Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/common.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/grad_scaler.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/clog.h +108 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/cpuinfo.h +1956 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/dnnl.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_config.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_debug.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_ocl.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_sycl.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_sycl_types.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_threadpool.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_types.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_version.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/experiments-config.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/fp16.h +11 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/fxdiv.h +425 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/libshm.h +46 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/nnpack.h +659 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/psimd.h +1384 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/pthreadpool.h +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/qnnpack.h +336 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/qnnpack_func.h +166 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/sleef.h +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/CudaIPCTypes.h +143 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Dtype.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Layout.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/PyInterpreter.h +7 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/QScheme.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/StorageSharing.h +8 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Stream.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/THConcat.h +19 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/THP.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/TypeInfo.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/InferenceMode.h +10 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/VariableTypeUtils.h +445 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/autograd_not_implemented_fallback.h +32 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/custom_function.h +425 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/edge.h +56 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/function.h +763 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/function_hook.h +64 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/grad_mode.h +11 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/input_metadata.h +113 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/profiler_python.h +7 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_cpp_function.h +105 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_engine.h +44 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_fft_functions.h +7 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_function.h +160 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_hook.h +55 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_linalg_functions.h +7 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_saved_variable_hooks.h +33 -0
llmeval-env/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/common.cpython-310.pyc
ADDED
Binary file (444 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/cuda/amp/__pycache__/grad_scaler.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/include/clog.h
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
* All rights reserved.
|
4 |
+
*
|
5 |
+
* This source code is licensed under the BSD-style license found in the
|
6 |
+
* LICENSE file in the root directory of this source tree.
|
7 |
+
*/
|
8 |
+
|
9 |
+
#pragma once
|
10 |
+
|
11 |
+
#include <stdarg.h>
|
12 |
+
#include <stdlib.h>
|
13 |
+
#include <inttypes.h>
|
14 |
+
|
15 |
+
#define CLOG_NONE 0
|
16 |
+
#define CLOG_FATAL 1
|
17 |
+
#define CLOG_ERROR 2
|
18 |
+
#define CLOG_WARNING 3
|
19 |
+
#define CLOG_INFO 4
|
20 |
+
#define CLOG_DEBUG 5
|
21 |
+
|
22 |
+
#ifndef CLOG_VISIBILITY
|
23 |
+
#if defined(__ELF__)
|
24 |
+
#define CLOG_VISIBILITY __attribute__((__visibility__("internal")))
|
25 |
+
#elif defined(__MACH__)
|
26 |
+
#define CLOG_VISIBILITY __attribute__((__visibility__("hidden")))
|
27 |
+
#else
|
28 |
+
#define CLOG_VISIBILITY
|
29 |
+
#endif
|
30 |
+
#endif
|
31 |
+
|
32 |
+
#ifndef CLOG_ARGUMENTS_FORMAT
|
33 |
+
#if defined(__GNUC__)
|
34 |
+
#define CLOG_ARGUMENTS_FORMAT __attribute__((__format__(__printf__, 1, 2)))
|
35 |
+
#else
|
36 |
+
#define CLOG_ARGUMENTS_FORMAT
|
37 |
+
#endif
|
38 |
+
#endif
|
39 |
+
|
40 |
+
#ifdef __cplusplus
|
41 |
+
extern "C" {
|
42 |
+
#endif
|
43 |
+
|
44 |
+
CLOG_VISIBILITY void clog_vlog_debug(const char* module, const char* format, va_list args);
|
45 |
+
CLOG_VISIBILITY void clog_vlog_info(const char* module, const char* format, va_list args);
|
46 |
+
CLOG_VISIBILITY void clog_vlog_warning(const char* module, const char* format, va_list args);
|
47 |
+
CLOG_VISIBILITY void clog_vlog_error(const char* module, const char* format, va_list args);
|
48 |
+
CLOG_VISIBILITY void clog_vlog_fatal(const char* module, const char* format, va_list args);
|
49 |
+
|
50 |
+
#define CLOG_DEFINE_LOG_DEBUG(log_debug_function_name, module, level) \
|
51 |
+
CLOG_ARGUMENTS_FORMAT \
|
52 |
+
inline static void log_debug_function_name(const char* format, ...) { \
|
53 |
+
if (level >= CLOG_DEBUG) { \
|
54 |
+
va_list args; \
|
55 |
+
va_start(args, format); \
|
56 |
+
clog_vlog_debug(module, format, args); \
|
57 |
+
va_end(args); \
|
58 |
+
} \
|
59 |
+
}
|
60 |
+
|
61 |
+
#define CLOG_DEFINE_LOG_INFO(log_info_function_name, module, level) \
|
62 |
+
CLOG_ARGUMENTS_FORMAT \
|
63 |
+
inline static void log_info_function_name(const char* format, ...) { \
|
64 |
+
if (level >= CLOG_INFO) { \
|
65 |
+
va_list args; \
|
66 |
+
va_start(args, format); \
|
67 |
+
clog_vlog_info(module, format, args); \
|
68 |
+
va_end(args); \
|
69 |
+
} \
|
70 |
+
}
|
71 |
+
|
72 |
+
#define CLOG_DEFINE_LOG_WARNING(log_warning_function_name, module, level) \
|
73 |
+
CLOG_ARGUMENTS_FORMAT \
|
74 |
+
inline static void log_warning_function_name(const char* format, ...) { \
|
75 |
+
if (level >= CLOG_WARNING) { \
|
76 |
+
va_list args; \
|
77 |
+
va_start(args, format); \
|
78 |
+
clog_vlog_warning(module, format, args); \
|
79 |
+
va_end(args); \
|
80 |
+
} \
|
81 |
+
}
|
82 |
+
|
83 |
+
#define CLOG_DEFINE_LOG_ERROR(log_error_function_name, module, level) \
|
84 |
+
CLOG_ARGUMENTS_FORMAT \
|
85 |
+
inline static void log_error_function_name(const char* format, ...) { \
|
86 |
+
if (level >= CLOG_ERROR) { \
|
87 |
+
va_list args; \
|
88 |
+
va_start(args, format); \
|
89 |
+
clog_vlog_error(module, format, args); \
|
90 |
+
va_end(args); \
|
91 |
+
} \
|
92 |
+
}
|
93 |
+
|
94 |
+
#define CLOG_DEFINE_LOG_FATAL(log_fatal_function_name, module, level) \
|
95 |
+
CLOG_ARGUMENTS_FORMAT \
|
96 |
+
inline static void log_fatal_function_name(const char* format, ...) { \
|
97 |
+
if (level >= CLOG_FATAL) { \
|
98 |
+
va_list args; \
|
99 |
+
va_start(args, format); \
|
100 |
+
clog_vlog_fatal(module, format, args); \
|
101 |
+
va_end(args); \
|
102 |
+
} \
|
103 |
+
abort(); \
|
104 |
+
}
|
105 |
+
|
106 |
+
#ifdef __cplusplus
|
107 |
+
} /* extern "C" */
|
108 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/cpuinfo.h
ADDED
@@ -0,0 +1,1956 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef CPUINFO_H
|
3 |
+
#define CPUINFO_H
|
4 |
+
|
5 |
+
#ifndef __cplusplus
|
6 |
+
#include <stdbool.h>
|
7 |
+
#endif
|
8 |
+
|
9 |
+
#ifdef __APPLE__
|
10 |
+
#include <TargetConditionals.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
#include <stdint.h>
|
14 |
+
|
15 |
+
/* Identify architecture and define corresponding macro */
|
16 |
+
|
17 |
+
#if defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || defined(_M_IX86)
|
18 |
+
#define CPUINFO_ARCH_X86 1
|
19 |
+
#endif
|
20 |
+
|
21 |
+
#if defined(__x86_64__) || defined(__x86_64) || defined(_M_X64) || defined(_M_AMD64)
|
22 |
+
#define CPUINFO_ARCH_X86_64 1
|
23 |
+
#endif
|
24 |
+
|
25 |
+
#if defined(__arm__) || defined(_M_ARM)
|
26 |
+
#define CPUINFO_ARCH_ARM 1
|
27 |
+
#endif
|
28 |
+
|
29 |
+
#if defined(__aarch64__) || defined(_M_ARM64)
|
30 |
+
#define CPUINFO_ARCH_ARM64 1
|
31 |
+
#endif
|
32 |
+
|
33 |
+
#if defined(__PPC64__) || defined(__powerpc64__) || defined(_ARCH_PPC64)
|
34 |
+
#define CPUINFO_ARCH_PPC64 1
|
35 |
+
#endif
|
36 |
+
|
37 |
+
#if defined(__asmjs__)
|
38 |
+
#define CPUINFO_ARCH_ASMJS 1
|
39 |
+
#endif
|
40 |
+
|
41 |
+
#if defined(__wasm__)
|
42 |
+
#if defined(__wasm_simd128__)
|
43 |
+
#define CPUINFO_ARCH_WASMSIMD 1
|
44 |
+
#else
|
45 |
+
#define CPUINFO_ARCH_WASM 1
|
46 |
+
#endif
|
47 |
+
#endif
|
48 |
+
|
49 |
+
/* Define other architecture-specific macros as 0 */
|
50 |
+
|
51 |
+
#ifndef CPUINFO_ARCH_X86
|
52 |
+
#define CPUINFO_ARCH_X86 0
|
53 |
+
#endif
|
54 |
+
|
55 |
+
#ifndef CPUINFO_ARCH_X86_64
|
56 |
+
#define CPUINFO_ARCH_X86_64 0
|
57 |
+
#endif
|
58 |
+
|
59 |
+
#ifndef CPUINFO_ARCH_ARM
|
60 |
+
#define CPUINFO_ARCH_ARM 0
|
61 |
+
#endif
|
62 |
+
|
63 |
+
#ifndef CPUINFO_ARCH_ARM64
|
64 |
+
#define CPUINFO_ARCH_ARM64 0
|
65 |
+
#endif
|
66 |
+
|
67 |
+
#ifndef CPUINFO_ARCH_PPC64
|
68 |
+
#define CPUINFO_ARCH_PPC64 0
|
69 |
+
#endif
|
70 |
+
|
71 |
+
#ifndef CPUINFO_ARCH_ASMJS
|
72 |
+
#define CPUINFO_ARCH_ASMJS 0
|
73 |
+
#endif
|
74 |
+
|
75 |
+
#ifndef CPUINFO_ARCH_WASM
|
76 |
+
#define CPUINFO_ARCH_WASM 0
|
77 |
+
#endif
|
78 |
+
|
79 |
+
#ifndef CPUINFO_ARCH_WASMSIMD
|
80 |
+
#define CPUINFO_ARCH_WASMSIMD 0
|
81 |
+
#endif
|
82 |
+
|
83 |
+
#if CPUINFO_ARCH_X86 && defined(_MSC_VER)
|
84 |
+
#define CPUINFO_ABI __cdecl
|
85 |
+
#elif CPUINFO_ARCH_X86 && defined(__GNUC__)
|
86 |
+
#define CPUINFO_ABI __attribute__((__cdecl__))
|
87 |
+
#else
|
88 |
+
#define CPUINFO_ABI
|
89 |
+
#endif
|
90 |
+
|
91 |
+
#define CPUINFO_CACHE_UNIFIED 0x00000001
|
92 |
+
#define CPUINFO_CACHE_INCLUSIVE 0x00000002
|
93 |
+
#define CPUINFO_CACHE_COMPLEX_INDEXING 0x00000004
|
94 |
+
|
95 |
+
struct cpuinfo_cache {
|
96 |
+
/** Cache size in bytes */
|
97 |
+
uint32_t size;
|
98 |
+
/** Number of ways of associativity */
|
99 |
+
uint32_t associativity;
|
100 |
+
/** Number of sets */
|
101 |
+
uint32_t sets;
|
102 |
+
/** Number of partitions */
|
103 |
+
uint32_t partitions;
|
104 |
+
/** Line size in bytes */
|
105 |
+
uint32_t line_size;
|
106 |
+
/**
|
107 |
+
* Binary characteristics of the cache (unified cache, inclusive cache, cache with complex indexing).
|
108 |
+
*
|
109 |
+
* @see CPUINFO_CACHE_UNIFIED, CPUINFO_CACHE_INCLUSIVE, CPUINFO_CACHE_COMPLEX_INDEXING
|
110 |
+
*/
|
111 |
+
uint32_t flags;
|
112 |
+
/** Index of the first logical processor that shares this cache */
|
113 |
+
uint32_t processor_start;
|
114 |
+
/** Number of logical processors that share this cache */
|
115 |
+
uint32_t processor_count;
|
116 |
+
};
|
117 |
+
|
118 |
+
struct cpuinfo_trace_cache {
|
119 |
+
uint32_t uops;
|
120 |
+
uint32_t associativity;
|
121 |
+
};
|
122 |
+
|
123 |
+
#define CPUINFO_PAGE_SIZE_4KB 0x1000
|
124 |
+
#define CPUINFO_PAGE_SIZE_1MB 0x100000
|
125 |
+
#define CPUINFO_PAGE_SIZE_2MB 0x200000
|
126 |
+
#define CPUINFO_PAGE_SIZE_4MB 0x400000
|
127 |
+
#define CPUINFO_PAGE_SIZE_16MB 0x1000000
|
128 |
+
#define CPUINFO_PAGE_SIZE_1GB 0x40000000
|
129 |
+
|
130 |
+
struct cpuinfo_tlb {
|
131 |
+
uint32_t entries;
|
132 |
+
uint32_t associativity;
|
133 |
+
uint64_t pages;
|
134 |
+
};
|
135 |
+
|
136 |
+
/** Vendor of processor core design */
|
137 |
+
enum cpuinfo_vendor {
|
138 |
+
/** Processor vendor is not known to the library, or the library failed to get vendor information from the OS. */
|
139 |
+
cpuinfo_vendor_unknown = 0,
|
140 |
+
|
141 |
+
/* Active vendors of modern CPUs */
|
142 |
+
|
143 |
+
/**
|
144 |
+
* Intel Corporation. Vendor of x86, x86-64, IA64, and ARM processor microarchitectures.
|
145 |
+
*
|
146 |
+
* Sold its ARM design subsidiary in 2006. The last ARM processor design was released in 2004.
|
147 |
+
*/
|
148 |
+
cpuinfo_vendor_intel = 1,
|
149 |
+
/** Advanced Micro Devices, Inc. Vendor of x86 and x86-64 processor microarchitectures. */
|
150 |
+
cpuinfo_vendor_amd = 2,
|
151 |
+
/** ARM Holdings plc. Vendor of ARM and ARM64 processor microarchitectures. */
|
152 |
+
cpuinfo_vendor_arm = 3,
|
153 |
+
/** Qualcomm Incorporated. Vendor of ARM and ARM64 processor microarchitectures. */
|
154 |
+
cpuinfo_vendor_qualcomm = 4,
|
155 |
+
/** Apple Inc. Vendor of ARM and ARM64 processor microarchitectures. */
|
156 |
+
cpuinfo_vendor_apple = 5,
|
157 |
+
/** Samsung Electronics Co., Ltd. Vendir if ARM64 processor microarchitectures. */
|
158 |
+
cpuinfo_vendor_samsung = 6,
|
159 |
+
/** Nvidia Corporation. Vendor of ARM64-compatible processor microarchitectures. */
|
160 |
+
cpuinfo_vendor_nvidia = 7,
|
161 |
+
/** MIPS Technologies, Inc. Vendor of MIPS processor microarchitectures. */
|
162 |
+
cpuinfo_vendor_mips = 8,
|
163 |
+
/** International Business Machines Corporation. Vendor of PowerPC processor microarchitectures. */
|
164 |
+
cpuinfo_vendor_ibm = 9,
|
165 |
+
/** Ingenic Semiconductor. Vendor of MIPS processor microarchitectures. */
|
166 |
+
cpuinfo_vendor_ingenic = 10,
|
167 |
+
/**
|
168 |
+
* VIA Technologies, Inc. Vendor of x86 and x86-64 processor microarchitectures.
|
169 |
+
*
|
170 |
+
* Processors are designed by Centaur Technology, a subsidiary of VIA Technologies.
|
171 |
+
*/
|
172 |
+
cpuinfo_vendor_via = 11,
|
173 |
+
/** Cavium, Inc. Vendor of ARM64 processor microarchitectures. */
|
174 |
+
cpuinfo_vendor_cavium = 12,
|
175 |
+
/** Broadcom, Inc. Vendor of ARM processor microarchitectures. */
|
176 |
+
cpuinfo_vendor_broadcom = 13,
|
177 |
+
/** Applied Micro Circuits Corporation (APM). Vendor of ARM64 processor microarchitectures. */
|
178 |
+
cpuinfo_vendor_apm = 14,
|
179 |
+
/**
|
180 |
+
* Huawei Technologies Co., Ltd. Vendor of ARM64 processor microarchitectures.
|
181 |
+
*
|
182 |
+
* Processors are designed by HiSilicon, a subsidiary of Huawei.
|
183 |
+
*/
|
184 |
+
cpuinfo_vendor_huawei = 15,
|
185 |
+
/**
|
186 |
+
* Hygon (Chengdu Haiguang Integrated Circuit Design Co., Ltd), Vendor of x86-64 processor microarchitectures.
|
187 |
+
*
|
188 |
+
* Processors are variants of AMD cores.
|
189 |
+
*/
|
190 |
+
cpuinfo_vendor_hygon = 16,
|
191 |
+
|
192 |
+
/* Active vendors of embedded CPUs */
|
193 |
+
|
194 |
+
/** Texas Instruments Inc. Vendor of ARM processor microarchitectures. */
|
195 |
+
cpuinfo_vendor_texas_instruments = 30,
|
196 |
+
/** Marvell Technology Group Ltd. Vendor of ARM processor microarchitectures. */
|
197 |
+
cpuinfo_vendor_marvell = 31,
|
198 |
+
/** RDC Semiconductor Co., Ltd. Vendor of x86 processor microarchitectures. */
|
199 |
+
cpuinfo_vendor_rdc = 32,
|
200 |
+
/** DM&P Electronics Inc. Vendor of x86 processor microarchitectures. */
|
201 |
+
cpuinfo_vendor_dmp = 33,
|
202 |
+
/** Motorola, Inc. Vendor of PowerPC and ARM processor microarchitectures. */
|
203 |
+
cpuinfo_vendor_motorola = 34,
|
204 |
+
|
205 |
+
/* Defunct CPU vendors */
|
206 |
+
|
207 |
+
/**
|
208 |
+
* Transmeta Corporation. Vendor of x86 processor microarchitectures.
|
209 |
+
*
|
210 |
+
* Now defunct. The last processor design was released in 2004.
|
211 |
+
* Transmeta processors implemented VLIW ISA and used binary translation to execute x86 code.
|
212 |
+
*/
|
213 |
+
cpuinfo_vendor_transmeta = 50,
|
214 |
+
/**
|
215 |
+
* Cyrix Corporation. Vendor of x86 processor microarchitectures.
|
216 |
+
*
|
217 |
+
* Now defunct. The last processor design was released in 1996.
|
218 |
+
*/
|
219 |
+
cpuinfo_vendor_cyrix = 51,
|
220 |
+
/**
|
221 |
+
* Rise Technology. Vendor of x86 processor microarchitectures.
|
222 |
+
*
|
223 |
+
* Now defunct. The last processor design was released in 1999.
|
224 |
+
*/
|
225 |
+
cpuinfo_vendor_rise = 52,
|
226 |
+
/**
|
227 |
+
* National Semiconductor. Vendor of x86 processor microarchitectures.
|
228 |
+
*
|
229 |
+
* Sold its x86 design subsidiary in 1999. The last processor design was released in 1998.
|
230 |
+
*/
|
231 |
+
cpuinfo_vendor_nsc = 53,
|
232 |
+
/**
|
233 |
+
* Silicon Integrated Systems. Vendor of x86 processor microarchitectures.
|
234 |
+
*
|
235 |
+
* Sold its x86 design subsidiary in 2001. The last processor design was released in 2001.
|
236 |
+
*/
|
237 |
+
cpuinfo_vendor_sis = 54,
|
238 |
+
/**
|
239 |
+
* NexGen. Vendor of x86 processor microarchitectures.
|
240 |
+
*
|
241 |
+
* Now defunct. The last processor design was released in 1994.
|
242 |
+
* NexGen designed the first x86 microarchitecture which decomposed x86 instructions into simple microoperations.
|
243 |
+
*/
|
244 |
+
cpuinfo_vendor_nexgen = 55,
|
245 |
+
/**
|
246 |
+
* United Microelectronics Corporation. Vendor of x86 processor microarchitectures.
|
247 |
+
*
|
248 |
+
* Ceased x86 in the early 1990s. The last processor design was released in 1991.
|
249 |
+
* Designed U5C and U5D processors. Both are 486 level.
|
250 |
+
*/
|
251 |
+
cpuinfo_vendor_umc = 56,
|
252 |
+
/**
|
253 |
+
* Digital Equipment Corporation. Vendor of ARM processor microarchitecture.
|
254 |
+
*
|
255 |
+
* Sold its ARM designs in 1997. The last processor design was released in 1997.
|
256 |
+
*/
|
257 |
+
cpuinfo_vendor_dec = 57,
|
258 |
+
};
|
259 |
+
|
260 |
+
/**
|
261 |
+
* Processor microarchitecture
|
262 |
+
*
|
263 |
+
* Processors with different microarchitectures often have different instruction performance characteristics,
|
264 |
+
* and may have dramatically different pipeline organization.
|
265 |
+
*/
|
266 |
+
enum cpuinfo_uarch {
|
267 |
+
/** Microarchitecture is unknown, or the library failed to get information about the microarchitecture from OS */
|
268 |
+
cpuinfo_uarch_unknown = 0,
|
269 |
+
|
270 |
+
/** Pentium and Pentium MMX microarchitecture. */
|
271 |
+
cpuinfo_uarch_p5 = 0x00100100,
|
272 |
+
/** Intel Quark microarchitecture. */
|
273 |
+
cpuinfo_uarch_quark = 0x00100101,
|
274 |
+
|
275 |
+
/** Pentium Pro, Pentium II, and Pentium III. */
|
276 |
+
cpuinfo_uarch_p6 = 0x00100200,
|
277 |
+
/** Pentium M. */
|
278 |
+
cpuinfo_uarch_dothan = 0x00100201,
|
279 |
+
/** Intel Core microarchitecture. */
|
280 |
+
cpuinfo_uarch_yonah = 0x00100202,
|
281 |
+
/** Intel Core 2 microarchitecture on 65 nm process. */
|
282 |
+
cpuinfo_uarch_conroe = 0x00100203,
|
283 |
+
/** Intel Core 2 microarchitecture on 45 nm process. */
|
284 |
+
cpuinfo_uarch_penryn = 0x00100204,
|
285 |
+
/** Intel Nehalem and Westmere microarchitectures (Core i3/i5/i7 1st gen). */
|
286 |
+
cpuinfo_uarch_nehalem = 0x00100205,
|
287 |
+
/** Intel Sandy Bridge microarchitecture (Core i3/i5/i7 2nd gen). */
|
288 |
+
cpuinfo_uarch_sandy_bridge = 0x00100206,
|
289 |
+
/** Intel Ivy Bridge microarchitecture (Core i3/i5/i7 3rd gen). */
|
290 |
+
cpuinfo_uarch_ivy_bridge = 0x00100207,
|
291 |
+
/** Intel Haswell microarchitecture (Core i3/i5/i7 4th gen). */
|
292 |
+
cpuinfo_uarch_haswell = 0x00100208,
|
293 |
+
/** Intel Broadwell microarchitecture. */
|
294 |
+
cpuinfo_uarch_broadwell = 0x00100209,
|
295 |
+
/** Intel Sky Lake microarchitecture (14 nm, including Kaby/Coffee/Whiskey/Amber/Comet/Cascade/Cooper Lake). */
|
296 |
+
cpuinfo_uarch_sky_lake = 0x0010020A,
|
297 |
+
/** DEPRECATED (Intel Kaby Lake microarchitecture). */
|
298 |
+
cpuinfo_uarch_kaby_lake = 0x0010020A,
|
299 |
+
/** Intel Palm Cove microarchitecture (10 nm, Cannon Lake). */
|
300 |
+
cpuinfo_uarch_palm_cove = 0x0010020B,
|
301 |
+
/** Intel Sunny Cove microarchitecture (10 nm, Ice Lake). */
|
302 |
+
cpuinfo_uarch_sunny_cove = 0x0010020C,
|
303 |
+
|
304 |
+
/** Pentium 4 with Willamette, Northwood, or Foster cores. */
|
305 |
+
cpuinfo_uarch_willamette = 0x00100300,
|
306 |
+
/** Pentium 4 with Prescott and later cores. */
|
307 |
+
cpuinfo_uarch_prescott = 0x00100301,
|
308 |
+
|
309 |
+
/** Intel Atom on 45 nm process. */
|
310 |
+
cpuinfo_uarch_bonnell = 0x00100400,
|
311 |
+
/** Intel Atom on 32 nm process. */
|
312 |
+
cpuinfo_uarch_saltwell = 0x00100401,
|
313 |
+
/** Intel Silvermont microarchitecture (22 nm out-of-order Atom). */
|
314 |
+
cpuinfo_uarch_silvermont = 0x00100402,
|
315 |
+
/** Intel Airmont microarchitecture (14 nm out-of-order Atom). */
|
316 |
+
cpuinfo_uarch_airmont = 0x00100403,
|
317 |
+
/** Intel Goldmont microarchitecture (Denverton, Apollo Lake). */
|
318 |
+
cpuinfo_uarch_goldmont = 0x00100404,
|
319 |
+
/** Intel Goldmont Plus microarchitecture (Gemini Lake). */
|
320 |
+
cpuinfo_uarch_goldmont_plus = 0x00100405,
|
321 |
+
|
322 |
+
/** Intel Knights Ferry HPC boards. */
|
323 |
+
cpuinfo_uarch_knights_ferry = 0x00100500,
|
324 |
+
/** Intel Knights Corner HPC boards (aka Xeon Phi). */
|
325 |
+
cpuinfo_uarch_knights_corner = 0x00100501,
|
326 |
+
/** Intel Knights Landing microarchitecture (second-gen MIC). */
|
327 |
+
cpuinfo_uarch_knights_landing = 0x00100502,
|
328 |
+
/** Intel Knights Hill microarchitecture (third-gen MIC). */
|
329 |
+
cpuinfo_uarch_knights_hill = 0x00100503,
|
330 |
+
/** Intel Knights Mill Xeon Phi. */
|
331 |
+
cpuinfo_uarch_knights_mill = 0x00100504,
|
332 |
+
|
333 |
+
/** Intel/Marvell XScale series. */
|
334 |
+
cpuinfo_uarch_xscale = 0x00100600,
|
335 |
+
|
336 |
+
/** AMD K5. */
|
337 |
+
cpuinfo_uarch_k5 = 0x00200100,
|
338 |
+
/** AMD K6 and alike. */
|
339 |
+
cpuinfo_uarch_k6 = 0x00200101,
|
340 |
+
/** AMD Athlon and Duron. */
|
341 |
+
cpuinfo_uarch_k7 = 0x00200102,
|
342 |
+
/** AMD Athlon 64, Opteron 64. */
|
343 |
+
cpuinfo_uarch_k8 = 0x00200103,
|
344 |
+
/** AMD Family 10h (Barcelona, Istambul, Magny-Cours). */
|
345 |
+
cpuinfo_uarch_k10 = 0x00200104,
|
346 |
+
/**
|
347 |
+
* AMD Bulldozer microarchitecture
|
348 |
+
* Zambezi FX-series CPUs, Zurich, Valencia and Interlagos Opteron CPUs.
|
349 |
+
*/
|
350 |
+
cpuinfo_uarch_bulldozer = 0x00200105,
|
351 |
+
/**
|
352 |
+
* AMD Piledriver microarchitecture
|
353 |
+
* Vishera FX-series CPUs, Trinity and Richland APUs, Delhi, Seoul, Abu Dhabi Opteron CPUs.
|
354 |
+
*/
|
355 |
+
cpuinfo_uarch_piledriver = 0x00200106,
|
356 |
+
/** AMD Steamroller microarchitecture (Kaveri APUs). */
|
357 |
+
cpuinfo_uarch_steamroller = 0x00200107,
|
358 |
+
/** AMD Excavator microarchitecture (Carizzo APUs). */
|
359 |
+
cpuinfo_uarch_excavator = 0x00200108,
|
360 |
+
/** AMD Zen microarchitecture (12/14 nm Ryzen and EPYC CPUs). */
|
361 |
+
cpuinfo_uarch_zen = 0x00200109,
|
362 |
+
/** AMD Zen 2 microarchitecture (7 nm Ryzen and EPYC CPUs). */
|
363 |
+
cpuinfo_uarch_zen2 = 0x0020010A,
|
364 |
+
/** AMD Zen 3 microarchitecture. */
|
365 |
+
cpuinfo_uarch_zen3 = 0x0020010B,
|
366 |
+
/** AMD Zen 4 microarchitecture. */
|
367 |
+
cpuinfo_uarch_zen4 = 0x0020010C,
|
368 |
+
|
369 |
+
/** NSC Geode and AMD Geode GX and LX. */
|
370 |
+
cpuinfo_uarch_geode = 0x00200200,
|
371 |
+
/** AMD Bobcat mobile microarchitecture. */
|
372 |
+
cpuinfo_uarch_bobcat = 0x00200201,
|
373 |
+
/** AMD Jaguar mobile microarchitecture. */
|
374 |
+
cpuinfo_uarch_jaguar = 0x00200202,
|
375 |
+
/** AMD Puma mobile microarchitecture. */
|
376 |
+
cpuinfo_uarch_puma = 0x00200203,
|
377 |
+
|
378 |
+
/** ARM7 series. */
|
379 |
+
cpuinfo_uarch_arm7 = 0x00300100,
|
380 |
+
/** ARM9 series. */
|
381 |
+
cpuinfo_uarch_arm9 = 0x00300101,
|
382 |
+
/** ARM 1136, ARM 1156, ARM 1176, or ARM 11MPCore. */
|
383 |
+
cpuinfo_uarch_arm11 = 0x00300102,
|
384 |
+
|
385 |
+
/** ARM Cortex-A5. */
|
386 |
+
cpuinfo_uarch_cortex_a5 = 0x00300205,
|
387 |
+
/** ARM Cortex-A7. */
|
388 |
+
cpuinfo_uarch_cortex_a7 = 0x00300207,
|
389 |
+
/** ARM Cortex-A8. */
|
390 |
+
cpuinfo_uarch_cortex_a8 = 0x00300208,
|
391 |
+
/** ARM Cortex-A9. */
|
392 |
+
cpuinfo_uarch_cortex_a9 = 0x00300209,
|
393 |
+
/** ARM Cortex-A12. */
|
394 |
+
cpuinfo_uarch_cortex_a12 = 0x00300212,
|
395 |
+
/** ARM Cortex-A15. */
|
396 |
+
cpuinfo_uarch_cortex_a15 = 0x00300215,
|
397 |
+
/** ARM Cortex-A17. */
|
398 |
+
cpuinfo_uarch_cortex_a17 = 0x00300217,
|
399 |
+
|
400 |
+
/** ARM Cortex-A32. */
|
401 |
+
cpuinfo_uarch_cortex_a32 = 0x00300332,
|
402 |
+
/** ARM Cortex-A35. */
|
403 |
+
cpuinfo_uarch_cortex_a35 = 0x00300335,
|
404 |
+
/** ARM Cortex-A53. */
|
405 |
+
cpuinfo_uarch_cortex_a53 = 0x00300353,
|
406 |
+
/** ARM Cortex-A55 revision 0 (restricted dual-issue capabilities compared to revision 1+). */
|
407 |
+
cpuinfo_uarch_cortex_a55r0 = 0x00300354,
|
408 |
+
/** ARM Cortex-A55. */
|
409 |
+
cpuinfo_uarch_cortex_a55 = 0x00300355,
|
410 |
+
/** ARM Cortex-A57. */
|
411 |
+
cpuinfo_uarch_cortex_a57 = 0x00300357,
|
412 |
+
/** ARM Cortex-A65. */
|
413 |
+
cpuinfo_uarch_cortex_a65 = 0x00300365,
|
414 |
+
/** ARM Cortex-A72. */
|
415 |
+
cpuinfo_uarch_cortex_a72 = 0x00300372,
|
416 |
+
/** ARM Cortex-A73. */
|
417 |
+
cpuinfo_uarch_cortex_a73 = 0x00300373,
|
418 |
+
/** ARM Cortex-A75. */
|
419 |
+
cpuinfo_uarch_cortex_a75 = 0x00300375,
|
420 |
+
/** ARM Cortex-A76. */
|
421 |
+
cpuinfo_uarch_cortex_a76 = 0x00300376,
|
422 |
+
/** ARM Cortex-A77. */
|
423 |
+
cpuinfo_uarch_cortex_a77 = 0x00300377,
|
424 |
+
/** ARM Cortex-A78. */
|
425 |
+
cpuinfo_uarch_cortex_a78 = 0x00300378,
|
426 |
+
|
427 |
+
/** ARM Neoverse N1. */
|
428 |
+
cpuinfo_uarch_neoverse_n1 = 0x00300400,
|
429 |
+
/** ARM Neoverse E1. */
|
430 |
+
cpuinfo_uarch_neoverse_e1 = 0x00300401,
|
431 |
+
/** ARM Neoverse V1. */
|
432 |
+
cpuinfo_uarch_neoverse_v1 = 0x00300402,
|
433 |
+
/** ARM Neoverse N2. */
|
434 |
+
cpuinfo_uarch_neoverse_n2 = 0x00300403,
|
435 |
+
/** ARM Neoverse V2. */
|
436 |
+
cpuinfo_uarch_neoverse_v2 = 0x00300404,
|
437 |
+
|
438 |
+
/** ARM Cortex-X1. */
|
439 |
+
cpuinfo_uarch_cortex_x1 = 0x00300501,
|
440 |
+
/** ARM Cortex-X2. */
|
441 |
+
cpuinfo_uarch_cortex_x2 = 0x00300502,
|
442 |
+
/** ARM Cortex-X3. */
|
443 |
+
cpuinfo_uarch_cortex_x3 = 0x00300503,
|
444 |
+
|
445 |
+
/** ARM Cortex-A510. */
|
446 |
+
cpuinfo_uarch_cortex_a510 = 0x00300551,
|
447 |
+
/** ARM Cortex-A710. */
|
448 |
+
cpuinfo_uarch_cortex_a710 = 0x00300571,
|
449 |
+
/** ARM Cortex-A715. */
|
450 |
+
cpuinfo_uarch_cortex_a715 = 0x00300572,
|
451 |
+
|
452 |
+
/** Qualcomm Scorpion. */
|
453 |
+
cpuinfo_uarch_scorpion = 0x00400100,
|
454 |
+
/** Qualcomm Krait. */
|
455 |
+
cpuinfo_uarch_krait = 0x00400101,
|
456 |
+
/** Qualcomm Kryo. */
|
457 |
+
cpuinfo_uarch_kryo = 0x00400102,
|
458 |
+
/** Qualcomm Falkor. */
|
459 |
+
cpuinfo_uarch_falkor = 0x00400103,
|
460 |
+
/** Qualcomm Saphira. */
|
461 |
+
cpuinfo_uarch_saphira = 0x00400104,
|
462 |
+
|
463 |
+
/** Nvidia Denver. */
|
464 |
+
cpuinfo_uarch_denver = 0x00500100,
|
465 |
+
/** Nvidia Denver 2. */
|
466 |
+
cpuinfo_uarch_denver2 = 0x00500101,
|
467 |
+
/** Nvidia Carmel. */
|
468 |
+
cpuinfo_uarch_carmel = 0x00500102,
|
469 |
+
|
470 |
+
/** Samsung Exynos M1 (Exynos 8890 big cores). */
|
471 |
+
cpuinfo_uarch_exynos_m1 = 0x00600100,
|
472 |
+
/** Samsung Exynos M2 (Exynos 8895 big cores). */
|
473 |
+
cpuinfo_uarch_exynos_m2 = 0x00600101,
|
474 |
+
/** Samsung Exynos M3 (Exynos 9810 big cores). */
|
475 |
+
cpuinfo_uarch_exynos_m3 = 0x00600102,
|
476 |
+
/** Samsung Exynos M4 (Exynos 9820 big cores). */
|
477 |
+
cpuinfo_uarch_exynos_m4 = 0x00600103,
|
478 |
+
/** Samsung Exynos M5 (Exynos 9830 big cores). */
|
479 |
+
cpuinfo_uarch_exynos_m5 = 0x00600104,
|
480 |
+
|
481 |
+
/* Deprecated synonym for Cortex-A76 */
|
482 |
+
cpuinfo_uarch_cortex_a76ae = 0x00300376,
|
483 |
+
/* Deprecated names for Exynos. */
|
484 |
+
cpuinfo_uarch_mongoose_m1 = 0x00600100,
|
485 |
+
cpuinfo_uarch_mongoose_m2 = 0x00600101,
|
486 |
+
cpuinfo_uarch_meerkat_m3 = 0x00600102,
|
487 |
+
cpuinfo_uarch_meerkat_m4 = 0x00600103,
|
488 |
+
|
489 |
+
/** Apple A6 and A6X processors. */
|
490 |
+
cpuinfo_uarch_swift = 0x00700100,
|
491 |
+
/** Apple A7 processor. */
|
492 |
+
cpuinfo_uarch_cyclone = 0x00700101,
|
493 |
+
/** Apple A8 and A8X processor. */
|
494 |
+
cpuinfo_uarch_typhoon = 0x00700102,
|
495 |
+
/** Apple A9 and A9X processor. */
|
496 |
+
cpuinfo_uarch_twister = 0x00700103,
|
497 |
+
/** Apple A10 and A10X processor. */
|
498 |
+
cpuinfo_uarch_hurricane = 0x00700104,
|
499 |
+
/** Apple A11 processor (big cores). */
|
500 |
+
cpuinfo_uarch_monsoon = 0x00700105,
|
501 |
+
/** Apple A11 processor (little cores). */
|
502 |
+
cpuinfo_uarch_mistral = 0x00700106,
|
503 |
+
/** Apple A12 processor (big cores). */
|
504 |
+
cpuinfo_uarch_vortex = 0x00700107,
|
505 |
+
/** Apple A12 processor (little cores). */
|
506 |
+
cpuinfo_uarch_tempest = 0x00700108,
|
507 |
+
/** Apple A13 processor (big cores). */
|
508 |
+
cpuinfo_uarch_lightning = 0x00700109,
|
509 |
+
/** Apple A13 processor (little cores). */
|
510 |
+
cpuinfo_uarch_thunder = 0x0070010A,
|
511 |
+
/** Apple A14 / M1 processor (big cores). */
|
512 |
+
cpuinfo_uarch_firestorm = 0x0070010B,
|
513 |
+
/** Apple A14 / M1 processor (little cores). */
|
514 |
+
cpuinfo_uarch_icestorm = 0x0070010C,
|
515 |
+
/** Apple A15 / M2 processor (big cores). */
|
516 |
+
cpuinfo_uarch_avalanche = 0x0070010D,
|
517 |
+
/** Apple A15 / M2 processor (little cores). */
|
518 |
+
cpuinfo_uarch_blizzard = 0x0070010E,
|
519 |
+
|
520 |
+
/** Cavium ThunderX. */
|
521 |
+
cpuinfo_uarch_thunderx = 0x00800100,
|
522 |
+
/** Cavium ThunderX2 (originally Broadcom Vulkan). */
|
523 |
+
cpuinfo_uarch_thunderx2 = 0x00800200,
|
524 |
+
|
525 |
+
/** Marvell PJ4. */
|
526 |
+
cpuinfo_uarch_pj4 = 0x00900100,
|
527 |
+
|
528 |
+
/** Broadcom Brahma B15. */
|
529 |
+
cpuinfo_uarch_brahma_b15 = 0x00A00100,
|
530 |
+
/** Broadcom Brahma B53. */
|
531 |
+
cpuinfo_uarch_brahma_b53 = 0x00A00101,
|
532 |
+
|
533 |
+
/** Applied Micro X-Gene. */
|
534 |
+
cpuinfo_uarch_xgene = 0x00B00100,
|
535 |
+
|
536 |
+
/* Hygon Dhyana (a modification of AMD Zen for Chinese market). */
|
537 |
+
cpuinfo_uarch_dhyana = 0x01000100,
|
538 |
+
|
539 |
+
/** HiSilicon TaiShan v110 (Huawei Kunpeng 920 series processors). */
|
540 |
+
cpuinfo_uarch_taishan_v110 = 0x00C00100,
|
541 |
+
};
|
542 |
+
|
543 |
+
struct cpuinfo_processor {
|
544 |
+
/** SMT (hyperthread) ID within a core */
|
545 |
+
uint32_t smt_id;
|
546 |
+
/** Core containing this logical processor */
|
547 |
+
const struct cpuinfo_core* core;
|
548 |
+
/** Cluster of cores containing this logical processor */
|
549 |
+
const struct cpuinfo_cluster* cluster;
|
550 |
+
/** Physical package containing this logical processor */
|
551 |
+
const struct cpuinfo_package* package;
|
552 |
+
#if defined(__linux__)
|
553 |
+
/**
|
554 |
+
* Linux-specific ID for the logical processor:
|
555 |
+
* - Linux kernel exposes information about this logical processor in /sys/devices/system/cpu/cpu<linux_id>/
|
556 |
+
* - Bit <linux_id> in the cpu_set_t identifies this logical processor
|
557 |
+
*/
|
558 |
+
int linux_id;
|
559 |
+
#endif
|
560 |
+
#if defined(_WIN32) || defined(__CYGWIN__)
|
561 |
+
/** Windows-specific ID for the group containing the logical processor. */
|
562 |
+
uint16_t windows_group_id;
|
563 |
+
/**
|
564 |
+
* Windows-specific ID of the logical processor within its group:
|
565 |
+
* - Bit <windows_processor_id> in the KAFFINITY mask identifies this logical processor within its group.
|
566 |
+
*/
|
567 |
+
uint16_t windows_processor_id;
|
568 |
+
#endif
|
569 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
570 |
+
/** APIC ID (unique x86-specific ID of the logical processor) */
|
571 |
+
uint32_t apic_id;
|
572 |
+
#endif
|
573 |
+
struct {
|
574 |
+
/** Level 1 instruction cache */
|
575 |
+
const struct cpuinfo_cache* l1i;
|
576 |
+
/** Level 1 data cache */
|
577 |
+
const struct cpuinfo_cache* l1d;
|
578 |
+
/** Level 2 unified or data cache */
|
579 |
+
const struct cpuinfo_cache* l2;
|
580 |
+
/** Level 3 unified or data cache */
|
581 |
+
const struct cpuinfo_cache* l3;
|
582 |
+
/** Level 4 unified or data cache */
|
583 |
+
const struct cpuinfo_cache* l4;
|
584 |
+
} cache;
|
585 |
+
};
|
586 |
+
|
587 |
+
struct cpuinfo_core {
|
588 |
+
/** Index of the first logical processor on this core. */
|
589 |
+
uint32_t processor_start;
|
590 |
+
/** Number of logical processors on this core */
|
591 |
+
uint32_t processor_count;
|
592 |
+
/** Core ID within a package */
|
593 |
+
uint32_t core_id;
|
594 |
+
/** Cluster containing this core */
|
595 |
+
const struct cpuinfo_cluster* cluster;
|
596 |
+
/** Physical package containing this core. */
|
597 |
+
const struct cpuinfo_package* package;
|
598 |
+
/** Vendor of the CPU microarchitecture for this core */
|
599 |
+
enum cpuinfo_vendor vendor;
|
600 |
+
/** CPU microarchitecture for this core */
|
601 |
+
enum cpuinfo_uarch uarch;
|
602 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
603 |
+
/** Value of CPUID leaf 1 EAX register for this core */
|
604 |
+
uint32_t cpuid;
|
605 |
+
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
606 |
+
/** Value of Main ID Register (MIDR) for this core */
|
607 |
+
uint32_t midr;
|
608 |
+
#endif
|
609 |
+
/** Clock rate (non-Turbo) of the core, in Hz */
|
610 |
+
uint64_t frequency;
|
611 |
+
};
|
612 |
+
|
613 |
+
struct cpuinfo_cluster {
|
614 |
+
/** Index of the first logical processor in the cluster */
|
615 |
+
uint32_t processor_start;
|
616 |
+
/** Number of logical processors in the cluster */
|
617 |
+
uint32_t processor_count;
|
618 |
+
/** Index of the first core in the cluster */
|
619 |
+
uint32_t core_start;
|
620 |
+
/** Number of cores on the cluster */
|
621 |
+
uint32_t core_count;
|
622 |
+
/** Cluster ID within a package */
|
623 |
+
uint32_t cluster_id;
|
624 |
+
/** Physical package containing the cluster */
|
625 |
+
const struct cpuinfo_package* package;
|
626 |
+
/** CPU microarchitecture vendor of the cores in the cluster */
|
627 |
+
enum cpuinfo_vendor vendor;
|
628 |
+
/** CPU microarchitecture of the cores in the cluster */
|
629 |
+
enum cpuinfo_uarch uarch;
|
630 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
631 |
+
/** Value of CPUID leaf 1 EAX register of the cores in the cluster */
|
632 |
+
uint32_t cpuid;
|
633 |
+
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
634 |
+
/** Value of Main ID Register (MIDR) of the cores in the cluster */
|
635 |
+
uint32_t midr;
|
636 |
+
#endif
|
637 |
+
/** Clock rate (non-Turbo) of the cores in the cluster, in Hz */
|
638 |
+
uint64_t frequency;
|
639 |
+
};
|
640 |
+
|
641 |
+
#define CPUINFO_PACKAGE_NAME_MAX 48
|
642 |
+
|
643 |
+
struct cpuinfo_package {
|
644 |
+
/** SoC or processor chip model name */
|
645 |
+
char name[CPUINFO_PACKAGE_NAME_MAX];
|
646 |
+
/** Index of the first logical processor on this physical package */
|
647 |
+
uint32_t processor_start;
|
648 |
+
/** Number of logical processors on this physical package */
|
649 |
+
uint32_t processor_count;
|
650 |
+
/** Index of the first core on this physical package */
|
651 |
+
uint32_t core_start;
|
652 |
+
/** Number of cores on this physical package */
|
653 |
+
uint32_t core_count;
|
654 |
+
/** Index of the first cluster of cores on this physical package */
|
655 |
+
uint32_t cluster_start;
|
656 |
+
/** Number of clusters of cores on this physical package */
|
657 |
+
uint32_t cluster_count;
|
658 |
+
};
|
659 |
+
|
660 |
+
struct cpuinfo_uarch_info {
|
661 |
+
/** Type of CPU microarchitecture */
|
662 |
+
enum cpuinfo_uarch uarch;
|
663 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
664 |
+
/** Value of CPUID leaf 1 EAX register for the microarchitecture */
|
665 |
+
uint32_t cpuid;
|
666 |
+
#elif CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
667 |
+
/** Value of Main ID Register (MIDR) for the microarchitecture */
|
668 |
+
uint32_t midr;
|
669 |
+
#endif
|
670 |
+
/** Number of logical processors with the microarchitecture */
|
671 |
+
uint32_t processor_count;
|
672 |
+
/** Number of cores with the microarchitecture */
|
673 |
+
uint32_t core_count;
|
674 |
+
};
|
675 |
+
|
676 |
+
#ifdef __cplusplus
|
677 |
+
extern "C" {
|
678 |
+
#endif
|
679 |
+
|
680 |
+
bool CPUINFO_ABI cpuinfo_initialize(void);
|
681 |
+
|
682 |
+
void CPUINFO_ABI cpuinfo_deinitialize(void);
|
683 |
+
|
684 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
685 |
+
/* This structure is not a part of stable API. Use cpuinfo_has_x86_* functions instead. */
|
686 |
+
struct cpuinfo_x86_isa {
|
687 |
+
#if CPUINFO_ARCH_X86
|
688 |
+
bool rdtsc;
|
689 |
+
#endif
|
690 |
+
bool rdtscp;
|
691 |
+
bool rdpid;
|
692 |
+
bool sysenter;
|
693 |
+
#if CPUINFO_ARCH_X86
|
694 |
+
bool syscall;
|
695 |
+
#endif
|
696 |
+
bool msr;
|
697 |
+
bool clzero;
|
698 |
+
bool clflush;
|
699 |
+
bool clflushopt;
|
700 |
+
bool mwait;
|
701 |
+
bool mwaitx;
|
702 |
+
#if CPUINFO_ARCH_X86
|
703 |
+
bool emmx;
|
704 |
+
#endif
|
705 |
+
bool fxsave;
|
706 |
+
bool xsave;
|
707 |
+
#if CPUINFO_ARCH_X86
|
708 |
+
bool fpu;
|
709 |
+
bool mmx;
|
710 |
+
bool mmx_plus;
|
711 |
+
#endif
|
712 |
+
bool three_d_now;
|
713 |
+
bool three_d_now_plus;
|
714 |
+
#if CPUINFO_ARCH_X86
|
715 |
+
bool three_d_now_geode;
|
716 |
+
#endif
|
717 |
+
bool prefetch;
|
718 |
+
bool prefetchw;
|
719 |
+
bool prefetchwt1;
|
720 |
+
#if CPUINFO_ARCH_X86
|
721 |
+
bool daz;
|
722 |
+
bool sse;
|
723 |
+
bool sse2;
|
724 |
+
#endif
|
725 |
+
bool sse3;
|
726 |
+
bool ssse3;
|
727 |
+
bool sse4_1;
|
728 |
+
bool sse4_2;
|
729 |
+
bool sse4a;
|
730 |
+
bool misaligned_sse;
|
731 |
+
bool avx;
|
732 |
+
bool avxvnni;
|
733 |
+
bool fma3;
|
734 |
+
bool fma4;
|
735 |
+
bool xop;
|
736 |
+
bool f16c;
|
737 |
+
bool avx2;
|
738 |
+
bool avx512f;
|
739 |
+
bool avx512pf;
|
740 |
+
bool avx512er;
|
741 |
+
bool avx512cd;
|
742 |
+
bool avx512dq;
|
743 |
+
bool avx512bw;
|
744 |
+
bool avx512vl;
|
745 |
+
bool avx512ifma;
|
746 |
+
bool avx512vbmi;
|
747 |
+
bool avx512vbmi2;
|
748 |
+
bool avx512bitalg;
|
749 |
+
bool avx512vpopcntdq;
|
750 |
+
bool avx512vnni;
|
751 |
+
bool avx512bf16;
|
752 |
+
bool avx512fp16;
|
753 |
+
bool avx512vp2intersect;
|
754 |
+
bool avx512_4vnniw;
|
755 |
+
bool avx512_4fmaps;
|
756 |
+
bool hle;
|
757 |
+
bool rtm;
|
758 |
+
bool xtest;
|
759 |
+
bool mpx;
|
760 |
+
#if CPUINFO_ARCH_X86
|
761 |
+
bool cmov;
|
762 |
+
bool cmpxchg8b;
|
763 |
+
#endif
|
764 |
+
bool cmpxchg16b;
|
765 |
+
bool clwb;
|
766 |
+
bool movbe;
|
767 |
+
#if CPUINFO_ARCH_X86_64
|
768 |
+
bool lahf_sahf;
|
769 |
+
#endif
|
770 |
+
bool fs_gs_base;
|
771 |
+
bool lzcnt;
|
772 |
+
bool popcnt;
|
773 |
+
bool tbm;
|
774 |
+
bool bmi;
|
775 |
+
bool bmi2;
|
776 |
+
bool adx;
|
777 |
+
bool aes;
|
778 |
+
bool vaes;
|
779 |
+
bool pclmulqdq;
|
780 |
+
bool vpclmulqdq;
|
781 |
+
bool gfni;
|
782 |
+
bool rdrand;
|
783 |
+
bool rdseed;
|
784 |
+
bool sha;
|
785 |
+
bool rng;
|
786 |
+
bool ace;
|
787 |
+
bool ace2;
|
788 |
+
bool phe;
|
789 |
+
bool pmm;
|
790 |
+
bool lwp;
|
791 |
+
};
|
792 |
+
|
793 |
+
extern struct cpuinfo_x86_isa cpuinfo_isa;
|
794 |
+
#endif
|
795 |
+
|
796 |
+
static inline bool cpuinfo_has_x86_rdtsc(void) {
|
797 |
+
#if CPUINFO_ARCH_X86_64
|
798 |
+
return true;
|
799 |
+
#elif CPUINFO_ARCH_X86
|
800 |
+
#if defined(__ANDROID__)
|
801 |
+
return true;
|
802 |
+
#else
|
803 |
+
return cpuinfo_isa.rdtsc;
|
804 |
+
#endif
|
805 |
+
#else
|
806 |
+
return false;
|
807 |
+
#endif
|
808 |
+
}
|
809 |
+
|
810 |
+
static inline bool cpuinfo_has_x86_rdtscp(void) {
|
811 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
812 |
+
return cpuinfo_isa.rdtscp;
|
813 |
+
#else
|
814 |
+
return false;
|
815 |
+
#endif
|
816 |
+
}
|
817 |
+
|
818 |
+
static inline bool cpuinfo_has_x86_rdpid(void) {
|
819 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
820 |
+
return cpuinfo_isa.rdpid;
|
821 |
+
#else
|
822 |
+
return false;
|
823 |
+
#endif
|
824 |
+
}
|
825 |
+
|
826 |
+
static inline bool cpuinfo_has_x86_clzero(void) {
|
827 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
828 |
+
return cpuinfo_isa.clzero;
|
829 |
+
#else
|
830 |
+
return false;
|
831 |
+
#endif
|
832 |
+
}
|
833 |
+
|
834 |
+
static inline bool cpuinfo_has_x86_mwait(void) {
|
835 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
836 |
+
return cpuinfo_isa.mwait;
|
837 |
+
#else
|
838 |
+
return false;
|
839 |
+
#endif
|
840 |
+
}
|
841 |
+
|
842 |
+
static inline bool cpuinfo_has_x86_mwaitx(void) {
|
843 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
844 |
+
return cpuinfo_isa.mwaitx;
|
845 |
+
#else
|
846 |
+
return false;
|
847 |
+
#endif
|
848 |
+
}
|
849 |
+
|
850 |
+
static inline bool cpuinfo_has_x86_fxsave(void) {
|
851 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
852 |
+
return cpuinfo_isa.fxsave;
|
853 |
+
#else
|
854 |
+
return false;
|
855 |
+
#endif
|
856 |
+
}
|
857 |
+
|
858 |
+
static inline bool cpuinfo_has_x86_xsave(void) {
|
859 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
860 |
+
return cpuinfo_isa.xsave;
|
861 |
+
#else
|
862 |
+
return false;
|
863 |
+
#endif
|
864 |
+
}
|
865 |
+
|
866 |
+
static inline bool cpuinfo_has_x86_fpu(void) {
|
867 |
+
#if CPUINFO_ARCH_X86_64
|
868 |
+
return true;
|
869 |
+
#elif CPUINFO_ARCH_X86
|
870 |
+
#if defined(__ANDROID__)
|
871 |
+
return true;
|
872 |
+
#else
|
873 |
+
return cpuinfo_isa.fpu;
|
874 |
+
#endif
|
875 |
+
#else
|
876 |
+
return false;
|
877 |
+
#endif
|
878 |
+
}
|
879 |
+
|
880 |
+
static inline bool cpuinfo_has_x86_mmx(void) {
|
881 |
+
#if CPUINFO_ARCH_X86_64
|
882 |
+
return true;
|
883 |
+
#elif CPUINFO_ARCH_X86
|
884 |
+
#if defined(__ANDROID__)
|
885 |
+
return true;
|
886 |
+
#else
|
887 |
+
return cpuinfo_isa.mmx;
|
888 |
+
#endif
|
889 |
+
#else
|
890 |
+
return false;
|
891 |
+
#endif
|
892 |
+
}
|
893 |
+
|
894 |
+
static inline bool cpuinfo_has_x86_mmx_plus(void) {
|
895 |
+
#if CPUINFO_ARCH_X86_64
|
896 |
+
return true;
|
897 |
+
#elif CPUINFO_ARCH_X86
|
898 |
+
#if defined(__ANDROID__)
|
899 |
+
return true;
|
900 |
+
#else
|
901 |
+
return cpuinfo_isa.mmx_plus;
|
902 |
+
#endif
|
903 |
+
#else
|
904 |
+
return false;
|
905 |
+
#endif
|
906 |
+
}
|
907 |
+
|
908 |
+
static inline bool cpuinfo_has_x86_3dnow(void) {
|
909 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
910 |
+
return cpuinfo_isa.three_d_now;
|
911 |
+
#else
|
912 |
+
return false;
|
913 |
+
#endif
|
914 |
+
}
|
915 |
+
|
916 |
+
static inline bool cpuinfo_has_x86_3dnow_plus(void) {
|
917 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
918 |
+
return cpuinfo_isa.three_d_now_plus;
|
919 |
+
#else
|
920 |
+
return false;
|
921 |
+
#endif
|
922 |
+
}
|
923 |
+
|
924 |
+
static inline bool cpuinfo_has_x86_3dnow_geode(void) {
|
925 |
+
#if CPUINFO_ARCH_X86_64
|
926 |
+
return false;
|
927 |
+
#elif CPUINFO_ARCH_X86
|
928 |
+
#if defined(__ANDROID__)
|
929 |
+
return false;
|
930 |
+
#else
|
931 |
+
return cpuinfo_isa.three_d_now_geode;
|
932 |
+
#endif
|
933 |
+
#else
|
934 |
+
return false;
|
935 |
+
#endif
|
936 |
+
}
|
937 |
+
|
938 |
+
static inline bool cpuinfo_has_x86_prefetch(void) {
|
939 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
940 |
+
return cpuinfo_isa.prefetch;
|
941 |
+
#else
|
942 |
+
return false;
|
943 |
+
#endif
|
944 |
+
}
|
945 |
+
|
946 |
+
static inline bool cpuinfo_has_x86_prefetchw(void) {
|
947 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
948 |
+
return cpuinfo_isa.prefetchw;
|
949 |
+
#else
|
950 |
+
return false;
|
951 |
+
#endif
|
952 |
+
}
|
953 |
+
|
954 |
+
static inline bool cpuinfo_has_x86_prefetchwt1(void) {
|
955 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
956 |
+
return cpuinfo_isa.prefetchwt1;
|
957 |
+
#else
|
958 |
+
return false;
|
959 |
+
#endif
|
960 |
+
}
|
961 |
+
|
962 |
+
static inline bool cpuinfo_has_x86_daz(void) {
|
963 |
+
#if CPUINFO_ARCH_X86_64
|
964 |
+
return true;
|
965 |
+
#elif CPUINFO_ARCH_X86
|
966 |
+
#if defined(__ANDROID__)
|
967 |
+
return true;
|
968 |
+
#else
|
969 |
+
return cpuinfo_isa.daz;
|
970 |
+
#endif
|
971 |
+
#else
|
972 |
+
return false;
|
973 |
+
#endif
|
974 |
+
}
|
975 |
+
|
976 |
+
static inline bool cpuinfo_has_x86_sse(void) {
|
977 |
+
#if CPUINFO_ARCH_X86_64
|
978 |
+
return true;
|
979 |
+
#elif CPUINFO_ARCH_X86
|
980 |
+
#if defined(__ANDROID__)
|
981 |
+
return true;
|
982 |
+
#else
|
983 |
+
return cpuinfo_isa.sse;
|
984 |
+
#endif
|
985 |
+
#else
|
986 |
+
return false;
|
987 |
+
#endif
|
988 |
+
}
|
989 |
+
|
990 |
+
static inline bool cpuinfo_has_x86_sse2(void) {
|
991 |
+
#if CPUINFO_ARCH_X86_64
|
992 |
+
return true;
|
993 |
+
#elif CPUINFO_ARCH_X86
|
994 |
+
#if defined(__ANDROID__)
|
995 |
+
return true;
|
996 |
+
#else
|
997 |
+
return cpuinfo_isa.sse2;
|
998 |
+
#endif
|
999 |
+
#else
|
1000 |
+
return false;
|
1001 |
+
#endif
|
1002 |
+
}
|
1003 |
+
|
1004 |
+
static inline bool cpuinfo_has_x86_sse3(void) {
|
1005 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1006 |
+
#if defined(__ANDROID__)
|
1007 |
+
return true;
|
1008 |
+
#else
|
1009 |
+
return cpuinfo_isa.sse3;
|
1010 |
+
#endif
|
1011 |
+
#else
|
1012 |
+
return false;
|
1013 |
+
#endif
|
1014 |
+
}
|
1015 |
+
|
1016 |
+
static inline bool cpuinfo_has_x86_ssse3(void) {
|
1017 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1018 |
+
#if defined(__ANDROID__)
|
1019 |
+
return true;
|
1020 |
+
#else
|
1021 |
+
return cpuinfo_isa.ssse3;
|
1022 |
+
#endif
|
1023 |
+
#else
|
1024 |
+
return false;
|
1025 |
+
#endif
|
1026 |
+
}
|
1027 |
+
|
1028 |
+
static inline bool cpuinfo_has_x86_sse4_1(void) {
|
1029 |
+
#if CPUINFO_ARCH_X86_64
|
1030 |
+
#if defined(__ANDROID__)
|
1031 |
+
return true;
|
1032 |
+
#else
|
1033 |
+
return cpuinfo_isa.sse4_1;
|
1034 |
+
#endif
|
1035 |
+
#elif CPUINFO_ARCH_X86
|
1036 |
+
return cpuinfo_isa.sse4_1;
|
1037 |
+
#else
|
1038 |
+
return false;
|
1039 |
+
#endif
|
1040 |
+
}
|
1041 |
+
|
1042 |
+
static inline bool cpuinfo_has_x86_sse4_2(void) {
|
1043 |
+
#if CPUINFO_ARCH_X86_64
|
1044 |
+
#if defined(__ANDROID__)
|
1045 |
+
return true;
|
1046 |
+
#else
|
1047 |
+
return cpuinfo_isa.sse4_2;
|
1048 |
+
#endif
|
1049 |
+
#elif CPUINFO_ARCH_X86
|
1050 |
+
return cpuinfo_isa.sse4_2;
|
1051 |
+
#else
|
1052 |
+
return false;
|
1053 |
+
#endif
|
1054 |
+
}
|
1055 |
+
|
1056 |
+
static inline bool cpuinfo_has_x86_sse4a(void) {
|
1057 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1058 |
+
return cpuinfo_isa.sse4a;
|
1059 |
+
#else
|
1060 |
+
return false;
|
1061 |
+
#endif
|
1062 |
+
}
|
1063 |
+
|
1064 |
+
static inline bool cpuinfo_has_x86_misaligned_sse(void) {
|
1065 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1066 |
+
return cpuinfo_isa.misaligned_sse;
|
1067 |
+
#else
|
1068 |
+
return false;
|
1069 |
+
#endif
|
1070 |
+
}
|
1071 |
+
|
1072 |
+
static inline bool cpuinfo_has_x86_avx(void) {
|
1073 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1074 |
+
return cpuinfo_isa.avx;
|
1075 |
+
#else
|
1076 |
+
return false;
|
1077 |
+
#endif
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
static inline bool cpuinfo_has_x86_avxvnni(void) {
|
1081 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1082 |
+
return cpuinfo_isa.avxvnni;
|
1083 |
+
#else
|
1084 |
+
return false;
|
1085 |
+
#endif
|
1086 |
+
}
|
1087 |
+
|
1088 |
+
static inline bool cpuinfo_has_x86_fma3(void) {
|
1089 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1090 |
+
return cpuinfo_isa.fma3;
|
1091 |
+
#else
|
1092 |
+
return false;
|
1093 |
+
#endif
|
1094 |
+
}
|
1095 |
+
|
1096 |
+
static inline bool cpuinfo_has_x86_fma4(void) {
|
1097 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1098 |
+
return cpuinfo_isa.fma4;
|
1099 |
+
#else
|
1100 |
+
return false;
|
1101 |
+
#endif
|
1102 |
+
}
|
1103 |
+
|
1104 |
+
static inline bool cpuinfo_has_x86_xop(void) {
|
1105 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1106 |
+
return cpuinfo_isa.xop;
|
1107 |
+
#else
|
1108 |
+
return false;
|
1109 |
+
#endif
|
1110 |
+
}
|
1111 |
+
|
1112 |
+
static inline bool cpuinfo_has_x86_f16c(void) {
|
1113 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1114 |
+
return cpuinfo_isa.f16c;
|
1115 |
+
#else
|
1116 |
+
return false;
|
1117 |
+
#endif
|
1118 |
+
}
|
1119 |
+
|
1120 |
+
static inline bool cpuinfo_has_x86_avx2(void) {
|
1121 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1122 |
+
return cpuinfo_isa.avx2;
|
1123 |
+
#else
|
1124 |
+
return false;
|
1125 |
+
#endif
|
1126 |
+
}
|
1127 |
+
|
1128 |
+
static inline bool cpuinfo_has_x86_avx512f(void) {
|
1129 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1130 |
+
return cpuinfo_isa.avx512f;
|
1131 |
+
#else
|
1132 |
+
return false;
|
1133 |
+
#endif
|
1134 |
+
}
|
1135 |
+
|
1136 |
+
static inline bool cpuinfo_has_x86_avx512pf(void) {
|
1137 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1138 |
+
return cpuinfo_isa.avx512pf;
|
1139 |
+
#else
|
1140 |
+
return false;
|
1141 |
+
#endif
|
1142 |
+
}
|
1143 |
+
|
1144 |
+
static inline bool cpuinfo_has_x86_avx512er(void) {
|
1145 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1146 |
+
return cpuinfo_isa.avx512er;
|
1147 |
+
#else
|
1148 |
+
return false;
|
1149 |
+
#endif
|
1150 |
+
}
|
1151 |
+
|
1152 |
+
static inline bool cpuinfo_has_x86_avx512cd(void) {
|
1153 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1154 |
+
return cpuinfo_isa.avx512cd;
|
1155 |
+
#else
|
1156 |
+
return false;
|
1157 |
+
#endif
|
1158 |
+
}
|
1159 |
+
|
1160 |
+
static inline bool cpuinfo_has_x86_avx512dq(void) {
|
1161 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1162 |
+
return cpuinfo_isa.avx512dq;
|
1163 |
+
#else
|
1164 |
+
return false;
|
1165 |
+
#endif
|
1166 |
+
}
|
1167 |
+
|
1168 |
+
static inline bool cpuinfo_has_x86_avx512bw(void) {
|
1169 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1170 |
+
return cpuinfo_isa.avx512bw;
|
1171 |
+
#else
|
1172 |
+
return false;
|
1173 |
+
#endif
|
1174 |
+
}
|
1175 |
+
|
1176 |
+
static inline bool cpuinfo_has_x86_avx512vl(void) {
|
1177 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1178 |
+
return cpuinfo_isa.avx512vl;
|
1179 |
+
#else
|
1180 |
+
return false;
|
1181 |
+
#endif
|
1182 |
+
}
|
1183 |
+
|
1184 |
+
static inline bool cpuinfo_has_x86_avx512ifma(void) {
|
1185 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1186 |
+
return cpuinfo_isa.avx512ifma;
|
1187 |
+
#else
|
1188 |
+
return false;
|
1189 |
+
#endif
|
1190 |
+
}
|
1191 |
+
|
1192 |
+
static inline bool cpuinfo_has_x86_avx512vbmi(void) {
|
1193 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1194 |
+
return cpuinfo_isa.avx512vbmi;
|
1195 |
+
#else
|
1196 |
+
return false;
|
1197 |
+
#endif
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
static inline bool cpuinfo_has_x86_avx512vbmi2(void) {
|
1201 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1202 |
+
return cpuinfo_isa.avx512vbmi2;
|
1203 |
+
#else
|
1204 |
+
return false;
|
1205 |
+
#endif
|
1206 |
+
}
|
1207 |
+
|
1208 |
+
static inline bool cpuinfo_has_x86_avx512bitalg(void) {
|
1209 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1210 |
+
return cpuinfo_isa.avx512bitalg;
|
1211 |
+
#else
|
1212 |
+
return false;
|
1213 |
+
#endif
|
1214 |
+
}
|
1215 |
+
|
1216 |
+
static inline bool cpuinfo_has_x86_avx512vpopcntdq(void) {
|
1217 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1218 |
+
return cpuinfo_isa.avx512vpopcntdq;
|
1219 |
+
#else
|
1220 |
+
return false;
|
1221 |
+
#endif
|
1222 |
+
}
|
1223 |
+
|
1224 |
+
static inline bool cpuinfo_has_x86_avx512vnni(void) {
|
1225 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1226 |
+
return cpuinfo_isa.avx512vnni;
|
1227 |
+
#else
|
1228 |
+
return false;
|
1229 |
+
#endif
|
1230 |
+
}
|
1231 |
+
|
1232 |
+
static inline bool cpuinfo_has_x86_avx512bf16(void) {
|
1233 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1234 |
+
return cpuinfo_isa.avx512bf16;
|
1235 |
+
#else
|
1236 |
+
return false;
|
1237 |
+
#endif
|
1238 |
+
}
|
1239 |
+
|
1240 |
+
static inline bool cpuinfo_has_x86_avx512fp16(void) {
|
1241 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1242 |
+
return cpuinfo_isa.avx512fp16;
|
1243 |
+
#else
|
1244 |
+
return false;
|
1245 |
+
#endif
|
1246 |
+
}
|
1247 |
+
|
1248 |
+
static inline bool cpuinfo_has_x86_avx512vp2intersect(void) {
|
1249 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1250 |
+
return cpuinfo_isa.avx512vp2intersect;
|
1251 |
+
#else
|
1252 |
+
return false;
|
1253 |
+
#endif
|
1254 |
+
}
|
1255 |
+
|
1256 |
+
static inline bool cpuinfo_has_x86_avx512_4vnniw(void) {
|
1257 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1258 |
+
return cpuinfo_isa.avx512_4vnniw;
|
1259 |
+
#else
|
1260 |
+
return false;
|
1261 |
+
#endif
|
1262 |
+
}
|
1263 |
+
|
1264 |
+
static inline bool cpuinfo_has_x86_avx512_4fmaps(void) {
|
1265 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1266 |
+
return cpuinfo_isa.avx512_4fmaps;
|
1267 |
+
#else
|
1268 |
+
return false;
|
1269 |
+
#endif
|
1270 |
+
}
|
1271 |
+
|
1272 |
+
static inline bool cpuinfo_has_x86_hle(void) {
|
1273 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1274 |
+
return cpuinfo_isa.hle;
|
1275 |
+
#else
|
1276 |
+
return false;
|
1277 |
+
#endif
|
1278 |
+
}
|
1279 |
+
|
1280 |
+
static inline bool cpuinfo_has_x86_rtm(void) {
|
1281 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1282 |
+
return cpuinfo_isa.rtm;
|
1283 |
+
#else
|
1284 |
+
return false;
|
1285 |
+
#endif
|
1286 |
+
}
|
1287 |
+
|
1288 |
+
static inline bool cpuinfo_has_x86_xtest(void) {
|
1289 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1290 |
+
return cpuinfo_isa.xtest;
|
1291 |
+
#else
|
1292 |
+
return false;
|
1293 |
+
#endif
|
1294 |
+
}
|
1295 |
+
|
1296 |
+
static inline bool cpuinfo_has_x86_mpx(void) {
|
1297 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1298 |
+
return cpuinfo_isa.mpx;
|
1299 |
+
#else
|
1300 |
+
return false;
|
1301 |
+
#endif
|
1302 |
+
}
|
1303 |
+
|
1304 |
+
static inline bool cpuinfo_has_x86_cmov(void) {
|
1305 |
+
#if CPUINFO_ARCH_X86_64
|
1306 |
+
return true;
|
1307 |
+
#elif CPUINFO_ARCH_X86
|
1308 |
+
return cpuinfo_isa.cmov;
|
1309 |
+
#else
|
1310 |
+
return false;
|
1311 |
+
#endif
|
1312 |
+
}
|
1313 |
+
|
1314 |
+
static inline bool cpuinfo_has_x86_cmpxchg8b(void) {
|
1315 |
+
#if CPUINFO_ARCH_X86_64
|
1316 |
+
return true;
|
1317 |
+
#elif CPUINFO_ARCH_X86
|
1318 |
+
return cpuinfo_isa.cmpxchg8b;
|
1319 |
+
#else
|
1320 |
+
return false;
|
1321 |
+
#endif
|
1322 |
+
}
|
1323 |
+
|
1324 |
+
static inline bool cpuinfo_has_x86_cmpxchg16b(void) {
|
1325 |
+
#if CPUINFO_ARCH_X86_64
|
1326 |
+
return cpuinfo_isa.cmpxchg16b;
|
1327 |
+
#else
|
1328 |
+
return false;
|
1329 |
+
#endif
|
1330 |
+
}
|
1331 |
+
|
1332 |
+
static inline bool cpuinfo_has_x86_clwb(void) {
|
1333 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1334 |
+
return cpuinfo_isa.clwb;
|
1335 |
+
#else
|
1336 |
+
return false;
|
1337 |
+
#endif
|
1338 |
+
}
|
1339 |
+
|
1340 |
+
static inline bool cpuinfo_has_x86_movbe(void) {
|
1341 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1342 |
+
return cpuinfo_isa.movbe;
|
1343 |
+
#else
|
1344 |
+
return false;
|
1345 |
+
#endif
|
1346 |
+
}
|
1347 |
+
|
1348 |
+
static inline bool cpuinfo_has_x86_lahf_sahf(void) {
|
1349 |
+
#if CPUINFO_ARCH_X86
|
1350 |
+
return true;
|
1351 |
+
#elif CPUINFO_ARCH_X86_64
|
1352 |
+
return cpuinfo_isa.lahf_sahf;
|
1353 |
+
#else
|
1354 |
+
return false;
|
1355 |
+
#endif
|
1356 |
+
}
|
1357 |
+
|
1358 |
+
static inline bool cpuinfo_has_x86_lzcnt(void) {
|
1359 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1360 |
+
return cpuinfo_isa.lzcnt;
|
1361 |
+
#else
|
1362 |
+
return false;
|
1363 |
+
#endif
|
1364 |
+
}
|
1365 |
+
|
1366 |
+
static inline bool cpuinfo_has_x86_popcnt(void) {
|
1367 |
+
#if CPUINFO_ARCH_X86_64
|
1368 |
+
#if defined(__ANDROID__)
|
1369 |
+
return true;
|
1370 |
+
#else
|
1371 |
+
return cpuinfo_isa.popcnt;
|
1372 |
+
#endif
|
1373 |
+
#elif CPUINFO_ARCH_X86
|
1374 |
+
return cpuinfo_isa.popcnt;
|
1375 |
+
#else
|
1376 |
+
return false;
|
1377 |
+
#endif
|
1378 |
+
}
|
1379 |
+
|
1380 |
+
static inline bool cpuinfo_has_x86_tbm(void) {
|
1381 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1382 |
+
return cpuinfo_isa.tbm;
|
1383 |
+
#else
|
1384 |
+
return false;
|
1385 |
+
#endif
|
1386 |
+
}
|
1387 |
+
|
1388 |
+
static inline bool cpuinfo_has_x86_bmi(void) {
|
1389 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1390 |
+
return cpuinfo_isa.bmi;
|
1391 |
+
#else
|
1392 |
+
return false;
|
1393 |
+
#endif
|
1394 |
+
}
|
1395 |
+
|
1396 |
+
static inline bool cpuinfo_has_x86_bmi2(void) {
|
1397 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1398 |
+
return cpuinfo_isa.bmi2;
|
1399 |
+
#else
|
1400 |
+
return false;
|
1401 |
+
#endif
|
1402 |
+
}
|
1403 |
+
|
1404 |
+
static inline bool cpuinfo_has_x86_adx(void) {
|
1405 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1406 |
+
return cpuinfo_isa.adx;
|
1407 |
+
#else
|
1408 |
+
return false;
|
1409 |
+
#endif
|
1410 |
+
}
|
1411 |
+
|
1412 |
+
static inline bool cpuinfo_has_x86_aes(void) {
|
1413 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1414 |
+
return cpuinfo_isa.aes;
|
1415 |
+
#else
|
1416 |
+
return false;
|
1417 |
+
#endif
|
1418 |
+
}
|
1419 |
+
|
1420 |
+
static inline bool cpuinfo_has_x86_vaes(void) {
|
1421 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1422 |
+
return cpuinfo_isa.vaes;
|
1423 |
+
#else
|
1424 |
+
return false;
|
1425 |
+
#endif
|
1426 |
+
}
|
1427 |
+
|
1428 |
+
static inline bool cpuinfo_has_x86_pclmulqdq(void) {
|
1429 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1430 |
+
return cpuinfo_isa.pclmulqdq;
|
1431 |
+
#else
|
1432 |
+
return false;
|
1433 |
+
#endif
|
1434 |
+
}
|
1435 |
+
|
1436 |
+
static inline bool cpuinfo_has_x86_vpclmulqdq(void) {
|
1437 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1438 |
+
return cpuinfo_isa.vpclmulqdq;
|
1439 |
+
#else
|
1440 |
+
return false;
|
1441 |
+
#endif
|
1442 |
+
}
|
1443 |
+
|
1444 |
+
static inline bool cpuinfo_has_x86_gfni(void) {
|
1445 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1446 |
+
return cpuinfo_isa.gfni;
|
1447 |
+
#else
|
1448 |
+
return false;
|
1449 |
+
#endif
|
1450 |
+
}
|
1451 |
+
|
1452 |
+
static inline bool cpuinfo_has_x86_rdrand(void) {
|
1453 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1454 |
+
return cpuinfo_isa.rdrand;
|
1455 |
+
#else
|
1456 |
+
return false;
|
1457 |
+
#endif
|
1458 |
+
}
|
1459 |
+
|
1460 |
+
static inline bool cpuinfo_has_x86_rdseed(void) {
|
1461 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1462 |
+
return cpuinfo_isa.rdseed;
|
1463 |
+
#else
|
1464 |
+
return false;
|
1465 |
+
#endif
|
1466 |
+
}
|
1467 |
+
|
1468 |
+
static inline bool cpuinfo_has_x86_sha(void) {
|
1469 |
+
#if CPUINFO_ARCH_X86 || CPUINFO_ARCH_X86_64
|
1470 |
+
return cpuinfo_isa.sha;
|
1471 |
+
#else
|
1472 |
+
return false;
|
1473 |
+
#endif
|
1474 |
+
}
|
1475 |
+
|
1476 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1477 |
+
/* This structure is not a part of stable API. Use cpuinfo_has_arm_* functions instead. */
|
1478 |
+
struct cpuinfo_arm_isa {
|
1479 |
+
#if CPUINFO_ARCH_ARM
|
1480 |
+
bool thumb;
|
1481 |
+
bool thumb2;
|
1482 |
+
bool thumbee;
|
1483 |
+
bool jazelle;
|
1484 |
+
bool armv5e;
|
1485 |
+
bool armv6;
|
1486 |
+
bool armv6k;
|
1487 |
+
bool armv7;
|
1488 |
+
bool armv7mp;
|
1489 |
+
bool armv8;
|
1490 |
+
bool idiv;
|
1491 |
+
|
1492 |
+
bool vfpv2;
|
1493 |
+
bool vfpv3;
|
1494 |
+
bool d32;
|
1495 |
+
bool fp16;
|
1496 |
+
bool fma;
|
1497 |
+
|
1498 |
+
bool wmmx;
|
1499 |
+
bool wmmx2;
|
1500 |
+
bool neon;
|
1501 |
+
#endif
|
1502 |
+
#if CPUINFO_ARCH_ARM64
|
1503 |
+
bool atomics;
|
1504 |
+
bool bf16;
|
1505 |
+
bool sve;
|
1506 |
+
bool sve2;
|
1507 |
+
bool i8mm;
|
1508 |
+
#endif
|
1509 |
+
bool rdm;
|
1510 |
+
bool fp16arith;
|
1511 |
+
bool dot;
|
1512 |
+
bool jscvt;
|
1513 |
+
bool fcma;
|
1514 |
+
bool fhm;
|
1515 |
+
|
1516 |
+
bool aes;
|
1517 |
+
bool sha1;
|
1518 |
+
bool sha2;
|
1519 |
+
bool pmull;
|
1520 |
+
bool crc32;
|
1521 |
+
};
|
1522 |
+
|
1523 |
+
extern struct cpuinfo_arm_isa cpuinfo_isa;
|
1524 |
+
#endif
|
1525 |
+
|
1526 |
+
static inline bool cpuinfo_has_arm_thumb(void) {
|
1527 |
+
#if CPUINFO_ARCH_ARM
|
1528 |
+
return cpuinfo_isa.thumb;
|
1529 |
+
#else
|
1530 |
+
return false;
|
1531 |
+
#endif
|
1532 |
+
}
|
1533 |
+
|
1534 |
+
static inline bool cpuinfo_has_arm_thumb2(void) {
|
1535 |
+
#if CPUINFO_ARCH_ARM
|
1536 |
+
return cpuinfo_isa.thumb2;
|
1537 |
+
#else
|
1538 |
+
return false;
|
1539 |
+
#endif
|
1540 |
+
}
|
1541 |
+
|
1542 |
+
static inline bool cpuinfo_has_arm_v5e(void) {
|
1543 |
+
#if CPUINFO_ARCH_ARM
|
1544 |
+
return cpuinfo_isa.armv5e;
|
1545 |
+
#else
|
1546 |
+
return false;
|
1547 |
+
#endif
|
1548 |
+
}
|
1549 |
+
|
1550 |
+
static inline bool cpuinfo_has_arm_v6(void) {
|
1551 |
+
#if CPUINFO_ARCH_ARM
|
1552 |
+
return cpuinfo_isa.armv6;
|
1553 |
+
#else
|
1554 |
+
return false;
|
1555 |
+
#endif
|
1556 |
+
}
|
1557 |
+
|
1558 |
+
static inline bool cpuinfo_has_arm_v6k(void) {
|
1559 |
+
#if CPUINFO_ARCH_ARM
|
1560 |
+
return cpuinfo_isa.armv6k;
|
1561 |
+
#else
|
1562 |
+
return false;
|
1563 |
+
#endif
|
1564 |
+
}
|
1565 |
+
|
1566 |
+
static inline bool cpuinfo_has_arm_v7(void) {
|
1567 |
+
#if CPUINFO_ARCH_ARM
|
1568 |
+
return cpuinfo_isa.armv7;
|
1569 |
+
#else
|
1570 |
+
return false;
|
1571 |
+
#endif
|
1572 |
+
}
|
1573 |
+
|
1574 |
+
static inline bool cpuinfo_has_arm_v7mp(void) {
|
1575 |
+
#if CPUINFO_ARCH_ARM
|
1576 |
+
return cpuinfo_isa.armv7mp;
|
1577 |
+
#else
|
1578 |
+
return false;
|
1579 |
+
#endif
|
1580 |
+
}
|
1581 |
+
|
1582 |
+
static inline bool cpuinfo_has_arm_v8(void) {
|
1583 |
+
#if CPUINFO_ARCH_ARM64
|
1584 |
+
return true;
|
1585 |
+
#elif CPUINFO_ARCH_ARM
|
1586 |
+
return cpuinfo_isa.armv8;
|
1587 |
+
#else
|
1588 |
+
return false;
|
1589 |
+
#endif
|
1590 |
+
}
|
1591 |
+
|
1592 |
+
static inline bool cpuinfo_has_arm_idiv(void) {
|
1593 |
+
#if CPUINFO_ARCH_ARM64
|
1594 |
+
return true;
|
1595 |
+
#elif CPUINFO_ARCH_ARM
|
1596 |
+
return cpuinfo_isa.idiv;
|
1597 |
+
#else
|
1598 |
+
return false;
|
1599 |
+
#endif
|
1600 |
+
}
|
1601 |
+
|
1602 |
+
static inline bool cpuinfo_has_arm_vfpv2(void) {
|
1603 |
+
#if CPUINFO_ARCH_ARM
|
1604 |
+
return cpuinfo_isa.vfpv2;
|
1605 |
+
#else
|
1606 |
+
return false;
|
1607 |
+
#endif
|
1608 |
+
}
|
1609 |
+
|
1610 |
+
static inline bool cpuinfo_has_arm_vfpv3(void) {
|
1611 |
+
#if CPUINFO_ARCH_ARM64
|
1612 |
+
return true;
|
1613 |
+
#elif CPUINFO_ARCH_ARM
|
1614 |
+
return cpuinfo_isa.vfpv3;
|
1615 |
+
#else
|
1616 |
+
return false;
|
1617 |
+
#endif
|
1618 |
+
}
|
1619 |
+
|
1620 |
+
static inline bool cpuinfo_has_arm_vfpv3_d32(void) {
|
1621 |
+
#if CPUINFO_ARCH_ARM64
|
1622 |
+
return true;
|
1623 |
+
#elif CPUINFO_ARCH_ARM
|
1624 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.d32;
|
1625 |
+
#else
|
1626 |
+
return false;
|
1627 |
+
#endif
|
1628 |
+
}
|
1629 |
+
|
1630 |
+
static inline bool cpuinfo_has_arm_vfpv3_fp16(void) {
|
1631 |
+
#if CPUINFO_ARCH_ARM64
|
1632 |
+
return true;
|
1633 |
+
#elif CPUINFO_ARCH_ARM
|
1634 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fp16;
|
1635 |
+
#else
|
1636 |
+
return false;
|
1637 |
+
#endif
|
1638 |
+
}
|
1639 |
+
|
1640 |
+
static inline bool cpuinfo_has_arm_vfpv3_fp16_d32(void) {
|
1641 |
+
#if CPUINFO_ARCH_ARM64
|
1642 |
+
return true;
|
1643 |
+
#elif CPUINFO_ARCH_ARM
|
1644 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fp16 && cpuinfo_isa.d32;
|
1645 |
+
#else
|
1646 |
+
return false;
|
1647 |
+
#endif
|
1648 |
+
}
|
1649 |
+
|
1650 |
+
static inline bool cpuinfo_has_arm_vfpv4(void) {
|
1651 |
+
#if CPUINFO_ARCH_ARM64
|
1652 |
+
return true;
|
1653 |
+
#elif CPUINFO_ARCH_ARM
|
1654 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fma;
|
1655 |
+
#else
|
1656 |
+
return false;
|
1657 |
+
#endif
|
1658 |
+
}
|
1659 |
+
|
1660 |
+
static inline bool cpuinfo_has_arm_vfpv4_d32(void) {
|
1661 |
+
#if CPUINFO_ARCH_ARM64
|
1662 |
+
return true;
|
1663 |
+
#elif CPUINFO_ARCH_ARM
|
1664 |
+
return cpuinfo_isa.vfpv3 && cpuinfo_isa.fma && cpuinfo_isa.d32;
|
1665 |
+
#else
|
1666 |
+
return false;
|
1667 |
+
#endif
|
1668 |
+
}
|
1669 |
+
|
1670 |
+
static inline bool cpuinfo_has_arm_fp16_arith(void) {
|
1671 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1672 |
+
return cpuinfo_isa.fp16arith;
|
1673 |
+
#else
|
1674 |
+
return false;
|
1675 |
+
#endif
|
1676 |
+
}
|
1677 |
+
|
1678 |
+
static inline bool cpuinfo_has_arm_bf16(void) {
|
1679 |
+
#if CPUINFO_ARCH_ARM64
|
1680 |
+
return cpuinfo_isa.bf16;
|
1681 |
+
#else
|
1682 |
+
return false;
|
1683 |
+
#endif
|
1684 |
+
}
|
1685 |
+
|
1686 |
+
static inline bool cpuinfo_has_arm_wmmx(void) {
|
1687 |
+
#if CPUINFO_ARCH_ARM
|
1688 |
+
return cpuinfo_isa.wmmx;
|
1689 |
+
#else
|
1690 |
+
return false;
|
1691 |
+
#endif
|
1692 |
+
}
|
1693 |
+
|
1694 |
+
static inline bool cpuinfo_has_arm_wmmx2(void) {
|
1695 |
+
#if CPUINFO_ARCH_ARM
|
1696 |
+
return cpuinfo_isa.wmmx2;
|
1697 |
+
#else
|
1698 |
+
return false;
|
1699 |
+
#endif
|
1700 |
+
}
|
1701 |
+
|
1702 |
+
static inline bool cpuinfo_has_arm_neon(void) {
|
1703 |
+
#if CPUINFO_ARCH_ARM64
|
1704 |
+
return true;
|
1705 |
+
#elif CPUINFO_ARCH_ARM
|
1706 |
+
return cpuinfo_isa.neon;
|
1707 |
+
#else
|
1708 |
+
return false;
|
1709 |
+
#endif
|
1710 |
+
}
|
1711 |
+
|
1712 |
+
static inline bool cpuinfo_has_arm_neon_fp16(void) {
|
1713 |
+
#if CPUINFO_ARCH_ARM64
|
1714 |
+
return true;
|
1715 |
+
#elif CPUINFO_ARCH_ARM
|
1716 |
+
return cpuinfo_isa.neon && cpuinfo_isa.fp16;
|
1717 |
+
#else
|
1718 |
+
return false;
|
1719 |
+
#endif
|
1720 |
+
}
|
1721 |
+
|
1722 |
+
static inline bool cpuinfo_has_arm_neon_fma(void) {
|
1723 |
+
#if CPUINFO_ARCH_ARM64
|
1724 |
+
return true;
|
1725 |
+
#elif CPUINFO_ARCH_ARM
|
1726 |
+
return cpuinfo_isa.neon && cpuinfo_isa.fma;
|
1727 |
+
#else
|
1728 |
+
return false;
|
1729 |
+
#endif
|
1730 |
+
}
|
1731 |
+
|
1732 |
+
static inline bool cpuinfo_has_arm_neon_v8(void) {
|
1733 |
+
#if CPUINFO_ARCH_ARM64
|
1734 |
+
return true;
|
1735 |
+
#elif CPUINFO_ARCH_ARM
|
1736 |
+
return cpuinfo_isa.neon && cpuinfo_isa.armv8;
|
1737 |
+
#else
|
1738 |
+
return false;
|
1739 |
+
#endif
|
1740 |
+
}
|
1741 |
+
|
1742 |
+
static inline bool cpuinfo_has_arm_atomics(void) {
|
1743 |
+
#if CPUINFO_ARCH_ARM64
|
1744 |
+
return cpuinfo_isa.atomics;
|
1745 |
+
#else
|
1746 |
+
return false;
|
1747 |
+
#endif
|
1748 |
+
}
|
1749 |
+
|
1750 |
+
static inline bool cpuinfo_has_arm_neon_rdm(void) {
|
1751 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1752 |
+
return cpuinfo_isa.rdm;
|
1753 |
+
#else
|
1754 |
+
return false;
|
1755 |
+
#endif
|
1756 |
+
}
|
1757 |
+
|
1758 |
+
static inline bool cpuinfo_has_arm_neon_fp16_arith(void) {
|
1759 |
+
#if CPUINFO_ARCH_ARM
|
1760 |
+
return cpuinfo_isa.neon && cpuinfo_isa.fp16arith;
|
1761 |
+
#elif CPUINFO_ARCH_ARM64
|
1762 |
+
return cpuinfo_isa.fp16arith;
|
1763 |
+
#else
|
1764 |
+
return false;
|
1765 |
+
#endif
|
1766 |
+
}
|
1767 |
+
|
1768 |
+
static inline bool cpuinfo_has_arm_fhm(void) {
|
1769 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1770 |
+
return cpuinfo_isa.fhm;
|
1771 |
+
#else
|
1772 |
+
return false;
|
1773 |
+
#endif
|
1774 |
+
}
|
1775 |
+
|
1776 |
+
static inline bool cpuinfo_has_arm_neon_dot(void) {
|
1777 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1778 |
+
return cpuinfo_isa.dot;
|
1779 |
+
#else
|
1780 |
+
return false;
|
1781 |
+
#endif
|
1782 |
+
}
|
1783 |
+
|
1784 |
+
static inline bool cpuinfo_has_arm_neon_bf16(void) {
|
1785 |
+
#if CPUINFO_ARCH_ARM64
|
1786 |
+
return cpuinfo_isa.bf16;
|
1787 |
+
#else
|
1788 |
+
return false;
|
1789 |
+
#endif
|
1790 |
+
}
|
1791 |
+
|
1792 |
+
static inline bool cpuinfo_has_arm_jscvt(void) {
|
1793 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1794 |
+
return cpuinfo_isa.jscvt;
|
1795 |
+
#else
|
1796 |
+
return false;
|
1797 |
+
#endif
|
1798 |
+
}
|
1799 |
+
|
1800 |
+
static inline bool cpuinfo_has_arm_fcma(void) {
|
1801 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1802 |
+
return cpuinfo_isa.fcma;
|
1803 |
+
#else
|
1804 |
+
return false;
|
1805 |
+
#endif
|
1806 |
+
}
|
1807 |
+
|
1808 |
+
static inline bool cpuinfo_has_arm_i8mm(void) {
|
1809 |
+
#if CPUINFO_ARCH_ARM64
|
1810 |
+
return cpuinfo_isa.i8mm;
|
1811 |
+
#else
|
1812 |
+
return false;
|
1813 |
+
#endif
|
1814 |
+
}
|
1815 |
+
|
1816 |
+
static inline bool cpuinfo_has_arm_aes(void) {
|
1817 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1818 |
+
return cpuinfo_isa.aes;
|
1819 |
+
#else
|
1820 |
+
return false;
|
1821 |
+
#endif
|
1822 |
+
}
|
1823 |
+
|
1824 |
+
static inline bool cpuinfo_has_arm_sha1(void) {
|
1825 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1826 |
+
return cpuinfo_isa.sha1;
|
1827 |
+
#else
|
1828 |
+
return false;
|
1829 |
+
#endif
|
1830 |
+
}
|
1831 |
+
|
1832 |
+
static inline bool cpuinfo_has_arm_sha2(void) {
|
1833 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1834 |
+
return cpuinfo_isa.sha2;
|
1835 |
+
#else
|
1836 |
+
return false;
|
1837 |
+
#endif
|
1838 |
+
}
|
1839 |
+
|
1840 |
+
static inline bool cpuinfo_has_arm_pmull(void) {
|
1841 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1842 |
+
return cpuinfo_isa.pmull;
|
1843 |
+
#else
|
1844 |
+
return false;
|
1845 |
+
#endif
|
1846 |
+
}
|
1847 |
+
|
1848 |
+
static inline bool cpuinfo_has_arm_crc32(void) {
|
1849 |
+
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
|
1850 |
+
return cpuinfo_isa.crc32;
|
1851 |
+
#else
|
1852 |
+
return false;
|
1853 |
+
#endif
|
1854 |
+
}
|
1855 |
+
|
1856 |
+
static inline bool cpuinfo_has_arm_sve(void) {
|
1857 |
+
#if CPUINFO_ARCH_ARM64
|
1858 |
+
return cpuinfo_isa.sve;
|
1859 |
+
#else
|
1860 |
+
return false;
|
1861 |
+
#endif
|
1862 |
+
}
|
1863 |
+
|
1864 |
+
static inline bool cpuinfo_has_arm_sve_bf16(void) {
|
1865 |
+
#if CPUINFO_ARCH_ARM64
|
1866 |
+
return cpuinfo_isa.sve && cpuinfo_isa.bf16;
|
1867 |
+
#else
|
1868 |
+
return false;
|
1869 |
+
#endif
|
1870 |
+
}
|
1871 |
+
|
1872 |
+
static inline bool cpuinfo_has_arm_sve2(void) {
|
1873 |
+
#if CPUINFO_ARCH_ARM64
|
1874 |
+
return cpuinfo_isa.sve2;
|
1875 |
+
#else
|
1876 |
+
return false;
|
1877 |
+
#endif
|
1878 |
+
}
|
1879 |
+
|
1880 |
+
const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_processors(void);
|
1881 |
+
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_cores(void);
|
1882 |
+
const struct cpuinfo_cluster* CPUINFO_ABI cpuinfo_get_clusters(void);
|
1883 |
+
const struct cpuinfo_package* CPUINFO_ABI cpuinfo_get_packages(void);
|
1884 |
+
const struct cpuinfo_uarch_info* CPUINFO_ABI cpuinfo_get_uarchs(void);
|
1885 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1i_caches(void);
|
1886 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1d_caches(void);
|
1887 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l2_caches(void);
|
1888 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l3_caches(void);
|
1889 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l4_caches(void);
|
1890 |
+
|
1891 |
+
const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_processor(uint32_t index);
|
1892 |
+
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_core(uint32_t index);
|
1893 |
+
const struct cpuinfo_cluster* CPUINFO_ABI cpuinfo_get_cluster(uint32_t index);
|
1894 |
+
const struct cpuinfo_package* CPUINFO_ABI cpuinfo_get_package(uint32_t index);
|
1895 |
+
const struct cpuinfo_uarch_info* CPUINFO_ABI cpuinfo_get_uarch(uint32_t index);
|
1896 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1i_cache(uint32_t index);
|
1897 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l1d_cache(uint32_t index);
|
1898 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l2_cache(uint32_t index);
|
1899 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l3_cache(uint32_t index);
|
1900 |
+
const struct cpuinfo_cache* CPUINFO_ABI cpuinfo_get_l4_cache(uint32_t index);
|
1901 |
+
|
1902 |
+
uint32_t CPUINFO_ABI cpuinfo_get_processors_count(void);
|
1903 |
+
uint32_t CPUINFO_ABI cpuinfo_get_cores_count(void);
|
1904 |
+
uint32_t CPUINFO_ABI cpuinfo_get_clusters_count(void);
|
1905 |
+
uint32_t CPUINFO_ABI cpuinfo_get_packages_count(void);
|
1906 |
+
uint32_t CPUINFO_ABI cpuinfo_get_uarchs_count(void);
|
1907 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l1i_caches_count(void);
|
1908 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l1d_caches_count(void);
|
1909 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l2_caches_count(void);
|
1910 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l3_caches_count(void);
|
1911 |
+
uint32_t CPUINFO_ABI cpuinfo_get_l4_caches_count(void);
|
1912 |
+
|
1913 |
+
/**
|
1914 |
+
* Returns upper bound on cache size.
|
1915 |
+
*/
|
1916 |
+
uint32_t CPUINFO_ABI cpuinfo_get_max_cache_size(void);
|
1917 |
+
|
1918 |
+
/**
|
1919 |
+
* Identify the logical processor that executes the current thread.
|
1920 |
+
*
|
1921 |
+
* There is no guarantee that the thread will stay on the same logical processor for any time.
|
1922 |
+
* Callers should treat the result as only a hint, and be prepared to handle NULL return value.
|
1923 |
+
*/
|
1924 |
+
const struct cpuinfo_processor* CPUINFO_ABI cpuinfo_get_current_processor(void);
|
1925 |
+
|
1926 |
+
/**
|
1927 |
+
* Identify the core that executes the current thread.
|
1928 |
+
*
|
1929 |
+
* There is no guarantee that the thread will stay on the same core for any time.
|
1930 |
+
* Callers should treat the result as only a hint, and be prepared to handle NULL return value.
|
1931 |
+
*/
|
1932 |
+
const struct cpuinfo_core* CPUINFO_ABI cpuinfo_get_current_core(void);
|
1933 |
+
|
1934 |
+
/**
|
1935 |
+
* Identify the microarchitecture index of the core that executes the current thread.
|
1936 |
+
* If the system does not support such identification, the function returns 0.
|
1937 |
+
*
|
1938 |
+
* There is no guarantee that the thread will stay on the same type of core for any time.
|
1939 |
+
* Callers should treat the result as only a hint.
|
1940 |
+
*/
|
1941 |
+
uint32_t CPUINFO_ABI cpuinfo_get_current_uarch_index(void);
|
1942 |
+
|
1943 |
+
/**
|
1944 |
+
* Identify the microarchitecture index of the core that executes the current thread.
|
1945 |
+
* If the system does not support such identification, the function returns the user-specified default value.
|
1946 |
+
*
|
1947 |
+
* There is no guarantee that the thread will stay on the same type of core for any time.
|
1948 |
+
* Callers should treat the result as only a hint.
|
1949 |
+
*/
|
1950 |
+
uint32_t CPUINFO_ABI cpuinfo_get_current_uarch_index_with_default(uint32_t default_uarch_index);
|
1951 |
+
|
1952 |
+
#ifdef __cplusplus
|
1953 |
+
} /* extern "C" */
|
1954 |
+
#endif
|
1955 |
+
|
1956 |
+
#endif /* CPUINFO_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/dnnl.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_H
|
18 |
+
#define DNNL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_config.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_CONFIG_H
|
18 |
+
#define DNNL_CONFIG_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_config.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_CONFIG_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_debug.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_DEBUG_H
|
18 |
+
#define DNNL_DEBUG_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_debug.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_DEBUG_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_ocl.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_OCL_H
|
18 |
+
#define DNNL_OCL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_ocl.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_OCL_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_sycl.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_SYCL_H
|
18 |
+
#define DNNL_SYCL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_sycl.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_SYCL_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_sycl_types.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_SYCL_TYPES_H
|
18 |
+
#define DNNL_SYCL_TYPES_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_sycl_types.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_SYCL_TYPES_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_threadpool.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_THREADPOOL_H
|
18 |
+
#define DNNL_THREADPOOL_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_threadpool.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_THREADPOOL_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_types.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_TYPES_H
|
18 |
+
#define DNNL_TYPES_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_types.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_TYPES_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/dnnl_version.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*******************************************************************************
|
2 |
+
* Copyright 2020 Intel Corporation
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*******************************************************************************/
|
16 |
+
|
17 |
+
#ifndef DNNL_VERSION_H
|
18 |
+
#define DNNL_VERSION_H
|
19 |
+
|
20 |
+
#include "oneapi/dnnl/dnnl_version.h"
|
21 |
+
|
22 |
+
#endif /* DNNL_VERSION_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/experiments-config.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright 2023 Google LLC
|
2 |
+
//
|
3 |
+
// This source code is licensed under the BSD-style license found in the
|
4 |
+
// LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <stdbool.h>
|
9 |
+
|
10 |
+
#ifdef __cplusplus
|
11 |
+
extern "C" {
|
12 |
+
#endif
|
13 |
+
|
14 |
+
struct xnn_experiment_config {
|
15 |
+
bool adaptive_avx_optimization;
|
16 |
+
};
|
17 |
+
|
18 |
+
struct xnn_experiment_config* xnn_get_experiment_config();
|
19 |
+
|
20 |
+
void xnn_experiment_enable_adaptive_avx_optimization();
|
21 |
+
|
22 |
+
|
23 |
+
#ifdef __cplusplus
|
24 |
+
} // extern "C"
|
25 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/fp16.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef FP16_H
|
3 |
+
#define FP16_H
|
4 |
+
|
5 |
+
#include <fp16/fp16.h>
|
6 |
+
|
7 |
+
#if defined(PSIMD_H)
|
8 |
+
#include <fp16/psimd.h>
|
9 |
+
#endif
|
10 |
+
|
11 |
+
#endif /* FP16_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/fxdiv.h
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef FXDIV_H
|
3 |
+
#define FXDIV_H
|
4 |
+
|
5 |
+
#if defined(__cplusplus) && (__cplusplus >= 201103L)
|
6 |
+
#include <cstddef>
|
7 |
+
#include <cstdint>
|
8 |
+
#include <climits>
|
9 |
+
#elif !defined(__OPENCL_VERSION__)
|
10 |
+
#include <stddef.h>
|
11 |
+
#include <stdint.h>
|
12 |
+
#include <limits.h>
|
13 |
+
#endif
|
14 |
+
|
15 |
+
#if defined(_MSC_VER)
|
16 |
+
#include <intrin.h>
|
17 |
+
#if defined(_M_IX86) || defined(_M_X64)
|
18 |
+
#include <immintrin.h>
|
19 |
+
#endif
|
20 |
+
#endif
|
21 |
+
|
22 |
+
#ifndef FXDIV_USE_INLINE_ASSEMBLY
|
23 |
+
#define FXDIV_USE_INLINE_ASSEMBLY 0
|
24 |
+
#endif
|
25 |
+
|
26 |
+
static inline uint64_t fxdiv_mulext_uint32_t(uint32_t a, uint32_t b) {
|
27 |
+
#if defined(_MSC_VER) && defined(_M_IX86)
|
28 |
+
return (uint64_t) __emulu((unsigned int) a, (unsigned int) b);
|
29 |
+
#else
|
30 |
+
return (uint64_t) a * (uint64_t) b;
|
31 |
+
#endif
|
32 |
+
}
|
33 |
+
|
34 |
+
static inline uint32_t fxdiv_mulhi_uint32_t(uint32_t a, uint32_t b) {
|
35 |
+
#if defined(__OPENCL_VERSION__)
|
36 |
+
return mul_hi(a, b);
|
37 |
+
#elif defined(__CUDA_ARCH__)
|
38 |
+
return (uint32_t) __umulhi((unsigned int) a, (unsigned int) b);
|
39 |
+
#elif defined(_MSC_VER) && defined(_M_IX86)
|
40 |
+
return (uint32_t) (__emulu((unsigned int) a, (unsigned int) b) >> 32);
|
41 |
+
#elif defined(_MSC_VER) && defined(_M_ARM)
|
42 |
+
return (uint32_t) _MulUnsignedHigh((unsigned long) a, (unsigned long) b);
|
43 |
+
#else
|
44 |
+
return (uint32_t) (((uint64_t) a * (uint64_t) b) >> 32);
|
45 |
+
#endif
|
46 |
+
}
|
47 |
+
|
48 |
+
static inline uint64_t fxdiv_mulhi_uint64_t(uint64_t a, uint64_t b) {
|
49 |
+
#if defined(__OPENCL_VERSION__)
|
50 |
+
return mul_hi(a, b);
|
51 |
+
#elif defined(__CUDA_ARCH__)
|
52 |
+
return (uint64_t) __umul64hi((unsigned long long) a, (unsigned long long) b);
|
53 |
+
#elif defined(_MSC_VER) && defined(_M_X64)
|
54 |
+
return (uint64_t) __umulh((unsigned __int64) a, (unsigned __int64) b);
|
55 |
+
#elif defined(__GNUC__) && defined(__SIZEOF_INT128__)
|
56 |
+
return (uint64_t) (((((unsigned __int128) a) * ((unsigned __int128) b))) >> 64);
|
57 |
+
#else
|
58 |
+
const uint32_t a_lo = (uint32_t) a;
|
59 |
+
const uint32_t a_hi = (uint32_t) (a >> 32);
|
60 |
+
const uint32_t b_lo = (uint32_t) b;
|
61 |
+
const uint32_t b_hi = (uint32_t) (b >> 32);
|
62 |
+
|
63 |
+
const uint64_t t = fxdiv_mulext_uint32_t(a_hi, b_lo) +
|
64 |
+
(uint64_t) fxdiv_mulhi_uint32_t(a_lo, b_lo);
|
65 |
+
return fxdiv_mulext_uint32_t(a_hi, b_hi) + (t >> 32) +
|
66 |
+
((fxdiv_mulext_uint32_t(a_lo, b_hi) + (uint64_t) (uint32_t) t) >> 32);
|
67 |
+
#endif
|
68 |
+
}
|
69 |
+
|
70 |
+
static inline size_t fxdiv_mulhi_size_t(size_t a, size_t b) {
|
71 |
+
#if SIZE_MAX == UINT32_MAX
|
72 |
+
return (size_t) fxdiv_mulhi_uint32_t((uint32_t) a, (uint32_t) b);
|
73 |
+
#elif SIZE_MAX == UINT64_MAX
|
74 |
+
return (size_t) fxdiv_mulhi_uint64_t((uint64_t) a, (uint64_t) b);
|
75 |
+
#else
|
76 |
+
#error Unsupported platform
|
77 |
+
#endif
|
78 |
+
}
|
79 |
+
|
80 |
+
struct fxdiv_divisor_uint32_t {
|
81 |
+
uint32_t value;
|
82 |
+
uint32_t m;
|
83 |
+
uint8_t s1;
|
84 |
+
uint8_t s2;
|
85 |
+
};
|
86 |
+
|
87 |
+
struct fxdiv_result_uint32_t {
|
88 |
+
uint32_t quotient;
|
89 |
+
uint32_t remainder;
|
90 |
+
};
|
91 |
+
|
92 |
+
struct fxdiv_divisor_uint64_t {
|
93 |
+
uint64_t value;
|
94 |
+
uint64_t m;
|
95 |
+
uint8_t s1;
|
96 |
+
uint8_t s2;
|
97 |
+
};
|
98 |
+
|
99 |
+
struct fxdiv_result_uint64_t {
|
100 |
+
uint64_t quotient;
|
101 |
+
uint64_t remainder;
|
102 |
+
};
|
103 |
+
|
104 |
+
struct fxdiv_divisor_size_t {
|
105 |
+
size_t value;
|
106 |
+
size_t m;
|
107 |
+
uint8_t s1;
|
108 |
+
uint8_t s2;
|
109 |
+
};
|
110 |
+
|
111 |
+
struct fxdiv_result_size_t {
|
112 |
+
size_t quotient;
|
113 |
+
size_t remainder;
|
114 |
+
};
|
115 |
+
|
116 |
+
static inline struct fxdiv_divisor_uint32_t fxdiv_init_uint32_t(uint32_t d) {
|
117 |
+
struct fxdiv_divisor_uint32_t result = { d };
|
118 |
+
if (d == 1) {
|
119 |
+
result.m = UINT32_C(1);
|
120 |
+
result.s1 = 0;
|
121 |
+
result.s2 = 0;
|
122 |
+
} else {
|
123 |
+
#if defined(__OPENCL_VERSION__)
|
124 |
+
const uint32_t l_minus_1 = 31 - clz(d - 1);
|
125 |
+
#elif defined(__CUDA_ARCH__)
|
126 |
+
const uint32_t l_minus_1 = 31 - __clz((int) (d - 1));
|
127 |
+
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM) || defined(_M_ARM64))
|
128 |
+
unsigned long l_minus_1;
|
129 |
+
_BitScanReverse(&l_minus_1, (unsigned long) (d - 1));
|
130 |
+
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && FXDIV_USE_INLINE_ASSEMBLY
|
131 |
+
uint32_t l_minus_1;
|
132 |
+
__asm__("BSRL %[d_minus_1], %[l_minus_1]"
|
133 |
+
: [l_minus_1] "=r" (l_minus_1)
|
134 |
+
: [d_minus_1] "r" (d - 1)
|
135 |
+
: "cc");
|
136 |
+
#elif defined(__GNUC__)
|
137 |
+
const uint32_t l_minus_1 = 31 - __builtin_clz(d - 1);
|
138 |
+
#else
|
139 |
+
/* Based on Algorithm 2 from Hacker's delight */
|
140 |
+
|
141 |
+
uint32_t l_minus_1 = 0;
|
142 |
+
uint32_t x = d - 1;
|
143 |
+
uint32_t y = x >> 16;
|
144 |
+
if (y != 0) {
|
145 |
+
l_minus_1 += 16;
|
146 |
+
x = y;
|
147 |
+
}
|
148 |
+
y = x >> 8;
|
149 |
+
if (y != 0) {
|
150 |
+
l_minus_1 += 8;
|
151 |
+
x = y;
|
152 |
+
}
|
153 |
+
y = x >> 4;
|
154 |
+
if (y != 0) {
|
155 |
+
l_minus_1 += 4;
|
156 |
+
x = y;
|
157 |
+
}
|
158 |
+
y = x >> 2;
|
159 |
+
if (y != 0) {
|
160 |
+
l_minus_1 += 2;
|
161 |
+
x = y;
|
162 |
+
}
|
163 |
+
if ((x & 2) != 0) {
|
164 |
+
l_minus_1 += 1;
|
165 |
+
}
|
166 |
+
#endif
|
167 |
+
uint32_t u_hi = (UINT32_C(2) << (uint32_t) l_minus_1) - d;
|
168 |
+
|
169 |
+
/* Division of 64-bit number u_hi:UINT32_C(0) by 32-bit number d, 32-bit quotient output q */
|
170 |
+
#if defined(__GNUC__) && defined(__i386__) && FXDIV_USE_INLINE_ASSEMBLY
|
171 |
+
uint32_t q;
|
172 |
+
__asm__("DIVL %[d]"
|
173 |
+
: "=a" (q), "+d" (u_hi)
|
174 |
+
: [d] "r" (d), "a" (0)
|
175 |
+
: "cc");
|
176 |
+
#elif (defined(_MSC_VER) && _MSC_VER >= 1920) && !defined(__clang__) && !defined(__INTEL_COMPILER) && (defined(_M_IX86) || defined(_M_X64))
|
177 |
+
unsigned int remainder;
|
178 |
+
const uint32_t q = (uint32_t) _udiv64((unsigned __int64) ((uint64_t) u_hi << 32), (unsigned int) d, &remainder);
|
179 |
+
#else
|
180 |
+
const uint32_t q = ((uint64_t) u_hi << 32) / d;
|
181 |
+
#endif
|
182 |
+
|
183 |
+
result.m = q + UINT32_C(1);
|
184 |
+
result.s1 = 1;
|
185 |
+
result.s2 = (uint8_t) l_minus_1;
|
186 |
+
}
|
187 |
+
return result;
|
188 |
+
}
|
189 |
+
|
190 |
+
static inline struct fxdiv_divisor_uint64_t fxdiv_init_uint64_t(uint64_t d) {
|
191 |
+
struct fxdiv_divisor_uint64_t result = { d };
|
192 |
+
if (d == 1) {
|
193 |
+
result.m = UINT64_C(1);
|
194 |
+
result.s1 = 0;
|
195 |
+
result.s2 = 0;
|
196 |
+
} else {
|
197 |
+
#if defined(__OPENCL_VERSION__)
|
198 |
+
const uint32_t nlz_d = clz(d);
|
199 |
+
const uint32_t l_minus_1 = 63 - clz(d - 1);
|
200 |
+
#elif defined(__CUDA_ARCH__)
|
201 |
+
const uint32_t nlz_d = __clzll((long long) d);
|
202 |
+
const uint32_t l_minus_1 = 63 - __clzll((long long) (d - 1));
|
203 |
+
#elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_ARM64))
|
204 |
+
unsigned long l_minus_1;
|
205 |
+
_BitScanReverse64(&l_minus_1, (unsigned __int64) (d - 1));
|
206 |
+
unsigned long bsr_d;
|
207 |
+
_BitScanReverse64(&bsr_d, (unsigned __int64) d);
|
208 |
+
const uint32_t nlz_d = bsr_d ^ 0x3F;
|
209 |
+
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_ARM))
|
210 |
+
const uint64_t d_minus_1 = d - 1;
|
211 |
+
const uint8_t d_is_power_of_2 = (d & d_minus_1) == 0;
|
212 |
+
unsigned long l_minus_1;
|
213 |
+
if ((uint32_t) (d_minus_1 >> 32) == 0) {
|
214 |
+
_BitScanReverse(&l_minus_1, (unsigned long) d_minus_1);
|
215 |
+
} else {
|
216 |
+
_BitScanReverse(&l_minus_1, (unsigned long) (uint32_t) (d_minus_1 >> 32));
|
217 |
+
l_minus_1 += 32;
|
218 |
+
}
|
219 |
+
const uint32_t nlz_d = ((uint8_t) l_minus_1 ^ UINT8_C(0x3F)) - d_is_power_of_2;
|
220 |
+
#elif defined(__GNUC__) && defined(__x86_64__) && FXDIV_USE_INLINE_ASSEMBLY
|
221 |
+
uint64_t l_minus_1;
|
222 |
+
__asm__("BSRQ %[d_minus_1], %[l_minus_1]"
|
223 |
+
: [l_minus_1] "=r" (l_minus_1)
|
224 |
+
: [d_minus_1] "r" (d - 1)
|
225 |
+
: "cc");
|
226 |
+
#elif defined(__GNUC__)
|
227 |
+
const uint32_t l_minus_1 = 63 - __builtin_clzll(d - 1);
|
228 |
+
const uint32_t nlz_d = __builtin_clzll(d);
|
229 |
+
#else
|
230 |
+
/* Based on Algorithm 2 from Hacker's delight */
|
231 |
+
const uint64_t d_minus_1 = d - 1;
|
232 |
+
const uint32_t d_is_power_of_2 = (d & d_minus_1) == 0;
|
233 |
+
uint32_t l_minus_1 = 0;
|
234 |
+
uint32_t x = (uint32_t) d_minus_1;
|
235 |
+
uint32_t y = d_minus_1 >> 32;
|
236 |
+
if (y != 0) {
|
237 |
+
l_minus_1 += 32;
|
238 |
+
x = y;
|
239 |
+
}
|
240 |
+
y = x >> 16;
|
241 |
+
if (y != 0) {
|
242 |
+
l_minus_1 += 16;
|
243 |
+
x = y;
|
244 |
+
}
|
245 |
+
y = x >> 8;
|
246 |
+
if (y != 0) {
|
247 |
+
l_minus_1 += 8;
|
248 |
+
x = y;
|
249 |
+
}
|
250 |
+
y = x >> 4;
|
251 |
+
if (y != 0) {
|
252 |
+
l_minus_1 += 4;
|
253 |
+
x = y;
|
254 |
+
}
|
255 |
+
y = x >> 2;
|
256 |
+
if (y != 0) {
|
257 |
+
l_minus_1 += 2;
|
258 |
+
x = y;
|
259 |
+
}
|
260 |
+
if ((x & 2) != 0) {
|
261 |
+
l_minus_1 += 1;
|
262 |
+
}
|
263 |
+
const uint32_t nlz_d = (l_minus_1 ^ UINT32_C(0x3F)) - d_is_power_of_2;
|
264 |
+
#endif
|
265 |
+
uint64_t u_hi = (UINT64_C(2) << (uint32_t) l_minus_1) - d;
|
266 |
+
|
267 |
+
/* Division of 128-bit number u_hi:UINT64_C(0) by 64-bit number d, 64-bit quotient output q */
|
268 |
+
#if defined(__GNUC__) && defined(__x86_64__) && FXDIV_USE_INLINE_ASSEMBLY
|
269 |
+
uint64_t q;
|
270 |
+
__asm__("DIVQ %[d]"
|
271 |
+
: "=a" (q), "+d" (u_hi)
|
272 |
+
: [d] "r" (d), "a" (UINT64_C(0))
|
273 |
+
: "cc");
|
274 |
+
#elif 0 && defined(__GNUC__) && defined(__SIZEOF_INT128__)
|
275 |
+
/* GCC, Clang, and Intel Compiler fail to inline optimized implementation and call into support library for 128-bit division */
|
276 |
+
const uint64_t q = (uint64_t) (((unsigned __int128) u_hi << 64) / ((unsigned __int128) d));
|
277 |
+
#elif (defined(_MSC_VER) && _MSC_VER >= 1920) && !defined(__clang__) && !defined(__INTEL_COMPILER) && defined(_M_X64)
|
278 |
+
unsigned __int64 remainder;
|
279 |
+
const uint64_t q = (uint64_t) _udiv128((unsigned __int64) u_hi, 0, (unsigned __int64) d, &remainder);
|
280 |
+
#else
|
281 |
+
/* Implementation based on code from Hacker's delight */
|
282 |
+
|
283 |
+
/* Normalize divisor and shift divident left */
|
284 |
+
d <<= nlz_d;
|
285 |
+
u_hi <<= nlz_d;
|
286 |
+
/* Break divisor up into two 32-bit digits */
|
287 |
+
const uint64_t d_hi = (uint32_t) (d >> 32);
|
288 |
+
const uint32_t d_lo = (uint32_t) d;
|
289 |
+
|
290 |
+
/* Compute the first quotient digit, q1 */
|
291 |
+
uint64_t q1 = u_hi / d_hi;
|
292 |
+
uint64_t r1 = u_hi - q1 * d_hi;
|
293 |
+
|
294 |
+
while ((q1 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q1, d_lo) > (r1 << 32)) {
|
295 |
+
q1 -= 1;
|
296 |
+
r1 += d_hi;
|
297 |
+
if ((r1 >> 32) != 0) {
|
298 |
+
break;
|
299 |
+
}
|
300 |
+
}
|
301 |
+
|
302 |
+
/* Multiply and subtract. */
|
303 |
+
u_hi = (u_hi << 32) - q1 * d;
|
304 |
+
|
305 |
+
/* Compute the second quotient digit, q0 */
|
306 |
+
uint64_t q0 = u_hi / d_hi;
|
307 |
+
uint64_t r0 = u_hi - q0 * d_hi;
|
308 |
+
|
309 |
+
while ((q0 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q0, d_lo) > (r0 << 32)) {
|
310 |
+
q0 -= 1;
|
311 |
+
r0 += d_hi;
|
312 |
+
if ((r0 >> 32) != 0) {
|
313 |
+
break;
|
314 |
+
}
|
315 |
+
}
|
316 |
+
const uint64_t q = (q1 << 32) | (uint32_t) q0;
|
317 |
+
#endif
|
318 |
+
result.m = q + UINT64_C(1);
|
319 |
+
result.s1 = 1;
|
320 |
+
result.s2 = (uint8_t) l_minus_1;
|
321 |
+
}
|
322 |
+
return result;
|
323 |
+
}
|
324 |
+
|
325 |
+
static inline struct fxdiv_divisor_size_t fxdiv_init_size_t(size_t d) {
|
326 |
+
#if SIZE_MAX == UINT32_MAX
|
327 |
+
const struct fxdiv_divisor_uint32_t uint_result = fxdiv_init_uint32_t((uint32_t) d);
|
328 |
+
#elif SIZE_MAX == UINT64_MAX
|
329 |
+
const struct fxdiv_divisor_uint64_t uint_result = fxdiv_init_uint64_t((uint64_t) d);
|
330 |
+
#else
|
331 |
+
#error Unsupported platform
|
332 |
+
#endif
|
333 |
+
struct fxdiv_divisor_size_t size_result = {
|
334 |
+
(size_t) uint_result.value,
|
335 |
+
(size_t) uint_result.m,
|
336 |
+
uint_result.s1,
|
337 |
+
uint_result.s2
|
338 |
+
};
|
339 |
+
return size_result;
|
340 |
+
}
|
341 |
+
|
342 |
+
static inline uint32_t fxdiv_quotient_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
|
343 |
+
const uint32_t t = fxdiv_mulhi_uint32_t(n, divisor.m);
|
344 |
+
return (t + ((n - t) >> divisor.s1)) >> divisor.s2;
|
345 |
+
}
|
346 |
+
|
347 |
+
static inline uint64_t fxdiv_quotient_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
|
348 |
+
const uint64_t t = fxdiv_mulhi_uint64_t(n, divisor.m);
|
349 |
+
return (t + ((n - t) >> divisor.s1)) >> divisor.s2;
|
350 |
+
}
|
351 |
+
|
352 |
+
static inline size_t fxdiv_quotient_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
|
353 |
+
#if SIZE_MAX == UINT32_MAX
|
354 |
+
const struct fxdiv_divisor_uint32_t uint32_divisor = {
|
355 |
+
(uint32_t) divisor.value,
|
356 |
+
(uint32_t) divisor.m,
|
357 |
+
divisor.s1,
|
358 |
+
divisor.s2
|
359 |
+
};
|
360 |
+
return fxdiv_quotient_uint32_t((uint32_t) n, uint32_divisor);
|
361 |
+
#elif SIZE_MAX == UINT64_MAX
|
362 |
+
const struct fxdiv_divisor_uint64_t uint64_divisor = {
|
363 |
+
(uint64_t) divisor.value,
|
364 |
+
(uint64_t) divisor.m,
|
365 |
+
divisor.s1,
|
366 |
+
divisor.s2
|
367 |
+
};
|
368 |
+
return fxdiv_quotient_uint64_t((uint64_t) n, uint64_divisor);
|
369 |
+
#else
|
370 |
+
#error Unsupported platform
|
371 |
+
#endif
|
372 |
+
}
|
373 |
+
|
374 |
+
static inline uint32_t fxdiv_remainder_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
|
375 |
+
const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor);
|
376 |
+
return n - quotient * divisor.value;
|
377 |
+
}
|
378 |
+
|
379 |
+
static inline uint64_t fxdiv_remainder_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
|
380 |
+
const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor);
|
381 |
+
return n - quotient * divisor.value;
|
382 |
+
}
|
383 |
+
|
384 |
+
static inline size_t fxdiv_remainder_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
|
385 |
+
const size_t quotient = fxdiv_quotient_size_t(n, divisor);
|
386 |
+
return n - quotient * divisor.value;
|
387 |
+
}
|
388 |
+
|
389 |
+
static inline uint32_t fxdiv_round_down_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t granularity) {
|
390 |
+
const uint32_t quotient = fxdiv_quotient_uint32_t(n, granularity);
|
391 |
+
return quotient * granularity.value;
|
392 |
+
}
|
393 |
+
|
394 |
+
static inline uint64_t fxdiv_round_down_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t granularity) {
|
395 |
+
const uint64_t quotient = fxdiv_quotient_uint64_t(n, granularity);
|
396 |
+
return quotient * granularity.value;
|
397 |
+
}
|
398 |
+
|
399 |
+
static inline size_t fxdiv_round_down_size_t(size_t n, const struct fxdiv_divisor_size_t granularity) {
|
400 |
+
const size_t quotient = fxdiv_quotient_size_t(n, granularity);
|
401 |
+
return quotient * granularity.value;
|
402 |
+
}
|
403 |
+
|
404 |
+
static inline struct fxdiv_result_uint32_t fxdiv_divide_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
|
405 |
+
const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor);
|
406 |
+
const uint32_t remainder = n - quotient * divisor.value;
|
407 |
+
struct fxdiv_result_uint32_t result = { quotient, remainder };
|
408 |
+
return result;
|
409 |
+
}
|
410 |
+
|
411 |
+
static inline struct fxdiv_result_uint64_t fxdiv_divide_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
|
412 |
+
const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor);
|
413 |
+
const uint64_t remainder = n - quotient * divisor.value;
|
414 |
+
struct fxdiv_result_uint64_t result = { quotient, remainder };
|
415 |
+
return result;
|
416 |
+
}
|
417 |
+
|
418 |
+
static inline struct fxdiv_result_size_t fxdiv_divide_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
|
419 |
+
const size_t quotient = fxdiv_quotient_size_t(n, divisor);
|
420 |
+
const size_t remainder = n - quotient * divisor.value;
|
421 |
+
struct fxdiv_result_size_t result = { quotient, remainder };
|
422 |
+
return result;
|
423 |
+
}
|
424 |
+
|
425 |
+
#endif /* FXDIV_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/libshm.h
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/MapAllocator.h>
|
4 |
+
|
5 |
+
#ifdef __cplusplus
|
6 |
+
|
7 |
+
void libshm_init(const char* manager_exec_path);
|
8 |
+
|
9 |
+
// Superclass to run a constructor before at::RefcountedMapAllocator
|
10 |
+
class THManagedMapAllocatorInit {
|
11 |
+
protected:
|
12 |
+
THManagedMapAllocatorInit(const char* manager_handle, const char* filename);
|
13 |
+
std::string manager_handle_;
|
14 |
+
};
|
15 |
+
|
16 |
+
// Like a at::RefcountedMapAllocator, but it also makes use of an external
|
17 |
+
// shared memory manager process to ensure that shared memory regions actually
|
18 |
+
// get freed in the end (even if processes lose the memory).
|
19 |
+
class THManagedMapAllocator : private THManagedMapAllocatorInit,
|
20 |
+
public at::RefcountedMapAllocator {
|
21 |
+
public:
|
22 |
+
THManagedMapAllocator(
|
23 |
+
const char* manager_handle,
|
24 |
+
const char* filename,
|
25 |
+
int flags,
|
26 |
+
size_t size);
|
27 |
+
|
28 |
+
void close() override;
|
29 |
+
|
30 |
+
~THManagedMapAllocator() override {
|
31 |
+
close();
|
32 |
+
}
|
33 |
+
|
34 |
+
static at::DataPtr makeDataPtr(
|
35 |
+
const char* manager_handle,
|
36 |
+
const char* filename,
|
37 |
+
int flags,
|
38 |
+
size_t size);
|
39 |
+
static THManagedMapAllocator* fromDataPtr(const at::DataPtr&);
|
40 |
+
|
41 |
+
const char* manager_handle() const {
|
42 |
+
return manager_handle_.c_str();
|
43 |
+
}
|
44 |
+
};
|
45 |
+
|
46 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/nnpack.h
ADDED
@@ -0,0 +1,659 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <stddef.h>
|
4 |
+
#include <stdint.h>
|
5 |
+
#include <stdbool.h>
|
6 |
+
|
7 |
+
#include <pthreadpool.h>
|
8 |
+
|
9 |
+
#ifdef __cplusplus
|
10 |
+
extern "C" {
|
11 |
+
#endif
|
12 |
+
|
13 |
+
/**
|
14 |
+
* @brief Status code for any NNPACK function call.
|
15 |
+
*/
|
16 |
+
enum nnp_status {
|
17 |
+
/** The call succeeded, and all output arguments now contain valid data. */
|
18 |
+
nnp_status_success = 0,
|
19 |
+
/** NNPACK function was called with batch_size == 0. */
|
20 |
+
nnp_status_invalid_batch_size = 2,
|
21 |
+
/** NNPACK function was called with channels == 0. */
|
22 |
+
nnp_status_invalid_channels = 3,
|
23 |
+
/** NNPACK function was called with input_channels == 0. */
|
24 |
+
nnp_status_invalid_input_channels = 4,
|
25 |
+
/** NNPACK function was called with output_channels == 0. */
|
26 |
+
nnp_status_invalid_output_channels = 5,
|
27 |
+
/** NNPACK function was called with input_size.height == 0 or input_size.width == 0 */
|
28 |
+
nnp_status_invalid_input_size = 10,
|
29 |
+
/** NNPACK function was called with input_stride.height == 0 or input_stride.width == 0 */
|
30 |
+
nnp_status_invalid_input_stride = 11,
|
31 |
+
/** NNPACK function was called with input_padding not less than respective kernel (or pooling) size, i.e.:
|
32 |
+
*
|
33 |
+
* - input_padding.left >= kernel_size.width (>= pooling_size.width)
|
34 |
+
* - input_padding.right >= kernel_size.width (>= pooling_size.width)
|
35 |
+
* - input_padding.top >= kernel_size.height (>= pooling_size.height)
|
36 |
+
* - input_padding.bottom >= kernel_size.height (>= pooling_size.height)
|
37 |
+
*/
|
38 |
+
nnp_status_invalid_input_padding = 12,
|
39 |
+
/** NNPACK function was called with kernel_size.height == 0 or kernel_size.width == 0 */
|
40 |
+
nnp_status_invalid_kernel_size = 13,
|
41 |
+
/** NNPACK function was called with pooling_size.height == 0 or pooling_size.width == 0 */
|
42 |
+
nnp_status_invalid_pooling_size = 14,
|
43 |
+
/** NNPACK function was called with pooling_stride.height == 0 or pooling_stride.width == 0 */
|
44 |
+
nnp_status_invalid_pooling_stride = 15,
|
45 |
+
/** NNPACK function was called with convolution algorithm not in nnp_convolution_algorithm enumeration */
|
46 |
+
nnp_status_invalid_algorithm = 16,
|
47 |
+
/** NNPACK function was called with convolution transform strategy not in nnp_convolution_transform_strategy enum */
|
48 |
+
nnp_status_invalid_transform_strategy = 17,
|
49 |
+
/** NNPACK function was called with output_subsampling.height == 0 or output_subsampling.width == 0 */
|
50 |
+
nnp_status_invalid_output_subsampling = 13,
|
51 |
+
/** NNPACK function was called with activation not in nnp_activation enum */
|
52 |
+
nnp_status_invalid_activation = 14,
|
53 |
+
/** NNPACK function was called with invalid activation parameters */
|
54 |
+
nnp_status_invalid_activation_parameters = 15,
|
55 |
+
|
56 |
+
/** NNPACK does not support the particular input size for the function */
|
57 |
+
nnp_status_unsupported_input_size = 20,
|
58 |
+
/** NNPACK does not support the particular input stride for the function */
|
59 |
+
nnp_status_unsupported_input_stride = 21,
|
60 |
+
/** NNPACK does not support the particular input padding for the function */
|
61 |
+
nnp_status_unsupported_input_padding = 22,
|
62 |
+
/** NNPACK does not support the particular kernel size for the function */
|
63 |
+
nnp_status_unsupported_kernel_size = 23,
|
64 |
+
/** NNPACK does not support the particular pooling size for the function */
|
65 |
+
nnp_status_unsupported_pooling_size = 24,
|
66 |
+
/** NNPACK does not support the particular pooling stride for the function */
|
67 |
+
nnp_status_unsupported_pooling_stride = 25,
|
68 |
+
/** NNPACK does not support the particular convolution algorithm for the function */
|
69 |
+
nnp_status_unsupported_algorithm = 26,
|
70 |
+
/** NNPACK does not support the particular convolution transform strategy for the algorithm */
|
71 |
+
nnp_status_unsupported_transform_strategy = 27,
|
72 |
+
/** NNPACK does not support the particular activation function for the function */
|
73 |
+
nnp_status_unsupported_activation = 28,
|
74 |
+
/** NNPACK does not support the particular activation function parameters for the function */
|
75 |
+
nnp_status_unsupported_activation_parameters = 29,
|
76 |
+
|
77 |
+
/** NNPACK function was called before the library was initialized */
|
78 |
+
nnp_status_uninitialized = 50,
|
79 |
+
/** NNPACK does not implement this function for the host CPU */
|
80 |
+
nnp_status_unsupported_hardware = 51,
|
81 |
+
/** NNPACK failed to allocate memory for temporary buffers */
|
82 |
+
nnp_status_out_of_memory = 52,
|
83 |
+
/** Scratch space buffer is too small */
|
84 |
+
nnp_status_insufficient_buffer = 53,
|
85 |
+
/** Scratch space buffer is not properly aligned */
|
86 |
+
nnp_status_misaligned_buffer = 54
|
87 |
+
};
|
88 |
+
|
89 |
+
/**
|
90 |
+
* @brief Activation applied applied after a convolutional or fully-connected layer.
|
91 |
+
*/
|
92 |
+
enum nnp_activation {
|
93 |
+
/** Identity activation f(x) := x, i.e. no transformation */
|
94 |
+
nnp_activation_identity = 0,
|
95 |
+
/** ReLU activation f(x) := max(0, x) */
|
96 |
+
nnp_activation_relu = 1,
|
97 |
+
};
|
98 |
+
|
99 |
+
/**
|
100 |
+
* @brief Algorithm for computing convolutional layers.
|
101 |
+
*/
|
102 |
+
enum nnp_convolution_algorithm {
|
103 |
+
/** Let NNPACK choose the algorithm depending on layer parameters */
|
104 |
+
nnp_convolution_algorithm_auto = 0,
|
105 |
+
/** Tiled convolution based on 2D Fourier transform with 8x8 blocks. Supports kernels up to 8x8. */
|
106 |
+
nnp_convolution_algorithm_ft8x8 = 1,
|
107 |
+
/** Tiled convolution based on 2D Fourier transform with 16x16 blocks. Supports kernels up to 16x16. */
|
108 |
+
nnp_convolution_algorithm_ft16x16 = 2,
|
109 |
+
/** Tiled convolution based on 2D Winograd transform F(3x3, 6x6) with 8x8 blocks. Supports only 3x3 kernels. */
|
110 |
+
nnp_convolution_algorithm_wt8x8 = 3,
|
111 |
+
/** Direct convolution via implicit GEMM. */
|
112 |
+
nnp_convolution_algorithm_implicit_gemm = 4,
|
113 |
+
/** Direct convolution implementation. */
|
114 |
+
nnp_convolution_algorithm_direct = 5,
|
115 |
+
/**
|
116 |
+
* Tiled convolution based on 2D Winograd transform F(3x3, 6x6) with 8x8 blocks in FP16.
|
117 |
+
* Supports only 3x3 kernels. Implemented only for new ARM processors (with NEON-HP),
|
118 |
+
* on non-supported processors falls back to nnp_convolution_algorithm_wt8x8.
|
119 |
+
*/
|
120 |
+
nnp_convolution_algorithm_wt8x8_fp16 = 6,
|
121 |
+
};
|
122 |
+
|
123 |
+
enum nnp_convolution_transform_strategy {
|
124 |
+
nnp_convolution_transform_strategy_compute = 1,
|
125 |
+
nnp_convolution_transform_strategy_precompute = 2,
|
126 |
+
nnp_convolution_transform_strategy_reuse = 3
|
127 |
+
};
|
128 |
+
|
129 |
+
/* For backward compatibility */
|
130 |
+
#define nnp_convolution_transform_strategy_block_based nnp_convolution_transform_strategy_compute
|
131 |
+
#define nnp_convolution_transform_strategy_tuple_based nnp_convolution_transform_strategy_compute
|
132 |
+
|
133 |
+
/**
|
134 |
+
* @brief Size of images, kernels, and pooling filters in NNPACK.
|
135 |
+
*/
|
136 |
+
struct nnp_size {
|
137 |
+
/** Width (horizontal size) of an image, kernel, or pooling filter. */
|
138 |
+
size_t width;
|
139 |
+
/** Height (vertical size) of an image, kernel, or pooling filter. */
|
140 |
+
size_t height;
|
141 |
+
};
|
142 |
+
|
143 |
+
/**
|
144 |
+
* @brief Padding of images in NNPACK.
|
145 |
+
*/
|
146 |
+
struct nnp_padding {
|
147 |
+
/** Padding above the image data */
|
148 |
+
size_t top;
|
149 |
+
/** Padding on the right of image data */
|
150 |
+
size_t right;
|
151 |
+
/** Padding below the image data */
|
152 |
+
size_t bottom;
|
153 |
+
/** Padding on the left of image data */
|
154 |
+
size_t left;
|
155 |
+
};
|
156 |
+
|
157 |
+
/**
|
158 |
+
* @brief Profiling information about time spent in different phases of a function call.
|
159 |
+
*/
|
160 |
+
struct nnp_profile {
|
161 |
+
/** Time spent inside the function call, in seconds. */
|
162 |
+
double total;
|
163 |
+
/** Time spend on transformation of the input or input gradient tensor, in seconds. */
|
164 |
+
double input_transform;
|
165 |
+
/** Time spend on transformation of the kernel or kernel gradient tensor, in seconds. */
|
166 |
+
double kernel_transform;
|
167 |
+
/** Time spend on transformation of the output or output gradient tensor, in seconds. */
|
168 |
+
double output_transform;
|
169 |
+
/** Time spend on multiplication-accumulation of transformed coefficients, in seconds. */
|
170 |
+
double block_multiplication;
|
171 |
+
};
|
172 |
+
|
173 |
+
enum nnp_status nnp_initialize(void);
|
174 |
+
|
175 |
+
enum nnp_status nnp_deinitialize(void);
|
176 |
+
|
177 |
+
/**
|
178 |
+
* @brief Computes output of a 2D convolutional layer from input and kernel tensors.
|
179 |
+
* @details This function targets training of convolutional neural networks and performs forward propagation.
|
180 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
181 |
+
* For minibatch size 1, use nnp_convolution_inference for optimal performance.
|
182 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
183 |
+
*
|
184 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
185 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
186 |
+
* Supports kernels up to 8x8.
|
187 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
188 |
+
* Supports kernels up to 16x16.
|
189 |
+
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
|
190 |
+
* Supports only 3x3 kernels.
|
191 |
+
*
|
192 |
+
* @param batch_size The number of images on the input and output of the convolutional layer.
|
193 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input images.
|
194 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output images.
|
195 |
+
* @param input_size Size of input images, excluding implicit zero-padding.
|
196 |
+
* @param input_padding Implicit zero-padding of input images.
|
197 |
+
* @param kernel_size Kernel size.
|
198 |
+
* @param[in] input A 4D tensor input[batch_size][input_channels][input_size.height][input_size.width].
|
199 |
+
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
200 |
+
* @param[in] bias A 1D array bias[output_channels].
|
201 |
+
* @param[out] output A 4D tensor output[batch_size][output_channels][output_size.height][output_size.width] where
|
202 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
203 |
+
* (kernel_size.height - 1)
|
204 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
205 |
+
* (kernel_size.width - 1)
|
206 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
207 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
208 |
+
* @param[out] profile An optional pointer to profiling structure.
|
209 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
210 |
+
*/
|
211 |
+
|
212 |
+
enum nnp_status nnp_convolution_output(
|
213 |
+
enum nnp_convolution_algorithm algorithm,
|
214 |
+
size_t batch_size,
|
215 |
+
size_t input_channels,
|
216 |
+
size_t output_channels,
|
217 |
+
struct nnp_size input_size,
|
218 |
+
struct nnp_padding input_padding,
|
219 |
+
struct nnp_size kernel_size,
|
220 |
+
const float* input,
|
221 |
+
const float* kernel,
|
222 |
+
const float* bias,
|
223 |
+
float* output,
|
224 |
+
void* workspace_buffer,
|
225 |
+
size_t* workspace_size,
|
226 |
+
enum nnp_activation activation,
|
227 |
+
const void* activation_parameters,
|
228 |
+
pthreadpool_t threadpool,
|
229 |
+
struct nnp_profile* profile);
|
230 |
+
|
231 |
+
/**
|
232 |
+
* @brief Computes gradient of input of a 2D convolutional layer from gradient of output and kernel tensors.
|
233 |
+
* @details This function targets training of convolutional neural networks and performs backward propagation.
|
234 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
235 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
236 |
+
*
|
237 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
238 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
239 |
+
* Supports kernels up to 8x8.
|
240 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
241 |
+
* Supports kernels up to 16x16.
|
242 |
+
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
|
243 |
+
* Supports only 3x3 kernels.
|
244 |
+
*
|
245 |
+
* @param batch_size The number of images (and their gradients) on the input and output of the convolutional layer.
|
246 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input images (and gradients).
|
247 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output images (and gradients).
|
248 |
+
* @param input_size Size of input images and their gradients, excluding implicit zero-padding.
|
249 |
+
* @param input_padding Implicit zero-padding of input images.
|
250 |
+
* @param kernel_size Kernel size.
|
251 |
+
* @param[in] grad_output A 4D tensor grad_output[batch_size][output_channels][output_size.height][output_size.width]
|
252 |
+
* where
|
253 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
254 |
+
* (kernel_size.height - 1)
|
255 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
256 |
+
* (kernel_size.width - 1)
|
257 |
+
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
258 |
+
* @param[out] grad_input A 4D tensor grad_input[batch_size][input_channels][input_size.height][input_size.width].
|
259 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
260 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
261 |
+
* @param[out] profile An optional pointer to profiling structure.
|
262 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
263 |
+
*/
|
264 |
+
enum nnp_status nnp_convolution_input_gradient(
|
265 |
+
enum nnp_convolution_algorithm algorithm,
|
266 |
+
size_t batch_size,
|
267 |
+
size_t input_channels,
|
268 |
+
size_t output_channels,
|
269 |
+
struct nnp_size input_size,
|
270 |
+
struct nnp_padding input_padding,
|
271 |
+
struct nnp_size kernel_size,
|
272 |
+
const float* grad_output,
|
273 |
+
const float* kernel,
|
274 |
+
float* grad_input,
|
275 |
+
void* workspace_buffer,
|
276 |
+
size_t* workspace_size,
|
277 |
+
enum nnp_activation activation,
|
278 |
+
const void* activation_parameters,
|
279 |
+
pthreadpool_t threadpool,
|
280 |
+
struct nnp_profile* profile);
|
281 |
+
|
282 |
+
/**
|
283 |
+
* @brief Computes gradient of kernel of a 2D convolutional layer from gradient of output and input tensors.
|
284 |
+
* @details This function targets training of convolutional neural networks and performs backward propagation.
|
285 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
286 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
287 |
+
*
|
288 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
289 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
290 |
+
* Supports kernels up to 8x8.
|
291 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
292 |
+
* Supports kernels up to 16x16.
|
293 |
+
*
|
294 |
+
* @param batch_size The number of images (and their gradients) on the input and output of the convolutional layer.
|
295 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input images.
|
296 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output images (and gradients).
|
297 |
+
* @param input_size Size of input images and their gradients, excluding implicit zero-padding.
|
298 |
+
* @param input_padding Implicit zero-padding of input images.
|
299 |
+
* @param kernel_size Kernel size.
|
300 |
+
* @param[in] input A 4D tensor input[batch_size][input_channels][input_size.height][input_size.width].
|
301 |
+
* @param[in] grad_output A 4D tensor grad_output[batch_size][output_channels][output_size.height][output_size.width]
|
302 |
+
* where
|
303 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
304 |
+
* (kernel_size.height - 1)
|
305 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
306 |
+
* (kernel_size.width - 1)
|
307 |
+
* @param[out] grad_kernel A 4D tensor
|
308 |
+
* grad_kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
309 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
310 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
311 |
+
* @param[out] profile An optional pointer to profiling structure.
|
312 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
313 |
+
*/
|
314 |
+
enum nnp_status nnp_convolution_kernel_gradient(
|
315 |
+
enum nnp_convolution_algorithm algorithm,
|
316 |
+
size_t batch_size,
|
317 |
+
size_t input_channels,
|
318 |
+
size_t output_channels,
|
319 |
+
struct nnp_size input_size,
|
320 |
+
struct nnp_padding input_padding,
|
321 |
+
struct nnp_size kernel_size,
|
322 |
+
const float* input,
|
323 |
+
const float* grad_output,
|
324 |
+
float* grad_kernel,
|
325 |
+
void* workspace_buffer,
|
326 |
+
size_t* workspace_size,
|
327 |
+
enum nnp_activation activation,
|
328 |
+
const void* activation_parameters,
|
329 |
+
pthreadpool_t threadpool,
|
330 |
+
struct nnp_profile* profile);
|
331 |
+
|
332 |
+
/**
|
333 |
+
* @brief Computes output of a 2D convolutional layer for a single input image and a kernel tensor.
|
334 |
+
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
|
335 |
+
* @param algorithm The type of algorithm to use for convolution. Possible values are:
|
336 |
+
*
|
337 |
+
* - nnp_convolution_algorithm_auto -- let the function choose the algorithm.
|
338 |
+
* - nnp_convolution_algorithm_ft8x8 -- tiled convolution based on 2D Fourier transform with 8x8 blocks.
|
339 |
+
* Supports kernels up to 8x8.
|
340 |
+
* - nnp_convolution_algorithm_ft16x16 -- tiled convolution based on 2D Fourier transform with 16x16 blocks.
|
341 |
+
* Supports kernels up to 16x16.
|
342 |
+
* - nnp_convolution_algorithm_wt8x8 -- tiled convolution based on 2D Winograd transform F(3x3, 6x6).
|
343 |
+
* Supports only 3x3 kernels.
|
344 |
+
*
|
345 |
+
* @param transform_strategy A strategy that guides computation of kernel transforms coefficients.
|
346 |
+
* Possible values are:
|
347 |
+
*
|
348 |
+
* - nnp_convolution_transform_strategy_block_based -- do multiplication-accumulations on blocks of transformed
|
349 |
+
* coefficients.
|
350 |
+
* - nnp_convolution_transform_strategy_tuple_based -- do multiplication-accumulations on tuples of transformed
|
351 |
+
* coefficients.
|
352 |
+
*
|
353 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input image.
|
354 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output image.
|
355 |
+
* @param input_size Size of input image, excluding implicit zero-padding.
|
356 |
+
* @param input_padding Implicit zero-padding of input image.
|
357 |
+
* @param kernel_size Kernel size.
|
358 |
+
* @param output_subsampling Subsample region for output, also known as convolution stride.
|
359 |
+
* @param[in] input A 3D tensor input[input_channels][input_size.height][input_size.width].
|
360 |
+
* @param[in] kernel A 4D tensor kernel[output_channels][input_channels][kernel_size.height][kernel_size.width].
|
361 |
+
* @param[in] bias A 1D array bias[output_channels].
|
362 |
+
* @param[out] output A 3D tensor output[output_channels][output_size.height][output_size.width] where
|
363 |
+
* output_size.height = (input_padding.top + input_size.height + input_padding.bottom) -
|
364 |
+
* (kernel_size.height - 1)
|
365 |
+
* output_size.width = (input_padding.left + input_size.width + input_padding.right) -
|
366 |
+
* (kernel_size.width - 1)
|
367 |
+
* @param[in] workspace_buffer Buffer for scratch memory used during computation. Buffer must be aligned on 64 bytes.
|
368 |
+
* If workspace_buffer is NULL and workspace_size is non-NULL, NNPACK would store the size
|
369 |
+
* of required workspace memory at the workspace_size location, and exit without
|
370 |
+
* computations.
|
371 |
+
* If workspace_buffer is NULL and workspace_size is NULL, NNPACK would allocate memory
|
372 |
+
* before and deallocate after this computation, potentially at significant runtime cost.
|
373 |
+
* @param[in,out] workspace_size Pointer to the size of workspace buffer.
|
374 |
+
* If workspace_buffer is NULL, NNPACK will write the size of required scratch memory to
|
375 |
+
* the location specified by this pointer.
|
376 |
+
* If workspace_buffer is non-NULL, NNPACK expects workspace_size to specify the size of
|
377 |
+
* the buffer, in bytes.
|
378 |
+
* If workspace_size is NULL, workspace_buffer must be NULL as well. In this case NNPACK
|
379 |
+
* would allocate memory before and deallocate after this computation, potentially at
|
380 |
+
* significant runtime cost.
|
381 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
382 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
383 |
+
* @param[out] profile An optional pointer to profiling structure.
|
384 |
+
* If provided, the structure would record time spent in different phases of the computation.
|
385 |
+
*/
|
386 |
+
enum nnp_status nnp_convolution_inference(
|
387 |
+
enum nnp_convolution_algorithm algorithm,
|
388 |
+
enum nnp_convolution_transform_strategy transform_strategy,
|
389 |
+
size_t input_channels,
|
390 |
+
size_t output_channels,
|
391 |
+
struct nnp_size input_size,
|
392 |
+
struct nnp_padding input_padding,
|
393 |
+
struct nnp_size kernel_size,
|
394 |
+
struct nnp_size output_subsampling,
|
395 |
+
const float* input,
|
396 |
+
const float* kernel,
|
397 |
+
const float* bias,
|
398 |
+
float* output,
|
399 |
+
void* workspace_buffer,
|
400 |
+
size_t* workspace_size,
|
401 |
+
enum nnp_activation activation,
|
402 |
+
const void* activation_parameters,
|
403 |
+
pthreadpool_t threadpool,
|
404 |
+
struct nnp_profile* profile);
|
405 |
+
|
406 |
+
/**
|
407 |
+
* @brief Computes output of a fully connected layer from input and kernel matrices.
|
408 |
+
* @details This function targets training of convolutional neural networks and performs forward propagation.
|
409 |
+
* It is optimized for moderate minibatch sizes (64-128) and can be inefficient on a small minibatch.
|
410 |
+
* For minibatch size 1, use nnp_fully_connected_inference for optimal performance.
|
411 |
+
* @param batch_size The number of vectors on the input and output of the fully connected layer.
|
412 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input matrix.
|
413 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output matrix.
|
414 |
+
* @param[in] input A 2D matrix input[batch_size][input_channels].
|
415 |
+
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels].
|
416 |
+
* @param[out] output A 2D matrix output[batch_size][output_channels].
|
417 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
418 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
419 |
+
*/
|
420 |
+
enum nnp_status nnp_fully_connected_output(
|
421 |
+
size_t batch_size,
|
422 |
+
size_t input_channels,
|
423 |
+
size_t output_channels,
|
424 |
+
const float input[],
|
425 |
+
const float kernel[],
|
426 |
+
float output[],
|
427 |
+
pthreadpool_t threadpool,
|
428 |
+
struct nnp_profile* profile);
|
429 |
+
|
430 |
+
/**
|
431 |
+
* @brief Computes output of a fully connected layer for a single input vector and a kernel matrix.
|
432 |
+
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
|
433 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input vector.
|
434 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output vector.
|
435 |
+
* @param[in] input A 1D array input[input_channels] of FP32 elements.
|
436 |
+
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels] of FP32 elements.
|
437 |
+
* @param[out] output A 1D array output[output_channels] of FP32 elements.
|
438 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
439 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
440 |
+
*/
|
441 |
+
enum nnp_status nnp_fully_connected_inference(
|
442 |
+
size_t input_channels,
|
443 |
+
size_t output_channels,
|
444 |
+
const float* input,
|
445 |
+
const float* kernel,
|
446 |
+
float* output,
|
447 |
+
pthreadpool_t threadpool);
|
448 |
+
|
449 |
+
/**
|
450 |
+
* @brief Computes output of a fully connected layer for a single input vector and a kernel matrix.
|
451 |
+
* @details This function targets prediction with convolutional neural networks and performs forward propagation.
|
452 |
+
* @param input_channels The number of channels (AKA features, dimensions) in the input vector.
|
453 |
+
* @param output_channels The number of channels (AKA features, dimensions) in the output vector.
|
454 |
+
* @param[in] input A 1D array input[input_channels] of FP32 elements.
|
455 |
+
* @param[in] kernel A 2D matrix kernel[output_channels][input_channels] of FP16 (ARM alternative format) elements.
|
456 |
+
* @param[out] output A 1D array output[output_channels] of FP32 elements.
|
457 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
458 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
459 |
+
*/
|
460 |
+
enum nnp_status nnp_fully_connected_inference_f16f32(
|
461 |
+
size_t input_channels,
|
462 |
+
size_t output_channels,
|
463 |
+
const float* input,
|
464 |
+
const void* kernel,
|
465 |
+
float* output,
|
466 |
+
pthreadpool_t threadpool);
|
467 |
+
|
468 |
+
/**
|
469 |
+
* @brief Computes output of a max-pooling layer for an input tensor.
|
470 |
+
* @details This function targets both prediction and training of convolutional neural networks and performs forward
|
471 |
+
* propagation. Is is optimized for both large and small minibatch sizes.
|
472 |
+
* @param batch_size The number of images on the input and output of the max-pooling layer.
|
473 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output images.
|
474 |
+
* @param input_size Size of input images, excluding implicit zero-padding.
|
475 |
+
* @param input_padding Implicit padding of input images. The padding pixels are ignored by the pooling filter, but
|
476 |
+
* affect the output size.
|
477 |
+
* @param pooling_size Size of the pooling filter. Only 2x2 filter are currently supported.
|
478 |
+
* @param pooling_stride Stride of the pooling filter. Only 2x2 strides are currently supported.
|
479 |
+
* @param[in] input A 4D tensor input[batch_size][channels][input_size.height][input_size.width].
|
480 |
+
* @param[out] output A 4D tensor output[batch_size][channels][output_size.height][output_size.width] where
|
481 |
+
* output_size.height = ceil(
|
482 |
+
* (input_padding.top + input_size.height + input_padding.bottom - pooling_size.height) /
|
483 |
+
* pooling_stride.height) + 1
|
484 |
+
* output_size.width = ceil(
|
485 |
+
* (input_padding.left + input_size.width + input_padding.right - pooling_size.width) /
|
486 |
+
* pooling_stride.width) + 1
|
487 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
488 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
489 |
+
*/
|
490 |
+
enum nnp_status nnp_max_pooling_output(
|
491 |
+
size_t batch_size,
|
492 |
+
size_t channels,
|
493 |
+
struct nnp_size input_size,
|
494 |
+
struct nnp_padding input_padding,
|
495 |
+
struct nnp_size pooling_size,
|
496 |
+
struct nnp_size pooling_stride,
|
497 |
+
const float input[],
|
498 |
+
float output[],
|
499 |
+
pthreadpool_t threadpool);
|
500 |
+
|
501 |
+
/**
|
502 |
+
* @brief Computes output of a softmax layer for an input matrix.
|
503 |
+
* @details This function targets both prediction and training of convolutional neural networks and performs forward
|
504 |
+
* propagation. Is is optimized for both large and small minibatch sizes.
|
505 |
+
* @param batch_size The number of vectors on the input and output of the softmax layer.
|
506 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output vectors.
|
507 |
+
* @param[in] input A 2D matrix input[batch_size][channels].
|
508 |
+
* @param[out] output A 2D matrix output[batch_size][channels].
|
509 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
510 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
511 |
+
*/
|
512 |
+
enum nnp_status nnp_softmax_output(
|
513 |
+
size_t batch_size,
|
514 |
+
size_t channels,
|
515 |
+
const float input[],
|
516 |
+
float output[],
|
517 |
+
pthreadpool_t threadpool);
|
518 |
+
|
519 |
+
/**
|
520 |
+
* @brief Computes output of a rectified linear unit (ReLU) layer for an input matrix.
|
521 |
+
* @details This function targets both prediction and training of convolutional neural networks and performs forward
|
522 |
+
* propagation. Is is optimized for both large and small minibatch sizes.
|
523 |
+
* @param batch_size The number of vectors on the input and output of the ReLU layer.
|
524 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output matrices.
|
525 |
+
* @param[in] input A 2D matrix input[batch_size][channels].
|
526 |
+
* @param[out] output A 2D matrix output[batch_size][channels].
|
527 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
528 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
529 |
+
*/
|
530 |
+
enum nnp_status nnp_relu_output(
|
531 |
+
size_t batch_size,
|
532 |
+
size_t channels,
|
533 |
+
const float input[],
|
534 |
+
float output[],
|
535 |
+
float negative_slope,
|
536 |
+
pthreadpool_t threadpool);
|
537 |
+
|
538 |
+
/**
|
539 |
+
* @brief Computes gradient of input of a rectified linear unit (ReLU) layer from gradient of output and input matrices.
|
540 |
+
* @details This function targets training of convolutional neural networks and performs backward propagation.
|
541 |
+
* Is is optimized for both large and small minibatch sizes.
|
542 |
+
* @param batch_size The number of vectors on the input and output of the ReLU layer.
|
543 |
+
* @param channels The number of channels (AKA features, dimensions) in both input and output matrices.
|
544 |
+
* @param[in] input A 2D matrix input[batch_size][channels].
|
545 |
+
* @param[out] output A 2D matrix output[batch_size][channels].
|
546 |
+
* @param threadpool A thread pool for parallelization of the computation.
|
547 |
+
* If threadpool is NULL, the computation would run on the caller thread without parallelization.
|
548 |
+
*/
|
549 |
+
enum nnp_status nnp_relu_input_gradient(
|
550 |
+
size_t batch_size,
|
551 |
+
size_t channels,
|
552 |
+
const float grad_output[],
|
553 |
+
const float input[],
|
554 |
+
float grad_input[],
|
555 |
+
float negative_slope,
|
556 |
+
pthreadpool_t threadpool);
|
557 |
+
|
558 |
+
#ifdef __cplusplus
|
559 |
+
} /* extern "C" */
|
560 |
+
#endif
|
561 |
+
|
562 |
+
#ifdef __cplusplus
|
563 |
+
// Backward compatible implementations for nnp_convolution_*, if we are in C++
|
564 |
+
// mode.
|
565 |
+
inline enum nnp_status nnp_convolution_output(
|
566 |
+
enum nnp_convolution_algorithm algorithm,
|
567 |
+
size_t batch_size,
|
568 |
+
size_t input_channels,
|
569 |
+
size_t output_channels,
|
570 |
+
struct nnp_size input_size,
|
571 |
+
struct nnp_padding input_padding,
|
572 |
+
struct nnp_size kernel_size,
|
573 |
+
const float input[],
|
574 |
+
const float kernel[],
|
575 |
+
const float bias[],
|
576 |
+
float output[],
|
577 |
+
pthreadpool_t threadpool,
|
578 |
+
struct nnp_profile* profile)
|
579 |
+
{
|
580 |
+
return nnp_convolution_output(
|
581 |
+
algorithm,
|
582 |
+
batch_size, input_channels, output_channels,
|
583 |
+
input_size, input_padding, kernel_size,
|
584 |
+
input, kernel, bias, output,
|
585 |
+
NULL, NULL,
|
586 |
+
nnp_activation_identity, NULL, threadpool, profile);
|
587 |
+
}
|
588 |
+
|
589 |
+
inline enum nnp_status nnp_convolution_input_gradient(
|
590 |
+
enum nnp_convolution_algorithm algorithm,
|
591 |
+
size_t batch_size,
|
592 |
+
size_t input_channels,
|
593 |
+
size_t output_channels,
|
594 |
+
struct nnp_size input_size,
|
595 |
+
struct nnp_padding input_padding,
|
596 |
+
struct nnp_size kernel_size,
|
597 |
+
const float grad_output[],
|
598 |
+
const float kernel[],
|
599 |
+
float grad_input[],
|
600 |
+
pthreadpool_t threadpool,
|
601 |
+
struct nnp_profile* profile)
|
602 |
+
{
|
603 |
+
return nnp_convolution_input_gradient(
|
604 |
+
algorithm,
|
605 |
+
batch_size, input_channels, output_channels,
|
606 |
+
input_size, input_padding, kernel_size,
|
607 |
+
grad_output, kernel, grad_input,
|
608 |
+
NULL, NULL,
|
609 |
+
nnp_activation_identity, NULL, threadpool, profile);
|
610 |
+
}
|
611 |
+
|
612 |
+
inline enum nnp_status nnp_convolution_kernel_gradient(
|
613 |
+
enum nnp_convolution_algorithm algorithm,
|
614 |
+
size_t batch_size,
|
615 |
+
size_t input_channels,
|
616 |
+
size_t output_channels,
|
617 |
+
struct nnp_size input_size,
|
618 |
+
struct nnp_padding input_padding,
|
619 |
+
struct nnp_size kernel_size,
|
620 |
+
const float input[],
|
621 |
+
const float grad_output[],
|
622 |
+
float grad_kernel[],
|
623 |
+
pthreadpool_t threadpool,
|
624 |
+
struct nnp_profile* profile)
|
625 |
+
{
|
626 |
+
return nnp_convolution_kernel_gradient(
|
627 |
+
algorithm,
|
628 |
+
batch_size, input_channels, output_channels,
|
629 |
+
input_size, input_padding, kernel_size,
|
630 |
+
input, grad_output, grad_kernel,
|
631 |
+
NULL, NULL,
|
632 |
+
nnp_activation_identity, NULL, threadpool, profile);
|
633 |
+
}
|
634 |
+
|
635 |
+
inline enum nnp_status nnp_convolution_inference(
|
636 |
+
enum nnp_convolution_algorithm algorithm,
|
637 |
+
enum nnp_convolution_transform_strategy transform_strategy,
|
638 |
+
size_t input_channels,
|
639 |
+
size_t output_channels,
|
640 |
+
struct nnp_size input_size,
|
641 |
+
struct nnp_padding input_padding,
|
642 |
+
struct nnp_size kernel_size,
|
643 |
+
struct nnp_size output_subsampling,
|
644 |
+
const float input[],
|
645 |
+
const float kernel[],
|
646 |
+
const float bias[],
|
647 |
+
float output[],
|
648 |
+
pthreadpool_t threadpool,
|
649 |
+
struct nnp_profile* profile) {
|
650 |
+
return nnp_convolution_inference(
|
651 |
+
algorithm, transform_strategy,
|
652 |
+
input_channels, output_channels,
|
653 |
+
input_size, input_padding, kernel_size, output_subsampling,
|
654 |
+
input, kernel, bias, output, NULL, NULL,
|
655 |
+
nnp_activation_identity, NULL,
|
656 |
+
threadpool, profile);
|
657 |
+
}
|
658 |
+
|
659 |
+
#endif // __cplusplus
|
llmeval-env/lib/python3.10/site-packages/torch/include/psimd.h
ADDED
@@ -0,0 +1,1384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifndef PSIMD_H
|
3 |
+
#define PSIMD_H
|
4 |
+
|
5 |
+
#if defined(__CUDA_ARCH__)
|
6 |
+
/* CUDA compiler */
|
7 |
+
#define PSIMD_INTRINSIC __forceinline__ __device__
|
8 |
+
#elif defined(__OPENCL_VERSION__)
|
9 |
+
/* OpenCL compiler */
|
10 |
+
#define PSIMD_INTRINSIC inline static
|
11 |
+
#elif defined(__INTEL_COMPILER)
|
12 |
+
/* Intel compiler, even on Windows */
|
13 |
+
#define PSIMD_INTRINSIC inline static __attribute__((__always_inline__))
|
14 |
+
#elif defined(__GNUC__)
|
15 |
+
/* GCC-compatible compiler (gcc/clang/icc) */
|
16 |
+
#define PSIMD_INTRINSIC inline static __attribute__((__always_inline__))
|
17 |
+
#elif defined(_MSC_VER)
|
18 |
+
/* MSVC-compatible compiler (cl/icl/clang-cl) */
|
19 |
+
#define PSIMD_INTRINSIC __forceinline static
|
20 |
+
#elif defined(__cplusplus)
|
21 |
+
/* Generic C++ compiler */
|
22 |
+
#define PSIMD_INTRINSIC inline static
|
23 |
+
#elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
|
24 |
+
/* Generic C99 compiler */
|
25 |
+
#define PSIMD_INTRINSIC inline static
|
26 |
+
#else
|
27 |
+
/* Generic C compiler */
|
28 |
+
#define PSIMD_INTRINSIC static
|
29 |
+
#endif
|
30 |
+
|
31 |
+
#if defined(__GNUC__) || defined(__clang__)
|
32 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
33 |
+
#include <arm_neon.h>
|
34 |
+
#endif
|
35 |
+
|
36 |
+
#if defined(__SSE2__)
|
37 |
+
#include <emmintrin.h>
|
38 |
+
#endif
|
39 |
+
|
40 |
+
#if defined(__SSE3__)
|
41 |
+
#include <pmmintrin.h>
|
42 |
+
#endif
|
43 |
+
|
44 |
+
#if defined(__SSSE3__)
|
45 |
+
#include <tmmintrin.h>
|
46 |
+
#endif
|
47 |
+
|
48 |
+
#if defined(__SSE4_1__)
|
49 |
+
#include <smmintrin.h>
|
50 |
+
#endif
|
51 |
+
|
52 |
+
#if defined(__SSE4_2__)
|
53 |
+
#include <nmmintrin.h>
|
54 |
+
#endif
|
55 |
+
|
56 |
+
#if defined(__AVX__)
|
57 |
+
#include <immintrin.h>
|
58 |
+
#endif
|
59 |
+
#elif defined(_MSC_VER)
|
60 |
+
#include <intrin.h>
|
61 |
+
#endif
|
62 |
+
|
63 |
+
#if defined(__cplusplus)
|
64 |
+
#define PSIMD_CXX_SYNTAX
|
65 |
+
#elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
|
66 |
+
#define PSIMD_C11_SYNTAX
|
67 |
+
#elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
|
68 |
+
#define PSIMD_C99_SYNTAX
|
69 |
+
#else
|
70 |
+
#define PSIMD_C89_SYNTAX
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus) && (__cplusplus >= 201103L)
|
74 |
+
#include <cstddef>
|
75 |
+
#include <cstdint>
|
76 |
+
#elif !defined(__OPENCL_VERSION__)
|
77 |
+
#include <stddef.h>
|
78 |
+
#include <stdint.h>
|
79 |
+
#endif
|
80 |
+
|
81 |
+
#if defined(__GNUC__) || defined(__clang__)
|
82 |
+
#define PSIMD_HAVE_F64 0
|
83 |
+
#define PSIMD_HAVE_F32 1
|
84 |
+
#define PSIMD_HAVE_U8 1
|
85 |
+
#define PSIMD_HAVE_S8 1
|
86 |
+
#define PSIMD_HAVE_U16 1
|
87 |
+
#define PSIMD_HAVE_S16 1
|
88 |
+
#define PSIMD_HAVE_U32 1
|
89 |
+
#define PSIMD_HAVE_S32 1
|
90 |
+
#define PSIMD_HAVE_U64 0
|
91 |
+
#define PSIMD_HAVE_S64 0
|
92 |
+
|
93 |
+
typedef int8_t psimd_s8 __attribute__((vector_size(16), aligned(1)));
|
94 |
+
typedef uint8_t psimd_u8 __attribute__((vector_size(16), aligned(1)));
|
95 |
+
typedef int16_t psimd_s16 __attribute__((vector_size(16), aligned(2)));
|
96 |
+
typedef uint16_t psimd_u16 __attribute__((vector_size(16), aligned(2)));
|
97 |
+
typedef int32_t psimd_s32 __attribute__((vector_size(16), aligned(4)));
|
98 |
+
typedef uint32_t psimd_u32 __attribute__((vector_size(16), aligned(4)));
|
99 |
+
typedef float psimd_f32 __attribute__((vector_size(16), aligned(4)));
|
100 |
+
|
101 |
+
typedef struct {
|
102 |
+
psimd_s8 lo;
|
103 |
+
psimd_s8 hi;
|
104 |
+
} psimd_s8x2;
|
105 |
+
|
106 |
+
typedef struct {
|
107 |
+
psimd_u8 lo;
|
108 |
+
psimd_u8 hi;
|
109 |
+
} psimd_u8x2;
|
110 |
+
|
111 |
+
typedef struct {
|
112 |
+
psimd_s16 lo;
|
113 |
+
psimd_s16 hi;
|
114 |
+
} psimd_s16x2;
|
115 |
+
|
116 |
+
typedef struct {
|
117 |
+
psimd_u16 lo;
|
118 |
+
psimd_u16 hi;
|
119 |
+
} psimd_u16x2;
|
120 |
+
|
121 |
+
typedef struct {
|
122 |
+
psimd_s32 lo;
|
123 |
+
psimd_s32 hi;
|
124 |
+
} psimd_s32x2;
|
125 |
+
|
126 |
+
typedef struct {
|
127 |
+
psimd_u32 lo;
|
128 |
+
psimd_u32 hi;
|
129 |
+
} psimd_u32x2;
|
130 |
+
|
131 |
+
typedef struct {
|
132 |
+
psimd_f32 lo;
|
133 |
+
psimd_f32 hi;
|
134 |
+
} psimd_f32x2;
|
135 |
+
|
136 |
+
/* Bit casts */
|
137 |
+
PSIMD_INTRINSIC psimd_u32x2 psimd_cast_s32x2_u32x2(psimd_s32x2 v) {
|
138 |
+
return (psimd_u32x2) { .lo = (psimd_u32) v.lo, .hi = (psimd_u32) v.hi };
|
139 |
+
}
|
140 |
+
|
141 |
+
PSIMD_INTRINSIC psimd_f32x2 psimd_cast_s32x2_f32x2(psimd_s32x2 v) {
|
142 |
+
return (psimd_f32x2) { .lo = (psimd_f32) v.lo, .hi = (psimd_f32) v.hi };
|
143 |
+
}
|
144 |
+
|
145 |
+
PSIMD_INTRINSIC psimd_s32x2 psimd_cast_u32x2_s32x2(psimd_u32x2 v) {
|
146 |
+
return (psimd_s32x2) { .lo = (psimd_s32) v.lo, .hi = (psimd_s32) v.hi };
|
147 |
+
}
|
148 |
+
|
149 |
+
PSIMD_INTRINSIC psimd_f32x2 psimd_cast_u32x2_f32x2(psimd_u32x2 v) {
|
150 |
+
return (psimd_f32x2) { .lo = (psimd_f32) v.lo, .hi = (psimd_f32) v.hi };
|
151 |
+
}
|
152 |
+
|
153 |
+
PSIMD_INTRINSIC psimd_s32x2 psimd_cast_f32x2_s32x2(psimd_f32x2 v) {
|
154 |
+
return (psimd_s32x2) { .lo = (psimd_s32) v.lo, .hi = (psimd_s32) v.hi };
|
155 |
+
}
|
156 |
+
|
157 |
+
PSIMD_INTRINSIC psimd_u32x2 psimd_cast_f32x2_u32x2(psimd_f32x2 v) {
|
158 |
+
return (psimd_u32x2) { .lo = (psimd_u32) v.lo, .hi = (psimd_u32) v.hi };
|
159 |
+
}
|
160 |
+
|
161 |
+
/* Swap */
|
162 |
+
PSIMD_INTRINSIC void psimd_swap_s8(psimd_s8 a[1], psimd_s8 b[1]) {
|
163 |
+
const psimd_s8 new_a = *b;
|
164 |
+
const psimd_s8 new_b = *a;
|
165 |
+
*a = new_a;
|
166 |
+
*b = new_b;
|
167 |
+
}
|
168 |
+
|
169 |
+
PSIMD_INTRINSIC void psimd_swap_u8(psimd_u8 a[1], psimd_u8 b[1]) {
|
170 |
+
const psimd_u8 new_a = *b;
|
171 |
+
const psimd_u8 new_b = *a;
|
172 |
+
*a = new_a;
|
173 |
+
*b = new_b;
|
174 |
+
}
|
175 |
+
|
176 |
+
PSIMD_INTRINSIC void psimd_swap_s16(psimd_s16 a[1], psimd_s16 b[1]) {
|
177 |
+
const psimd_s16 new_a = *b;
|
178 |
+
const psimd_s16 new_b = *a;
|
179 |
+
*a = new_a;
|
180 |
+
*b = new_b;
|
181 |
+
}
|
182 |
+
|
183 |
+
PSIMD_INTRINSIC void psimd_swap_u16(psimd_u16 a[1], psimd_u16 b[1]) {
|
184 |
+
const psimd_u16 new_a = *b;
|
185 |
+
const psimd_u16 new_b = *a;
|
186 |
+
*a = new_a;
|
187 |
+
*b = new_b;
|
188 |
+
}
|
189 |
+
|
190 |
+
PSIMD_INTRINSIC void psimd_swap_s32(psimd_s32 a[1], psimd_s32 b[1]) {
|
191 |
+
const psimd_s32 new_a = *b;
|
192 |
+
const psimd_s32 new_b = *a;
|
193 |
+
*a = new_a;
|
194 |
+
*b = new_b;
|
195 |
+
}
|
196 |
+
|
197 |
+
PSIMD_INTRINSIC void psimd_swap_u32(psimd_u32 a[1], psimd_u32 b[1]) {
|
198 |
+
const psimd_u32 new_a = *b;
|
199 |
+
const psimd_u32 new_b = *a;
|
200 |
+
*a = new_a;
|
201 |
+
*b = new_b;
|
202 |
+
}
|
203 |
+
|
204 |
+
PSIMD_INTRINSIC void psimd_swap_f32(psimd_f32 a[1], psimd_f32 b[1]) {
|
205 |
+
const psimd_f32 new_a = *b;
|
206 |
+
const psimd_f32 new_b = *a;
|
207 |
+
*a = new_a;
|
208 |
+
*b = new_b;
|
209 |
+
}
|
210 |
+
|
211 |
+
/* Zero-initialization */
|
212 |
+
PSIMD_INTRINSIC psimd_s8 psimd_zero_s8(void) {
|
213 |
+
return (psimd_s8) { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
214 |
+
}
|
215 |
+
|
216 |
+
PSIMD_INTRINSIC psimd_u8 psimd_zero_u8(void) {
|
217 |
+
return (psimd_u8) { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
218 |
+
}
|
219 |
+
|
220 |
+
PSIMD_INTRINSIC psimd_s16 psimd_zero_s16(void) {
|
221 |
+
return (psimd_s16) { 0, 0, 0, 0, 0, 0, 0, 0 };
|
222 |
+
}
|
223 |
+
|
224 |
+
PSIMD_INTRINSIC psimd_u16 psimd_zero_u16(void) {
|
225 |
+
return (psimd_u16) { 0, 0, 0, 0, 0, 0, 0, 0 };
|
226 |
+
}
|
227 |
+
|
228 |
+
PSIMD_INTRINSIC psimd_s32 psimd_zero_s32(void) {
|
229 |
+
return (psimd_s32) { 0, 0, 0, 0 };
|
230 |
+
}
|
231 |
+
|
232 |
+
PSIMD_INTRINSIC psimd_u32 psimd_zero_u32(void) {
|
233 |
+
return (psimd_u32) { 0, 0, 0, 0 };
|
234 |
+
}
|
235 |
+
|
236 |
+
PSIMD_INTRINSIC psimd_f32 psimd_zero_f32(void) {
|
237 |
+
return (psimd_f32) { 0.0f, 0.0f, 0.0f, 0.0f };
|
238 |
+
}
|
239 |
+
|
240 |
+
/* Initialization to the same constant */
|
241 |
+
PSIMD_INTRINSIC psimd_s8 psimd_splat_s8(int8_t c) {
|
242 |
+
return (psimd_s8) { c, c, c, c, c, c, c, c, c, c, c, c, c, c, c, c };
|
243 |
+
}
|
244 |
+
|
245 |
+
PSIMD_INTRINSIC psimd_u8 psimd_splat_u8(uint8_t c) {
|
246 |
+
return (psimd_u8) { c, c, c, c, c, c, c, c, c, c, c, c, c, c, c, c };
|
247 |
+
}
|
248 |
+
|
249 |
+
PSIMD_INTRINSIC psimd_s16 psimd_splat_s16(int16_t c) {
|
250 |
+
return (psimd_s16) { c, c, c, c, c, c, c, c };
|
251 |
+
}
|
252 |
+
|
253 |
+
PSIMD_INTRINSIC psimd_u16 psimd_splat_u16(uint16_t c) {
|
254 |
+
return (psimd_u16) { c, c, c, c, c, c, c, c };
|
255 |
+
}
|
256 |
+
|
257 |
+
PSIMD_INTRINSIC psimd_s32 psimd_splat_s32(int32_t c) {
|
258 |
+
return (psimd_s32) { c, c, c, c };
|
259 |
+
}
|
260 |
+
|
261 |
+
PSIMD_INTRINSIC psimd_u32 psimd_splat_u32(uint32_t c) {
|
262 |
+
return (psimd_u32) { c, c, c, c };
|
263 |
+
}
|
264 |
+
|
265 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat_f32(float c) {
|
266 |
+
return (psimd_f32) { c, c, c, c };
|
267 |
+
}
|
268 |
+
|
269 |
+
/* Load vector */
|
270 |
+
PSIMD_INTRINSIC psimd_s8 psimd_load_s8(const void* address) {
|
271 |
+
return *((const psimd_s8*) address);
|
272 |
+
}
|
273 |
+
|
274 |
+
PSIMD_INTRINSIC psimd_u8 psimd_load_u8(const void* address) {
|
275 |
+
return *((const psimd_u8*) address);
|
276 |
+
}
|
277 |
+
|
278 |
+
PSIMD_INTRINSIC psimd_s16 psimd_load_s16(const void* address) {
|
279 |
+
return *((const psimd_s16*) address);
|
280 |
+
}
|
281 |
+
|
282 |
+
PSIMD_INTRINSIC psimd_u16 psimd_load_u16(const void* address) {
|
283 |
+
return *((const psimd_u16*) address);
|
284 |
+
}
|
285 |
+
|
286 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load_s32(const void* address) {
|
287 |
+
return *((const psimd_s32*) address);
|
288 |
+
}
|
289 |
+
|
290 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load_u32(const void* address) {
|
291 |
+
return *((const psimd_u32*) address);
|
292 |
+
}
|
293 |
+
|
294 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load_f32(const void* address) {
|
295 |
+
return *((const psimd_f32*) address);
|
296 |
+
}
|
297 |
+
|
298 |
+
PSIMD_INTRINSIC psimd_s8 psimd_load_splat_s8(const void* address) {
|
299 |
+
return psimd_splat_s8(*((const int8_t*) address));
|
300 |
+
}
|
301 |
+
|
302 |
+
PSIMD_INTRINSIC psimd_u8 psimd_load_splat_u8(const void* address) {
|
303 |
+
return psimd_splat_u8(*((const uint8_t*) address));
|
304 |
+
}
|
305 |
+
|
306 |
+
PSIMD_INTRINSIC psimd_s16 psimd_load_splat_s16(const void* address) {
|
307 |
+
return psimd_splat_s16(*((const int16_t*) address));
|
308 |
+
}
|
309 |
+
|
310 |
+
PSIMD_INTRINSIC psimd_u16 psimd_load_splat_u16(const void* address) {
|
311 |
+
return psimd_splat_u16(*((const uint16_t*) address));
|
312 |
+
}
|
313 |
+
|
314 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load_splat_s32(const void* address) {
|
315 |
+
return psimd_splat_s32(*((const int32_t*) address));
|
316 |
+
}
|
317 |
+
|
318 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load_splat_u32(const void* address) {
|
319 |
+
return psimd_splat_u32(*((const uint32_t*) address));
|
320 |
+
}
|
321 |
+
|
322 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load_splat_f32(const void* address) {
|
323 |
+
return psimd_splat_f32(*((const float*) address));
|
324 |
+
}
|
325 |
+
|
326 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load1_s32(const void* address) {
|
327 |
+
return (psimd_s32) { *((const int32_t*) address), 0, 0, 0 };
|
328 |
+
}
|
329 |
+
|
330 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load1_u32(const void* address) {
|
331 |
+
return (psimd_u32) { *((const uint32_t*) address), 0, 0, 0 };
|
332 |
+
}
|
333 |
+
|
334 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load1_f32(const void* address) {
|
335 |
+
return (psimd_f32) { *((const float*) address), 0.0f, 0.0f, 0.0f };
|
336 |
+
}
|
337 |
+
|
338 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load2_s32(const void* address) {
|
339 |
+
const int32_t* address_s32 = (const int32_t*) address;
|
340 |
+
return (psimd_s32) { address_s32[0], address_s32[1], 0, 0 };
|
341 |
+
}
|
342 |
+
|
343 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load2_u32(const void* address) {
|
344 |
+
const uint32_t* address_u32 = (const uint32_t*) address;
|
345 |
+
return (psimd_u32) { address_u32[0], address_u32[1], 0, 0 };
|
346 |
+
}
|
347 |
+
|
348 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load2_f32(const void* address) {
|
349 |
+
const float* address_f32 = (const float*) address;
|
350 |
+
return (psimd_f32) { address_f32[0], address_f32[1], 0.0f, 0.0f };
|
351 |
+
}
|
352 |
+
|
353 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load3_s32(const void* address) {
|
354 |
+
const int32_t* address_s32 = (const int32_t*) address;
|
355 |
+
return (psimd_s32) { address_s32[0], address_s32[1], address_s32[2], 0 };
|
356 |
+
}
|
357 |
+
|
358 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load3_u32(const void* address) {
|
359 |
+
const uint32_t* address_u32 = (const uint32_t*) address;
|
360 |
+
return (psimd_u32) { address_u32[0], address_u32[1], address_u32[2], 0 };
|
361 |
+
}
|
362 |
+
|
363 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load3_f32(const void* address) {
|
364 |
+
const float* address_f32 = (const float*) address;
|
365 |
+
return (psimd_f32) { address_f32[0], address_f32[1], address_f32[2], 0.0f };
|
366 |
+
}
|
367 |
+
|
368 |
+
PSIMD_INTRINSIC psimd_s32 psimd_load4_s32(const void* address) {
|
369 |
+
return psimd_load_s32(address);
|
370 |
+
}
|
371 |
+
|
372 |
+
PSIMD_INTRINSIC psimd_u32 psimd_load4_u32(const void* address) {
|
373 |
+
return psimd_load_u32(address);
|
374 |
+
}
|
375 |
+
|
376 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load4_f32(const void* address) {
|
377 |
+
return psimd_load_f32(address);
|
378 |
+
}
|
379 |
+
|
380 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load_stride2_f32(const void* address) {
|
381 |
+
const psimd_f32 v0x1x = psimd_load_f32(address);
|
382 |
+
const psimd_f32 vx2x3 = psimd_load_f32((const float*) address + 3);
|
383 |
+
#if defined(__clang__)
|
384 |
+
return __builtin_shufflevector(v0x1x, vx2x3, 0, 2, 5, 7);
|
385 |
+
#else
|
386 |
+
return __builtin_shuffle(v0x1x, vx2x3, (psimd_s32) { 0, 2, 5, 7 });
|
387 |
+
#endif
|
388 |
+
}
|
389 |
+
|
390 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load1_stride2_f32(const void* address) {
|
391 |
+
return psimd_load_f32(address);
|
392 |
+
}
|
393 |
+
|
394 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load2_stride2_f32(const void* address) {
|
395 |
+
const float* address_f32 = (const float*) address;
|
396 |
+
return (psimd_f32) { address_f32[0], address_f32[2], 0.0f, 0.0f };
|
397 |
+
}
|
398 |
+
|
399 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load3_stride2_f32(const void* address) {
|
400 |
+
const psimd_f32 v0x1x = psimd_load_f32(address);
|
401 |
+
const psimd_f32 v2zzz = psimd_load1_f32((const float*) address + 2);
|
402 |
+
#if defined(__clang__)
|
403 |
+
return __builtin_shufflevector(v0x1x, v2zzz, 0, 2, 4, 6);
|
404 |
+
#else
|
405 |
+
return __builtin_shuffle(v0x1x, v2zzz, (psimd_s32) { 0, 2, 4, 6 });
|
406 |
+
#endif
|
407 |
+
}
|
408 |
+
|
409 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load4_stride2_f32(const void* address) {
|
410 |
+
return psimd_load_stride2_f32(address);
|
411 |
+
}
|
412 |
+
|
413 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load_stride_f32(const void* address, size_t stride) {
|
414 |
+
const float* address0_f32 = (const float*) address;
|
415 |
+
const float* address1_f32 = address0_f32 + stride;
|
416 |
+
const float* address2_f32 = address1_f32 + stride;
|
417 |
+
const float* address3_f32 = address2_f32 + stride;
|
418 |
+
return (psimd_f32) { *address0_f32, *address1_f32, *address2_f32, *address3_f32 };
|
419 |
+
}
|
420 |
+
|
421 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load1_stride_f32(const void* address, size_t stride) {
|
422 |
+
return psimd_load1_f32(address);
|
423 |
+
}
|
424 |
+
|
425 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load2_stride_f32(const void* address, size_t stride) {
|
426 |
+
const float* address_f32 = (const float*) address;
|
427 |
+
return (psimd_f32) { address_f32[0], address_f32[stride], 0.0f, 0.0f };
|
428 |
+
}
|
429 |
+
|
430 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load3_stride_f32(const void* address, size_t stride) {
|
431 |
+
const float* address0_f32 = (const float*) address;
|
432 |
+
const float* address1_f32 = address0_f32 + stride;
|
433 |
+
const float* address2_f32 = address1_f32 + stride;
|
434 |
+
return (psimd_f32) { *address0_f32, *address1_f32, *address2_f32, 0.0f };
|
435 |
+
}
|
436 |
+
|
437 |
+
PSIMD_INTRINSIC psimd_f32 psimd_load4_stride_f32(const void* address, size_t stride) {
|
438 |
+
return psimd_load_stride_f32(address, stride);
|
439 |
+
}
|
440 |
+
|
441 |
+
/* Store vector */
|
442 |
+
PSIMD_INTRINSIC void psimd_store_s8(void* address, psimd_s8 value) {
|
443 |
+
*((psimd_s8*) address) = value;
|
444 |
+
}
|
445 |
+
|
446 |
+
PSIMD_INTRINSIC void psimd_store_u8(void* address, psimd_u8 value) {
|
447 |
+
*((psimd_u8*) address) = value;
|
448 |
+
}
|
449 |
+
|
450 |
+
PSIMD_INTRINSIC void psimd_store_s16(void* address, psimd_s16 value) {
|
451 |
+
*((psimd_s16*) address) = value;
|
452 |
+
}
|
453 |
+
|
454 |
+
PSIMD_INTRINSIC void psimd_store_u16(void* address, psimd_u16 value) {
|
455 |
+
*((psimd_u16*) address) = value;
|
456 |
+
}
|
457 |
+
|
458 |
+
PSIMD_INTRINSIC void psimd_store_s32(void* address, psimd_s32 value) {
|
459 |
+
*((psimd_s32*) address) = value;
|
460 |
+
}
|
461 |
+
|
462 |
+
PSIMD_INTRINSIC void psimd_store_u32(void* address, psimd_u32 value) {
|
463 |
+
*((psimd_u32*) address) = value;
|
464 |
+
}
|
465 |
+
|
466 |
+
PSIMD_INTRINSIC void psimd_store_f32(void* address, psimd_f32 value) {
|
467 |
+
*((psimd_f32*) address) = value;
|
468 |
+
}
|
469 |
+
|
470 |
+
PSIMD_INTRINSIC void psimd_store1_s32(void* address, psimd_s32 value) {
|
471 |
+
*((int32_t*) address) = value[0];
|
472 |
+
}
|
473 |
+
|
474 |
+
PSIMD_INTRINSIC void psimd_store1_u32(void* address, psimd_u32 value) {
|
475 |
+
*((uint32_t*) address) = value[0];
|
476 |
+
}
|
477 |
+
|
478 |
+
PSIMD_INTRINSIC void psimd_store1_f32(void* address, psimd_f32 value) {
|
479 |
+
*((float*) address) = value[0];
|
480 |
+
}
|
481 |
+
|
482 |
+
PSIMD_INTRINSIC void psimd_store2_s32(void* address, psimd_s32 value) {
|
483 |
+
int32_t* address_s32 = (int32_t*) address;
|
484 |
+
address_s32[0] = value[0];
|
485 |
+
address_s32[1] = value[1];
|
486 |
+
}
|
487 |
+
|
488 |
+
PSIMD_INTRINSIC void psimd_store2_u32(void* address, psimd_u32 value) {
|
489 |
+
uint32_t* address_u32 = (uint32_t*) address;
|
490 |
+
address_u32[0] = value[0];
|
491 |
+
address_u32[1] = value[1];
|
492 |
+
}
|
493 |
+
|
494 |
+
PSIMD_INTRINSIC void psimd_store2_f32(void* address, psimd_f32 value) {
|
495 |
+
float* address_f32 = (float*) address;
|
496 |
+
address_f32[0] = value[0];
|
497 |
+
address_f32[1] = value[1];
|
498 |
+
}
|
499 |
+
|
500 |
+
PSIMD_INTRINSIC void psimd_store3_s32(void* address, psimd_s32 value) {
|
501 |
+
int32_t* address_s32 = (int32_t*) address;
|
502 |
+
address_s32[0] = value[0];
|
503 |
+
address_s32[1] = value[1];
|
504 |
+
address_s32[2] = value[2];
|
505 |
+
}
|
506 |
+
|
507 |
+
PSIMD_INTRINSIC void psimd_store3_u32(void* address, psimd_u32 value) {
|
508 |
+
uint32_t* address_u32 = (uint32_t*) address;
|
509 |
+
address_u32[0] = value[0];
|
510 |
+
address_u32[1] = value[1];
|
511 |
+
address_u32[2] = value[2];
|
512 |
+
}
|
513 |
+
|
514 |
+
PSIMD_INTRINSIC void psimd_store3_f32(void* address, psimd_f32 value) {
|
515 |
+
float* address_f32 = (float*) address;
|
516 |
+
address_f32[0] = value[0];
|
517 |
+
address_f32[1] = value[1];
|
518 |
+
address_f32[2] = value[2];
|
519 |
+
}
|
520 |
+
|
521 |
+
PSIMD_INTRINSIC void psimd_store4_s32(void* address, psimd_s32 value) {
|
522 |
+
psimd_store_s32(address, value);
|
523 |
+
}
|
524 |
+
|
525 |
+
PSIMD_INTRINSIC void psimd_store4_u32(void* address, psimd_u32 value) {
|
526 |
+
psimd_store_u32(address, value);
|
527 |
+
}
|
528 |
+
|
529 |
+
PSIMD_INTRINSIC void psimd_store4_f32(void* address, psimd_f32 value) {
|
530 |
+
psimd_store_f32(address, value);
|
531 |
+
}
|
532 |
+
|
533 |
+
PSIMD_INTRINSIC void psimd_store_stride_f32(void* address, size_t stride, psimd_f32 value) {
|
534 |
+
float* address0_f32 = (float*) address;
|
535 |
+
float* address1_f32 = address0_f32 + stride;
|
536 |
+
float* address2_f32 = address1_f32 + stride;
|
537 |
+
float* address3_f32 = address2_f32 + stride;
|
538 |
+
*address0_f32 = value[0];
|
539 |
+
*address1_f32 = value[1];
|
540 |
+
*address2_f32 = value[2];
|
541 |
+
*address3_f32 = value[3];
|
542 |
+
}
|
543 |
+
|
544 |
+
PSIMD_INTRINSIC void psimd_store1_stride_f32(void* address, size_t stride, psimd_f32 value) {
|
545 |
+
psimd_store1_f32(address, value);
|
546 |
+
}
|
547 |
+
|
548 |
+
PSIMD_INTRINSIC void psimd_store2_stride_f32(void* address, size_t stride, psimd_f32 value) {
|
549 |
+
float* address_f32 = (float*) address;
|
550 |
+
address_f32[0] = value[0];
|
551 |
+
address_f32[stride] = value[1];
|
552 |
+
}
|
553 |
+
|
554 |
+
PSIMD_INTRINSIC void psimd_store3_stride_f32(void* address, size_t stride, psimd_f32 value) {
|
555 |
+
float* address0_f32 = (float*) address;
|
556 |
+
float* address1_f32 = address0_f32 + stride;
|
557 |
+
float* address2_f32 = address1_f32 + stride;
|
558 |
+
*address0_f32 = value[0];
|
559 |
+
*address1_f32 = value[1];
|
560 |
+
*address2_f32 = value[2];
|
561 |
+
}
|
562 |
+
|
563 |
+
/* Vector addition */
|
564 |
+
PSIMD_INTRINSIC psimd_s8 psimd_add_s8(psimd_s8 a, psimd_s8 b) {
|
565 |
+
return a + b;
|
566 |
+
}
|
567 |
+
|
568 |
+
PSIMD_INTRINSIC psimd_u8 psimd_add_u8(psimd_u8 a, psimd_u8 b) {
|
569 |
+
return a + b;
|
570 |
+
}
|
571 |
+
|
572 |
+
PSIMD_INTRINSIC psimd_s16 psimd_add_s16(psimd_s16 a, psimd_s16 b) {
|
573 |
+
return a + b;
|
574 |
+
}
|
575 |
+
|
576 |
+
PSIMD_INTRINSIC psimd_u16 psimd_add_u16(psimd_u16 a, psimd_u16 b) {
|
577 |
+
return a + b;
|
578 |
+
}
|
579 |
+
|
580 |
+
PSIMD_INTRINSIC psimd_s32 psimd_add_s32(psimd_s32 a, psimd_s32 b) {
|
581 |
+
return a + b;
|
582 |
+
}
|
583 |
+
|
584 |
+
PSIMD_INTRINSIC psimd_u32 psimd_add_u32(psimd_u32 a, psimd_u32 b) {
|
585 |
+
return a + b;
|
586 |
+
}
|
587 |
+
|
588 |
+
PSIMD_INTRINSIC psimd_f32 psimd_add_f32(psimd_f32 a, psimd_f32 b) {
|
589 |
+
#if defined(__ARM_ARCH_7A__) && defined(__ARM_NEON__) && !defined(__FAST_MATH__)
|
590 |
+
return (psimd_f32) vaddq_f32((float32x4_t) a, (float32x4_t) b);
|
591 |
+
#else
|
592 |
+
return a + b;
|
593 |
+
#endif
|
594 |
+
}
|
595 |
+
|
596 |
+
/* Vector subtraction */
|
597 |
+
PSIMD_INTRINSIC psimd_s8 psimd_sub_s8(psimd_s8 a, psimd_s8 b) {
|
598 |
+
return a - b;
|
599 |
+
}
|
600 |
+
|
601 |
+
PSIMD_INTRINSIC psimd_u8 psimd_sub_u8(psimd_u8 a, psimd_u8 b) {
|
602 |
+
return a - b;
|
603 |
+
}
|
604 |
+
|
605 |
+
PSIMD_INTRINSIC psimd_s16 psimd_sub_s16(psimd_s16 a, psimd_s16 b) {
|
606 |
+
return a - b;
|
607 |
+
}
|
608 |
+
|
609 |
+
PSIMD_INTRINSIC psimd_u16 psimd_sub_u16(psimd_u16 a, psimd_u16 b) {
|
610 |
+
return a - b;
|
611 |
+
}
|
612 |
+
|
613 |
+
PSIMD_INTRINSIC psimd_s32 psimd_sub_s32(psimd_s32 a, psimd_s32 b) {
|
614 |
+
return a - b;
|
615 |
+
}
|
616 |
+
|
617 |
+
PSIMD_INTRINSIC psimd_u32 psimd_sub_u32(psimd_u32 a, psimd_u32 b) {
|
618 |
+
return a - b;
|
619 |
+
}
|
620 |
+
|
621 |
+
PSIMD_INTRINSIC psimd_f32 psimd_sub_f32(psimd_f32 a, psimd_f32 b) {
|
622 |
+
#if defined(__ARM_ARCH_7A__) && defined(__ARM_NEON__) && !defined(__FAST_MATH__)
|
623 |
+
return (psimd_f32) vsubq_f32((float32x4_t) a, (float32x4_t) b);
|
624 |
+
#else
|
625 |
+
return a - b;
|
626 |
+
#endif
|
627 |
+
}
|
628 |
+
|
629 |
+
/* Vector multiplication */
|
630 |
+
PSIMD_INTRINSIC psimd_s8 psimd_mul_s8(psimd_s8 a, psimd_s8 b) {
|
631 |
+
return a * b;
|
632 |
+
}
|
633 |
+
|
634 |
+
PSIMD_INTRINSIC psimd_u8 psimd_mul_u8(psimd_u8 a, psimd_u8 b) {
|
635 |
+
return a * b;
|
636 |
+
}
|
637 |
+
|
638 |
+
PSIMD_INTRINSIC psimd_s16 psimd_mul_s16(psimd_s16 a, psimd_s16 b) {
|
639 |
+
return a * b;
|
640 |
+
}
|
641 |
+
|
642 |
+
PSIMD_INTRINSIC psimd_u16 psimd_mul_u16(psimd_u16 a, psimd_u16 b) {
|
643 |
+
return a * b;
|
644 |
+
}
|
645 |
+
|
646 |
+
PSIMD_INTRINSIC psimd_s32 psimd_mul_s32(psimd_s32 a, psimd_s32 b) {
|
647 |
+
return a * b;
|
648 |
+
}
|
649 |
+
|
650 |
+
PSIMD_INTRINSIC psimd_u32 psimd_mul_u32(psimd_u32 a, psimd_u32 b) {
|
651 |
+
return a * b;
|
652 |
+
}
|
653 |
+
|
654 |
+
PSIMD_INTRINSIC psimd_f32 psimd_mul_f32(psimd_f32 a, psimd_f32 b) {
|
655 |
+
#if defined(__ARM_ARCH_7A__) && defined(__ARM_NEON__) && !defined(__FAST_MATH__)
|
656 |
+
return (psimd_f32) vmulq_f32((float32x4_t) a, (float32x4_t) b);
|
657 |
+
#else
|
658 |
+
return a * b;
|
659 |
+
#endif
|
660 |
+
}
|
661 |
+
|
662 |
+
/* Quasi-Fused Multiply-Add */
|
663 |
+
PSIMD_INTRINSIC psimd_f32 psimd_qfma_f32(psimd_f32 a, psimd_f32 b, psimd_f32 c) {
|
664 |
+
#if defined(__aarch64__) || defined(__ARM_NEON__) && defined(__ARM_FEATURE_FMA)
|
665 |
+
return (psimd_f32) vfmaq_f32((float32x4_t) a, (float32x4_t) b, (float32x4_t) c);
|
666 |
+
#elif (defined(__x86_64__) || defined(__i386__) || defined(__i686__)) && defined(__FMA__)
|
667 |
+
return (psimd_f32) _mm_fmadd_ps((__m128) b, (__m128) c, (__m128) a);
|
668 |
+
#elif (defined(__x86_64__) || defined(__i386__) || defined(__i686__)) && defined(__FMA4__)
|
669 |
+
return (psimd_f32) _mm_macc_ps((__m128) b, (__m128) c, (__m128) a);
|
670 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__) && PSIMD_ENABLE_WASM_QFMA
|
671 |
+
return (psimd_f32) __builtin_wasm_qfma_f32x4(a, b, c);
|
672 |
+
#else
|
673 |
+
return a + b * c;
|
674 |
+
#endif
|
675 |
+
}
|
676 |
+
|
677 |
+
PSIMD_INTRINSIC psimd_f32 psimd_div_f32(psimd_f32 a, psimd_f32 b) {
|
678 |
+
return a / b;
|
679 |
+
}
|
680 |
+
|
681 |
+
/* Vector and */
|
682 |
+
PSIMD_INTRINSIC psimd_f32 psimd_andmask_f32(psimd_s32 mask, psimd_f32 v) {
|
683 |
+
return (psimd_f32) (mask & (psimd_s32) v);
|
684 |
+
}
|
685 |
+
|
686 |
+
/* Vector and-not */
|
687 |
+
PSIMD_INTRINSIC psimd_f32 psimd_andnotmask_f32(psimd_s32 mask, psimd_f32 v) {
|
688 |
+
return (psimd_f32) (~mask & (psimd_s32) v);
|
689 |
+
}
|
690 |
+
|
691 |
+
/* Vector blend */
|
692 |
+
PSIMD_INTRINSIC psimd_s8 psimd_blend_s8(psimd_s8 mask, psimd_s8 a, psimd_s8 b) {
|
693 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
694 |
+
return (psimd_s8) vbslq_s8((uint8x16_t) mask, (int8x16_t) a, (int8x16_t) b);
|
695 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
696 |
+
return (psimd_s8) __builtin_wasm_bitselect(a, b, mask);
|
697 |
+
#else
|
698 |
+
return (mask & a) | (~mask & b);
|
699 |
+
#endif
|
700 |
+
}
|
701 |
+
|
702 |
+
PSIMD_INTRINSIC psimd_u8 psimd_blend_u8(psimd_s8 mask, psimd_u8 a, psimd_u8 b) {
|
703 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
704 |
+
return (psimd_u8) vbslq_u8((uint8x16_t) mask, (uint8x16_t) a, (uint8x16_t) b);
|
705 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
706 |
+
return (psimd_u8) __builtin_wasm_bitselect(a, b, mask);
|
707 |
+
#else
|
708 |
+
return (psimd_u8) ((mask & (psimd_s8) a) | (~mask & (psimd_s8) b));
|
709 |
+
#endif
|
710 |
+
}
|
711 |
+
|
712 |
+
PSIMD_INTRINSIC psimd_s16 psimd_blend_s16(psimd_s16 mask, psimd_s16 a, psimd_s16 b) {
|
713 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
714 |
+
return (psimd_s16) vbslq_s16((uint16x8_t) mask, (int16x8_t) a, (int16x8_t) b);
|
715 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
716 |
+
return (psimd_s16) __builtin_wasm_bitselect(a, b, mask);
|
717 |
+
#else
|
718 |
+
return (mask & a) | (~mask & b);
|
719 |
+
#endif
|
720 |
+
}
|
721 |
+
|
722 |
+
PSIMD_INTRINSIC psimd_u16 psimd_blend_u16(psimd_s16 mask, psimd_u16 a, psimd_u16 b) {
|
723 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
724 |
+
return (psimd_u16) vbslq_u16((uint16x8_t) mask, (uint16x8_t) a, (uint16x8_t) b);
|
725 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
726 |
+
return (psimd_u16) __builtin_wasm_bitselect(a, b, mask);
|
727 |
+
#else
|
728 |
+
return (psimd_u16) ((mask & (psimd_s16) a) | (~mask & (psimd_s16) b));
|
729 |
+
#endif
|
730 |
+
}
|
731 |
+
|
732 |
+
PSIMD_INTRINSIC psimd_s32 psimd_blend_s32(psimd_s32 mask, psimd_s32 a, psimd_s32 b) {
|
733 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
734 |
+
return (psimd_s32) vbslq_s32((uint32x4_t) mask, (int32x4_t) a, (int32x4_t) b);
|
735 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
736 |
+
return (psimd_s32) __builtin_wasm_bitselect(a, b, mask);
|
737 |
+
#else
|
738 |
+
return (mask & a) | (~mask & b);
|
739 |
+
#endif
|
740 |
+
}
|
741 |
+
|
742 |
+
PSIMD_INTRINSIC psimd_u32 psimd_blend_u32(psimd_s32 mask, psimd_u32 a, psimd_u32 b) {
|
743 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
744 |
+
return (psimd_u32) vbslq_u32((uint32x4_t) mask, (uint32x4_t) a, (uint32x4_t) b);
|
745 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
746 |
+
return (psimd_u32) __builtin_wasm_bitselect(a, b, mask);
|
747 |
+
#else
|
748 |
+
return (psimd_u32) ((mask & (psimd_s32) a) | (~mask & (psimd_s32) b));
|
749 |
+
#endif
|
750 |
+
}
|
751 |
+
|
752 |
+
PSIMD_INTRINSIC psimd_f32 psimd_blend_f32(psimd_s32 mask, psimd_f32 a, psimd_f32 b) {
|
753 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
754 |
+
return (psimd_f32) vbslq_f32((uint32x4_t) mask, (float32x4_t) a, (float32x4_t) b);
|
755 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
756 |
+
return (psimd_f32) __builtin_wasm_bitselect(a, b, mask);
|
757 |
+
#else
|
758 |
+
return (psimd_f32) ((mask & (psimd_s32) a) | (~mask & (psimd_s32) b));
|
759 |
+
#endif
|
760 |
+
}
|
761 |
+
|
762 |
+
/* Vector blend on sign */
|
763 |
+
PSIMD_INTRINSIC psimd_s8 psimd_signblend_s8(psimd_s8 x, psimd_s8 a, psimd_s8 b) {
|
764 |
+
return psimd_blend_s8(x >> psimd_splat_s8(7), a, b);
|
765 |
+
}
|
766 |
+
|
767 |
+
PSIMD_INTRINSIC psimd_u8 psimd_signblend_u8(psimd_s8 x, psimd_u8 a, psimd_u8 b) {
|
768 |
+
return psimd_blend_u8((x >> psimd_splat_s8(7)), a, b);
|
769 |
+
}
|
770 |
+
|
771 |
+
PSIMD_INTRINSIC psimd_s16 psimd_signblend_s16(psimd_s16 x, psimd_s16 a, psimd_s16 b) {
|
772 |
+
return psimd_blend_s16(x >> psimd_splat_s16(15), a, b);
|
773 |
+
}
|
774 |
+
|
775 |
+
PSIMD_INTRINSIC psimd_u16 psimd_signblend_u16(psimd_s16 x, psimd_u16 a, psimd_u16 b) {
|
776 |
+
return psimd_blend_u16((x >> psimd_splat_s16(15)), a, b);
|
777 |
+
}
|
778 |
+
|
779 |
+
PSIMD_INTRINSIC psimd_s32 psimd_signblend_s32(psimd_s32 x, psimd_s32 a, psimd_s32 b) {
|
780 |
+
return psimd_blend_s32(x >> psimd_splat_s32(31), a, b);
|
781 |
+
}
|
782 |
+
|
783 |
+
PSIMD_INTRINSIC psimd_u32 psimd_signblend_u32(psimd_s32 x, psimd_u32 a, psimd_u32 b) {
|
784 |
+
return psimd_blend_u32((x >> psimd_splat_s32(31)), a, b);
|
785 |
+
}
|
786 |
+
|
787 |
+
PSIMD_INTRINSIC psimd_f32 psimd_signblend_f32(psimd_f32 x, psimd_f32 a, psimd_f32 b) {
|
788 |
+
const psimd_s32 mask = (psimd_s32) x >> psimd_splat_s32(31);
|
789 |
+
return psimd_blend_f32(mask, a, b);
|
790 |
+
}
|
791 |
+
|
792 |
+
/* Vector absolute value */
|
793 |
+
PSIMD_INTRINSIC psimd_f32 psimd_abs_f32(psimd_f32 v) {
|
794 |
+
const psimd_s32 mask = (psimd_s32) psimd_splat_f32(-0.0f);
|
795 |
+
return (psimd_f32) ((psimd_s32) v & ~mask);
|
796 |
+
}
|
797 |
+
|
798 |
+
/* Vector negation */
|
799 |
+
PSIMD_INTRINSIC psimd_f32 psimd_neg_f32(psimd_f32 v) {
|
800 |
+
const psimd_s32 mask = (psimd_s32) psimd_splat_f32(-0.0f);
|
801 |
+
return (psimd_f32) ((psimd_s32) v ^ mask);
|
802 |
+
}
|
803 |
+
|
804 |
+
/* Vector maximum */
|
805 |
+
PSIMD_INTRINSIC psimd_s8 psimd_max_s8(psimd_s8 a, psimd_s8 b) {
|
806 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
807 |
+
return (psimd_s8) vmaxq_s8((int8x16_t) a, (int8x16_t) b);
|
808 |
+
#else
|
809 |
+
return psimd_blend_s8(a > b, a, b);
|
810 |
+
#endif
|
811 |
+
}
|
812 |
+
|
813 |
+
PSIMD_INTRINSIC psimd_u8 psimd_max_u8(psimd_u8 a, psimd_u8 b) {
|
814 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
815 |
+
return (psimd_u8) vmaxq_u8((uint8x16_t) a, (uint8x16_t) b);
|
816 |
+
#else
|
817 |
+
return psimd_blend_u8(a > b, a, b);
|
818 |
+
#endif
|
819 |
+
}
|
820 |
+
|
821 |
+
PSIMD_INTRINSIC psimd_s16 psimd_max_s16(psimd_s16 a, psimd_s16 b) {
|
822 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
823 |
+
return (psimd_s16) vmaxq_s16((int16x8_t) a, (int16x8_t) b);
|
824 |
+
#else
|
825 |
+
return psimd_blend_s16(a > b, a, b);
|
826 |
+
#endif
|
827 |
+
}
|
828 |
+
|
829 |
+
PSIMD_INTRINSIC psimd_u16 psimd_max_u16(psimd_u16 a, psimd_u16 b) {
|
830 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
831 |
+
return (psimd_u16) vmaxq_u16((uint16x8_t) a, (uint16x8_t) b);
|
832 |
+
#else
|
833 |
+
return psimd_blend_u16(a > b, a, b);
|
834 |
+
#endif
|
835 |
+
}
|
836 |
+
|
837 |
+
PSIMD_INTRINSIC psimd_s32 psimd_max_s32(psimd_s32 a, psimd_s32 b) {
|
838 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
839 |
+
return (psimd_s32) vmaxq_s32((int32x4_t) a, (int32x4_t) b);
|
840 |
+
#else
|
841 |
+
return psimd_blend_s32(a > b, a, b);
|
842 |
+
#endif
|
843 |
+
}
|
844 |
+
|
845 |
+
PSIMD_INTRINSIC psimd_u32 psimd_max_u32(psimd_u32 a, psimd_u32 b) {
|
846 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
847 |
+
return (psimd_u32) vmaxq_u32((uint32x4_t) a, (uint32x4_t) b);
|
848 |
+
#else
|
849 |
+
return psimd_blend_u32(a > b, a, b);
|
850 |
+
#endif
|
851 |
+
}
|
852 |
+
|
853 |
+
PSIMD_INTRINSIC psimd_f32 psimd_max_f32(psimd_f32 a, psimd_f32 b) {
|
854 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
855 |
+
return (psimd_f32) vmaxq_f32((float32x4_t) a, (float32x4_t) b);
|
856 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
857 |
+
return __builtin_wasm_max_f32x4(a, b);
|
858 |
+
#else
|
859 |
+
return psimd_blend_f32(a > b, a, b);
|
860 |
+
#endif
|
861 |
+
}
|
862 |
+
|
863 |
+
/* Vector minimum */
|
864 |
+
PSIMD_INTRINSIC psimd_s8 psimd_min_s8(psimd_s8 a, psimd_s8 b) {
|
865 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
866 |
+
return (psimd_s8) vminq_s8((int8x16_t) a, (int8x16_t) b);
|
867 |
+
#else
|
868 |
+
return psimd_blend_s8(a < b, a, b);
|
869 |
+
#endif
|
870 |
+
}
|
871 |
+
|
872 |
+
PSIMD_INTRINSIC psimd_u8 psimd_min_u8(psimd_u8 a, psimd_u8 b) {
|
873 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
874 |
+
return (psimd_u8) vminq_u8((uint8x16_t) a, (uint8x16_t) b);
|
875 |
+
#else
|
876 |
+
return psimd_blend_u8(a < b, a, b);
|
877 |
+
#endif
|
878 |
+
}
|
879 |
+
|
880 |
+
PSIMD_INTRINSIC psimd_s16 psimd_min_s16(psimd_s16 a, psimd_s16 b) {
|
881 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
882 |
+
return (psimd_s16) vminq_s16((int16x8_t) a, (int16x8_t) b);
|
883 |
+
#else
|
884 |
+
return psimd_blend_s16(a < b, a, b);
|
885 |
+
#endif
|
886 |
+
}
|
887 |
+
|
888 |
+
PSIMD_INTRINSIC psimd_u16 psimd_min_u16(psimd_u16 a, psimd_u16 b) {
|
889 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
890 |
+
return (psimd_u16) vminq_u16((uint16x8_t) a, (uint16x8_t) b);
|
891 |
+
#else
|
892 |
+
return psimd_blend_u16(a < b, a, b);
|
893 |
+
#endif
|
894 |
+
}
|
895 |
+
|
896 |
+
PSIMD_INTRINSIC psimd_s32 psimd_min_s32(psimd_s32 a, psimd_s32 b) {
|
897 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
898 |
+
return (psimd_s32) vminq_s32((int32x4_t) a, (int32x4_t) b);
|
899 |
+
#else
|
900 |
+
return psimd_blend_s32(a < b, a, b);
|
901 |
+
#endif
|
902 |
+
}
|
903 |
+
|
904 |
+
PSIMD_INTRINSIC psimd_u32 psimd_min_u32(psimd_u32 a, psimd_u32 b) {
|
905 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
906 |
+
return (psimd_u32) vminq_u32((uint32x4_t) a, (uint32x4_t) b);
|
907 |
+
#else
|
908 |
+
return psimd_blend_u32(a < b, a, b);
|
909 |
+
#endif
|
910 |
+
}
|
911 |
+
|
912 |
+
PSIMD_INTRINSIC psimd_f32 psimd_min_f32(psimd_f32 a, psimd_f32 b) {
|
913 |
+
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
914 |
+
return (psimd_f32) vminq_f32((float32x4_t) a, (float32x4_t) b);
|
915 |
+
#elif defined(__wasm__) && defined(__wasm_simd128__) && defined(__clang__)
|
916 |
+
return __builtin_wasm_min_f32x4(a, b);
|
917 |
+
#else
|
918 |
+
return psimd_blend_f32(a < b, a, b);
|
919 |
+
#endif
|
920 |
+
}
|
921 |
+
|
922 |
+
PSIMD_INTRINSIC psimd_f32 psimd_cvt_s32_f32(psimd_s32 v) {
|
923 |
+
#if defined(__clang__)
|
924 |
+
return __builtin_convertvector(v, psimd_f32);
|
925 |
+
#elif defined(__ARM_NEON__) || defined(__ARM_NEON)
|
926 |
+
return (psimd_f32) vcvtq_f32_s32((int32x4_t) v);
|
927 |
+
#elif defined(__SSE2__)
|
928 |
+
return (psimd_f32) _mm_cvtepi32_ps((__m128i) v);
|
929 |
+
#else
|
930 |
+
return (psimd_f32) { (float) v[0], (float) v[1], (float) v[2], (float) v[3] };
|
931 |
+
#endif
|
932 |
+
}
|
933 |
+
|
934 |
+
/* Broadcast vector element */
|
935 |
+
#if defined(__clang__)
|
936 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat0_f32(psimd_f32 v) {
|
937 |
+
return __builtin_shufflevector(v, v, 0, 0, 0, 0);
|
938 |
+
}
|
939 |
+
|
940 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat1_f32(psimd_f32 v) {
|
941 |
+
return __builtin_shufflevector(v, v, 1, 1, 1, 1);
|
942 |
+
}
|
943 |
+
|
944 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat2_f32(psimd_f32 v) {
|
945 |
+
return __builtin_shufflevector(v, v, 2, 2, 2, 2);
|
946 |
+
}
|
947 |
+
|
948 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat3_f32(psimd_f32 v) {
|
949 |
+
return __builtin_shufflevector(v, v, 3, 3, 3, 3);
|
950 |
+
}
|
951 |
+
#else
|
952 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat0_f32(psimd_f32 v) {
|
953 |
+
return __builtin_shuffle(v, (psimd_s32) { 0, 0, 0, 0 });
|
954 |
+
}
|
955 |
+
|
956 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat1_f32(psimd_f32 v) {
|
957 |
+
return __builtin_shuffle(v, (psimd_s32) { 1, 1, 1, 1 });
|
958 |
+
}
|
959 |
+
|
960 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat2_f32(psimd_f32 v) {
|
961 |
+
return __builtin_shuffle(v, (psimd_s32) { 2, 2, 2, 2 });
|
962 |
+
}
|
963 |
+
|
964 |
+
PSIMD_INTRINSIC psimd_f32 psimd_splat3_f32(psimd_f32 v) {
|
965 |
+
return __builtin_shuffle(v, (psimd_s32) { 3, 3, 3, 3 });
|
966 |
+
}
|
967 |
+
#endif
|
968 |
+
|
969 |
+
/* Reversal of vector elements */
|
970 |
+
#if defined(__clang__)
|
971 |
+
PSIMD_INTRINSIC psimd_s8 psimd_reverse_s8(psimd_s8 v) {
|
972 |
+
return __builtin_shufflevector(v, v, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
|
973 |
+
}
|
974 |
+
|
975 |
+
PSIMD_INTRINSIC psimd_u8 psimd_reverse_u8(psimd_u8 v) {
|
976 |
+
return __builtin_shufflevector(v, v, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
|
977 |
+
}
|
978 |
+
|
979 |
+
PSIMD_INTRINSIC psimd_s16 psimd_reverse_s16(psimd_s16 v) {
|
980 |
+
return __builtin_shufflevector(v, v, 7, 6, 5, 4, 3, 2, 1, 0);
|
981 |
+
}
|
982 |
+
|
983 |
+
PSIMD_INTRINSIC psimd_u16 psimd_reverse_u16(psimd_u16 v) {
|
984 |
+
return __builtin_shufflevector(v, v, 7, 6, 5, 4, 3, 2, 1, 0);
|
985 |
+
}
|
986 |
+
|
987 |
+
PSIMD_INTRINSIC psimd_s32 psimd_reverse_s32(psimd_s32 v) {
|
988 |
+
return __builtin_shufflevector(v, v, 3, 2, 1, 0);
|
989 |
+
}
|
990 |
+
|
991 |
+
PSIMD_INTRINSIC psimd_u32 psimd_reverse_u32(psimd_u32 v) {
|
992 |
+
return __builtin_shufflevector(v, v, 3, 2, 1, 0);
|
993 |
+
}
|
994 |
+
|
995 |
+
PSIMD_INTRINSIC psimd_f32 psimd_reverse_f32(psimd_f32 v) {
|
996 |
+
return __builtin_shufflevector(v, v, 3, 2, 1, 0);
|
997 |
+
}
|
998 |
+
#else
|
999 |
+
PSIMD_INTRINSIC psimd_s8 psimd_reverse_s8(psimd_s8 v) {
|
1000 |
+
return __builtin_shuffle(v, (psimd_s8) { 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 });
|
1001 |
+
}
|
1002 |
+
|
1003 |
+
PSIMD_INTRINSIC psimd_u8 psimd_reverse_u8(psimd_u8 v) {
|
1004 |
+
return __builtin_shuffle(v, (psimd_s8) { 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 });
|
1005 |
+
}
|
1006 |
+
|
1007 |
+
PSIMD_INTRINSIC psimd_s16 psimd_reverse_s16(psimd_s16 v) {
|
1008 |
+
return __builtin_shuffle(v, (psimd_s16) { 7, 6, 5, 4, 3, 2, 1, 0 });
|
1009 |
+
}
|
1010 |
+
|
1011 |
+
PSIMD_INTRINSIC psimd_u16 psimd_reverse_u16(psimd_u16 v) {
|
1012 |
+
return __builtin_shuffle(v, (psimd_s16) { 7, 6, 5, 4, 3, 2, 1, 0 });
|
1013 |
+
}
|
1014 |
+
|
1015 |
+
PSIMD_INTRINSIC psimd_s32 psimd_reverse_s32(psimd_s32 v) {
|
1016 |
+
return __builtin_shuffle(v, (psimd_s32) { 3, 2, 1, 0 });
|
1017 |
+
}
|
1018 |
+
|
1019 |
+
PSIMD_INTRINSIC psimd_u32 psimd_reverse_u32(psimd_u32 v) {
|
1020 |
+
return __builtin_shuffle(v, (psimd_s32) { 3, 2, 1, 0 });
|
1021 |
+
}
|
1022 |
+
|
1023 |
+
PSIMD_INTRINSIC psimd_f32 psimd_reverse_f32(psimd_f32 v) {
|
1024 |
+
return __builtin_shuffle(v, (psimd_s32) { 3, 2, 1, 0 });
|
1025 |
+
}
|
1026 |
+
#endif
|
1027 |
+
|
1028 |
+
/* Interleaving of vector elements */
|
1029 |
+
#if defined(__clang__)
|
1030 |
+
PSIMD_INTRINSIC psimd_s16 psimd_interleave_lo_s16(psimd_s16 a, psimd_s16 b) {
|
1031 |
+
return __builtin_shufflevector(a, b, 0, 8+0, 1, 8+1, 2, 8+2, 3, 8+3);
|
1032 |
+
}
|
1033 |
+
|
1034 |
+
PSIMD_INTRINSIC psimd_s16 psimd_interleave_hi_s16(psimd_s16 a, psimd_s16 b) {
|
1035 |
+
return __builtin_shufflevector(a, b, 4, 8+4, 5, 8+5, 6, 8+6, 7, 8+7);
|
1036 |
+
}
|
1037 |
+
|
1038 |
+
PSIMD_INTRINSIC psimd_u16 psimd_interleave_lo_u16(psimd_u16 a, psimd_u16 b) {
|
1039 |
+
return __builtin_shufflevector(a, b, 0, 8+0, 1, 8+1, 2, 8+2, 3, 8+3);
|
1040 |
+
}
|
1041 |
+
|
1042 |
+
PSIMD_INTRINSIC psimd_u16 psimd_interleave_hi_u16(psimd_u16 a, psimd_u16 b) {
|
1043 |
+
return __builtin_shufflevector(a, b, 4, 8+4, 5, 8+5, 6, 8+6, 7, 8+7);
|
1044 |
+
}
|
1045 |
+
|
1046 |
+
PSIMD_INTRINSIC psimd_s32 psimd_interleave_lo_s32(psimd_s32 a, psimd_s32 b) {
|
1047 |
+
return __builtin_shufflevector(a, b, 0, 4+0, 1, 4+1);
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
PSIMD_INTRINSIC psimd_s32 psimd_interleave_hi_s32(psimd_s32 a, psimd_s32 b) {
|
1051 |
+
return __builtin_shufflevector(a, b, 2, 4+2, 3, 4+3);
|
1052 |
+
}
|
1053 |
+
|
1054 |
+
PSIMD_INTRINSIC psimd_u32 psimd_interleave_lo_u32(psimd_u32 a, psimd_u32 b) {
|
1055 |
+
return __builtin_shufflevector(a, b, 0, 4+0, 1, 4+1);
|
1056 |
+
}
|
1057 |
+
|
1058 |
+
PSIMD_INTRINSIC psimd_u32 psimd_interleave_hi_u32(psimd_u32 a, psimd_u32 b) {
|
1059 |
+
return __builtin_shufflevector(a, b, 2, 4+2, 3, 4+3);
|
1060 |
+
}
|
1061 |
+
|
1062 |
+
PSIMD_INTRINSIC psimd_f32 psimd_interleave_lo_f32(psimd_f32 a, psimd_f32 b) {
|
1063 |
+
return __builtin_shufflevector(a, b, 0, 4+0, 1, 4+1);
|
1064 |
+
}
|
1065 |
+
|
1066 |
+
PSIMD_INTRINSIC psimd_f32 psimd_interleave_hi_f32(psimd_f32 a, psimd_f32 b) {
|
1067 |
+
return __builtin_shufflevector(a, b, 2, 4+2, 3, 4+3);
|
1068 |
+
}
|
1069 |
+
#else
|
1070 |
+
PSIMD_INTRINSIC psimd_s16 psimd_interleave_lo_s16(psimd_s16 a, psimd_s16 b) {
|
1071 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 8+0, 1, 8+1, 2, 8+2, 3, 8+3 });
|
1072 |
+
}
|
1073 |
+
|
1074 |
+
PSIMD_INTRINSIC psimd_s16 psimd_interleave_hi_s16(psimd_s16 a, psimd_s16 b) {
|
1075 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 4, 8+4, 5, 8+5, 6, 8+6, 7, 8+7 });
|
1076 |
+
}
|
1077 |
+
|
1078 |
+
PSIMD_INTRINSIC psimd_u16 psimd_interleave_lo_u16(psimd_u16 a, psimd_u16 b) {
|
1079 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 8+0, 1, 8+1, 2, 8+2, 3, 8+3 });
|
1080 |
+
}
|
1081 |
+
|
1082 |
+
PSIMD_INTRINSIC psimd_u16 psimd_interleave_hi_u16(psimd_u16 a, psimd_u16 b) {
|
1083 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 4, 8+4, 5, 8+5, 6, 8+6, 7, 8+7 });
|
1084 |
+
}
|
1085 |
+
|
1086 |
+
PSIMD_INTRINSIC psimd_s32 psimd_interleave_lo_s32(psimd_s32 a, psimd_s32 b) {
|
1087 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 4+0, 1, 4+1 });
|
1088 |
+
}
|
1089 |
+
|
1090 |
+
PSIMD_INTRINSIC psimd_s32 psimd_interleave_hi_s32(psimd_s32 a, psimd_s32 b) {
|
1091 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 4+2, 3, 4+3 });
|
1092 |
+
}
|
1093 |
+
|
1094 |
+
PSIMD_INTRINSIC psimd_u32 psimd_interleave_lo_u32(psimd_u32 a, psimd_u32 b) {
|
1095 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 4+0, 1, 4+1 });
|
1096 |
+
}
|
1097 |
+
|
1098 |
+
PSIMD_INTRINSIC psimd_u32 psimd_interleave_hi_u32(psimd_u32 a, psimd_u32 b) {
|
1099 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 4+2, 3, 4+3 });
|
1100 |
+
}
|
1101 |
+
|
1102 |
+
PSIMD_INTRINSIC psimd_f32 psimd_interleave_lo_f32(psimd_f32 a, psimd_f32 b) {
|
1103 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 4+0, 1, 4+1 });
|
1104 |
+
}
|
1105 |
+
|
1106 |
+
PSIMD_INTRINSIC psimd_f32 psimd_interleave_hi_f32(psimd_f32 a, psimd_f32 b) {
|
1107 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 4+2, 3, 4+3 });
|
1108 |
+
}
|
1109 |
+
#endif
|
1110 |
+
|
1111 |
+
/* Concatenation of low/high vector elements */
|
1112 |
+
#if defined(__clang__)
|
1113 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_lo_s16(psimd_s16 a, psimd_s16 b) {
|
1114 |
+
return __builtin_shufflevector(a, b, 0, 1, 2, 3, 8+0, 8+1, 8+2, 8+3);
|
1115 |
+
}
|
1116 |
+
|
1117 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_hi_s16(psimd_s16 a, psimd_s16 b) {
|
1118 |
+
return __builtin_shufflevector(a, b, 4, 5, 6, 7, 8+4, 8+5, 8+6, 8+7);
|
1119 |
+
}
|
1120 |
+
|
1121 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_lo_u16(psimd_u16 a, psimd_u16 b) {
|
1122 |
+
return __builtin_shufflevector(a, b, 0, 1, 2, 3, 8+0, 8+1, 8+2, 8+3);
|
1123 |
+
}
|
1124 |
+
|
1125 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_hi_u16(psimd_u16 a, psimd_u16 b) {
|
1126 |
+
return __builtin_shufflevector(a, b, 4, 5, 6, 7, 8+4, 8+5, 8+6, 8+7);
|
1127 |
+
}
|
1128 |
+
|
1129 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_lo_s32(psimd_s32 a, psimd_s32 b) {
|
1130 |
+
return __builtin_shufflevector(a, b, 0, 1, 4+0, 4+1);
|
1131 |
+
}
|
1132 |
+
|
1133 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_hi_s32(psimd_s32 a, psimd_s32 b) {
|
1134 |
+
return __builtin_shufflevector(a, b, 2, 3, 4+2, 4+3);
|
1135 |
+
}
|
1136 |
+
|
1137 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_lo_u32(psimd_u32 a, psimd_u32 b) {
|
1138 |
+
return __builtin_shufflevector(a, b, 0, 1, 4+0, 4+1);
|
1139 |
+
}
|
1140 |
+
|
1141 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_hi_u32(psimd_u32 a, psimd_u32 b) {
|
1142 |
+
return __builtin_shufflevector(a, b, 2, 3, 4+2, 4+3);
|
1143 |
+
}
|
1144 |
+
|
1145 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_lo_f32(psimd_f32 a, psimd_f32 b) {
|
1146 |
+
return __builtin_shufflevector(a, b, 0, 1, 4+0, 4+1);
|
1147 |
+
}
|
1148 |
+
|
1149 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_hi_f32(psimd_f32 a, psimd_f32 b) {
|
1150 |
+
return __builtin_shufflevector(a, b, 2, 3, 4+2, 4+3);
|
1151 |
+
}
|
1152 |
+
#else
|
1153 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_lo_s16(psimd_s16 a, psimd_s16 b) {
|
1154 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 1, 2, 3, 8+0, 8+1, 8+2, 8+3 });
|
1155 |
+
}
|
1156 |
+
|
1157 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_hi_s16(psimd_s16 a, psimd_s16 b) {
|
1158 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 4, 5, 6, 7, 8+4, 8+5, 8+6, 8+7 });
|
1159 |
+
}
|
1160 |
+
|
1161 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_lo_u16(psimd_u16 a, psimd_u16 b) {
|
1162 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 1, 2, 3, 8+0, 8+1, 8+2, 8+3 });
|
1163 |
+
}
|
1164 |
+
|
1165 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_hi_u16(psimd_u16 a, psimd_u16 b) {
|
1166 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 4, 5, 6, 7, 8+4, 8+5, 8+6, 8+7 });
|
1167 |
+
}
|
1168 |
+
|
1169 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_lo_s32(psimd_s32 a, psimd_s32 b) {
|
1170 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 1, 4+0, 4+1 });
|
1171 |
+
}
|
1172 |
+
|
1173 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_hi_s32(psimd_s32 a, psimd_s32 b) {
|
1174 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 3, 4+2, 4+3 });
|
1175 |
+
}
|
1176 |
+
|
1177 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_lo_u32(psimd_u32 a, psimd_u32 b) {
|
1178 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 1, 4+0, 4+1 });
|
1179 |
+
}
|
1180 |
+
|
1181 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_hi_u32(psimd_u32 a, psimd_u32 b) {
|
1182 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 3, 4+2, 4+3 });
|
1183 |
+
}
|
1184 |
+
|
1185 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_lo_f32(psimd_f32 a, psimd_f32 b) {
|
1186 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 1, 4+0, 4+1 });
|
1187 |
+
}
|
1188 |
+
|
1189 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_hi_f32(psimd_f32 a, psimd_f32 b) {
|
1190 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 2, 3, 4+2, 4+3 });
|
1191 |
+
}
|
1192 |
+
#endif
|
1193 |
+
|
1194 |
+
/* Concatenation of even/odd vector elements */
|
1195 |
+
#if defined(__clang__)
|
1196 |
+
PSIMD_INTRINSIC psimd_s8 psimd_concat_even_s8(psimd_s8 a, psimd_s8 b) {
|
1197 |
+
return __builtin_shufflevector(a, b,
|
1198 |
+
0, 2, 4, 6, 8, 10, 12, 14, 16+0, 16+2, 16+4, 16+6, 16+8, 16+10, 16+12, 16+14);
|
1199 |
+
}
|
1200 |
+
|
1201 |
+
PSIMD_INTRINSIC psimd_s8 psimd_concat_odd_s8(psimd_s8 a, psimd_s8 b) {
|
1202 |
+
return __builtin_shufflevector(a, b,
|
1203 |
+
1, 3, 5, 7, 9, 11, 13, 15, 16+1, 16+3, 16+5, 16+7, 16+9, 16+11, 16+13, 16+15);
|
1204 |
+
}
|
1205 |
+
|
1206 |
+
PSIMD_INTRINSIC psimd_u8 psimd_concat_even_u8(psimd_u8 a, psimd_u8 b) {
|
1207 |
+
return __builtin_shufflevector(a, b,
|
1208 |
+
0, 2, 4, 6, 8, 10, 12, 14, 16+0, 16+2, 16+4, 16+6, 16+8, 16+10, 16+12, 16+14);
|
1209 |
+
}
|
1210 |
+
|
1211 |
+
PSIMD_INTRINSIC psimd_u8 psimd_concat_odd_u8(psimd_u8 a, psimd_u8 b) {
|
1212 |
+
return __builtin_shufflevector(a, b,
|
1213 |
+
1, 3, 5, 7, 9, 11, 13, 15, 16+1, 16+3, 16+5, 16+7, 16+9, 16+11, 16+13, 16+15);
|
1214 |
+
}
|
1215 |
+
|
1216 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_even_s16(psimd_s16 a, psimd_s16 b) {
|
1217 |
+
return __builtin_shufflevector(a, b, 0, 2, 4, 6, 8+0, 8+2, 8+4, 8+6);
|
1218 |
+
}
|
1219 |
+
|
1220 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_odd_s16(psimd_s16 a, psimd_s16 b) {
|
1221 |
+
return __builtin_shufflevector(a, b, 1, 3, 5, 7, 8+1, 8+3, 8+5, 8+7);
|
1222 |
+
}
|
1223 |
+
|
1224 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_even_u16(psimd_u16 a, psimd_u16 b) {
|
1225 |
+
return __builtin_shufflevector(a, b, 0, 2, 4, 6, 8+0, 8+2, 8+4, 8+6);
|
1226 |
+
}
|
1227 |
+
|
1228 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_odd_u16(psimd_u16 a, psimd_u16 b) {
|
1229 |
+
return __builtin_shufflevector(a, b, 1, 3, 5, 7, 8+1, 8+3, 8+5, 8+7);
|
1230 |
+
}
|
1231 |
+
|
1232 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_even_s32(psimd_s32 a, psimd_s32 b) {
|
1233 |
+
return __builtin_shufflevector(a, b, 0, 2, 4+0, 4+2);
|
1234 |
+
}
|
1235 |
+
|
1236 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_odd_s32(psimd_s32 a, psimd_s32 b) {
|
1237 |
+
return __builtin_shufflevector(a, b, 1, 3, 4+1, 4+3);
|
1238 |
+
}
|
1239 |
+
|
1240 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_even_u32(psimd_u32 a, psimd_u32 b) {
|
1241 |
+
return __builtin_shufflevector(a, b, 0, 2, 4+0, 4+2);
|
1242 |
+
}
|
1243 |
+
|
1244 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_odd_u32(psimd_u32 a, psimd_u32 b) {
|
1245 |
+
return __builtin_shufflevector(a, b, 1, 3, 4+1, 4+3);
|
1246 |
+
}
|
1247 |
+
|
1248 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_even_f32(psimd_f32 a, psimd_f32 b) {
|
1249 |
+
return __builtin_shufflevector(a, b, 0, 2, 4+0, 4+2);
|
1250 |
+
}
|
1251 |
+
|
1252 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_odd_f32(psimd_f32 a, psimd_f32 b) {
|
1253 |
+
return __builtin_shufflevector(a, b, 1, 3, 4+1, 4+3);
|
1254 |
+
}
|
1255 |
+
#else
|
1256 |
+
PSIMD_INTRINSIC psimd_s8 psimd_concat_even_s8(psimd_s8 a, psimd_s8 b) {
|
1257 |
+
return __builtin_shuffle(a, b,
|
1258 |
+
(psimd_s8) { 0, 2, 4, 6, 8, 10, 12, 14, 16+0, 16+2, 16+4, 16+6, 16+8, 16+10, 16+12, 16+14 });
|
1259 |
+
}
|
1260 |
+
|
1261 |
+
PSIMD_INTRINSIC psimd_s8 psimd_concat_odd_s8(psimd_s8 a, psimd_s8 b) {
|
1262 |
+
return __builtin_shuffle(a, b,
|
1263 |
+
(psimd_s8) { 1, 3, 5, 7, 9, 11, 13, 15, 16+1, 16+3, 16+5, 16+7, 16+9, 16+11, 16+13, 16+15 });
|
1264 |
+
}
|
1265 |
+
|
1266 |
+
PSIMD_INTRINSIC psimd_u8 psimd_concat_even_u8(psimd_u8 a, psimd_u8 b) {
|
1267 |
+
return __builtin_shuffle(a, b,
|
1268 |
+
(psimd_s8) { 0, 2, 4, 6, 8, 10, 12, 14, 16+0, 16+2, 16+4, 16+6, 16+8, 16+10, 16+12, 16+14 });
|
1269 |
+
}
|
1270 |
+
|
1271 |
+
PSIMD_INTRINSIC psimd_u8 psimd_concat_odd_u8(psimd_u8 a, psimd_u8 b) {
|
1272 |
+
return __builtin_shuffle(a, b,
|
1273 |
+
(psimd_s8) { 1, 3, 5, 7, 9, 11, 13, 15, 16+1, 16+3, 16+5, 16+7, 16+9, 16+11, 16+13, 16+15 });
|
1274 |
+
}
|
1275 |
+
|
1276 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_even_s16(psimd_s16 a, psimd_s16 b) {
|
1277 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 2, 4, 6, 8+0, 8+2, 8+4, 8+6 });
|
1278 |
+
}
|
1279 |
+
|
1280 |
+
PSIMD_INTRINSIC psimd_s16 psimd_concat_odd_s16(psimd_s16 a, psimd_s16 b) {
|
1281 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 1, 3, 5, 7, 8+1, 8+3, 8+5, 8+7 });
|
1282 |
+
}
|
1283 |
+
|
1284 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_even_u16(psimd_u16 a, psimd_u16 b) {
|
1285 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 0, 2, 4, 6, 8+0, 8+2, 8+4, 8+6 });
|
1286 |
+
}
|
1287 |
+
|
1288 |
+
PSIMD_INTRINSIC psimd_u16 psimd_concat_odd_u16(psimd_u16 a, psimd_u16 b) {
|
1289 |
+
return __builtin_shuffle(a, b, (psimd_s16) { 1, 3, 5, 7, 8+1, 8+3, 8+5, 8+7 });
|
1290 |
+
}
|
1291 |
+
|
1292 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_even_s32(psimd_s32 a, psimd_s32 b) {
|
1293 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 2, 4+0, 4+2 });
|
1294 |
+
}
|
1295 |
+
|
1296 |
+
PSIMD_INTRINSIC psimd_s32 psimd_concat_odd_s32(psimd_s32 a, psimd_s32 b) {
|
1297 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 1, 3, 4+1, 4+3 });
|
1298 |
+
}
|
1299 |
+
|
1300 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_even_u32(psimd_u32 a, psimd_u32 b) {
|
1301 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 2, 4+0, 4+2 });
|
1302 |
+
}
|
1303 |
+
|
1304 |
+
PSIMD_INTRINSIC psimd_u32 psimd_concat_odd_u32(psimd_u32 a, psimd_u32 b) {
|
1305 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 1, 3, 4+1, 4+3 });
|
1306 |
+
}
|
1307 |
+
|
1308 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_even_f32(psimd_f32 a, psimd_f32 b) {
|
1309 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 0, 2, 4+0, 4+2 });
|
1310 |
+
}
|
1311 |
+
|
1312 |
+
PSIMD_INTRINSIC psimd_f32 psimd_concat_odd_f32(psimd_f32 a, psimd_f32 b) {
|
1313 |
+
return __builtin_shuffle(a, b, (psimd_s32) { 1, 3, 4+1, 4+3 });
|
1314 |
+
}
|
1315 |
+
#endif
|
1316 |
+
|
1317 |
+
/* Vector reduce */
|
1318 |
+
#if defined(__clang__)
|
1319 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_sum_f32(psimd_f32 v) {
|
1320 |
+
const psimd_f32 temp = v + __builtin_shufflevector(v, v, 2, 3, 0, 1);
|
1321 |
+
return temp + __builtin_shufflevector(temp, temp, 1, 0, 3, 2);
|
1322 |
+
}
|
1323 |
+
|
1324 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_max_f32(psimd_f32 v) {
|
1325 |
+
const psimd_f32 temp = psimd_max_f32(v, __builtin_shufflevector(v, v, 2, 3, 0, 1));
|
1326 |
+
return psimd_max_f32(temp, __builtin_shufflevector(temp, temp, 1, 0, 3, 2));
|
1327 |
+
}
|
1328 |
+
|
1329 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_min_f32(psimd_f32 v) {
|
1330 |
+
const psimd_f32 temp = psimd_min_f32(v, __builtin_shufflevector(v, v, 2, 3, 0, 1));
|
1331 |
+
return psimd_min_f32(temp, __builtin_shufflevector(temp, temp, 1, 0, 3, 2));
|
1332 |
+
}
|
1333 |
+
|
1334 |
+
PSIMD_INTRINSIC float psimd_reduce_sum_f32(psimd_f32 v) {
|
1335 |
+
const psimd_f32 temp = v + __builtin_shufflevector(v, v, 2, 3, -1, -1);
|
1336 |
+
const psimd_f32 result = temp + __builtin_shufflevector(temp, temp, 1, -1, -1, -1);
|
1337 |
+
return result[0];
|
1338 |
+
}
|
1339 |
+
|
1340 |
+
PSIMD_INTRINSIC float psimd_reduce_max_f32(psimd_f32 v) {
|
1341 |
+
const psimd_f32 temp = psimd_max_f32(v, __builtin_shufflevector(v, v, 2, 3, -1, -1));
|
1342 |
+
const psimd_f32 result = psimd_max_f32(temp, __builtin_shufflevector(temp, temp, 1, -1, -1, -1));
|
1343 |
+
return result[0];
|
1344 |
+
}
|
1345 |
+
|
1346 |
+
PSIMD_INTRINSIC float psimd_reduce_min_f32(psimd_f32 v) {
|
1347 |
+
const psimd_f32 temp = psimd_min_f32(v, __builtin_shufflevector(v, v, 2, 3, -1, -1));
|
1348 |
+
const psimd_f32 result = psimd_min_f32(temp, __builtin_shufflevector(temp, temp, 1, -1, -1, -1));
|
1349 |
+
return result[0];
|
1350 |
+
}
|
1351 |
+
#else
|
1352 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_sum_f32(psimd_f32 v) {
|
1353 |
+
const psimd_f32 temp = v + __builtin_shuffle(v, (psimd_s32) { 2, 3, 0, 1 });
|
1354 |
+
return temp + __builtin_shuffle(temp, (psimd_s32) { 1, 0, 3, 2 });
|
1355 |
+
}
|
1356 |
+
|
1357 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_max_f32(psimd_f32 v) {
|
1358 |
+
const psimd_f32 temp = psimd_max_f32(v, __builtin_shuffle(v, (psimd_s32) { 2, 3, 0, 1 }));
|
1359 |
+
return psimd_max_f32(temp, __builtin_shuffle(temp, (psimd_s32) { 1, 0, 3, 2 }));
|
1360 |
+
}
|
1361 |
+
|
1362 |
+
PSIMD_INTRINSIC psimd_f32 psimd_allreduce_min_f32(psimd_f32 v) {
|
1363 |
+
const psimd_f32 temp = psimd_min_f32(v, __builtin_shuffle(v, (psimd_s32) { 2, 3, 0, 1 }));
|
1364 |
+
return psimd_min_f32(temp, __builtin_shuffle(temp, (psimd_s32) { 1, 0, 3, 2 }));
|
1365 |
+
}
|
1366 |
+
|
1367 |
+
PSIMD_INTRINSIC float psimd_reduce_sum_f32(psimd_f32 v) {
|
1368 |
+
const psimd_f32 result = psimd_allreduce_sum_f32(v);
|
1369 |
+
return result[0];
|
1370 |
+
}
|
1371 |
+
|
1372 |
+
PSIMD_INTRINSIC float psimd_reduce_max_f32(psimd_f32 v) {
|
1373 |
+
const psimd_f32 result = psimd_allreduce_max_f32(v);
|
1374 |
+
return result[0];
|
1375 |
+
}
|
1376 |
+
|
1377 |
+
PSIMD_INTRINSIC float psimd_reduce_min_f32(psimd_f32 v) {
|
1378 |
+
const psimd_f32 result = psimd_allreduce_min_f32(v);
|
1379 |
+
return result[0];
|
1380 |
+
}
|
1381 |
+
#endif
|
1382 |
+
#endif
|
1383 |
+
|
1384 |
+
#endif /* PSIMD_H */
|
llmeval-env/lib/python3.10/site-packages/torch/include/pthreadpool.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/torch/include/qnnpack.h
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
* All rights reserved.
|
4 |
+
*
|
5 |
+
* This source code is licensed under the BSD-style license found in the
|
6 |
+
* LICENSE file in the root directory of this source tree.
|
7 |
+
*/
|
8 |
+
|
9 |
+
#pragma once
|
10 |
+
|
11 |
+
#include <stdbool.h>
|
12 |
+
#include <stddef.h>
|
13 |
+
#include <stdint.h>
|
14 |
+
|
15 |
+
#include <pthreadpool.h>
|
16 |
+
|
17 |
+
#ifdef __cplusplus
|
18 |
+
extern "C" {
|
19 |
+
#endif
|
20 |
+
|
21 |
+
/**
|
22 |
+
* @brief Status code for any QNNPACK function call.
|
23 |
+
*/
|
24 |
+
enum qnnp_status {
|
25 |
+
/** The call succeeded, and all output arguments now contain valid data. */
|
26 |
+
qnnp_status_success = 0,
|
27 |
+
qnnp_status_uninitialized = 1,
|
28 |
+
qnnp_status_invalid_parameter = 2,
|
29 |
+
qnnp_status_unsupported_parameter = 3,
|
30 |
+
qnnp_status_unsupported_hardware = 4,
|
31 |
+
qnnp_status_out_of_memory = 5,
|
32 |
+
};
|
33 |
+
|
34 |
+
enum qnnp_status qnnp_initialize(void);
|
35 |
+
|
36 |
+
enum qnnp_status qnnp_deinitialize(void);
|
37 |
+
|
38 |
+
typedef struct qnnp_operator* qnnp_operator_t;
|
39 |
+
|
40 |
+
enum qnnp_status qnnp_create_convolution2d_nhwc_q8(
|
41 |
+
uint32_t input_padding_top,
|
42 |
+
uint32_t input_padding_right,
|
43 |
+
uint32_t input_padding_bottom,
|
44 |
+
uint32_t input_padding_left,
|
45 |
+
uint32_t kernel_height,
|
46 |
+
uint32_t kernel_width,
|
47 |
+
uint32_t subsampling_height,
|
48 |
+
uint32_t subsampling_width,
|
49 |
+
uint32_t dilation_height,
|
50 |
+
uint32_t dilation_width,
|
51 |
+
uint32_t groups,
|
52 |
+
size_t group_input_channels,
|
53 |
+
size_t group_output_channels,
|
54 |
+
uint8_t input_zero_point,
|
55 |
+
float input_scale,
|
56 |
+
uint8_t kernel_zero_point,
|
57 |
+
float kernel_scale,
|
58 |
+
const uint8_t* kernel,
|
59 |
+
const int32_t* bias,
|
60 |
+
uint8_t output_zero_point,
|
61 |
+
float output_scale,
|
62 |
+
uint8_t output_min,
|
63 |
+
uint8_t output_max,
|
64 |
+
uint32_t flags,
|
65 |
+
qnnp_operator_t* convolution);
|
66 |
+
|
67 |
+
enum qnnp_status qnnp_setup_convolution2d_nhwc_q8(
|
68 |
+
qnnp_operator_t convolution,
|
69 |
+
size_t batch_size,
|
70 |
+
size_t input_height,
|
71 |
+
size_t input_width,
|
72 |
+
const uint8_t* input,
|
73 |
+
size_t input_stride,
|
74 |
+
uint8_t* output,
|
75 |
+
size_t output_stride,
|
76 |
+
pthreadpool_t threadpool);
|
77 |
+
|
78 |
+
enum qnnp_status qnnp_create_deconvolution2d_nhwc_q8(
|
79 |
+
uint32_t input_padding_top,
|
80 |
+
uint32_t input_padding_right,
|
81 |
+
uint32_t input_padding_bottom,
|
82 |
+
uint32_t input_padding_left,
|
83 |
+
uint32_t adjustment_height,
|
84 |
+
uint32_t adjustment_width,
|
85 |
+
uint32_t kernel_height,
|
86 |
+
uint32_t kernel_width,
|
87 |
+
uint32_t stride_height,
|
88 |
+
uint32_t stride_width,
|
89 |
+
uint32_t dilation_height,
|
90 |
+
uint32_t dilation_width,
|
91 |
+
uint32_t groups,
|
92 |
+
size_t group_input_channels,
|
93 |
+
size_t group_output_channels,
|
94 |
+
uint8_t input_zero_point,
|
95 |
+
float input_scale,
|
96 |
+
uint8_t kernel_zero_point,
|
97 |
+
float kernel_scale,
|
98 |
+
const uint8_t* kernel,
|
99 |
+
const int32_t* bias,
|
100 |
+
uint8_t output_zero_point,
|
101 |
+
float output_scale,
|
102 |
+
uint8_t output_min,
|
103 |
+
uint8_t output_max,
|
104 |
+
uint32_t flags,
|
105 |
+
qnnp_operator_t* deconvolution);
|
106 |
+
|
107 |
+
enum qnnp_status qnnp_setup_deconvolution2d_nhwc_q8(
|
108 |
+
qnnp_operator_t deconvolution,
|
109 |
+
size_t batch_size,
|
110 |
+
size_t input_height,
|
111 |
+
size_t input_width,
|
112 |
+
const uint8_t* input,
|
113 |
+
size_t input_stride,
|
114 |
+
uint8_t* output,
|
115 |
+
size_t output_stride,
|
116 |
+
pthreadpool_t threadpool);
|
117 |
+
|
118 |
+
enum qnnp_status qnnp_create_fully_connected_nc_q8(
|
119 |
+
size_t input_channels,
|
120 |
+
size_t output_channels,
|
121 |
+
uint8_t input_zero_point,
|
122 |
+
float input_scale,
|
123 |
+
uint8_t kernel_zero_point,
|
124 |
+
float kernel_scale,
|
125 |
+
const uint8_t* kernel,
|
126 |
+
const int32_t* bias,
|
127 |
+
uint8_t output_zero_point,
|
128 |
+
float output_scale,
|
129 |
+
uint8_t output_min,
|
130 |
+
uint8_t output_max,
|
131 |
+
uint32_t flags,
|
132 |
+
qnnp_operator_t* fully_connected);
|
133 |
+
|
134 |
+
enum qnnp_status qnnp_setup_fully_connected_nc_q8(
|
135 |
+
qnnp_operator_t fully_connected,
|
136 |
+
size_t batch_size,
|
137 |
+
const uint8_t* input,
|
138 |
+
size_t input_stride,
|
139 |
+
uint8_t* output,
|
140 |
+
size_t output_stride);
|
141 |
+
|
142 |
+
enum qnnp_status qnnp_create_global_average_pooling_nwc_q8(
|
143 |
+
size_t channels,
|
144 |
+
uint8_t input_zero_point,
|
145 |
+
float input_scale,
|
146 |
+
uint8_t output_zero_point,
|
147 |
+
float output_scale,
|
148 |
+
uint8_t output_min,
|
149 |
+
uint8_t output_max,
|
150 |
+
uint32_t flags,
|
151 |
+
qnnp_operator_t* global_average_pooling);
|
152 |
+
|
153 |
+
enum qnnp_status qnnp_setup_global_average_pooling_nwc_q8(
|
154 |
+
qnnp_operator_t global_average_pooling,
|
155 |
+
size_t batch_size,
|
156 |
+
size_t width,
|
157 |
+
const uint8_t* input,
|
158 |
+
size_t input_stride,
|
159 |
+
uint8_t* output,
|
160 |
+
size_t output_stride);
|
161 |
+
|
162 |
+
enum qnnp_status qnnp_create_average_pooling2d_nhwc_q8(
|
163 |
+
uint32_t input_padding_top,
|
164 |
+
uint32_t input_padding_right,
|
165 |
+
uint32_t input_padding_bottom,
|
166 |
+
uint32_t input_padding_left,
|
167 |
+
uint32_t pooling_height,
|
168 |
+
uint32_t pooling_width,
|
169 |
+
uint32_t stride_height,
|
170 |
+
uint32_t stride_width,
|
171 |
+
size_t channels,
|
172 |
+
uint8_t input_zero_point,
|
173 |
+
float input_scale,
|
174 |
+
uint8_t output_zero_point,
|
175 |
+
float output_scale,
|
176 |
+
uint8_t output_min,
|
177 |
+
uint8_t output_max,
|
178 |
+
uint32_t flags,
|
179 |
+
qnnp_operator_t* average_pooling);
|
180 |
+
|
181 |
+
enum qnnp_status qnnp_setup_average_pooling2d_nhwc_q8(
|
182 |
+
qnnp_operator_t average_pooling,
|
183 |
+
size_t batch_size,
|
184 |
+
size_t input_height,
|
185 |
+
size_t input_width,
|
186 |
+
const uint8_t* input,
|
187 |
+
size_t input_stride,
|
188 |
+
uint8_t* output,
|
189 |
+
size_t output_stride,
|
190 |
+
pthreadpool_t threadpool);
|
191 |
+
|
192 |
+
enum qnnp_status qnnp_create_max_pooling2d_nhwc_u8(
|
193 |
+
uint32_t input_padding_top,
|
194 |
+
uint32_t input_padding_right,
|
195 |
+
uint32_t input_padding_bottom,
|
196 |
+
uint32_t input_padding_left,
|
197 |
+
uint32_t pooling_height,
|
198 |
+
uint32_t pooling_width,
|
199 |
+
uint32_t stride_height,
|
200 |
+
uint32_t stride_width,
|
201 |
+
uint32_t dilation_height,
|
202 |
+
uint32_t dilation_width,
|
203 |
+
size_t channels,
|
204 |
+
uint8_t output_min,
|
205 |
+
uint8_t output_max,
|
206 |
+
uint32_t flags,
|
207 |
+
qnnp_operator_t* max_pooling);
|
208 |
+
|
209 |
+
enum qnnp_status qnnp_setup_max_pooling2d_nhwc_u8(
|
210 |
+
qnnp_operator_t max_pooling,
|
211 |
+
size_t batch_size,
|
212 |
+
size_t input_height,
|
213 |
+
size_t input_width,
|
214 |
+
const uint8_t* input,
|
215 |
+
size_t input_stride,
|
216 |
+
uint8_t* output,
|
217 |
+
size_t output_stride,
|
218 |
+
pthreadpool_t threadpool);
|
219 |
+
|
220 |
+
enum qnnp_status qnnp_create_channel_shuffle_nc_x8(
|
221 |
+
size_t groups,
|
222 |
+
size_t group_channels,
|
223 |
+
uint32_t flags,
|
224 |
+
qnnp_operator_t* channel_shuffle);
|
225 |
+
|
226 |
+
enum qnnp_status qnnp_setup_channel_shuffle_nc_x8(
|
227 |
+
qnnp_operator_t channel_shuffle,
|
228 |
+
size_t batch_size,
|
229 |
+
const uint8_t* input,
|
230 |
+
size_t input_stride,
|
231 |
+
uint8_t* output,
|
232 |
+
size_t output_stride);
|
233 |
+
|
234 |
+
enum qnnp_status qnnp_create_add_nc_q8(
|
235 |
+
size_t channels,
|
236 |
+
uint8_t a_zero_point,
|
237 |
+
float a_scale,
|
238 |
+
uint8_t b_zero_point,
|
239 |
+
float b_scale,
|
240 |
+
uint8_t sum_zero_point,
|
241 |
+
float sum_scale,
|
242 |
+
uint8_t sum_min,
|
243 |
+
uint8_t sum_max,
|
244 |
+
uint32_t flags,
|
245 |
+
qnnp_operator_t* add);
|
246 |
+
|
247 |
+
enum qnnp_status qnnp_setup_add_nc_q8(
|
248 |
+
qnnp_operator_t add,
|
249 |
+
size_t batch_size,
|
250 |
+
const uint8_t* a,
|
251 |
+
size_t a_stride,
|
252 |
+
const uint8_t* b,
|
253 |
+
size_t b_stride,
|
254 |
+
uint8_t* sum,
|
255 |
+
size_t sum_stride);
|
256 |
+
|
257 |
+
enum qnnp_status qnnp_create_clamp_nc_u8(
|
258 |
+
size_t channels,
|
259 |
+
uint8_t output_min,
|
260 |
+
uint8_t output_max,
|
261 |
+
uint32_t flags,
|
262 |
+
qnnp_operator_t* clamp);
|
263 |
+
|
264 |
+
enum qnnp_status qnnp_setup_clamp_nc_u8(
|
265 |
+
qnnp_operator_t clamp,
|
266 |
+
size_t batch_size,
|
267 |
+
const uint8_t* input,
|
268 |
+
size_t input_stride,
|
269 |
+
uint8_t* output,
|
270 |
+
size_t output_stride);
|
271 |
+
|
272 |
+
enum qnnp_status qnnp_create_sigmoid_nc_q8(
|
273 |
+
size_t channels,
|
274 |
+
uint8_t input_zero_point,
|
275 |
+
float input_scale,
|
276 |
+
uint8_t output_zero_point,
|
277 |
+
float output_scale,
|
278 |
+
uint8_t output_min,
|
279 |
+
uint8_t output_max,
|
280 |
+
uint32_t flags,
|
281 |
+
qnnp_operator_t* sigmoid);
|
282 |
+
|
283 |
+
enum qnnp_status qnnp_setup_sigmoid_nc_q8(
|
284 |
+
qnnp_operator_t sigmoid,
|
285 |
+
size_t batch_size,
|
286 |
+
const uint8_t* input,
|
287 |
+
size_t input_stride,
|
288 |
+
uint8_t* output,
|
289 |
+
size_t output_stride);
|
290 |
+
|
291 |
+
enum qnnp_status qnnp_create_leaky_relu_nc_q8(
|
292 |
+
size_t channels,
|
293 |
+
float negative_slope,
|
294 |
+
uint8_t input_zero_point,
|
295 |
+
float input_scale,
|
296 |
+
uint8_t output_zero_point,
|
297 |
+
float output_scale,
|
298 |
+
uint8_t output_min,
|
299 |
+
uint8_t output_max,
|
300 |
+
uint32_t flags,
|
301 |
+
qnnp_operator_t* leaky_relu);
|
302 |
+
|
303 |
+
enum qnnp_status qnnp_setup_leaky_relu_nc_q8(
|
304 |
+
qnnp_operator_t leaky_relu,
|
305 |
+
size_t batch_size,
|
306 |
+
const uint8_t* input,
|
307 |
+
size_t input_stride,
|
308 |
+
uint8_t* output,
|
309 |
+
size_t output_stride);
|
310 |
+
|
311 |
+
enum qnnp_status qnnp_create_softargmax_nc_q8(
|
312 |
+
size_t channels,
|
313 |
+
float input_scale,
|
314 |
+
uint8_t output_zero_point,
|
315 |
+
float output_scale,
|
316 |
+
uint32_t flags,
|
317 |
+
qnnp_operator_t* softargmax);
|
318 |
+
|
319 |
+
enum qnnp_status qnnp_setup_softargmax_nc_q8(
|
320 |
+
qnnp_operator_t softargmax,
|
321 |
+
size_t batch_size,
|
322 |
+
const uint8_t* input,
|
323 |
+
size_t input_stride,
|
324 |
+
uint8_t* output,
|
325 |
+
size_t output_stride);
|
326 |
+
|
327 |
+
enum qnnp_status qnnp_run_operator(
|
328 |
+
qnnp_operator_t op,
|
329 |
+
pthreadpool_t threadpool);
|
330 |
+
|
331 |
+
enum qnnp_status qnnp_delete_operator(
|
332 |
+
qnnp_operator_t op);
|
333 |
+
|
334 |
+
#ifdef __cplusplus
|
335 |
+
} /* extern "C" */
|
336 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/qnnpack_func.h
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdlib>
|
4 |
+
#include <qnnpack/operator.h>
|
5 |
+
|
6 |
+
namespace qnnpack {
|
7 |
+
class PrePackConvWeights final {
|
8 |
+
public:
|
9 |
+
PrePackConvWeights(
|
10 |
+
const pytorch_qnnp_operator_t convolution,
|
11 |
+
const uint8_t* kernel_zero_points,
|
12 |
+
const uint8_t* kernel,
|
13 |
+
const int32_t* bias);
|
14 |
+
|
15 |
+
void* getPackedWeights() const
|
16 |
+
{
|
17 |
+
return packed_weights_;
|
18 |
+
}
|
19 |
+
|
20 |
+
int64_t getOutputChannels() const
|
21 |
+
{
|
22 |
+
return output_channels_;
|
23 |
+
}
|
24 |
+
|
25 |
+
~PrePackConvWeights()
|
26 |
+
{
|
27 |
+
if (packed_weights_ != nullptr) {
|
28 |
+
free(packed_weights_);
|
29 |
+
}
|
30 |
+
}
|
31 |
+
|
32 |
+
PrePackConvWeights() = delete;
|
33 |
+
PrePackConvWeights(const PrePackConvWeights&) = delete;
|
34 |
+
PrePackConvWeights& operator=(const PrePackConvWeights&) = delete;
|
35 |
+
|
36 |
+
private:
|
37 |
+
void* packed_weights_ = nullptr;
|
38 |
+
int64_t output_channels_;
|
39 |
+
};
|
40 |
+
|
41 |
+
class PackBMatrix final {
|
42 |
+
public:
|
43 |
+
PackBMatrix(
|
44 |
+
size_t input_channels,
|
45 |
+
size_t output_channels,
|
46 |
+
const uint8_t* kernel_zero_points,
|
47 |
+
const float* requantization_scale,
|
48 |
+
const uint8_t* kernel,
|
49 |
+
const int32_t* bias);
|
50 |
+
|
51 |
+
// This constructor is to be used for dynamic mode
|
52 |
+
// quantization. In dynamic mode, we dont yet support
|
53 |
+
// per channel quantization, and paying the cost of
|
54 |
+
// memory allocation for per channel zero point and
|
55 |
+
// requant scale will hurt performance.
|
56 |
+
PackBMatrix(
|
57 |
+
size_t input_channels,
|
58 |
+
size_t output_channels,
|
59 |
+
const uint8_t kernel_zero_point,
|
60 |
+
const float requantization_scale,
|
61 |
+
const uint8_t* kernel,
|
62 |
+
const int32_t* bias);
|
63 |
+
|
64 |
+
void* getPackedWeights() const
|
65 |
+
{
|
66 |
+
return packed_weights_;
|
67 |
+
}
|
68 |
+
|
69 |
+
void unpackWeights(
|
70 |
+
const uint8_t* kernel_zero_points,
|
71 |
+
int8_t* kernel
|
72 |
+
) const;
|
73 |
+
|
74 |
+
size_t getInputChannels() const
|
75 |
+
{
|
76 |
+
return input_channels_;
|
77 |
+
}
|
78 |
+
|
79 |
+
size_t getOutputChannels() const
|
80 |
+
{
|
81 |
+
return output_channels_;
|
82 |
+
}
|
83 |
+
|
84 |
+
~PackBMatrix()
|
85 |
+
{
|
86 |
+
if (packed_weights_ != nullptr) {
|
87 |
+
free(packed_weights_);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
PackBMatrix() = delete;
|
92 |
+
PackBMatrix(const PackBMatrix&) = delete;
|
93 |
+
PackBMatrix& operator=(const PackBMatrix&) = delete;
|
94 |
+
|
95 |
+
private:
|
96 |
+
void* packed_weights_ = nullptr;
|
97 |
+
size_t input_channels_;
|
98 |
+
size_t output_channels_;
|
99 |
+
};
|
100 |
+
|
101 |
+
enum pytorch_qnnp_status qnnpackLinear(
|
102 |
+
const size_t batch_size,
|
103 |
+
const size_t input_channels,
|
104 |
+
const size_t output_channels,
|
105 |
+
const uint8_t input_zero_point,
|
106 |
+
const uint8_t* kernel_zero_points,
|
107 |
+
const float* requantization_scales,
|
108 |
+
const uint8_t output_zero_point,
|
109 |
+
const uint8_t output_min,
|
110 |
+
const uint8_t output_max,
|
111 |
+
const uint8_t* input,
|
112 |
+
const size_t input_stride,
|
113 |
+
void* packed_weights,
|
114 |
+
uint8_t* output,
|
115 |
+
const size_t output_stride,
|
116 |
+
pthreadpool_t threadpool);
|
117 |
+
|
118 |
+
enum pytorch_qnnp_status qnnpackConv(
|
119 |
+
const pytorch_qnnp_operator_t convolution,
|
120 |
+
void* packed_weights,
|
121 |
+
const size_t batch_size,
|
122 |
+
const size_t input_depth,
|
123 |
+
const size_t input_height,
|
124 |
+
const size_t input_width,
|
125 |
+
const uint8_t input_zero_point,
|
126 |
+
const uint8_t* input,
|
127 |
+
const uint8_t* kernel_zero_points,
|
128 |
+
const float* requantization_scales,
|
129 |
+
const uint8_t output_zero_point,
|
130 |
+
const uint8_t output_min,
|
131 |
+
const uint8_t output_max,
|
132 |
+
uint8_t* output,
|
133 |
+
pthreadpool_t threadpool);
|
134 |
+
|
135 |
+
enum pytorch_qnnp_status qnnpackDeConv(
|
136 |
+
const pytorch_qnnp_operator_t deconvolution,
|
137 |
+
void* packed_weights,
|
138 |
+
const size_t batch_size,
|
139 |
+
const size_t input_height,
|
140 |
+
const size_t input_width,
|
141 |
+
const uint8_t input_zero_point,
|
142 |
+
const uint8_t* input,
|
143 |
+
const uint8_t* kernel_zero_points,
|
144 |
+
const float* requantization_scales,
|
145 |
+
const uint8_t output_zero_point,
|
146 |
+
const uint8_t output_min,
|
147 |
+
const uint8_t output_max,
|
148 |
+
uint8_t* output,
|
149 |
+
pthreadpool_t threadpool);
|
150 |
+
|
151 |
+
enum pytorch_qnnp_status qnnpackLinearDynamic(
|
152 |
+
const size_t batch_size,
|
153 |
+
const size_t input_channels,
|
154 |
+
const size_t output_channels,
|
155 |
+
const uint8_t input_zero_point,
|
156 |
+
const uint8_t* kernel_zero_points,
|
157 |
+
const float* dequantization_scales,
|
158 |
+
const uint8_t* input,
|
159 |
+
const size_t input_stride,
|
160 |
+
void* packed_weights,
|
161 |
+
const float* bias,
|
162 |
+
float* output,
|
163 |
+
const size_t output_stride,
|
164 |
+
pthreadpool_t threadpool);
|
165 |
+
|
166 |
+
} // namespace qnnpack
|
llmeval-env/lib/python3.10/site-packages/torch/include/sleef.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/CudaIPCTypes.h
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifdef USE_CUDA
|
3 |
+
#include <c10/core/Allocator.h>
|
4 |
+
#include <c10/cuda/CUDACachingAllocator.h>
|
5 |
+
#include <c10/cuda/CUDAException.h>
|
6 |
+
#include <c10/util/Logging.h>
|
7 |
+
#include <cuda_runtime_api.h>
|
8 |
+
#include <torch/csrc/Export.h>
|
9 |
+
#include <cstddef>
|
10 |
+
namespace torch {
|
11 |
+
|
12 |
+
TORCH_CUDA_CU_API bool CudaIPCCollect();
|
13 |
+
|
14 |
+
struct CudaIPCReceivedData final {
|
15 |
+
CudaIPCReceivedData() = default;
|
16 |
+
explicit CudaIPCReceivedData(std::shared_ptr<void> shared_ptr)
|
17 |
+
: shared_ptr_(std::move(shared_ptr)) {}
|
18 |
+
std::shared_ptr<void> shared_ptr_;
|
19 |
+
};
|
20 |
+
|
21 |
+
struct CudaIPCSentData final {
|
22 |
+
std::string handle_;
|
23 |
+
uint64_t offset_;
|
24 |
+
uint64_t* counter_ptr_; // Reference counter shared memory block
|
25 |
+
at::DataPtr original_ptr_; // Original mem allocation
|
26 |
+
cudaEvent_t event_; // Sync cuEventDestroy
|
27 |
+
bool event_sync_required_;
|
28 |
+
at::Device device_;
|
29 |
+
|
30 |
+
CudaIPCSentData(
|
31 |
+
std::string handle,
|
32 |
+
uint64_t offset,
|
33 |
+
uint64_t* counter_ptr,
|
34 |
+
at::Device device);
|
35 |
+
~CudaIPCSentData();
|
36 |
+
|
37 |
+
uint64_t counter_value();
|
38 |
+
std::string handle() {
|
39 |
+
return handle_;
|
40 |
+
}
|
41 |
+
uint64_t offset() {
|
42 |
+
return offset_;
|
43 |
+
}
|
44 |
+
void set_original_ptr(at::DataPtr data_ptr) {
|
45 |
+
original_ptr_ = std::move(data_ptr);
|
46 |
+
}
|
47 |
+
};
|
48 |
+
|
49 |
+
TORCH_CUDA_CU_API at::DataPtr GetNewRefCountedSentData(
|
50 |
+
void* data,
|
51 |
+
at::Device device);
|
52 |
+
|
53 |
+
namespace {
|
54 |
+
|
55 |
+
inline constexpr int64_t CUDA_IPC_REF_COUNTER_FILE_SIZE = 10000;
|
56 |
+
inline constexpr int64_t CUDA_IPC_WARN_AFTER_X_BLOCKS_IN_LIMBO = 1000;
|
57 |
+
// This was determined empirically that CUDA (v10.1 and below) have the limit
|
58 |
+
// on the number of recorded blocking interprocess events. It is around ~22,000.
|
59 |
+
// And to give us leeway, we picked 1000 as it gives us enough events to share
|
60 |
+
// tensors effectively.
|
61 |
+
inline constexpr int64_t CUDA_IPC_MAXIMUM_EVENTS_TO_USE = 1000;
|
62 |
+
|
63 |
+
// All to be deleted data blocks with non zero reference counter goes there
|
64 |
+
struct CudaIPCSentDataLimbo final {
|
65 |
+
~CudaIPCSentDataLimbo();
|
66 |
+
bool collect();
|
67 |
+
void add(std::unique_ptr<CudaIPCSentData> shared_block);
|
68 |
+
uint64_t size();
|
69 |
+
|
70 |
+
private:
|
71 |
+
// TODO: Can be changed to FIFO in order to avoid full traverse on every
|
72 |
+
// collect()
|
73 |
+
std::vector<std::unique_ptr<CudaIPCSentData>> shared_blocks_;
|
74 |
+
std::mutex limbo_mutex_;
|
75 |
+
};
|
76 |
+
|
77 |
+
struct CudaIPCRefCountersFile final {
|
78 |
+
CudaIPCRefCountersFile(
|
79 |
+
std::string handle,
|
80 |
+
uint64_t size,
|
81 |
+
at::DataPtr data_ptr)
|
82 |
+
: size_(size),
|
83 |
+
|
84 |
+
handle_(std::move(handle)),
|
85 |
+
refcounted_shared_mem_(std::move(data_ptr)) {}
|
86 |
+
|
87 |
+
uint64_t* counter_ptr() {
|
88 |
+
return static_cast<uint64_t*>(refcounted_shared_mem_.get()) + next_offset_;
|
89 |
+
}
|
90 |
+
|
91 |
+
void set_counter(uint64_t value) {
|
92 |
+
*counter_ptr() = value;
|
93 |
+
}
|
94 |
+
|
95 |
+
bool have_offsets() {
|
96 |
+
return next_offset_ < size_;
|
97 |
+
}
|
98 |
+
|
99 |
+
bool offsets_in_use() {
|
100 |
+
return used_slots_;
|
101 |
+
}
|
102 |
+
|
103 |
+
uint64_t get_offset() {
|
104 |
+
return next_offset_;
|
105 |
+
}
|
106 |
+
|
107 |
+
void rotate_offset() {
|
108 |
+
next_offset_++;
|
109 |
+
used_slots_++;
|
110 |
+
}
|
111 |
+
|
112 |
+
void return_offset(uint64_t offset /* unused */) {
|
113 |
+
used_slots_--;
|
114 |
+
}
|
115 |
+
|
116 |
+
std::string handle() {
|
117 |
+
return handle_;
|
118 |
+
}
|
119 |
+
|
120 |
+
private:
|
121 |
+
uint64_t next_offset_{0};
|
122 |
+
uint64_t size_;
|
123 |
+
uint64_t used_slots_{0};
|
124 |
+
std::string handle_;
|
125 |
+
at::DataPtr refcounted_shared_mem_;
|
126 |
+
};
|
127 |
+
|
128 |
+
} // namespace
|
129 |
+
} // namespace torch
|
130 |
+
|
131 |
+
namespace c10 {
|
132 |
+
namespace {
|
133 |
+
class CudaIPCCollectCallback : public FreeMemoryCallback {
|
134 |
+
public:
|
135 |
+
bool Execute() override {
|
136 |
+
return torch::CudaIPCCollect();
|
137 |
+
}
|
138 |
+
};
|
139 |
+
} // namespace
|
140 |
+
|
141 |
+
} // namespace c10
|
142 |
+
|
143 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Dtype.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/ScalarType.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
|
7 |
+
constexpr int DTYPE_NAME_LEN = 64;
|
8 |
+
|
9 |
+
struct TORCH_API THPDtype {
|
10 |
+
PyObject_HEAD at::ScalarType scalar_type;
|
11 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
|
12 |
+
char name[DTYPE_NAME_LEN + 1];
|
13 |
+
};
|
14 |
+
|
15 |
+
TORCH_API extern PyTypeObject THPDtypeType;
|
16 |
+
|
17 |
+
inline bool THPDtype_Check(PyObject* obj) {
|
18 |
+
return Py_TYPE(obj) == &THPDtypeType;
|
19 |
+
}
|
20 |
+
|
21 |
+
inline bool THPPythonScalarType_Check(PyObject* obj) {
|
22 |
+
return obj == (PyObject*)(&PyFloat_Type) ||
|
23 |
+
obj == (PyObject*)(&PyBool_Type) || obj == (PyObject*)(&PyLong_Type);
|
24 |
+
}
|
25 |
+
|
26 |
+
TORCH_API PyObject* THPDtype_New(
|
27 |
+
at::ScalarType scalar_type,
|
28 |
+
const std::string& name);
|
29 |
+
|
30 |
+
void THPDtype_init(PyObject* module);
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Layout.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
#include <ATen/Layout.h>
|
6 |
+
|
7 |
+
#include <string>
|
8 |
+
|
9 |
+
const int LAYOUT_NAME_LEN = 64;
|
10 |
+
|
11 |
+
struct THPLayout {
|
12 |
+
PyObject_HEAD at::Layout layout;
|
13 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
|
14 |
+
char name[LAYOUT_NAME_LEN + 1];
|
15 |
+
};
|
16 |
+
|
17 |
+
extern PyTypeObject THPLayoutType;
|
18 |
+
|
19 |
+
inline bool THPLayout_Check(PyObject* obj) {
|
20 |
+
return Py_TYPE(obj) == &THPLayoutType;
|
21 |
+
}
|
22 |
+
|
23 |
+
PyObject* THPLayout_New(at::Layout layout, const std::string& name);
|
24 |
+
|
25 |
+
void THPLayout_init(PyObject* module);
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/PyInterpreter.h
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/PyInterpreter.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
|
6 |
+
TORCH_PYTHON_API c10::impl::PyInterpreter* getPyInterpreter();
|
7 |
+
TORCH_PYTHON_API bool isMainPyInterpreter();
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/QScheme.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
#include <c10/core/QScheme.h>
|
6 |
+
|
7 |
+
#include <string>
|
8 |
+
|
9 |
+
constexpr int QSCHEME_NAME_LEN = 64;
|
10 |
+
|
11 |
+
struct THPQScheme {
|
12 |
+
PyObject_HEAD at::QScheme qscheme;
|
13 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
|
14 |
+
char name[QSCHEME_NAME_LEN + 1];
|
15 |
+
};
|
16 |
+
|
17 |
+
extern PyTypeObject THPQSchemeType;
|
18 |
+
|
19 |
+
inline bool THPQScheme_Check(PyObject* obj) {
|
20 |
+
return Py_TYPE(obj) == &THPQSchemeType;
|
21 |
+
}
|
22 |
+
|
23 |
+
PyObject* THPQScheme_New(at::QScheme qscheme, const std::string& name);
|
24 |
+
|
25 |
+
void THPQScheme_init(PyObject* module);
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/StorageSharing.h
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THP_STORAGE_SHARING_INC
|
2 |
+
#define THP_STORAGE_SHARING_INC
|
3 |
+
|
4 |
+
#include <Python.h>
|
5 |
+
|
6 |
+
PyMethodDef* THPStorage_getSharingMethods();
|
7 |
+
|
8 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/Stream.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THP_STREAM_INC
|
2 |
+
#define THP_STREAM_INC
|
3 |
+
|
4 |
+
#include <c10/core/Stream.h>
|
5 |
+
#include <c10/macros/Export.h>
|
6 |
+
#include <torch/csrc/python_headers.h>
|
7 |
+
|
8 |
+
struct THPStream {
|
9 |
+
PyObject_HEAD int64_t stream_id;
|
10 |
+
int64_t device_type;
|
11 |
+
int64_t device_index;
|
12 |
+
};
|
13 |
+
extern TORCH_API PyTypeObject* THPStreamClass;
|
14 |
+
|
15 |
+
void THPStream_init(PyObject* module);
|
16 |
+
|
17 |
+
inline bool THPStream_Check(PyObject* obj) {
|
18 |
+
return THPStreamClass && PyObject_IsInstance(obj, (PyObject*)THPStreamClass);
|
19 |
+
}
|
20 |
+
|
21 |
+
PyObject* THPStream_Wrap(const c10::Stream& stream);
|
22 |
+
|
23 |
+
#endif // THP_STREAM_INC
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/THConcat.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#define TH_CONCAT_STRING_2(x, y) TH_CONCAT_STRING_2_EXPAND(x, y)
|
4 |
+
#define TH_CONCAT_STRING_2_EXPAND(x, y) #x #y
|
5 |
+
|
6 |
+
#define TH_CONCAT_STRING_3(x, y, z) TH_CONCAT_STRING_3_EXPAND(x, y, z)
|
7 |
+
#define TH_CONCAT_STRING_3_EXPAND(x, y, z) #x #y #z
|
8 |
+
|
9 |
+
#define TH_CONCAT_STRING_4(x, y, z, w) TH_CONCAT_STRING_4_EXPAND(x, y, z, w)
|
10 |
+
#define TH_CONCAT_STRING_4_EXPAND(x, y, z, w) #x #y #z #w
|
11 |
+
|
12 |
+
#define TH_CONCAT_2(x, y) TH_CONCAT_2_EXPAND(x, y)
|
13 |
+
#define TH_CONCAT_2_EXPAND(x, y) x##y
|
14 |
+
|
15 |
+
#define TH_CONCAT_3(x, y, z) TH_CONCAT_3_EXPAND(x, y, z)
|
16 |
+
#define TH_CONCAT_3_EXPAND(x, y, z) x##y##z
|
17 |
+
|
18 |
+
#define TH_CONCAT_4_EXPAND(x, y, z, w) x##y##z##w
|
19 |
+
#define TH_CONCAT_4(x, y, z, w) TH_CONCAT_4_EXPAND(x, y, z, w)
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/THP.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THP_H
|
2 |
+
#define THP_H
|
3 |
+
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
|
7 |
+
// Back-compatibility macros, Thanks to http://cx-oracle.sourceforge.net/
|
8 |
+
// define PyInt_* macros for Python 3.x. NB: We must include Python.h first,
|
9 |
+
// otherwise we'll incorrectly conclude PyInt_Check isn't defined!
|
10 |
+
#ifndef PyInt_Check
|
11 |
+
#define PyInt_Check PyLong_Check
|
12 |
+
#define PyInt_FromLong PyLong_FromLong
|
13 |
+
#define PyInt_AsLong PyLong_AsLong
|
14 |
+
#define PyInt_Type PyLong_Type
|
15 |
+
#endif
|
16 |
+
|
17 |
+
#include <torch/csrc/Exceptions.h>
|
18 |
+
#include <torch/csrc/Generator.h>
|
19 |
+
#include <torch/csrc/Module.h>
|
20 |
+
#include <torch/csrc/Size.h>
|
21 |
+
#include <torch/csrc/Storage.h>
|
22 |
+
#include <torch/csrc/Types.h>
|
23 |
+
#include <torch/csrc/utils.h> // This requires defined Storage and Tensor types
|
24 |
+
#include <torch/csrc/utils/byte_order.h>
|
25 |
+
|
26 |
+
#include <torch/csrc/serialization.h>
|
27 |
+
|
28 |
+
#include <torch/csrc/autograd/python_autograd.h>
|
29 |
+
|
30 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/TypeInfo.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
#include <ATen/ATen.h>
|
6 |
+
|
7 |
+
struct THPDTypeInfo {
|
8 |
+
PyObject_HEAD at::ScalarType type;
|
9 |
+
};
|
10 |
+
|
11 |
+
struct THPFInfo : THPDTypeInfo {};
|
12 |
+
|
13 |
+
struct THPIInfo : THPDTypeInfo {};
|
14 |
+
|
15 |
+
extern PyTypeObject THPFInfoType;
|
16 |
+
extern PyTypeObject THPIInfoType;
|
17 |
+
|
18 |
+
inline bool THPFInfo_Check(PyObject* obj) {
|
19 |
+
return Py_TYPE(obj) == &THPFInfoType;
|
20 |
+
}
|
21 |
+
|
22 |
+
inline bool THPIInfo_Check(PyObject* obj) {
|
23 |
+
return Py_TYPE(obj) == &THPIInfoType;
|
24 |
+
}
|
25 |
+
|
26 |
+
void THPDTypeInfo_init(PyObject* module);
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/InferenceMode.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/InferenceMode.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
|
6 |
+
namespace torch::autograd {
|
7 |
+
|
8 |
+
using InferenceMode = c10::InferenceMode;
|
9 |
+
|
10 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/VariableTypeUtils.h
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/irange.h>
|
4 |
+
|
5 |
+
#include <ATen/core/boxing/KernelFunction.h>
|
6 |
+
#include <ATen/core/dispatch/Dispatcher.h>
|
7 |
+
|
8 |
+
#include <torch/csrc/autograd/edge.h>
|
9 |
+
#include <torch/csrc/autograd/function.h>
|
10 |
+
#include <torch/csrc/autograd/functions/basic_ops.h>
|
11 |
+
#include <torch/csrc/autograd/functions/tensor.h>
|
12 |
+
#include <torch/csrc/autograd/grad_mode.h>
|
13 |
+
#include <torch/csrc/autograd/saved_variable.h>
|
14 |
+
#include <torch/csrc/autograd/variable.h>
|
15 |
+
|
16 |
+
#include <torch/csrc/autograd/functions/utils.h>
|
17 |
+
#include <torch/csrc/autograd/jit_decomp_interface.h>
|
18 |
+
#include <torch/csrc/utils/variadic.h>
|
19 |
+
|
20 |
+
#include <cstddef>
|
21 |
+
#include <functional>
|
22 |
+
#include <memory>
|
23 |
+
#include <utility>
|
24 |
+
#include <vector>
|
25 |
+
|
26 |
+
#ifdef _MSC_VER
|
27 |
+
#ifdef Type
|
28 |
+
#undef Type
|
29 |
+
#endif
|
30 |
+
#endif
|
31 |
+
|
32 |
+
namespace torch {
|
33 |
+
namespace autograd {
|
34 |
+
enum class can_mutate_inplace_result {
|
35 |
+
success,
|
36 |
+
non_default_backward_view,
|
37 |
+
view_of_leaf,
|
38 |
+
is_leaf,
|
39 |
+
};
|
40 |
+
|
41 |
+
// The requires_grad argument is used to know if the inplace operation needs
|
42 |
+
// gradient to be setup for it.
|
43 |
+
// In particular, we can have tensor.requires_grad() != requires_grad when
|
44 |
+
// writing a Tensor that requires gradients inplace into a Tensor that does not
|
45 |
+
// require gradients: a = torch.rand(2) b = torch.rand(2, requires_grad=True)
|
46 |
+
// a.copy_(b)
|
47 |
+
inline can_mutate_inplace_result can_mutate_inplace(
|
48 |
+
const at::Tensor& tensor,
|
49 |
+
bool requires_grad) {
|
50 |
+
if (!requires_grad || !GradMode::is_enabled()) {
|
51 |
+
return can_mutate_inplace_result::success;
|
52 |
+
}
|
53 |
+
auto diff_view_meta = impl::get_view_autograd_meta(tensor);
|
54 |
+
if (diff_view_meta && diff_view_meta->has_bw_view()) {
|
55 |
+
if (diff_view_meta->get_creation_meta() != CreationMeta::DEFAULT) {
|
56 |
+
return can_mutate_inplace_result::non_default_backward_view;
|
57 |
+
}
|
58 |
+
if (tensor.requires_grad() && tensor._base().is_leaf()) {
|
59 |
+
return can_mutate_inplace_result::view_of_leaf;
|
60 |
+
}
|
61 |
+
}
|
62 |
+
if (tensor.requires_grad() && tensor.is_leaf()) {
|
63 |
+
return can_mutate_inplace_result::is_leaf;
|
64 |
+
}
|
65 |
+
return can_mutate_inplace_result::success;
|
66 |
+
}
|
67 |
+
|
68 |
+
inline void check_inplace(const at::Tensor& tensor, bool requires_grad) {
|
69 |
+
switch (can_mutate_inplace(tensor, requires_grad)) {
|
70 |
+
case can_mutate_inplace_result::success:
|
71 |
+
return;
|
72 |
+
case can_mutate_inplace_result::non_default_backward_view: {
|
73 |
+
return handle_view_on_rebase(impl::get_view_autograd_meta(tensor));
|
74 |
+
}
|
75 |
+
case can_mutate_inplace_result::view_of_leaf:
|
76 |
+
TORCH_CHECK(
|
77 |
+
false,
|
78 |
+
"a view of a leaf Variable that requires grad is being used in an in-place operation.");
|
79 |
+
break;
|
80 |
+
|
81 |
+
case can_mutate_inplace_result::is_leaf:
|
82 |
+
TORCH_CHECK(
|
83 |
+
false,
|
84 |
+
"a leaf Variable that requires grad is being used in an in-place operation.");
|
85 |
+
break;
|
86 |
+
}
|
87 |
+
TORCH_INTERNAL_ASSERT(false);
|
88 |
+
}
|
89 |
+
|
90 |
+
inline void check_inplace(at::ITensorListRef tensors, bool requires_grad) {
|
91 |
+
for (const auto& tensor : tensors) {
|
92 |
+
check_inplace(tensor, requires_grad);
|
93 |
+
}
|
94 |
+
}
|
95 |
+
|
96 |
+
inline void throw_error_out_requires_grad(const char* name) {
|
97 |
+
AT_ERROR(
|
98 |
+
name,
|
99 |
+
"(): functions with out=... arguments don't support automatic differentiation, "
|
100 |
+
"but one of the arguments requires grad.");
|
101 |
+
}
|
102 |
+
|
103 |
+
inline void throw_error_for_complex_autograd(
|
104 |
+
const at::Tensor& tensor,
|
105 |
+
const char* name) {
|
106 |
+
if (tensor.requires_grad()) {
|
107 |
+
TORCH_CHECK(
|
108 |
+
!tensor.is_complex(),
|
109 |
+
name,
|
110 |
+
" does not support automatic differentiation for outputs with complex dtype.");
|
111 |
+
}
|
112 |
+
}
|
113 |
+
|
114 |
+
inline void throw_error_if_base_and_tensor_are_same(
|
115 |
+
const at::Tensor& base,
|
116 |
+
const at::Tensor& tensor) {
|
117 |
+
TORCH_CHECK(
|
118 |
+
base.unsafeGetTensorImpl() != tensor.unsafeGetTensorImpl(),
|
119 |
+
"View operation returned a tensor that is the same as the input base tensor. This "
|
120 |
+
"is no longer allowed; you must explicitly create a new tensor (e.g., using .detach()). "
|
121 |
+
"As a user, you could have made a mistake implementing __torch_dispatch__ or a Python "
|
122 |
+
"operator decomposition or meta registration; if that's not the case, please "
|
123 |
+
"report a bug to PyTorch or the backend you are using.");
|
124 |
+
}
|
125 |
+
|
126 |
+
inline void throw_error_for_complex_autograd(
|
127 |
+
at::ITensorListRef tensorlist,
|
128 |
+
const char* name) {
|
129 |
+
for (const auto& tensor : tensorlist) {
|
130 |
+
throw_error_for_complex_autograd(tensor, name);
|
131 |
+
}
|
132 |
+
}
|
133 |
+
|
134 |
+
// TODO: Blegh, bare references
|
135 |
+
|
136 |
+
inline void rebase_history(const Variable& var, std::shared_ptr<Node> grad_fn) {
|
137 |
+
if (grad_fn && var.defined()) {
|
138 |
+
grad_fn->add_input_metadata(var);
|
139 |
+
impl::rebase_history(var, {std::move(grad_fn), 0});
|
140 |
+
}
|
141 |
+
}
|
142 |
+
|
143 |
+
inline void rebase_history(
|
144 |
+
const std::vector<Variable>& vars,
|
145 |
+
const std::shared_ptr<Node>& grad_fn) {
|
146 |
+
if (grad_fn) {
|
147 |
+
for (auto& var : vars) {
|
148 |
+
if (var.defined()) {
|
149 |
+
auto output_nr = grad_fn->add_input_metadata(var);
|
150 |
+
impl::rebase_history(var, {grad_fn, output_nr});
|
151 |
+
} else {
|
152 |
+
grad_fn->add_input_metadata(Node::undefined_input());
|
153 |
+
}
|
154 |
+
}
|
155 |
+
}
|
156 |
+
}
|
157 |
+
|
158 |
+
inline void increment_version(const at::Tensor& t) {
|
159 |
+
impl::bump_version(t);
|
160 |
+
}
|
161 |
+
|
162 |
+
struct Flatten : IterArgs<Flatten> {
|
163 |
+
Flatten(variable_list& out) : out(out) {}
|
164 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
165 |
+
variable_list& out;
|
166 |
+
void operator()(const at::Tensor& x) {
|
167 |
+
out.emplace_back(x);
|
168 |
+
}
|
169 |
+
void operator()(const c10::optional<at::Tensor>& x) {
|
170 |
+
if (x.has_value())
|
171 |
+
out.emplace_back(x.value());
|
172 |
+
}
|
173 |
+
void operator()(at::ArrayRef<at::Tensor> xs) {
|
174 |
+
out.insert(out.end(), xs.begin(), xs.end());
|
175 |
+
}
|
176 |
+
};
|
177 |
+
|
178 |
+
template <typename... Args>
|
179 |
+
inline variable_list flatten_tensor_args(Args&&... args) {
|
180 |
+
variable_list out;
|
181 |
+
out.reserve(count_tensors(std::forward<Args>(args)...));
|
182 |
+
Flatten(out).apply(std::forward<Args>(args)...);
|
183 |
+
return out; // RVO
|
184 |
+
}
|
185 |
+
|
186 |
+
// See NOTE [ Autograd View Variables ] for details.
|
187 |
+
inline at::Tensor as_view(
|
188 |
+
const at::Tensor& base,
|
189 |
+
const at::Tensor& tensor,
|
190 |
+
bool is_bw_differentiable,
|
191 |
+
bool is_fw_differentiable,
|
192 |
+
std::unique_ptr<ViewFunc> view_func = nullptr,
|
193 |
+
std::function<at::Tensor(const at::Tensor&)> rev_view_func = nullptr,
|
194 |
+
CreationMeta creation_meta = CreationMeta::DEFAULT,
|
195 |
+
bool allow_tensor_metadata_change = true) {
|
196 |
+
// Note [View of inference tensor]
|
197 |
+
// For inference tensor this code can only be hit outside InferenceMode
|
198 |
+
// since ADInplaceOrView is in the default_included_set.
|
199 |
+
// If Inplace and View were separate dispatch keys we can just put Inplace
|
200 |
+
// in the default_included_set, so that view ops on inference tensor doesn't
|
201 |
+
// have to go through as_view even outside InferenceMode.
|
202 |
+
if (base.is_inference())
|
203 |
+
return tensor;
|
204 |
+
|
205 |
+
auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(base);
|
206 |
+
|
207 |
+
// To speed up the most common case, we specially handle when both the forward
|
208 |
+
// and backward view infos are the same, and so a single shared ViewInfo can
|
209 |
+
// be used for both of them.
|
210 |
+
if ((!diff_view_meta || diff_view_meta->shared_view_info()) &&
|
211 |
+
is_bw_differentiable && is_fw_differentiable) {
|
212 |
+
throw_error_if_base_and_tensor_are_same(base, tensor);
|
213 |
+
if (diff_view_meta) {
|
214 |
+
creation_meta = propagate_creation_meta(
|
215 |
+
diff_view_meta->get_creation_meta(), creation_meta);
|
216 |
+
return make_variable_differentiable_view(
|
217 |
+
tensor,
|
218 |
+
diff_view_meta->get_backward_view().chain(
|
219 |
+
base, tensor, std::move(view_func), std::move(rev_view_func)),
|
220 |
+
c10::nullopt,
|
221 |
+
/*shared_view_info*/ true,
|
222 |
+
creation_meta,
|
223 |
+
allow_tensor_metadata_change);
|
224 |
+
} else {
|
225 |
+
return make_variable_differentiable_view(
|
226 |
+
tensor,
|
227 |
+
ViewInfo(base, std::move(view_func), std::move(rev_view_func)),
|
228 |
+
c10::nullopt,
|
229 |
+
/*shared_view_info*/ true,
|
230 |
+
creation_meta,
|
231 |
+
allow_tensor_metadata_change);
|
232 |
+
}
|
233 |
+
}
|
234 |
+
|
235 |
+
// If they cannot be shared, create the required view infos
|
236 |
+
c10::optional<ViewInfo> new_bw_info;
|
237 |
+
c10::optional<ViewInfo> new_fw_info;
|
238 |
+
|
239 |
+
if (is_bw_differentiable) {
|
240 |
+
auto bw_view_func = view_func ? view_func->clone_and_set() : nullptr;
|
241 |
+
if (diff_view_meta && diff_view_meta->has_bw_view()) {
|
242 |
+
const auto& base_bw_info = diff_view_meta->get_backward_view();
|
243 |
+
new_bw_info = base_bw_info.chain(
|
244 |
+
base, tensor, std::move(bw_view_func), rev_view_func);
|
245 |
+
} else {
|
246 |
+
new_bw_info = ViewInfo(base, std::move(bw_view_func), rev_view_func);
|
247 |
+
}
|
248 |
+
} else {
|
249 |
+
TORCH_CHECK(
|
250 |
+
creation_meta == CreationMeta::DEFAULT,
|
251 |
+
"Non-backward differentiable views must have creation_meta=CreationMeta::DEFAULT");
|
252 |
+
}
|
253 |
+
|
254 |
+
if (is_fw_differentiable) {
|
255 |
+
// Check if base is a forward differentiable view
|
256 |
+
if (diff_view_meta && diff_view_meta->has_fw_view()) {
|
257 |
+
const auto& base_fw_info = diff_view_meta->get_forward_view();
|
258 |
+
new_fw_info = base_fw_info.chain(
|
259 |
+
base, tensor, std::move(view_func), std::move(rev_view_func));
|
260 |
+
} else {
|
261 |
+
new_fw_info =
|
262 |
+
ViewInfo(base, std::move(view_func), std::move(rev_view_func));
|
263 |
+
}
|
264 |
+
}
|
265 |
+
|
266 |
+
if (is_fw_differentiable || is_bw_differentiable) {
|
267 |
+
if (diff_view_meta && diff_view_meta->has_bw_view()) {
|
268 |
+
creation_meta = propagate_creation_meta(
|
269 |
+
diff_view_meta->get_creation_meta(), creation_meta);
|
270 |
+
}
|
271 |
+
throw_error_if_base_and_tensor_are_same(base, tensor);
|
272 |
+
return make_variable_differentiable_view(
|
273 |
+
tensor,
|
274 |
+
std::move(new_bw_info),
|
275 |
+
std::move(new_fw_info),
|
276 |
+
/*shared_view_info*/ false,
|
277 |
+
creation_meta,
|
278 |
+
allow_tensor_metadata_change);
|
279 |
+
} else {
|
280 |
+
return make_variable_non_differentiable_view(
|
281 |
+
base, tensor, allow_tensor_metadata_change);
|
282 |
+
}
|
283 |
+
}
|
284 |
+
|
285 |
+
inline void check_no_requires_grad(
|
286 |
+
const at::Tensor& tensor,
|
287 |
+
const char* name,
|
288 |
+
const char* fn_name = "",
|
289 |
+
bool check_grad_mode = true) {
|
290 |
+
TORCH_CHECK(
|
291 |
+
!(tensor.defined() && tensor.requires_grad()) ||
|
292 |
+
!(check_grad_mode && GradMode::is_enabled()),
|
293 |
+
"The function '",
|
294 |
+
fn_name,
|
295 |
+
"' is not differentiable with respect to argument '",
|
296 |
+
name,
|
297 |
+
"'. This input cannot have requires_grad True.");
|
298 |
+
}
|
299 |
+
|
300 |
+
inline void check_no_requires_grad(
|
301 |
+
const c10::optional<at::Tensor>& tensor,
|
302 |
+
const char* name,
|
303 |
+
const char* fn_name = "") {
|
304 |
+
if (tensor.has_value()) {
|
305 |
+
check_no_requires_grad(*tensor, name, fn_name);
|
306 |
+
}
|
307 |
+
}
|
308 |
+
|
309 |
+
inline void check_no_requires_grad(
|
310 |
+
at::ITensorListRef tensors,
|
311 |
+
const char* name,
|
312 |
+
const char* fn_name = "") {
|
313 |
+
// GradMode check is expensive, so check it only once for TensorLists
|
314 |
+
if (!GradMode::is_enabled()) {
|
315 |
+
return;
|
316 |
+
}
|
317 |
+
for (auto& tensor : tensors) {
|
318 |
+
check_no_requires_grad(tensor, name, fn_name, /*check_grad_mode*/ false);
|
319 |
+
}
|
320 |
+
}
|
321 |
+
|
322 |
+
inline void check_no_requires_grad(
|
323 |
+
const c10::List<c10::optional<at::Tensor>>& tensors,
|
324 |
+
const char* name,
|
325 |
+
const char* fn_name = "") {
|
326 |
+
// GradMode check is expensive, so check it only once for TensorLists
|
327 |
+
if (!GradMode::is_enabled()) {
|
328 |
+
return;
|
329 |
+
}
|
330 |
+
for (c10::optional<at::Tensor> tensor : tensors) {
|
331 |
+
if (tensor.has_value()) {
|
332 |
+
check_no_requires_grad(*tensor, name, fn_name, /*check_grad_mode*/ false);
|
333 |
+
}
|
334 |
+
}
|
335 |
+
}
|
336 |
+
|
337 |
+
// Assumed that saved tensor lists are never inplace outputs
|
338 |
+
inline std::vector<SavedVariable> make_saved_variable_list(
|
339 |
+
at::ITensorListRef tensors,
|
340 |
+
const bool is_output = false) {
|
341 |
+
return fmap(tensors, [&is_output](const at::Tensor& tensor) -> SavedVariable {
|
342 |
+
return SavedVariable{tensor, is_output /* is output */};
|
343 |
+
});
|
344 |
+
}
|
345 |
+
|
346 |
+
// Assumed that saved tensor lists are never inplace outputs
|
347 |
+
inline std::vector<SavedVariable> make_saved_variable_list(
|
348 |
+
const c10::List<c10::optional<at::Tensor>>& tensors,
|
349 |
+
const bool is_output = false) {
|
350 |
+
return fmap(
|
351 |
+
tensors,
|
352 |
+
[&is_output](const c10::optional<at::Tensor>& tensor) -> SavedVariable {
|
353 |
+
if (tensor.has_value()) {
|
354 |
+
return SavedVariable{*tensor, is_output /* is output */};
|
355 |
+
} else {
|
356 |
+
return SavedVariable{at::Tensor(), is_output /* is output */};
|
357 |
+
}
|
358 |
+
});
|
359 |
+
}
|
360 |
+
|
361 |
+
inline std::vector<std::vector<int64_t>> to_args_sizes(
|
362 |
+
at::ITensorListRef tensors) {
|
363 |
+
std::vector<std::vector<int64_t>> args_sizes(tensors.size());
|
364 |
+
size_t i = 0;
|
365 |
+
for (const auto& t : tensors) {
|
366 |
+
args_sizes[i++] = t.sizes().vec();
|
367 |
+
}
|
368 |
+
return args_sizes;
|
369 |
+
}
|
370 |
+
|
371 |
+
inline std::vector<std::vector<c10::SymInt>> to_args_sizes_symint(
|
372 |
+
at::ITensorListRef tensors) {
|
373 |
+
std::vector<std::vector<c10::SymInt>> args_sizes(tensors.size());
|
374 |
+
size_t i = 0;
|
375 |
+
for (const auto& t : tensors) {
|
376 |
+
args_sizes[i++] = t.sym_sizes().vec();
|
377 |
+
}
|
378 |
+
return args_sizes;
|
379 |
+
}
|
380 |
+
|
381 |
+
inline std::vector<c10::ScalarType> to_args_scalartypes(
|
382 |
+
at::ITensorListRef tensors) {
|
383 |
+
std::vector<c10::ScalarType> args_scalartypes(tensors.size());
|
384 |
+
size_t i = 0;
|
385 |
+
for (const auto& t : tensors) {
|
386 |
+
args_scalartypes[i++] = t.scalar_type();
|
387 |
+
}
|
388 |
+
return args_scalartypes;
|
389 |
+
}
|
390 |
+
|
391 |
+
namespace impl {
|
392 |
+
|
393 |
+
namespace {
|
394 |
+
|
395 |
+
// If run_jit_decomposition were not a member function, we would be able
|
396 |
+
// to pass this as a template parameter to c10::Boxedkernel::makeFromFunction.
|
397 |
+
// However, member functions cannot be passed this way - instead we wrap our
|
398 |
+
// call in this functor so it can be passed to c10::BoxedKernel::makeFromFunctor
|
399 |
+
class WrapperFunctor final : public c10::OperatorKernel {
|
400 |
+
public:
|
401 |
+
WrapperFunctor(JitDecompInterface* impl) : impl_(impl){};
|
402 |
+
|
403 |
+
void operator()(
|
404 |
+
const c10::OperatorHandle& op,
|
405 |
+
c10::DispatchKeySet ks,
|
406 |
+
torch::jit::Stack* stack) {
|
407 |
+
impl_->run_jit_decomposition(op, stack);
|
408 |
+
}
|
409 |
+
JitDecompInterface* impl_;
|
410 |
+
};
|
411 |
+
|
412 |
+
} // namespace
|
413 |
+
|
414 |
+
template <class Return, class... Args>
|
415 |
+
Return run_jit_decomposition_with_args_for_jvp(
|
416 |
+
c10::string_view name,
|
417 |
+
const c10::OperatorHandle& opHandle,
|
418 |
+
c10::DispatchKeySet dispatchKeySet,
|
419 |
+
Args&&... args) {
|
420 |
+
// see NOTE: [Jit Decomposition Interface]
|
421 |
+
JitDecompInterface* impl = getJitDecompImpl();
|
422 |
+
|
423 |
+
TORCH_CHECK_NOT_IMPLEMENTED(
|
424 |
+
impl && impl->has_jit_decomposition(opHandle.schema()),
|
425 |
+
"Trying to use forward AD with ",
|
426 |
+
name,
|
427 |
+
" that does not support it because it has not been implemented yet.\nPlease file an issue "
|
428 |
+
"to PyTorch at https://github.com/pytorch/pytorch/issues/new?template=feature-request.yml "
|
429 |
+
"so that we can prioritize its implementation.\n"
|
430 |
+
"Note that forward AD support for some operators require PyTorch to be built with "
|
431 |
+
"TorchScript and for JIT to be enabled. "
|
432 |
+
"If the environment var PYTORCH_JIT=0 is set or if the library is not built with TorchScript, "
|
433 |
+
"some operators may no longer be used with forward AD.");
|
434 |
+
|
435 |
+
return c10::KernelFunction::makeFromBoxedKernel(
|
436 |
+
c10::BoxedKernel::makeFromFunctor(
|
437 |
+
std::make_unique<WrapperFunctor>(impl)))
|
438 |
+
.call<Return, Args...>(
|
439 |
+
opHandle, dispatchKeySet, std::forward<Args>(args)...);
|
440 |
+
}
|
441 |
+
|
442 |
+
} // namespace impl
|
443 |
+
|
444 |
+
} // namespace autograd
|
445 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/autograd_not_implemented_fallback.h
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/library.h>
|
4 |
+
|
5 |
+
namespace torch::autograd {
|
6 |
+
|
7 |
+
// Default DispatchKey::Autograd fallback for built-in operators.
|
8 |
+
// Can be registered for custom operators.
|
9 |
+
TORCH_API torch::CppFunction autogradNotImplementedFallback();
|
10 |
+
|
11 |
+
// Default DispatchKey::AdInplaceOrView fallback for built-in operators
|
12 |
+
// Can be registered for custom operators.
|
13 |
+
TORCH_API torch::CppFunction autogradNotImplementedInplaceOrViewFallback();
|
14 |
+
|
15 |
+
// Default DispatchKey::Autograd fallback for all other operators (i.e. custom
|
16 |
+
// operators)
|
17 |
+
TORCH_API torch::CppFunction basicAutogradNotImplementedFallback();
|
18 |
+
|
19 |
+
enum class AutogradFallbackMode {
|
20 |
+
Nothing, // Fallback is a redispatch
|
21 |
+
Warn, // Fallback raises a warning if backward is called
|
22 |
+
Error, // Fallback raises an error if backward is called
|
23 |
+
};
|
24 |
+
|
25 |
+
// Change the behavior of "basicAutogradNotImplementedFallback"
|
26 |
+
// In Python this is:
|
27 |
+
// - torch._C._set_autograd_fallback_mode(str) -> None
|
28 |
+
// - torch._C._get_autograd_fallback_mode() -> str
|
29 |
+
TORCH_API void setAutogradFallbackMode(AutogradFallbackMode mode);
|
30 |
+
TORCH_API AutogradFallbackMode getAutogradFallbackMode();
|
31 |
+
|
32 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/custom_function.h
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/ivalue.h>
|
4 |
+
#include <c10/core/SymInt.h>
|
5 |
+
#include <c10/util/flat_hash_map.h>
|
6 |
+
#include <c10/util/irange.h>
|
7 |
+
#include <torch/csrc/autograd/function.h>
|
8 |
+
#include <torch/csrc/autograd/variable.h>
|
9 |
+
#include <torch/csrc/autograd/variable_info.h>
|
10 |
+
#include <vector>
|
11 |
+
|
12 |
+
namespace torch::autograd {
|
13 |
+
|
14 |
+
using optional_variable_list = std::vector<c10::optional<Variable>>;
|
15 |
+
using _jvp_fn_t = std::function<variable_list(variable_list, variable_list)>;
|
16 |
+
using _view_as_self_fn_t = std::function<at::Tensor(at::Tensor)>;
|
17 |
+
|
18 |
+
TORCH_API std::vector<c10::optional<Variable>> _wrap_outputs(
|
19 |
+
const variable_list& input_vars,
|
20 |
+
const std::unordered_set<at::TensorImpl*>& non_differentiable,
|
21 |
+
const std::unordered_set<at::TensorImpl*>& dirty_inputs,
|
22 |
+
const at::ArrayRef<c10::optional<Variable>> raw_outputs,
|
23 |
+
const std::shared_ptr<Node>& cdata,
|
24 |
+
const _jvp_fn_t& jvp_user_function,
|
25 |
+
const std::unordered_set<at::TensorImpl*>& to_save_if_setup_context,
|
26 |
+
const _view_as_self_fn_t& view_as_self_fn);
|
27 |
+
|
28 |
+
TORCH_API void check_variable_result(
|
29 |
+
const at::TensorBase& original,
|
30 |
+
const at::TensorBase& result,
|
31 |
+
const std::string& hook_name);
|
32 |
+
|
33 |
+
// Get the return type of the forward function of the custom Function class X
|
34 |
+
template <typename X, typename... Args>
|
35 |
+
using forward_t = decltype(X::forward(nullptr, std::declval<Args>()...));
|
36 |
+
|
37 |
+
/// To use custom autograd operations, implement a Function subclass with
|
38 |
+
/// static forward and backward functions:
|
39 |
+
///
|
40 |
+
/// `forward` can take as many arguments as you want and should return either a
|
41 |
+
/// variable list or a Variable. Use of any direct Variable arguments will be
|
42 |
+
/// registered in the graph but no vectors/sets or any other data structures
|
43 |
+
/// will be traversed. You can use c10::optional<Tensor> as one of the arguments
|
44 |
+
/// and it will be registered as a variable in the graph if the argument has a
|
45 |
+
/// value. It should take a pointer to `torch::autograd::AutogradContext` as the
|
46 |
+
/// first argument. Variables can be saved in the `ctx` using
|
47 |
+
/// `ctx->save_for_backward`
|
48 |
+
/// (see `torch::autograd::AutogradContext::save_for_backward`) and other data
|
49 |
+
/// can be saved in the `ctx->saved_data` map
|
50 |
+
/// (see `torch::autograd::AutogradContext::saved_data`)
|
51 |
+
/// in the form of `<std::string, at::IValue>` pairs.
|
52 |
+
///
|
53 |
+
/// `backward` should take a pointer to `torch::autograd::AutogradContext`
|
54 |
+
/// and a variable list containing as many Variables as there were outputs from
|
55 |
+
/// `forward` as arguments. It should return as many Variables as there were
|
56 |
+
/// inputs with each of them containing the gradient w.r.t. its corresponding
|
57 |
+
/// input. Variables saved in `forward` can be accessed with
|
58 |
+
/// `ctx->get_saved_variables` (see
|
59 |
+
/// `torch::autograd::AutogradContext::get_saved_variables`) and other saved
|
60 |
+
/// data can be accessed from `ctx->saved_data`.
|
61 |
+
///
|
62 |
+
/// For example:
|
63 |
+
/// ```
|
64 |
+
/// class MyFunction : public Function<MyFunction> {
|
65 |
+
/// public:
|
66 |
+
/// static variable_list forward(AutogradContext *ctx, int n, Variable var) {
|
67 |
+
/// // Save data for backward in context
|
68 |
+
/// ctx->saved_data["n"] = n;
|
69 |
+
/// var.mul_(2);
|
70 |
+
/// // Mark var as modified by inplace operation
|
71 |
+
/// ctx->mark_dirty({var});
|
72 |
+
/// return {var};
|
73 |
+
/// }
|
74 |
+
///
|
75 |
+
/// static variable_list backward(AutogradContext *ctx, variable_list
|
76 |
+
/// grad_output) {
|
77 |
+
/// // Use data saved in forward
|
78 |
+
/// auto n = ctx->saved_data["n"].toInt();
|
79 |
+
/// return {grad_output[0]*n};
|
80 |
+
/// }
|
81 |
+
/// };
|
82 |
+
/// ```
|
83 |
+
///
|
84 |
+
/// To use `MyFunction`:
|
85 |
+
/// ```
|
86 |
+
/// Variable x;
|
87 |
+
/// auto y = MyFunction::apply(6, x);
|
88 |
+
/// // Example backward call
|
89 |
+
/// y[0].sum().backward();
|
90 |
+
/// ```
|
91 |
+
template <class T>
|
92 |
+
struct TORCH_API Function {
|
93 |
+
// We need to use a different template parameter than T here because T will
|
94 |
+
// inherit from Function, and when Function<T> is instantiated, T::forward
|
95 |
+
// is not declared yet.
|
96 |
+
// The enable_if check is to ensure that the user doesn't explicitly provide
|
97 |
+
// the parameter X.
|
98 |
+
template <typename X = T, typename... Args>
|
99 |
+
static auto apply(Args&&... args)
|
100 |
+
-> std::enable_if_t<std::is_same_v<X, T>, forward_t<X, Args...>>;
|
101 |
+
};
|
102 |
+
|
103 |
+
/// Context to save information during `forward` that can be accessed in
|
104 |
+
/// `backward` in custom autograd operations (see `torch::autograd::Function`
|
105 |
+
/// for details).
|
106 |
+
struct TORCH_API AutogradContext {
|
107 |
+
AutogradContext() = default;
|
108 |
+
AutogradContext(const AutogradContext& other) = delete;
|
109 |
+
AutogradContext& operator=(const AutogradContext& other) = delete;
|
110 |
+
|
111 |
+
/// Can be used to save non-variable data for `backward`.
|
112 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
113 |
+
ska::flat_hash_map<std::string, at::IValue> saved_data;
|
114 |
+
|
115 |
+
/// Saves the list of variables for a future call to `backward`. This
|
116 |
+
/// should be called at most once from inside of `forward`.
|
117 |
+
void save_for_backward(variable_list to_save);
|
118 |
+
/// Marks variables in the list as modified in an in-place operation. This
|
119 |
+
/// should be called at most once from inside of `forward` and all arguments
|
120 |
+
/// should be inputs.
|
121 |
+
void mark_dirty(const variable_list& inputs);
|
122 |
+
/// Marks outputs in the list as not requiring gradients. This should be
|
123 |
+
/// called at most once from inside of `forward` and all arguments should be
|
124 |
+
/// outputs.
|
125 |
+
void mark_non_differentiable(const variable_list& outputs);
|
126 |
+
// Sets whether undefined output grad tensors should be expanded to tensors
|
127 |
+
// full of zeros before calling backward function. Default value is true.
|
128 |
+
void set_materialize_grads(bool value);
|
129 |
+
|
130 |
+
/// Get the list of variables that were saved in `forward` using
|
131 |
+
/// `save_for_backward()`. Before returning them to the user, a check is made
|
132 |
+
/// to ensure that they were not modified by any in-place operations.
|
133 |
+
variable_list get_saved_variables() const;
|
134 |
+
const std::unordered_set<at::TensorImpl*>& get_and_bump_dirty() const;
|
135 |
+
const std::unordered_set<at::TensorImpl*>& get_non_differentiable() const;
|
136 |
+
|
137 |
+
/// Expose the Node's `task_should_compute_output` method to the cpp
|
138 |
+
/// custom autograd Function as `needs_input_grad`.
|
139 |
+
bool needs_input_grad(size_t output_edge_index) const;
|
140 |
+
bool needs_input_grad(std::initializer_list<IndexRange> idxs) const;
|
141 |
+
|
142 |
+
private:
|
143 |
+
std::unordered_set<at::TensorImpl*> non_differentiable_;
|
144 |
+
std::unordered_set<at::TensorImpl*> dirty_inputs_;
|
145 |
+
std::vector<torch::autograd::SavedVariable> saved_variables_;
|
146 |
+
variable_list to_save_;
|
147 |
+
bool materialize_grads_{true};
|
148 |
+
|
149 |
+
// The CppNode in the autograd graph that owns this AutogradContext. We need a
|
150 |
+
// weak_ptr to avoid a refcycle. Since grad_fn_ owns this AutogradContext, it
|
151 |
+
// will always be alive when we want to use it.
|
152 |
+
std::weak_ptr<Node> grad_fn_;
|
153 |
+
bool has_freed_buffers_{false};
|
154 |
+
|
155 |
+
void save_variables();
|
156 |
+
|
157 |
+
template <class T>
|
158 |
+
friend struct CppNode;
|
159 |
+
};
|
160 |
+
|
161 |
+
// CppNode<T> is the Node in the autograd graph that represents the user defined
|
162 |
+
// backward function for Function<T>. Calls to CppNode::apply are forward to
|
163 |
+
// T::backward().
|
164 |
+
template <class T>
|
165 |
+
struct CppNode : public Node {
|
166 |
+
variable_list apply(variable_list&& inputs) override;
|
167 |
+
AutogradContext ctx_;
|
168 |
+
std::vector<bool> is_variable_input_;
|
169 |
+
std::vector<VariableInfo> input_info_;
|
170 |
+
std::vector<VariableInfo> output_info_;
|
171 |
+
|
172 |
+
void release_variables() override;
|
173 |
+
|
174 |
+
void set_ctx_grad_fn(const std::shared_ptr<Node>& node);
|
175 |
+
void save_variables_to_ctx();
|
176 |
+
};
|
177 |
+
|
178 |
+
struct ExtractVariables : IterArgs<ExtractVariables> {
|
179 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
180 |
+
std::vector<bool>& is_var_;
|
181 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
182 |
+
variable_list& list_;
|
183 |
+
ExtractVariables(std::vector<bool>& is_var, variable_list& list)
|
184 |
+
: is_var_(is_var), list_(list) {}
|
185 |
+
void operator()(const c10::optional<at::Tensor>& x) {
|
186 |
+
// NOLINTNEXTLINE(bugprone-branch-clone)
|
187 |
+
if (x.has_value() && x.value().defined()) {
|
188 |
+
is_var_.push_back(true);
|
189 |
+
list_.emplace_back(x.value());
|
190 |
+
} else {
|
191 |
+
is_var_.push_back(false);
|
192 |
+
}
|
193 |
+
}
|
194 |
+
void operator()(const at::Tensor& x) {
|
195 |
+
is_var_.push_back(true);
|
196 |
+
list_.emplace_back(x);
|
197 |
+
}
|
198 |
+
void operator()(const at::TensorList& list) {
|
199 |
+
for (const at::Tensor& x : list) {
|
200 |
+
is_var_.push_back(true);
|
201 |
+
list_.emplace_back(x);
|
202 |
+
}
|
203 |
+
}
|
204 |
+
template <typename T>
|
205 |
+
void operator()(const T& x) {
|
206 |
+
is_var_.push_back(false);
|
207 |
+
}
|
208 |
+
};
|
209 |
+
|
210 |
+
template <typename... Args>
|
211 |
+
inline void extract_vars(
|
212 |
+
std::vector<bool>& is_var,
|
213 |
+
variable_list& list,
|
214 |
+
Args&&... args) {
|
215 |
+
ExtractVariables(is_var, list).apply(std::forward<Args>(args)...);
|
216 |
+
}
|
217 |
+
|
218 |
+
template <typename T>
|
219 |
+
std::enable_if_t<std::is_same_v<T, variable_list>, T> to_output_type(
|
220 |
+
std::vector<c10::optional<Variable>>& output_list) {
|
221 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
222 |
+
variable_list result;
|
223 |
+
std::transform(
|
224 |
+
output_list.begin(),
|
225 |
+
output_list.end(),
|
226 |
+
std::back_inserter(result),
|
227 |
+
[](const c10::optional<Variable>& var) { return *var; });
|
228 |
+
return result;
|
229 |
+
}
|
230 |
+
|
231 |
+
template <typename T>
|
232 |
+
std::enable_if_t<std::is_same_v<T, Variable>, T> to_output_type(
|
233 |
+
std::vector<c10::optional<Variable>>& output_list) {
|
234 |
+
return *output_list[0];
|
235 |
+
}
|
236 |
+
|
237 |
+
inline std::vector<c10::optional<Variable>> to_optional(Variable& output) {
|
238 |
+
return std::vector<c10::optional<Variable>>{output};
|
239 |
+
}
|
240 |
+
|
241 |
+
inline std::vector<c10::optional<Variable>> to_optional(variable_list& output) {
|
242 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
243 |
+
std::vector<c10::optional<Variable>> result;
|
244 |
+
std::transform(
|
245 |
+
output.begin(),
|
246 |
+
output.end(),
|
247 |
+
std::back_inserter(result),
|
248 |
+
[](const Variable& var) { return var; });
|
249 |
+
return result;
|
250 |
+
}
|
251 |
+
|
252 |
+
template <class T>
|
253 |
+
template <typename X, typename... Args>
|
254 |
+
auto Function<T>::apply(Args&&... args)
|
255 |
+
-> std::enable_if_t<std::is_same_v<X, T>, forward_t<X, Args...>> {
|
256 |
+
const auto& functorch_tls = at::functorch::functorchTLSAccessor();
|
257 |
+
if (functorch_tls) {
|
258 |
+
// Function support for functorch is handled in Python.
|
259 |
+
// Here we are dealing with a (C++) Function, which is not supported.
|
260 |
+
// Let's raise an error instead of being silently incorrect.
|
261 |
+
functorch_tls->checkSupportsCppAutogradFunction();
|
262 |
+
}
|
263 |
+
|
264 |
+
std::shared_ptr<CppNode<T>> node(new CppNode<T>(), deleteNode);
|
265 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
266 |
+
variable_list input_vars;
|
267 |
+
|
268 |
+
const size_t num_inputs = sizeof...(Args);
|
269 |
+
input_vars.reserve(num_inputs);
|
270 |
+
node->is_variable_input_.reserve(num_inputs);
|
271 |
+
// TODO Add tracing here
|
272 |
+
extract_vars(node->is_variable_input_, input_vars, args...);
|
273 |
+
|
274 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
275 |
+
bool is_executable =
|
276 |
+
GradMode::is_enabled() && any_variable_requires_grad(input_vars);
|
277 |
+
auto next_edges =
|
278 |
+
(is_executable ? collect_next_edges(input_vars) : edge_list());
|
279 |
+
node->set_ctx_grad_fn(node);
|
280 |
+
node->set_next_edges(std::move(next_edges));
|
281 |
+
node->clear_input_metadata();
|
282 |
+
|
283 |
+
node->input_info_.reserve(input_vars.size());
|
284 |
+
for (auto& var : input_vars) {
|
285 |
+
node->input_info_.emplace_back(var);
|
286 |
+
}
|
287 |
+
|
288 |
+
using forward_return_t = forward_t<X, Args...>;
|
289 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
290 |
+
forward_return_t outputs;
|
291 |
+
{
|
292 |
+
AutoGradMode grad_mode(false);
|
293 |
+
outputs = T::forward(&node->ctx_, std::forward<Args>(args)...);
|
294 |
+
}
|
295 |
+
|
296 |
+
_jvp_fn_t jvp_fn = [](const variable_list& inputs,
|
297 |
+
const variable_list& gI) -> variable_list {
|
298 |
+
TORCH_CHECK(
|
299 |
+
false,
|
300 |
+
"jvp is not implemented for the c++ API of custom Function yet.",
|
301 |
+
"Please open a feature request on GitHub if you need this.");
|
302 |
+
};
|
303 |
+
|
304 |
+
auto view_as_self_fn = [](const at::Tensor& x) -> at::Tensor {
|
305 |
+
return x.view_as(x);
|
306 |
+
};
|
307 |
+
|
308 |
+
auto wrapped_outputs = _wrap_outputs(
|
309 |
+
input_vars,
|
310 |
+
node->ctx_.get_non_differentiable(),
|
311 |
+
node->ctx_.get_and_bump_dirty(),
|
312 |
+
to_optional(outputs),
|
313 |
+
is_executable ? node : nullptr,
|
314 |
+
jvp_fn,
|
315 |
+
{},
|
316 |
+
view_as_self_fn);
|
317 |
+
|
318 |
+
node->output_info_.reserve(wrapped_outputs.size());
|
319 |
+
for (auto& output : wrapped_outputs) {
|
320 |
+
if (is_executable && output.has_value()) {
|
321 |
+
node->output_info_.emplace_back(output.value());
|
322 |
+
} else if (is_executable) {
|
323 |
+
node->output_info_.emplace_back();
|
324 |
+
}
|
325 |
+
}
|
326 |
+
|
327 |
+
if (is_executable) {
|
328 |
+
node->save_variables_to_ctx();
|
329 |
+
}
|
330 |
+
|
331 |
+
// wrapped_outputs will be a variable_list so, convert it to the correct
|
332 |
+
// return type. Only Variable and variable_list are accepted as return types.
|
333 |
+
return to_output_type<forward_return_t>(wrapped_outputs);
|
334 |
+
}
|
335 |
+
|
336 |
+
// The logic here is the same as PyNode::apply, so changes to it should be done
|
337 |
+
// in both the places
|
338 |
+
template <class T>
|
339 |
+
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
|
340 |
+
variable_list CppNode<T>::apply(variable_list&& inputs) {
|
341 |
+
at::OptionalDeviceGuard _device_guard;
|
342 |
+
|
343 |
+
auto num_inputs = inputs.size();
|
344 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
345 |
+
variable_list backward_inputs;
|
346 |
+
backward_inputs.reserve(num_inputs);
|
347 |
+
for (const auto i : c10::irange(num_inputs)) {
|
348 |
+
if (inputs[i].defined() || !ctx_.materialize_grads_) {
|
349 |
+
backward_inputs.emplace_back(std::move(inputs[i]));
|
350 |
+
} else {
|
351 |
+
backward_inputs.emplace_back(output_info_[i].zeros(_device_guard));
|
352 |
+
}
|
353 |
+
}
|
354 |
+
|
355 |
+
// Acquire lock to here protect thread safety on custom C++ Autograd Node
|
356 |
+
// This is needed for the custom Autograd Node since we don't know if the
|
357 |
+
// user defined Node will write to the shared data during backward.
|
358 |
+
// see Note [Thread Safety on Autograd Node]
|
359 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
360 |
+
|
361 |
+
auto outputs = T::backward(&ctx_, backward_inputs);
|
362 |
+
|
363 |
+
const auto num_forward_inputs =
|
364 |
+
static_cast<int64_t>(is_variable_input_.size());
|
365 |
+
auto num_outputs = static_cast<int64_t>(outputs.size());
|
366 |
+
// Returning too many results is ok, but only as long as they're all
|
367 |
+
// undefined. Truncate the result vector in that case.
|
368 |
+
if (num_outputs > num_forward_inputs) {
|
369 |
+
bool all_undef = true;
|
370 |
+
for (const auto i : c10::irange(num_forward_inputs, num_outputs)) {
|
371 |
+
all_undef &= (!outputs[i].defined());
|
372 |
+
}
|
373 |
+
if (all_undef) {
|
374 |
+
outputs.resize(num_forward_inputs);
|
375 |
+
num_outputs = num_forward_inputs;
|
376 |
+
}
|
377 |
+
}
|
378 |
+
|
379 |
+
if (num_outputs != num_forward_inputs) {
|
380 |
+
std::string msg("function ");
|
381 |
+
msg += name() + " returned an incorrect number of gradients (expected ";
|
382 |
+
msg += c10::to_string(num_forward_inputs) + ", got ";
|
383 |
+
msg += c10::to_string(num_outputs) + ")";
|
384 |
+
throw std::runtime_error(msg);
|
385 |
+
}
|
386 |
+
|
387 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
388 |
+
variable_list results;
|
389 |
+
results.reserve(num_outputs);
|
390 |
+
for (const auto i : c10::irange(num_outputs)) {
|
391 |
+
if (!is_variable_input_[i]) {
|
392 |
+
if (outputs[i].defined()) {
|
393 |
+
std::string msg("function ");
|
394 |
+
msg += name() +
|
395 |
+
" returned a gradient different that is defined at position ";
|
396 |
+
msg += c10::to_string(i + 1) +
|
397 |
+
", but the corresponding forward input was not a Variable";
|
398 |
+
throw std::runtime_error(msg);
|
399 |
+
}
|
400 |
+
continue;
|
401 |
+
}
|
402 |
+
results.emplace_back(outputs[i]);
|
403 |
+
}
|
404 |
+
return results;
|
405 |
+
}
|
406 |
+
|
407 |
+
template <class T>
|
408 |
+
void CppNode<T>::release_variables() {
|
409 |
+
// lock to ensure thread safety, see [Thread Safety on Autograd Node]
|
410 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
411 |
+
ctx_.saved_variables_.clear();
|
412 |
+
ctx_.has_freed_buffers_ = true;
|
413 |
+
}
|
414 |
+
|
415 |
+
template <class T>
|
416 |
+
void CppNode<T>::save_variables_to_ctx() {
|
417 |
+
ctx_.save_variables();
|
418 |
+
}
|
419 |
+
|
420 |
+
template <class T>
|
421 |
+
void CppNode<T>::set_ctx_grad_fn(const std::shared_ptr<Node>& node) {
|
422 |
+
ctx_.grad_fn_ = node;
|
423 |
+
}
|
424 |
+
|
425 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/edge.h
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdint>
|
4 |
+
#include <functional>
|
5 |
+
#include <memory>
|
6 |
+
|
7 |
+
#include <c10/util/hash.h>
|
8 |
+
|
9 |
+
namespace torch::autograd {
|
10 |
+
|
11 |
+
struct Node;
|
12 |
+
|
13 |
+
/// Represents a particular input of a function.
|
14 |
+
struct Edge {
|
15 |
+
Edge() noexcept : function(nullptr), input_nr(0) {}
|
16 |
+
|
17 |
+
Edge(std::shared_ptr<Node> function_, uint32_t input_nr_) noexcept
|
18 |
+
: function(std::move(function_)), input_nr(input_nr_) {}
|
19 |
+
|
20 |
+
/// Convenience method to test if an edge is valid.
|
21 |
+
bool is_valid() const noexcept {
|
22 |
+
return function != nullptr;
|
23 |
+
}
|
24 |
+
|
25 |
+
// Required for use in associative containers.
|
26 |
+
bool operator==(const Edge& other) const noexcept {
|
27 |
+
return this->function == other.function && this->input_nr == other.input_nr;
|
28 |
+
}
|
29 |
+
|
30 |
+
bool operator!=(const Edge& other) const noexcept {
|
31 |
+
return !(*this == other);
|
32 |
+
}
|
33 |
+
|
34 |
+
/// The function this `Edge` points to.
|
35 |
+
std::shared_ptr<Node> function;
|
36 |
+
|
37 |
+
/// The identifier of a particular input to the function.
|
38 |
+
uint32_t input_nr;
|
39 |
+
};
|
40 |
+
} // namespace torch::autograd
|
41 |
+
|
42 |
+
// The idiomatic way of enabling use of a custom type as the key of hash
|
43 |
+
// containers in C++11. This method removes the requirement of having to pass
|
44 |
+
// a custom hasher to std::unordered_{map, set}.
|
45 |
+
// See http://en.cppreference.com/w/cpp/utility/hash for more information.
|
46 |
+
namespace std {
|
47 |
+
template <>
|
48 |
+
struct hash<torch::autograd::Edge> {
|
49 |
+
// These type aliases are required by the standard.
|
50 |
+
using argument_type = torch::autograd::Edge;
|
51 |
+
using return_type = size_t;
|
52 |
+
return_type operator()(const argument_type& edge) const noexcept {
|
53 |
+
return c10::get_hash(edge.function, edge.input_nr);
|
54 |
+
}
|
55 |
+
};
|
56 |
+
} // namespace std
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/function.h
ADDED
@@ -0,0 +1,763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/anomaly_mode.h>
|
4 |
+
#include <torch/csrc/autograd/edge.h>
|
5 |
+
#include <torch/csrc/autograd/grad_mode.h>
|
6 |
+
#include <torch/csrc/autograd/graph_task.h>
|
7 |
+
#include <torch/csrc/autograd/input_metadata.h>
|
8 |
+
#include <torch/csrc/autograd/saved_variable.h>
|
9 |
+
#include <torch/csrc/autograd/variable.h>
|
10 |
+
#include <torch/csrc/utils/python_stub.h>
|
11 |
+
#include <torch/csrc/utils/variadic.h>
|
12 |
+
|
13 |
+
#include <ATen/SequenceNumber.h>
|
14 |
+
#include <ATen/core/Tensor.h>
|
15 |
+
#include <ATen/record_function.h>
|
16 |
+
#include <c10/util/Exception.h>
|
17 |
+
#include <c10/util/irange.h>
|
18 |
+
|
19 |
+
#include <algorithm>
|
20 |
+
#include <cstdint>
|
21 |
+
#include <initializer_list>
|
22 |
+
#include <memory>
|
23 |
+
#include <string>
|
24 |
+
#include <utility>
|
25 |
+
#include <vector>
|
26 |
+
|
27 |
+
namespace torch::autograd {
|
28 |
+
|
29 |
+
struct Edge;
|
30 |
+
struct FunctionPostHook;
|
31 |
+
struct FunctionPreHook;
|
32 |
+
|
33 |
+
using tensor_list = std::vector<at::Tensor>;
|
34 |
+
using variable_list = std::vector<Variable>;
|
35 |
+
using edge_list = std::vector<Edge>;
|
36 |
+
using saved_variable_list = std::vector<SavedVariable>;
|
37 |
+
using IndexRange = std::pair<size_t, size_t>;
|
38 |
+
using torch::dynamo::autograd::CompiledNodeArgs;
|
39 |
+
using torch::dynamo::autograd::SwapSavedVariables;
|
40 |
+
|
41 |
+
// Custom deleter to prevent stack overflows.
|
42 |
+
TORCH_API void deleteNode(Node* function);
|
43 |
+
|
44 |
+
// Guard that sets and restores the evaluating node
|
45 |
+
class NodeGuard {
|
46 |
+
public:
|
47 |
+
explicit NodeGuard(std::shared_ptr<Node> node);
|
48 |
+
~NodeGuard();
|
49 |
+
|
50 |
+
private:
|
51 |
+
std::shared_ptr<Node> last_evaluating_node_;
|
52 |
+
};
|
53 |
+
|
54 |
+
// Return the Node currently being evaluated (if any)
|
55 |
+
// This is only set during the backward pass while a Node is being
|
56 |
+
// executed.
|
57 |
+
TORCH_API std::shared_ptr<Node> get_current_node();
|
58 |
+
|
59 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
60 |
+
// Node
|
61 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
62 |
+
// A `Node` is an abstract class that represents an operation taking zero
|
63 |
+
// or more input `Variable`s and producing zero or more output `Variable`s. All
|
64 |
+
// functions in PyTorch's autograd machinery derive from this class and
|
65 |
+
// override its `apply` method. Instances of such subclasses will then be
|
66 |
+
// invokable via the call operator.
|
67 |
+
//
|
68 |
+
// Nodes in the Autograd Graph
|
69 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
70 |
+
// When viewing the autograd system as a graph, `Node`s are the vertices or
|
71 |
+
// nodes, connected to each other via (directed) `Edge`s, which themselves are
|
72 |
+
// represented via (`Node`, input_nr) pairs. `Variable`s are the outputs to
|
73 |
+
// and inputs of `Node`s, and travel between these edges during execution
|
74 |
+
// of the graph. When two or more `Edge`s (from different sources) point at the
|
75 |
+
// same input to a `Node`, the values produced along all of these edges are
|
76 |
+
// implicitly summed prior to being forwarded to the target `Node`.
|
77 |
+
//
|
78 |
+
// Hierarchy
|
79 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
80 |
+
// Subclasses usually represent differentiable functions as well as their
|
81 |
+
// gradient operators. Note, however, that due to the very general definition
|
82 |
+
// of a `Node` taking *zero* or more inputs and producing *zero* or more
|
83 |
+
// outputs, uses of `Node`s are flexible and extend beyond purely
|
84 |
+
// mathematical operations. For example, the `AccumulateGrad` function is a
|
85 |
+
// *sink*: it takes one input, but produces no outputs, instead accumulating
|
86 |
+
// the input as a side effect. At the other extreme, the `GraphRoot` function
|
87 |
+
// receives no inputs from other functions, but produces multiple outputs.
|
88 |
+
//
|
89 |
+
// Interface
|
90 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
91 |
+
// The most important method on `Node` is the call operator, which takes in
|
92 |
+
// a list of variables and produces a list of variables. The precise size of
|
93 |
+
// these lists can be determined with `num_inputs()` and `num_outputs()`.
|
94 |
+
// `Node`s are stitched together via their `next_edge` interface, which let
|
95 |
+
// you manipulate the set of outgoing edges of a `Node`. You can add an
|
96 |
+
// edge with `add_next_edge()`, retrieve an edge with `next_edge(index)` and
|
97 |
+
// iterate over them via the `next_edges()` method. Other methods exist for
|
98 |
+
// integration with the JIT and other parts of PyTorch. Every `Node` has a
|
99 |
+
// *sequence number* that increases monotonically in the order of `Node`
|
100 |
+
// construction. It can be retrieved via the `sequence_nr()` method. Note that
|
101 |
+
// this sequence number is *thread local*. This means that when `Node`s
|
102 |
+
// `A`, `B` and `C` are created consecutively in the same thread, their
|
103 |
+
// sequence numbers will be ordered `A` < `B` < `C`. If, however, `A` and `B`
|
104 |
+
// are created in one thread and `C` is created in a new thread, there are *no
|
105 |
+
// guarantees* w.r.t. the ordering of `C` relative to `A` or `B`.
|
106 |
+
// See NOTE [ Sequence Number] for more details on the usages of sequence
|
107 |
+
// number.
|
108 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
109 |
+
struct TORCH_API Node : std::enable_shared_from_this<Node> {
|
110 |
+
public:
|
111 |
+
/// Construct a new `Node` with the given `next_edges`
|
112 |
+
explicit Node(uint64_t sequence_nr, edge_list&& next_edges = edge_list())
|
113 |
+
: sequence_nr_(sequence_nr), next_edges_(std::move(next_edges)) {
|
114 |
+
for (const Edge& edge : next_edges_) {
|
115 |
+
update_topological_nr(edge);
|
116 |
+
}
|
117 |
+
|
118 |
+
if (AnomalyMode::is_enabled()) {
|
119 |
+
metadata()->store_stack();
|
120 |
+
|
121 |
+
// If anomaly mode is enabled and graph is constructed, then assign the
|
122 |
+
// currently evaluating node as the parent of this node.
|
123 |
+
// A parent is a Node where this Node is created.
|
124 |
+
// We are tracking the parents to track multiple backward operations.
|
125 |
+
assign_parent();
|
126 |
+
}
|
127 |
+
|
128 |
+
// Store the thread_id of the forward operator.
|
129 |
+
// See NOTE [ Sequence Numbers ]
|
130 |
+
thread_id_ = at::RecordFunction::currentThreadId();
|
131 |
+
}
|
132 |
+
|
133 |
+
explicit Node(edge_list&& next_edges = edge_list())
|
134 |
+
: Node(
|
135 |
+
/*sequence_nr=*/at::sequence_number::get_and_increment(),
|
136 |
+
std::move(next_edges)) {}
|
137 |
+
|
138 |
+
/// Nodes are neither copyable nor moveable.
|
139 |
+
Node(const Node& other) = delete;
|
140 |
+
Node(Node&& other) = delete;
|
141 |
+
Node& operator=(const Node& other) = delete;
|
142 |
+
Node& operator=(Node&& other) = delete;
|
143 |
+
virtual ~Node() = default;
|
144 |
+
|
145 |
+
std::shared_ptr<Node> getptr() {
|
146 |
+
return shared_from_this();
|
147 |
+
}
|
148 |
+
/// Evaluates the function on the given inputs and returns the result of the
|
149 |
+
/// function call.
|
150 |
+
variable_list operator()(variable_list&& inputs) {
|
151 |
+
// In the first iteration of named tensors, autograd ignores names and
|
152 |
+
// operates on unnamed tensors. In the long term, autograd should
|
153 |
+
// probably operate with names.
|
154 |
+
at::NoNamesGuard no_names_guard;
|
155 |
+
|
156 |
+
#ifdef USE_ROCM
|
157 |
+
// Keep track of backward pass for rocblas.
|
158 |
+
at::ROCmBackwardPassGuard in_backward;
|
159 |
+
#endif
|
160 |
+
|
161 |
+
auto step_callbacks =
|
162 |
+
at::getStepCallbacksUnlessEmpty(at::RecordScope::BACKWARD_FUNCTION);
|
163 |
+
if (C10_UNLIKELY(step_callbacks.has_value())) {
|
164 |
+
at::RecordFunction guard(std::move(*step_callbacks));
|
165 |
+
// Using sequence number and thread id to correlate with
|
166 |
+
// the forward pass function
|
167 |
+
guard.setForwardThreadId(thread_id_);
|
168 |
+
if (guard.needsInputs()) {
|
169 |
+
std::vector<c10::IValue> inputs_vec(inputs.begin(), inputs.end());
|
170 |
+
guard.before(
|
171 |
+
name(),
|
172 |
+
c10::ArrayRef<const c10::IValue>(
|
173 |
+
inputs_vec.data(), inputs_vec.size()),
|
174 |
+
static_cast<int64_t>(sequence_nr()));
|
175 |
+
} else {
|
176 |
+
guard.before(name(), static_cast<int64_t>(sequence_nr()));
|
177 |
+
}
|
178 |
+
return apply(std::move(inputs));
|
179 |
+
} else {
|
180 |
+
return apply(std::move(inputs));
|
181 |
+
}
|
182 |
+
}
|
183 |
+
|
184 |
+
// Graph Connectivity API
|
185 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
186 |
+
|
187 |
+
// Inputs. NOTE: inputs of the grad_fn correspond to Tensor outputs of the
|
188 |
+
// forward function.
|
189 |
+
|
190 |
+
// Marker for expected undefined input
|
191 |
+
struct undefined_input {};
|
192 |
+
|
193 |
+
/// Adds the type and shape metadata for a new input. Returns the index of
|
194 |
+
/// of the new input.
|
195 |
+
uint32_t add_input_metadata(
|
196 |
+
const at::TensorOptions& options,
|
197 |
+
c10::SymIntArrayRef shape,
|
198 |
+
bool is_tensor_subclass,
|
199 |
+
bool is_nested) noexcept {
|
200 |
+
uint32_t input_nr = input_metadata_.size();
|
201 |
+
auto meta_shape = MetadataShape{std::in_place_type<SymIntSmallVec>, shape};
|
202 |
+
input_metadata_.emplace_back(
|
203 |
+
options, meta_shape, is_tensor_subclass, is_nested);
|
204 |
+
return input_nr;
|
205 |
+
}
|
206 |
+
|
207 |
+
uint32_t add_input_metadata(const at::Tensor& t) noexcept {
|
208 |
+
uint32_t input_nr = input_metadata_.size();
|
209 |
+
input_metadata_.emplace_back(t);
|
210 |
+
return input_nr;
|
211 |
+
}
|
212 |
+
|
213 |
+
/// Adds a placeholder for an input that will not be used.
|
214 |
+
uint32_t add_input_metadata(undefined_input u) noexcept {
|
215 |
+
uint32_t input_nr = input_metadata_.size();
|
216 |
+
input_metadata_.emplace_back();
|
217 |
+
return input_nr;
|
218 |
+
}
|
219 |
+
|
220 |
+
uint32_t num_inputs() const noexcept {
|
221 |
+
return input_metadata_.size();
|
222 |
+
}
|
223 |
+
|
224 |
+
const InputMetadata& input_metadata(size_t index) const {
|
225 |
+
return input_metadata_[index];
|
226 |
+
}
|
227 |
+
|
228 |
+
// Danger: not thread safe, caller must protect with lock
|
229 |
+
InputMetadata& mutable_input_metadata(size_t index) {
|
230 |
+
return input_metadata_[index];
|
231 |
+
}
|
232 |
+
|
233 |
+
/**
|
234 |
+
* Note: Function Streams
|
235 |
+
* A function's stream (for a given device type) is the stream of the first
|
236 |
+
* element of its input buffer on a device of that type.
|
237 |
+
*
|
238 |
+
* If all elements are on the same device they MUST share a stream. If
|
239 |
+
* elements are on different devices (across multiple GPUs, for example)
|
240 |
+
* they may have different streams.
|
241 |
+
*/
|
242 |
+
c10::optional<c10::Stream> stream() {
|
243 |
+
auto opt_device_type = at::getAccelerator();
|
244 |
+
if (!opt_device_type.has_value()) {
|
245 |
+
return c10::nullopt;
|
246 |
+
}
|
247 |
+
for (const auto& metadata : input_metadata_) {
|
248 |
+
if (metadata.device().type() == opt_device_type.value())
|
249 |
+
return metadata.stream();
|
250 |
+
}
|
251 |
+
|
252 |
+
return c10::nullopt;
|
253 |
+
}
|
254 |
+
|
255 |
+
void clear_input_metadata() {
|
256 |
+
input_metadata_.clear();
|
257 |
+
}
|
258 |
+
|
259 |
+
// Outputs ("Next Edges")
|
260 |
+
|
261 |
+
void update_topological_nr(const Edge& edge) {
|
262 |
+
TORCH_INTERNAL_ASSERT(
|
263 |
+
!has_parent_,
|
264 |
+
"Cannot update a node's topological_nr after it already has a parent."
|
265 |
+
" If we allow this, we can no longer guarantee that a parent's"
|
266 |
+
" topo_nr is always greater than those of all its children")
|
267 |
+
Node* node = edge.function.get();
|
268 |
+
if (node) {
|
269 |
+
auto topo_nr = node->topological_nr();
|
270 |
+
if (topological_nr_ <= topo_nr) {
|
271 |
+
topological_nr_ = topo_nr + 1;
|
272 |
+
}
|
273 |
+
}
|
274 |
+
}
|
275 |
+
|
276 |
+
void set_next_edge(size_t index, Edge edge) {
|
277 |
+
update_topological_nr(edge);
|
278 |
+
next_edges_[index] = std::move(edge);
|
279 |
+
}
|
280 |
+
|
281 |
+
void add_next_edge(Edge edge) {
|
282 |
+
update_topological_nr(edge);
|
283 |
+
next_edges_.emplace_back(std::move(edge));
|
284 |
+
}
|
285 |
+
|
286 |
+
void set_next_edges(edge_list&& next_edges) {
|
287 |
+
next_edges_ = std::move(next_edges);
|
288 |
+
for (const auto& next_edge : next_edges_) {
|
289 |
+
update_topological_nr(next_edge);
|
290 |
+
}
|
291 |
+
}
|
292 |
+
|
293 |
+
const Edge& next_edge(size_t index) const noexcept {
|
294 |
+
return next_edges_[index];
|
295 |
+
}
|
296 |
+
|
297 |
+
const edge_list& next_edges() const noexcept {
|
298 |
+
return next_edges_;
|
299 |
+
}
|
300 |
+
|
301 |
+
edge_list& next_edges() noexcept {
|
302 |
+
return next_edges_;
|
303 |
+
}
|
304 |
+
|
305 |
+
uint32_t num_outputs() const noexcept {
|
306 |
+
return next_edges_.size();
|
307 |
+
}
|
308 |
+
|
309 |
+
// Miscellaneous Methods
|
310 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
311 |
+
|
312 |
+
/// NOTE [ Sequence Number]
|
313 |
+
///
|
314 |
+
/// The sequence_nr has two main usages in autograd:
|
315 |
+
///
|
316 |
+
/// 1) Helps determine the node's execution priority in the engine.
|
317 |
+
/// All else being equal, nodes with higher priority numbers are executed
|
318 |
+
/// first. Thus, nodes corresponding to ops executed later are the first to
|
319 |
+
/// be executed in the backward pass. One caveat is that we prioritize
|
320 |
+
/// AccumulateGrad nodes by explicitly setting its sequence_nr to be
|
321 |
+
/// UINT64_MAX.
|
322 |
+
/// 2) The sequence number of this `Node` is paired with with thread_id it was
|
323 |
+
/// created in
|
324 |
+
/// as a unique identifier by the profiler to annotate recorded events.
|
325 |
+
/// The purpose of this is to help users (and possibly programs)
|
326 |
+
/// interpreting the profiler's output to correlate backward nodes with its
|
327 |
+
/// forward ops. We need both sequence_nr and thread_id to identify a node
|
328 |
+
/// because sequence_nr is thread_local, i.e., starts counting up from zero
|
329 |
+
/// in a new thread
|
330 |
+
uint64_t sequence_nr() const noexcept {
|
331 |
+
return sequence_nr_;
|
332 |
+
}
|
333 |
+
|
334 |
+
void set_sequence_nr(uint64_t sequence_nr) {
|
335 |
+
sequence_nr_ = sequence_nr;
|
336 |
+
}
|
337 |
+
|
338 |
+
// NOTE [ Topological Number ]
|
339 |
+
//
|
340 |
+
// topological_nr is used to prune branches in the DAG during autograd
|
341 |
+
// discovery as maintaining topological_nr helps us check in O(1) if there
|
342 |
+
// does NOT exist a directed path between two nodes.
|
343 |
+
//
|
344 |
+
// The topological order number of this `Node` representing the length of the
|
345 |
+
// longest possible path from this Node to any leaf node. If you are leaf
|
346 |
+
// node, aka AccumulateGrad, this will be zero. This value has the property
|
347 |
+
// that For every pair of nodes X, Y in G, existence of a directed path from X
|
348 |
+
// to Y implies topo_nr(X) > topo_nr(Y). The converse is not true, however, so
|
349 |
+
// we cannot prove existence of a path from X to Y, only non-existence.
|
350 |
+
//
|
351 |
+
// One assumption we make when using topo_nr is that once a node
|
352 |
+
// has been used, i.e., has a parent node, its own topo_nr does not change
|
353 |
+
// we have added some checks with the `has_parent_` field to enforce this.
|
354 |
+
//
|
355 |
+
// What NOT to do:
|
356 |
+
//
|
357 |
+
// 1) 2 -> 1 -> 0 In this diagram we label nodes with their
|
358 |
+
// topo_nr.
|
359 |
+
// 2 -> 1 -> 0 We have two simple graphs that can each
|
360 |
+
// arise from
|
361 |
+
// `t.exp().exp()`, for example.
|
362 |
+
// 2) 2 -> 1 -> 0
|
363 |
+
// /
|
364 |
+
// 2 -> 1 -> 0 We add 2 as a next edge to 1 even though 1
|
365 |
+
// already
|
366 |
+
// has a parent.
|
367 |
+
// 3) 2 -> 1 -> 0
|
368 |
+
// /
|
369 |
+
// 2 -> 3 -> 0 2 < 3, yet there exists a path from 2 to 3!
|
370 |
+
//
|
371 |
+
uint64_t topological_nr() const noexcept {
|
372 |
+
has_parent_ = true;
|
373 |
+
return topological_nr_;
|
374 |
+
}
|
375 |
+
|
376 |
+
// assigning a node as a parent to this node
|
377 |
+
void assign_parent();
|
378 |
+
|
379 |
+
/// Id of the thread that created Node
|
380 |
+
uint64_t thread_id() const noexcept {
|
381 |
+
return thread_id_;
|
382 |
+
}
|
383 |
+
|
384 |
+
/// Returns the name of the dynamic type of the function, for debugging.
|
385 |
+
virtual std::string name() const;
|
386 |
+
|
387 |
+
/// The difference between functions `should_compute_output` and
|
388 |
+
/// `task_should_compute_output`:
|
389 |
+
/// - `should_compute_output` should only be used during graph construction
|
390 |
+
/// and takes into account only requires_grad information
|
391 |
+
/// - `task_should_compute_output` should only be called during the backward
|
392 |
+
/// pass (unless called directly through grad_fn) and takes into account the
|
393 |
+
/// current graph task. Specifically, the autograd engine trims unnecessary
|
394 |
+
/// edges when `inputs` are specified, and during backward untrimmed nodes
|
395 |
+
/// left on the graph can/should check `task_should_compute_output` to see if
|
396 |
+
/// any outgoing edges have been trimmed by the engine. If that is the case,
|
397 |
+
/// gradient computation wrt those edges can be omitted.
|
398 |
+
///
|
399 |
+
/// Returns true if the particular output edge is active, and that particular
|
400 |
+
/// output of this function should be computed.
|
401 |
+
bool should_compute_output(size_t output_edge_index) const {
|
402 |
+
TORCH_CHECK(output_edge_index < num_outputs(), "Index out of range");
|
403 |
+
return next_edges_[output_edge_index].is_valid();
|
404 |
+
}
|
405 |
+
|
406 |
+
/// Returns true if any of the output edges in any of the ranges are active.
|
407 |
+
bool should_compute_output(std::initializer_list<IndexRange> idxs) const {
|
408 |
+
return std::any_of(idxs.begin(), idxs.end(), [this](IndexRange range) {
|
409 |
+
for (const auto i : c10::irange(range.first, range.second)) {
|
410 |
+
if (should_compute_output(i))
|
411 |
+
return true;
|
412 |
+
}
|
413 |
+
return false;
|
414 |
+
});
|
415 |
+
}
|
416 |
+
|
417 |
+
/// Same as the above `should_compute_output` function but will also
|
418 |
+
/// check whether this edge is needed within the current graph task.
|
419 |
+
bool task_should_compute_output(size_t output_edge_index) const {
|
420 |
+
TORCH_CHECK(output_edge_index < num_outputs(), "Index out of range");
|
421 |
+
const auto& next = next_edges_[output_edge_index];
|
422 |
+
if (next.is_valid()) {
|
423 |
+
const auto exec_info = get_current_graph_task_exec_info();
|
424 |
+
if (exec_info && !exec_info->empty()) {
|
425 |
+
auto it = exec_info->find(next.function.get());
|
426 |
+
if (it == exec_info->end() || !it->second.should_execute()) {
|
427 |
+
return false; // this edge is not needed for the current graph_task
|
428 |
+
}
|
429 |
+
}
|
430 |
+
return true;
|
431 |
+
}
|
432 |
+
return false;
|
433 |
+
}
|
434 |
+
|
435 |
+
/// Returns true if any of the output edges in any of the ranges are active
|
436 |
+
/// and should be computed in the current graph task.
|
437 |
+
bool task_should_compute_output(
|
438 |
+
std::initializer_list<IndexRange> idxs) const {
|
439 |
+
return std::any_of(idxs.begin(), idxs.end(), [this](IndexRange range) {
|
440 |
+
for (const auto i : c10::irange(range.first, range.second)) {
|
441 |
+
if (task_should_compute_output(i))
|
442 |
+
return true;
|
443 |
+
}
|
444 |
+
return false;
|
445 |
+
});
|
446 |
+
}
|
447 |
+
|
448 |
+
/// Returns the `PyObject` stored for this `Node` (for Python
|
449 |
+
/// interaction).
|
450 |
+
PyObject* pyobj() const noexcept {
|
451 |
+
return pyobj_;
|
452 |
+
}
|
453 |
+
|
454 |
+
/// Sets the `PyObject` stored for this `Node` (for Python interaction).
|
455 |
+
void set_pyobj(PyObject* pyobj) noexcept {
|
456 |
+
pyobj_ = pyobj;
|
457 |
+
}
|
458 |
+
|
459 |
+
/// Returns the anomaly metadata stored for this `Node`.
|
460 |
+
/// If none exist, creates a new empty one.
|
461 |
+
AnomalyMetadata* metadata() noexcept;
|
462 |
+
|
463 |
+
// Hook API
|
464 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
465 |
+
|
466 |
+
uintptr_t add_post_hook(std::unique_ptr<FunctionPostHook>&& post_hook) {
|
467 |
+
post_hooks_.emplace_back(std::move(post_hook));
|
468 |
+
// Use the raw pointer as the unique key to identify this hook. This key
|
469 |
+
// can then be used in del_post_hook(key) to remove this hook.
|
470 |
+
return reinterpret_cast<std::uintptr_t>(post_hooks_.back().get());
|
471 |
+
}
|
472 |
+
|
473 |
+
const std::vector<std::unique_ptr<FunctionPostHook>>& post_hooks()
|
474 |
+
const noexcept {
|
475 |
+
return post_hooks_;
|
476 |
+
}
|
477 |
+
|
478 |
+
// delete a post hook matching the key
|
479 |
+
bool del_post_hook(const uintptr_t& key) {
|
480 |
+
for (auto it = post_hooks_.begin(); it != post_hooks_.end(); ++it) {
|
481 |
+
if (key == reinterpret_cast<std::uintptr_t>(it->get())) {
|
482 |
+
post_hooks_.erase(it);
|
483 |
+
return true;
|
484 |
+
}
|
485 |
+
}
|
486 |
+
return false;
|
487 |
+
}
|
488 |
+
|
489 |
+
std::vector<std::unique_ptr<FunctionPostHook>>& post_hooks() noexcept {
|
490 |
+
return post_hooks_;
|
491 |
+
}
|
492 |
+
|
493 |
+
void add_pre_hook(std::unique_ptr<FunctionPreHook>&& pre_hook) {
|
494 |
+
pre_hooks_.emplace_back(std::move(pre_hook));
|
495 |
+
}
|
496 |
+
|
497 |
+
void add_tensor_pre_hook(std::unique_ptr<FunctionPreHook>&& pre_hook) {
|
498 |
+
tensor_pre_hooks_.emplace_back(std::move(pre_hook));
|
499 |
+
}
|
500 |
+
|
501 |
+
void add_retains_grad_hook(
|
502 |
+
std::unique_ptr<FunctionPreHook>&& pre_hook,
|
503 |
+
size_t output_idx) {
|
504 |
+
retains_grad_hooks_[output_idx] = std::move(pre_hook);
|
505 |
+
}
|
506 |
+
|
507 |
+
std::unique_ptr<FunctionPreHook> pop_retains_grad_hook(size_t output_idx) {
|
508 |
+
auto ret = std::move(retains_grad_hooks_[output_idx]);
|
509 |
+
retains_grad_hooks_.erase(output_idx);
|
510 |
+
return ret;
|
511 |
+
}
|
512 |
+
|
513 |
+
const std::vector<std::unique_ptr<FunctionPreHook>>& pre_hooks()
|
514 |
+
const noexcept {
|
515 |
+
return pre_hooks_;
|
516 |
+
}
|
517 |
+
|
518 |
+
std::vector<std::unique_ptr<FunctionPreHook>>& pre_hooks() noexcept {
|
519 |
+
return pre_hooks_;
|
520 |
+
}
|
521 |
+
|
522 |
+
virtual std::vector<std::unique_ptr<FunctionPreHook>>&
|
523 |
+
tensor_pre_hooks() noexcept {
|
524 |
+
return tensor_pre_hooks_;
|
525 |
+
}
|
526 |
+
|
527 |
+
virtual std::unique_ptr<PostAccumulateGradHook>&
|
528 |
+
tensor_post_acc_grad_hooks() noexcept {
|
529 |
+
static std::unique_ptr<PostAccumulateGradHook> empty = nullptr;
|
530 |
+
return empty;
|
531 |
+
}
|
532 |
+
|
533 |
+
std::unordered_map<size_t, std::unique_ptr<FunctionPreHook>>&
|
534 |
+
retains_grad_hooks() noexcept {
|
535 |
+
return retains_grad_hooks_;
|
536 |
+
}
|
537 |
+
|
538 |
+
// Customization Points for Subclasses
|
539 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
540 |
+
|
541 |
+
/// Releases saved variables if the operation won't be reused.
|
542 |
+
virtual void release_variables() {}
|
543 |
+
|
544 |
+
/// Called before an apply if `release_variables()` is going to be called.
|
545 |
+
/// Allows larger ops like `InterpreterAutogradFunction` to incrementally
|
546 |
+
/// release variables as they run.
|
547 |
+
virtual void will_release_variables() {}
|
548 |
+
|
549 |
+
/// Returns true if this function is traceable. An op is traceable if all
|
550 |
+
/// operations happening within `apply()` are performed on autograd
|
551 |
+
/// `Variables` (i.e. apply mostly instantiates and applies other functions).
|
552 |
+
virtual bool is_traceable() {
|
553 |
+
return false;
|
554 |
+
}
|
555 |
+
|
556 |
+
/// A `Node` is said to pass state transparently to backward, if the
|
557 |
+
/// state consists only of (Saved)Variables and only non-variable objects
|
558 |
+
/// that parameterize the operation in some way that defines the graph
|
559 |
+
/// structure AND the backward function is traceable. In particular,
|
560 |
+
/// parametrization MUST NOT depend on the data of any `Variable`.
|
561 |
+
/// TODO: it might be possible to handle cases where backward is
|
562 |
+
/// non-traceable but state passing could be considered transparent. This
|
563 |
+
/// will probably depend on saved_variable_list being mutable.
|
564 |
+
/// NOTE: this value matters only if is_traceable() returns false.
|
565 |
+
virtual bool passes_state_transparently() {
|
566 |
+
return false;
|
567 |
+
}
|
568 |
+
|
569 |
+
// see [Note: Compiled Autograd]
|
570 |
+
// Used by compiled autograd to
|
571 |
+
// 1) Extract tensors/symint args
|
572 |
+
// 2) Collect node information for specialization and caching
|
573 |
+
// Implementations in subclasses should call args.collect() with all node
|
574 |
+
// attrs. These functions are only called durring backward.
|
575 |
+
virtual void compiled_args(CompiledNodeArgs& args) {
|
576 |
+
throw std::runtime_error(
|
577 |
+
std::string("compiled_args not implemented: ") + name());
|
578 |
+
}
|
579 |
+
|
580 |
+
// Used by compiled autograd to call apply() with different saved tensors
|
581 |
+
// Implementations should call saved.before() on all attrs, then apply(), then
|
582 |
+
// saved.after() on all attrs in the same order.
|
583 |
+
virtual variable_list apply_with_saved(
|
584 |
+
const variable_list& inputs,
|
585 |
+
SwapSavedVariables& saved) {
|
586 |
+
throw std::runtime_error(
|
587 |
+
std::string("apply_with_saved not implemented: ") + name());
|
588 |
+
}
|
589 |
+
|
590 |
+
protected:
|
591 |
+
/// Performs the `Node`'s actual operation.
|
592 |
+
virtual variable_list apply(variable_list&& inputs) = 0;
|
593 |
+
|
594 |
+
/// Calls `apply()`, but instruments it with tracing machinery.
|
595 |
+
variable_list traced_apply(variable_list inputs);
|
596 |
+
|
597 |
+
// Sequence number used to correlate backward nodes with forward ops in the
|
598 |
+
// profiler and provide determinism in the engine.
|
599 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
600 |
+
uint64_t sequence_nr_;
|
601 |
+
|
602 |
+
// See NOTE [ Topological Number ]
|
603 |
+
uint64_t topological_nr_ = 0;
|
604 |
+
|
605 |
+
// Tracks whether this node has been added as the next_edge of another node
|
606 |
+
// via set_next_edge(s), which always calls topological_nr() of all its
|
607 |
+
// children See NOTE [ Topological Number ] for why we need this.
|
608 |
+
mutable bool has_parent_ = false;
|
609 |
+
|
610 |
+
// Id of the thread that created the instance
|
611 |
+
uint64_t thread_id_ = 0;
|
612 |
+
|
613 |
+
// Note [Thread Safety on Autograd Node]
|
614 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
615 |
+
// Autograd Engine let the owning thread which calls Engine::execute to drive
|
616 |
+
// the GraphTask execution, there might be cases that part of the GraphTask is
|
617 |
+
// shared across different `backward()` or `grad()` calls, i.e. fork new
|
618 |
+
// threads in the middle of the forward and call `backward()` separately from
|
619 |
+
// different threads. We need to protect the thread safety on NodeTask to
|
620 |
+
// prevent data racing on shared variables read/write.
|
621 |
+
//
|
622 |
+
// NB: This is only needed for Autograd Nodes that runs on CPU, technically
|
623 |
+
// "CUDA", "XLA" nodes don't need locking because device threads are always
|
624 |
+
// single threaded.
|
625 |
+
//
|
626 |
+
// Here we add a thread mutex to help protect the Node's thread safety, so
|
627 |
+
// that different threads cannot race the shared data when executing the same
|
628 |
+
// NodeTask from multiple CPU threads. It IS the user/developer responsibility
|
629 |
+
// to take advantage of this mutex to protect the thread safety of their
|
630 |
+
// autograd Node. The general strategy of thread safety on autograd Node:
|
631 |
+
//
|
632 |
+
// 1. User should lock the mutex during Node::release_variables() if the Node
|
633 |
+
// needs
|
634 |
+
// to release the variables on the fly, this serve the purpose that when we
|
635 |
+
// release saved_variables from one thread, no other threads can release
|
636 |
+
// the saved variables concurrently. call the Node::apply(),
|
637 |
+
// 2. User should lock the mutex during Node::apply(), this is to ensure Node
|
638 |
+
// that
|
639 |
+
// writing to the shared variable are not racing across threads (i.e.
|
640 |
+
// AccumulateGrad and custom C++ Autograd Node if writing to shared
|
641 |
+
// variables )
|
642 |
+
// 3. item 2 and item 3 should work together so that when we release saved
|
643 |
+
// variables
|
644 |
+
// from one thread, no other threads can call Node::apply(), this ensures
|
645 |
+
// the variable references from other threads aren't dangling.
|
646 |
+
// 4. if the Node don't release any variables and no shared data read/write in
|
647 |
+
// the Node
|
648 |
+
// i.e. purely functional, user don't need to lock the mutex
|
649 |
+
//
|
650 |
+
// This way we could protect the thread safety on Autograd Node, but we could
|
651 |
+
// still not protect the thread safety on Node pre/post C++ hooks (python
|
652 |
+
// hooks are automatically thread safe), we rely on the user to write thread
|
653 |
+
// safe C++ hooks if they want the hook to be correctly applied in
|
654 |
+
// multithreading environment.
|
655 |
+
std::mutex mutex_;
|
656 |
+
|
657 |
+
edge_list next_edges_;
|
658 |
+
PyObject* pyobj_ = nullptr; // weak reference
|
659 |
+
std::unique_ptr<AnomalyMetadata> anomaly_metadata_ = nullptr;
|
660 |
+
|
661 |
+
// NOTE [Hooks ordering]
|
662 |
+
// We have 3 separate fields for pre hooks registered to the autograd nodes
|
663 |
+
// because the conditions under which they execute are different, and we
|
664 |
+
// want more fine-grained control over the order in which different types
|
665 |
+
// of hooks are executed.
|
666 |
+
// - pre_hooks are only executed when the node itself is executed
|
667 |
+
// - tensor_pre_hook is executed as long as the engine traverses over it
|
668 |
+
// even if that node won't be executed.
|
669 |
+
// - retains_grad_hook are like tensor_pre_hooks except they are always
|
670 |
+
// ordered after all other tensor pre hooks
|
671 |
+
std::vector<std::unique_ptr<FunctionPreHook>> pre_hooks_;
|
672 |
+
std::vector<std::unique_ptr<FunctionPreHook>> tensor_pre_hooks_;
|
673 |
+
std::unordered_map<size_t, std::unique_ptr<FunctionPreHook>>
|
674 |
+
retains_grad_hooks_;
|
675 |
+
std::vector<std::unique_ptr<FunctionPostHook>> post_hooks_;
|
676 |
+
at::SmallVector<InputMetadata, 2> input_metadata_;
|
677 |
+
};
|
678 |
+
|
679 |
+
/// See Node::is_traceable() for definition.
|
680 |
+
struct TraceableFunction : public Node {
|
681 |
+
using Node::Node;
|
682 |
+
bool is_traceable() final {
|
683 |
+
return true;
|
684 |
+
}
|
685 |
+
};
|
686 |
+
|
687 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
688 |
+
// Associated Free Nodes
|
689 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
690 |
+
|
691 |
+
namespace detail {
|
692 |
+
// Implementation of `collect_next_edges` (see below).
|
693 |
+
struct MakeNextFunctionList : IterArgs<MakeNextFunctionList> {
|
694 |
+
edge_list next_edges;
|
695 |
+
using IterArgs<MakeNextFunctionList>::operator();
|
696 |
+
void operator()(const Variable& variable) {
|
697 |
+
if (variable.defined()) {
|
698 |
+
next_edges.emplace_back(impl::gradient_edge(variable));
|
699 |
+
} else {
|
700 |
+
next_edges.emplace_back();
|
701 |
+
}
|
702 |
+
}
|
703 |
+
void operator()(const Variable* variable) {
|
704 |
+
operator()(*variable);
|
705 |
+
}
|
706 |
+
void operator()(const c10::optional<Variable>& variable) {
|
707 |
+
if (variable.has_value()) {
|
708 |
+
operator()(*variable);
|
709 |
+
} else {
|
710 |
+
next_edges.emplace_back();
|
711 |
+
}
|
712 |
+
}
|
713 |
+
};
|
714 |
+
} // namespace detail
|
715 |
+
|
716 |
+
/// Create an `Edge` between the given `variable` and the `function`, which is
|
717 |
+
/// assumed to be the gradient function of this variable (i.e. the function
|
718 |
+
/// through which this variable is backpropagated during the backward pass).
|
719 |
+
/// This sets the `grad_fn` property of the `variable`. This function assumes
|
720 |
+
/// that the `Variable` is a new input to the gradient function and its
|
721 |
+
/// `input_nr` thus equal to `function->num_inputs()`. Additionally, it
|
722 |
+
/// increments the `Node`'s number of inputs by one. Approximately
|
723 |
+
/// equivalent to `variable.set_gradient_edge(function,
|
724 |
+
/// function->add_input_metadata(variable.dispatch_type(), variable.sizes()))`.
|
725 |
+
/// If you don't want the `Node`'s `num_inputs` to be incremented, use
|
726 |
+
/// `set_gradient_edge` directly.
|
727 |
+
inline void create_gradient_edge(
|
728 |
+
Variable& variable,
|
729 |
+
std::shared_ptr<Node> function) {
|
730 |
+
// Copy before move.
|
731 |
+
const auto input_nr = function->add_input_metadata(variable);
|
732 |
+
impl::set_gradient_edge(variable, {std::move(function), input_nr});
|
733 |
+
}
|
734 |
+
|
735 |
+
/// Return true if any of the variables in the list require a gradient.
|
736 |
+
inline bool any_variable_requires_grad(const variable_list& variables) {
|
737 |
+
return std::any_of(
|
738 |
+
variables.begin(), variables.end(), [](const Variable& variable) {
|
739 |
+
return variable.defined() && variable.requires_grad();
|
740 |
+
});
|
741 |
+
}
|
742 |
+
|
743 |
+
/// Return the next edges of all the given variables, or tuples of variables.
|
744 |
+
template <typename... Variables>
|
745 |
+
edge_list collect_next_edges(Variables&&... variables) {
|
746 |
+
detail::MakeNextFunctionList make;
|
747 |
+
make.apply(std::forward<Variables>(variables)...);
|
748 |
+
return std::move(make.next_edges);
|
749 |
+
}
|
750 |
+
|
751 |
+
struct TypeAndSize {
|
752 |
+
TypeAndSize() : options(at::TensorOptions()) {}
|
753 |
+
/* implicit */
|
754 |
+
TypeAndSize(const at::Tensor& t)
|
755 |
+
: sym_sizes(t.sym_sizes().vec()), options(t.options()) {}
|
756 |
+
|
757 |
+
at::Tensor zeros();
|
758 |
+
|
759 |
+
std::vector<c10::SymInt> sym_sizes;
|
760 |
+
at::TensorOptions options;
|
761 |
+
};
|
762 |
+
|
763 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/function_hook.h
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
#include <string>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
namespace torch::dynamo::autograd {
|
9 |
+
class CompiledNodeArgs;
|
10 |
+
class SwapSavedVariables;
|
11 |
+
} // namespace torch::dynamo::autograd
|
12 |
+
|
13 |
+
// A hook that's called on gradients
|
14 |
+
|
15 |
+
namespace torch::autograd {
|
16 |
+
|
17 |
+
using Variable = at::Tensor;
|
18 |
+
using variable_list = std::vector<Variable>;
|
19 |
+
|
20 |
+
struct TORCH_API FunctionPreHook {
|
21 |
+
virtual ~FunctionPreHook() = default;
|
22 |
+
virtual variable_list operator()(const variable_list& grads) = 0;
|
23 |
+
// only implemented for python hooks, registers hook with compiled autograd
|
24 |
+
virtual void compiled_args(torch::dynamo::autograd::CompiledNodeArgs& args) {
|
25 |
+
throw std::runtime_error(
|
26 |
+
std::string("compiled_args nyi, see [Note: Compiled Autograd] ") +
|
27 |
+
typeid(*this).name());
|
28 |
+
}
|
29 |
+
};
|
30 |
+
|
31 |
+
struct TORCH_API FunctionPostHook {
|
32 |
+
virtual ~FunctionPostHook() = default;
|
33 |
+
virtual variable_list operator()(
|
34 |
+
const variable_list& outputs /* grad_inputs */,
|
35 |
+
const variable_list& inputs /* grad_outputs */) = 0;
|
36 |
+
// only implemented for python hooks, registers hook with compiled autograd
|
37 |
+
virtual void compiled_args(torch::dynamo::autograd::CompiledNodeArgs& args) {
|
38 |
+
throw std::runtime_error(
|
39 |
+
std::string("compiled_args nyi, see [Note: Compiled Autograd] ") +
|
40 |
+
typeid(*this).name());
|
41 |
+
}
|
42 |
+
};
|
43 |
+
|
44 |
+
struct TORCH_API PostAccumulateGradHook {
|
45 |
+
virtual ~PostAccumulateGradHook() = default;
|
46 |
+
virtual void operator()(const Variable& tensor) = 0;
|
47 |
+
// only implemented for python hooks on nodes, registers hook with compiled
|
48 |
+
// autograd
|
49 |
+
virtual void compiled_args(torch::dynamo::autograd::CompiledNodeArgs& args) {
|
50 |
+
throw std::runtime_error(
|
51 |
+
std::string("not yet implemented for compiled autograd: ") +
|
52 |
+
typeid(*this).name());
|
53 |
+
}
|
54 |
+
|
55 |
+
virtual void apply_with_saved(
|
56 |
+
Variable&,
|
57 |
+
torch::dynamo::autograd::SwapSavedVariables&) {
|
58 |
+
throw std::runtime_error(
|
59 |
+
std::string("not yet implemented for compiled autograd: ") +
|
60 |
+
typeid(*this).name());
|
61 |
+
}
|
62 |
+
};
|
63 |
+
|
64 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/grad_mode.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/grad_mode.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
|
6 |
+
namespace torch::autograd {
|
7 |
+
|
8 |
+
using GradMode = at::GradMode;
|
9 |
+
using AutoGradMode = at::AutoGradMode;
|
10 |
+
|
11 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/input_metadata.h
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ExpandUtils.h>
|
4 |
+
#include <ATen/NestedTensorImpl.h>
|
5 |
+
#include <ATen/core/Tensor.h>
|
6 |
+
#include <c10/core/Device.h>
|
7 |
+
#include <c10/core/DeviceType.h>
|
8 |
+
#include <c10/core/Stream.h>
|
9 |
+
#include <c10/core/SymIntArrayRef.h>
|
10 |
+
#include <c10/core/TensorImpl.h>
|
11 |
+
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
12 |
+
#include <c10/util/DimVector.h>
|
13 |
+
#include <c10/util/Exception.h>
|
14 |
+
#include <c10/util/SmallVector.h>
|
15 |
+
|
16 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
17 |
+
#include <ATen/Functions.h>
|
18 |
+
#else
|
19 |
+
#include <ATen/ops/zeros.h>
|
20 |
+
#endif
|
21 |
+
|
22 |
+
namespace torch::autograd {
|
23 |
+
|
24 |
+
using SymIntSmallVec = c10::SmallVector<c10::SymInt, c10::kDimVectorStaticSize>;
|
25 |
+
using MetadataShape = std::variant<SymIntSmallVec, at::Tensor>;
|
26 |
+
|
27 |
+
/**
|
28 |
+
* Records TensorOptions, shape of the tensor, whether or not the Python
|
29 |
+
* dispatch key is set (tensor subclass), and, where applicable, the stream the
|
30 |
+
* corresponding operation took place on.
|
31 |
+
*
|
32 |
+
* If is_valid() is false, then the corresponding input is not used and may be
|
33 |
+
* an undefined tensor.
|
34 |
+
*/
|
35 |
+
struct TORCH_API InputMetadata {
|
36 |
+
InputMetadata() = default;
|
37 |
+
InputMetadata(
|
38 |
+
const at::TensorOptions& options,
|
39 |
+
MetadataShape input_shape,
|
40 |
+
bool is_tensor_subclass,
|
41 |
+
bool is_nested);
|
42 |
+
InputMetadata(const at::Tensor& t);
|
43 |
+
|
44 |
+
const at::TensorOptions& options() const {
|
45 |
+
return options_;
|
46 |
+
}
|
47 |
+
|
48 |
+
caffe2::TypeMeta dtype() const {
|
49 |
+
return options_.dtype();
|
50 |
+
}
|
51 |
+
|
52 |
+
at::Device device() const {
|
53 |
+
return options_.device();
|
54 |
+
}
|
55 |
+
|
56 |
+
at::Layout layout() const {
|
57 |
+
return options_.layout();
|
58 |
+
}
|
59 |
+
|
60 |
+
c10::Stream stream() const {
|
61 |
+
return stream_;
|
62 |
+
}
|
63 |
+
|
64 |
+
bool is_tensor_subclass() const {
|
65 |
+
return is_tensor_subclass_;
|
66 |
+
}
|
67 |
+
|
68 |
+
at::Tensor zeros_like() const;
|
69 |
+
|
70 |
+
bool is_same_shape(const at::Tensor& grad) const;
|
71 |
+
|
72 |
+
bool is_expandable_to_shape(const at::Tensor& grad) const;
|
73 |
+
|
74 |
+
at::Tensor reduce_grad(at::Tensor& grad) const;
|
75 |
+
|
76 |
+
at::Tensor maybe_reduce(
|
77 |
+
const size_t index,
|
78 |
+
at::Tensor grad,
|
79 |
+
const std::function<std::string(const std::string&)>& format_error) const;
|
80 |
+
|
81 |
+
std::stringstream incompatible_shape_error_message(
|
82 |
+
const size_t index,
|
83 |
+
const at::Tensor& grad) const;
|
84 |
+
|
85 |
+
bool was_default_constructed() const {
|
86 |
+
return was_default_constructed_;
|
87 |
+
}
|
88 |
+
|
89 |
+
bool is_cpp_nested_tensor() const;
|
90 |
+
|
91 |
+
bool is_nested_tensor() const {
|
92 |
+
return is_nested_;
|
93 |
+
}
|
94 |
+
|
95 |
+
c10::SymIntArrayRef shape_as_dim_vector() const;
|
96 |
+
|
97 |
+
// Danger: not thread safe, caller must protect with lock
|
98 |
+
SymIntSmallVec& mutable_shape_as_dim_vector();
|
99 |
+
|
100 |
+
private:
|
101 |
+
at::Tensor shape_as_tensor() const;
|
102 |
+
bool is_nestedness_same(const at::Tensor& grad) const;
|
103 |
+
bool maybe_expandable_to(const at::Tensor& grad) const;
|
104 |
+
|
105 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
106 |
+
const at::TensorOptions options_;
|
107 |
+
MetadataShape shape_;
|
108 |
+
c10::Stream stream_ = c10::Stream(c10::Stream::Default::DEFAULT, device());
|
109 |
+
bool is_tensor_subclass_ = false;
|
110 |
+
bool is_nested_ = false;
|
111 |
+
bool was_default_constructed_ = true;
|
112 |
+
};
|
113 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/profiler_python.h
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace torch::autograd::profiler::python_tracer {
|
4 |
+
|
5 |
+
void init();
|
6 |
+
|
7 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_cpp_function.h
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
#include <memory>
|
5 |
+
#include <typeinfo>
|
6 |
+
|
7 |
+
#include <torch/csrc/Exceptions.h>
|
8 |
+
#include <torch/csrc/autograd/function.h>
|
9 |
+
#include <torch/csrc/utils/object_ptr.h>
|
10 |
+
|
11 |
+
namespace torch::autograd {
|
12 |
+
|
13 |
+
struct THPCppFunction {
|
14 |
+
PyObject_HEAD std::shared_ptr<Node> cdata;
|
15 |
+
};
|
16 |
+
|
17 |
+
template <typename Ctor>
|
18 |
+
PyObject* CppFunction_pynew(
|
19 |
+
PyTypeObject* type,
|
20 |
+
PyObject* args,
|
21 |
+
PyObject* kwds) {
|
22 |
+
THPObjectPtr obj(type->tp_alloc(type, 0));
|
23 |
+
if (!obj)
|
24 |
+
return nullptr;
|
25 |
+
THPCppFunction* f = (THPCppFunction*)obj.get();
|
26 |
+
HANDLE_TH_ERRORS
|
27 |
+
new (&f->cdata) std::shared_ptr<Node>(Ctor()(args));
|
28 |
+
END_HANDLE_TH_ERRORS
|
29 |
+
if (!f->cdata) {
|
30 |
+
return nullptr;
|
31 |
+
}
|
32 |
+
return obj.release();
|
33 |
+
}
|
34 |
+
|
35 |
+
#define THP_FUNCTION_DEFAULT_METHODS \
|
36 |
+
{(char*)"_register_hook_dict", \
|
37 |
+
THPCppFunction_register_hook_dict, \
|
38 |
+
METH_O, \
|
39 |
+
nullptr}, \
|
40 |
+
{(char*)"register_hook", THPCppFunction_register_hook, METH_O, nullptr}, \
|
41 |
+
{(char*)"register_prehook", \
|
42 |
+
THPCppFunction_register_prehook, \
|
43 |
+
METH_O, \
|
44 |
+
nullptr}, \
|
45 |
+
{(char*)"name", THPCppFunction_name, METH_NOARGS, nullptr}, \
|
46 |
+
{(char*)"_sequence_nr", \
|
47 |
+
THPCppFunction_sequence_nr, \
|
48 |
+
METH_NOARGS, \
|
49 |
+
nullptr}, \
|
50 |
+
{ \
|
51 |
+
(char*)"_set_sequence_nr", THPCppFunction_set_sequence_nr, METH_O, nullptr \
|
52 |
+
}
|
53 |
+
|
54 |
+
#define THP_FUNCTION_DEFAULT_PROPERTIES \
|
55 |
+
{(char*)"next_functions", \
|
56 |
+
THPCppFunction_next_functions, \
|
57 |
+
nullptr, \
|
58 |
+
nullptr, \
|
59 |
+
nullptr}, \
|
60 |
+
{(char*)"requires_grad", \
|
61 |
+
THPCppFunction_requires_grad, \
|
62 |
+
nullptr, \
|
63 |
+
nullptr, \
|
64 |
+
nullptr}, \
|
65 |
+
{ \
|
66 |
+
(char*)"metadata", THPCppFunction_metadata, nullptr, nullptr, nullptr \
|
67 |
+
}
|
68 |
+
|
69 |
+
PyObject* THPCppFunction_next_functions(PyObject* self, void* _unused);
|
70 |
+
PyObject* THPCppFunction_metadata(PyObject* self, void* _unused);
|
71 |
+
PyObject* THPCppFunction_requires_grad(PyObject* self, void* _unused);
|
72 |
+
PyObject* THPCppFunction_register_hook_dict(PyObject* self, PyObject* _var);
|
73 |
+
PyObject* THPCppFunction_register_hook(PyObject* self, PyObject* hook);
|
74 |
+
PyObject* THPCppFunction_register_prehook(PyObject* self, PyObject* hook);
|
75 |
+
|
76 |
+
PyObject* THPCppFunction_name(PyObject* self, PyObject* noargs);
|
77 |
+
PyObject* THPCppFunction_sequence_nr(PyObject* self, PyObject* noargs);
|
78 |
+
|
79 |
+
PyTypeObject* _initFunctionPyTypeObject(
|
80 |
+
PyTypeObject& type,
|
81 |
+
const char* name,
|
82 |
+
PyGetSetDef* function_properties,
|
83 |
+
PyMethodDef* function_methods);
|
84 |
+
|
85 |
+
PyObject* registerFunctionHook(Node& fn, PyObject* hook);
|
86 |
+
|
87 |
+
PyObject* registerFunctionPreHook(Node& fn, PyObject* hook);
|
88 |
+
|
89 |
+
template <typename Ctor>
|
90 |
+
PyTypeObject* createForwardFunctionPyTypeObject(
|
91 |
+
PyTypeObject& type,
|
92 |
+
const char* name,
|
93 |
+
PyGetSetDef* function_properties = nullptr,
|
94 |
+
PyMethodDef* function_methods = nullptr) {
|
95 |
+
type.tp_new = &CppFunction_pynew<Ctor>;
|
96 |
+
return _initFunctionPyTypeObject(
|
97 |
+
type, name, function_properties, function_methods);
|
98 |
+
}
|
99 |
+
|
100 |
+
void registerCppFunction(const std::type_info& type, PyTypeObject* pytype);
|
101 |
+
PyObject* functionToPyObject(const std::shared_ptr<Node>& cdata);
|
102 |
+
|
103 |
+
bool THPCppFunction_Check(PyObject* obj);
|
104 |
+
|
105 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_engine.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
#include <torch/csrc/autograd/engine.h>
|
6 |
+
#include <torch/csrc/autograd/function.h>
|
7 |
+
|
8 |
+
bool THPEngine_initModule(PyObject* module);
|
9 |
+
|
10 |
+
namespace torch::autograd::python {
|
11 |
+
|
12 |
+
struct PythonEngine : public Engine {
|
13 |
+
static Engine& get_python_engine();
|
14 |
+
~PythonEngine() override;
|
15 |
+
void thread_init(
|
16 |
+
int device,
|
17 |
+
const std::shared_ptr<ReadyQueue>& ready_queue,
|
18 |
+
bool should_increment) override;
|
19 |
+
void thread_on_exception(
|
20 |
+
std::shared_ptr<GraphTask> graph_task,
|
21 |
+
const std::shared_ptr<Node>& fn,
|
22 |
+
std::exception& e) override;
|
23 |
+
variable_list execute(
|
24 |
+
const edge_list& roots,
|
25 |
+
const variable_list& inputs,
|
26 |
+
bool keep_graph,
|
27 |
+
bool create_graph,
|
28 |
+
bool accumulate_grad,
|
29 |
+
const edge_list& outputs = {}) override;
|
30 |
+
|
31 |
+
c10::intrusive_ptr<at::ivalue::Future> execute_with_graph_task(
|
32 |
+
const std::shared_ptr<GraphTask>& graph_task,
|
33 |
+
std::shared_ptr<Node> graph_root,
|
34 |
+
InputBuffer&& input_buffer) override;
|
35 |
+
|
36 |
+
std::unique_ptr<AnomalyMetadata> make_anomaly_metadata() override;
|
37 |
+
std::unique_ptr<SavedVariableHooks> get_default_saved_variable_hooks()
|
38 |
+
override;
|
39 |
+
|
40 |
+
private:
|
41 |
+
PythonEngine();
|
42 |
+
};
|
43 |
+
|
44 |
+
} // namespace torch::autograd::python
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_fft_functions.h
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace torch::autograd {
|
4 |
+
|
5 |
+
void initFFTFunctions(PyObject* module);
|
6 |
+
|
7 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_function.h
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
#include <torch/csrc/Exceptions.h>
|
6 |
+
#include <torch/csrc/autograd/custom_function.h>
|
7 |
+
#include <torch/csrc/autograd/function.h>
|
8 |
+
#include <torch/csrc/autograd/saved_variable.h>
|
9 |
+
#include <torch/csrc/autograd/variable.h>
|
10 |
+
#include <torch/csrc/utils/object_ptr.h>
|
11 |
+
|
12 |
+
#include <c10/core/DeviceGuard.h>
|
13 |
+
#include <c10/util/Optional.h>
|
14 |
+
|
15 |
+
#include <memory>
|
16 |
+
#include <optional>
|
17 |
+
#include <vector>
|
18 |
+
|
19 |
+
namespace torch::jit {
|
20 |
+
struct Graph;
|
21 |
+
}
|
22 |
+
|
23 |
+
namespace torch::autograd {
|
24 |
+
|
25 |
+
// A Function which is implemented by a Python object (i.e., a THPFunction).
|
26 |
+
// Calls to 'apply' are forwarded to the Python method implementation.
|
27 |
+
struct PyNode : public Node {
|
28 |
+
PyNode(THPObjectPtr obj) : obj(obj.release()) {}
|
29 |
+
|
30 |
+
PyObject* to_py_args(
|
31 |
+
const variable_list& inputs,
|
32 |
+
at::OptionalDeviceGuard* device_guard);
|
33 |
+
variable_list to_variable_list(
|
34 |
+
const PyObject* r,
|
35 |
+
const std::vector<bool>& is_variable_input);
|
36 |
+
|
37 |
+
variable_list apply(variable_list&& inputs) override;
|
38 |
+
variable_list compiled_apply(
|
39 |
+
variable_list&& inputs,
|
40 |
+
std::optional<PyObject*> compiler);
|
41 |
+
|
42 |
+
void release_variables() override;
|
43 |
+
std::string name() const override;
|
44 |
+
bool is_traceable() override;
|
45 |
+
|
46 |
+
void compiled_args(CompiledNodeArgs& args) override;
|
47 |
+
variable_list apply_with_saved(
|
48 |
+
const variable_list& inputs,
|
49 |
+
SwapSavedVariables& saved) override;
|
50 |
+
|
51 |
+
bool compiled_autograd_should_lift() const;
|
52 |
+
|
53 |
+
// THPFunction this Function is wrapping. Owning!
|
54 |
+
PyObject* obj;
|
55 |
+
|
56 |
+
// The AutogradCompilerCall::hooks idx corresponding to this node's backward
|
57 |
+
std::optional<int> _backward_idx;
|
58 |
+
|
59 |
+
// The AutogradCompilerCall::hooks idx corresponding to this node's
|
60 |
+
// backward_state
|
61 |
+
std::optional<int> _backward_state_idx;
|
62 |
+
|
63 |
+
// NOLINTNEXTLINE(bugprone-exception-escape)
|
64 |
+
~PyNode() override {
|
65 |
+
// Can't use THPObjectPtr as a field in this class; destructor won't take
|
66 |
+
// out GIL! When I forgot to do this by hand
|
67 |
+
// TestAutograd.test_inplace_view_python called me out about it.
|
68 |
+
// If python is already dead, leak the wrapped python objects
|
69 |
+
if (Py_IsInitialized()) {
|
70 |
+
pybind11::gil_scoped_acquire gil;
|
71 |
+
Py_DECREF(obj);
|
72 |
+
}
|
73 |
+
}
|
74 |
+
};
|
75 |
+
|
76 |
+
/**
|
77 |
+
* Cast an object into a tuple, if it is not a tuple already. Returns true
|
78 |
+
* if the original object was not a tuple.
|
79 |
+
*/
|
80 |
+
inline bool ensure_tuple(THPObjectPtr& obj) {
|
81 |
+
if (PyTuple_Check(obj.get()))
|
82 |
+
return false;
|
83 |
+
|
84 |
+
PyObject* tuple = PyTuple_New(1);
|
85 |
+
if (!tuple)
|
86 |
+
throw python_error();
|
87 |
+
PyTuple_SET_ITEM(tuple, 0, obj.release());
|
88 |
+
obj = tuple;
|
89 |
+
return true;
|
90 |
+
}
|
91 |
+
|
92 |
+
} // namespace torch::autograd
|
93 |
+
|
94 |
+
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
|
95 |
+
struct THPFunction {
|
96 |
+
PyObject_HEAD
|
97 |
+
|
98 |
+
PyObject* needs_input_grad;
|
99 |
+
|
100 |
+
// Python tuple of tensors whose variables we should save. Set
|
101 |
+
// by Python with 'save_for_backward'. If nullptr, no tensors were
|
102 |
+
// saved.
|
103 |
+
PyObject* to_save;
|
104 |
+
// Python tuple of tensors which are not differentiable. Set by
|
105 |
+
// Python with 'mark_non_differentiable'. If nullptr, no tensors were
|
106 |
+
// non-differentiable.
|
107 |
+
PyObject* non_differentiable;
|
108 |
+
// Python tuple of tensors which had inplace updates in the forward()
|
109 |
+
// pass. Set by Python with 'mark_dirty'. If nullptr, no tensors were
|
110 |
+
// modified inplace.
|
111 |
+
PyObject* dirty_tensors;
|
112 |
+
|
113 |
+
// boolean indicating whether to materialize undefined output grad tensors
|
114 |
+
// into tensors full of zeros. Set by Python with 'set_materialize_grads'.
|
115 |
+
// Default is true.
|
116 |
+
bool materialize_grads;
|
117 |
+
|
118 |
+
// boolean indicating whether to materialize output grad tensors
|
119 |
+
// corresponding to non-differentiable outputs. Normally, someone would
|
120 |
+
// already get this behavior by switching off materialize_grads,
|
121 |
+
// but there are certain use cases where that is not feasible:
|
122 |
+
// https://github.com/pytorch/pytorch/pull/98659#pullrequestreview-1376822560
|
123 |
+
bool materialize_non_diff_grads;
|
124 |
+
|
125 |
+
// This is enabled by compiled autograd as a way to signal to AotAutograd it
|
126 |
+
// should call the original FX graph rather than compiling.
|
127 |
+
bool compiled_autograd_tracing;
|
128 |
+
PyObject* compiled_autograd_backward_state;
|
129 |
+
std::vector<c10::SymInt> compiled_autograd_symints;
|
130 |
+
|
131 |
+
std::vector<torch::autograd::VariableInfo> output_info;
|
132 |
+
std::vector<torch::autograd::VariableInfo> input_info;
|
133 |
+
std::vector<torch::autograd::SavedVariable> saved_variables;
|
134 |
+
// For each input, true if the input is a THPVariable
|
135 |
+
std::vector<bool> is_variable_input;
|
136 |
+
char has_freed_buffers;
|
137 |
+
|
138 |
+
PyObject* saved_for_forward;
|
139 |
+
// The actual PyNode (in the autograd graph) that this data was
|
140 |
+
// saved for. This field may be NULL (because a user can construct
|
141 |
+
// a THPFunction directly from Python), but when this field is non-NULL,
|
142 |
+
// it is guaranteed that cdata.lock()->obj == this
|
143 |
+
//
|
144 |
+
// In most ordinary use, this field should always be non-NULL; e.g.,
|
145 |
+
// when we allocate a THPFunction because we are running Node.apply,
|
146 |
+
// after constructing a THPFunction, we immediately allocate a PyNode
|
147 |
+
// for it. We can't enforce this directly in the constructor of
|
148 |
+
// THPFunction though, because there's no way to keep it live long enough
|
149 |
+
// to save an owning reference to PyNode into the grad_fn of a Variable.
|
150 |
+
std::weak_ptr<torch::autograd::PyNode> cdata;
|
151 |
+
};
|
152 |
+
|
153 |
+
bool THPFunction_initModule(PyObject* module);
|
154 |
+
extern PyTypeObject THPFunctionType;
|
155 |
+
extern PyObject* THPFunctionClass;
|
156 |
+
extern PyObject* THPGradientEdgeClass;
|
157 |
+
|
158 |
+
inline bool THPFunction_Check(PyObject* obj) {
|
159 |
+
return PyObject_IsInstance(obj, (PyObject*)&THPFunctionType);
|
160 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_hook.h
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/function_hook.h>
|
4 |
+
#include <torch/csrc/python_headers.h>
|
5 |
+
#include <torch/csrc/utils/object_ptr.h>
|
6 |
+
|
7 |
+
namespace torch::dynamo::autograd {
|
8 |
+
class SwapSavedVariables;
|
9 |
+
} // namespace torch::dynamo::autograd
|
10 |
+
|
11 |
+
namespace torch::autograd {
|
12 |
+
|
13 |
+
struct PyFunctionTensorPreHook : public FunctionPreHook {
|
14 |
+
PyFunctionTensorPreHook(PyObject* dict, size_t value_idx);
|
15 |
+
~PyFunctionTensorPreHook() override;
|
16 |
+
variable_list operator()(const variable_list& values) override;
|
17 |
+
void compiled_args(torch::dynamo::autograd::CompiledNodeArgs& args) override;
|
18 |
+
PyObject* dict;
|
19 |
+
size_t value_idx;
|
20 |
+
};
|
21 |
+
|
22 |
+
struct PyFunctionPreHook : public FunctionPreHook {
|
23 |
+
PyFunctionPreHook(PyObject* dict);
|
24 |
+
~PyFunctionPreHook() override;
|
25 |
+
variable_list operator()(const variable_list& values) override;
|
26 |
+
void compiled_args(torch::dynamo::autograd::CompiledNodeArgs& args) override;
|
27 |
+
PyObject* dict;
|
28 |
+
};
|
29 |
+
|
30 |
+
struct PyFunctionPostHook : public FunctionPostHook {
|
31 |
+
PyFunctionPostHook(PyObject* dict);
|
32 |
+
~PyFunctionPostHook() override;
|
33 |
+
variable_list operator()(
|
34 |
+
const variable_list& outputs,
|
35 |
+
const variable_list& inputs) override;
|
36 |
+
void compiled_args(torch::dynamo::autograd::CompiledNodeArgs& args) override;
|
37 |
+
PyObject* dict;
|
38 |
+
};
|
39 |
+
|
40 |
+
// PyFunctionTensorPostAccGradHooks is a dictionary of PostAccumulateGradHooks,
|
41 |
+
// and it is understandable if you are confused by why it's a subclass. We are
|
42 |
+
// simply following the precedent of PyFunctionPreHook and PyFunctionPostHook
|
43 |
+
// above to easily enroll into existing infrastructure.
|
44 |
+
struct PyFunctionTensorPostAccGradHooks : public PostAccumulateGradHook {
|
45 |
+
PyFunctionTensorPostAccGradHooks(PyObject* dict);
|
46 |
+
~PyFunctionTensorPostAccGradHooks() override;
|
47 |
+
void operator()(const Variable& tensor) override;
|
48 |
+
void compiled_args(torch::dynamo::autograd::CompiledNodeArgs& args) override;
|
49 |
+
void apply_with_saved(
|
50 |
+
Variable& tensor,
|
51 |
+
torch::dynamo::autograd::SwapSavedVariables& saved) override;
|
52 |
+
PyObject* dict;
|
53 |
+
};
|
54 |
+
|
55 |
+
} // namespace torch::autograd
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_linalg_functions.h
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace torch::autograd {
|
4 |
+
|
5 |
+
void initLinalgFunctions(PyObject* module);
|
6 |
+
|
7 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/python_saved_variable_hooks.h
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <pybind11/pybind11.h>
|
5 |
+
#include <torch/csrc/Export.h>
|
6 |
+
#include <torch/csrc/autograd/python_variable.h>
|
7 |
+
#include <torch/csrc/autograd/saved_variable_hooks.h>
|
8 |
+
#include <torch/csrc/python_headers.h>
|
9 |
+
#include <torch/csrc/utils/pybind.h>
|
10 |
+
|
11 |
+
namespace py = pybind11;
|
12 |
+
|
13 |
+
namespace torch::autograd {
|
14 |
+
|
15 |
+
struct PySavedVariableHooks : public SavedVariableHooks {
|
16 |
+
PySavedVariableHooks(py::function& pack_hook, py::function& unpack_hook);
|
17 |
+
void call_pack_hook(const at::Tensor& tensor) override;
|
18 |
+
at::Tensor call_unpack_hook() override;
|
19 |
+
~PySavedVariableHooks() override;
|
20 |
+
|
21 |
+
private:
|
22 |
+
PyObject* pack_hook_;
|
23 |
+
PyObject* unpack_hook_;
|
24 |
+
PyObject* data_ = nullptr;
|
25 |
+
};
|
26 |
+
|
27 |
+
struct PyDefaultSavedVariableHooks {
|
28 |
+
static void push_hooks(py::function& pack_hook, py::function& unpack_hook);
|
29 |
+
static void pop_hooks();
|
30 |
+
static std::unique_ptr<SavedVariableHooks> get_hooks();
|
31 |
+
};
|
32 |
+
|
33 |
+
} // namespace torch::autograd
|