applied-ai-018 commited on
Commit
3b4cdca
·
verified ·
1 Parent(s): a518955

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Double_compositeimplicitautograd_dispatch.h +23 -0
  2. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_physical.h +39 -0
  3. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_coo_to_csr_ops.h +39 -0
  4. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution_mode_ops.h +28 -0
  5. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_backward.h +91 -0
  6. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_per_sample_weights_backward_native.h +23 -0
  7. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_atan_cuda_dispatch.h +24 -0
  8. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_cos_ops.h +50 -0
  9. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_lgamma.h +44 -0
  10. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_zero.h +44 -0
  11. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_backward.h +39 -0
  12. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_lstm_cell_backward_impl_ops.h +39 -0
  13. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsr.h +34 -0
  14. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_unique_compositeexplicitautograd_dispatch.h +24 -0
  15. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_meta_dispatch.h +28 -0
  16. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_interface_backward.h +39 -0
  17. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/abs_cuda_dispatch.h +24 -0
  18. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/add_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
  19. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/as_strided_scatter_ops.h +39 -0
  20. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/baddbmm_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
  21. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_not_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
  22. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/blackman_window_compositeexplicitautograd_dispatch.h +30 -0
  23. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/chalf_ops.h +28 -0
  24. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/clamp_meta_dispatch.h +30 -0
  25. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/concatenate_ops.h +61 -0
  26. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cosh_native.h +23 -0
  27. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cosh_ops.h +50 -0
  28. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/count_nonzero.h +53 -0
  29. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cross_entropy_loss_compositeimplicitautograd_dispatch.h +24 -0
  30. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/diag.h +39 -0
  31. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_copy_compositeexplicitautograd_dispatch.h +24 -0
  32. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/exp2_cpu_dispatch.h +26 -0
  33. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fill_native.h +33 -0
  34. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/flip_cuda_dispatch.h +23 -0
  35. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/gelu_native.h +31 -0
  36. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/isreal_native.h +21 -0
  37. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lgamma_meta.h +27 -0
  38. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigvals_native.h +22 -0
  39. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_ex_meta.h +27 -0
  40. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_ex_meta_dispatch.h +25 -0
  41. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linspace_compositeexplicitautograd_dispatch.h +36 -0
  42. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lshift_meta_dispatch.h +24 -0
  43. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/margin_ranking_loss_ops.h +28 -0
  44. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/matrix_power.h +39 -0
  45. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool2d.h +91 -0
  46. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/miopen_depthwise_convolution_ops.h +39 -0
  47. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/miopen_rnn.h +39 -0
  48. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/multinomial.h +39 -0
  49. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/negative.h +44 -0
  50. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/nll_loss2d_backward_cpu_dispatch.h +28 -0
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Double_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor _cast_Double(const at::Tensor & self, bool non_blocking=false);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_physical.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_conj_physical_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_conj_physical(Tensor self) -> Tensor
26
+ inline at::Tensor _conj_physical(const at::Tensor & self) {
27
+ return at::_ops::_conj_physical::call(self);
28
+ }
29
+
30
+ // aten::_conj_physical.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & _conj_physical_out(at::Tensor & out, const at::Tensor & self) {
32
+ return at::_ops::_conj_physical_out::call(self, out);
33
+ }
34
+ // aten::_conj_physical.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & _conj_physical_outf(const at::Tensor & self, at::Tensor & out) {
36
+ return at::_ops::_conj_physical_out::call(self, out);
37
+ }
38
+
39
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_coo_to_csr_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _convert_indices_from_coo_to_csr {
18
+ using schema = at::Tensor (const at::Tensor &, int64_t, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_convert_indices_from_coo_to_csr")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_convert_indices_from_coo_to_csr(Tensor self, int size, *, bool out_int32=False) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, int64_t size, bool out_int32);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t size, bool out_int32);
26
+ };
27
+
28
+ struct TORCH_API _convert_indices_from_coo_to_csr_out {
29
+ using schema = at::Tensor & (const at::Tensor &, int64_t, bool, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_convert_indices_from_coo_to_csr")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_convert_indices_from_coo_to_csr.out(Tensor self, int size, *, bool out_int32=False, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, int64_t size, bool out_int32, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t size, bool out_int32, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution_mode_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _convolution_mode {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const c10::optional<at::Tensor> &, c10::SymIntArrayRef, c10::string_view, c10::SymIntArrayRef, c10::SymInt);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_convolution_mode")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_convolution_mode(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, str padding, SymInt[] dilation, SymInt groups) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation, c10::SymInt groups);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation, c10::SymInt groups);
26
+ };
27
+
28
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_cudnn_rnn_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_cudnn_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[])
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
27
+ return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
32
+ return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask);
33
+ }
34
+ }
35
+
36
+ // aten::_cudnn_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[])
37
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward_symint(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
38
+ return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
43
+ return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask);
44
+ }
45
+ }
46
+
47
+ // aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
48
+ inline void _cudnn_rnn_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
49
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ void _cudnn_rnn_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
54
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
55
+ }
56
+ }
57
+
58
+ // aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
59
+ inline void _cudnn_rnn_backward_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
60
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ void _cudnn_rnn_backward_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
65
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
66
+ }
67
+ }
68
+
69
+ // aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
70
+ inline void _cudnn_rnn_backward_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
71
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ void _cudnn_rnn_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
76
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
77
+ }
78
+ }
79
+
80
+ // aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
81
+ inline void _cudnn_rnn_backward_symint_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
82
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ void _cudnn_rnn_backward_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
87
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
88
+ }
89
+ }
90
+
91
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_per_sample_weights_backward_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _embedding_bag_per_sample_weights_backward_out(const at::Tensor & grad, const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, int64_t mode, int64_t padding_idx, at::Tensor & out);
20
+ TORCH_API at::Tensor _embedding_bag_per_sample_weights_backward_cpu(const at::Tensor & grad, const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, int64_t mode, int64_t padding_idx=-1);
21
+ TORCH_API at::Tensor _embedding_bag_per_sample_weights_backward_cuda(const at::Tensor & grad, const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, int64_t mode, int64_t padding_idx=-1);
22
+ } // namespace native
23
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_atan_cuda_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_atan(at::TensorList self);
21
+ TORCH_API void _foreach_atan_(at::TensorList self);
22
+
23
+ } // namespace cuda
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_cos_ops.h ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _foreach_cos {
18
+ using schema = ::std::vector<at::Tensor> (at::TensorList);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_cos")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_cos(Tensor[] self) -> Tensor[]")
24
+ static ::std::vector<at::Tensor> call(at::TensorList self);
25
+ static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
26
+ };
27
+
28
+ struct TORCH_API _foreach_cos_ {
29
+ using schema = void (at::TensorList);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_cos_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_cos_(Tensor(a!)[] self) -> ()")
35
+ static void call(at::TensorList self);
36
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
37
+ };
38
+
39
+ struct TORCH_API _foreach_cos_out {
40
+ using schema = void (at::TensorList, at::TensorList);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_cos")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_cos.out(Tensor[] self, *, Tensor(a!)[] out) -> ()")
46
+ static void call(at::TensorList self, at::TensorList out);
47
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList out);
48
+ };
49
+
50
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_lgamma.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_foreach_lgamma_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_foreach_lgamma(Tensor[] self) -> Tensor[]
26
+ inline ::std::vector<at::Tensor> _foreach_lgamma(at::TensorList self) {
27
+ return at::_ops::_foreach_lgamma::call(self);
28
+ }
29
+
30
+ // aten::_foreach_lgamma_(Tensor(a!)[] self) -> ()
31
+ inline void _foreach_lgamma_(at::TensorList self) {
32
+ return at::_ops::_foreach_lgamma_::call(self);
33
+ }
34
+
35
+ // aten::_foreach_lgamma.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
36
+ inline void _foreach_lgamma_out(at::TensorList out, at::TensorList self) {
37
+ return at::_ops::_foreach_lgamma_out::call(self, out);
38
+ }
39
+ // aten::_foreach_lgamma.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
40
+ inline void _foreach_lgamma_outf(at::TensorList self, at::TensorList out) {
41
+ return at::_ops::_foreach_lgamma_out::call(self, out);
42
+ }
43
+
44
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_zero.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_foreach_zero_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_foreach_zero_(Tensor(a!)[] self) -> ()
26
+ inline void _foreach_zero_(at::TensorList self) {
27
+ return at::_ops::_foreach_zero_::call(self);
28
+ }
29
+
30
+ // aten::_foreach_zero.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
31
+ inline void _foreach_zero_out(at::TensorList out, at::TensorList self) {
32
+ return at::_ops::_foreach_zero_out::call(self, out);
33
+ }
34
+ // aten::_foreach_zero.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
35
+ inline void _foreach_zero_outf(at::TensorList self, at::TensorList out) {
36
+ return at::_ops::_foreach_zero_out::call(self, out);
37
+ }
38
+
39
+ // aten::_foreach_zero(Tensor[] self) -> Tensor[] self_out
40
+ inline ::std::vector<at::Tensor> _foreach_zero(at::TensorList self) {
41
+ return at::_ops::_foreach_zero::call(self);
42
+ }
43
+
44
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_backward.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_sparse_sum_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_sparse_sum_backward(Tensor grad, Tensor self, int[] dim) -> Tensor
26
+ inline at::Tensor _sparse_sum_backward(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dim) {
27
+ return at::_ops::_sparse_sum_backward::call(grad, self, dim);
28
+ }
29
+
30
+ // aten::_sparse_sum_backward.out(Tensor grad, Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & _sparse_sum_backward_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dim) {
32
+ return at::_ops::_sparse_sum_backward_out::call(grad, self, dim, out);
33
+ }
34
+ // aten::_sparse_sum_backward.out(Tensor grad, Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & _sparse_sum_backward_outf(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dim, at::Tensor & out) {
36
+ return at::_ops::_sparse_sum_backward_out::call(grad, self, dim, out);
37
+ }
38
+
39
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_lstm_cell_backward_impl_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _thnn_fused_lstm_cell_backward_impl {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor> (const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, const at::Tensor &, const at::Tensor &, const at::Tensor &, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_thnn_fused_lstm_cell_backward_impl")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_thnn_fused_lstm_cell_backward_impl(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor)")
24
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> call(const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias);
25
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias);
26
+ };
27
+
28
+ struct TORCH_API _thnn_fused_lstm_cell_backward_impl_out {
29
+ using schema = ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> (const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, const at::Tensor &, const at::Tensor &, const at::Tensor &, bool, at::Tensor &, at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_thnn_fused_lstm_cell_backward_impl")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_thnn_fused_lstm_cell_backward_impl.out(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))")
35
+ static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> call(const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
36
+ static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
37
+ };
38
+
39
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsr.h ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_to_sparse_bsr_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_to_sparse_bsr.out(Tensor self, int[2] blocksize, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & _to_sparse_bsr_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim=c10::nullopt) {
27
+ return at::_ops::_to_sparse_bsr_out::call(self, blocksize, dense_dim, out);
28
+ }
29
+ // aten::_to_sparse_bsr.out(Tensor self, int[2] blocksize, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)
30
+ inline at::Tensor & _to_sparse_bsr_outf(const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim, at::Tensor & out) {
31
+ return at::_ops::_to_sparse_bsr_out::call(self, blocksize, dense_dim, out);
32
+ }
33
+
34
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_unique_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _unique_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & self, bool sorted=true, bool return_inverse=false);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _unique_outf(const at::Tensor & self, bool sorted, bool return_inverse, at::Tensor & out0, at::Tensor & out1);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_meta_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor _upsample_nearest_exact2d(const at::Tensor & self, at::IntArrayRef output_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
21
+ TORCH_API at::Tensor _upsample_nearest_exact2d_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
22
+ TORCH_API at::Tensor & _upsample_nearest_exact2d_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
23
+ TORCH_API at::Tensor & _upsample_nearest_exact2d_outf(const at::Tensor & self, at::IntArrayRef output_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
24
+ TORCH_API at::Tensor & _upsample_nearest_exact2d_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
25
+ TORCH_API at::Tensor & _upsample_nearest_exact2d_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
26
+
27
+ } // namespace meta
28
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_interface_backward.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_weight_norm_interface_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_weight_norm_interface_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor> _weight_norm_interface_backward(const at::Tensor & grad_w, const at::Tensor & saved_v, const at::Tensor & saved_g, const at::Tensor & saved_norms, int64_t dim) {
27
+ return at::_ops::_weight_norm_interface_backward::call(grad_w, saved_v, saved_g, saved_norms, dim);
28
+ }
29
+
30
+ // aten::_weight_norm_interface_backward.out(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &> _weight_norm_interface_backward_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & grad_w, const at::Tensor & saved_v, const at::Tensor & saved_g, const at::Tensor & saved_norms, int64_t dim) {
32
+ return at::_ops::_weight_norm_interface_backward_out::call(grad_w, saved_v, saved_g, saved_norms, dim, out0, out1);
33
+ }
34
+ // aten::_weight_norm_interface_backward.out(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &> _weight_norm_interface_backward_outf(const at::Tensor & grad_w, const at::Tensor & saved_v, const at::Tensor & saved_g, const at::Tensor & saved_norms, int64_t dim, at::Tensor & out0, at::Tensor & out1) {
36
+ return at::_ops::_weight_norm_interface_backward_out::call(grad_w, saved_v, saved_g, saved_norms, dim, out0, out1);
37
+ }
38
+
39
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/abs_cuda_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor & abs_out(at::Tensor & out, const at::Tensor & self);
21
+ TORCH_API at::Tensor & abs_outf(const at::Tensor & self, at::Tensor & out);
22
+
23
+ } // namespace cuda
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/add_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor add(const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha=1);
21
+ TORCH_API at::Tensor & add_(at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha=1);
22
+
23
+ } // namespace compositeexplicitautogradnonfunctional
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/as_strided_scatter_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API as_strided_scatter {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::optional<c10::SymInt>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::as_strided_scatter")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "as_strided_scatter(Tensor self, Tensor src, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & src, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & src, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset);
26
+ };
27
+
28
+ struct TORCH_API as_strided_scatter_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::optional<c10::SymInt>, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::as_strided_scatter")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "as_strided_scatter.out(Tensor self, Tensor src, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & src, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & src, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/baddbmm_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor baddbmm(const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
21
+ TORCH_API at::Tensor & baddbmm_(at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
22
+
23
+ } // namespace compositeexplicitautogradnonfunctional
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_not_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor bitwise_not(const at::Tensor & self);
21
+ TORCH_API at::Tensor & bitwise_not_(at::Tensor & self);
22
+
23
+ } // namespace compositeexplicitautogradnonfunctional
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/blackman_window_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor blackman_window(int64_t window_length, at::TensorOptions options={});
21
+ TORCH_API at::Tensor blackman_window(int64_t window_length, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
22
+ TORCH_API at::Tensor & blackman_window_out(at::Tensor & out, int64_t window_length);
23
+ TORCH_API at::Tensor & blackman_window_outf(int64_t window_length, at::Tensor & out);
24
+ TORCH_API at::Tensor blackman_window(int64_t window_length, bool periodic, at::TensorOptions options={});
25
+ TORCH_API at::Tensor blackman_window(int64_t window_length, bool periodic, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
26
+ TORCH_API at::Tensor & blackman_window_out(at::Tensor & out, int64_t window_length, bool periodic);
27
+ TORCH_API at::Tensor & blackman_window_outf(int64_t window_length, bool periodic, at::Tensor & out);
28
+
29
+ } // namespace compositeexplicitautograd
30
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/chalf_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API chalf {
18
+ using schema = at::Tensor (const at::Tensor &, c10::optional<at::MemoryFormat>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::chalf")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "chalf(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format);
26
+ };
27
+
28
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/clamp_meta_dispatch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor clamp(const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
21
+ TORCH_API at::Tensor & clamp_out(at::Tensor & out, const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
22
+ TORCH_API at::Tensor & clamp_outf(const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max, at::Tensor & out);
23
+ TORCH_API at::Tensor & clamp_(at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
24
+ TORCH_API at::Tensor clamp(const at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
25
+ TORCH_API at::Tensor & clamp_out(at::Tensor & out, const at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
26
+ TORCH_API at::Tensor & clamp_outf(const at::Tensor & self, const c10::optional<at::Tensor> & min, const c10::optional<at::Tensor> & max, at::Tensor & out);
27
+ TORCH_API at::Tensor & clamp_(at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
28
+
29
+ } // namespace meta
30
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/concatenate_ops.h ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API concatenate {
18
+ using schema = at::Tensor (at::TensorList, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concatenate")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concatenate(Tensor[] tensors, int dim=0) -> Tensor")
24
+ static at::Tensor call(at::TensorList tensors, int64_t dim);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, int64_t dim);
26
+ };
27
+
28
+ struct TORCH_API concatenate_out {
29
+ using schema = at::Tensor & (at::TensorList, int64_t, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concatenate")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concatenate.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(at::TensorList tensors, int64_t dim, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, int64_t dim, at::Tensor & out);
37
+ };
38
+
39
+ struct TORCH_API concatenate_names {
40
+ using schema = at::Tensor (at::TensorList, at::Dimname);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concatenate")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "names")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concatenate.names(Tensor[] tensors, Dimname dim) -> Tensor")
46
+ static at::Tensor call(at::TensorList tensors, at::Dimname dim);
47
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, at::Dimname dim);
48
+ };
49
+
50
+ struct TORCH_API concatenate_names_out {
51
+ using schema = at::Tensor & (at::TensorList, at::Dimname, at::Tensor &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concatenate")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "names_out")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concatenate.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)")
57
+ static at::Tensor & call(at::TensorList tensors, at::Dimname dim, at::Tensor & out);
58
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, at::Dimname dim, at::Tensor & out);
59
+ };
60
+
61
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cosh_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/cosh_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_cosh_out : public at::meta::structured_cosh {
20
+ void impl(const at::Tensor & self, const at::Tensor & out);
21
+ };
22
+ } // namespace native
23
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cosh_ops.h ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API cosh {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cosh")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cosh(Tensor self) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
26
+ };
27
+
28
+ struct TORCH_API cosh_ {
29
+ using schema = at::Tensor & (at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cosh_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cosh_(Tensor(a!) self) -> Tensor(a!)")
35
+ static at::Tensor & call(at::Tensor & self);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self);
37
+ };
38
+
39
+ struct TORCH_API cosh_out {
40
+ using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cosh")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
46
+ static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
47
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
48
+ };
49
+
50
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/count_nonzero.h ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/count_nonzero_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::count_nonzero.dim_IntList(Tensor self, int[] dim) -> Tensor
26
+ inline at::Tensor count_nonzero(const at::Tensor & self, at::IntArrayRef dim) {
27
+ return at::_ops::count_nonzero_dim_IntList::call(self, dim);
28
+ }
29
+
30
+ // aten::count_nonzero(Tensor self, int? dim=None) -> Tensor
31
+ inline at::Tensor count_nonzero(const at::Tensor & self, c10::optional<int64_t> dim=c10::nullopt) {
32
+ return at::_ops::count_nonzero::call(self, dim);
33
+ }
34
+
35
+ // aten::count_nonzero.dim_IntList_out(Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)
36
+ inline at::Tensor & count_nonzero_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim) {
37
+ return at::_ops::count_nonzero_dim_IntList_out::call(self, dim, out);
38
+ }
39
+ // aten::count_nonzero.dim_IntList_out(Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & count_nonzero_outf(const at::Tensor & self, at::IntArrayRef dim, at::Tensor & out) {
41
+ return at::_ops::count_nonzero_dim_IntList_out::call(self, dim, out);
42
+ }
43
+
44
+ // aten::count_nonzero.out(Tensor self, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)
45
+ inline at::Tensor & count_nonzero_out(at::Tensor & out, const at::Tensor & self, c10::optional<int64_t> dim=c10::nullopt) {
46
+ return at::_ops::count_nonzero_out::call(self, dim, out);
47
+ }
48
+ // aten::count_nonzero.out(Tensor self, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)
49
+ inline at::Tensor & count_nonzero_outf(const at::Tensor & self, c10::optional<int64_t> dim, at::Tensor & out) {
50
+ return at::_ops::count_nonzero_out::call(self, dim, out);
51
+ }
52
+
53
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cross_entropy_loss_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor cross_entropy_loss(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight={}, int64_t reduction=at::Reduction::Mean, int64_t ignore_index=-100, double label_smoothing=0.0);
21
+ TORCH_API at::Tensor cross_entropy_loss_symint(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight={}, int64_t reduction=at::Reduction::Mean, c10::SymInt ignore_index=-100, double label_smoothing=0.0);
22
+
23
+ } // namespace compositeimplicitautograd
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/diag.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/diag_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::diag.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & diag_out(at::Tensor & out, const at::Tensor & self, int64_t diagonal=0) {
27
+ return at::_ops::diag_out::call(self, diagonal, out);
28
+ }
29
+ // aten::diag.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
30
+ inline at::Tensor & diag_outf(const at::Tensor & self, int64_t diagonal, at::Tensor & out) {
31
+ return at::_ops::diag_out::call(self, diagonal, out);
32
+ }
33
+
34
+ // aten::diag(Tensor self, int diagonal=0) -> Tensor
35
+ inline at::Tensor diag(const at::Tensor & self, int64_t diagonal=0) {
36
+ return at::_ops::diag::call(self, diagonal);
37
+ }
38
+
39
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_copy_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & diagonal_copy_out(at::Tensor & out, const at::Tensor & self, int64_t offset=0, int64_t dim1=0, int64_t dim2=1);
21
+ TORCH_API at::Tensor & diagonal_copy_outf(const at::Tensor & self, int64_t offset, int64_t dim1, int64_t dim2, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/exp2_cpu_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor exp2(const at::Tensor & self);
21
+ TORCH_API at::Tensor & exp2_out(at::Tensor & out, const at::Tensor & self);
22
+ TORCH_API at::Tensor & exp2_outf(const at::Tensor & self, at::Tensor & out);
23
+ TORCH_API at::Tensor & exp2_(at::Tensor & self);
24
+
25
+ } // namespace cpu
26
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fill_native.h ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor fill(const at::Tensor & self, const at::Scalar & value);
20
+ TORCH_API at::Tensor & fill_Scalar_out(const at::Tensor & self, const at::Scalar & value, at::Tensor & out);
21
+ TORCH_API at::Tensor & fill_(at::Tensor & self, const at::Scalar & value);
22
+ TORCH_API at::Tensor & fill_nested_(at::Tensor & self, const at::Scalar & value);
23
+ TORCH_API at::Tensor & fill_sparse_csr_(at::Tensor & self, const at::Scalar & value);
24
+ TORCH_API at::Tensor & fill_meta_(at::Tensor & self, const at::Scalar & value);
25
+ TORCH_API at::Tensor & fill_quantized_(at::Tensor & self, const at::Scalar & value);
26
+ TORCH_API at::Tensor fill(const at::Tensor & self, const at::Tensor & value);
27
+ TORCH_API at::Tensor & fill_Tensor_out(const at::Tensor & self, const at::Tensor & value, at::Tensor & out);
28
+ TORCH_API at::Tensor & fill_(at::Tensor & self, const at::Tensor & value);
29
+ TORCH_API at::Tensor & fill_nested_(at::Tensor & self, const at::Tensor & value);
30
+ TORCH_API at::Tensor & fill_meta_(at::Tensor & self, const at::Tensor & value);
31
+ TORCH_API at::Tensor & fill_quantized_(at::Tensor & self, const at::Tensor & value);
32
+ } // namespace native
33
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/flip_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor flip(const at::Tensor & self, at::IntArrayRef dims);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/gelu_native.h ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/gelu_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_gelu_out_cpu : public at::meta::structured_gelu {
20
+ void impl(const at::Tensor & self, c10::string_view approximate, const at::Tensor & out);
21
+ };
22
+ struct TORCH_API structured_gelu_out_cuda : public at::meta::structured_gelu {
23
+ void impl(const at::Tensor & self, c10::string_view approximate, const at::Tensor & out);
24
+ };
25
+ TORCH_API at::Tensor NestedTensor_gelu(const at::Tensor & self, c10::string_view approximate="none");
26
+ TORCH_API at::Tensor & NestedTensor_gelu_(at::Tensor & self, c10::string_view approximate="none");
27
+ TORCH_API at::Tensor mkldnn_gelu(const at::Tensor & self, c10::string_view approximate="none");
28
+ TORCH_API at::Tensor gelu_quantized_cpu(const at::Tensor & self, c10::string_view approximate="none");
29
+ TORCH_API at::Tensor gelu_quantized_cuda(const at::Tensor & self, c10::string_view approximate="none");
30
+ } // namespace native
31
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/isreal_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor isreal(const at::Tensor & self);
20
+ } // namespace native
21
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lgamma_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_lgamma : public TensorIteratorBase {
21
+
22
+
23
+ void meta(const at::Tensor & self);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigvals_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor linalg_eigvals(const at::Tensor & self);
20
+ TORCH_API at::Tensor & linalg_eigvals_out(const at::Tensor & self, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_ex_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_linalg_ldl_factor_ex : public at::impl::MetaBase {
21
+
22
+
23
+ void meta(const at::Tensor & self, bool hermitian, bool check_errors);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_ex_meta_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> linalg_ldl_factor_ex(const at::Tensor & self, bool hermitian=false, bool check_errors=false);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> linalg_ldl_factor_ex_out(at::Tensor & LD, at::Tensor & pivots, at::Tensor & info, const at::Tensor & self, bool hermitian=false, bool check_errors=false);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> linalg_ldl_factor_ex_outf(const at::Tensor & self, bool hermitian, bool check_errors, at::Tensor & LD, at::Tensor & pivots, at::Tensor & info);
23
+
24
+ } // namespace meta
25
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linspace_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor linspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, at::TensorOptions options={});
21
+ TORCH_API at::Tensor linspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
22
+ TORCH_API at::Tensor linspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, at::TensorOptions options={});
23
+ TORCH_API at::Tensor linspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
24
+ TORCH_API at::Tensor & linspace_out(at::Tensor & out, const at::Tensor & start, const at::Tensor & end, int64_t steps);
25
+ TORCH_API at::Tensor & linspace_outf(const at::Tensor & start, const at::Tensor & end, int64_t steps, at::Tensor & out);
26
+ TORCH_API at::Tensor linspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, at::TensorOptions options={});
27
+ TORCH_API at::Tensor linspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
28
+ TORCH_API at::Tensor & linspace_out(at::Tensor & out, const at::Tensor & start, const at::Scalar & end, int64_t steps);
29
+ TORCH_API at::Tensor & linspace_outf(const at::Tensor & start, const at::Scalar & end, int64_t steps, at::Tensor & out);
30
+ TORCH_API at::Tensor linspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, at::TensorOptions options={});
31
+ TORCH_API at::Tensor linspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
32
+ TORCH_API at::Tensor & linspace_out(at::Tensor & out, const at::Scalar & start, const at::Tensor & end, int64_t steps);
33
+ TORCH_API at::Tensor & linspace_outf(const at::Scalar & start, const at::Tensor & end, int64_t steps, at::Tensor & out);
34
+
35
+ } // namespace compositeexplicitautograd
36
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lshift_meta_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor & __ilshift__(at::Tensor & self, const at::Scalar & other);
21
+ TORCH_API at::Tensor & __ilshift__(at::Tensor & self, const at::Tensor & other);
22
+
23
+ } // namespace meta
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/margin_ranking_loss_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API margin_ranking_loss {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, double, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::margin_ranking_loss")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & input1, const at::Tensor & input2, const at::Tensor & target, double margin, int64_t reduction);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input1, const at::Tensor & input2, const at::Tensor & target, double margin, int64_t reduction);
26
+ };
27
+
28
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/matrix_power.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/matrix_power_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::matrix_power(Tensor self, int n) -> Tensor
26
+ inline at::Tensor matrix_power(const at::Tensor & self, int64_t n) {
27
+ return at::_ops::matrix_power::call(self, n);
28
+ }
29
+
30
+ // aten::matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & matrix_power_out(at::Tensor & out, const at::Tensor & self, int64_t n) {
32
+ return at::_ops::matrix_power_out::call(self, n, out);
33
+ }
34
+ // aten::matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & matrix_power_outf(const at::Tensor & self, int64_t n, at::Tensor & out) {
36
+ return at::_ops::matrix_power_out::call(self, n, out);
37
+ }
38
+
39
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool2d.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/max_unpool2d_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::max_unpool2d.out(Tensor self, Tensor indices, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & max_unpool2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size) {
27
+ return at::_ops::max_unpool2d_out::call(self, indices, c10::fromIntArrayRefSlow(output_size), out);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor & max_unpool2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size) {
32
+ return at::_ops::max_unpool2d_out::call(self, indices, c10::fromIntArrayRefSlow(output_size), out);
33
+ }
34
+ }
35
+
36
+ // aten::max_unpool2d.out(Tensor self, Tensor indices, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
37
+ inline at::Tensor & max_unpool2d_outf(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::Tensor & out) {
38
+ return at::_ops::max_unpool2d_out::call(self, indices, c10::fromIntArrayRefSlow(output_size), out);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor & max_unpool2d_outf(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::Tensor & out) {
43
+ return at::_ops::max_unpool2d_out::call(self, indices, c10::fromIntArrayRefSlow(output_size), out);
44
+ }
45
+ }
46
+
47
+ // aten::max_unpool2d.out(Tensor self, Tensor indices, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & max_unpool2d_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size) {
49
+ return at::_ops::max_unpool2d_out::call(self, indices, output_size, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor & max_unpool2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size) {
54
+ return at::_ops::max_unpool2d_out::call(self, indices, output_size, out);
55
+ }
56
+ }
57
+
58
+ // aten::max_unpool2d.out(Tensor self, Tensor indices, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & max_unpool2d_symint_outf(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size, at::Tensor & out) {
60
+ return at::_ops::max_unpool2d_out::call(self, indices, output_size, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor & max_unpool2d_outf(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size, at::Tensor & out) {
65
+ return at::_ops::max_unpool2d_out::call(self, indices, output_size, out);
66
+ }
67
+ }
68
+
69
+ // aten::max_unpool2d(Tensor self, Tensor indices, SymInt[2] output_size) -> Tensor
70
+ inline at::Tensor max_unpool2d(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size) {
71
+ return at::_ops::max_unpool2d::call(self, indices, c10::fromIntArrayRefSlow(output_size));
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor max_unpool2d(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size) {
76
+ return at::_ops::max_unpool2d::call(self, indices, c10::fromIntArrayRefSlow(output_size));
77
+ }
78
+ }
79
+
80
+ // aten::max_unpool2d(Tensor self, Tensor indices, SymInt[2] output_size) -> Tensor
81
+ inline at::Tensor max_unpool2d_symint(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size) {
82
+ return at::_ops::max_unpool2d::call(self, indices, output_size);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor max_unpool2d(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size) {
87
+ return at::_ops::max_unpool2d::call(self, indices, output_size);
88
+ }
89
+ }
90
+
91
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/miopen_depthwise_convolution_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API miopen_depthwise_convolution {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const c10::optional<at::Tensor> &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymInt, bool, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::miopen_depthwise_convolution")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "miopen_depthwise_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic);
26
+ };
27
+
28
+ struct TORCH_API miopen_depthwise_convolution_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const c10::optional<at::Tensor> &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymInt, bool, bool, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::miopen_depthwise_convolution")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "miopen_depthwise_convolution.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/miopen_rnn.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/miopen_rnn_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::miopen_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> miopen_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
27
+ return at::_ops::miopen_rnn::call(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state);
28
+ }
29
+
30
+ // aten::miopen_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> miopen_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
32
+ return at::_ops::miopen_rnn_out::call(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
33
+ }
34
+ // aten::miopen_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> miopen_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
36
+ return at::_ops::miopen_rnn_out::call(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
37
+ }
38
+
39
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/multinomial.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/multinomial_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::multinomial.out(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & multinomial_out(at::Tensor & out, const at::Tensor & self, int64_t num_samples, bool replacement=false, c10::optional<at::Generator> generator=c10::nullopt) {
27
+ return at::_ops::multinomial_out::call(self, num_samples, replacement, generator, out);
28
+ }
29
+ // aten::multinomial.out(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
30
+ inline at::Tensor & multinomial_outf(const at::Tensor & self, int64_t num_samples, bool replacement, c10::optional<at::Generator> generator, at::Tensor & out) {
31
+ return at::_ops::multinomial_out::call(self, num_samples, replacement, generator, out);
32
+ }
33
+
34
+ // aten::multinomial(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None) -> Tensor
35
+ inline at::Tensor multinomial(const at::Tensor & self, int64_t num_samples, bool replacement=false, c10::optional<at::Generator> generator=c10::nullopt) {
36
+ return at::_ops::multinomial::call(self, num_samples, replacement, generator);
37
+ }
38
+
39
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/negative.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/negative_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::negative(Tensor self) -> Tensor
26
+ inline at::Tensor negative(const at::Tensor & self) {
27
+ return at::_ops::negative::call(self);
28
+ }
29
+
30
+ // aten::negative_(Tensor(a!) self) -> Tensor(a!)
31
+ inline at::Tensor & negative_(at::Tensor & self) {
32
+ return at::_ops::negative_::call(self);
33
+ }
34
+
35
+ // aten::negative.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
36
+ inline at::Tensor & negative_out(at::Tensor & out, const at::Tensor & self) {
37
+ return at::_ops::negative_out::call(self, out);
38
+ }
39
+ // aten::negative.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & negative_outf(const at::Tensor & self, at::Tensor & out) {
41
+ return at::_ops::negative_out::call(self, out);
42
+ }
43
+
44
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/nll_loss2d_backward_cpu_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor nll_loss2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight);
21
+ TORCH_API at::Tensor nll_loss2d_backward_symint(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight);
22
+ TORCH_API at::Tensor & nll_loss2d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight);
23
+ TORCH_API at::Tensor & nll_loss2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight, at::Tensor & grad_input);
24
+ TORCH_API at::Tensor & nll_loss2d_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight);
25
+ TORCH_API at::Tensor & nll_loss2d_backward_symint_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight, at::Tensor & grad_input);
26
+
27
+ } // namespace cpu
28
+ } // namespace at