Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Double_compositeimplicitautograd_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_physical.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_coo_to_csr_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution_mode_ops.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_backward.h +91 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_per_sample_weights_backward_native.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_atan_cuda_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_cos_ops.h +50 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_lgamma.h +44 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_zero.h +44 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_backward.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_lstm_cell_backward_impl_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsr.h +34 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_unique_compositeexplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_meta_dispatch.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_interface_backward.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/abs_cuda_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/add_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/as_strided_scatter_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/baddbmm_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_not_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/blackman_window_compositeexplicitautograd_dispatch.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/chalf_ops.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/clamp_meta_dispatch.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/concatenate_ops.h +61 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cosh_native.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cosh_ops.h +50 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/count_nonzero.h +53 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cross_entropy_loss_compositeimplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/diag.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_copy_compositeexplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/exp2_cpu_dispatch.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fill_native.h +33 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/flip_cuda_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/gelu_native.h +31 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/isreal_native.h +21 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lgamma_meta.h +27 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigvals_native.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_ex_meta.h +27 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_ex_meta_dispatch.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linspace_compositeexplicitautograd_dispatch.h +36 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lshift_meta_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/margin_ranking_loss_ops.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/matrix_power.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool2d.h +91 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/miopen_depthwise_convolution_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/miopen_rnn.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/multinomial.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/negative.h +44 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/nll_loss2d_backward_cpu_dispatch.h +28 -0
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Double_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _cast_Double(const at::Tensor & self, bool non_blocking=false);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_physical.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_conj_physical_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_conj_physical(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor _conj_physical(const at::Tensor & self) {
|
27 |
+
return at::_ops::_conj_physical::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_conj_physical.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & _conj_physical_out(at::Tensor & out, const at::Tensor & self) {
|
32 |
+
return at::_ops::_conj_physical_out::call(self, out);
|
33 |
+
}
|
34 |
+
// aten::_conj_physical.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & _conj_physical_outf(const at::Tensor & self, at::Tensor & out) {
|
36 |
+
return at::_ops::_conj_physical_out::call(self, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_coo_to_csr_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _convert_indices_from_coo_to_csr {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, int64_t, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_convert_indices_from_coo_to_csr")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_convert_indices_from_coo_to_csr(Tensor self, int size, *, bool out_int32=False) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, int64_t size, bool out_int32);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t size, bool out_int32);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _convert_indices_from_coo_to_csr_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, int64_t, bool, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_convert_indices_from_coo_to_csr")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_convert_indices_from_coo_to_csr.out(Tensor self, int size, *, bool out_int32=False, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, int64_t size, bool out_int32, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t size, bool out_int32, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convolution_mode_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _convolution_mode {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const c10::optional<at::Tensor> &, c10::SymIntArrayRef, c10::string_view, c10::SymIntArrayRef, c10::SymInt);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_convolution_mode")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_convolution_mode(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, str padding, SymInt[] dilation, SymInt groups) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation, c10::SymInt groups);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation, c10::SymInt groups);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_backward.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_cudnn_rnn_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_cudnn_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[])
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
|
27 |
+
return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
|
32 |
+
return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_cudnn_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[])
|
37 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward_symint(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
|
38 |
+
return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
|
43 |
+
return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
|
48 |
+
inline void _cudnn_rnn_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
|
49 |
+
return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
void _cudnn_rnn_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
|
54 |
+
return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
|
59 |
+
inline void _cudnn_rnn_backward_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
|
60 |
+
return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
void _cudnn_rnn_backward_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
|
65 |
+
return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
|
70 |
+
inline void _cudnn_rnn_backward_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
|
71 |
+
return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
void _cudnn_rnn_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
|
76 |
+
return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
|
81 |
+
inline void _cudnn_rnn_backward_symint_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
|
82 |
+
return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
void _cudnn_rnn_backward_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
|
87 |
+
return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_per_sample_weights_backward_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _embedding_bag_per_sample_weights_backward_out(const at::Tensor & grad, const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, int64_t mode, int64_t padding_idx, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor _embedding_bag_per_sample_weights_backward_cpu(const at::Tensor & grad, const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, int64_t mode, int64_t padding_idx=-1);
|
21 |
+
TORCH_API at::Tensor _embedding_bag_per_sample_weights_backward_cuda(const at::Tensor & grad, const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, int64_t mode, int64_t padding_idx=-1);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_atan_cuda_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_atan(at::TensorList self);
|
21 |
+
TORCH_API void _foreach_atan_(at::TensorList self);
|
22 |
+
|
23 |
+
} // namespace cuda
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_cos_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _foreach_cos {
|
18 |
+
using schema = ::std::vector<at::Tensor> (at::TensorList);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_cos")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_cos(Tensor[] self) -> Tensor[]")
|
24 |
+
static ::std::vector<at::Tensor> call(at::TensorList self);
|
25 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _foreach_cos_ {
|
29 |
+
using schema = void (at::TensorList);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_cos_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_cos_(Tensor(a!)[] self) -> ()")
|
35 |
+
static void call(at::TensorList self);
|
36 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API _foreach_cos_out {
|
40 |
+
using schema = void (at::TensorList, at::TensorList);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_cos")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_cos.out(Tensor[] self, *, Tensor(a!)[] out) -> ()")
|
46 |
+
static void call(at::TensorList self, at::TensorList out);
|
47 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_lgamma.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_foreach_lgamma_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_foreach_lgamma(Tensor[] self) -> Tensor[]
|
26 |
+
inline ::std::vector<at::Tensor> _foreach_lgamma(at::TensorList self) {
|
27 |
+
return at::_ops::_foreach_lgamma::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_foreach_lgamma_(Tensor(a!)[] self) -> ()
|
31 |
+
inline void _foreach_lgamma_(at::TensorList self) {
|
32 |
+
return at::_ops::_foreach_lgamma_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::_foreach_lgamma.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
36 |
+
inline void _foreach_lgamma_out(at::TensorList out, at::TensorList self) {
|
37 |
+
return at::_ops::_foreach_lgamma_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::_foreach_lgamma.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
40 |
+
inline void _foreach_lgamma_outf(at::TensorList self, at::TensorList out) {
|
41 |
+
return at::_ops::_foreach_lgamma_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_zero.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_foreach_zero_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_foreach_zero_(Tensor(a!)[] self) -> ()
|
26 |
+
inline void _foreach_zero_(at::TensorList self) {
|
27 |
+
return at::_ops::_foreach_zero_::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_foreach_zero.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
31 |
+
inline void _foreach_zero_out(at::TensorList out, at::TensorList self) {
|
32 |
+
return at::_ops::_foreach_zero_out::call(self, out);
|
33 |
+
}
|
34 |
+
// aten::_foreach_zero.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
35 |
+
inline void _foreach_zero_outf(at::TensorList self, at::TensorList out) {
|
36 |
+
return at::_ops::_foreach_zero_out::call(self, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
// aten::_foreach_zero(Tensor[] self) -> Tensor[] self_out
|
40 |
+
inline ::std::vector<at::Tensor> _foreach_zero(at::TensorList self) {
|
41 |
+
return at::_ops::_foreach_zero::call(self);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_backward.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_sparse_sum_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_sparse_sum_backward(Tensor grad, Tensor self, int[] dim) -> Tensor
|
26 |
+
inline at::Tensor _sparse_sum_backward(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dim) {
|
27 |
+
return at::_ops::_sparse_sum_backward::call(grad, self, dim);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_sparse_sum_backward.out(Tensor grad, Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & _sparse_sum_backward_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dim) {
|
32 |
+
return at::_ops::_sparse_sum_backward_out::call(grad, self, dim, out);
|
33 |
+
}
|
34 |
+
// aten::_sparse_sum_backward.out(Tensor grad, Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & _sparse_sum_backward_outf(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dim, at::Tensor & out) {
|
36 |
+
return at::_ops::_sparse_sum_backward_out::call(grad, self, dim, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_lstm_cell_backward_impl_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _thnn_fused_lstm_cell_backward_impl {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor> (const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, const at::Tensor &, const at::Tensor &, const at::Tensor &, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_thnn_fused_lstm_cell_backward_impl")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_thnn_fused_lstm_cell_backward_impl(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> call(const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _thnn_fused_lstm_cell_backward_impl_out {
|
29 |
+
using schema = ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> (const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, const at::Tensor &, const at::Tensor &, const at::Tensor &, bool, at::Tensor &, at::Tensor &, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_thnn_fused_lstm_cell_backward_impl")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_thnn_fused_lstm_cell_backward_impl.out(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))")
|
35 |
+
static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> call(const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
|
36 |
+
static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsr.h
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_to_sparse_bsr_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_to_sparse_bsr.out(Tensor self, int[2] blocksize, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)
|
26 |
+
inline at::Tensor & _to_sparse_bsr_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim=c10::nullopt) {
|
27 |
+
return at::_ops::_to_sparse_bsr_out::call(self, blocksize, dense_dim, out);
|
28 |
+
}
|
29 |
+
// aten::_to_sparse_bsr.out(Tensor self, int[2] blocksize, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)
|
30 |
+
inline at::Tensor & _to_sparse_bsr_outf(const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim, at::Tensor & out) {
|
31 |
+
return at::_ops::_to_sparse_bsr_out::call(self, blocksize, dense_dim, out);
|
32 |
+
}
|
33 |
+
|
34 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_unique_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _unique_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & self, bool sorted=true, bool return_inverse=false);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _unique_outf(const at::Tensor & self, bool sorted, bool return_inverse, at::Tensor & out0, at::Tensor & out1);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_meta_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _upsample_nearest_exact2d(const at::Tensor & self, at::IntArrayRef output_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor _upsample_nearest_exact2d_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_outf(const at::Tensor & self, at::IntArrayRef output_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
25 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
|
26 |
+
|
27 |
+
} // namespace meta
|
28 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_interface_backward.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_weight_norm_interface_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_weight_norm_interface_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor> _weight_norm_interface_backward(const at::Tensor & grad_w, const at::Tensor & saved_v, const at::Tensor & saved_g, const at::Tensor & saved_norms, int64_t dim) {
|
27 |
+
return at::_ops::_weight_norm_interface_backward::call(grad_w, saved_v, saved_g, saved_norms, dim);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_weight_norm_interface_backward.out(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> _weight_norm_interface_backward_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & grad_w, const at::Tensor & saved_v, const at::Tensor & saved_g, const at::Tensor & saved_norms, int64_t dim) {
|
32 |
+
return at::_ops::_weight_norm_interface_backward_out::call(grad_w, saved_v, saved_g, saved_norms, dim, out0, out1);
|
33 |
+
}
|
34 |
+
// aten::_weight_norm_interface_backward.out(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> _weight_norm_interface_backward_outf(const at::Tensor & grad_w, const at::Tensor & saved_v, const at::Tensor & saved_g, const at::Tensor & saved_norms, int64_t dim, at::Tensor & out0, at::Tensor & out1) {
|
36 |
+
return at::_ops::_weight_norm_interface_backward_out::call(grad_w, saved_v, saved_g, saved_norms, dim, out0, out1);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/abs_cuda_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & abs_out(at::Tensor & out, const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & abs_outf(const at::Tensor & self, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace cuda
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/add_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor add(const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha=1);
|
21 |
+
TORCH_API at::Tensor & add_(at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha=1);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautogradnonfunctional
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/as_strided_scatter_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API as_strided_scatter {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::optional<c10::SymInt>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::as_strided_scatter")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "as_strided_scatter(Tensor self, Tensor src, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & src, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & src, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API as_strided_scatter_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::optional<c10::SymInt>, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::as_strided_scatter")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "as_strided_scatter.out(Tensor self, Tensor src, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & src, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & src, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/baddbmm_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor baddbmm(const at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
|
21 |
+
TORCH_API at::Tensor & baddbmm_(at::Tensor & self, const at::Tensor & batch1, const at::Tensor & batch2, const at::Scalar & beta=1, const at::Scalar & alpha=1);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautogradnonfunctional
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_not_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor bitwise_not(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & bitwise_not_(at::Tensor & self);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautogradnonfunctional
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/blackman_window_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor blackman_window(int64_t window_length, at::TensorOptions options={});
|
21 |
+
TORCH_API at::Tensor blackman_window(int64_t window_length, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
22 |
+
TORCH_API at::Tensor & blackman_window_out(at::Tensor & out, int64_t window_length);
|
23 |
+
TORCH_API at::Tensor & blackman_window_outf(int64_t window_length, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor blackman_window(int64_t window_length, bool periodic, at::TensorOptions options={});
|
25 |
+
TORCH_API at::Tensor blackman_window(int64_t window_length, bool periodic, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
26 |
+
TORCH_API at::Tensor & blackman_window_out(at::Tensor & out, int64_t window_length, bool periodic);
|
27 |
+
TORCH_API at::Tensor & blackman_window_outf(int64_t window_length, bool periodic, at::Tensor & out);
|
28 |
+
|
29 |
+
} // namespace compositeexplicitautograd
|
30 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/chalf_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API chalf {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, c10::optional<at::MemoryFormat>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::chalf")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "chalf(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/clamp_meta_dispatch.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor clamp(const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor & clamp_out(at::Tensor & out, const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & clamp_outf(const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & clamp_(at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
|
24 |
+
TORCH_API at::Tensor clamp(const at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
|
25 |
+
TORCH_API at::Tensor & clamp_out(at::Tensor & out, const at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
|
26 |
+
TORCH_API at::Tensor & clamp_outf(const at::Tensor & self, const c10::optional<at::Tensor> & min, const c10::optional<at::Tensor> & max, at::Tensor & out);
|
27 |
+
TORCH_API at::Tensor & clamp_(at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
|
28 |
+
|
29 |
+
} // namespace meta
|
30 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/concatenate_ops.h
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API concatenate {
|
18 |
+
using schema = at::Tensor (at::TensorList, int64_t);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concatenate")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concatenate(Tensor[] tensors, int dim=0) -> Tensor")
|
24 |
+
static at::Tensor call(at::TensorList tensors, int64_t dim);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, int64_t dim);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API concatenate_out {
|
29 |
+
using schema = at::Tensor & (at::TensorList, int64_t, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concatenate")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concatenate.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::TensorList tensors, int64_t dim, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, int64_t dim, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API concatenate_names {
|
40 |
+
using schema = at::Tensor (at::TensorList, at::Dimname);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concatenate")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "names")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concatenate.names(Tensor[] tensors, Dimname dim) -> Tensor")
|
46 |
+
static at::Tensor call(at::TensorList tensors, at::Dimname dim);
|
47 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, at::Dimname dim);
|
48 |
+
};
|
49 |
+
|
50 |
+
struct TORCH_API concatenate_names_out {
|
51 |
+
using schema = at::Tensor & (at::TensorList, at::Dimname, at::Tensor &);
|
52 |
+
using ptr_schema = schema*;
|
53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
54 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concatenate")
|
55 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "names_out")
|
56 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concatenate.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)")
|
57 |
+
static at::Tensor & call(at::TensorList tensors, at::Dimname dim, at::Tensor & out);
|
58 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, at::Dimname dim, at::Tensor & out);
|
59 |
+
};
|
60 |
+
|
61 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cosh_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/cosh_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_cosh_out : public at::meta::structured_cosh {
|
20 |
+
void impl(const at::Tensor & self, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cosh_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API cosh {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cosh")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cosh(Tensor self) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API cosh_ {
|
29 |
+
using schema = at::Tensor & (at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cosh_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cosh_(Tensor(a!) self) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::Tensor & self);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API cosh_out {
|
40 |
+
using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cosh")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/count_nonzero.h
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/count_nonzero_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::count_nonzero.dim_IntList(Tensor self, int[] dim) -> Tensor
|
26 |
+
inline at::Tensor count_nonzero(const at::Tensor & self, at::IntArrayRef dim) {
|
27 |
+
return at::_ops::count_nonzero_dim_IntList::call(self, dim);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::count_nonzero(Tensor self, int? dim=None) -> Tensor
|
31 |
+
inline at::Tensor count_nonzero(const at::Tensor & self, c10::optional<int64_t> dim=c10::nullopt) {
|
32 |
+
return at::_ops::count_nonzero::call(self, dim);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::count_nonzero.dim_IntList_out(Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)
|
36 |
+
inline at::Tensor & count_nonzero_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim) {
|
37 |
+
return at::_ops::count_nonzero_dim_IntList_out::call(self, dim, out);
|
38 |
+
}
|
39 |
+
// aten::count_nonzero.dim_IntList_out(Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)
|
40 |
+
inline at::Tensor & count_nonzero_outf(const at::Tensor & self, at::IntArrayRef dim, at::Tensor & out) {
|
41 |
+
return at::_ops::count_nonzero_dim_IntList_out::call(self, dim, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
// aten::count_nonzero.out(Tensor self, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)
|
45 |
+
inline at::Tensor & count_nonzero_out(at::Tensor & out, const at::Tensor & self, c10::optional<int64_t> dim=c10::nullopt) {
|
46 |
+
return at::_ops::count_nonzero_out::call(self, dim, out);
|
47 |
+
}
|
48 |
+
// aten::count_nonzero.out(Tensor self, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)
|
49 |
+
inline at::Tensor & count_nonzero_outf(const at::Tensor & self, c10::optional<int64_t> dim, at::Tensor & out) {
|
50 |
+
return at::_ops::count_nonzero_out::call(self, dim, out);
|
51 |
+
}
|
52 |
+
|
53 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cross_entropy_loss_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor cross_entropy_loss(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight={}, int64_t reduction=at::Reduction::Mean, int64_t ignore_index=-100, double label_smoothing=0.0);
|
21 |
+
TORCH_API at::Tensor cross_entropy_loss_symint(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight={}, int64_t reduction=at::Reduction::Mean, c10::SymInt ignore_index=-100, double label_smoothing=0.0);
|
22 |
+
|
23 |
+
} // namespace compositeimplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/diag.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/diag_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::diag.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
|
26 |
+
inline at::Tensor & diag_out(at::Tensor & out, const at::Tensor & self, int64_t diagonal=0) {
|
27 |
+
return at::_ops::diag_out::call(self, diagonal, out);
|
28 |
+
}
|
29 |
+
// aten::diag.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
|
30 |
+
inline at::Tensor & diag_outf(const at::Tensor & self, int64_t diagonal, at::Tensor & out) {
|
31 |
+
return at::_ops::diag_out::call(self, diagonal, out);
|
32 |
+
}
|
33 |
+
|
34 |
+
// aten::diag(Tensor self, int diagonal=0) -> Tensor
|
35 |
+
inline at::Tensor diag(const at::Tensor & self, int64_t diagonal=0) {
|
36 |
+
return at::_ops::diag::call(self, diagonal);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_copy_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & diagonal_copy_out(at::Tensor & out, const at::Tensor & self, int64_t offset=0, int64_t dim1=0, int64_t dim2=1);
|
21 |
+
TORCH_API at::Tensor & diagonal_copy_outf(const at::Tensor & self, int64_t offset, int64_t dim1, int64_t dim2, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/exp2_cpu_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor exp2(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & exp2_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & exp2_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & exp2_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cpu
|
26 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fill_native.h
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor fill(const at::Tensor & self, const at::Scalar & value);
|
20 |
+
TORCH_API at::Tensor & fill_Scalar_out(const at::Tensor & self, const at::Scalar & value, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor & fill_(at::Tensor & self, const at::Scalar & value);
|
22 |
+
TORCH_API at::Tensor & fill_nested_(at::Tensor & self, const at::Scalar & value);
|
23 |
+
TORCH_API at::Tensor & fill_sparse_csr_(at::Tensor & self, const at::Scalar & value);
|
24 |
+
TORCH_API at::Tensor & fill_meta_(at::Tensor & self, const at::Scalar & value);
|
25 |
+
TORCH_API at::Tensor & fill_quantized_(at::Tensor & self, const at::Scalar & value);
|
26 |
+
TORCH_API at::Tensor fill(const at::Tensor & self, const at::Tensor & value);
|
27 |
+
TORCH_API at::Tensor & fill_Tensor_out(const at::Tensor & self, const at::Tensor & value, at::Tensor & out);
|
28 |
+
TORCH_API at::Tensor & fill_(at::Tensor & self, const at::Tensor & value);
|
29 |
+
TORCH_API at::Tensor & fill_nested_(at::Tensor & self, const at::Tensor & value);
|
30 |
+
TORCH_API at::Tensor & fill_meta_(at::Tensor & self, const at::Tensor & value);
|
31 |
+
TORCH_API at::Tensor & fill_quantized_(at::Tensor & self, const at::Tensor & value);
|
32 |
+
} // namespace native
|
33 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/flip_cuda_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor flip(const at::Tensor & self, at::IntArrayRef dims);
|
21 |
+
|
22 |
+
} // namespace cuda
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/gelu_native.h
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/gelu_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_gelu_out_cpu : public at::meta::structured_gelu {
|
20 |
+
void impl(const at::Tensor & self, c10::string_view approximate, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
struct TORCH_API structured_gelu_out_cuda : public at::meta::structured_gelu {
|
23 |
+
void impl(const at::Tensor & self, c10::string_view approximate, const at::Tensor & out);
|
24 |
+
};
|
25 |
+
TORCH_API at::Tensor NestedTensor_gelu(const at::Tensor & self, c10::string_view approximate="none");
|
26 |
+
TORCH_API at::Tensor & NestedTensor_gelu_(at::Tensor & self, c10::string_view approximate="none");
|
27 |
+
TORCH_API at::Tensor mkldnn_gelu(const at::Tensor & self, c10::string_view approximate="none");
|
28 |
+
TORCH_API at::Tensor gelu_quantized_cpu(const at::Tensor & self, c10::string_view approximate="none");
|
29 |
+
TORCH_API at::Tensor gelu_quantized_cuda(const at::Tensor & self, c10::string_view approximate="none");
|
30 |
+
} // namespace native
|
31 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/isreal_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor isreal(const at::Tensor & self);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lgamma_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_lgamma : public TensorIteratorBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & self);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigvals_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor linalg_eigvals(const at::Tensor & self);
|
20 |
+
TORCH_API at::Tensor & linalg_eigvals_out(const at::Tensor & self, at::Tensor & out);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_ex_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_linalg_ldl_factor_ex : public at::impl::MetaBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & self, bool hermitian, bool check_errors);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_ex_meta_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> linalg_ldl_factor_ex(const at::Tensor & self, bool hermitian=false, bool check_errors=false);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> linalg_ldl_factor_ex_out(at::Tensor & LD, at::Tensor & pivots, at::Tensor & info, const at::Tensor & self, bool hermitian=false, bool check_errors=false);
|
22 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> linalg_ldl_factor_ex_outf(const at::Tensor & self, bool hermitian, bool check_errors, at::Tensor & LD, at::Tensor & pivots, at::Tensor & info);
|
23 |
+
|
24 |
+
} // namespace meta
|
25 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linspace_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor linspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, at::TensorOptions options={});
|
21 |
+
TORCH_API at::Tensor linspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
22 |
+
TORCH_API at::Tensor linspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, at::TensorOptions options={});
|
23 |
+
TORCH_API at::Tensor linspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
24 |
+
TORCH_API at::Tensor & linspace_out(at::Tensor & out, const at::Tensor & start, const at::Tensor & end, int64_t steps);
|
25 |
+
TORCH_API at::Tensor & linspace_outf(const at::Tensor & start, const at::Tensor & end, int64_t steps, at::Tensor & out);
|
26 |
+
TORCH_API at::Tensor linspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, at::TensorOptions options={});
|
27 |
+
TORCH_API at::Tensor linspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
28 |
+
TORCH_API at::Tensor & linspace_out(at::Tensor & out, const at::Tensor & start, const at::Scalar & end, int64_t steps);
|
29 |
+
TORCH_API at::Tensor & linspace_outf(const at::Tensor & start, const at::Scalar & end, int64_t steps, at::Tensor & out);
|
30 |
+
TORCH_API at::Tensor linspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, at::TensorOptions options={});
|
31 |
+
TORCH_API at::Tensor linspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
32 |
+
TORCH_API at::Tensor & linspace_out(at::Tensor & out, const at::Scalar & start, const at::Tensor & end, int64_t steps);
|
33 |
+
TORCH_API at::Tensor & linspace_outf(const at::Scalar & start, const at::Tensor & end, int64_t steps, at::Tensor & out);
|
34 |
+
|
35 |
+
} // namespace compositeexplicitautograd
|
36 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lshift_meta_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & __ilshift__(at::Tensor & self, const at::Scalar & other);
|
21 |
+
TORCH_API at::Tensor & __ilshift__(at::Tensor & self, const at::Tensor & other);
|
22 |
+
|
23 |
+
} // namespace meta
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/margin_ranking_loss_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API margin_ranking_loss {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, double, int64_t);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::margin_ranking_loss")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & input1, const at::Tensor & input2, const at::Tensor & target, double margin, int64_t reduction);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input1, const at::Tensor & input2, const at::Tensor & target, double margin, int64_t reduction);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/matrix_power.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/matrix_power_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::matrix_power(Tensor self, int n) -> Tensor
|
26 |
+
inline at::Tensor matrix_power(const at::Tensor & self, int64_t n) {
|
27 |
+
return at::_ops::matrix_power::call(self, n);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & matrix_power_out(at::Tensor & out, const at::Tensor & self, int64_t n) {
|
32 |
+
return at::_ops::matrix_power_out::call(self, n, out);
|
33 |
+
}
|
34 |
+
// aten::matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & matrix_power_outf(const at::Tensor & self, int64_t n, at::Tensor & out) {
|
36 |
+
return at::_ops::matrix_power_out::call(self, n, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool2d.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/max_unpool2d_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::max_unpool2d.out(Tensor self, Tensor indices, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
26 |
+
inline at::Tensor & max_unpool2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size) {
|
27 |
+
return at::_ops::max_unpool2d_out::call(self, indices, c10::fromIntArrayRefSlow(output_size), out);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor & max_unpool2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size) {
|
32 |
+
return at::_ops::max_unpool2d_out::call(self, indices, c10::fromIntArrayRefSlow(output_size), out);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::max_unpool2d.out(Tensor self, Tensor indices, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
37 |
+
inline at::Tensor & max_unpool2d_outf(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::Tensor & out) {
|
38 |
+
return at::_ops::max_unpool2d_out::call(self, indices, c10::fromIntArrayRefSlow(output_size), out);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
42 |
+
at::Tensor & max_unpool2d_outf(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::Tensor & out) {
|
43 |
+
return at::_ops::max_unpool2d_out::call(self, indices, c10::fromIntArrayRefSlow(output_size), out);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::max_unpool2d.out(Tensor self, Tensor indices, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & max_unpool2d_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size) {
|
49 |
+
return at::_ops::max_unpool2d_out::call(self, indices, output_size, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
53 |
+
at::Tensor & max_unpool2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size) {
|
54 |
+
return at::_ops::max_unpool2d_out::call(self, indices, output_size, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::max_unpool2d.out(Tensor self, Tensor indices, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & max_unpool2d_symint_outf(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size, at::Tensor & out) {
|
60 |
+
return at::_ops::max_unpool2d_out::call(self, indices, output_size, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
64 |
+
at::Tensor & max_unpool2d_outf(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size, at::Tensor & out) {
|
65 |
+
return at::_ops::max_unpool2d_out::call(self, indices, output_size, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::max_unpool2d(Tensor self, Tensor indices, SymInt[2] output_size) -> Tensor
|
70 |
+
inline at::Tensor max_unpool2d(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size) {
|
71 |
+
return at::_ops::max_unpool2d::call(self, indices, c10::fromIntArrayRefSlow(output_size));
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
75 |
+
at::Tensor max_unpool2d(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size) {
|
76 |
+
return at::_ops::max_unpool2d::call(self, indices, c10::fromIntArrayRefSlow(output_size));
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::max_unpool2d(Tensor self, Tensor indices, SymInt[2] output_size) -> Tensor
|
81 |
+
inline at::Tensor max_unpool2d_symint(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size) {
|
82 |
+
return at::_ops::max_unpool2d::call(self, indices, output_size);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor max_unpool2d(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size) {
|
87 |
+
return at::_ops::max_unpool2d::call(self, indices, output_size);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/miopen_depthwise_convolution_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API miopen_depthwise_convolution {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const c10::optional<at::Tensor> &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymInt, bool, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::miopen_depthwise_convolution")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "miopen_depthwise_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API miopen_depthwise_convolution_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const c10::optional<at::Tensor> &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymInt, bool, bool, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::miopen_depthwise_convolution")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "miopen_depthwise_convolution.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/miopen_rnn.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/miopen_rnn_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::miopen_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> miopen_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
|
27 |
+
return at::_ops::miopen_rnn::call(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::miopen_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> miopen_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
|
32 |
+
return at::_ops::miopen_rnn_out::call(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
|
33 |
+
}
|
34 |
+
// aten::miopen_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> miopen_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
|
36 |
+
return at::_ops::miopen_rnn_out::call(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/multinomial.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/multinomial_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::multinomial.out(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
26 |
+
inline at::Tensor & multinomial_out(at::Tensor & out, const at::Tensor & self, int64_t num_samples, bool replacement=false, c10::optional<at::Generator> generator=c10::nullopt) {
|
27 |
+
return at::_ops::multinomial_out::call(self, num_samples, replacement, generator, out);
|
28 |
+
}
|
29 |
+
// aten::multinomial.out(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
30 |
+
inline at::Tensor & multinomial_outf(const at::Tensor & self, int64_t num_samples, bool replacement, c10::optional<at::Generator> generator, at::Tensor & out) {
|
31 |
+
return at::_ops::multinomial_out::call(self, num_samples, replacement, generator, out);
|
32 |
+
}
|
33 |
+
|
34 |
+
// aten::multinomial(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None) -> Tensor
|
35 |
+
inline at::Tensor multinomial(const at::Tensor & self, int64_t num_samples, bool replacement=false, c10::optional<at::Generator> generator=c10::nullopt) {
|
36 |
+
return at::_ops::multinomial::call(self, num_samples, replacement, generator);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/negative.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/negative_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::negative(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor negative(const at::Tensor & self) {
|
27 |
+
return at::_ops::negative::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::negative_(Tensor(a!) self) -> Tensor(a!)
|
31 |
+
inline at::Tensor & negative_(at::Tensor & self) {
|
32 |
+
return at::_ops::negative_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::negative.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
36 |
+
inline at::Tensor & negative_out(at::Tensor & out, const at::Tensor & self) {
|
37 |
+
return at::_ops::negative_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::negative.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
40 |
+
inline at::Tensor & negative_outf(const at::Tensor & self, at::Tensor & out) {
|
41 |
+
return at::_ops::negative_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/nll_loss2d_backward_cpu_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor nll_loss2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight);
|
21 |
+
TORCH_API at::Tensor nll_loss2d_backward_symint(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight);
|
22 |
+
TORCH_API at::Tensor & nll_loss2d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight);
|
23 |
+
TORCH_API at::Tensor & nll_loss2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight, at::Tensor & grad_input);
|
24 |
+
TORCH_API at::Tensor & nll_loss2d_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight);
|
25 |
+
TORCH_API at::Tensor & nll_loss2d_backward_symint_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight, at::Tensor & grad_input);
|
26 |
+
|
27 |
+
} // namespace cpu
|
28 |
+
} // namespace at
|