command.exec_command('echo "$BBB"', BBB='Hey', **kws) + assert_(s == 0) + assert_(o == 'Hey') + + s, o = exec_command.exec_command('echo "$BBB"', **kws) + assert_(s == 0) + assert_(o == 'Hi') + + del os.environ['BBB'] + + s, o = exec_command.exec_command('echo "$BBB"', **kws) + assert_(s == 0) + assert_(o == '') + + + s, o = exec_command.exec_command('this_is_not_a_command', **kws) + assert_(s != 0) + assert_(o != '') + + s, o = exec_command.exec_command('echo path=$PATH', **kws) + assert_(s == 0) + assert_(o != '') + + s, o = exec_command.exec_command( + '"%s" -c "import sys,os;sys.stderr.write(os.name)"' % + self.pyexe, **kws) + assert_(s == 0) + assert_(o == 'posix') + + def check_basic(self, *kws): + s, o = exec_command.exec_command( + '"%s" -c "raise \'Ignore me.\'"' % self.pyexe, **kws) + assert_(s != 0) + assert_(o != '') + + s, o = exec_command.exec_command( + '"%s" -c "import sys;sys.stderr.write(\'0\');' + 'sys.stderr.write(\'1\');sys.stderr.write(\'2\')"' % + self.pyexe, **kws) + assert_(s == 0) + assert_(o == '012') + + s, o = exec_command.exec_command( + '"%s" -c "import sys;sys.exit(15)"' % self.pyexe, **kws) + assert_(s == 15) + assert_(o == '') + + s, o = exec_command.exec_command( + '"%s" -c "print(\'Heipa\'")' % self.pyexe, **kws) + assert_(s == 0) + assert_(o == 'Heipa') + + def check_execute_in(self, **kws): + with tempdir() as tmpdir: + fn = "file" + tmpfile = os.path.join(tmpdir, fn) + with open(tmpfile, 'w') as f: + f.write('Hello') + + s, o = exec_command.exec_command( + '"%s" -c "f = open(\'%s\', \'r\'); f.close()"' % + (self.pyexe, fn), **kws) + assert_(s != 0) + assert_(o != '') + s, o = exec_command.exec_command( + '"%s" -c "f = open(\'%s\', \'r\'); print(f.read()); ' + 'f.close()"' % (self.pyexe, fn), execute_in=tmpdir, **kws) + assert_(s == 0) + assert_(o == 'Hello') + + def test_basic(self): + with redirect_stdout(StringIO()): + with redirect_stderr(StringIO()): + with assert_warns(DeprecationWarning): + if os.name == "posix": + self.check_posix(use_tee=0) + self.check_posix(use_tee=1) + elif os.name == "nt": + self.check_nt(use_tee=0) + self.check_nt(use_tee=1) + self.check_execute_in(use_tee=0) + self.check_execute_in(use_tee=1) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler.py new file mode 100644 index 0000000000000000000000000000000000000000..dd97f1e72afcba2ab379e5ff4dfce15341686534 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler.py @@ -0,0 +1,43 @@ +from numpy.testing import assert_ +import numpy.distutils.fcompiler + +customizable_flags = [ + ('f77', 'F77FLAGS'), + ('f90', 'F90FLAGS'), + ('free', 'FREEFLAGS'), + ('arch', 'FARCH'), + ('debug', 'FDEBUG'), + ('flags', 'FFLAGS'), + ('linker_so', 'LDFLAGS'), +] + + +def test_fcompiler_flags(monkeypatch): + monkeypatch.setenv('NPY_DISTUTILS_APPEND_FLAGS', '0') + fc = numpy.distutils.fcompiler.new_fcompiler(compiler='none') + flag_vars = fc.flag_vars.clone(lambda *args, **kwargs: None) + + for opt, envvar in customizable_flags: + new_flag = '-dummy-{}-flag'.format(opt) + prev_flags = getattr(flag_vars, opt) + + monkeypatch.setenv(envvar, new_flag) + new_flags = getattr(flag_vars, opt) + + monkeypatch.delenv(envvar) + assert_(new_flags == [new_flag]) + + monkeypatch.setenv('NPY_DISTUTILS_APPEND_FLAGS', '1') + + for opt, envvar in customizable_flags: + new_flag = '-dummy-{}-flag'.format(opt) + prev_flags = getattr(flag_vars, opt) + monkeypatch.setenv(envvar, new_flag) + new_flags = getattr(flag_vars, opt) + + monkeypatch.delenv(envvar) + if prev_flags is None: + assert_(new_flags == [new_flag]) + else: + assert_(new_flags == prev_flags + [new_flag]) + diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler_gnu.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler_gnu.py new file mode 100644 index 0000000000000000000000000000000000000000..0817ae58c2140e912eaf3d61e040050016dede54 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler_gnu.py @@ -0,0 +1,55 @@ +from numpy.testing import assert_ + +import numpy.distutils.fcompiler + +g77_version_strings = [ + ('GNU Fortran 0.5.25 20010319 (prerelease)', '0.5.25'), + ('GNU Fortran (GCC 3.2) 3.2 20020814 (release)', '3.2'), + ('GNU Fortran (GCC) 3.3.3 20040110 (prerelease) (Debian)', '3.3.3'), + ('GNU Fortran (GCC) 3.3.3 (Debian 20040401)', '3.3.3'), + ('GNU Fortran (GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-5)) 3.2.2' + ' 20030222 (Red Hat Linux 3.2.2-5)', '3.2.2'), +] + +gfortran_version_strings = [ + ('GNU Fortran 95 (GCC 4.0.3 20051023 (prerelease) (Debian 4.0.2-3))', + '4.0.3'), + ('GNU Fortran 95 (GCC) 4.1.0', '4.1.0'), + ('GNU Fortran 95 (GCC) 4.2.0 20060218 (experimental)', '4.2.0'), + ('GNU Fortran (GCC) 4.3.0 20070316 (experimental)', '4.3.0'), + ('GNU Fortran (rubenvb-4.8.0) 4.8.0', '4.8.0'), + ('4.8.0', '4.8.0'), + ('4.0.3-7', '4.0.3'), + ("gfortran: warning: couldn't understand kern.osversion '14.1.0\n4.9.1", + '4.9.1'), + ("gfortran: warning: couldn't understand kern.osversion '14.1.0\n" + "gfortran: warning: yet another warning\n4.9.1", + '4.9.1'), + ('GNU Fortran (crosstool-NG 8a21ab48) 7.2.0', '7.2.0') +] + +class TestG77Versions: + def test_g77_version(self): + fc = numpy.distutils.fcompiler.new_fcompiler(compiler='gnu') + for vs, version in g77_version_strings: + v = fc.version_match(vs) + assert_(v == version, (vs, v)) + + def test_not_g77(self): + fc = numpy.distutils.fcompiler.new_fcompiler(compiler='gnu') + for vs, _ in gfortran_version_strings: + v = fc.version_match(vs) + assert_(v is None, (vs, v)) + +class TestGFortranVersions: + def test_gfortran_version(self): + fc = numpy.distutils.fcompiler.new_fcompiler(compiler='gnu95') + for vs, version in gfortran_version_strings: + v = fc.version_match(vs) + assert_(v == version, (vs, v)) + + def test_not_gfortran(self): + fc = numpy.distutils.fcompiler.new_fcompiler(compiler='gnu95') + for vs, _ in g77_version_strings: + v = fc.version_match(vs) + assert_(v is None, (vs, v)) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler_intel.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler_intel.py new file mode 100644 index 0000000000000000000000000000000000000000..45c9cdac1910def6b5a50a60b4ab5c8e0092af18 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler_intel.py @@ -0,0 +1,30 @@ +import numpy.distutils.fcompiler +from numpy.testing import assert_ + + +intel_32bit_version_strings = [ + ("Intel(R) Fortran Intel(R) 32-bit Compiler Professional for applications" + "running on Intel(R) 32, Version 11.1", '11.1'), +] + +intel_64bit_version_strings = [ + ("Intel(R) Fortran IA-64 Compiler Professional for applications" + "running on IA-64, Version 11.0", '11.0'), + ("Intel(R) Fortran Intel(R) 64 Compiler Professional for applications" + "running on Intel(R) 64, Version 11.1", '11.1') +] + +class TestIntelFCompilerVersions: + def test_32bit_version(self): + fc = numpy.distutils.fcompiler.new_fcompiler(compiler='intel') + for vs, version in intel_32bit_version_strings: + v = fc.version_match(vs) + assert_(v == version) + + +class TestIntelEM64TFCompilerVersions: + def test_64bit_version(self): + fc = numpy.distutils.fcompiler.new_fcompiler(compiler='intelem') + for vs, version in intel_64bit_version_strings: + v = fc.version_match(vs) + assert_(v == version) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler_nagfor.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler_nagfor.py new file mode 100644 index 0000000000000000000000000000000000000000..2e04f5266dc1e9c5a15f130af5f9c596f8bd7ef9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_fcompiler_nagfor.py @@ -0,0 +1,22 @@ +from numpy.testing import assert_ +import numpy.distutils.fcompiler + +nag_version_strings = [('nagfor', 'NAG Fortran Compiler Release ' + '6.2(Chiyoda) Build 6200', '6.2'), + ('nagfor', 'NAG Fortran Compiler Release ' + '6.1(Tozai) Build 6136', '6.1'), + ('nagfor', 'NAG Fortran Compiler Release ' + '6.0(Hibiya) Build 1021', '6.0'), + ('nagfor', 'NAG Fortran Compiler Release ' + '5.3.2(971)', '5.3.2'), + ('nag', 'NAGWare Fortran 95 compiler Release 5.1' + '(347,355-367,375,380-383,389,394,399,401-402,407,' + '431,435,437,446,459-460,463,472,494,496,503,508,' + '511,517,529,555,557,565)', '5.1')] + +class TestNagFCompilerVersions: + def test_version_match(self): + for comp, vs, version in nag_version_strings: + fc = numpy.distutils.fcompiler.new_fcompiler(compiler=comp) + v = fc.version_match(vs) + assert_(v == version) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_from_template.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_from_template.py new file mode 100644 index 0000000000000000000000000000000000000000..5881754962996460a5900bb211d11411b554a48f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_from_template.py @@ -0,0 +1,44 @@ + +from numpy.distutils.from_template import process_str +from numpy.testing import assert_equal + + +pyf_src = """ +python module foo + <_rd=real,double precision> + interface + subroutine foosub(tol) + <_rd>, intent(in,out) :: tol + end subroutine foosub + end interface +end python module foo +""" + +expected_pyf = """ +python module foo + interface + subroutine sfoosub(tol) + real, intent(in,out) :: tol + end subroutine sfoosub + subroutine dfoosub(tol) + double precision, intent(in,out) :: tol + end subroutine dfoosub + end interface +end python module foo +""" + + +def normalize_whitespace(s): + """ + Remove leading and trailing whitespace, and convert internal + stretches of whitespace to a single space. + """ + return ' '.join(s.split()) + + +def test_from_template(): + """Regression test for gh-10712.""" + pyf = process_str(pyf_src) + normalized_pyf = normalize_whitespace(pyf) + normalized_expected_pyf = normalize_whitespace(expected_pyf) + assert_equal(normalized_pyf, normalized_expected_pyf) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_log.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_log.py new file mode 100644 index 0000000000000000000000000000000000000000..72fddf37370f1b5c81473a24c823a236f9f299bc --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_log.py @@ -0,0 +1,34 @@ +import io +import re +from contextlib import redirect_stdout + +import pytest + +from numpy.distutils import log + + +def setup_module(): + f = io.StringIO() # changing verbosity also logs here, capture that + with redirect_stdout(f): + log.set_verbosity(2, force=True) # i.e. DEBUG + + +def teardown_module(): + log.set_verbosity(0, force=True) # the default + + +r_ansi = re.compile(r"\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])") + + +@pytest.mark.parametrize("func_name", ["error", "warn", "info", "debug"]) +def test_log_prefix(func_name): + func = getattr(log, func_name) + msg = f"{func_name} message" + f = io.StringIO() + with redirect_stdout(f): + func(msg) + out = f.getvalue() + assert out # sanity check + clean_out = r_ansi.sub("", out) + line = next(line for line in clean_out.splitlines()) + assert line == f"{func_name.upper()}: {msg}" diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_mingw32ccompiler.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_mingw32ccompiler.py new file mode 100644 index 0000000000000000000000000000000000000000..ebedacb32448f4cab47b4931985a6417f18fd1f0 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_mingw32ccompiler.py @@ -0,0 +1,42 @@ +import shutil +import subprocess +import sys +import pytest + +from numpy.distutils import mingw32ccompiler + + +@pytest.mark.skipif(sys.platform != 'win32', reason='win32 only test') +def test_build_import(): + '''Test the mingw32ccompiler.build_import_library, which builds a + `python.a` from the MSVC `python.lib` + ''' + + # make sure `nm.exe` exists and supports the current python version. This + # can get mixed up when the PATH has a 64-bit nm but the python is 32-bit + try: + out = subprocess.check_output(['nm.exe', '--help']) + except FileNotFoundError: + pytest.skip("'nm.exe' not on path, is mingw installed?") + supported = out[out.find(b'supported targets:'):] + if sys.maxsize < 2**32: + if b'pe-i386' not in supported: + raise ValueError("'nm.exe' found but it does not support 32-bit " + "dlls when using 32-bit python. Supported " + "formats: '%s'" % supported) + elif b'pe-x86-64' not in supported: + raise ValueError("'nm.exe' found but it does not support 64-bit " + "dlls when using 64-bit python. Supported " + "formats: '%s'" % supported) + # Hide the import library to force a build + has_import_lib, fullpath = mingw32ccompiler._check_for_import_lib() + if has_import_lib: + shutil.move(fullpath, fullpath + '.bak') + + try: + # Whew, now we can actually test the function + mingw32ccompiler.build_import_library() + + finally: + if has_import_lib: + shutil.move(fullpath + '.bak', fullpath) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_misc_util.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_misc_util.py new file mode 100644 index 0000000000000000000000000000000000000000..605c80483b77fd4efa6f48ab8fd1bc6abd12e5a4 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_misc_util.py @@ -0,0 +1,82 @@ +from os.path import join, sep, dirname + +from numpy.distutils.misc_util import ( + appendpath, minrelpath, gpaths, get_shared_lib_extension, get_info + ) +from numpy.testing import ( + assert_, assert_equal + ) + +ajoin = lambda *paths: join(*((sep,)+paths)) + +class TestAppendpath: + + def test_1(self): + assert_equal(appendpath('prefix', 'name'), join('prefix', 'name')) + assert_equal(appendpath('/prefix', 'name'), ajoin('prefix', 'name')) + assert_equal(appendpath('/prefix', '/name'), ajoin('prefix', 'name')) + assert_equal(appendpath('prefix', '/name'), join('prefix', 'name')) + + def test_2(self): + assert_equal(appendpath('prefix/sub', 'name'), + join('prefix', 'sub', 'name')) + assert_equal(appendpath('prefix/sub', 'sup/name'), + join('prefix', 'sub', 'sup', 'name')) + assert_equal(appendpath('/prefix/sub', '/prefix/name'), + ajoin('prefix', 'sub', 'name')) + + def test_3(self): + assert_equal(appendpath('/prefix/sub', '/prefix/sup/name'), + ajoin('prefix', 'sub', 'sup', 'name')) + assert_equal(appendpath('/prefix/sub/sub2', '/prefix/sup/sup2/name'), + ajoin('prefix', 'sub', 'sub2', 'sup', 'sup2', 'name')) + assert_equal(appendpath('/prefix/sub/sub2', '/prefix/sub/sup/name'), + ajoin('prefix', 'sub', 'sub2', 'sup', 'name')) + +class TestMinrelpath: + + def test_1(self): + n = lambda path: path.replace('/', sep) + assert_equal(minrelpath(n('aa/bb')), n('aa/bb')) + assert_equal(minrelpath('..'), '..') + assert_equal(minrelpath(n('aa/..')), '') + assert_equal(minrelpath(n('aa/../bb')), 'bb') + assert_equal(minrelpath(n('aa/bb/..')), 'aa') + assert_equal(minrelpath(n('aa/bb/../..')), '') + assert_equal(minrelpath(n('aa/bb/../cc/../dd')), n('aa/dd')) + assert_equal(minrelpath(n('.././..')), n('../..')) + assert_equal(minrelpath(n('aa/bb/.././../dd')), n('dd')) + +class TestGpaths: + + def test_gpaths(self): + local_path = minrelpath(join(dirname(__file__), '..')) + ls = gpaths('command/*.py', local_path) + assert_(join(local_path, 'command', 'build_src.py') in ls, repr(ls)) + f = gpaths('system_info.py', local_path) + assert_(join(local_path, 'system_info.py') == f[0], repr(f)) + +class TestSharedExtension: + + def test_get_shared_lib_extension(self): + import sys + ext = get_shared_lib_extension(is_python_ext=False) + if sys.platform.startswith('linux'): + assert_equal(ext, '.so') + elif sys.platform.startswith('gnukfreebsd'): + assert_equal(ext, '.so') + elif sys.platform.startswith('darwin'): + assert_equal(ext, '.dylib') + elif sys.platform.startswith('win'): + assert_equal(ext, '.dll') + # just check for no crash + assert_(get_shared_lib_extension(is_python_ext=True)) + + +def test_installed_npymath_ini(): + # Regression test for gh-7707. If npymath.ini wasn't installed, then this + # will give an error. + info = get_info('npymath') + + assert isinstance(info, dict) + assert "define_macros" in info diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_npy_pkg_config.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_npy_pkg_config.py new file mode 100644 index 0000000000000000000000000000000000000000..b287ebe2e83209fdcf5add161a7af8d988b9d086 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_npy_pkg_config.py @@ -0,0 +1,84 @@ +import os + +from numpy.distutils.npy_pkg_config import read_config, parse_flags +from numpy.testing import temppath, assert_ + +simple = """\ +[meta] +Name = foo +Description = foo lib +Version = 0.1 + +[default] +cflags = -I/usr/include +libs = -L/usr/lib +""" +simple_d = {'cflags': '-I/usr/include', 'libflags': '-L/usr/lib', + 'version': '0.1', 'name': 'foo'} + +simple_variable = """\ +[meta] +Name = foo +Description = foo lib +Version = 0.1 + +[variables] +prefix = /foo/bar +libdir = ${prefix}/lib +includedir = ${prefix}/include + +[default] +cflags = -I${includedir} +libs = -L${libdir} +""" +simple_variable_d = {'cflags': '-I/foo/bar/include', 'libflags': '-L/foo/bar/lib', + 'version': '0.1', 'name': 'foo'} + +class TestLibraryInfo: + def test_simple(self): + with temppath('foo.ini') as path: + with open(path, 'w') as f: + f.write(simple) + pkg = os.path.splitext(path)[0] + out = read_config(pkg) + + assert_(out.cflags() == simple_d['cflags']) + assert_(out.libs() == simple_d['libflags']) + assert_(out.name == simple_d['name']) + assert_(out.version == simple_d['version']) + + def test_simple_variable(self): + with temppath('foo.ini') as path: + with open(path, 'w') as f: + f.write(simple_variable) + pkg = os.path.splitext(path)[0] + out = read_config(pkg) + + assert_(out.cflags() == simple_variable_d['cflags']) + assert_(out.libs() == simple_variable_d['libflags']) + assert_(out.name == simple_variable_d['name']) + assert_(out.version == simple_variable_d['version']) + out.vars['prefix'] = '/Users/david' + assert_(out.cflags() == '-I/Users/david/include') + +class TestParseFlags: + def test_simple_cflags(self): + d = parse_flags("-I/usr/include") + assert_(d['include_dirs'] == ['/usr/include']) + + d = parse_flags("-I/usr/include -DFOO") + assert_(d['include_dirs'] == ['/usr/include']) + assert_(d['macros'] == ['FOO']) + + d = parse_flags("-I /usr/include -DFOO") + assert_(d['include_dirs'] == ['/usr/include']) + assert_(d['macros'] == ['FOO']) + + def test_simple_lflags(self): + d = parse_flags("-L/usr/lib -lfoo -L/usr/lib -lbar") + assert_(d['library_dirs'] == ['/usr/lib', '/usr/lib']) + assert_(d['libraries'] == ['foo', 'bar']) + + d = parse_flags("-L /usr/lib -lfoo -L/usr/lib -lbar") + assert_(d['library_dirs'] == ['/usr/lib', '/usr/lib']) + assert_(d['libraries'] == ['foo', 'bar']) diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_shell_utils.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_shell_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..696d38ddd66a41ec5f51f4c93d26d3f0df29b483 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_shell_utils.py @@ -0,0 +1,79 @@ +import pytest +import subprocess +import json +import sys + +from numpy.distutils import _shell_utils +from numpy.testing import IS_WASM + +argv_cases = [ + [r'exe'], + [r'path/exe'], + [r'path\exe'], + [r'\\server\path\exe'], + [r'path to/exe'], + [r'path to\exe'], + + [r'exe', '--flag'], + [r'path/exe', '--flag'], + [r'path\exe', '--flag'], + [r'path to/exe', '--flag'], + [r'path to\exe', '--flag'], + + # flags containing literal quotes in their name + [r'path to/exe', '--flag-"quoted"'], + [r'path to\exe', '--flag-"quoted"'], + [r'path to/exe', '"--flag-quoted"'], + [r'path to\exe', '"--flag-quoted"'], +] + + +@pytest.fixture(params=[ + _shell_utils.WindowsParser, + _shell_utils.PosixParser +]) +def Parser(request): + return request.param + + +@pytest.fixture +def runner(Parser): + if Parser != _shell_utils.NativeParser: + pytest.skip('Unable to run with non-native parser') + + if Parser == _shell_utils.WindowsParser: + return lambda cmd: subprocess.check_output(cmd) + elif Parser == _shell_utils.PosixParser: + # posix has no non-shell string parsing + return lambda cmd: subprocess.check_output(cmd, shell=True) + else: + raise NotImplementedError + + +@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess") +@pytest.mark.parametrize('argv', argv_cases) +def test_join_matches_subprocess(Parser, runner, argv): + """ + Test that join produces strings understood by subprocess + """ + # invoke python to return its arguments as json + cmd = [ + sys.executable, '-c', + 'import json, sys; print(json.dumps(sys.argv[1:]))' + ] + joined = Parser.join(cmd + argv) + json_out = runner(joined).decode() + assert json.loads(json_out) == argv + + +@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess") +@pytest.mark.parametrize('argv', argv_cases) +def test_roundtrip(Parser, argv): + """ + Test that split is the inverse operation of join + """ + try: + joined = Parser.join(argv) + assert argv == Parser.split(joined) + except NotImplementedError: + pytest.skip("Not implemented") diff --git a/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_system_info.py b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_system_info.py new file mode 100644 index 0000000000000000000000000000000000000000..9bcc09050503e7f1bb3e94eecc902f512a9e42a1 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/numpy/distutils/tests/test_system_info.py @@ -0,0 +1,334 @@ +import os +import shutil +import pytest +from tempfile import mkstemp, mkdtemp +from subprocess import Popen, PIPE +import importlib.metadata +from distutils.errors import DistutilsError + +from numpy.testing import assert_, assert_equal, assert_raises +from numpy.distutils import ccompiler, customized_ccompiler +from numpy.distutils.system_info import system_info, ConfigParser, mkl_info +from numpy.distutils.system_info import AliasedOptionError +from numpy.distutils.system_info import default_lib_dirs, default_include_dirs +from numpy.distutils import _shell_utils + + +try: + if importlib.metadata.version('setuptools') >= '60': + # pkg-resources gives deprecation warnings, and there may be more + # issues. We only support setuptools <60 + pytest.skip("setuptools is too new", allow_module_level=True) +except importlib.metadata.PackageNotFoundError: + # we don't require `setuptools`; if it is not found, continue + pass + + +def get_class(name, notfound_action=1): + """ + notfound_action: + 0 - do nothing + 1 - display warning message + 2 - raise error + """ + cl = {'temp1': Temp1Info, + 'temp2': Temp2Info, + 'duplicate_options': DuplicateOptionInfo, + }.get(name.lower(), _system_info) + return cl() + +simple_site = """ +[ALL] +library_dirs = {dir1:s}{pathsep:s}{dir2:s} +libraries = {lib1:s},{lib2:s} +extra_compile_args = -I/fake/directory -I"/path with/spaces" -Os +runtime_library_dirs = {dir1:s} + +[temp1] +library_dirs = {dir1:s} +libraries = {lib1:s} +runtime_library_dirs = {dir1:s} + +[temp2] +library_dirs = {dir2:s} +libraries = {lib2:s} +extra_link_args = -Wl,-rpath={lib2_escaped:s} +rpath = {dir2:s} + +[duplicate_options] +mylib_libs = {lib1:s} +libraries = {lib2:s} +""" +site_cfg = simple_site + +fakelib_c_text = """ +/* This file is generated from numpy/distutils/testing/test_system_info.py */ +#include +void foo(void) { + printf("Hello foo"); +} +void bar(void) { + printf("Hello bar"); +} +""" + +def have_compiler(): + """ Return True if there appears to be an executable compiler + """ + compiler = customized_ccompiler() + try: + cmd = compiler.compiler # Unix compilers + except AttributeError: + try: + if not compiler.initialized: + compiler.initialize() # MSVC is different + except (DistutilsError, ValueError): + return False + cmd = [compiler.cc] + try: + p = Popen(cmd, stdout=PIPE, stderr=PIPE) + p.stdout.close() + p.stderr.close() + p.wait() + except OSError: + return False + return True + + +HAVE_COMPILER = have_compiler() + + +class _system_info(system_info): + + def __init__(self, + default_lib_dirs=default_lib_dirs, + default_include_dirs=default_include_dirs, + verbosity=1, + ): + self.__class__.info = {} + self.local_prefixes = [] + defaults = {'library_dirs': '', + 'include_dirs': '', + 'runtime_library_dirs': '', + 'rpath': '', + 'src_dirs': '', + 'search_static_first': "0", + 'extra_compile_args': '', + 'extra_link_args': ''} + self.cp = ConfigParser(defaults) + # We have to parse the config files afterwards + # to have a consistent temporary filepath + + def _check_libs(self, lib_dirs, libs, opt_libs, exts): + """Override _check_libs to return with all dirs """ + info = {'libraries': libs, 'library_dirs': lib_dirs} + return info + + +class Temp1Info(_system_info): + """For testing purposes""" + section = 'temp1' + + +class Temp2Info(_system_info): + """For testing purposes""" + section = 'temp2' + +class DuplicateOptionInfo(_system_info): + """For testing purposes""" + section = 'duplicate_options' + + +class TestSystemInfoReading: + + def setup_method(self): + """ Create the libraries """ + # Create 2 sources and 2 libraries + self._dir1 = mkdtemp() + self._src1 = os.path.join(self._dir1, 'foo.c') + self._lib1 = os.path.join(self._dir1, 'libfoo.so') + self._dir2 = mkdtemp() + self._src2 = os.path.join(self._dir2, 'bar.c') + self._lib2 = os.path.join(self._dir2, 'libbar.so') + # Update local site.cfg + global simple_site, site_cfg + site_cfg = simple_site.format(**{ + 'dir1': self._dir1, + 'lib1': self._lib1, + 'dir2': self._dir2, + 'lib2': self._lib2, + 'pathsep': os.pathsep, + 'lib2_escaped': _shell_utils.NativeParser.join([self._lib2]) + }) + # Write site.cfg + fd, self._sitecfg = mkstemp() + os.close(fd) + with open(self._sitecfg, 'w') as fd: + fd.write(site_cfg) + # Write the sources + with open(self._src1, 'w') as fd: + fd.write(fakelib_c_text) + with open(self._src2, 'w') as fd: + fd.write(fakelib_c_text) + # We create all class-instances + + def site_and_parse(c, site_cfg): + c.files = [site_cfg] + c.parse_config_files() + return c + self.c_default = site_and_parse(get_class('default'), self._sitecfg) + self.c_temp1 = site_and_parse(get_class('temp1'), self._sitecfg) + self.c_temp2 = site_and_parse(get_class('temp2'), self._sitecfg) + self.c_dup_options = site_and_parse(get_class('duplicate_options'), + self._sitecfg) + + def teardown_method(self): + # Do each removal separately + try: + shutil.rmtree(self._dir1) + except Exception: + pass + try: + shutil.rmtree(self._dir2) + except Exception: + pass + try: + os.remove(self._sitecfg) + except Exception: + pass + + def test_all(self): + # Read in all information in the ALL block + tsi = self.c_default + assert_equal(tsi.get_lib_dirs(), [self._dir1, self._dir2]) + assert_equal(tsi.get_libraries(), [self._lib1, self._lib2]) + assert_equal(tsi.get_runtime_lib_dirs(), [self._dir1]) + extra = tsi.calc_extra_info() + assert_equal(extra['extra_compile_args'], ['-I/fake/directory', '-I/path with/spaces', '-Os']) + + def test_temp1(self): + # Read in all information in the temp1 block + tsi = self.c_temp1 + assert_equal(tsi.get_lib_dirs(), [self._dir1]) + assert_equal(tsi.get_libraries(), [self._lib1]) + assert_equal(tsi.get_runtime_lib_dirs(), [self._dir1]) + + def test_temp2(self): + # Read in all information in the temp2 block + tsi = self.c_temp2 + assert_equal(tsi.get_lib_dirs(), [self._dir2]) + assert_equal(tsi.get_libraries(), [self._lib2]) + # Now from rpath and not runtime_library_dirs + assert_equal(tsi.get_runtime_lib_dirs(key='rpath'), [self._dir2]) + extra = tsi.calc_extra_info() + assert_equal(extra['extra_link_args'], ['-Wl,-rpath=' + self._lib2]) + + def test_duplicate_options(self): + # Ensure that duplicates are raising an AliasedOptionError + tsi = self.c_dup_options + assert_raises(AliasedOptionError, tsi.get_option_single, "mylib_libs", "libraries") + assert_equal(tsi.get_libs("mylib_libs", [self._lib1]), [self._lib1]) + assert_equal(tsi.get_libs("libraries", [self._lib2]), [self._lib2]) + + @pytest.mark.skipif(not HAVE_COMPILER, reason="Missing compiler") + def test_compile1(self): + # Compile source and link the first source + c = customized_ccompiler() + previousDir = os.getcwd() + try: + # Change directory to not screw up directories + os.chdir(self._dir1) + c.compile([os.path.basename(self._src1)], output_dir=self._dir1) + # Ensure that the object exists + assert_(os.path.isfile(self._src1.replace('.c', '.o')) or + os.path.isfile(self._src1.replace('.c', '.obj'))) + finally: + os.chdir(previousDir) + + @pytest.mark.skipif(not HAVE_COMPILER, reason="Missing compiler") + @pytest.mark.skipif('msvc' in repr(ccompiler.new_compiler()), + reason="Fails with MSVC compiler ") + def test_compile2(self): + # Compile source and link the second source + tsi = self.c_temp2 + c = customized_ccompiler() + extra_link_args = tsi.calc_extra_info()['extra_link_args'] + previousDir = os.getcwd() + try: + # Change directory to not screw up directories + os.chdir(self._dir2) + c.compile([os.path.basename(self._src2)], output_dir=self._dir2, + extra_postargs=extra_link_args) + # Ensure that the object exists + assert_(os.path.isfile(self._src2.replace('.c', '.o'))) + finally: + os.chdir(previousDir) + + HAS_MKL = "mkl_rt" in mkl_info().calc_libraries_info().get("libraries", []) + + @pytest.mark.xfail(HAS_MKL, reason=("`[DEFAULT]` override doesn't work if " + "numpy is built with MKL support")) + def test_overrides(self): + previousDir = os.getcwd() + cfg = os.path.join(self._dir1, 'site.cfg') + shutil.copy(self._sitecfg, cfg) + try: + os.chdir(self._dir1) + # Check that the '[ALL]' section does not override + # missing values from other sections + info = mkl_info() + lib_dirs = info.cp['ALL']['library_dirs'].split(os.pathsep) + assert info.get_lib_dirs() != lib_dirs + + # But if we copy the values to a '[mkl]' section the value + # is correct + with open(cfg) as fid: + mkl = fid.read().replace('[ALL]', '[mkl]', 1) + with open(cfg, 'w') as fid: + fid.write(mkl) + info = mkl_info() + assert info.get_lib_dirs() == lib_dirs + + # Also, the values will be taken from a section named '[DEFAULT]' + with open(cfg) as fid: + dflt = fid.read().replace('[mkl]', '[DEFAULT]', 1) + with open(cfg, 'w') as fid: + fid.write(dflt) + info = mkl_info() + assert info.get_lib_dirs() == lib_dirs + finally: + os.chdir(previousDir) + + +def test_distutils_parse_env_order(monkeypatch): + from numpy.distutils.system_info import _parse_env_order + env = 'NPY_TESTS_DISTUTILS_PARSE_ENV_ORDER' + + base_order = list('abcdef') + + monkeypatch.setenv(env, 'b,i,e,f') + order, unknown = _parse_env_order(base_order, env) + assert len(order) == 3 + assert order == list('bef') + assert len(unknown) == 1 + + # For when LAPACK/BLAS optimization is disabled + monkeypatch.setenv(env, '') + order, unknown = _parse_env_order(base_order, env) + assert len(order) == 0 + assert len(unknown) == 0 + + for prefix in '^!': + monkeypatch.setenv(env, f'{prefix}b,i,e') + order, unknown = _parse_env_order(base_order, env) + assert len(order) == 4 + assert order == list('acdf') + assert len(unknown) == 1 + + with pytest.raises(ValueError): + monkeypatch.setenv(env, 'b,^e,i') + _parse_env_order(base_order, env) + + with pytest.raises(ValueError): + monkeypatch.setenv(env, '!b,^e,i') + _parse_env_order(base_order, env)