Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__init__.py +148 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/configuration_bart.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/convert_bart_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/modeling_bart.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/modeling_flax_bart.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/modeling_tf_bart.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/tokenization_bart.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/tokenization_bart_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/configuration_bart.py +401 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py +157 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/modeling_bart.py +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/modeling_flax_bart.py +1995 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/modeling_tf_bart.py +1712 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/tokenization_bart.py +390 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bart/tokenization_bart_fast.py +276 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__init__.py +197 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert/configuration_bert.py +153 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert/convert_bert_original_tf2_checkpoint_to_pytorch.py +245 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py +63 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert/modeling_bert.py +1867 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert/modeling_flax_bert.py +1713 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert/modeling_tf_bert.py +2114 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert/tokenization_bert_fast.py +172 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert/tokenization_bert_tf.py +254 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/__init__.py +28 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/convert_byt5_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py +60 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/tokenization_byt5.py +234 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__init__.py +81 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/configuration_cvt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/convert_cvt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/modeling_cvt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/modeling_tf_cvt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/configuration_cvt.py +146 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py +362 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/modeling_cvt.py +725 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/modeling_tf_cvt.py +1097 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/phi/__init__.py +69 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/phi/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/phi/__pycache__/configuration_phi.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/phi/__pycache__/convert_phi_weights_to_hf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/phi/__pycache__/modeling_phi.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/phi/configuration_phi.py +191 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/phi/convert_phi_weights_to_hf.py +207 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/phi/modeling_phi.py +1489 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_encoder_decoder/__init__.py +60 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__init__.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_bart": ["BART_PRETRAINED_CONFIG_ARCHIVE_MAP", "BartConfig", "BartOnnxConfig"],
|
28 |
+
"tokenization_bart": ["BartTokenizer"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_tokenizers_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["tokenization_bart_fast"] = ["BartTokenizerFast"]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_torch_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["modeling_bart"] = [
|
46 |
+
"BART_PRETRAINED_MODEL_ARCHIVE_LIST",
|
47 |
+
"BartForCausalLM",
|
48 |
+
"BartForConditionalGeneration",
|
49 |
+
"BartForQuestionAnswering",
|
50 |
+
"BartForSequenceClassification",
|
51 |
+
"BartModel",
|
52 |
+
"BartPreTrainedModel",
|
53 |
+
"BartPretrainedModel",
|
54 |
+
"PretrainedBartModel",
|
55 |
+
]
|
56 |
+
|
57 |
+
try:
|
58 |
+
if not is_tf_available():
|
59 |
+
raise OptionalDependencyNotAvailable()
|
60 |
+
except OptionalDependencyNotAvailable:
|
61 |
+
pass
|
62 |
+
else:
|
63 |
+
_import_structure["modeling_tf_bart"] = [
|
64 |
+
"TFBartForConditionalGeneration",
|
65 |
+
"TFBartForSequenceClassification",
|
66 |
+
"TFBartModel",
|
67 |
+
"TFBartPretrainedModel",
|
68 |
+
]
|
69 |
+
|
70 |
+
try:
|
71 |
+
if not is_flax_available():
|
72 |
+
raise OptionalDependencyNotAvailable()
|
73 |
+
except OptionalDependencyNotAvailable:
|
74 |
+
pass
|
75 |
+
else:
|
76 |
+
_import_structure["modeling_flax_bart"] = [
|
77 |
+
"FlaxBartDecoderPreTrainedModel",
|
78 |
+
"FlaxBartForCausalLM",
|
79 |
+
"FlaxBartForConditionalGeneration",
|
80 |
+
"FlaxBartForQuestionAnswering",
|
81 |
+
"FlaxBartForSequenceClassification",
|
82 |
+
"FlaxBartModel",
|
83 |
+
"FlaxBartPreTrainedModel",
|
84 |
+
]
|
85 |
+
|
86 |
+
if TYPE_CHECKING:
|
87 |
+
from .configuration_bart import BART_PRETRAINED_CONFIG_ARCHIVE_MAP, BartConfig, BartOnnxConfig
|
88 |
+
from .tokenization_bart import BartTokenizer
|
89 |
+
|
90 |
+
try:
|
91 |
+
if not is_tokenizers_available():
|
92 |
+
raise OptionalDependencyNotAvailable()
|
93 |
+
except OptionalDependencyNotAvailable:
|
94 |
+
pass
|
95 |
+
else:
|
96 |
+
from .tokenization_bart_fast import BartTokenizerFast
|
97 |
+
|
98 |
+
try:
|
99 |
+
if not is_torch_available():
|
100 |
+
raise OptionalDependencyNotAvailable()
|
101 |
+
except OptionalDependencyNotAvailable:
|
102 |
+
pass
|
103 |
+
else:
|
104 |
+
from .modeling_bart import (
|
105 |
+
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
|
106 |
+
BartForCausalLM,
|
107 |
+
BartForConditionalGeneration,
|
108 |
+
BartForQuestionAnswering,
|
109 |
+
BartForSequenceClassification,
|
110 |
+
BartModel,
|
111 |
+
BartPreTrainedModel,
|
112 |
+
BartPretrainedModel,
|
113 |
+
PretrainedBartModel,
|
114 |
+
)
|
115 |
+
|
116 |
+
try:
|
117 |
+
if not is_tf_available():
|
118 |
+
raise OptionalDependencyNotAvailable()
|
119 |
+
except OptionalDependencyNotAvailable:
|
120 |
+
pass
|
121 |
+
else:
|
122 |
+
from .modeling_tf_bart import (
|
123 |
+
TFBartForConditionalGeneration,
|
124 |
+
TFBartForSequenceClassification,
|
125 |
+
TFBartModel,
|
126 |
+
TFBartPretrainedModel,
|
127 |
+
)
|
128 |
+
|
129 |
+
try:
|
130 |
+
if not is_flax_available():
|
131 |
+
raise OptionalDependencyNotAvailable()
|
132 |
+
except OptionalDependencyNotAvailable:
|
133 |
+
pass
|
134 |
+
else:
|
135 |
+
from .modeling_flax_bart import (
|
136 |
+
FlaxBartDecoderPreTrainedModel,
|
137 |
+
FlaxBartForCausalLM,
|
138 |
+
FlaxBartForConditionalGeneration,
|
139 |
+
FlaxBartForQuestionAnswering,
|
140 |
+
FlaxBartForSequenceClassification,
|
141 |
+
FlaxBartModel,
|
142 |
+
FlaxBartPreTrainedModel,
|
143 |
+
)
|
144 |
+
|
145 |
+
else:
|
146 |
+
import sys
|
147 |
+
|
148 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/configuration_bart.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/convert_bart_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.51 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/modeling_bart.cpython-310.pyc
ADDED
Binary file (69.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/modeling_flax_bart.cpython-310.pyc
ADDED
Binary file (53.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/modeling_tf_bart.cpython-310.pyc
ADDED
Binary file (54.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/tokenization_bart.cpython-310.pyc
ADDED
Binary file (15.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/__pycache__/tokenization_bart_fast.cpython-310.pyc
ADDED
Binary file (9.44 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/configuration_bart.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" BART model configuration"""
|
16 |
+
import warnings
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Any, Mapping, Optional
|
19 |
+
|
20 |
+
from ... import PreTrainedTokenizer
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
|
23 |
+
from ...onnx.utils import compute_effective_axis_dimension
|
24 |
+
from ...utils import TensorType, is_torch_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class BartConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`BartModel`]. It is used to instantiate a BART
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the BART
|
35 |
+
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 50265):
|
43 |
+
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`BartModel`] or [`TFBartModel`].
|
45 |
+
d_model (`int`, *optional*, defaults to 1024):
|
46 |
+
Dimensionality of the layers and the pooler layer.
|
47 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
48 |
+
Number of encoder layers.
|
49 |
+
decoder_layers (`int`, *optional*, defaults to 12):
|
50 |
+
Number of decoder layers.
|
51 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
54 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
55 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
56 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
57 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
58 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
59 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
60 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
61 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
62 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
64 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
65 |
+
The dropout ratio for the attention probabilities.
|
66 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
67 |
+
The dropout ratio for activations inside the fully connected layer.
|
68 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
69 |
+
The dropout ratio for classifier.
|
70 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
71 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
72 |
+
just in case (e.g., 512 or 1024 or 2048).
|
73 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
74 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
75 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
76 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
77 |
+
for more details.
|
78 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
79 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
80 |
+
for more details.
|
81 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
82 |
+
Scale embeddings by diving by sqrt(d_model).
|
83 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
84 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
85 |
+
num_labels (`int`, *optional*, defaults to 3):
|
86 |
+
The number of labels to use in [`BartForSequenceClassification`].
|
87 |
+
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
88 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
89 |
+
`eos_token_id`.
|
90 |
+
|
91 |
+
Example:
|
92 |
+
|
93 |
+
```python
|
94 |
+
>>> from transformers import BartConfig, BartModel
|
95 |
+
|
96 |
+
>>> # Initializing a BART facebook/bart-large style configuration
|
97 |
+
>>> configuration = BartConfig()
|
98 |
+
|
99 |
+
>>> # Initializing a model (with random weights) from the facebook/bart-large style configuration
|
100 |
+
>>> model = BartModel(configuration)
|
101 |
+
|
102 |
+
>>> # Accessing the model configuration
|
103 |
+
>>> configuration = model.config
|
104 |
+
```"""
|
105 |
+
|
106 |
+
model_type = "bart"
|
107 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
108 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
109 |
+
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
vocab_size=50265,
|
113 |
+
max_position_embeddings=1024,
|
114 |
+
encoder_layers=12,
|
115 |
+
encoder_ffn_dim=4096,
|
116 |
+
encoder_attention_heads=16,
|
117 |
+
decoder_layers=12,
|
118 |
+
decoder_ffn_dim=4096,
|
119 |
+
decoder_attention_heads=16,
|
120 |
+
encoder_layerdrop=0.0,
|
121 |
+
decoder_layerdrop=0.0,
|
122 |
+
activation_function="gelu",
|
123 |
+
d_model=1024,
|
124 |
+
dropout=0.1,
|
125 |
+
attention_dropout=0.0,
|
126 |
+
activation_dropout=0.0,
|
127 |
+
init_std=0.02,
|
128 |
+
classifier_dropout=0.0,
|
129 |
+
scale_embedding=False,
|
130 |
+
use_cache=True,
|
131 |
+
num_labels=3,
|
132 |
+
pad_token_id=1,
|
133 |
+
bos_token_id=0,
|
134 |
+
eos_token_id=2,
|
135 |
+
is_encoder_decoder=True,
|
136 |
+
decoder_start_token_id=2,
|
137 |
+
forced_eos_token_id=2,
|
138 |
+
**kwargs,
|
139 |
+
):
|
140 |
+
self.vocab_size = vocab_size
|
141 |
+
self.max_position_embeddings = max_position_embeddings
|
142 |
+
self.d_model = d_model
|
143 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
144 |
+
self.encoder_layers = encoder_layers
|
145 |
+
self.encoder_attention_heads = encoder_attention_heads
|
146 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
147 |
+
self.decoder_layers = decoder_layers
|
148 |
+
self.decoder_attention_heads = decoder_attention_heads
|
149 |
+
self.dropout = dropout
|
150 |
+
self.attention_dropout = attention_dropout
|
151 |
+
self.activation_dropout = activation_dropout
|
152 |
+
self.activation_function = activation_function
|
153 |
+
self.init_std = init_std
|
154 |
+
self.encoder_layerdrop = encoder_layerdrop
|
155 |
+
self.decoder_layerdrop = decoder_layerdrop
|
156 |
+
self.classifier_dropout = classifier_dropout
|
157 |
+
self.use_cache = use_cache
|
158 |
+
self.num_hidden_layers = encoder_layers
|
159 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
160 |
+
|
161 |
+
super().__init__(
|
162 |
+
num_labels=num_labels,
|
163 |
+
pad_token_id=pad_token_id,
|
164 |
+
bos_token_id=bos_token_id,
|
165 |
+
eos_token_id=eos_token_id,
|
166 |
+
is_encoder_decoder=is_encoder_decoder,
|
167 |
+
decoder_start_token_id=decoder_start_token_id,
|
168 |
+
forced_eos_token_id=forced_eos_token_id,
|
169 |
+
**kwargs,
|
170 |
+
)
|
171 |
+
|
172 |
+
# ensure backward compatibility for BART CNN models
|
173 |
+
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
|
174 |
+
self.forced_bos_token_id = self.bos_token_id
|
175 |
+
warnings.warn(
|
176 |
+
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
|
177 |
+
"The config can simply be saved and uploaded again to be fixed."
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
class BartOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
182 |
+
@property
|
183 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
184 |
+
if self.task in ["default", "seq2seq-lm"]:
|
185 |
+
common_inputs = OrderedDict(
|
186 |
+
[
|
187 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
188 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
189 |
+
]
|
190 |
+
)
|
191 |
+
|
192 |
+
if self.use_past:
|
193 |
+
common_inputs["decoder_input_ids"] = {0: "batch"}
|
194 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
|
195 |
+
else:
|
196 |
+
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
197 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
|
198 |
+
|
199 |
+
if self.use_past:
|
200 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
201 |
+
elif self.task == "causal-lm":
|
202 |
+
# TODO: figure this case out.
|
203 |
+
common_inputs = OrderedDict(
|
204 |
+
[
|
205 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
206 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
207 |
+
]
|
208 |
+
)
|
209 |
+
if self.use_past:
|
210 |
+
num_encoder_layers, _ = self.num_layers
|
211 |
+
for i in range(num_encoder_layers):
|
212 |
+
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
213 |
+
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
214 |
+
else:
|
215 |
+
common_inputs = OrderedDict(
|
216 |
+
[
|
217 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
218 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
219 |
+
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
|
220 |
+
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
|
221 |
+
]
|
222 |
+
)
|
223 |
+
|
224 |
+
return common_inputs
|
225 |
+
|
226 |
+
@property
|
227 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
228 |
+
if self.task in ["default", "seq2seq-lm"]:
|
229 |
+
common_outputs = super().outputs
|
230 |
+
else:
|
231 |
+
common_outputs = super(OnnxConfigWithPast, self).outputs
|
232 |
+
if self.use_past:
|
233 |
+
num_encoder_layers, _ = self.num_layers
|
234 |
+
for i in range(num_encoder_layers):
|
235 |
+
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
236 |
+
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
237 |
+
return common_outputs
|
238 |
+
|
239 |
+
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
|
240 |
+
self,
|
241 |
+
tokenizer: PreTrainedTokenizer,
|
242 |
+
batch_size: int = -1,
|
243 |
+
seq_length: int = -1,
|
244 |
+
is_pair: bool = False,
|
245 |
+
framework: Optional[TensorType] = None,
|
246 |
+
) -> Mapping[str, Any]:
|
247 |
+
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
248 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
249 |
+
)
|
250 |
+
|
251 |
+
# Generate decoder inputs
|
252 |
+
decoder_seq_length = seq_length if not self.use_past else 1
|
253 |
+
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
254 |
+
tokenizer, batch_size, decoder_seq_length, is_pair, framework
|
255 |
+
)
|
256 |
+
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
|
257 |
+
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
258 |
+
|
259 |
+
if self.use_past:
|
260 |
+
if not is_torch_available():
|
261 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
262 |
+
else:
|
263 |
+
import torch
|
264 |
+
batch, encoder_seq_length = common_inputs["input_ids"].shape
|
265 |
+
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
266 |
+
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
|
267 |
+
encoder_shape = (
|
268 |
+
batch,
|
269 |
+
num_encoder_attention_heads,
|
270 |
+
encoder_seq_length,
|
271 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
272 |
+
)
|
273 |
+
decoder_past_length = decoder_seq_length + 3
|
274 |
+
decoder_shape = (
|
275 |
+
batch,
|
276 |
+
num_decoder_attention_heads,
|
277 |
+
decoder_past_length,
|
278 |
+
self._config.hidden_size // num_decoder_attention_heads,
|
279 |
+
)
|
280 |
+
|
281 |
+
common_inputs["decoder_attention_mask"] = torch.cat(
|
282 |
+
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
|
283 |
+
)
|
284 |
+
|
285 |
+
common_inputs["past_key_values"] = []
|
286 |
+
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
287 |
+
num_encoder_layers, num_decoder_layers = self.num_layers
|
288 |
+
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
289 |
+
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
290 |
+
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
291 |
+
|
292 |
+
for _ in range(min_num_layers):
|
293 |
+
common_inputs["past_key_values"].append(
|
294 |
+
(
|
295 |
+
torch.zeros(decoder_shape),
|
296 |
+
torch.zeros(decoder_shape),
|
297 |
+
torch.zeros(encoder_shape),
|
298 |
+
torch.zeros(encoder_shape),
|
299 |
+
)
|
300 |
+
)
|
301 |
+
# TODO: test this.
|
302 |
+
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
303 |
+
for _ in range(min_num_layers, max_num_layers):
|
304 |
+
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
|
305 |
+
return common_inputs
|
306 |
+
|
307 |
+
def _generate_dummy_inputs_for_causal_lm(
|
308 |
+
self,
|
309 |
+
tokenizer: PreTrainedTokenizer,
|
310 |
+
batch_size: int = -1,
|
311 |
+
seq_length: int = -1,
|
312 |
+
is_pair: bool = False,
|
313 |
+
framework: Optional[TensorType] = None,
|
314 |
+
) -> Mapping[str, Any]:
|
315 |
+
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
316 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
317 |
+
)
|
318 |
+
|
319 |
+
if self.use_past:
|
320 |
+
if not is_torch_available():
|
321 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
322 |
+
else:
|
323 |
+
import torch
|
324 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
325 |
+
# Not using the same length for past_key_values
|
326 |
+
past_key_values_length = seqlen + 2
|
327 |
+
num_encoder_layers, _ = self.num_layers
|
328 |
+
num_encoder_attention_heads, _ = self.num_attention_heads
|
329 |
+
past_shape = (
|
330 |
+
batch,
|
331 |
+
num_encoder_attention_heads,
|
332 |
+
past_key_values_length,
|
333 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
334 |
+
)
|
335 |
+
|
336 |
+
mask_dtype = common_inputs["attention_mask"].dtype
|
337 |
+
common_inputs["attention_mask"] = torch.cat(
|
338 |
+
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
339 |
+
)
|
340 |
+
common_inputs["past_key_values"] = [
|
341 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
|
342 |
+
]
|
343 |
+
return common_inputs
|
344 |
+
|
345 |
+
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
346 |
+
self,
|
347 |
+
tokenizer: PreTrainedTokenizer,
|
348 |
+
batch_size: int = -1,
|
349 |
+
seq_length: int = -1,
|
350 |
+
is_pair: bool = False,
|
351 |
+
framework: Optional[TensorType] = None,
|
352 |
+
) -> Mapping[str, Any]:
|
353 |
+
# Copied from OnnxConfig.generate_dummy_inputs
|
354 |
+
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
|
355 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
356 |
+
batch_size = compute_effective_axis_dimension(
|
357 |
+
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
|
358 |
+
)
|
359 |
+
|
360 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
361 |
+
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
|
362 |
+
seq_length = compute_effective_axis_dimension(
|
363 |
+
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
|
364 |
+
)
|
365 |
+
|
366 |
+
# Generate dummy inputs according to compute batch and sequence
|
367 |
+
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
|
368 |
+
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
|
369 |
+
return common_inputs
|
370 |
+
|
371 |
+
def generate_dummy_inputs(
|
372 |
+
self,
|
373 |
+
tokenizer: PreTrainedTokenizer,
|
374 |
+
batch_size: int = -1,
|
375 |
+
seq_length: int = -1,
|
376 |
+
is_pair: bool = False,
|
377 |
+
framework: Optional[TensorType] = None,
|
378 |
+
) -> Mapping[str, Any]:
|
379 |
+
if self.task in ["default", "seq2seq-lm"]:
|
380 |
+
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
|
381 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
382 |
+
)
|
383 |
+
|
384 |
+
elif self.task == "causal-lm":
|
385 |
+
common_inputs = self._generate_dummy_inputs_for_causal_lm(
|
386 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
387 |
+
)
|
388 |
+
else:
|
389 |
+
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
390 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
391 |
+
)
|
392 |
+
|
393 |
+
return common_inputs
|
394 |
+
|
395 |
+
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
|
396 |
+
if self.task in ["default", "seq2seq-lm"]:
|
397 |
+
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
|
398 |
+
else:
|
399 |
+
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
|
400 |
+
flattened_output, name, idx, t
|
401 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert BART checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import os
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import fairseq
|
23 |
+
import torch
|
24 |
+
from packaging import version
|
25 |
+
from torch import nn
|
26 |
+
|
27 |
+
from transformers import (
|
28 |
+
BartConfig,
|
29 |
+
BartForConditionalGeneration,
|
30 |
+
BartForSequenceClassification,
|
31 |
+
BartModel,
|
32 |
+
BartTokenizer,
|
33 |
+
)
|
34 |
+
from transformers.utils import logging
|
35 |
+
|
36 |
+
|
37 |
+
FAIRSEQ_MODELS = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"]
|
38 |
+
extra_arch = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification}
|
39 |
+
if version.parse(fairseq.__version__) < version.parse("0.9.0"):
|
40 |
+
raise Exception("requires fairseq >= 0.9.0")
|
41 |
+
|
42 |
+
|
43 |
+
logging.set_verbosity_info()
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
SAMPLE_TEXT = " Hello world! cécé herlolip"
|
47 |
+
|
48 |
+
mnli_rename_keys = [
|
49 |
+
("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"),
|
50 |
+
("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"),
|
51 |
+
("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"),
|
52 |
+
("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"),
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
def remove_ignore_keys_(state_dict):
|
57 |
+
ignore_keys = [
|
58 |
+
"encoder.version",
|
59 |
+
"decoder.version",
|
60 |
+
"model.encoder.version",
|
61 |
+
"model.decoder.version",
|
62 |
+
"_float_tensor",
|
63 |
+
]
|
64 |
+
for k in ignore_keys:
|
65 |
+
state_dict.pop(k, None)
|
66 |
+
|
67 |
+
|
68 |
+
def rename_key(dct, old, new):
|
69 |
+
val = dct.pop(old)
|
70 |
+
dct[new] = val
|
71 |
+
|
72 |
+
|
73 |
+
def load_xsum_checkpoint(checkpoint_path):
|
74 |
+
"""Checkpoint path should end in model.pt"""
|
75 |
+
sd = torch.load(checkpoint_path, map_location="cpu")
|
76 |
+
hub_interface = torch.hub.load("pytorch/fairseq", "bart.large.cnn").eval()
|
77 |
+
hub_interface.model.load_state_dict(sd["model"])
|
78 |
+
return hub_interface
|
79 |
+
|
80 |
+
|
81 |
+
def make_linear_from_emb(emb):
|
82 |
+
vocab_size, emb_size = emb.weight.shape
|
83 |
+
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
|
84 |
+
lin_layer.weight.data = emb.weight.data
|
85 |
+
return lin_layer
|
86 |
+
|
87 |
+
|
88 |
+
@torch.no_grad()
|
89 |
+
def convert_bart_checkpoint(checkpoint_path, pytorch_dump_folder_path, hf_checkpoint_name=None):
|
90 |
+
"""
|
91 |
+
Copy/paste/tweak model's weights to our BERT structure.
|
92 |
+
"""
|
93 |
+
if not os.path.exists(checkpoint_path):
|
94 |
+
bart = torch.hub.load("pytorch/fairseq", checkpoint_path).eval()
|
95 |
+
else:
|
96 |
+
bart = load_xsum_checkpoint(checkpoint_path)
|
97 |
+
|
98 |
+
bart.model.upgrade_state_dict(bart.model.state_dict())
|
99 |
+
if hf_checkpoint_name is None:
|
100 |
+
hf_checkpoint_name = checkpoint_path.replace(".", "-")
|
101 |
+
config = BartConfig.from_pretrained(hf_checkpoint_name)
|
102 |
+
tokens = bart.encode(SAMPLE_TEXT).unsqueeze(0)
|
103 |
+
tokens2 = BartTokenizer.from_pretrained(hf_checkpoint_name).encode(SAMPLE_TEXT, return_tensors="pt").unsqueeze(0)
|
104 |
+
if not torch.eq(tokens, tokens2).all():
|
105 |
+
raise ValueError(
|
106 |
+
f"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokens2}"
|
107 |
+
)
|
108 |
+
|
109 |
+
if checkpoint_path == "bart.large.mnli":
|
110 |
+
state_dict = bart.state_dict()
|
111 |
+
remove_ignore_keys_(state_dict)
|
112 |
+
state_dict["model.shared.weight"] = state_dict["model.decoder.embed_tokens.weight"]
|
113 |
+
for src, dest in mnli_rename_keys:
|
114 |
+
rename_key(state_dict, src, dest)
|
115 |
+
model = BartForSequenceClassification(config).eval()
|
116 |
+
model.load_state_dict(state_dict)
|
117 |
+
fairseq_output = bart.predict("mnli", tokens, return_logits=True)
|
118 |
+
new_model_outputs = model(tokens)[0] # logits
|
119 |
+
else: # no classification heads to worry about
|
120 |
+
state_dict = bart.model.state_dict()
|
121 |
+
remove_ignore_keys_(state_dict)
|
122 |
+
state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"]
|
123 |
+
fairseq_output = bart.extract_features(tokens)
|
124 |
+
if hf_checkpoint_name == "facebook/bart-large":
|
125 |
+
model = BartModel(config).eval()
|
126 |
+
model.load_state_dict(state_dict)
|
127 |
+
new_model_outputs = model(tokens).model[0]
|
128 |
+
else:
|
129 |
+
model = BartForConditionalGeneration(config).eval() # an existing summarization ckpt
|
130 |
+
model.model.load_state_dict(state_dict)
|
131 |
+
if hasattr(model, "lm_head"):
|
132 |
+
model.lm_head = make_linear_from_emb(model.model.shared)
|
133 |
+
new_model_outputs = model.model(tokens)[0]
|
134 |
+
|
135 |
+
# Check results
|
136 |
+
if fairseq_output.shape != new_model_outputs.shape:
|
137 |
+
raise ValueError(
|
138 |
+
f"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}"
|
139 |
+
)
|
140 |
+
if (fairseq_output != new_model_outputs).any().item():
|
141 |
+
raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`")
|
142 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
143 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
144 |
+
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
parser = argparse.ArgumentParser()
|
148 |
+
# Required parameters
|
149 |
+
parser.add_argument(
|
150 |
+
"fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem."
|
151 |
+
)
|
152 |
+
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
153 |
+
parser.add_argument(
|
154 |
+
"--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum"
|
155 |
+
)
|
156 |
+
args = parser.parse_args()
|
157 |
+
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/modeling_bart.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/modeling_flax_bart.py
ADDED
@@ -0,0 +1,1995 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Flax Bart model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import random
|
19 |
+
from functools import partial
|
20 |
+
from typing import Callable, Optional, Tuple
|
21 |
+
|
22 |
+
import flax.linen as nn
|
23 |
+
import jax
|
24 |
+
import jax.numpy as jnp
|
25 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
26 |
+
from flax.linen import combine_masks, make_causal_mask
|
27 |
+
from flax.linen.attention import dot_product_attention_weights
|
28 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
29 |
+
from jax import lax
|
30 |
+
from jax.random import PRNGKey
|
31 |
+
|
32 |
+
from ...modeling_flax_outputs import (
|
33 |
+
FlaxBaseModelOutput,
|
34 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
35 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
36 |
+
FlaxSeq2SeqLMOutput,
|
37 |
+
FlaxSeq2SeqModelOutput,
|
38 |
+
FlaxSeq2SeqQuestionAnsweringModelOutput,
|
39 |
+
FlaxSeq2SeqSequenceClassifierOutput,
|
40 |
+
)
|
41 |
+
from ...modeling_flax_utils import (
|
42 |
+
ACT2FN,
|
43 |
+
FlaxPreTrainedModel,
|
44 |
+
append_call_sample_docstring,
|
45 |
+
append_replace_return_docstrings,
|
46 |
+
overwrite_call_docstring,
|
47 |
+
)
|
48 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
49 |
+
from .configuration_bart import BartConfig
|
50 |
+
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
_CHECKPOINT_FOR_DOC = "facebook/bart-base"
|
55 |
+
_CONFIG_FOR_DOC = "BartConfig"
|
56 |
+
|
57 |
+
|
58 |
+
BART_START_DOCSTRING = r"""
|
59 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
60 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
61 |
+
etc.)
|
62 |
+
|
63 |
+
This model is also a Flax Linen
|
64 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
65 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
66 |
+
|
67 |
+
Finally, this model supports inherent JAX features such as:
|
68 |
+
|
69 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
70 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
71 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
72 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
73 |
+
|
74 |
+
Parameters:
|
75 |
+
config ([`BartConfig`]): Model configuration class with all the parameters of the model.
|
76 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
77 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
78 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
79 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
80 |
+
`jax.numpy.bfloat16` (on TPUs).
|
81 |
+
|
82 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
83 |
+
specified all the computation will be performed with the given `dtype`.
|
84 |
+
|
85 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
86 |
+
parameters.**
|
87 |
+
|
88 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
89 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
90 |
+
"""
|
91 |
+
|
92 |
+
BART_INPUTS_DOCSTRING = r"""
|
93 |
+
Args:
|
94 |
+
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
95 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
96 |
+
it.
|
97 |
+
|
98 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
99 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
100 |
+
|
101 |
+
[What are input IDs?](../glossary#input-ids)
|
102 |
+
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
103 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
104 |
+
|
105 |
+
- 1 for tokens that are **not masked**,
|
106 |
+
- 0 for tokens that are **masked**.
|
107 |
+
|
108 |
+
[What are attention masks?](../glossary#attention-mask)
|
109 |
+
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
110 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
111 |
+
|
112 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
113 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
114 |
+
|
115 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
116 |
+
|
117 |
+
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
118 |
+
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
|
119 |
+
for denoising pre-training following the paper.
|
120 |
+
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
121 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
122 |
+
be used by default.
|
123 |
+
|
124 |
+
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
|
125 |
+
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
|
126 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
127 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
128 |
+
config.max_position_embeddings - 1]`.
|
129 |
+
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
130 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
131 |
+
range `[0, config.max_position_embeddings - 1]`.
|
132 |
+
output_attentions (`bool`, *optional*):
|
133 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
134 |
+
tensors for more detail.
|
135 |
+
output_hidden_states (`bool`, *optional*):
|
136 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
137 |
+
more detail.
|
138 |
+
return_dict (`bool`, *optional*):
|
139 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
140 |
+
"""
|
141 |
+
|
142 |
+
|
143 |
+
BART_ENCODE_INPUTS_DOCSTRING = r"""
|
144 |
+
Args:
|
145 |
+
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
146 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
147 |
+
it.
|
148 |
+
|
149 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
150 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
151 |
+
|
152 |
+
[What are input IDs?](../glossary#input-ids)
|
153 |
+
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
154 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
155 |
+
|
156 |
+
- 1 for tokens that are **not masked**,
|
157 |
+
- 0 for tokens that are **masked**.
|
158 |
+
|
159 |
+
[What are attention masks?](../glossary#attention-mask)
|
160 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
161 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
162 |
+
config.max_position_embeddings - 1]`.
|
163 |
+
output_attentions (`bool`, *optional*):
|
164 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
165 |
+
tensors for more detail.
|
166 |
+
output_hidden_states (`bool`, *optional*):
|
167 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
168 |
+
more detail.
|
169 |
+
return_dict (`bool`, *optional*):
|
170 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
171 |
+
"""
|
172 |
+
|
173 |
+
BART_DECODE_INPUTS_DOCSTRING = r"""
|
174 |
+
Args:
|
175 |
+
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
|
176 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
177 |
+
|
178 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
179 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
180 |
+
|
181 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
182 |
+
|
183 |
+
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
184 |
+
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
|
185 |
+
for denoising pre-training following the paper.
|
186 |
+
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
|
187 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
188 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
189 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
190 |
+
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
191 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
192 |
+
|
193 |
+
- 1 for tokens that are **not masked**,
|
194 |
+
- 0 for tokens that are **masked**.
|
195 |
+
|
196 |
+
[What are attention masks?](../glossary#attention-mask)
|
197 |
+
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
198 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
199 |
+
be used by default.
|
200 |
+
|
201 |
+
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
|
202 |
+
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
|
203 |
+
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
204 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
205 |
+
range `[0, config.max_position_embeddings - 1]`.
|
206 |
+
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
207 |
+
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
208 |
+
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
209 |
+
output_attentions (`bool`, *optional*):
|
210 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
211 |
+
tensors for more detail.
|
212 |
+
output_hidden_states (`bool`, *optional*):
|
213 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
214 |
+
more detail.
|
215 |
+
return_dict (`bool`, *optional*):
|
216 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
217 |
+
"""
|
218 |
+
|
219 |
+
|
220 |
+
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
|
221 |
+
"""
|
222 |
+
Shift input ids one token to the right.
|
223 |
+
"""
|
224 |
+
shifted_input_ids = jnp.zeros_like(input_ids)
|
225 |
+
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
|
226 |
+
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
|
227 |
+
|
228 |
+
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
|
229 |
+
return shifted_input_ids
|
230 |
+
|
231 |
+
|
232 |
+
class FlaxBartAttention(nn.Module):
|
233 |
+
config: BartConfig
|
234 |
+
embed_dim: int
|
235 |
+
num_heads: int
|
236 |
+
dropout: float = 0.0
|
237 |
+
causal: bool = False
|
238 |
+
bias: bool = True
|
239 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
240 |
+
|
241 |
+
def setup(self) -> None:
|
242 |
+
self.head_dim = self.embed_dim // self.num_heads
|
243 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
244 |
+
raise ValueError(
|
245 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
246 |
+
f" and `num_heads`: {self.num_heads})."
|
247 |
+
)
|
248 |
+
|
249 |
+
dense = partial(
|
250 |
+
nn.Dense,
|
251 |
+
self.embed_dim,
|
252 |
+
use_bias=self.bias,
|
253 |
+
dtype=self.dtype,
|
254 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
255 |
+
)
|
256 |
+
|
257 |
+
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
|
258 |
+
self.out_proj = dense()
|
259 |
+
|
260 |
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
261 |
+
|
262 |
+
if self.causal:
|
263 |
+
self.causal_mask = make_causal_mask(
|
264 |
+
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
|
265 |
+
)
|
266 |
+
|
267 |
+
def _split_heads(self, hidden_states):
|
268 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
|
269 |
+
|
270 |
+
def _merge_heads(self, hidden_states):
|
271 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
272 |
+
|
273 |
+
@nn.compact
|
274 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
275 |
+
"""
|
276 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
277 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
278 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
279 |
+
"""
|
280 |
+
# detect if we're initializing by absence of existing cache data.
|
281 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
282 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
283 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
284 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
285 |
+
|
286 |
+
if is_initialized:
|
287 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
288 |
+
# update key, value caches with our new 1d spatial slices
|
289 |
+
cur_index = cache_index.value
|
290 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
291 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
292 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
293 |
+
cached_key.value = key
|
294 |
+
cached_value.value = value
|
295 |
+
num_updated_cache_vectors = query.shape[1]
|
296 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
297 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
298 |
+
pad_mask = jnp.broadcast_to(
|
299 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
300 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
301 |
+
)
|
302 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
303 |
+
return key, value, attention_mask
|
304 |
+
|
305 |
+
def __call__(
|
306 |
+
self,
|
307 |
+
hidden_states: jnp.ndarray,
|
308 |
+
key_value_states: Optional[jnp.ndarray] = None,
|
309 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
310 |
+
init_cache: bool = False,
|
311 |
+
deterministic: bool = True,
|
312 |
+
) -> Tuple[jnp.ndarray]:
|
313 |
+
"""Input shape: Batch x Time x Channel"""
|
314 |
+
|
315 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
316 |
+
# for the decoder
|
317 |
+
is_cross_attention = key_value_states is not None
|
318 |
+
batch_size = hidden_states.shape[0]
|
319 |
+
|
320 |
+
# get query proj
|
321 |
+
query_states = self.q_proj(hidden_states)
|
322 |
+
# get key, value proj
|
323 |
+
if is_cross_attention:
|
324 |
+
# cross_attentions
|
325 |
+
key_states = self.k_proj(key_value_states)
|
326 |
+
value_states = self.v_proj(key_value_states)
|
327 |
+
else:
|
328 |
+
# self_attention
|
329 |
+
key_states = self.k_proj(hidden_states)
|
330 |
+
value_states = self.v_proj(hidden_states)
|
331 |
+
|
332 |
+
query_states = self._split_heads(query_states)
|
333 |
+
key_states = self._split_heads(key_states)
|
334 |
+
value_states = self._split_heads(value_states)
|
335 |
+
|
336 |
+
# handle cache prepare causal attention mask
|
337 |
+
if self.causal:
|
338 |
+
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
339 |
+
if self.has_variable("cache", "cached_key"):
|
340 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
341 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
342 |
+
causal_mask = lax.dynamic_slice(
|
343 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
344 |
+
)
|
345 |
+
else:
|
346 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
347 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
348 |
+
|
349 |
+
# combine masks if needed
|
350 |
+
if attention_mask is not None and self.causal:
|
351 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
352 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
353 |
+
elif self.causal:
|
354 |
+
attention_mask = causal_mask
|
355 |
+
elif attention_mask is not None:
|
356 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
357 |
+
|
358 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
359 |
+
# and cache the keys and values step by step.
|
360 |
+
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
361 |
+
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
362 |
+
key_states, value_states, query_states, attention_mask
|
363 |
+
)
|
364 |
+
|
365 |
+
# Convert the boolean attention mask to an attention bias.
|
366 |
+
if attention_mask is not None:
|
367 |
+
# attention mask in the form of attention bias
|
368 |
+
attention_bias = lax.select(
|
369 |
+
attention_mask > 0,
|
370 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
371 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
372 |
+
)
|
373 |
+
else:
|
374 |
+
attention_bias = None
|
375 |
+
|
376 |
+
dropout_rng = None
|
377 |
+
if not deterministic and self.dropout > 0.0:
|
378 |
+
dropout_rng = self.make_rng("dropout")
|
379 |
+
|
380 |
+
attn_weights = dot_product_attention_weights(
|
381 |
+
query_states,
|
382 |
+
key_states,
|
383 |
+
bias=attention_bias,
|
384 |
+
dropout_rng=dropout_rng,
|
385 |
+
dropout_rate=self.dropout,
|
386 |
+
broadcast_dropout=True,
|
387 |
+
deterministic=deterministic,
|
388 |
+
dtype=self.dtype,
|
389 |
+
precision=None,
|
390 |
+
)
|
391 |
+
|
392 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
393 |
+
attn_output = self._merge_heads(attn_output)
|
394 |
+
attn_output = self.out_proj(attn_output)
|
395 |
+
|
396 |
+
return attn_output, attn_weights
|
397 |
+
|
398 |
+
|
399 |
+
class FlaxBartEncoderLayer(nn.Module):
|
400 |
+
config: BartConfig
|
401 |
+
dtype: jnp.dtype = jnp.float32
|
402 |
+
|
403 |
+
def setup(self) -> None:
|
404 |
+
self.embed_dim = self.config.d_model
|
405 |
+
self.self_attn = FlaxBartAttention(
|
406 |
+
config=self.config,
|
407 |
+
embed_dim=self.embed_dim,
|
408 |
+
num_heads=self.config.encoder_attention_heads,
|
409 |
+
dropout=self.config.attention_dropout,
|
410 |
+
dtype=self.dtype,
|
411 |
+
)
|
412 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
413 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
414 |
+
self.activation_fn = ACT2FN[self.config.activation_function]
|
415 |
+
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
416 |
+
self.fc1 = nn.Dense(
|
417 |
+
self.config.encoder_ffn_dim,
|
418 |
+
dtype=self.dtype,
|
419 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
420 |
+
)
|
421 |
+
self.fc2 = nn.Dense(
|
422 |
+
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
423 |
+
)
|
424 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
425 |
+
|
426 |
+
def __call__(
|
427 |
+
self,
|
428 |
+
hidden_states: jnp.ndarray,
|
429 |
+
attention_mask: jnp.ndarray,
|
430 |
+
output_attentions: bool = True,
|
431 |
+
deterministic: bool = True,
|
432 |
+
) -> Tuple[jnp.ndarray]:
|
433 |
+
residual = hidden_states
|
434 |
+
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
|
435 |
+
|
436 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
437 |
+
hidden_states = residual + hidden_states
|
438 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
439 |
+
|
440 |
+
residual = hidden_states
|
441 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
442 |
+
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
|
443 |
+
hidden_states = self.fc2(hidden_states)
|
444 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
445 |
+
hidden_states = residual + hidden_states
|
446 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
447 |
+
|
448 |
+
outputs = (hidden_states,)
|
449 |
+
|
450 |
+
if output_attentions:
|
451 |
+
outputs += (attn_weights,)
|
452 |
+
|
453 |
+
return outputs
|
454 |
+
|
455 |
+
|
456 |
+
class FlaxBartEncoderLayerCollection(nn.Module):
|
457 |
+
config: BartConfig
|
458 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
459 |
+
|
460 |
+
def setup(self):
|
461 |
+
self.layers = [
|
462 |
+
FlaxBartEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers)
|
463 |
+
]
|
464 |
+
self.layerdrop = self.config.encoder_layerdrop
|
465 |
+
|
466 |
+
def __call__(
|
467 |
+
self,
|
468 |
+
hidden_states,
|
469 |
+
attention_mask,
|
470 |
+
deterministic: bool = True,
|
471 |
+
output_attentions: bool = False,
|
472 |
+
output_hidden_states: bool = False,
|
473 |
+
return_dict: bool = True,
|
474 |
+
):
|
475 |
+
all_attentions = () if output_attentions else None
|
476 |
+
all_hidden_states = () if output_hidden_states else None
|
477 |
+
|
478 |
+
for encoder_layer in self.layers:
|
479 |
+
if output_hidden_states:
|
480 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
481 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
482 |
+
dropout_probability = random.uniform(0, 1)
|
483 |
+
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
|
484 |
+
layer_outputs = (None, None)
|
485 |
+
else:
|
486 |
+
layer_outputs = encoder_layer(
|
487 |
+
hidden_states,
|
488 |
+
attention_mask,
|
489 |
+
output_attentions,
|
490 |
+
deterministic,
|
491 |
+
)
|
492 |
+
hidden_states = layer_outputs[0]
|
493 |
+
if output_attentions:
|
494 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
495 |
+
|
496 |
+
if output_hidden_states:
|
497 |
+
all_hidden_states += (hidden_states,)
|
498 |
+
|
499 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
500 |
+
|
501 |
+
if not return_dict:
|
502 |
+
return tuple(v for v in outputs if v is not None)
|
503 |
+
|
504 |
+
return FlaxBaseModelOutput(
|
505 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
506 |
+
)
|
507 |
+
|
508 |
+
|
509 |
+
class FlaxBartDecoderLayer(nn.Module):
|
510 |
+
config: BartConfig
|
511 |
+
dtype: jnp.dtype = jnp.float32
|
512 |
+
|
513 |
+
def setup(self) -> None:
|
514 |
+
self.embed_dim = self.config.d_model
|
515 |
+
self.self_attn = FlaxBartAttention(
|
516 |
+
config=self.config,
|
517 |
+
embed_dim=self.embed_dim,
|
518 |
+
num_heads=self.config.decoder_attention_heads,
|
519 |
+
dropout=self.config.attention_dropout,
|
520 |
+
causal=True,
|
521 |
+
dtype=self.dtype,
|
522 |
+
)
|
523 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
524 |
+
self.activation_fn = ACT2FN[self.config.activation_function]
|
525 |
+
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
526 |
+
|
527 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
528 |
+
self.encoder_attn = FlaxBartAttention(
|
529 |
+
config=self.config,
|
530 |
+
embed_dim=self.embed_dim,
|
531 |
+
num_heads=self.config.decoder_attention_heads,
|
532 |
+
dropout=self.config.attention_dropout,
|
533 |
+
dtype=self.dtype,
|
534 |
+
)
|
535 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
536 |
+
self.fc1 = nn.Dense(
|
537 |
+
self.config.decoder_ffn_dim,
|
538 |
+
dtype=self.dtype,
|
539 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
540 |
+
)
|
541 |
+
self.fc2 = nn.Dense(
|
542 |
+
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
543 |
+
)
|
544 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
545 |
+
|
546 |
+
def __call__(
|
547 |
+
self,
|
548 |
+
hidden_states: jnp.ndarray,
|
549 |
+
attention_mask: jnp.ndarray,
|
550 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
551 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
552 |
+
init_cache: bool = False,
|
553 |
+
output_attentions: bool = True,
|
554 |
+
deterministic: bool = True,
|
555 |
+
) -> Tuple[jnp.ndarray]:
|
556 |
+
residual = hidden_states
|
557 |
+
|
558 |
+
# Self Attention
|
559 |
+
hidden_states, self_attn_weights = self.self_attn(
|
560 |
+
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
|
561 |
+
)
|
562 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
563 |
+
hidden_states = residual + hidden_states
|
564 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
565 |
+
|
566 |
+
# Cross-Attention Block
|
567 |
+
cross_attn_weights = None
|
568 |
+
if encoder_hidden_states is not None:
|
569 |
+
residual = hidden_states
|
570 |
+
|
571 |
+
hidden_states, cross_attn_weights = self.encoder_attn(
|
572 |
+
hidden_states=hidden_states,
|
573 |
+
key_value_states=encoder_hidden_states,
|
574 |
+
attention_mask=encoder_attention_mask,
|
575 |
+
)
|
576 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
577 |
+
hidden_states = residual + hidden_states
|
578 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
579 |
+
|
580 |
+
# Fully Connected
|
581 |
+
residual = hidden_states
|
582 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
583 |
+
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
|
584 |
+
hidden_states = self.fc2(hidden_states)
|
585 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
586 |
+
hidden_states = residual + hidden_states
|
587 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
588 |
+
|
589 |
+
outputs = (hidden_states,)
|
590 |
+
|
591 |
+
if output_attentions:
|
592 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
593 |
+
|
594 |
+
return outputs
|
595 |
+
|
596 |
+
|
597 |
+
class FlaxBartDecoderLayerCollection(nn.Module):
|
598 |
+
config: BartConfig
|
599 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
600 |
+
|
601 |
+
def setup(self):
|
602 |
+
self.layers = [
|
603 |
+
FlaxBartDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers)
|
604 |
+
]
|
605 |
+
self.layerdrop = self.config.decoder_layerdrop
|
606 |
+
|
607 |
+
def __call__(
|
608 |
+
self,
|
609 |
+
hidden_states,
|
610 |
+
attention_mask,
|
611 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
612 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
613 |
+
deterministic: bool = True,
|
614 |
+
init_cache: bool = False,
|
615 |
+
output_attentions: bool = False,
|
616 |
+
output_hidden_states: bool = False,
|
617 |
+
return_dict: bool = True,
|
618 |
+
):
|
619 |
+
# decoder layers
|
620 |
+
all_hidden_states = () if output_hidden_states else None
|
621 |
+
all_self_attns = () if output_attentions else None
|
622 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
623 |
+
|
624 |
+
for decoder_layer in self.layers:
|
625 |
+
if output_hidden_states:
|
626 |
+
all_hidden_states += (hidden_states,)
|
627 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
628 |
+
dropout_probability = random.uniform(0, 1)
|
629 |
+
if not deterministic and (dropout_probability < self.layerdrop):
|
630 |
+
layer_outputs = (None, None, None)
|
631 |
+
else:
|
632 |
+
layer_outputs = decoder_layer(
|
633 |
+
hidden_states,
|
634 |
+
attention_mask=attention_mask,
|
635 |
+
encoder_hidden_states=encoder_hidden_states,
|
636 |
+
encoder_attention_mask=encoder_attention_mask,
|
637 |
+
init_cache=init_cache,
|
638 |
+
output_attentions=output_attentions,
|
639 |
+
deterministic=deterministic,
|
640 |
+
)
|
641 |
+
|
642 |
+
hidden_states = layer_outputs[0]
|
643 |
+
if output_attentions:
|
644 |
+
all_self_attns += (layer_outputs[1],)
|
645 |
+
|
646 |
+
if encoder_hidden_states is not None:
|
647 |
+
all_cross_attentions += (layer_outputs[2],)
|
648 |
+
|
649 |
+
# add hidden states from the last decoder layer
|
650 |
+
if output_hidden_states:
|
651 |
+
all_hidden_states += (hidden_states,)
|
652 |
+
|
653 |
+
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
|
654 |
+
|
655 |
+
if not return_dict:
|
656 |
+
return tuple(v for v in outputs if v is not None)
|
657 |
+
|
658 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
659 |
+
last_hidden_state=hidden_states,
|
660 |
+
hidden_states=all_hidden_states,
|
661 |
+
attentions=all_self_attns,
|
662 |
+
cross_attentions=all_cross_attentions,
|
663 |
+
)
|
664 |
+
|
665 |
+
|
666 |
+
class FlaxBartClassificationHead(nn.Module):
|
667 |
+
"""Head for sentence-level classification tasks."""
|
668 |
+
|
669 |
+
config: BartConfig
|
670 |
+
inner_dim: int
|
671 |
+
num_classes: int
|
672 |
+
pooler_dropout: float
|
673 |
+
dtype: jnp.dtype = jnp.float32
|
674 |
+
|
675 |
+
def setup(self):
|
676 |
+
self.dense = nn.Dense(
|
677 |
+
self.inner_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
678 |
+
)
|
679 |
+
self.dropout = nn.Dropout(rate=self.pooler_dropout)
|
680 |
+
self.out_proj = nn.Dense(
|
681 |
+
self.num_classes,
|
682 |
+
dtype=self.dtype,
|
683 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
684 |
+
)
|
685 |
+
|
686 |
+
def __call__(self, hidden_states: jnp.ndarray, deterministic: bool):
|
687 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
688 |
+
hidden_states = self.dense(hidden_states)
|
689 |
+
hidden_states = jnp.tanh(hidden_states)
|
690 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
691 |
+
hidden_states = self.out_proj(hidden_states)
|
692 |
+
return hidden_states
|
693 |
+
|
694 |
+
|
695 |
+
class FlaxBartEncoder(nn.Module):
|
696 |
+
config: BartConfig
|
697 |
+
embed_tokens: nn.Embed
|
698 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
699 |
+
|
700 |
+
def setup(self):
|
701 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
702 |
+
|
703 |
+
embed_dim = self.config.d_model
|
704 |
+
self.padding_idx = self.config.pad_token_id
|
705 |
+
self.max_source_positions = self.config.max_position_embeddings
|
706 |
+
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
707 |
+
|
708 |
+
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
709 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
710 |
+
self.offset = 2
|
711 |
+
self.embed_positions = nn.Embed(
|
712 |
+
self.config.max_position_embeddings + self.offset,
|
713 |
+
embed_dim,
|
714 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
715 |
+
dtype=self.dtype,
|
716 |
+
)
|
717 |
+
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
|
718 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
719 |
+
|
720 |
+
def __call__(
|
721 |
+
self,
|
722 |
+
input_ids,
|
723 |
+
attention_mask,
|
724 |
+
position_ids,
|
725 |
+
output_attentions: bool = False,
|
726 |
+
output_hidden_states: bool = False,
|
727 |
+
return_dict: bool = True,
|
728 |
+
deterministic: bool = True,
|
729 |
+
):
|
730 |
+
input_shape = input_ids.shape
|
731 |
+
input_ids = input_ids.reshape(-1, input_shape[-1])
|
732 |
+
|
733 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
734 |
+
|
735 |
+
embed_pos = self.embed_positions(position_ids + self.offset)
|
736 |
+
|
737 |
+
hidden_states = inputs_embeds + embed_pos
|
738 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
739 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
740 |
+
|
741 |
+
outputs = self.layers(
|
742 |
+
hidden_states,
|
743 |
+
attention_mask,
|
744 |
+
deterministic=deterministic,
|
745 |
+
output_attentions=output_attentions,
|
746 |
+
output_hidden_states=output_hidden_states,
|
747 |
+
return_dict=return_dict,
|
748 |
+
)
|
749 |
+
|
750 |
+
if not return_dict:
|
751 |
+
return outputs
|
752 |
+
|
753 |
+
return FlaxBaseModelOutput(
|
754 |
+
last_hidden_state=outputs.last_hidden_state,
|
755 |
+
hidden_states=outputs.hidden_states,
|
756 |
+
attentions=outputs.attentions,
|
757 |
+
)
|
758 |
+
|
759 |
+
|
760 |
+
class FlaxBartDecoder(nn.Module):
|
761 |
+
config: BartConfig
|
762 |
+
embed_tokens: nn.Embed
|
763 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
764 |
+
|
765 |
+
def setup(self):
|
766 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
767 |
+
|
768 |
+
embed_dim = self.config.d_model
|
769 |
+
self.padding_idx = self.config.pad_token_id
|
770 |
+
self.max_target_positions = self.config.max_position_embeddings
|
771 |
+
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
772 |
+
|
773 |
+
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
774 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
775 |
+
self.offset = 2
|
776 |
+
self.embed_positions = nn.Embed(
|
777 |
+
self.config.max_position_embeddings + self.offset,
|
778 |
+
embed_dim,
|
779 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
780 |
+
dtype=self.dtype,
|
781 |
+
)
|
782 |
+
|
783 |
+
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
|
784 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
785 |
+
|
786 |
+
def __call__(
|
787 |
+
self,
|
788 |
+
input_ids,
|
789 |
+
attention_mask,
|
790 |
+
position_ids,
|
791 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
792 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
793 |
+
init_cache: bool = False,
|
794 |
+
output_attentions: bool = False,
|
795 |
+
output_hidden_states: bool = False,
|
796 |
+
return_dict: bool = True,
|
797 |
+
deterministic: bool = True,
|
798 |
+
):
|
799 |
+
input_shape = input_ids.shape
|
800 |
+
input_ids = input_ids.reshape(-1, input_shape[-1])
|
801 |
+
|
802 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
803 |
+
|
804 |
+
# embed positions
|
805 |
+
positions = self.embed_positions(position_ids + self.offset)
|
806 |
+
|
807 |
+
hidden_states = inputs_embeds + positions
|
808 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
809 |
+
|
810 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
811 |
+
|
812 |
+
outputs = self.layers(
|
813 |
+
hidden_states,
|
814 |
+
attention_mask,
|
815 |
+
encoder_hidden_states,
|
816 |
+
encoder_attention_mask,
|
817 |
+
deterministic=deterministic,
|
818 |
+
init_cache=init_cache,
|
819 |
+
output_attentions=output_attentions,
|
820 |
+
output_hidden_states=output_hidden_states,
|
821 |
+
return_dict=return_dict,
|
822 |
+
)
|
823 |
+
|
824 |
+
if not return_dict:
|
825 |
+
return outputs
|
826 |
+
|
827 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
828 |
+
last_hidden_state=outputs.last_hidden_state,
|
829 |
+
hidden_states=outputs.hidden_states,
|
830 |
+
attentions=outputs.attentions,
|
831 |
+
cross_attentions=outputs.cross_attentions,
|
832 |
+
)
|
833 |
+
|
834 |
+
|
835 |
+
class FlaxBartModule(nn.Module):
|
836 |
+
config: BartConfig
|
837 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
838 |
+
|
839 |
+
def setup(self):
|
840 |
+
self.shared = nn.Embed(
|
841 |
+
self.config.vocab_size,
|
842 |
+
self.config.d_model,
|
843 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
844 |
+
dtype=self.dtype,
|
845 |
+
)
|
846 |
+
|
847 |
+
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
848 |
+
self.decoder = FlaxBartDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
849 |
+
|
850 |
+
def _get_encoder_module(self):
|
851 |
+
return self.encoder
|
852 |
+
|
853 |
+
def _get_decoder_module(self):
|
854 |
+
return self.decoder
|
855 |
+
|
856 |
+
def __call__(
|
857 |
+
self,
|
858 |
+
input_ids,
|
859 |
+
attention_mask,
|
860 |
+
decoder_input_ids,
|
861 |
+
decoder_attention_mask,
|
862 |
+
position_ids,
|
863 |
+
decoder_position_ids,
|
864 |
+
output_attentions: bool = False,
|
865 |
+
output_hidden_states: bool = False,
|
866 |
+
return_dict: bool = True,
|
867 |
+
deterministic: bool = True,
|
868 |
+
):
|
869 |
+
encoder_outputs = self.encoder(
|
870 |
+
input_ids=input_ids,
|
871 |
+
attention_mask=attention_mask,
|
872 |
+
position_ids=position_ids,
|
873 |
+
output_attentions=output_attentions,
|
874 |
+
output_hidden_states=output_hidden_states,
|
875 |
+
return_dict=return_dict,
|
876 |
+
deterministic=deterministic,
|
877 |
+
)
|
878 |
+
|
879 |
+
decoder_outputs = self.decoder(
|
880 |
+
input_ids=decoder_input_ids,
|
881 |
+
attention_mask=decoder_attention_mask,
|
882 |
+
position_ids=decoder_position_ids,
|
883 |
+
encoder_hidden_states=encoder_outputs[0],
|
884 |
+
encoder_attention_mask=attention_mask,
|
885 |
+
output_attentions=output_attentions,
|
886 |
+
output_hidden_states=output_hidden_states,
|
887 |
+
return_dict=return_dict,
|
888 |
+
deterministic=deterministic,
|
889 |
+
)
|
890 |
+
|
891 |
+
if not return_dict:
|
892 |
+
return decoder_outputs + encoder_outputs
|
893 |
+
|
894 |
+
return FlaxSeq2SeqModelOutput(
|
895 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
896 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
897 |
+
decoder_attentions=decoder_outputs.attentions,
|
898 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
899 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
900 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
901 |
+
encoder_attentions=encoder_outputs.attentions,
|
902 |
+
)
|
903 |
+
|
904 |
+
|
905 |
+
class FlaxBartPreTrainedModel(FlaxPreTrainedModel):
|
906 |
+
config_class = BartConfig
|
907 |
+
base_model_prefix: str = "model"
|
908 |
+
module_class: nn.Module = None
|
909 |
+
|
910 |
+
def __init__(
|
911 |
+
self,
|
912 |
+
config: BartConfig,
|
913 |
+
input_shape: Tuple[int] = (1, 1),
|
914 |
+
seed: int = 0,
|
915 |
+
dtype: jnp.dtype = jnp.float32,
|
916 |
+
_do_init: bool = True,
|
917 |
+
**kwargs,
|
918 |
+
):
|
919 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
920 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
921 |
+
|
922 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
923 |
+
# init input tensors
|
924 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
925 |
+
# make sure initialization pass will work for FlaxBartForSequenceClassificationModule
|
926 |
+
input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
|
927 |
+
attention_mask = jnp.ones_like(input_ids)
|
928 |
+
decoder_input_ids = input_ids
|
929 |
+
decoder_attention_mask = jnp.ones_like(input_ids)
|
930 |
+
|
931 |
+
batch_size, sequence_length = input_ids.shape
|
932 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
933 |
+
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
934 |
+
|
935 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
936 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
937 |
+
|
938 |
+
random_params = self.module.init(
|
939 |
+
rngs,
|
940 |
+
input_ids,
|
941 |
+
attention_mask,
|
942 |
+
decoder_input_ids,
|
943 |
+
decoder_attention_mask,
|
944 |
+
position_ids,
|
945 |
+
decoder_position_ids,
|
946 |
+
)["params"]
|
947 |
+
|
948 |
+
if params is not None:
|
949 |
+
random_params = flatten_dict(unfreeze(random_params))
|
950 |
+
params = flatten_dict(unfreeze(params))
|
951 |
+
for missing_key in self._missing_keys:
|
952 |
+
params[missing_key] = random_params[missing_key]
|
953 |
+
self._missing_keys = set()
|
954 |
+
return freeze(unflatten_dict(params))
|
955 |
+
else:
|
956 |
+
return random_params
|
957 |
+
|
958 |
+
def init_cache(self, batch_size, max_length, encoder_outputs):
|
959 |
+
r"""
|
960 |
+
Args:
|
961 |
+
batch_size (`int`):
|
962 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
963 |
+
max_length (`int`):
|
964 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
965 |
+
cache.
|
966 |
+
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
|
967 |
+
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
|
968 |
+
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
|
969 |
+
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
|
970 |
+
cross-attention of the decoder.
|
971 |
+
"""
|
972 |
+
# init input variables to retrieve cache
|
973 |
+
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
974 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
975 |
+
decoder_position_ids = jnp.broadcast_to(
|
976 |
+
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
|
977 |
+
)
|
978 |
+
|
979 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
980 |
+
decoder_module = module._get_decoder_module()
|
981 |
+
return decoder_module(
|
982 |
+
decoder_input_ids,
|
983 |
+
decoder_attention_mask,
|
984 |
+
decoder_position_ids,
|
985 |
+
**kwargs,
|
986 |
+
)
|
987 |
+
|
988 |
+
init_variables = self.module.init(
|
989 |
+
jax.random.PRNGKey(0),
|
990 |
+
decoder_input_ids=decoder_input_ids,
|
991 |
+
decoder_attention_mask=decoder_attention_mask,
|
992 |
+
decoder_position_ids=decoder_position_ids,
|
993 |
+
encoder_hidden_states=encoder_outputs[0],
|
994 |
+
init_cache=True,
|
995 |
+
method=_decoder_forward, # we only need to call the decoder to init the cache
|
996 |
+
)
|
997 |
+
return unfreeze(init_variables["cache"])
|
998 |
+
|
999 |
+
@add_start_docstrings(BART_ENCODE_INPUTS_DOCSTRING)
|
1000 |
+
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BartConfig)
|
1001 |
+
def encode(
|
1002 |
+
self,
|
1003 |
+
input_ids: jnp.ndarray,
|
1004 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
1005 |
+
position_ids: Optional[jnp.ndarray] = None,
|
1006 |
+
output_attentions: Optional[bool] = None,
|
1007 |
+
output_hidden_states: Optional[bool] = None,
|
1008 |
+
return_dict: Optional[bool] = None,
|
1009 |
+
train: bool = False,
|
1010 |
+
params: dict = None,
|
1011 |
+
dropout_rng: PRNGKey = None,
|
1012 |
+
):
|
1013 |
+
r"""
|
1014 |
+
Returns:
|
1015 |
+
|
1016 |
+
Example:
|
1017 |
+
|
1018 |
+
```python
|
1019 |
+
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
|
1020 |
+
|
1021 |
+
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
1022 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
1023 |
+
|
1024 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
1025 |
+
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
|
1026 |
+
>>> encoder_outputs = model.encode(**inputs)
|
1027 |
+
```"""
|
1028 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1029 |
+
output_hidden_states = (
|
1030 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1031 |
+
)
|
1032 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1033 |
+
|
1034 |
+
if attention_mask is None:
|
1035 |
+
attention_mask = jnp.ones_like(input_ids)
|
1036 |
+
if position_ids is None:
|
1037 |
+
batch_size, sequence_length = input_ids.shape
|
1038 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
1039 |
+
|
1040 |
+
# Handle any PRNG if needed
|
1041 |
+
rngs = {}
|
1042 |
+
if dropout_rng is not None:
|
1043 |
+
rngs["dropout"] = dropout_rng
|
1044 |
+
|
1045 |
+
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
|
1046 |
+
encode_module = module._get_encoder_module()
|
1047 |
+
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
|
1048 |
+
|
1049 |
+
return self.module.apply(
|
1050 |
+
{"params": params or self.params},
|
1051 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
1052 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
1053 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
1054 |
+
output_attentions=output_attentions,
|
1055 |
+
output_hidden_states=output_hidden_states,
|
1056 |
+
return_dict=return_dict,
|
1057 |
+
deterministic=not train,
|
1058 |
+
rngs=rngs,
|
1059 |
+
method=_encoder_forward,
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
@add_start_docstrings(BART_DECODE_INPUTS_DOCSTRING)
|
1063 |
+
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BartConfig)
|
1064 |
+
def decode(
|
1065 |
+
self,
|
1066 |
+
decoder_input_ids,
|
1067 |
+
encoder_outputs,
|
1068 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1069 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1070 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1071 |
+
past_key_values: dict = None,
|
1072 |
+
output_attentions: Optional[bool] = None,
|
1073 |
+
output_hidden_states: Optional[bool] = None,
|
1074 |
+
return_dict: Optional[bool] = None,
|
1075 |
+
train: bool = False,
|
1076 |
+
params: dict = None,
|
1077 |
+
dropout_rng: PRNGKey = None,
|
1078 |
+
):
|
1079 |
+
r"""
|
1080 |
+
Returns:
|
1081 |
+
|
1082 |
+
Example:
|
1083 |
+
|
1084 |
+
```python
|
1085 |
+
>>> import jax.numpy as jnp
|
1086 |
+
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
|
1087 |
+
|
1088 |
+
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
1089 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
1090 |
+
|
1091 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
1092 |
+
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
|
1093 |
+
>>> encoder_outputs = model.encode(**inputs)
|
1094 |
+
|
1095 |
+
>>> decoder_start_token_id = model.config.decoder_start_token_id
|
1096 |
+
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
1097 |
+
|
1098 |
+
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
|
1099 |
+
>>> last_decoder_hidden_states = outputs.last_hidden_state
|
1100 |
+
```"""
|
1101 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1102 |
+
output_hidden_states = (
|
1103 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1104 |
+
)
|
1105 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1106 |
+
|
1107 |
+
encoder_hidden_states = encoder_outputs[0]
|
1108 |
+
if encoder_attention_mask is None:
|
1109 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
1110 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1111 |
+
|
1112 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1113 |
+
if decoder_attention_mask is None:
|
1114 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1115 |
+
|
1116 |
+
if decoder_position_ids is None:
|
1117 |
+
if past_key_values is not None:
|
1118 |
+
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
|
1119 |
+
|
1120 |
+
decoder_position_ids = jnp.broadcast_to(
|
1121 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
# Handle any PRNG if needed
|
1125 |
+
rngs = {}
|
1126 |
+
if dropout_rng is not None:
|
1127 |
+
rngs["dropout"] = dropout_rng
|
1128 |
+
|
1129 |
+
inputs = {"params": params or self.params}
|
1130 |
+
|
1131 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
1132 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
1133 |
+
# it can be changed by FlaxBartAttention module
|
1134 |
+
if past_key_values:
|
1135 |
+
inputs["cache"] = past_key_values
|
1136 |
+
mutable = ["cache"]
|
1137 |
+
else:
|
1138 |
+
mutable = False
|
1139 |
+
|
1140 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
1141 |
+
decoder_module = module._get_decoder_module()
|
1142 |
+
return decoder_module(
|
1143 |
+
decoder_input_ids,
|
1144 |
+
decoder_attention_mask,
|
1145 |
+
decoder_position_ids,
|
1146 |
+
**kwargs,
|
1147 |
+
)
|
1148 |
+
|
1149 |
+
outputs = self.module.apply(
|
1150 |
+
inputs,
|
1151 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1152 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1153 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1154 |
+
encoder_hidden_states=encoder_hidden_states,
|
1155 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
1156 |
+
output_attentions=output_attentions,
|
1157 |
+
output_hidden_states=output_hidden_states,
|
1158 |
+
return_dict=return_dict,
|
1159 |
+
deterministic=not train,
|
1160 |
+
rngs=rngs,
|
1161 |
+
mutable=mutable,
|
1162 |
+
method=_decoder_forward,
|
1163 |
+
)
|
1164 |
+
|
1165 |
+
# add updated cache to model output
|
1166 |
+
if past_key_values is not None and return_dict:
|
1167 |
+
outputs, past = outputs
|
1168 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
1169 |
+
return outputs
|
1170 |
+
elif past_key_values is not None and not return_dict:
|
1171 |
+
outputs, past = outputs
|
1172 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
1173 |
+
|
1174 |
+
return outputs
|
1175 |
+
|
1176 |
+
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
|
1177 |
+
def __call__(
|
1178 |
+
self,
|
1179 |
+
input_ids: jnp.ndarray,
|
1180 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
1181 |
+
decoder_input_ids: Optional[jnp.ndarray] = None,
|
1182 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1183 |
+
position_ids: Optional[jnp.ndarray] = None,
|
1184 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1185 |
+
output_attentions: Optional[bool] = None,
|
1186 |
+
output_hidden_states: Optional[bool] = None,
|
1187 |
+
return_dict: Optional[bool] = None,
|
1188 |
+
train: bool = False,
|
1189 |
+
params: dict = None,
|
1190 |
+
dropout_rng: PRNGKey = None,
|
1191 |
+
):
|
1192 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1193 |
+
output_hidden_states = (
|
1194 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1195 |
+
)
|
1196 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1197 |
+
|
1198 |
+
# prepare encoder inputs
|
1199 |
+
if attention_mask is None:
|
1200 |
+
attention_mask = jnp.ones_like(input_ids)
|
1201 |
+
if position_ids is None:
|
1202 |
+
batch_size, sequence_length = input_ids.shape
|
1203 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
1204 |
+
|
1205 |
+
# prepare decoder inputs
|
1206 |
+
if decoder_input_ids is None:
|
1207 |
+
decoder_input_ids = shift_tokens_right(
|
1208 |
+
input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
|
1209 |
+
)
|
1210 |
+
if decoder_attention_mask is None:
|
1211 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
1212 |
+
if decoder_position_ids is None:
|
1213 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1214 |
+
decoder_position_ids = jnp.broadcast_to(
|
1215 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1216 |
+
)
|
1217 |
+
|
1218 |
+
# Handle any PRNG if needed
|
1219 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
1220 |
+
|
1221 |
+
return self.module.apply(
|
1222 |
+
{"params": params or self.params},
|
1223 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
1224 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
1225 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
1226 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1227 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1228 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1229 |
+
output_attentions=output_attentions,
|
1230 |
+
output_hidden_states=output_hidden_states,
|
1231 |
+
return_dict=return_dict,
|
1232 |
+
deterministic=not train,
|
1233 |
+
rngs=rngs,
|
1234 |
+
)
|
1235 |
+
|
1236 |
+
|
1237 |
+
@add_start_docstrings(
|
1238 |
+
"The bare Bart Model transformer outputting raw hidden-states without any specific head on top.",
|
1239 |
+
BART_START_DOCSTRING,
|
1240 |
+
)
|
1241 |
+
class FlaxBartModel(FlaxBartPreTrainedModel):
|
1242 |
+
config: BartConfig
|
1243 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
1244 |
+
module_class = FlaxBartModule
|
1245 |
+
|
1246 |
+
|
1247 |
+
append_call_sample_docstring(FlaxBartModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
|
1248 |
+
|
1249 |
+
|
1250 |
+
class FlaxBartForConditionalGenerationModule(nn.Module):
|
1251 |
+
config: BartConfig
|
1252 |
+
dtype: jnp.dtype = jnp.float32
|
1253 |
+
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
|
1254 |
+
|
1255 |
+
def setup(self):
|
1256 |
+
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
|
1257 |
+
self.lm_head = nn.Dense(
|
1258 |
+
self.model.shared.num_embeddings,
|
1259 |
+
use_bias=False,
|
1260 |
+
dtype=self.dtype,
|
1261 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
1262 |
+
)
|
1263 |
+
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
|
1264 |
+
|
1265 |
+
def _get_encoder_module(self):
|
1266 |
+
return self.model.encoder
|
1267 |
+
|
1268 |
+
def _get_decoder_module(self):
|
1269 |
+
return self.model.decoder
|
1270 |
+
|
1271 |
+
def __call__(
|
1272 |
+
self,
|
1273 |
+
input_ids,
|
1274 |
+
attention_mask,
|
1275 |
+
decoder_input_ids,
|
1276 |
+
decoder_attention_mask,
|
1277 |
+
position_ids,
|
1278 |
+
decoder_position_ids,
|
1279 |
+
output_attentions: bool = False,
|
1280 |
+
output_hidden_states: bool = False,
|
1281 |
+
return_dict: bool = True,
|
1282 |
+
deterministic: bool = True,
|
1283 |
+
):
|
1284 |
+
outputs = self.model(
|
1285 |
+
input_ids=input_ids,
|
1286 |
+
attention_mask=attention_mask,
|
1287 |
+
decoder_input_ids=decoder_input_ids,
|
1288 |
+
decoder_attention_mask=decoder_attention_mask,
|
1289 |
+
position_ids=position_ids,
|
1290 |
+
decoder_position_ids=decoder_position_ids,
|
1291 |
+
output_attentions=output_attentions,
|
1292 |
+
output_hidden_states=output_hidden_states,
|
1293 |
+
return_dict=return_dict,
|
1294 |
+
deterministic=deterministic,
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
hidden_states = outputs[0]
|
1298 |
+
|
1299 |
+
if self.config.tie_word_embeddings:
|
1300 |
+
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
|
1301 |
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
1302 |
+
else:
|
1303 |
+
lm_logits = self.lm_head(hidden_states)
|
1304 |
+
|
1305 |
+
lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
|
1306 |
+
|
1307 |
+
if not return_dict:
|
1308 |
+
output = (lm_logits,) + outputs[1:]
|
1309 |
+
return output
|
1310 |
+
|
1311 |
+
return FlaxSeq2SeqLMOutput(
|
1312 |
+
logits=lm_logits,
|
1313 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1314 |
+
decoder_attentions=outputs.decoder_attentions,
|
1315 |
+
cross_attentions=outputs.cross_attentions,
|
1316 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1317 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1318 |
+
encoder_attentions=outputs.encoder_attentions,
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
|
1322 |
+
@add_start_docstrings(
|
1323 |
+
"The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING
|
1324 |
+
)
|
1325 |
+
class FlaxBartForConditionalGeneration(FlaxBartPreTrainedModel):
|
1326 |
+
module_class = FlaxBartForConditionalGenerationModule
|
1327 |
+
dtype: jnp.dtype = jnp.float32
|
1328 |
+
|
1329 |
+
@add_start_docstrings(BART_DECODE_INPUTS_DOCSTRING)
|
1330 |
+
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BartConfig)
|
1331 |
+
def decode(
|
1332 |
+
self,
|
1333 |
+
decoder_input_ids,
|
1334 |
+
encoder_outputs,
|
1335 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1336 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1337 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1338 |
+
past_key_values: dict = None,
|
1339 |
+
output_attentions: Optional[bool] = None,
|
1340 |
+
output_hidden_states: Optional[bool] = None,
|
1341 |
+
return_dict: Optional[bool] = None,
|
1342 |
+
train: bool = False,
|
1343 |
+
params: dict = None,
|
1344 |
+
dropout_rng: PRNGKey = None,
|
1345 |
+
):
|
1346 |
+
r"""
|
1347 |
+
Returns:
|
1348 |
+
|
1349 |
+
Example:
|
1350 |
+
|
1351 |
+
```python
|
1352 |
+
>>> import jax.numpy as jnp
|
1353 |
+
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
|
1354 |
+
|
1355 |
+
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
1356 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
1357 |
+
|
1358 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
1359 |
+
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
|
1360 |
+
>>> encoder_outputs = model.encode(**inputs)
|
1361 |
+
|
1362 |
+
>>> decoder_start_token_id = model.config.decoder_start_token_id
|
1363 |
+
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
1364 |
+
|
1365 |
+
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
|
1366 |
+
>>> logits = outputs.logits
|
1367 |
+
```"""
|
1368 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1369 |
+
output_hidden_states = (
|
1370 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1371 |
+
)
|
1372 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1373 |
+
|
1374 |
+
encoder_hidden_states = encoder_outputs[0]
|
1375 |
+
if encoder_attention_mask is None:
|
1376 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
1377 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1378 |
+
|
1379 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1380 |
+
if decoder_attention_mask is None:
|
1381 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1382 |
+
|
1383 |
+
if decoder_position_ids is None:
|
1384 |
+
if past_key_values is not None:
|
1385 |
+
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
|
1386 |
+
|
1387 |
+
decoder_position_ids = jnp.broadcast_to(
|
1388 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
# Handle any PRNG if needed
|
1392 |
+
rngs = {}
|
1393 |
+
if dropout_rng is not None:
|
1394 |
+
rngs["dropout"] = dropout_rng
|
1395 |
+
|
1396 |
+
inputs = {"params": params or self.params}
|
1397 |
+
|
1398 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
1399 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
1400 |
+
# it can be changed by FlaxBartAttention module
|
1401 |
+
if past_key_values:
|
1402 |
+
inputs["cache"] = past_key_values
|
1403 |
+
mutable = ["cache"]
|
1404 |
+
else:
|
1405 |
+
mutable = False
|
1406 |
+
|
1407 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
1408 |
+
decoder_module = module._get_decoder_module()
|
1409 |
+
outputs = decoder_module(
|
1410 |
+
decoder_input_ids,
|
1411 |
+
decoder_attention_mask,
|
1412 |
+
decoder_position_ids,
|
1413 |
+
**kwargs,
|
1414 |
+
)
|
1415 |
+
hidden_states = outputs[0]
|
1416 |
+
|
1417 |
+
if self.config.tie_word_embeddings:
|
1418 |
+
shared_embedding = module.model.variables["params"]["shared"]["embedding"]
|
1419 |
+
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
1420 |
+
else:
|
1421 |
+
lm_logits = module.lm_head(hidden_states)
|
1422 |
+
|
1423 |
+
lm_logits += module.final_logits_bias.astype(self.dtype)
|
1424 |
+
return lm_logits, outputs
|
1425 |
+
|
1426 |
+
outputs = self.module.apply(
|
1427 |
+
inputs,
|
1428 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1429 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1430 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1431 |
+
encoder_hidden_states=encoder_hidden_states,
|
1432 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
1433 |
+
output_attentions=output_attentions,
|
1434 |
+
output_hidden_states=output_hidden_states,
|
1435 |
+
return_dict=return_dict,
|
1436 |
+
deterministic=not train,
|
1437 |
+
rngs=rngs,
|
1438 |
+
mutable=mutable,
|
1439 |
+
method=_decoder_forward,
|
1440 |
+
)
|
1441 |
+
|
1442 |
+
if past_key_values is None:
|
1443 |
+
lm_logits, decoder_outputs = outputs
|
1444 |
+
else:
|
1445 |
+
(lm_logits, decoder_outputs), past = outputs
|
1446 |
+
|
1447 |
+
if return_dict:
|
1448 |
+
outputs = FlaxCausalLMOutputWithCrossAttentions(
|
1449 |
+
logits=lm_logits,
|
1450 |
+
hidden_states=decoder_outputs.hidden_states,
|
1451 |
+
attentions=decoder_outputs.attentions,
|
1452 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1453 |
+
)
|
1454 |
+
else:
|
1455 |
+
outputs = (lm_logits,) + decoder_outputs[1:]
|
1456 |
+
|
1457 |
+
# add updated cache to model output
|
1458 |
+
if past_key_values is not None and return_dict:
|
1459 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
1460 |
+
return outputs
|
1461 |
+
elif past_key_values is not None and not return_dict:
|
1462 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
1463 |
+
|
1464 |
+
return outputs
|
1465 |
+
|
1466 |
+
def prepare_inputs_for_generation(
|
1467 |
+
self,
|
1468 |
+
decoder_input_ids,
|
1469 |
+
max_length,
|
1470 |
+
attention_mask: Optional[jax.Array] = None,
|
1471 |
+
decoder_attention_mask: Optional[jax.Array] = None,
|
1472 |
+
encoder_outputs=None,
|
1473 |
+
**kwargs,
|
1474 |
+
):
|
1475 |
+
# initializing the cache
|
1476 |
+
batch_size, seq_length = decoder_input_ids.shape
|
1477 |
+
|
1478 |
+
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
|
1479 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
1480 |
+
# But since the decoder uses a causal mask, those positions are masked anyways.
|
1481 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
1482 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
1483 |
+
if decoder_attention_mask is not None:
|
1484 |
+
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
1485 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
|
1486 |
+
else:
|
1487 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
1488 |
+
|
1489 |
+
return {
|
1490 |
+
"past_key_values": past_key_values,
|
1491 |
+
"encoder_outputs": encoder_outputs,
|
1492 |
+
"encoder_attention_mask": attention_mask,
|
1493 |
+
"decoder_attention_mask": extended_attention_mask,
|
1494 |
+
"decoder_position_ids": position_ids,
|
1495 |
+
}
|
1496 |
+
|
1497 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
1498 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
1499 |
+
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
|
1500 |
+
return model_kwargs
|
1501 |
+
|
1502 |
+
|
1503 |
+
FLAX_BART_CONDITIONAL_GENERATION_DOCSTRING = """
|
1504 |
+
Returns:
|
1505 |
+
|
1506 |
+
Summarization example:
|
1507 |
+
|
1508 |
+
```python
|
1509 |
+
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
|
1510 |
+
|
1511 |
+
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
1512 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
1513 |
+
|
1514 |
+
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
|
1515 |
+
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
|
1516 |
+
|
1517 |
+
>>> # Generate Summary
|
1518 |
+
>>> summary_ids = model.generate(inputs["input_ids"]).sequences
|
1519 |
+
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
|
1520 |
+
```
|
1521 |
+
|
1522 |
+
Mask filling example:
|
1523 |
+
|
1524 |
+
```python
|
1525 |
+
>>> import jax
|
1526 |
+
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
|
1527 |
+
|
1528 |
+
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large")
|
1529 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
|
1530 |
+
|
1531 |
+
>>> TXT = "My friends are <mask> but they eat too many carbs."
|
1532 |
+
>>> input_ids = tokenizer([TXT], return_tensors="jax")["input_ids"]
|
1533 |
+
|
1534 |
+
>>> logits = model(input_ids).logits
|
1535 |
+
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
|
1536 |
+
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
|
1537 |
+
>>> values, predictions = jax.lax.top_k(probs, k=1)
|
1538 |
+
|
1539 |
+
>>> tokenizer.decode(predictions).split()
|
1540 |
+
```
|
1541 |
+
"""
|
1542 |
+
|
1543 |
+
overwrite_call_docstring(
|
1544 |
+
FlaxBartForConditionalGeneration, BART_INPUTS_DOCSTRING + FLAX_BART_CONDITIONAL_GENERATION_DOCSTRING
|
1545 |
+
)
|
1546 |
+
append_replace_return_docstrings(
|
1547 |
+
FlaxBartForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
|
1548 |
+
)
|
1549 |
+
|
1550 |
+
|
1551 |
+
class FlaxBartForSequenceClassificationModule(nn.Module):
|
1552 |
+
config: BartConfig
|
1553 |
+
dtype: jnp.dtype = jnp.float32
|
1554 |
+
num_labels: Optional[int] = None
|
1555 |
+
|
1556 |
+
def setup(self):
|
1557 |
+
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
|
1558 |
+
self.classification_head = FlaxBartClassificationHead(
|
1559 |
+
config=self.config,
|
1560 |
+
inner_dim=self.config.d_model,
|
1561 |
+
num_classes=self.num_labels if self.num_labels is not None else self.config.num_labels,
|
1562 |
+
pooler_dropout=self.config.classifier_dropout,
|
1563 |
+
)
|
1564 |
+
|
1565 |
+
def _get_encoder_module(self):
|
1566 |
+
return self.model.encoder
|
1567 |
+
|
1568 |
+
def _get_decoder_module(self):
|
1569 |
+
return self.model.decoder
|
1570 |
+
|
1571 |
+
def __call__(
|
1572 |
+
self,
|
1573 |
+
input_ids,
|
1574 |
+
attention_mask,
|
1575 |
+
decoder_input_ids,
|
1576 |
+
decoder_attention_mask,
|
1577 |
+
position_ids,
|
1578 |
+
decoder_position_ids,
|
1579 |
+
output_attentions: bool = False,
|
1580 |
+
output_hidden_states: bool = False,
|
1581 |
+
return_dict: bool = True,
|
1582 |
+
deterministic: bool = True,
|
1583 |
+
):
|
1584 |
+
outputs = self.model(
|
1585 |
+
input_ids=input_ids,
|
1586 |
+
attention_mask=attention_mask,
|
1587 |
+
decoder_input_ids=decoder_input_ids,
|
1588 |
+
decoder_attention_mask=decoder_attention_mask,
|
1589 |
+
position_ids=position_ids,
|
1590 |
+
decoder_position_ids=decoder_position_ids,
|
1591 |
+
output_attentions=output_attentions,
|
1592 |
+
output_hidden_states=output_hidden_states,
|
1593 |
+
return_dict=return_dict,
|
1594 |
+
deterministic=deterministic,
|
1595 |
+
)
|
1596 |
+
|
1597 |
+
hidden_states = outputs[0] # last hidden state
|
1598 |
+
|
1599 |
+
eos_mask = jnp.where(input_ids == self.config.eos_token_id, 1, 0)
|
1600 |
+
|
1601 |
+
# The first condition is necessary to overcome jax._src.errors.ConcretizationTypeError during JIT compilation
|
1602 |
+
if type(eos_mask) != jax.interpreters.partial_eval.DynamicJaxprTracer:
|
1603 |
+
if len(jnp.unique(eos_mask.sum(1))) > 1:
|
1604 |
+
raise ValueError("All examples must have the same number of <eos> tokens.")
|
1605 |
+
|
1606 |
+
if any(eos_mask.sum(1) == 0):
|
1607 |
+
raise ValueError("There are missing <eos> tokens in input_ids")
|
1608 |
+
|
1609 |
+
# Ensure to keep 1 only for the last <eos> token for each example
|
1610 |
+
eos_mask_noised = eos_mask + jnp.arange(eos_mask.shape[1]) * 1e-6
|
1611 |
+
eos_mask = jnp.where(eos_mask_noised == eos_mask_noised.max(1).reshape(-1, 1), 1, 0)
|
1612 |
+
|
1613 |
+
sentence_representation = jnp.einsum("ijk, ij -> ijk", hidden_states, eos_mask).sum(1)
|
1614 |
+
logits = self.classification_head(sentence_representation, deterministic=deterministic)
|
1615 |
+
|
1616 |
+
if not return_dict:
|
1617 |
+
output = (logits,) + outputs[1:]
|
1618 |
+
return output
|
1619 |
+
|
1620 |
+
return FlaxSeq2SeqSequenceClassifierOutput(
|
1621 |
+
logits=logits,
|
1622 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1623 |
+
decoder_attentions=outputs.decoder_attentions,
|
1624 |
+
cross_attentions=outputs.cross_attentions,
|
1625 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1626 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1627 |
+
encoder_attentions=outputs.encoder_attentions,
|
1628 |
+
)
|
1629 |
+
|
1630 |
+
|
1631 |
+
@add_start_docstrings(
|
1632 |
+
"""
|
1633 |
+
Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
|
1634 |
+
tasks.
|
1635 |
+
""",
|
1636 |
+
BART_START_DOCSTRING,
|
1637 |
+
)
|
1638 |
+
class FlaxBartForSequenceClassification(FlaxBartPreTrainedModel):
|
1639 |
+
module_class = FlaxBartForSequenceClassificationModule
|
1640 |
+
dtype = jnp.float32
|
1641 |
+
|
1642 |
+
|
1643 |
+
append_call_sample_docstring(
|
1644 |
+
FlaxBartForSequenceClassification,
|
1645 |
+
_CHECKPOINT_FOR_DOC,
|
1646 |
+
FlaxSeq2SeqSequenceClassifierOutput,
|
1647 |
+
_CONFIG_FOR_DOC,
|
1648 |
+
)
|
1649 |
+
|
1650 |
+
|
1651 |
+
class FlaxBartForQuestionAnsweringModule(nn.Module):
|
1652 |
+
config: BartConfig
|
1653 |
+
dtype: jnp.dtype = jnp.float32
|
1654 |
+
num_labels = 2
|
1655 |
+
|
1656 |
+
def setup(self):
|
1657 |
+
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
|
1658 |
+
self.qa_outputs = nn.Dense(
|
1659 |
+
self.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
1660 |
+
)
|
1661 |
+
|
1662 |
+
def _get_encoder_module(self):
|
1663 |
+
return self.model.encoder
|
1664 |
+
|
1665 |
+
def _get_decoder_module(self):
|
1666 |
+
return self.model.decoder
|
1667 |
+
|
1668 |
+
def __call__(
|
1669 |
+
self,
|
1670 |
+
input_ids,
|
1671 |
+
attention_mask,
|
1672 |
+
decoder_input_ids,
|
1673 |
+
decoder_attention_mask,
|
1674 |
+
position_ids,
|
1675 |
+
decoder_position_ids,
|
1676 |
+
output_attentions: bool = False,
|
1677 |
+
output_hidden_states: bool = False,
|
1678 |
+
return_dict: bool = True,
|
1679 |
+
deterministic: bool = True,
|
1680 |
+
):
|
1681 |
+
outputs = self.model(
|
1682 |
+
input_ids=input_ids,
|
1683 |
+
attention_mask=attention_mask,
|
1684 |
+
decoder_input_ids=decoder_input_ids,
|
1685 |
+
decoder_attention_mask=decoder_attention_mask,
|
1686 |
+
position_ids=position_ids,
|
1687 |
+
decoder_position_ids=decoder_position_ids,
|
1688 |
+
output_attentions=output_attentions,
|
1689 |
+
output_hidden_states=output_hidden_states,
|
1690 |
+
return_dict=return_dict,
|
1691 |
+
deterministic=deterministic,
|
1692 |
+
)
|
1693 |
+
|
1694 |
+
sequence_output = outputs[0]
|
1695 |
+
|
1696 |
+
logits = self.qa_outputs(sequence_output)
|
1697 |
+
start_logits, end_logits = jnp.split(logits, logits.shape[-1], axis=-1)
|
1698 |
+
start_logits = start_logits.squeeze(-1)
|
1699 |
+
end_logits = end_logits.squeeze(-1)
|
1700 |
+
|
1701 |
+
if not return_dict:
|
1702 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1703 |
+
return output
|
1704 |
+
|
1705 |
+
return FlaxSeq2SeqQuestionAnsweringModelOutput(
|
1706 |
+
start_logits=start_logits,
|
1707 |
+
end_logits=end_logits,
|
1708 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1709 |
+
decoder_attentions=outputs.decoder_attentions,
|
1710 |
+
cross_attentions=outputs.cross_attentions,
|
1711 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1712 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1713 |
+
encoder_attentions=outputs.encoder_attentions,
|
1714 |
+
)
|
1715 |
+
|
1716 |
+
|
1717 |
+
@add_start_docstrings(
|
1718 |
+
"""
|
1719 |
+
BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1720 |
+
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1721 |
+
""",
|
1722 |
+
BART_START_DOCSTRING,
|
1723 |
+
)
|
1724 |
+
class FlaxBartForQuestionAnswering(FlaxBartPreTrainedModel):
|
1725 |
+
module_class = FlaxBartForQuestionAnsweringModule
|
1726 |
+
dtype = jnp.float32
|
1727 |
+
|
1728 |
+
|
1729 |
+
append_call_sample_docstring(
|
1730 |
+
FlaxBartForQuestionAnswering,
|
1731 |
+
_CHECKPOINT_FOR_DOC,
|
1732 |
+
FlaxSeq2SeqQuestionAnsweringModelOutput,
|
1733 |
+
_CONFIG_FOR_DOC,
|
1734 |
+
)
|
1735 |
+
|
1736 |
+
|
1737 |
+
class FlaxBartDecoderPreTrainedModel(FlaxPreTrainedModel):
|
1738 |
+
config_class = BartConfig
|
1739 |
+
base_model_prefix: str = "model"
|
1740 |
+
module_class: nn.Module = None
|
1741 |
+
|
1742 |
+
def __init__(
|
1743 |
+
self,
|
1744 |
+
config: BartConfig,
|
1745 |
+
input_shape: Tuple[int] = (1, 1),
|
1746 |
+
seed: int = 0,
|
1747 |
+
dtype: jnp.dtype = jnp.float32,
|
1748 |
+
_do_init: bool = True,
|
1749 |
+
**kwargs,
|
1750 |
+
):
|
1751 |
+
config.is_decoder = True
|
1752 |
+
config.is_encoder_decoder = False
|
1753 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
1754 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
1755 |
+
|
1756 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
1757 |
+
# init input tensors
|
1758 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
1759 |
+
attention_mask = jnp.ones_like(input_ids)
|
1760 |
+
|
1761 |
+
batch_size, sequence_length = input_ids.shape
|
1762 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
1763 |
+
|
1764 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
1765 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
1766 |
+
encoder_hidden_states = jnp.zeros(input_shape + (self.config.d_model,))
|
1767 |
+
encoder_attention_mask = attention_mask
|
1768 |
+
module_init_outputs = self.module.init(
|
1769 |
+
rngs,
|
1770 |
+
input_ids,
|
1771 |
+
attention_mask,
|
1772 |
+
position_ids,
|
1773 |
+
encoder_hidden_states,
|
1774 |
+
encoder_attention_mask,
|
1775 |
+
return_dict=False,
|
1776 |
+
)
|
1777 |
+
return module_init_outputs["params"]
|
1778 |
+
|
1779 |
+
def init_cache(self, batch_size, max_length):
|
1780 |
+
r"""
|
1781 |
+
Args:
|
1782 |
+
batch_size (`int`):
|
1783 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
1784 |
+
max_length (`int`):
|
1785 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
1786 |
+
cache.
|
1787 |
+
"""
|
1788 |
+
# init input variables to retrieve cache
|
1789 |
+
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
1790 |
+
attention_mask = jnp.ones_like(input_ids, dtype="i4")
|
1791 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
1792 |
+
|
1793 |
+
init_variables = self.module.init(
|
1794 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
|
1795 |
+
)
|
1796 |
+
return unfreeze(init_variables["cache"])
|
1797 |
+
|
1798 |
+
@add_start_docstrings_to_model_forward(BART_DECODE_INPUTS_DOCSTRING)
|
1799 |
+
def __call__(
|
1800 |
+
self,
|
1801 |
+
input_ids: jnp.ndarray,
|
1802 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
1803 |
+
position_ids: Optional[jnp.ndarray] = None,
|
1804 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
1805 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1806 |
+
output_attentions: Optional[bool] = None,
|
1807 |
+
output_hidden_states: Optional[bool] = None,
|
1808 |
+
return_dict: Optional[bool] = None,
|
1809 |
+
train: bool = False,
|
1810 |
+
params: dict = None,
|
1811 |
+
past_key_values: dict = None,
|
1812 |
+
dropout_rng: PRNGKey = None,
|
1813 |
+
):
|
1814 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1815 |
+
output_hidden_states = (
|
1816 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1817 |
+
)
|
1818 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1819 |
+
|
1820 |
+
if encoder_hidden_states is not None and encoder_attention_mask is None:
|
1821 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
1822 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1823 |
+
|
1824 |
+
# prepare decoder inputs
|
1825 |
+
if attention_mask is None:
|
1826 |
+
attention_mask = jnp.ones_like(input_ids)
|
1827 |
+
if position_ids is None:
|
1828 |
+
batch_size, sequence_length = input_ids.shape
|
1829 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
1830 |
+
|
1831 |
+
# Handle any PRNG if needed
|
1832 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
1833 |
+
|
1834 |
+
inputs = {"params": params or self.params}
|
1835 |
+
|
1836 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
|
1837 |
+
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
|
1838 |
+
# changed by FlaxBartAttention module
|
1839 |
+
if past_key_values:
|
1840 |
+
inputs["cache"] = past_key_values
|
1841 |
+
mutable = ["cache"]
|
1842 |
+
else:
|
1843 |
+
mutable = False
|
1844 |
+
|
1845 |
+
outputs = self.module.apply(
|
1846 |
+
inputs,
|
1847 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
1848 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
1849 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
1850 |
+
encoder_hidden_states=encoder_hidden_states,
|
1851 |
+
encoder_attention_mask=encoder_attention_mask,
|
1852 |
+
output_attentions=output_attentions,
|
1853 |
+
output_hidden_states=output_hidden_states,
|
1854 |
+
return_dict=return_dict,
|
1855 |
+
deterministic=not train,
|
1856 |
+
rngs=rngs,
|
1857 |
+
mutable=mutable,
|
1858 |
+
)
|
1859 |
+
|
1860 |
+
# add updated cache to model output
|
1861 |
+
if past_key_values is not None and return_dict:
|
1862 |
+
outputs, past_key_values = outputs
|
1863 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
1864 |
+
return outputs
|
1865 |
+
elif past_key_values is not None and not return_dict:
|
1866 |
+
outputs, past_key_values = outputs
|
1867 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
1868 |
+
|
1869 |
+
return outputs
|
1870 |
+
|
1871 |
+
|
1872 |
+
class FlaxBartDecoderWrapper(nn.Module):
|
1873 |
+
"""
|
1874 |
+
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
|
1875 |
+
used in combination with the [`EncoderDecoderModel`] framework.
|
1876 |
+
"""
|
1877 |
+
|
1878 |
+
config: BartConfig
|
1879 |
+
dtype: jnp.dtype = jnp.float32
|
1880 |
+
|
1881 |
+
def setup(self):
|
1882 |
+
embed_dim = self.config.d_model
|
1883 |
+
embed_tokens = nn.Embed(
|
1884 |
+
self.config.vocab_size,
|
1885 |
+
embed_dim,
|
1886 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
1887 |
+
dtype=self.dtype,
|
1888 |
+
)
|
1889 |
+
self.decoder = FlaxBartDecoder(config=self.config, embed_tokens=embed_tokens, dtype=self.dtype)
|
1890 |
+
|
1891 |
+
def __call__(self, *args, **kwargs):
|
1892 |
+
return self.decoder(*args, **kwargs)
|
1893 |
+
|
1894 |
+
|
1895 |
+
class FlaxBartForCausalLMModule(nn.Module):
|
1896 |
+
config: BartConfig
|
1897 |
+
dtype: jnp.dtype = jnp.float32
|
1898 |
+
|
1899 |
+
def setup(self):
|
1900 |
+
self.model = FlaxBartDecoderWrapper(config=self.config, dtype=self.dtype)
|
1901 |
+
self.lm_head = nn.Dense(
|
1902 |
+
self.config.vocab_size,
|
1903 |
+
use_bias=False,
|
1904 |
+
dtype=self.dtype,
|
1905 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
1906 |
+
)
|
1907 |
+
|
1908 |
+
def __call__(
|
1909 |
+
self,
|
1910 |
+
input_ids,
|
1911 |
+
attention_mask,
|
1912 |
+
position_ids,
|
1913 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
1914 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1915 |
+
init_cache: bool = False,
|
1916 |
+
output_attentions: bool = False,
|
1917 |
+
output_hidden_states: bool = False,
|
1918 |
+
return_dict: bool = True,
|
1919 |
+
deterministic: bool = True,
|
1920 |
+
):
|
1921 |
+
outputs = self.model(
|
1922 |
+
input_ids,
|
1923 |
+
attention_mask,
|
1924 |
+
position_ids,
|
1925 |
+
encoder_hidden_states,
|
1926 |
+
encoder_attention_mask,
|
1927 |
+
deterministic=deterministic,
|
1928 |
+
init_cache=init_cache,
|
1929 |
+
output_attentions=output_attentions,
|
1930 |
+
output_hidden_states=output_hidden_states,
|
1931 |
+
return_dict=return_dict,
|
1932 |
+
)
|
1933 |
+
|
1934 |
+
hidden_states = outputs[0]
|
1935 |
+
|
1936 |
+
if self.config.tie_word_embeddings:
|
1937 |
+
shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"]
|
1938 |
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
1939 |
+
else:
|
1940 |
+
lm_logits = self.lm_head(hidden_states)
|
1941 |
+
|
1942 |
+
if not return_dict:
|
1943 |
+
return (lm_logits,) + outputs[1:]
|
1944 |
+
|
1945 |
+
return FlaxCausalLMOutputWithCrossAttentions(
|
1946 |
+
logits=lm_logits,
|
1947 |
+
hidden_states=outputs.hidden_states,
|
1948 |
+
attentions=outputs.attentions,
|
1949 |
+
cross_attentions=outputs.cross_attentions,
|
1950 |
+
)
|
1951 |
+
|
1952 |
+
|
1953 |
+
@add_start_docstrings(
|
1954 |
+
"""
|
1955 |
+
Bart Decoder Model with a language modeling head on top (linear layer with weights tied to the input embeddings)
|
1956 |
+
e.g for autoregressive tasks.
|
1957 |
+
""",
|
1958 |
+
BART_START_DOCSTRING,
|
1959 |
+
)
|
1960 |
+
class FlaxBartForCausalLM(FlaxBartDecoderPreTrainedModel):
|
1961 |
+
module_class = FlaxBartForCausalLMModule
|
1962 |
+
|
1963 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
1964 |
+
# initializing the cache
|
1965 |
+
batch_size, seq_length = input_ids.shape
|
1966 |
+
|
1967 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
1968 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
1969 |
+
# But since the decoder uses a causal mask, those positions are masked anyway.
|
1970 |
+
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
|
1971 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
1972 |
+
if attention_mask is not None:
|
1973 |
+
position_ids = attention_mask.cumsum(axis=-1) - 1
|
1974 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
1975 |
+
else:
|
1976 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
1977 |
+
|
1978 |
+
return {
|
1979 |
+
"past_key_values": past_key_values,
|
1980 |
+
"attention_mask": extended_attention_mask,
|
1981 |
+
"position_ids": position_ids,
|
1982 |
+
}
|
1983 |
+
|
1984 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
1985 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
1986 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
1987 |
+
return model_kwargs
|
1988 |
+
|
1989 |
+
|
1990 |
+
append_call_sample_docstring(
|
1991 |
+
FlaxBartForCausalLM,
|
1992 |
+
_CHECKPOINT_FOR_DOC,
|
1993 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
1994 |
+
_CONFIG_FOR_DOC,
|
1995 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/modeling_tf_bart.py
ADDED
@@ -0,0 +1,1712 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 Bart model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import random
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...activations_tf import get_tf_activation
|
27 |
+
from ...modeling_tf_outputs import (
|
28 |
+
TFBaseModelOutput,
|
29 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
TFSeq2SeqLMOutput,
|
31 |
+
TFSeq2SeqModelOutput,
|
32 |
+
TFSeq2SeqSequenceClassifierOutput,
|
33 |
+
)
|
34 |
+
|
35 |
+
# Public API
|
36 |
+
from ...modeling_tf_utils import (
|
37 |
+
TFCausalLanguageModelingLoss,
|
38 |
+
TFModelInputType,
|
39 |
+
TFPreTrainedModel,
|
40 |
+
TFSequenceClassificationLoss,
|
41 |
+
keras,
|
42 |
+
keras_serializable,
|
43 |
+
unpack_inputs,
|
44 |
+
)
|
45 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
46 |
+
from ...utils import (
|
47 |
+
add_code_sample_docstrings,
|
48 |
+
add_end_docstrings,
|
49 |
+
add_start_docstrings,
|
50 |
+
add_start_docstrings_to_model_forward,
|
51 |
+
logging,
|
52 |
+
replace_return_docstrings,
|
53 |
+
)
|
54 |
+
from .configuration_bart import BartConfig
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__)
|
58 |
+
|
59 |
+
_CHECKPOINT_FOR_DOC = "facebook/bart-large"
|
60 |
+
_CONFIG_FOR_DOC = "BartConfig"
|
61 |
+
|
62 |
+
|
63 |
+
LARGE_NEGATIVE = -1e8
|
64 |
+
|
65 |
+
|
66 |
+
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
67 |
+
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
|
68 |
+
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
|
69 |
+
start_tokens = tf.fill(
|
70 |
+
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
|
71 |
+
)
|
72 |
+
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
|
73 |
+
# replace possible -100 values in labels by `pad_token_id`
|
74 |
+
shifted_input_ids = tf.where(
|
75 |
+
shifted_input_ids == -100,
|
76 |
+
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
|
77 |
+
shifted_input_ids,
|
78 |
+
)
|
79 |
+
|
80 |
+
# "Verify that `labels` has only positive values and -100"
|
81 |
+
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
|
82 |
+
|
83 |
+
# Make sure the assertion op is called by wrapping the result in an identity no-op
|
84 |
+
with tf.control_dependencies([assert_gte0]):
|
85 |
+
shifted_input_ids = tf.identity(shifted_input_ids)
|
86 |
+
|
87 |
+
return shifted_input_ids
|
88 |
+
|
89 |
+
|
90 |
+
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
|
91 |
+
"""
|
92 |
+
Make causal mask used for bi-directional self-attention.
|
93 |
+
"""
|
94 |
+
bsz = input_ids_shape[0]
|
95 |
+
tgt_len = input_ids_shape[1]
|
96 |
+
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
|
97 |
+
mask_cond = tf.range(shape_list(mask)[-1])
|
98 |
+
|
99 |
+
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
|
100 |
+
|
101 |
+
if past_key_values_length > 0:
|
102 |
+
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
|
103 |
+
|
104 |
+
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
|
105 |
+
|
106 |
+
|
107 |
+
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
|
108 |
+
"""
|
109 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
110 |
+
"""
|
111 |
+
src_len = shape_list(mask)[1]
|
112 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
113 |
+
one_cst = tf.constant(1.0)
|
114 |
+
mask = tf.cast(mask, dtype=one_cst.dtype)
|
115 |
+
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
|
116 |
+
|
117 |
+
return (one_cst - expanded_mask) * LARGE_NEGATIVE
|
118 |
+
|
119 |
+
|
120 |
+
class TFBartLearnedPositionalEmbedding(keras.layers.Embedding):
|
121 |
+
"""
|
122 |
+
This module learns positional embeddings up to a fixed maximum size.
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
|
126 |
+
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
127 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
128 |
+
self.offset = 2
|
129 |
+
super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs)
|
130 |
+
|
131 |
+
def call(
|
132 |
+
self,
|
133 |
+
input_shape: Optional[tf.TensorShape] = None,
|
134 |
+
past_key_values_length: int = 0,
|
135 |
+
position_ids: tf.Tensor | None = None,
|
136 |
+
):
|
137 |
+
"""Input is expected to be of size [bsz x seqlen]."""
|
138 |
+
if position_ids is None:
|
139 |
+
seq_len = input_shape[1]
|
140 |
+
position_ids = tf.range(seq_len, delta=1, name="range")
|
141 |
+
position_ids += past_key_values_length
|
142 |
+
|
143 |
+
offset_dtype = position_ids.dtype if isinstance(position_ids, tf.Tensor) else tf.int32
|
144 |
+
return super().call(position_ids + tf.constant(self.offset, dtype=offset_dtype))
|
145 |
+
|
146 |
+
|
147 |
+
class TFBartAttention(keras.layers.Layer):
|
148 |
+
"""Multi-headed attention from "Attention Is All You Need"""
|
149 |
+
|
150 |
+
def __init__(
|
151 |
+
self,
|
152 |
+
embed_dim: int,
|
153 |
+
num_heads: int,
|
154 |
+
dropout: float = 0.0,
|
155 |
+
is_decoder: bool = False,
|
156 |
+
bias: bool = True,
|
157 |
+
**kwargs,
|
158 |
+
):
|
159 |
+
super().__init__(**kwargs)
|
160 |
+
self.embed_dim = embed_dim
|
161 |
+
|
162 |
+
self.num_heads = num_heads
|
163 |
+
self.dropout = keras.layers.Dropout(dropout)
|
164 |
+
self.head_dim = embed_dim // num_heads
|
165 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
166 |
+
raise ValueError(
|
167 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
168 |
+
f" and `num_heads`: {num_heads})."
|
169 |
+
)
|
170 |
+
self.scaling = self.head_dim**-0.5
|
171 |
+
self.is_decoder = is_decoder
|
172 |
+
|
173 |
+
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
|
174 |
+
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
|
175 |
+
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
|
176 |
+
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
|
177 |
+
|
178 |
+
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
|
179 |
+
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
|
180 |
+
|
181 |
+
def call(
|
182 |
+
self,
|
183 |
+
hidden_states: tf.Tensor,
|
184 |
+
key_value_states: tf.Tensor | None = None,
|
185 |
+
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
|
186 |
+
attention_mask: tf.Tensor | None = None,
|
187 |
+
layer_head_mask: tf.Tensor | None = None,
|
188 |
+
training: Optional[bool] = False,
|
189 |
+
) -> Tuple[tf.Tensor, tf.Tensor | None]:
|
190 |
+
"""Input shape: Batch x Time x Channel"""
|
191 |
+
|
192 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
193 |
+
# for the decoder
|
194 |
+
is_cross_attention = key_value_states is not None
|
195 |
+
bsz, tgt_len, embed_dim = shape_list(hidden_states)
|
196 |
+
|
197 |
+
# get query proj
|
198 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
199 |
+
# get key, value proj
|
200 |
+
if is_cross_attention and past_key_value is not None:
|
201 |
+
# reuse k,v, cross_attentions
|
202 |
+
key_states = past_key_value[0]
|
203 |
+
value_states = past_key_value[1]
|
204 |
+
elif is_cross_attention:
|
205 |
+
# cross_attentions
|
206 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
207 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
208 |
+
elif past_key_value is not None:
|
209 |
+
# reuse k, v, self_attention
|
210 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
211 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
212 |
+
key_states = tf.concat([past_key_value[0], key_states], axis=2)
|
213 |
+
value_states = tf.concat([past_key_value[1], value_states], axis=2)
|
214 |
+
else:
|
215 |
+
# self_attention
|
216 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
217 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
218 |
+
|
219 |
+
if self.is_decoder:
|
220 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
221 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
222 |
+
# key/value_states (first "if" case)
|
223 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
224 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
225 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
226 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
227 |
+
past_key_value = (key_states, value_states)
|
228 |
+
|
229 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
230 |
+
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
|
231 |
+
key_states = tf.reshape(key_states, proj_shape)
|
232 |
+
value_states = tf.reshape(value_states, proj_shape)
|
233 |
+
|
234 |
+
src_len = shape_list(key_states)[1]
|
235 |
+
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
|
236 |
+
|
237 |
+
tf.debugging.assert_equal(
|
238 |
+
shape_list(attn_weights),
|
239 |
+
[bsz * self.num_heads, tgt_len, src_len],
|
240 |
+
message=(
|
241 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
242 |
+
f" {shape_list(attn_weights)}"
|
243 |
+
),
|
244 |
+
)
|
245 |
+
|
246 |
+
if attention_mask is not None:
|
247 |
+
tf.debugging.assert_equal(
|
248 |
+
shape_list(attention_mask),
|
249 |
+
[bsz, 1, tgt_len, src_len],
|
250 |
+
message=(
|
251 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
252 |
+
f" {shape_list(attention_mask)}"
|
253 |
+
),
|
254 |
+
)
|
255 |
+
|
256 |
+
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
|
257 |
+
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
|
258 |
+
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
259 |
+
|
260 |
+
attn_weights = stable_softmax(attn_weights, axis=-1)
|
261 |
+
|
262 |
+
if layer_head_mask is not None:
|
263 |
+
tf.debugging.assert_equal(
|
264 |
+
shape_list(layer_head_mask),
|
265 |
+
[self.num_heads],
|
266 |
+
message=(
|
267 |
+
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
|
268 |
+
f" {shape_list(layer_head_mask)}"
|
269 |
+
),
|
270 |
+
)
|
271 |
+
|
272 |
+
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
|
273 |
+
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
|
274 |
+
)
|
275 |
+
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
276 |
+
|
277 |
+
attn_probs = self.dropout(attn_weights, training=training)
|
278 |
+
attn_output = tf.matmul(attn_probs, value_states)
|
279 |
+
|
280 |
+
tf.debugging.assert_equal(
|
281 |
+
shape_list(attn_output),
|
282 |
+
[bsz * self.num_heads, tgt_len, self.head_dim],
|
283 |
+
message=(
|
284 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
285 |
+
f" {shape_list(attn_output)}"
|
286 |
+
),
|
287 |
+
)
|
288 |
+
|
289 |
+
attn_output = tf.transpose(
|
290 |
+
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
|
291 |
+
)
|
292 |
+
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
|
293 |
+
|
294 |
+
attn_output = self.out_proj(attn_output)
|
295 |
+
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
|
296 |
+
|
297 |
+
return attn_output, attn_weights, past_key_value
|
298 |
+
|
299 |
+
def build(self, input_shape=None):
|
300 |
+
if self.built:
|
301 |
+
return
|
302 |
+
self.built = True
|
303 |
+
if getattr(self, "k_proj", None) is not None:
|
304 |
+
with tf.name_scope(self.k_proj.name):
|
305 |
+
self.k_proj.build([None, None, self.embed_dim])
|
306 |
+
if getattr(self, "q_proj", None) is not None:
|
307 |
+
with tf.name_scope(self.q_proj.name):
|
308 |
+
self.q_proj.build([None, None, self.embed_dim])
|
309 |
+
if getattr(self, "v_proj", None) is not None:
|
310 |
+
with tf.name_scope(self.v_proj.name):
|
311 |
+
self.v_proj.build([None, None, self.embed_dim])
|
312 |
+
if getattr(self, "out_proj", None) is not None:
|
313 |
+
with tf.name_scope(self.out_proj.name):
|
314 |
+
self.out_proj.build([None, None, self.embed_dim])
|
315 |
+
|
316 |
+
|
317 |
+
class TFBartEncoderLayer(keras.layers.Layer):
|
318 |
+
def __init__(self, config: BartConfig, **kwargs):
|
319 |
+
super().__init__(**kwargs)
|
320 |
+
self.embed_dim = config.d_model
|
321 |
+
self.self_attn = TFBartAttention(
|
322 |
+
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
|
323 |
+
)
|
324 |
+
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
325 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
326 |
+
self.activation_fn = get_tf_activation(config.activation_function)
|
327 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
328 |
+
self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
|
329 |
+
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
|
330 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
331 |
+
self.config = config
|
332 |
+
|
333 |
+
def call(
|
334 |
+
self,
|
335 |
+
hidden_states: tf.Tensor,
|
336 |
+
attention_mask: np.ndarray | tf.Tensor | None,
|
337 |
+
layer_head_mask: tf.Tensor | None,
|
338 |
+
training: Optional[bool] = False,
|
339 |
+
) -> tf.Tensor:
|
340 |
+
"""
|
341 |
+
Args:
|
342 |
+
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
343 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
344 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
345 |
+
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
346 |
+
`(encoder_attention_heads,)`
|
347 |
+
"""
|
348 |
+
residual = hidden_states
|
349 |
+
hidden_states, self_attn_weights, _ = self.self_attn(
|
350 |
+
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
|
351 |
+
)
|
352 |
+
|
353 |
+
tf.debugging.assert_equal(
|
354 |
+
shape_list(hidden_states),
|
355 |
+
shape_list(residual),
|
356 |
+
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
|
357 |
+
)
|
358 |
+
|
359 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
360 |
+
hidden_states = residual + hidden_states
|
361 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
362 |
+
|
363 |
+
residual = hidden_states
|
364 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
365 |
+
hidden_states = self.activation_dropout(hidden_states, training=training)
|
366 |
+
hidden_states = self.fc2(hidden_states)
|
367 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
368 |
+
hidden_states = residual + hidden_states
|
369 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
370 |
+
|
371 |
+
return hidden_states, self_attn_weights
|
372 |
+
|
373 |
+
def build(self, input_shape=None):
|
374 |
+
if self.built:
|
375 |
+
return
|
376 |
+
self.built = True
|
377 |
+
if getattr(self, "self_attn", None) is not None:
|
378 |
+
with tf.name_scope(self.self_attn.name):
|
379 |
+
self.self_attn.build(None)
|
380 |
+
if getattr(self, "self_attn_layer_norm", None) is not None:
|
381 |
+
with tf.name_scope(self.self_attn_layer_norm.name):
|
382 |
+
self.self_attn_layer_norm.build([None, None, self.embed_dim])
|
383 |
+
if getattr(self, "fc1", None) is not None:
|
384 |
+
with tf.name_scope(self.fc1.name):
|
385 |
+
self.fc1.build([None, None, self.embed_dim])
|
386 |
+
if getattr(self, "fc2", None) is not None:
|
387 |
+
with tf.name_scope(self.fc2.name):
|
388 |
+
self.fc2.build([None, None, self.config.encoder_ffn_dim])
|
389 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
390 |
+
with tf.name_scope(self.final_layer_norm.name):
|
391 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
392 |
+
|
393 |
+
|
394 |
+
class TFBartDecoderLayer(keras.layers.Layer):
|
395 |
+
def __init__(self, config: BartConfig, **kwargs):
|
396 |
+
super().__init__(**kwargs)
|
397 |
+
self.embed_dim = config.d_model
|
398 |
+
self.self_attn = TFBartAttention(
|
399 |
+
embed_dim=self.embed_dim,
|
400 |
+
num_heads=config.decoder_attention_heads,
|
401 |
+
dropout=config.attention_dropout,
|
402 |
+
name="self_attn",
|
403 |
+
is_decoder=True,
|
404 |
+
)
|
405 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
406 |
+
self.activation_fn = get_tf_activation(config.activation_function)
|
407 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
408 |
+
|
409 |
+
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
410 |
+
self.encoder_attn = TFBartAttention(
|
411 |
+
self.embed_dim,
|
412 |
+
config.decoder_attention_heads,
|
413 |
+
dropout=config.attention_dropout,
|
414 |
+
name="encoder_attn",
|
415 |
+
is_decoder=True,
|
416 |
+
)
|
417 |
+
self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
|
418 |
+
self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
|
419 |
+
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
|
420 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
421 |
+
self.config = config
|
422 |
+
|
423 |
+
def call(
|
424 |
+
self,
|
425 |
+
hidden_states: tf.Tensor,
|
426 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
427 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
428 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
429 |
+
layer_head_mask: tf.Tensor | None = None,
|
430 |
+
cross_attn_layer_head_mask: tf.Tensor | None = None,
|
431 |
+
past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
432 |
+
training: Optional[bool] = False,
|
433 |
+
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
|
434 |
+
"""
|
435 |
+
Args:
|
436 |
+
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
437 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
438 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
439 |
+
encoder_hidden_states (`tf.Tensor`):
|
440 |
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
441 |
+
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
|
442 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
443 |
+
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
444 |
+
`(decoder_attention_heads,)`
|
445 |
+
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
|
446 |
+
`(decoder_attention_heads,)`
|
447 |
+
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
|
448 |
+
"""
|
449 |
+
residual = hidden_states
|
450 |
+
|
451 |
+
# Self Attention
|
452 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
453 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
454 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
455 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
456 |
+
hidden_states=hidden_states,
|
457 |
+
past_key_value=self_attn_past_key_value,
|
458 |
+
attention_mask=attention_mask,
|
459 |
+
layer_head_mask=layer_head_mask,
|
460 |
+
)
|
461 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
462 |
+
hidden_states = residual + hidden_states
|
463 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
464 |
+
|
465 |
+
# Cross-Attention Block
|
466 |
+
cross_attn_present_key_value = None
|
467 |
+
cross_attn_weights = None
|
468 |
+
if encoder_hidden_states is not None:
|
469 |
+
residual = hidden_states
|
470 |
+
|
471 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
472 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
473 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
474 |
+
hidden_states=hidden_states,
|
475 |
+
key_value_states=encoder_hidden_states,
|
476 |
+
attention_mask=encoder_attention_mask,
|
477 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
478 |
+
past_key_value=cross_attn_past_key_value,
|
479 |
+
)
|
480 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
481 |
+
hidden_states = residual + hidden_states
|
482 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
483 |
+
|
484 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
485 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
486 |
+
|
487 |
+
# Fully Connected
|
488 |
+
residual = hidden_states
|
489 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
490 |
+
hidden_states = self.activation_dropout(hidden_states, training=training)
|
491 |
+
hidden_states = self.fc2(hidden_states)
|
492 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
493 |
+
hidden_states = residual + hidden_states
|
494 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
495 |
+
|
496 |
+
return (
|
497 |
+
hidden_states,
|
498 |
+
self_attn_weights,
|
499 |
+
cross_attn_weights,
|
500 |
+
present_key_value,
|
501 |
+
)
|
502 |
+
|
503 |
+
def build(self, input_shape=None):
|
504 |
+
if self.built:
|
505 |
+
return
|
506 |
+
self.built = True
|
507 |
+
if getattr(self, "self_attn", None) is not None:
|
508 |
+
with tf.name_scope(self.self_attn.name):
|
509 |
+
self.self_attn.build(None)
|
510 |
+
if getattr(self, "self_attn_layer_norm", None) is not None:
|
511 |
+
with tf.name_scope(self.self_attn_layer_norm.name):
|
512 |
+
self.self_attn_layer_norm.build([None, None, self.embed_dim])
|
513 |
+
if getattr(self, "encoder_attn", None) is not None:
|
514 |
+
with tf.name_scope(self.encoder_attn.name):
|
515 |
+
self.encoder_attn.build(None)
|
516 |
+
if getattr(self, "encoder_attn_layer_norm", None) is not None:
|
517 |
+
with tf.name_scope(self.encoder_attn_layer_norm.name):
|
518 |
+
self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
|
519 |
+
if getattr(self, "fc1", None) is not None:
|
520 |
+
with tf.name_scope(self.fc1.name):
|
521 |
+
self.fc1.build([None, None, self.embed_dim])
|
522 |
+
if getattr(self, "fc2", None) is not None:
|
523 |
+
with tf.name_scope(self.fc2.name):
|
524 |
+
self.fc2.build([None, None, self.config.decoder_ffn_dim])
|
525 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
526 |
+
with tf.name_scope(self.final_layer_norm.name):
|
527 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
528 |
+
|
529 |
+
|
530 |
+
class TFBartClassificationHead(keras.layers.Layer):
|
531 |
+
"""Head for sentence-level classification tasks."""
|
532 |
+
|
533 |
+
def __init__(self, inner_dim: int, num_classes: int, pooler_dropout: float, name: str, **kwargs):
|
534 |
+
super().__init__(name=name, **kwargs)
|
535 |
+
self.dense = keras.layers.Dense(inner_dim, name="dense")
|
536 |
+
self.dropout = keras.layers.Dropout(pooler_dropout)
|
537 |
+
self.out_proj = keras.layers.Dense(num_classes, name="out_proj")
|
538 |
+
self.input_dim = inner_dim
|
539 |
+
self.inner_dim = inner_dim
|
540 |
+
|
541 |
+
def call(self, inputs):
|
542 |
+
hidden_states = self.dropout(inputs)
|
543 |
+
hidden_states = self.dense(hidden_states)
|
544 |
+
hidden_states = keras.activations.tanh(hidden_states)
|
545 |
+
hidden_states = self.dropout(hidden_states)
|
546 |
+
hidden_states = self.out_proj(hidden_states)
|
547 |
+
return hidden_states
|
548 |
+
|
549 |
+
def build(self, input_shape=None):
|
550 |
+
if self.built:
|
551 |
+
return
|
552 |
+
self.built = True
|
553 |
+
if getattr(self, "dense", None) is not None:
|
554 |
+
with tf.name_scope(self.dense.name):
|
555 |
+
self.dense.build([None, None, self.input_dim])
|
556 |
+
if getattr(self, "out_proj", None) is not None:
|
557 |
+
with tf.name_scope(self.out_proj.name):
|
558 |
+
self.out_proj.build([None, None, self.inner_dim])
|
559 |
+
|
560 |
+
|
561 |
+
class TFBartPretrainedModel(TFPreTrainedModel):
|
562 |
+
config_class = BartConfig
|
563 |
+
base_model_prefix = "model"
|
564 |
+
|
565 |
+
@property
|
566 |
+
def dummy_inputs(self):
|
567 |
+
dummy_inputs = super().dummy_inputs
|
568 |
+
# Dummy inputs should not contain the default val of 1
|
569 |
+
# as this is the padding token and some assertions check it
|
570 |
+
dummy_inputs["input_ids"] = dummy_inputs["input_ids"] * 2
|
571 |
+
if "decoder_input_ids" in dummy_inputs:
|
572 |
+
dummy_inputs["decoder_input_ids"] = dummy_inputs["decoder_input_ids"] * 2
|
573 |
+
return dummy_inputs
|
574 |
+
|
575 |
+
def tf_to_pt_weight_rename(self, tf_weight):
|
576 |
+
if tf_weight == "model.shared.weight":
|
577 |
+
return tf_weight, "model.decoder.embed_tokens.weight"
|
578 |
+
else:
|
579 |
+
return (tf_weight,)
|
580 |
+
|
581 |
+
|
582 |
+
BART_START_DOCSTRING = r"""
|
583 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
584 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
585 |
+
etc.)
|
586 |
+
|
587 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
588 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
589 |
+
behavior.
|
590 |
+
|
591 |
+
<Tip>
|
592 |
+
|
593 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
594 |
+
|
595 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
596 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
597 |
+
|
598 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
599 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
600 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
601 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
602 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
603 |
+
positional argument:
|
604 |
+
|
605 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
606 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
607 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
608 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
609 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
610 |
+
|
611 |
+
Note that when creating models and layers with
|
612 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
613 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
614 |
+
|
615 |
+
</Tip>
|
616 |
+
|
617 |
+
Args:
|
618 |
+
config ([`BartConfig`]): Model configuration class with all the parameters of the model.
|
619 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
620 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
621 |
+
"""
|
622 |
+
|
623 |
+
|
624 |
+
BART_GENERATION_EXAMPLE = r"""
|
625 |
+
Summarization example:
|
626 |
+
|
627 |
+
```python
|
628 |
+
>>> from transformers import AutoTokenizer, TFBartForConditionalGeneration
|
629 |
+
|
630 |
+
>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large")
|
631 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
|
632 |
+
|
633 |
+
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
|
634 |
+
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="tf")
|
635 |
+
|
636 |
+
>>> # Generate Summary
|
637 |
+
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
|
638 |
+
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
|
639 |
+
```
|
640 |
+
|
641 |
+
Mask filling example:
|
642 |
+
|
643 |
+
```python
|
644 |
+
>>> from transformers import AutoTokenizer, TFBartForConditionalGeneration
|
645 |
+
|
646 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
|
647 |
+
>>> TXT = "My friends are <mask> but they eat too many carbs."
|
648 |
+
|
649 |
+
>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large")
|
650 |
+
>>> input_ids = tokenizer([TXT], return_tensors="tf")["input_ids"]
|
651 |
+
>>> logits = model(input_ids).logits
|
652 |
+
>>> probs = tf.nn.softmax(logits[0])
|
653 |
+
>>> # probs[5] is associated with the mask token
|
654 |
+
```
|
655 |
+
"""
|
656 |
+
|
657 |
+
|
658 |
+
BART_INPUTS_DOCSTRING = r"""
|
659 |
+
Args:
|
660 |
+
input_ids (`tf.Tensor` of shape `({0})`):
|
661 |
+
Indices of input sequence tokens in the vocabulary.
|
662 |
+
|
663 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
664 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
665 |
+
|
666 |
+
[What are input IDs?](../glossary#input-ids)
|
667 |
+
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
|
668 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
669 |
+
|
670 |
+
- 1 for tokens that are **not masked**,
|
671 |
+
- 0 for tokens that are **masked**.
|
672 |
+
|
673 |
+
[What are attention masks?](../glossary#attention-mask)
|
674 |
+
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
675 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
676 |
+
|
677 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
678 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
679 |
+
|
680 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
681 |
+
|
682 |
+
Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
|
683 |
+
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
|
684 |
+
|
685 |
+
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
686 |
+
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
|
687 |
+
for denoising pre-training following the paper.
|
688 |
+
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
689 |
+
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
|
690 |
+
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
691 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
692 |
+
range `[0, config.max_position_embeddings - 1]`.
|
693 |
+
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
694 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
695 |
+
|
696 |
+
- 1 indicates the head is **not masked**,
|
697 |
+
- 0 indicates the head is **masked**.
|
698 |
+
|
699 |
+
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
700 |
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
701 |
+
|
702 |
+
- 1 indicates the head is **not masked**,
|
703 |
+
- 0 indicates the head is **masked**.
|
704 |
+
|
705 |
+
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
706 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
707 |
+
|
708 |
+
- 1 indicates the head is **not masked**,
|
709 |
+
- 0 indicates the head is **masked**.
|
710 |
+
|
711 |
+
encoder_outputs (`tf.FloatTensor`, *optional*):
|
712 |
+
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
713 |
+
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
|
714 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
715 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
716 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
717 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
718 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
719 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
720 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
721 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
722 |
+
than the model's internal embedding lookup matrix.
|
723 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
724 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
725 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
726 |
+
output_attentions (`bool`, *optional*):
|
727 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
728 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
729 |
+
config will be used instead.
|
730 |
+
output_hidden_states (`bool`, *optional*):
|
731 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
732 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
733 |
+
used instead.
|
734 |
+
return_dict (`bool`, *optional*):
|
735 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
736 |
+
eager mode, in graph mode the value will always be set to True.
|
737 |
+
training (`bool`, *optional*, defaults to `False`):
|
738 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
739 |
+
behaviors between training and evaluation).
|
740 |
+
"""
|
741 |
+
|
742 |
+
|
743 |
+
@keras_serializable
|
744 |
+
class TFBartEncoder(keras.layers.Layer):
|
745 |
+
config_class = BartConfig
|
746 |
+
"""
|
747 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
748 |
+
[`TFBartEncoderLayer`].
|
749 |
+
|
750 |
+
Args:
|
751 |
+
config: BartConfig
|
752 |
+
"""
|
753 |
+
|
754 |
+
def __init__(self, config: BartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
|
755 |
+
super().__init__(**kwargs)
|
756 |
+
self.config = config
|
757 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
758 |
+
self.layerdrop = config.encoder_layerdrop
|
759 |
+
self.padding_idx = config.pad_token_id
|
760 |
+
self.max_source_positions = config.max_position_embeddings
|
761 |
+
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
762 |
+
|
763 |
+
self.embed_tokens = embed_tokens
|
764 |
+
self.embed_positions = TFBartLearnedPositionalEmbedding(
|
765 |
+
config.max_position_embeddings,
|
766 |
+
config.d_model,
|
767 |
+
name="embed_positions",
|
768 |
+
)
|
769 |
+
self.layers = [TFBartEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
|
770 |
+
self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
|
771 |
+
self.embed_dim = config.d_model
|
772 |
+
|
773 |
+
@unpack_inputs
|
774 |
+
def call(
|
775 |
+
self,
|
776 |
+
input_ids: TFModelInputType | None = None,
|
777 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
778 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
779 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
780 |
+
output_attentions: Optional[bool] = None,
|
781 |
+
output_hidden_states: Optional[bool] = None,
|
782 |
+
return_dict: Optional[bool] = None,
|
783 |
+
training: Optional[bool] = False,
|
784 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
|
785 |
+
"""
|
786 |
+
Args:
|
787 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
788 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
789 |
+
provide it.
|
790 |
+
|
791 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
792 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
793 |
+
|
794 |
+
[What are input IDs?](../glossary#input-ids)
|
795 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
796 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
797 |
+
|
798 |
+
- 1 for tokens that are **not masked**,
|
799 |
+
- 0 for tokens that are **masked**.
|
800 |
+
|
801 |
+
[What are attention masks?](../glossary#attention-mask)
|
802 |
+
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
|
803 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
804 |
+
|
805 |
+
- 1 indicates the head is **not masked**,
|
806 |
+
- 0 indicates the head is **masked**.
|
807 |
+
|
808 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
809 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
810 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
811 |
+
than the model's internal embedding lookup matrix.
|
812 |
+
output_attentions (`bool`, *optional*):
|
813 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
814 |
+
returned tensors for more detail.
|
815 |
+
output_hidden_states (`bool`, *optional*):
|
816 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
817 |
+
for more detail.
|
818 |
+
return_dict (`bool`, *optional*):
|
819 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
820 |
+
"""
|
821 |
+
if input_ids is not None and inputs_embeds is not None:
|
822 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
823 |
+
elif input_ids is not None:
|
824 |
+
input_shape = shape_list(input_ids)
|
825 |
+
elif inputs_embeds is not None:
|
826 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
827 |
+
else:
|
828 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
829 |
+
|
830 |
+
if inputs_embeds is None:
|
831 |
+
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
|
832 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
833 |
+
|
834 |
+
embed_pos = self.embed_positions(input_shape)
|
835 |
+
hidden_states = inputs_embeds + embed_pos
|
836 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
837 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
838 |
+
|
839 |
+
# check attention mask and invert
|
840 |
+
if attention_mask is not None:
|
841 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
842 |
+
attention_mask = _expand_mask(attention_mask)
|
843 |
+
else:
|
844 |
+
attention_mask = None
|
845 |
+
|
846 |
+
encoder_states = () if output_hidden_states else None
|
847 |
+
all_attentions = () if output_attentions else None
|
848 |
+
|
849 |
+
# check if head_mask has a correct number of layers specified if desired
|
850 |
+
if head_mask is not None:
|
851 |
+
tf.debugging.assert_equal(
|
852 |
+
shape_list(head_mask)[0],
|
853 |
+
len(self.layers),
|
854 |
+
message=(
|
855 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
856 |
+
f" {shape_list(head_mask)[0]}."
|
857 |
+
),
|
858 |
+
)
|
859 |
+
|
860 |
+
# encoder layers
|
861 |
+
for idx, encoder_layer in enumerate(self.layers):
|
862 |
+
if output_hidden_states:
|
863 |
+
encoder_states = encoder_states + (hidden_states,)
|
864 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
865 |
+
dropout_probability = random.uniform(0, 1)
|
866 |
+
if training and (dropout_probability < self.layerdrop): # skip the layer
|
867 |
+
continue
|
868 |
+
|
869 |
+
hidden_states, attn = encoder_layer(
|
870 |
+
hidden_states,
|
871 |
+
attention_mask,
|
872 |
+
head_mask[idx] if head_mask is not None else None,
|
873 |
+
)
|
874 |
+
|
875 |
+
if output_attentions:
|
876 |
+
all_attentions += (attn,)
|
877 |
+
|
878 |
+
if output_hidden_states:
|
879 |
+
encoder_states = encoder_states + (hidden_states,)
|
880 |
+
|
881 |
+
if not return_dict:
|
882 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
883 |
+
return TFBaseModelOutput(
|
884 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
885 |
+
)
|
886 |
+
|
887 |
+
def build(self, input_shape=None):
|
888 |
+
if self.built:
|
889 |
+
return
|
890 |
+
self.built = True
|
891 |
+
if getattr(self, "embed_positions", None) is not None:
|
892 |
+
with tf.name_scope(self.embed_positions.name):
|
893 |
+
self.embed_positions.build(None)
|
894 |
+
if getattr(self, "layernorm_embedding", None) is not None:
|
895 |
+
with tf.name_scope(self.layernorm_embedding.name):
|
896 |
+
self.layernorm_embedding.build([None, None, self.embed_dim])
|
897 |
+
if getattr(self, "layers", None) is not None:
|
898 |
+
for layer in self.layers:
|
899 |
+
with tf.name_scope(layer.name):
|
900 |
+
layer.build(None)
|
901 |
+
|
902 |
+
|
903 |
+
@keras_serializable
|
904 |
+
class TFBartDecoder(keras.layers.Layer):
|
905 |
+
config_class = BartConfig
|
906 |
+
"""
|
907 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBartDecoderLayer`]
|
908 |
+
|
909 |
+
Args:
|
910 |
+
config: BartConfig
|
911 |
+
embed_tokens: output embedding
|
912 |
+
"""
|
913 |
+
|
914 |
+
def __init__(self, config: BartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
|
915 |
+
super().__init__(**kwargs)
|
916 |
+
self.config = config
|
917 |
+
self.padding_idx = config.pad_token_id
|
918 |
+
self.embed_tokens = embed_tokens
|
919 |
+
self.layerdrop = config.decoder_layerdrop
|
920 |
+
self.embed_positions = TFBartLearnedPositionalEmbedding(
|
921 |
+
config.max_position_embeddings,
|
922 |
+
config.d_model,
|
923 |
+
name="embed_positions",
|
924 |
+
)
|
925 |
+
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
926 |
+
self.layers = [TFBartDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
|
927 |
+
self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
|
928 |
+
|
929 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
930 |
+
|
931 |
+
@unpack_inputs
|
932 |
+
def call(
|
933 |
+
self,
|
934 |
+
input_ids: TFModelInputType | None = None,
|
935 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
936 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
937 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
938 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
939 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
940 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
941 |
+
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
|
942 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
943 |
+
use_cache: Optional[bool] = None,
|
944 |
+
output_attentions: Optional[bool] = None,
|
945 |
+
output_hidden_states: Optional[bool] = None,
|
946 |
+
return_dict: Optional[bool] = None,
|
947 |
+
training: Optional[bool] = False,
|
948 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
949 |
+
r"""
|
950 |
+
Args:
|
951 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
952 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
953 |
+
provide it.
|
954 |
+
|
955 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
956 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
957 |
+
|
958 |
+
[What are input IDs?](../glossary#input-ids)
|
959 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
960 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
961 |
+
|
962 |
+
- 1 for tokens that are **not masked**,
|
963 |
+
- 0 for tokens that are **masked**.
|
964 |
+
|
965 |
+
[What are attention masks?](../glossary#attention-mask)
|
966 |
+
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
967 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
968 |
+
range `[0, config.max_position_embeddings - 1]`.
|
969 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
970 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
971 |
+
of the decoder.
|
972 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
973 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
974 |
+
selected in `[0, 1]`:
|
975 |
+
|
976 |
+
- 1 for tokens that are **not masked**,
|
977 |
+
- 0 for tokens that are **masked**.
|
978 |
+
|
979 |
+
[What are attention masks?](../glossary#attention-mask)
|
980 |
+
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
981 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
982 |
+
|
983 |
+
- 1 indicates the head is **not masked**,
|
984 |
+
- 0 indicates the head is **masked**.
|
985 |
+
|
986 |
+
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
987 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
988 |
+
|
989 |
+
- 1 indicates the head is **not masked**,
|
990 |
+
- 0 indicates the head is **masked**.
|
991 |
+
|
992 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
993 |
+
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
|
994 |
+
decoding.
|
995 |
+
|
996 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
997 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
998 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
999 |
+
inputs_embeds (`tf.tTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1000 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1001 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1002 |
+
than the model's internal embedding lookup matrix.
|
1003 |
+
output_attentions (`bool`, *optional*):
|
1004 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1005 |
+
returned tensors for more detail.
|
1006 |
+
output_hidden_states (`bool`, *optional*):
|
1007 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1008 |
+
for more detail.
|
1009 |
+
return_dict (`bool`, *optional*):
|
1010 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1011 |
+
"""
|
1012 |
+
|
1013 |
+
if input_ids is not None and inputs_embeds is not None:
|
1014 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1015 |
+
elif input_ids is not None:
|
1016 |
+
input_shape = shape_list(input_ids)
|
1017 |
+
elif inputs_embeds is not None:
|
1018 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
1019 |
+
else:
|
1020 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1021 |
+
|
1022 |
+
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
|
1023 |
+
|
1024 |
+
# embed positions
|
1025 |
+
if position_ids is None:
|
1026 |
+
positions = self.embed_positions(input_shape, past_key_values_length)
|
1027 |
+
else:
|
1028 |
+
positions = self.embed_positions(input_shape, position_ids=position_ids)
|
1029 |
+
|
1030 |
+
if inputs_embeds is None:
|
1031 |
+
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
|
1032 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1033 |
+
|
1034 |
+
hidden_states = inputs_embeds
|
1035 |
+
|
1036 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1037 |
+
if input_shape[-1] > 1:
|
1038 |
+
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
|
1039 |
+
else:
|
1040 |
+
combined_attention_mask = _expand_mask(
|
1041 |
+
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
if attention_mask is not None:
|
1045 |
+
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
|
1046 |
+
|
1047 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1048 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1049 |
+
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
|
1050 |
+
|
1051 |
+
hidden_states = self.layernorm_embedding(hidden_states + positions)
|
1052 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
1053 |
+
|
1054 |
+
# decoder layers
|
1055 |
+
all_hidden_states = () if output_hidden_states else None
|
1056 |
+
all_self_attns = () if output_attentions else None
|
1057 |
+
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
|
1058 |
+
present_key_values = () if use_cache else None
|
1059 |
+
|
1060 |
+
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
|
1061 |
+
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
|
1062 |
+
if attn_mask is not None:
|
1063 |
+
tf.debugging.assert_equal(
|
1064 |
+
shape_list(attn_mask)[0],
|
1065 |
+
len(self.layers),
|
1066 |
+
message=(
|
1067 |
+
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
|
1068 |
+
f" {shape_list(attn_mask)[0]}."
|
1069 |
+
),
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1073 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1074 |
+
if output_hidden_states:
|
1075 |
+
all_hidden_states += (hidden_states,)
|
1076 |
+
|
1077 |
+
dropout_probability = random.uniform(0, 1)
|
1078 |
+
|
1079 |
+
if training and (dropout_probability < self.layerdrop):
|
1080 |
+
continue
|
1081 |
+
|
1082 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1083 |
+
|
1084 |
+
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
|
1085 |
+
hidden_states,
|
1086 |
+
attention_mask=combined_attention_mask,
|
1087 |
+
encoder_hidden_states=encoder_hidden_states,
|
1088 |
+
encoder_attention_mask=encoder_attention_mask,
|
1089 |
+
layer_head_mask=head_mask[idx] if head_mask is not None else None,
|
1090 |
+
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
1091 |
+
past_key_value=past_key_value,
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
if use_cache:
|
1095 |
+
present_key_values += (present_key_value,)
|
1096 |
+
|
1097 |
+
if output_attentions:
|
1098 |
+
all_self_attns += (layer_self_attn,)
|
1099 |
+
|
1100 |
+
if encoder_hidden_states is not None:
|
1101 |
+
all_cross_attns += (layer_cross_attn,)
|
1102 |
+
|
1103 |
+
if output_hidden_states:
|
1104 |
+
all_hidden_states += (hidden_states,)
|
1105 |
+
|
1106 |
+
if not return_dict:
|
1107 |
+
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
|
1108 |
+
else:
|
1109 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
1110 |
+
last_hidden_state=hidden_states,
|
1111 |
+
past_key_values=present_key_values,
|
1112 |
+
hidden_states=all_hidden_states,
|
1113 |
+
attentions=all_self_attns,
|
1114 |
+
cross_attentions=all_cross_attns,
|
1115 |
+
)
|
1116 |
+
|
1117 |
+
def build(self, input_shape=None):
|
1118 |
+
if self.built:
|
1119 |
+
return
|
1120 |
+
self.built = True
|
1121 |
+
if getattr(self, "embed_positions", None) is not None:
|
1122 |
+
with tf.name_scope(self.embed_positions.name):
|
1123 |
+
self.embed_positions.build(None)
|
1124 |
+
if getattr(self, "layernorm_embedding", None) is not None:
|
1125 |
+
with tf.name_scope(self.layernorm_embedding.name):
|
1126 |
+
self.layernorm_embedding.build([None, None, self.config.d_model])
|
1127 |
+
if getattr(self, "layers", None) is not None:
|
1128 |
+
for layer in self.layers:
|
1129 |
+
with tf.name_scope(layer.name):
|
1130 |
+
layer.build(None)
|
1131 |
+
|
1132 |
+
|
1133 |
+
@keras_serializable
|
1134 |
+
class TFBartMainLayer(keras.layers.Layer):
|
1135 |
+
config_class = BartConfig
|
1136 |
+
|
1137 |
+
def __init__(self, config: BartConfig, load_weight_prefix=None, **kwargs):
|
1138 |
+
super().__init__(**kwargs)
|
1139 |
+
self.config = config
|
1140 |
+
self.shared = keras.layers.Embedding(
|
1141 |
+
input_dim=config.vocab_size,
|
1142 |
+
output_dim=config.d_model,
|
1143 |
+
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
|
1144 |
+
name="model.shared",
|
1145 |
+
)
|
1146 |
+
# Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
|
1147 |
+
self.shared.load_weight_prefix = "model.shared" if load_weight_prefix is None else load_weight_prefix
|
1148 |
+
|
1149 |
+
self.encoder = TFBartEncoder(config, self.shared, name="encoder")
|
1150 |
+
self.decoder = TFBartDecoder(config, self.shared, name="decoder")
|
1151 |
+
|
1152 |
+
def get_input_embeddings(self):
|
1153 |
+
return self.shared
|
1154 |
+
|
1155 |
+
def set_input_embeddings(self, new_embeddings):
|
1156 |
+
self.shared = new_embeddings
|
1157 |
+
self.encoder.embed_tokens = self.shared
|
1158 |
+
self.decoder.embed_tokens = self.shared
|
1159 |
+
|
1160 |
+
@unpack_inputs
|
1161 |
+
def call(
|
1162 |
+
self,
|
1163 |
+
input_ids: TFModelInputType | None = None,
|
1164 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1165 |
+
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
|
1166 |
+
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1167 |
+
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
|
1168 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1169 |
+
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
|
1170 |
+
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
|
1171 |
+
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
1172 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1173 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1174 |
+
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1175 |
+
use_cache: Optional[bool] = None,
|
1176 |
+
output_attentions: Optional[bool] = None,
|
1177 |
+
output_hidden_states: Optional[bool] = None,
|
1178 |
+
return_dict: Optional[bool] = None,
|
1179 |
+
training: Optional[bool] = False,
|
1180 |
+
**kwargs,
|
1181 |
+
) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]:
|
1182 |
+
# different to other models, Bart automatically creates decoder_input_ids from
|
1183 |
+
# input_ids if no decoder_input_ids are provided
|
1184 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1185 |
+
if input_ids is None:
|
1186 |
+
raise ValueError(
|
1187 |
+
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
|
1188 |
+
"passed, `input_ids` cannot be `None`. Please pass either "
|
1189 |
+
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
|
1190 |
+
)
|
1191 |
+
|
1192 |
+
decoder_input_ids = shift_tokens_right(
|
1193 |
+
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
|
1194 |
+
)
|
1195 |
+
|
1196 |
+
if encoder_outputs is None:
|
1197 |
+
encoder_outputs = self.encoder(
|
1198 |
+
input_ids=input_ids,
|
1199 |
+
attention_mask=attention_mask,
|
1200 |
+
head_mask=head_mask,
|
1201 |
+
inputs_embeds=inputs_embeds,
|
1202 |
+
output_attentions=output_attentions,
|
1203 |
+
output_hidden_states=output_hidden_states,
|
1204 |
+
return_dict=return_dict,
|
1205 |
+
training=training,
|
1206 |
+
)
|
1207 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
|
1208 |
+
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
|
1209 |
+
encoder_outputs = TFBaseModelOutput(
|
1210 |
+
last_hidden_state=encoder_outputs[0],
|
1211 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1212 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1213 |
+
)
|
1214 |
+
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
|
1215 |
+
elif not return_dict and not isinstance(encoder_outputs, tuple):
|
1216 |
+
encoder_outputs = encoder_outputs.to_tuple()
|
1217 |
+
|
1218 |
+
decoder_outputs = self.decoder(
|
1219 |
+
decoder_input_ids,
|
1220 |
+
attention_mask=decoder_attention_mask,
|
1221 |
+
position_ids=decoder_position_ids,
|
1222 |
+
encoder_hidden_states=encoder_outputs[0],
|
1223 |
+
encoder_attention_mask=attention_mask,
|
1224 |
+
head_mask=decoder_head_mask,
|
1225 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1226 |
+
past_key_values=past_key_values,
|
1227 |
+
inputs_embeds=decoder_inputs_embeds,
|
1228 |
+
use_cache=use_cache,
|
1229 |
+
output_attentions=output_attentions,
|
1230 |
+
output_hidden_states=output_hidden_states,
|
1231 |
+
return_dict=return_dict,
|
1232 |
+
training=training,
|
1233 |
+
)
|
1234 |
+
|
1235 |
+
if not return_dict:
|
1236 |
+
return decoder_outputs + encoder_outputs
|
1237 |
+
|
1238 |
+
return TFSeq2SeqModelOutput(
|
1239 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1240 |
+
past_key_values=decoder_outputs.past_key_values,
|
1241 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1242 |
+
decoder_attentions=decoder_outputs.attentions,
|
1243 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1244 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1245 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1246 |
+
encoder_attentions=encoder_outputs.attentions,
|
1247 |
+
)
|
1248 |
+
|
1249 |
+
def build(self, input_shape=None):
|
1250 |
+
if self.built:
|
1251 |
+
return
|
1252 |
+
self.built = True
|
1253 |
+
# The shared/tied weights expect to be in the model base namespace
|
1254 |
+
# Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
|
1255 |
+
# the current one.
|
1256 |
+
with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
|
1257 |
+
self.shared.build(None)
|
1258 |
+
if getattr(self, "encoder", None) is not None:
|
1259 |
+
with tf.name_scope(self.encoder.name):
|
1260 |
+
self.encoder.build(None)
|
1261 |
+
if getattr(self, "decoder", None) is not None:
|
1262 |
+
with tf.name_scope(self.decoder.name):
|
1263 |
+
self.decoder.build(None)
|
1264 |
+
|
1265 |
+
|
1266 |
+
@add_start_docstrings(
|
1267 |
+
"The bare BART Model outputting raw hidden-states without any specific head on top.",
|
1268 |
+
BART_START_DOCSTRING,
|
1269 |
+
)
|
1270 |
+
class TFBartModel(TFBartPretrainedModel):
|
1271 |
+
_requires_load_weight_prefix = True
|
1272 |
+
|
1273 |
+
def __init__(self, config: BartConfig, load_weight_prefix=None, *inputs, **kwargs):
|
1274 |
+
super().__init__(config, *inputs, **kwargs)
|
1275 |
+
|
1276 |
+
self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model")
|
1277 |
+
|
1278 |
+
def get_encoder(self):
|
1279 |
+
return self.model.encoder
|
1280 |
+
|
1281 |
+
def get_decoder(self):
|
1282 |
+
return self.model.decoder
|
1283 |
+
|
1284 |
+
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1285 |
+
@add_code_sample_docstrings(
|
1286 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1287 |
+
output_type=TFSeq2SeqModelOutput,
|
1288 |
+
config_class=_CONFIG_FOR_DOC,
|
1289 |
+
)
|
1290 |
+
@unpack_inputs
|
1291 |
+
def call(
|
1292 |
+
self,
|
1293 |
+
input_ids: TFModelInputType | None = None,
|
1294 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1295 |
+
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
|
1296 |
+
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1297 |
+
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
|
1298 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1299 |
+
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
|
1300 |
+
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
|
1301 |
+
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
1302 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1303 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1304 |
+
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1305 |
+
use_cache: Optional[bool] = None,
|
1306 |
+
output_attentions: Optional[bool] = None,
|
1307 |
+
output_hidden_states: Optional[bool] = None,
|
1308 |
+
return_dict: Optional[bool] = None,
|
1309 |
+
training: Optional[bool] = False,
|
1310 |
+
**kwargs,
|
1311 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
|
1312 |
+
outputs = self.model(
|
1313 |
+
input_ids=input_ids,
|
1314 |
+
attention_mask=attention_mask,
|
1315 |
+
decoder_input_ids=decoder_input_ids,
|
1316 |
+
decoder_attention_mask=decoder_attention_mask,
|
1317 |
+
decoder_position_ids=decoder_position_ids,
|
1318 |
+
head_mask=head_mask,
|
1319 |
+
decoder_head_mask=decoder_head_mask,
|
1320 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1321 |
+
encoder_outputs=encoder_outputs,
|
1322 |
+
past_key_values=past_key_values,
|
1323 |
+
inputs_embeds=inputs_embeds,
|
1324 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1325 |
+
use_cache=use_cache,
|
1326 |
+
output_attentions=output_attentions,
|
1327 |
+
output_hidden_states=output_hidden_states,
|
1328 |
+
return_dict=return_dict,
|
1329 |
+
training=training,
|
1330 |
+
)
|
1331 |
+
|
1332 |
+
return outputs
|
1333 |
+
|
1334 |
+
def serving_output(self, output):
|
1335 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1336 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1337 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1338 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1339 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1340 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1341 |
+
|
1342 |
+
return TFSeq2SeqModelOutput(
|
1343 |
+
last_hidden_state=output.last_hidden_state,
|
1344 |
+
past_key_values=pkv,
|
1345 |
+
decoder_hidden_states=dec_hs,
|
1346 |
+
decoder_attentions=dec_attns,
|
1347 |
+
cross_attentions=cross_attns,
|
1348 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1349 |
+
encoder_hidden_states=enc_hs,
|
1350 |
+
encoder_attentions=enc_attns,
|
1351 |
+
)
|
1352 |
+
|
1353 |
+
def build(self, input_shape=None):
|
1354 |
+
if self.built:
|
1355 |
+
return
|
1356 |
+
self.built = True
|
1357 |
+
if getattr(self, "model", None) is not None:
|
1358 |
+
with tf.name_scope(self.model.name):
|
1359 |
+
self.model.build(None)
|
1360 |
+
|
1361 |
+
|
1362 |
+
class BiasLayer(keras.layers.Layer):
|
1363 |
+
"""
|
1364 |
+
Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
|
1365 |
+
so all weights have to be registered in a layer.
|
1366 |
+
"""
|
1367 |
+
|
1368 |
+
def __init__(self, shape, initializer, trainable, name, **kwargs):
|
1369 |
+
super().__init__(name=name, **kwargs)
|
1370 |
+
# Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
|
1371 |
+
# "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
|
1372 |
+
# https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
|
1373 |
+
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
|
1374 |
+
|
1375 |
+
def call(self, x):
|
1376 |
+
return x + self.bias
|
1377 |
+
|
1378 |
+
|
1379 |
+
@add_start_docstrings(
|
1380 |
+
"The BART Model with a language modeling head. Can be used for summarization.",
|
1381 |
+
BART_START_DOCSTRING,
|
1382 |
+
)
|
1383 |
+
class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageModelingLoss):
|
1384 |
+
_keys_to_ignore_on_load_missing = [r"final_logits_bias"]
|
1385 |
+
_requires_load_weight_prefix = True
|
1386 |
+
|
1387 |
+
def __init__(self, config, load_weight_prefix=None, *inputs, **kwargs):
|
1388 |
+
super().__init__(config, *inputs, **kwargs)
|
1389 |
+
self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model")
|
1390 |
+
self.use_cache = config.use_cache
|
1391 |
+
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
|
1392 |
+
self.bias_layer = BiasLayer(
|
1393 |
+
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
|
1394 |
+
)
|
1395 |
+
|
1396 |
+
def get_decoder(self):
|
1397 |
+
return self.model.decoder
|
1398 |
+
|
1399 |
+
def get_encoder(self):
|
1400 |
+
return self.model.encoder
|
1401 |
+
|
1402 |
+
def get_output_embeddings(self):
|
1403 |
+
return self.get_input_embeddings()
|
1404 |
+
|
1405 |
+
def set_output_embeddings(self, value):
|
1406 |
+
self.set_input_embeddings(value)
|
1407 |
+
|
1408 |
+
def get_bias(self):
|
1409 |
+
return {"final_logits_bias": self.bias_layer.bias}
|
1410 |
+
|
1411 |
+
def set_bias(self, value):
|
1412 |
+
# Replaces the existing layers containing bias for correct (de)serialization.
|
1413 |
+
vocab_size = value["final_logits_bias"].shape[-1]
|
1414 |
+
self.bias_layer = BiasLayer(
|
1415 |
+
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
|
1416 |
+
)
|
1417 |
+
self.bias_layer.bias.assign(value["final_logits_bias"])
|
1418 |
+
|
1419 |
+
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
|
1420 |
+
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1421 |
+
@add_end_docstrings(BART_GENERATION_EXAMPLE)
|
1422 |
+
@unpack_inputs
|
1423 |
+
def call(
|
1424 |
+
self,
|
1425 |
+
input_ids: TFModelInputType | None = None,
|
1426 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1427 |
+
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
|
1428 |
+
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1429 |
+
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
|
1430 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1431 |
+
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
|
1432 |
+
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
|
1433 |
+
encoder_outputs: Optional[TFBaseModelOutput] = None,
|
1434 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1435 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1436 |
+
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1437 |
+
use_cache: Optional[bool] = None,
|
1438 |
+
output_attentions: Optional[bool] = None,
|
1439 |
+
output_hidden_states: Optional[bool] = None,
|
1440 |
+
return_dict: Optional[bool] = None,
|
1441 |
+
labels: tf.Tensor | None = None,
|
1442 |
+
training: Optional[bool] = False,
|
1443 |
+
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
|
1444 |
+
r"""
|
1445 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1446 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1447 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1448 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1449 |
+
|
1450 |
+
Returns:
|
1451 |
+
|
1452 |
+
"""
|
1453 |
+
|
1454 |
+
if labels is not None:
|
1455 |
+
labels = tf.where(
|
1456 |
+
labels == self.config.pad_token_id,
|
1457 |
+
tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
|
1458 |
+
labels,
|
1459 |
+
)
|
1460 |
+
use_cache = False
|
1461 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1462 |
+
decoder_input_ids = shift_tokens_right(
|
1463 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
outputs = self.model(
|
1467 |
+
input_ids,
|
1468 |
+
attention_mask=attention_mask,
|
1469 |
+
decoder_input_ids=decoder_input_ids,
|
1470 |
+
encoder_outputs=encoder_outputs,
|
1471 |
+
decoder_attention_mask=decoder_attention_mask,
|
1472 |
+
decoder_position_ids=decoder_position_ids,
|
1473 |
+
head_mask=head_mask,
|
1474 |
+
decoder_head_mask=decoder_head_mask,
|
1475 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1476 |
+
past_key_values=past_key_values,
|
1477 |
+
inputs_embeds=inputs_embeds,
|
1478 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1479 |
+
use_cache=use_cache,
|
1480 |
+
output_attentions=output_attentions,
|
1481 |
+
output_hidden_states=output_hidden_states,
|
1482 |
+
return_dict=return_dict,
|
1483 |
+
training=training,
|
1484 |
+
)
|
1485 |
+
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
|
1486 |
+
lm_logits = self.bias_layer(lm_logits)
|
1487 |
+
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
|
1488 |
+
|
1489 |
+
if not return_dict:
|
1490 |
+
output = (lm_logits,) + outputs[1:]
|
1491 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1492 |
+
return TFSeq2SeqLMOutput(
|
1493 |
+
loss=masked_lm_loss,
|
1494 |
+
logits=lm_logits,
|
1495 |
+
past_key_values=outputs.past_key_values, # index 1 of d outputs
|
1496 |
+
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
|
1497 |
+
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
|
1498 |
+
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
|
1499 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
|
1500 |
+
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
|
1501 |
+
encoder_attentions=outputs.encoder_attentions, # 2 of e out
|
1502 |
+
)
|
1503 |
+
|
1504 |
+
def serving_output(self, output):
|
1505 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1506 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1507 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1508 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1509 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1510 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1511 |
+
|
1512 |
+
return TFSeq2SeqLMOutput(
|
1513 |
+
logits=output.logits,
|
1514 |
+
past_key_values=pkv,
|
1515 |
+
decoder_hidden_states=dec_hs,
|
1516 |
+
decoder_attentions=dec_attns,
|
1517 |
+
cross_attentions=cross_attns,
|
1518 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1519 |
+
encoder_hidden_states=enc_hs,
|
1520 |
+
encoder_attentions=enc_attns,
|
1521 |
+
)
|
1522 |
+
|
1523 |
+
def prepare_inputs_for_generation(
|
1524 |
+
self,
|
1525 |
+
decoder_input_ids,
|
1526 |
+
past_key_values=None,
|
1527 |
+
attention_mask=None,
|
1528 |
+
decoder_attention_mask=None,
|
1529 |
+
head_mask=None,
|
1530 |
+
decoder_head_mask=None,
|
1531 |
+
cross_attn_head_mask=None,
|
1532 |
+
use_cache=None,
|
1533 |
+
encoder_outputs=None,
|
1534 |
+
**kwargs,
|
1535 |
+
):
|
1536 |
+
# cut decoder_input_ids if past_key_values is used
|
1537 |
+
if past_key_values is not None:
|
1538 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
1539 |
+
|
1540 |
+
if decoder_attention_mask is not None: # xla
|
1541 |
+
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
|
1542 |
+
elif past_key_values is not None: # no xla + past_key_values
|
1543 |
+
decoder_position_ids = past_key_values[0][0].shape[2]
|
1544 |
+
else: # no xla + no past_key_values
|
1545 |
+
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
|
1546 |
+
|
1547 |
+
return {
|
1548 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1549 |
+
"encoder_outputs": encoder_outputs,
|
1550 |
+
"past_key_values": past_key_values,
|
1551 |
+
"decoder_input_ids": decoder_input_ids,
|
1552 |
+
"attention_mask": attention_mask,
|
1553 |
+
"decoder_attention_mask": decoder_attention_mask,
|
1554 |
+
"decoder_position_ids": decoder_position_ids,
|
1555 |
+
"head_mask": head_mask,
|
1556 |
+
"decoder_head_mask": decoder_head_mask,
|
1557 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1558 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1559 |
+
}
|
1560 |
+
|
1561 |
+
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
|
1562 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
1563 |
+
|
1564 |
+
def build(self, input_shape=None):
|
1565 |
+
if self.built:
|
1566 |
+
return
|
1567 |
+
self.built = True
|
1568 |
+
if getattr(self, "model", None) is not None:
|
1569 |
+
with tf.name_scope(self.model.name):
|
1570 |
+
self.model.build(None)
|
1571 |
+
if getattr(self, "bias_layer", None) is not None:
|
1572 |
+
with tf.name_scope(self.bias_layer.name):
|
1573 |
+
self.bias_layer.build(None)
|
1574 |
+
|
1575 |
+
|
1576 |
+
@add_start_docstrings(
|
1577 |
+
"""
|
1578 |
+
Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
|
1579 |
+
tasks.
|
1580 |
+
""",
|
1581 |
+
BART_START_DOCSTRING,
|
1582 |
+
)
|
1583 |
+
class TFBartForSequenceClassification(TFBartPretrainedModel, TFSequenceClassificationLoss):
|
1584 |
+
def __init__(self, config: BartConfig, load_weight_prefix=None, *inputs, **kwargs):
|
1585 |
+
super().__init__(config, *inputs, **kwargs)
|
1586 |
+
self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model")
|
1587 |
+
self.classification_head = TFBartClassificationHead(
|
1588 |
+
config.d_model, config.num_labels, config.classifier_dropout, name="classification_head"
|
1589 |
+
)
|
1590 |
+
|
1591 |
+
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
|
1592 |
+
@replace_return_docstrings(output_type=TFSeq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
1593 |
+
@unpack_inputs
|
1594 |
+
def call(
|
1595 |
+
self,
|
1596 |
+
input_ids: TFModelInputType | None = None,
|
1597 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1598 |
+
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
|
1599 |
+
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1600 |
+
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
|
1601 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1602 |
+
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
|
1603 |
+
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
|
1604 |
+
encoder_outputs: Optional[TFBaseModelOutput] = None,
|
1605 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1606 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1607 |
+
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1608 |
+
use_cache: Optional[bool] = None,
|
1609 |
+
output_attentions: Optional[bool] = None,
|
1610 |
+
output_hidden_states: Optional[bool] = None,
|
1611 |
+
return_dict: Optional[bool] = None,
|
1612 |
+
labels: tf.Tensor | None = None,
|
1613 |
+
training: Optional[bool] = False,
|
1614 |
+
) -> Union[TFSeq2SeqSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1615 |
+
r"""
|
1616 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1617 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1618 |
+
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1619 |
+
|
1620 |
+
Returns:
|
1621 |
+
"""
|
1622 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1623 |
+
if labels is not None:
|
1624 |
+
use_cache = False
|
1625 |
+
|
1626 |
+
if input_ids is None and inputs_embeds is not None:
|
1627 |
+
raise NotImplementedError(
|
1628 |
+
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
|
1629 |
+
)
|
1630 |
+
|
1631 |
+
outputs = self.model(
|
1632 |
+
input_ids=input_ids,
|
1633 |
+
attention_mask=attention_mask,
|
1634 |
+
decoder_input_ids=decoder_input_ids,
|
1635 |
+
decoder_attention_mask=decoder_attention_mask,
|
1636 |
+
decoder_position_ids=decoder_position_ids,
|
1637 |
+
head_mask=head_mask,
|
1638 |
+
decoder_head_mask=decoder_head_mask,
|
1639 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1640 |
+
encoder_outputs=encoder_outputs,
|
1641 |
+
past_key_values=past_key_values,
|
1642 |
+
inputs_embeds=inputs_embeds,
|
1643 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1644 |
+
use_cache=use_cache,
|
1645 |
+
output_attentions=output_attentions,
|
1646 |
+
output_hidden_states=output_hidden_states,
|
1647 |
+
return_dict=return_dict,
|
1648 |
+
training=training,
|
1649 |
+
)
|
1650 |
+
|
1651 |
+
last_hidden_state = outputs[0]
|
1652 |
+
eos_mask = tf.equal(input_ids, self.config.eos_token_id)
|
1653 |
+
# out the rows with False where present. Then verify all the final
|
1654 |
+
# entries are True
|
1655 |
+
self_masked = tf.reshape(tf.boolean_mask(eos_mask, eos_mask), (tf.shape(input_ids)[0], -1))
|
1656 |
+
tf.Assert(tf.reduce_all(self_masked[:, -1]), ["All examples must have the same number of <eos> tokens."])
|
1657 |
+
|
1658 |
+
masked = tf.reshape(
|
1659 |
+
tf.boolean_mask(last_hidden_state, eos_mask),
|
1660 |
+
(tf.shape(input_ids)[0], tf.shape(self_masked)[1], tf.shape(last_hidden_state)[-1]),
|
1661 |
+
)
|
1662 |
+
|
1663 |
+
sentence_representation = masked[:, -1, :]
|
1664 |
+
logits = self.classification_head(sentence_representation)
|
1665 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1666 |
+
|
1667 |
+
if not return_dict:
|
1668 |
+
output = (logits,) + outputs[1:]
|
1669 |
+
return ((loss,) + output) if loss is not None else output
|
1670 |
+
|
1671 |
+
return TFSeq2SeqSequenceClassifierOutput(
|
1672 |
+
loss=loss,
|
1673 |
+
logits=logits,
|
1674 |
+
past_key_values=outputs.past_key_values,
|
1675 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1676 |
+
decoder_attentions=outputs.decoder_attentions,
|
1677 |
+
cross_attentions=outputs.cross_attentions,
|
1678 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1679 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1680 |
+
encoder_attentions=outputs.encoder_attentions,
|
1681 |
+
)
|
1682 |
+
|
1683 |
+
def serving_output(self, output):
|
1684 |
+
logits = tf.convert_to_tensor(output.logits)
|
1685 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1686 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1687 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1688 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1689 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1690 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1691 |
+
|
1692 |
+
return TFSeq2SeqSequenceClassifierOutput(
|
1693 |
+
logits=logits,
|
1694 |
+
past_key_values=pkv,
|
1695 |
+
decoder_hidden_states=dec_hs,
|
1696 |
+
decoder_attentions=dec_attns,
|
1697 |
+
cross_attentions=cross_attns,
|
1698 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1699 |
+
encoder_hidden_states=enc_hs,
|
1700 |
+
encoder_attentions=enc_attns,
|
1701 |
+
)
|
1702 |
+
|
1703 |
+
def build(self, input_shape=None):
|
1704 |
+
if self.built:
|
1705 |
+
return
|
1706 |
+
self.built = True
|
1707 |
+
if getattr(self, "model", None) is not None:
|
1708 |
+
with tf.name_scope(self.model.name):
|
1709 |
+
self.model.build(None)
|
1710 |
+
if getattr(self, "classification_head", None) is not None:
|
1711 |
+
with tf.name_scope(self.classification_head.name):
|
1712 |
+
self.classification_head.build(None)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/tokenization_bart.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
from functools import lru_cache
|
19 |
+
from typing import List, Optional, Tuple
|
20 |
+
|
21 |
+
import regex as re
|
22 |
+
|
23 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
|
31 |
+
|
32 |
+
# See all BART models at https://huggingface.co/models?filter=bart
|
33 |
+
|
34 |
+
|
35 |
+
@lru_cache()
|
36 |
+
def bytes_to_unicode():
|
37 |
+
"""
|
38 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
39 |
+
characters the bpe code barfs on.
|
40 |
+
|
41 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
42 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
43 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
44 |
+
tables between utf-8 bytes and unicode strings.
|
45 |
+
"""
|
46 |
+
bs = (
|
47 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
48 |
+
)
|
49 |
+
cs = bs[:]
|
50 |
+
n = 0
|
51 |
+
for b in range(2**8):
|
52 |
+
if b not in bs:
|
53 |
+
bs.append(b)
|
54 |
+
cs.append(2**8 + n)
|
55 |
+
n += 1
|
56 |
+
cs = [chr(n) for n in cs]
|
57 |
+
return dict(zip(bs, cs))
|
58 |
+
|
59 |
+
|
60 |
+
def get_pairs(word):
|
61 |
+
"""
|
62 |
+
Return set of symbol pairs in a word.
|
63 |
+
|
64 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
65 |
+
"""
|
66 |
+
pairs = set()
|
67 |
+
prev_char = word[0]
|
68 |
+
for char in word[1:]:
|
69 |
+
pairs.add((prev_char, char))
|
70 |
+
prev_char = char
|
71 |
+
return pairs
|
72 |
+
|
73 |
+
|
74 |
+
class BartTokenizer(PreTrainedTokenizer):
|
75 |
+
"""
|
76 |
+
Constructs a BART tokenizer, which is smilar to the ROBERTa tokenizer, using byte-level Byte-Pair-Encoding.
|
77 |
+
|
78 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
79 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
80 |
+
|
81 |
+
```python
|
82 |
+
>>> from transformers import BartTokenizer
|
83 |
+
|
84 |
+
>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
|
85 |
+
>>> tokenizer("Hello world")["input_ids"]
|
86 |
+
[0, 31414, 232, 2]
|
87 |
+
|
88 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
89 |
+
[0, 20920, 232, 2]
|
90 |
+
```
|
91 |
+
|
92 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
|
93 |
+
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
94 |
+
|
95 |
+
<Tip>
|
96 |
+
|
97 |
+
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
|
98 |
+
|
99 |
+
</Tip>
|
100 |
+
|
101 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
102 |
+
this superclass for more information regarding those methods.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
vocab_file (`str`):
|
106 |
+
Path to the vocabulary file.
|
107 |
+
merges_file (`str`):
|
108 |
+
Path to the merges file.
|
109 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
110 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
111 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
112 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
113 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
114 |
+
|
115 |
+
<Tip>
|
116 |
+
|
117 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
118 |
+
sequence. The token used is the `cls_token`.
|
119 |
+
|
120 |
+
</Tip>
|
121 |
+
|
122 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
123 |
+
The end of sequence token.
|
124 |
+
|
125 |
+
<Tip>
|
126 |
+
|
127 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
128 |
+
The token used is the `sep_token`.
|
129 |
+
|
130 |
+
</Tip>
|
131 |
+
|
132 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
133 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
134 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
135 |
+
token of a sequence built with special tokens.
|
136 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
137 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
138 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
139 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
140 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
141 |
+
token instead.
|
142 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
143 |
+
The token used for padding, for example when batching sequences of different lengths.
|
144 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
145 |
+
The token used for masking values. This is the token used when training this model with masked language
|
146 |
+
modeling. This is the token which the model will try to predict.
|
147 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
148 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
149 |
+
other word. (BART tokenizer detect beginning of words by the preceding space).
|
150 |
+
"""
|
151 |
+
|
152 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
153 |
+
model_input_names = ["input_ids", "attention_mask"]
|
154 |
+
|
155 |
+
def __init__(
|
156 |
+
self,
|
157 |
+
vocab_file,
|
158 |
+
merges_file,
|
159 |
+
errors="replace",
|
160 |
+
bos_token="<s>",
|
161 |
+
eos_token="</s>",
|
162 |
+
sep_token="</s>",
|
163 |
+
cls_token="<s>",
|
164 |
+
unk_token="<unk>",
|
165 |
+
pad_token="<pad>",
|
166 |
+
mask_token="<mask>",
|
167 |
+
add_prefix_space=False,
|
168 |
+
**kwargs,
|
169 |
+
):
|
170 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
171 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
172 |
+
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
|
173 |
+
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
|
174 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
175 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
176 |
+
|
177 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
178 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
179 |
+
|
180 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
181 |
+
self.encoder = json.load(vocab_handle)
|
182 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
183 |
+
self.errors = errors # how to handle errors in decoding
|
184 |
+
self.byte_encoder = bytes_to_unicode()
|
185 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
186 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
187 |
+
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
188 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
189 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
190 |
+
self.cache = {}
|
191 |
+
self.add_prefix_space = add_prefix_space
|
192 |
+
|
193 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
194 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
195 |
+
|
196 |
+
super().__init__(
|
197 |
+
errors=errors,
|
198 |
+
bos_token=bos_token,
|
199 |
+
eos_token=eos_token,
|
200 |
+
unk_token=unk_token,
|
201 |
+
sep_token=sep_token,
|
202 |
+
cls_token=cls_token,
|
203 |
+
pad_token=pad_token,
|
204 |
+
mask_token=mask_token,
|
205 |
+
add_prefix_space=add_prefix_space,
|
206 |
+
**kwargs,
|
207 |
+
)
|
208 |
+
|
209 |
+
@property
|
210 |
+
def vocab_size(self):
|
211 |
+
return len(self.encoder)
|
212 |
+
|
213 |
+
def get_vocab(self):
|
214 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
215 |
+
|
216 |
+
def bpe(self, token):
|
217 |
+
if token in self.cache:
|
218 |
+
return self.cache[token]
|
219 |
+
word = tuple(token)
|
220 |
+
pairs = get_pairs(word)
|
221 |
+
|
222 |
+
if not pairs:
|
223 |
+
return token
|
224 |
+
|
225 |
+
while True:
|
226 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
227 |
+
if bigram not in self.bpe_ranks:
|
228 |
+
break
|
229 |
+
first, second = bigram
|
230 |
+
new_word = []
|
231 |
+
i = 0
|
232 |
+
while i < len(word):
|
233 |
+
try:
|
234 |
+
j = word.index(first, i)
|
235 |
+
except ValueError:
|
236 |
+
new_word.extend(word[i:])
|
237 |
+
break
|
238 |
+
else:
|
239 |
+
new_word.extend(word[i:j])
|
240 |
+
i = j
|
241 |
+
|
242 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
243 |
+
new_word.append(first + second)
|
244 |
+
i += 2
|
245 |
+
else:
|
246 |
+
new_word.append(word[i])
|
247 |
+
i += 1
|
248 |
+
new_word = tuple(new_word)
|
249 |
+
word = new_word
|
250 |
+
if len(word) == 1:
|
251 |
+
break
|
252 |
+
else:
|
253 |
+
pairs = get_pairs(word)
|
254 |
+
word = " ".join(word)
|
255 |
+
self.cache[token] = word
|
256 |
+
return word
|
257 |
+
|
258 |
+
def _tokenize(self, text):
|
259 |
+
"""Tokenize a string."""
|
260 |
+
bpe_tokens = []
|
261 |
+
for token in re.findall(self.pat, text):
|
262 |
+
token = "".join(
|
263 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
264 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
265 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
266 |
+
return bpe_tokens
|
267 |
+
|
268 |
+
def _convert_token_to_id(self, token):
|
269 |
+
"""Converts a token (str) in an id using the vocab."""
|
270 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
271 |
+
|
272 |
+
def _convert_id_to_token(self, index):
|
273 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
274 |
+
return self.decoder.get(index)
|
275 |
+
|
276 |
+
def convert_tokens_to_string(self, tokens):
|
277 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
278 |
+
text = "".join(tokens)
|
279 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
280 |
+
return text
|
281 |
+
|
282 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
283 |
+
if not os.path.isdir(save_directory):
|
284 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
285 |
+
return
|
286 |
+
vocab_file = os.path.join(
|
287 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
288 |
+
)
|
289 |
+
merge_file = os.path.join(
|
290 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
291 |
+
)
|
292 |
+
|
293 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
294 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
295 |
+
|
296 |
+
index = 0
|
297 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
298 |
+
writer.write("#version: 0.2\n")
|
299 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
300 |
+
if index != token_index:
|
301 |
+
logger.warning(
|
302 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
303 |
+
" Please check that the tokenizer is not corrupted!"
|
304 |
+
)
|
305 |
+
index = token_index
|
306 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
307 |
+
index += 1
|
308 |
+
|
309 |
+
return vocab_file, merge_file
|
310 |
+
|
311 |
+
def build_inputs_with_special_tokens(
|
312 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
313 |
+
) -> List[int]:
|
314 |
+
"""
|
315 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
316 |
+
adding special tokens. A BART sequence has the following format:
|
317 |
+
|
318 |
+
- single sequence: `<s> X </s>`
|
319 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
320 |
+
|
321 |
+
Args:
|
322 |
+
token_ids_0 (`List[int]`):
|
323 |
+
List of IDs to which the special tokens will be added.
|
324 |
+
token_ids_1 (`List[int]`, *optional*):
|
325 |
+
Optional second list of IDs for sequence pairs.
|
326 |
+
|
327 |
+
Returns:
|
328 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
329 |
+
"""
|
330 |
+
if token_ids_1 is None:
|
331 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
332 |
+
cls = [self.cls_token_id]
|
333 |
+
sep = [self.sep_token_id]
|
334 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
335 |
+
|
336 |
+
def get_special_tokens_mask(
|
337 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
338 |
+
) -> List[int]:
|
339 |
+
"""
|
340 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
341 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
342 |
+
|
343 |
+
Args:
|
344 |
+
token_ids_0 (`List[int]`):
|
345 |
+
List of IDs.
|
346 |
+
token_ids_1 (`List[int]`, *optional*):
|
347 |
+
Optional second list of IDs for sequence pairs.
|
348 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
349 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
350 |
+
|
351 |
+
Returns:
|
352 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
353 |
+
"""
|
354 |
+
if already_has_special_tokens:
|
355 |
+
return super().get_special_tokens_mask(
|
356 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
357 |
+
)
|
358 |
+
|
359 |
+
if token_ids_1 is None:
|
360 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
361 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
362 |
+
|
363 |
+
def create_token_type_ids_from_sequences(
|
364 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
365 |
+
) -> List[int]:
|
366 |
+
"""
|
367 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BART does not
|
368 |
+
make use of token type ids, therefore a list of zeros is returned.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
token_ids_0 (`List[int]`):
|
372 |
+
List of IDs.
|
373 |
+
token_ids_1 (`List[int]`, *optional*):
|
374 |
+
Optional second list of IDs for sequence pairs.
|
375 |
+
|
376 |
+
Returns:
|
377 |
+
`List[int]`: List of zeros.
|
378 |
+
"""
|
379 |
+
sep = [self.sep_token_id]
|
380 |
+
cls = [self.cls_token_id]
|
381 |
+
|
382 |
+
if token_ids_1 is None:
|
383 |
+
return len(cls + token_ids_0 + sep) * [0]
|
384 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
385 |
+
|
386 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
387 |
+
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
388 |
+
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
|
389 |
+
text = " " + text
|
390 |
+
return (text, kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bart/tokenization_bart_fast.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
from typing import List, Optional, Tuple
|
18 |
+
|
19 |
+
from tokenizers import pre_tokenizers, processors
|
20 |
+
|
21 |
+
from ...tokenization_utils_base import AddedToken, BatchEncoding
|
22 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
23 |
+
from ...utils import logging
|
24 |
+
from .tokenization_bart import BartTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
31 |
+
|
32 |
+
# See all BART models at https://huggingface.co/models?filter=bart
|
33 |
+
|
34 |
+
|
35 |
+
class BartTokenizerFast(PreTrainedTokenizerFast):
|
36 |
+
r"""
|
37 |
+
Construct a "fast" BART tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 tokenizer,
|
38 |
+
using byte-level Byte-Pair-Encoding.
|
39 |
+
|
40 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
41 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
42 |
+
|
43 |
+
```python
|
44 |
+
>>> from transformers import BartTokenizerFast
|
45 |
+
|
46 |
+
>>> tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base")
|
47 |
+
>>> tokenizer("Hello world")["input_ids"]
|
48 |
+
[0, 31414, 232, 2]
|
49 |
+
|
50 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
51 |
+
[0, 20920, 232, 2]
|
52 |
+
```
|
53 |
+
|
54 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
|
55 |
+
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
56 |
+
|
57 |
+
<Tip>
|
58 |
+
|
59 |
+
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
|
60 |
+
|
61 |
+
</Tip>
|
62 |
+
|
63 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
64 |
+
refer to this superclass for more information regarding those methods.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
vocab_file (`str`):
|
68 |
+
Path to the vocabulary file.
|
69 |
+
merges_file (`str`):
|
70 |
+
Path to the merges file.
|
71 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
72 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
73 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
74 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
75 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
76 |
+
|
77 |
+
<Tip>
|
78 |
+
|
79 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
80 |
+
sequence. The token used is the `cls_token`.
|
81 |
+
|
82 |
+
</Tip>
|
83 |
+
|
84 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
85 |
+
The end of sequence token.
|
86 |
+
|
87 |
+
<Tip>
|
88 |
+
|
89 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
90 |
+
The token used is the `sep_token`.
|
91 |
+
|
92 |
+
</Tip>
|
93 |
+
|
94 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
95 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
96 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
97 |
+
token of a sequence built with special tokens.
|
98 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
99 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
100 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
101 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
102 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
103 |
+
token instead.
|
104 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
105 |
+
The token used for padding, for example when batching sequences of different lengths.
|
106 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
107 |
+
The token used for masking values. This is the token used when training this model with masked language
|
108 |
+
modeling. This is the token which the model will try to predict.
|
109 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
110 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
111 |
+
other word. (BART tokenizer detect beginning of words by the preceding space).
|
112 |
+
trim_offsets (`bool`, *optional*, defaults to `True`):
|
113 |
+
Whether the post processing step should trim offsets to avoid including whitespaces.
|
114 |
+
"""
|
115 |
+
|
116 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
117 |
+
model_input_names = ["input_ids", "attention_mask"]
|
118 |
+
slow_tokenizer_class = BartTokenizer
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
vocab_file=None,
|
123 |
+
merges_file=None,
|
124 |
+
tokenizer_file=None,
|
125 |
+
errors="replace",
|
126 |
+
bos_token="<s>",
|
127 |
+
eos_token="</s>",
|
128 |
+
sep_token="</s>",
|
129 |
+
cls_token="<s>",
|
130 |
+
unk_token="<unk>",
|
131 |
+
pad_token="<pad>",
|
132 |
+
mask_token="<mask>",
|
133 |
+
add_prefix_space=False,
|
134 |
+
trim_offsets=True,
|
135 |
+
**kwargs,
|
136 |
+
):
|
137 |
+
# we have to specify that this tokens is special otherwise adding it will reset the normalized flag to `False` in `add_special_tokens`
|
138 |
+
mask_token = (
|
139 |
+
AddedToken(mask_token, lstrip=True, normalized=True, special=True)
|
140 |
+
if isinstance(mask_token, str)
|
141 |
+
else mask_token
|
142 |
+
)
|
143 |
+
super().__init__(
|
144 |
+
vocab_file,
|
145 |
+
merges_file,
|
146 |
+
tokenizer_file=tokenizer_file,
|
147 |
+
errors=errors,
|
148 |
+
bos_token=bos_token,
|
149 |
+
eos_token=eos_token,
|
150 |
+
sep_token=sep_token,
|
151 |
+
cls_token=cls_token,
|
152 |
+
unk_token=unk_token,
|
153 |
+
pad_token=pad_token,
|
154 |
+
mask_token=mask_token,
|
155 |
+
add_prefix_space=add_prefix_space,
|
156 |
+
trim_offsets=trim_offsets,
|
157 |
+
**kwargs,
|
158 |
+
)
|
159 |
+
|
160 |
+
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
161 |
+
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
162 |
+
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
163 |
+
pre_tok_state["add_prefix_space"] = add_prefix_space
|
164 |
+
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
165 |
+
|
166 |
+
self.add_prefix_space = add_prefix_space
|
167 |
+
|
168 |
+
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
|
169 |
+
tokenizer_component = "post_processor"
|
170 |
+
tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
|
171 |
+
if tokenizer_component_instance:
|
172 |
+
state = json.loads(tokenizer_component_instance.__getstate__())
|
173 |
+
|
174 |
+
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
|
175 |
+
if "sep" in state:
|
176 |
+
state["sep"] = tuple(state["sep"])
|
177 |
+
if "cls" in state:
|
178 |
+
state["cls"] = tuple(state["cls"])
|
179 |
+
|
180 |
+
changes_to_apply = False
|
181 |
+
|
182 |
+
if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
183 |
+
state["add_prefix_space"] = add_prefix_space
|
184 |
+
changes_to_apply = True
|
185 |
+
|
186 |
+
if state.get("trim_offsets", trim_offsets) != trim_offsets:
|
187 |
+
state["trim_offsets"] = trim_offsets
|
188 |
+
changes_to_apply = True
|
189 |
+
|
190 |
+
if changes_to_apply:
|
191 |
+
component_class = getattr(processors, state.pop("type"))
|
192 |
+
new_value = component_class(**state)
|
193 |
+
setattr(self.backend_tokenizer, tokenizer_component, new_value)
|
194 |
+
|
195 |
+
@property
|
196 |
+
def mask_token(self) -> str:
|
197 |
+
"""
|
198 |
+
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
|
199 |
+
having been set.
|
200 |
+
|
201 |
+
BART tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
|
202 |
+
comprise the space before the *<mask>*.
|
203 |
+
"""
|
204 |
+
if self._mask_token is None:
|
205 |
+
if self.verbose:
|
206 |
+
logger.error("Using mask_token, but it is not set yet.")
|
207 |
+
return None
|
208 |
+
return str(self._mask_token)
|
209 |
+
|
210 |
+
@mask_token.setter
|
211 |
+
def mask_token(self, value):
|
212 |
+
"""
|
213 |
+
Overriding the default behavior of the mask token to have it eat the space before it.
|
214 |
+
|
215 |
+
This is needed to preserve backward compatibility with all the previously used models based on Bart.
|
216 |
+
"""
|
217 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
218 |
+
# So we set lstrip to True
|
219 |
+
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
|
220 |
+
self._mask_token = value
|
221 |
+
|
222 |
+
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
223 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
224 |
+
|
225 |
+
if is_split_into_words and not self.add_prefix_space:
|
226 |
+
raise ValueError(
|
227 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
228 |
+
"to use it with pretokenized inputs."
|
229 |
+
)
|
230 |
+
|
231 |
+
return super()._batch_encode_plus(*args, **kwargs)
|
232 |
+
|
233 |
+
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
234 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
235 |
+
|
236 |
+
if is_split_into_words and not self.add_prefix_space:
|
237 |
+
raise ValueError(
|
238 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
239 |
+
"to use it with pretokenized inputs."
|
240 |
+
)
|
241 |
+
|
242 |
+
return super()._encode_plus(*args, **kwargs)
|
243 |
+
|
244 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
245 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
246 |
+
return tuple(files)
|
247 |
+
|
248 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
249 |
+
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
|
250 |
+
if token_ids_1 is None:
|
251 |
+
return output
|
252 |
+
|
253 |
+
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
|
254 |
+
|
255 |
+
def create_token_type_ids_from_sequences(
|
256 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
257 |
+
) -> List[int]:
|
258 |
+
"""
|
259 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BART does not
|
260 |
+
make use of token type ids, therefore a list of zeros is returned.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
token_ids_0 (`List[int]`):
|
264 |
+
List of IDs.
|
265 |
+
token_ids_1 (`List[int]`, *optional*):
|
266 |
+
Optional second list of IDs for sequence pairs.
|
267 |
+
|
268 |
+
Returns:
|
269 |
+
`List[int]`: List of zeros.
|
270 |
+
"""
|
271 |
+
sep = [self.sep_token_id]
|
272 |
+
cls = [self.cls_token_id]
|
273 |
+
|
274 |
+
if token_ids_1 is None:
|
275 |
+
return len(cls + token_ids_0 + sep) * [0]
|
276 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert/__init__.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_tensorflow_text_available,
|
22 |
+
is_tf_available,
|
23 |
+
is_tokenizers_available,
|
24 |
+
is_torch_available,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
_import_structure = {
|
29 |
+
"configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"],
|
30 |
+
"tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"],
|
31 |
+
}
|
32 |
+
|
33 |
+
try:
|
34 |
+
if not is_tokenizers_available():
|
35 |
+
raise OptionalDependencyNotAvailable()
|
36 |
+
except OptionalDependencyNotAvailable:
|
37 |
+
pass
|
38 |
+
else:
|
39 |
+
_import_structure["tokenization_bert_fast"] = ["BertTokenizerFast"]
|
40 |
+
|
41 |
+
try:
|
42 |
+
if not is_torch_available():
|
43 |
+
raise OptionalDependencyNotAvailable()
|
44 |
+
except OptionalDependencyNotAvailable:
|
45 |
+
pass
|
46 |
+
else:
|
47 |
+
_import_structure["modeling_bert"] = [
|
48 |
+
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
49 |
+
"BertForMaskedLM",
|
50 |
+
"BertForMultipleChoice",
|
51 |
+
"BertForNextSentencePrediction",
|
52 |
+
"BertForPreTraining",
|
53 |
+
"BertForQuestionAnswering",
|
54 |
+
"BertForSequenceClassification",
|
55 |
+
"BertForTokenClassification",
|
56 |
+
"BertLayer",
|
57 |
+
"BertLMHeadModel",
|
58 |
+
"BertModel",
|
59 |
+
"BertPreTrainedModel",
|
60 |
+
"load_tf_weights_in_bert",
|
61 |
+
]
|
62 |
+
|
63 |
+
try:
|
64 |
+
if not is_tf_available():
|
65 |
+
raise OptionalDependencyNotAvailable()
|
66 |
+
except OptionalDependencyNotAvailable:
|
67 |
+
pass
|
68 |
+
else:
|
69 |
+
_import_structure["modeling_tf_bert"] = [
|
70 |
+
"TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
71 |
+
"TFBertEmbeddings",
|
72 |
+
"TFBertForMaskedLM",
|
73 |
+
"TFBertForMultipleChoice",
|
74 |
+
"TFBertForNextSentencePrediction",
|
75 |
+
"TFBertForPreTraining",
|
76 |
+
"TFBertForQuestionAnswering",
|
77 |
+
"TFBertForSequenceClassification",
|
78 |
+
"TFBertForTokenClassification",
|
79 |
+
"TFBertLMHeadModel",
|
80 |
+
"TFBertMainLayer",
|
81 |
+
"TFBertModel",
|
82 |
+
"TFBertPreTrainedModel",
|
83 |
+
]
|
84 |
+
try:
|
85 |
+
if not is_tensorflow_text_available():
|
86 |
+
raise OptionalDependencyNotAvailable()
|
87 |
+
except OptionalDependencyNotAvailable:
|
88 |
+
pass
|
89 |
+
else:
|
90 |
+
_import_structure["tokenization_bert_tf"] = ["TFBertTokenizer"]
|
91 |
+
|
92 |
+
try:
|
93 |
+
if not is_flax_available():
|
94 |
+
raise OptionalDependencyNotAvailable()
|
95 |
+
except OptionalDependencyNotAvailable:
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
_import_structure["modeling_flax_bert"] = [
|
99 |
+
"FlaxBertForCausalLM",
|
100 |
+
"FlaxBertForMaskedLM",
|
101 |
+
"FlaxBertForMultipleChoice",
|
102 |
+
"FlaxBertForNextSentencePrediction",
|
103 |
+
"FlaxBertForPreTraining",
|
104 |
+
"FlaxBertForQuestionAnswering",
|
105 |
+
"FlaxBertForSequenceClassification",
|
106 |
+
"FlaxBertForTokenClassification",
|
107 |
+
"FlaxBertModel",
|
108 |
+
"FlaxBertPreTrainedModel",
|
109 |
+
]
|
110 |
+
|
111 |
+
if TYPE_CHECKING:
|
112 |
+
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
|
113 |
+
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
|
114 |
+
|
115 |
+
try:
|
116 |
+
if not is_tokenizers_available():
|
117 |
+
raise OptionalDependencyNotAvailable()
|
118 |
+
except OptionalDependencyNotAvailable:
|
119 |
+
pass
|
120 |
+
else:
|
121 |
+
from .tokenization_bert_fast import BertTokenizerFast
|
122 |
+
|
123 |
+
try:
|
124 |
+
if not is_torch_available():
|
125 |
+
raise OptionalDependencyNotAvailable()
|
126 |
+
except OptionalDependencyNotAvailable:
|
127 |
+
pass
|
128 |
+
else:
|
129 |
+
from .modeling_bert import (
|
130 |
+
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
131 |
+
BertForMaskedLM,
|
132 |
+
BertForMultipleChoice,
|
133 |
+
BertForNextSentencePrediction,
|
134 |
+
BertForPreTraining,
|
135 |
+
BertForQuestionAnswering,
|
136 |
+
BertForSequenceClassification,
|
137 |
+
BertForTokenClassification,
|
138 |
+
BertLayer,
|
139 |
+
BertLMHeadModel,
|
140 |
+
BertModel,
|
141 |
+
BertPreTrainedModel,
|
142 |
+
load_tf_weights_in_bert,
|
143 |
+
)
|
144 |
+
|
145 |
+
try:
|
146 |
+
if not is_tf_available():
|
147 |
+
raise OptionalDependencyNotAvailable()
|
148 |
+
except OptionalDependencyNotAvailable:
|
149 |
+
pass
|
150 |
+
else:
|
151 |
+
from .modeling_tf_bert import (
|
152 |
+
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
153 |
+
TFBertEmbeddings,
|
154 |
+
TFBertForMaskedLM,
|
155 |
+
TFBertForMultipleChoice,
|
156 |
+
TFBertForNextSentencePrediction,
|
157 |
+
TFBertForPreTraining,
|
158 |
+
TFBertForQuestionAnswering,
|
159 |
+
TFBertForSequenceClassification,
|
160 |
+
TFBertForTokenClassification,
|
161 |
+
TFBertLMHeadModel,
|
162 |
+
TFBertMainLayer,
|
163 |
+
TFBertModel,
|
164 |
+
TFBertPreTrainedModel,
|
165 |
+
)
|
166 |
+
|
167 |
+
try:
|
168 |
+
if not is_tensorflow_text_available():
|
169 |
+
raise OptionalDependencyNotAvailable()
|
170 |
+
except OptionalDependencyNotAvailable:
|
171 |
+
pass
|
172 |
+
else:
|
173 |
+
from .tokenization_bert_tf import TFBertTokenizer
|
174 |
+
|
175 |
+
try:
|
176 |
+
if not is_flax_available():
|
177 |
+
raise OptionalDependencyNotAvailable()
|
178 |
+
except OptionalDependencyNotAvailable:
|
179 |
+
pass
|
180 |
+
else:
|
181 |
+
from .modeling_flax_bert import (
|
182 |
+
FlaxBertForCausalLM,
|
183 |
+
FlaxBertForMaskedLM,
|
184 |
+
FlaxBertForMultipleChoice,
|
185 |
+
FlaxBertForNextSentencePrediction,
|
186 |
+
FlaxBertForPreTraining,
|
187 |
+
FlaxBertForQuestionAnswering,
|
188 |
+
FlaxBertForSequenceClassification,
|
189 |
+
FlaxBertForTokenClassification,
|
190 |
+
FlaxBertModel,
|
191 |
+
FlaxBertPreTrainedModel,
|
192 |
+
)
|
193 |
+
|
194 |
+
else:
|
195 |
+
import sys
|
196 |
+
|
197 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert/configuration_bert.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" BERT model configuration"""
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...onnx import OnnxConfig
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
from ..deprecated._archive_maps import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
29 |
+
|
30 |
+
|
31 |
+
class BertConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to
|
34 |
+
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
|
35 |
+
configuration with the defaults will yield a similar configuration to that of the BERT
|
36 |
+
[google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
44 |
+
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
46 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
47 |
+
Dimensionality of the encoder layers and the pooler layer.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
49 |
+
Number of hidden layers in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
53 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
54 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
55 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
56 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
57 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
59 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
62 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
63 |
+
just in case (e.g., 512 or 1024 or 2048).
|
64 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
65 |
+
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
69 |
+
The epsilon used by the layer normalization layers.
|
70 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
71 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
72 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
73 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
74 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
75 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
76 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
77 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
+
relevant if `config.is_decoder=True`.
|
81 |
+
classifier_dropout (`float`, *optional*):
|
82 |
+
The dropout ratio for the classification head.
|
83 |
+
|
84 |
+
Examples:
|
85 |
+
|
86 |
+
```python
|
87 |
+
>>> from transformers import BertConfig, BertModel
|
88 |
+
|
89 |
+
>>> # Initializing a BERT google-bert/bert-base-uncased style configuration
|
90 |
+
>>> configuration = BertConfig()
|
91 |
+
|
92 |
+
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
|
93 |
+
>>> model = BertModel(configuration)
|
94 |
+
|
95 |
+
>>> # Accessing the model configuration
|
96 |
+
>>> configuration = model.config
|
97 |
+
```"""
|
98 |
+
|
99 |
+
model_type = "bert"
|
100 |
+
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
vocab_size=30522,
|
104 |
+
hidden_size=768,
|
105 |
+
num_hidden_layers=12,
|
106 |
+
num_attention_heads=12,
|
107 |
+
intermediate_size=3072,
|
108 |
+
hidden_act="gelu",
|
109 |
+
hidden_dropout_prob=0.1,
|
110 |
+
attention_probs_dropout_prob=0.1,
|
111 |
+
max_position_embeddings=512,
|
112 |
+
type_vocab_size=2,
|
113 |
+
initializer_range=0.02,
|
114 |
+
layer_norm_eps=1e-12,
|
115 |
+
pad_token_id=0,
|
116 |
+
position_embedding_type="absolute",
|
117 |
+
use_cache=True,
|
118 |
+
classifier_dropout=None,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
122 |
+
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.type_vocab_size = type_vocab_size
|
133 |
+
self.initializer_range = initializer_range
|
134 |
+
self.layer_norm_eps = layer_norm_eps
|
135 |
+
self.position_embedding_type = position_embedding_type
|
136 |
+
self.use_cache = use_cache
|
137 |
+
self.classifier_dropout = classifier_dropout
|
138 |
+
|
139 |
+
|
140 |
+
class BertOnnxConfig(OnnxConfig):
|
141 |
+
@property
|
142 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
143 |
+
if self.task == "multiple-choice":
|
144 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
145 |
+
else:
|
146 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
147 |
+
return OrderedDict(
|
148 |
+
[
|
149 |
+
("input_ids", dynamic_axis),
|
150 |
+
("attention_mask", dynamic_axis),
|
151 |
+
("token_type_ids", dynamic_axis),
|
152 |
+
]
|
153 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert/convert_bert_original_tf2_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
This script can be used to convert a head-less TF2.x Bert model to PyTorch, as published on the official (now
|
17 |
+
deprecated) GitHub: https://github.com/tensorflow/models/tree/v2.3.0/official/nlp/bert
|
18 |
+
|
19 |
+
TF2.x uses different variable names from the original BERT (TF 1.4) implementation. The script re-maps the TF2.x Bert
|
20 |
+
weight names to the original names, so the model can be imported with Huggingface/transformer.
|
21 |
+
|
22 |
+
You may adapt this script to include classification/MLM/NSP/etc. heads.
|
23 |
+
|
24 |
+
Note: This script is only working with an older version of the TensorFlow models repository (<= v2.3.0).
|
25 |
+
Models trained with never versions are not compatible with this script.
|
26 |
+
"""
|
27 |
+
import argparse
|
28 |
+
import os
|
29 |
+
import re
|
30 |
+
|
31 |
+
import tensorflow as tf
|
32 |
+
import torch
|
33 |
+
|
34 |
+
from transformers import BertConfig, BertModel
|
35 |
+
from transformers.utils import logging
|
36 |
+
|
37 |
+
|
38 |
+
logging.set_verbosity_info()
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
def load_tf2_weights_in_bert(model, tf_checkpoint_path, config):
|
43 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
44 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
45 |
+
# Load weights from TF model
|
46 |
+
init_vars = tf.train.list_variables(tf_path)
|
47 |
+
names = []
|
48 |
+
arrays = []
|
49 |
+
layer_depth = []
|
50 |
+
for full_name, shape in init_vars:
|
51 |
+
# logger.info(f"Loading TF weight {name} with shape {shape}")
|
52 |
+
name = full_name.split("/")
|
53 |
+
if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]:
|
54 |
+
logger.info(f"Skipping non-model layer {full_name}")
|
55 |
+
continue
|
56 |
+
if "optimizer" in full_name:
|
57 |
+
logger.info(f"Skipping optimization layer {full_name}")
|
58 |
+
continue
|
59 |
+
if name[0] == "model":
|
60 |
+
# ignore initial 'model'
|
61 |
+
name = name[1:]
|
62 |
+
# figure out how many levels deep the name is
|
63 |
+
depth = 0
|
64 |
+
for _name in name:
|
65 |
+
if _name.startswith("layer_with_weights"):
|
66 |
+
depth += 1
|
67 |
+
else:
|
68 |
+
break
|
69 |
+
layer_depth.append(depth)
|
70 |
+
# read data
|
71 |
+
array = tf.train.load_variable(tf_path, full_name)
|
72 |
+
names.append("/".join(name))
|
73 |
+
arrays.append(array)
|
74 |
+
logger.info(f"Read a total of {len(arrays):,} layers")
|
75 |
+
|
76 |
+
# Sanity check
|
77 |
+
if len(set(layer_depth)) != 1:
|
78 |
+
raise ValueError(f"Found layer names with different depths (layer depth {list(set(layer_depth))})")
|
79 |
+
layer_depth = list(set(layer_depth))[0]
|
80 |
+
if layer_depth != 1:
|
81 |
+
raise ValueError(
|
82 |
+
"The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP"
|
83 |
+
" heads."
|
84 |
+
)
|
85 |
+
|
86 |
+
# convert layers
|
87 |
+
logger.info("Converting weights...")
|
88 |
+
for full_name, array in zip(names, arrays):
|
89 |
+
name = full_name.split("/")
|
90 |
+
pointer = model
|
91 |
+
trace = []
|
92 |
+
for i, m_name in enumerate(name):
|
93 |
+
if m_name == ".ATTRIBUTES":
|
94 |
+
# variable names end with .ATTRIBUTES/VARIABLE_VALUE
|
95 |
+
break
|
96 |
+
if m_name.startswith("layer_with_weights"):
|
97 |
+
layer_num = int(m_name.split("-")[-1])
|
98 |
+
if layer_num <= 2:
|
99 |
+
# embedding layers
|
100 |
+
# layer_num 0: word_embeddings
|
101 |
+
# layer_num 1: position_embeddings
|
102 |
+
# layer_num 2: token_type_embeddings
|
103 |
+
continue
|
104 |
+
elif layer_num == 3:
|
105 |
+
# embedding LayerNorm
|
106 |
+
trace.extend(["embeddings", "LayerNorm"])
|
107 |
+
pointer = getattr(pointer, "embeddings")
|
108 |
+
pointer = getattr(pointer, "LayerNorm")
|
109 |
+
elif layer_num > 3 and layer_num < config.num_hidden_layers + 4:
|
110 |
+
# encoder layers
|
111 |
+
trace.extend(["encoder", "layer", str(layer_num - 4)])
|
112 |
+
pointer = getattr(pointer, "encoder")
|
113 |
+
pointer = getattr(pointer, "layer")
|
114 |
+
pointer = pointer[layer_num - 4]
|
115 |
+
elif layer_num == config.num_hidden_layers + 4:
|
116 |
+
# pooler layer
|
117 |
+
trace.extend(["pooler", "dense"])
|
118 |
+
pointer = getattr(pointer, "pooler")
|
119 |
+
pointer = getattr(pointer, "dense")
|
120 |
+
elif m_name == "embeddings":
|
121 |
+
trace.append("embeddings")
|
122 |
+
pointer = getattr(pointer, "embeddings")
|
123 |
+
if layer_num == 0:
|
124 |
+
trace.append("word_embeddings")
|
125 |
+
pointer = getattr(pointer, "word_embeddings")
|
126 |
+
elif layer_num == 1:
|
127 |
+
trace.append("position_embeddings")
|
128 |
+
pointer = getattr(pointer, "position_embeddings")
|
129 |
+
elif layer_num == 2:
|
130 |
+
trace.append("token_type_embeddings")
|
131 |
+
pointer = getattr(pointer, "token_type_embeddings")
|
132 |
+
else:
|
133 |
+
raise ValueError(f"Unknown embedding layer with name {full_name}")
|
134 |
+
trace.append("weight")
|
135 |
+
pointer = getattr(pointer, "weight")
|
136 |
+
elif m_name == "_attention_layer":
|
137 |
+
# self-attention layer
|
138 |
+
trace.extend(["attention", "self"])
|
139 |
+
pointer = getattr(pointer, "attention")
|
140 |
+
pointer = getattr(pointer, "self")
|
141 |
+
elif m_name == "_attention_layer_norm":
|
142 |
+
# output attention norm
|
143 |
+
trace.extend(["attention", "output", "LayerNorm"])
|
144 |
+
pointer = getattr(pointer, "attention")
|
145 |
+
pointer = getattr(pointer, "output")
|
146 |
+
pointer = getattr(pointer, "LayerNorm")
|
147 |
+
elif m_name == "_attention_output_dense":
|
148 |
+
# output attention dense
|
149 |
+
trace.extend(["attention", "output", "dense"])
|
150 |
+
pointer = getattr(pointer, "attention")
|
151 |
+
pointer = getattr(pointer, "output")
|
152 |
+
pointer = getattr(pointer, "dense")
|
153 |
+
elif m_name == "_output_dense":
|
154 |
+
# output dense
|
155 |
+
trace.extend(["output", "dense"])
|
156 |
+
pointer = getattr(pointer, "output")
|
157 |
+
pointer = getattr(pointer, "dense")
|
158 |
+
elif m_name == "_output_layer_norm":
|
159 |
+
# output dense
|
160 |
+
trace.extend(["output", "LayerNorm"])
|
161 |
+
pointer = getattr(pointer, "output")
|
162 |
+
pointer = getattr(pointer, "LayerNorm")
|
163 |
+
elif m_name == "_key_dense":
|
164 |
+
# attention key
|
165 |
+
trace.append("key")
|
166 |
+
pointer = getattr(pointer, "key")
|
167 |
+
elif m_name == "_query_dense":
|
168 |
+
# attention query
|
169 |
+
trace.append("query")
|
170 |
+
pointer = getattr(pointer, "query")
|
171 |
+
elif m_name == "_value_dense":
|
172 |
+
# attention value
|
173 |
+
trace.append("value")
|
174 |
+
pointer = getattr(pointer, "value")
|
175 |
+
elif m_name == "_intermediate_dense":
|
176 |
+
# attention intermediate dense
|
177 |
+
trace.extend(["intermediate", "dense"])
|
178 |
+
pointer = getattr(pointer, "intermediate")
|
179 |
+
pointer = getattr(pointer, "dense")
|
180 |
+
elif m_name == "_output_layer_norm":
|
181 |
+
# output layer norm
|
182 |
+
trace.append("output")
|
183 |
+
pointer = getattr(pointer, "output")
|
184 |
+
# weights & biases
|
185 |
+
elif m_name in ["bias", "beta"]:
|
186 |
+
trace.append("bias")
|
187 |
+
pointer = getattr(pointer, "bias")
|
188 |
+
elif m_name in ["kernel", "gamma"]:
|
189 |
+
trace.append("weight")
|
190 |
+
pointer = getattr(pointer, "weight")
|
191 |
+
else:
|
192 |
+
logger.warning(f"Ignored {m_name}")
|
193 |
+
# for certain layers reshape is necessary
|
194 |
+
trace = ".".join(trace)
|
195 |
+
if re.match(r"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)", trace) or re.match(
|
196 |
+
r"(\S+)\.attention\.output\.dense\.weight", trace
|
197 |
+
):
|
198 |
+
array = array.reshape(pointer.data.shape)
|
199 |
+
if "kernel" in full_name:
|
200 |
+
array = array.transpose()
|
201 |
+
if pointer.shape == array.shape:
|
202 |
+
pointer.data = torch.from_numpy(array)
|
203 |
+
else:
|
204 |
+
raise ValueError(
|
205 |
+
f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:"
|
206 |
+
f" {array.shape}"
|
207 |
+
)
|
208 |
+
logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}")
|
209 |
+
return model
|
210 |
+
|
211 |
+
|
212 |
+
def convert_tf2_checkpoint_to_pytorch(tf_checkpoint_path, config_path, pytorch_dump_path):
|
213 |
+
# Instantiate model
|
214 |
+
logger.info(f"Loading model based on config from {config_path}...")
|
215 |
+
config = BertConfig.from_json_file(config_path)
|
216 |
+
model = BertModel(config)
|
217 |
+
|
218 |
+
# Load weights from checkpoint
|
219 |
+
logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}...")
|
220 |
+
load_tf2_weights_in_bert(model, tf_checkpoint_path, config)
|
221 |
+
|
222 |
+
# Save pytorch-model
|
223 |
+
logger.info(f"Saving PyTorch model to {pytorch_dump_path}...")
|
224 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
225 |
+
|
226 |
+
|
227 |
+
if __name__ == "__main__":
|
228 |
+
parser = argparse.ArgumentParser()
|
229 |
+
parser.add_argument(
|
230 |
+
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path."
|
231 |
+
)
|
232 |
+
parser.add_argument(
|
233 |
+
"--bert_config_file",
|
234 |
+
type=str,
|
235 |
+
required=True,
|
236 |
+
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
|
237 |
+
)
|
238 |
+
parser.add_argument(
|
239 |
+
"--pytorch_dump_path",
|
240 |
+
type=str,
|
241 |
+
required=True,
|
242 |
+
help="Path to the output PyTorch model (must include filename).",
|
243 |
+
)
|
244 |
+
args = parser.parse_args()
|
245 |
+
convert_tf2_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert BERT checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
|
29 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
|
30 |
+
# Initialise PyTorch model
|
31 |
+
config = BertConfig.from_json_file(bert_config_file)
|
32 |
+
print(f"Building PyTorch model from configuration: {config}")
|
33 |
+
model = BertForPreTraining(config)
|
34 |
+
|
35 |
+
# Load weights from tf checkpoint
|
36 |
+
load_tf_weights_in_bert(model, config, tf_checkpoint_path)
|
37 |
+
|
38 |
+
# Save pytorch-model
|
39 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
40 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
41 |
+
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
parser = argparse.ArgumentParser()
|
45 |
+
# Required parameters
|
46 |
+
parser.add_argument(
|
47 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--bert_config_file",
|
51 |
+
default=None,
|
52 |
+
type=str,
|
53 |
+
required=True,
|
54 |
+
help=(
|
55 |
+
"The config json file corresponding to the pre-trained BERT model. \n"
|
56 |
+
"This specifies the model architecture."
|
57 |
+
),
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
61 |
+
)
|
62 |
+
args = parser.parse_args()
|
63 |
+
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert/modeling_bert.py
ADDED
@@ -0,0 +1,1867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch BERT model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from ...activations import ACT2FN
|
30 |
+
from ...modeling_outputs import (
|
31 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
33 |
+
CausalLMOutputWithCrossAttentions,
|
34 |
+
MaskedLMOutput,
|
35 |
+
MultipleChoiceModelOutput,
|
36 |
+
NextSentencePredictorOutput,
|
37 |
+
QuestionAnsweringModelOutput,
|
38 |
+
SequenceClassifierOutput,
|
39 |
+
TokenClassifierOutput,
|
40 |
+
)
|
41 |
+
from ...modeling_utils import PreTrainedModel
|
42 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
43 |
+
from ...utils import (
|
44 |
+
ModelOutput,
|
45 |
+
add_code_sample_docstrings,
|
46 |
+
add_start_docstrings,
|
47 |
+
add_start_docstrings_to_model_forward,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from .configuration_bert import BertConfig
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased"
|
57 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
58 |
+
|
59 |
+
# TokenClassification docstring
|
60 |
+
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
61 |
+
_TOKEN_CLASS_EXPECTED_OUTPUT = (
|
62 |
+
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
|
63 |
+
)
|
64 |
+
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
|
65 |
+
|
66 |
+
# QuestionAnswering docstring
|
67 |
+
_CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2"
|
68 |
+
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
|
69 |
+
_QA_EXPECTED_LOSS = 7.41
|
70 |
+
_QA_TARGET_START_INDEX = 14
|
71 |
+
_QA_TARGET_END_INDEX = 15
|
72 |
+
|
73 |
+
# SequenceClassification docstring
|
74 |
+
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
|
75 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
|
76 |
+
_SEQ_CLASS_EXPECTED_LOSS = 0.01
|
77 |
+
|
78 |
+
|
79 |
+
from ..deprecated._archive_maps import BERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
80 |
+
|
81 |
+
|
82 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
83 |
+
"""Load tf checkpoints in a pytorch model."""
|
84 |
+
try:
|
85 |
+
import re
|
86 |
+
|
87 |
+
import numpy as np
|
88 |
+
import tensorflow as tf
|
89 |
+
except ImportError:
|
90 |
+
logger.error(
|
91 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
92 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
93 |
+
)
|
94 |
+
raise
|
95 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
96 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
97 |
+
# Load weights from TF model
|
98 |
+
init_vars = tf.train.list_variables(tf_path)
|
99 |
+
names = []
|
100 |
+
arrays = []
|
101 |
+
for name, shape in init_vars:
|
102 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
103 |
+
array = tf.train.load_variable(tf_path, name)
|
104 |
+
names.append(name)
|
105 |
+
arrays.append(array)
|
106 |
+
|
107 |
+
for name, array in zip(names, arrays):
|
108 |
+
name = name.split("/")
|
109 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
110 |
+
# which are not required for using pretrained model
|
111 |
+
if any(
|
112 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
113 |
+
for n in name
|
114 |
+
):
|
115 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
116 |
+
continue
|
117 |
+
pointer = model
|
118 |
+
for m_name in name:
|
119 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
120 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
121 |
+
else:
|
122 |
+
scope_names = [m_name]
|
123 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
124 |
+
pointer = getattr(pointer, "weight")
|
125 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
126 |
+
pointer = getattr(pointer, "bias")
|
127 |
+
elif scope_names[0] == "output_weights":
|
128 |
+
pointer = getattr(pointer, "weight")
|
129 |
+
elif scope_names[0] == "squad":
|
130 |
+
pointer = getattr(pointer, "classifier")
|
131 |
+
else:
|
132 |
+
try:
|
133 |
+
pointer = getattr(pointer, scope_names[0])
|
134 |
+
except AttributeError:
|
135 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
136 |
+
continue
|
137 |
+
if len(scope_names) >= 2:
|
138 |
+
num = int(scope_names[1])
|
139 |
+
pointer = pointer[num]
|
140 |
+
if m_name[-11:] == "_embeddings":
|
141 |
+
pointer = getattr(pointer, "weight")
|
142 |
+
elif m_name == "kernel":
|
143 |
+
array = np.transpose(array)
|
144 |
+
try:
|
145 |
+
if pointer.shape != array.shape:
|
146 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
147 |
+
except ValueError as e:
|
148 |
+
e.args += (pointer.shape, array.shape)
|
149 |
+
raise
|
150 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
151 |
+
pointer.data = torch.from_numpy(array)
|
152 |
+
return model
|
153 |
+
|
154 |
+
|
155 |
+
class BertEmbeddings(nn.Module):
|
156 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
157 |
+
|
158 |
+
def __init__(self, config):
|
159 |
+
super().__init__()
|
160 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
161 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
162 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
163 |
+
|
164 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
165 |
+
# any TensorFlow checkpoint file
|
166 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
167 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
168 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
169 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
170 |
+
self.register_buffer(
|
171 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
172 |
+
)
|
173 |
+
self.register_buffer(
|
174 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
175 |
+
)
|
176 |
+
|
177 |
+
def forward(
|
178 |
+
self,
|
179 |
+
input_ids: Optional[torch.LongTensor] = None,
|
180 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
181 |
+
position_ids: Optional[torch.LongTensor] = None,
|
182 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
183 |
+
past_key_values_length: int = 0,
|
184 |
+
) -> torch.Tensor:
|
185 |
+
if input_ids is not None:
|
186 |
+
input_shape = input_ids.size()
|
187 |
+
else:
|
188 |
+
input_shape = inputs_embeds.size()[:-1]
|
189 |
+
|
190 |
+
seq_length = input_shape[1]
|
191 |
+
|
192 |
+
if position_ids is None:
|
193 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
194 |
+
|
195 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
196 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
197 |
+
# issue #5664
|
198 |
+
if token_type_ids is None:
|
199 |
+
if hasattr(self, "token_type_ids"):
|
200 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
201 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
202 |
+
token_type_ids = buffered_token_type_ids_expanded
|
203 |
+
else:
|
204 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
205 |
+
|
206 |
+
if inputs_embeds is None:
|
207 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
208 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
209 |
+
|
210 |
+
embeddings = inputs_embeds + token_type_embeddings
|
211 |
+
if self.position_embedding_type == "absolute":
|
212 |
+
position_embeddings = self.position_embeddings(position_ids)
|
213 |
+
embeddings += position_embeddings
|
214 |
+
embeddings = self.LayerNorm(embeddings)
|
215 |
+
embeddings = self.dropout(embeddings)
|
216 |
+
return embeddings
|
217 |
+
|
218 |
+
|
219 |
+
class BertSelfAttention(nn.Module):
|
220 |
+
def __init__(self, config, position_embedding_type=None):
|
221 |
+
super().__init__()
|
222 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
223 |
+
raise ValueError(
|
224 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
225 |
+
f"heads ({config.num_attention_heads})"
|
226 |
+
)
|
227 |
+
|
228 |
+
self.num_attention_heads = config.num_attention_heads
|
229 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
230 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
231 |
+
|
232 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
233 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
234 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
235 |
+
|
236 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
237 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
238 |
+
config, "position_embedding_type", "absolute"
|
239 |
+
)
|
240 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
241 |
+
self.max_position_embeddings = config.max_position_embeddings
|
242 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
243 |
+
|
244 |
+
self.is_decoder = config.is_decoder
|
245 |
+
|
246 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
247 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
248 |
+
x = x.view(new_x_shape)
|
249 |
+
return x.permute(0, 2, 1, 3)
|
250 |
+
|
251 |
+
def forward(
|
252 |
+
self,
|
253 |
+
hidden_states: torch.Tensor,
|
254 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
255 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
256 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
257 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
258 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
259 |
+
output_attentions: Optional[bool] = False,
|
260 |
+
) -> Tuple[torch.Tensor]:
|
261 |
+
mixed_query_layer = self.query(hidden_states)
|
262 |
+
|
263 |
+
# If this is instantiated as a cross-attention module, the keys
|
264 |
+
# and values come from an encoder; the attention mask needs to be
|
265 |
+
# such that the encoder's padding tokens are not attended to.
|
266 |
+
is_cross_attention = encoder_hidden_states is not None
|
267 |
+
|
268 |
+
if is_cross_attention and past_key_value is not None:
|
269 |
+
# reuse k,v, cross_attentions
|
270 |
+
key_layer = past_key_value[0]
|
271 |
+
value_layer = past_key_value[1]
|
272 |
+
attention_mask = encoder_attention_mask
|
273 |
+
elif is_cross_attention:
|
274 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
275 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
276 |
+
attention_mask = encoder_attention_mask
|
277 |
+
elif past_key_value is not None:
|
278 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
279 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
280 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
281 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
282 |
+
else:
|
283 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
284 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
285 |
+
|
286 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
287 |
+
|
288 |
+
use_cache = past_key_value is not None
|
289 |
+
if self.is_decoder:
|
290 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
291 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
292 |
+
# key/value_states (first "if" case)
|
293 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
294 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
295 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
296 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
297 |
+
past_key_value = (key_layer, value_layer)
|
298 |
+
|
299 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
300 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
301 |
+
|
302 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
303 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
304 |
+
if use_cache:
|
305 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
306 |
+
-1, 1
|
307 |
+
)
|
308 |
+
else:
|
309 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
310 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
311 |
+
distance = position_ids_l - position_ids_r
|
312 |
+
|
313 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
314 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
315 |
+
|
316 |
+
if self.position_embedding_type == "relative_key":
|
317 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
318 |
+
attention_scores = attention_scores + relative_position_scores
|
319 |
+
elif self.position_embedding_type == "relative_key_query":
|
320 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
321 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
322 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
323 |
+
|
324 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
325 |
+
if attention_mask is not None:
|
326 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
327 |
+
attention_scores = attention_scores + attention_mask
|
328 |
+
|
329 |
+
# Normalize the attention scores to probabilities.
|
330 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
331 |
+
|
332 |
+
# This is actually dropping out entire tokens to attend to, which might
|
333 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
334 |
+
attention_probs = self.dropout(attention_probs)
|
335 |
+
|
336 |
+
# Mask heads if we want to
|
337 |
+
if head_mask is not None:
|
338 |
+
attention_probs = attention_probs * head_mask
|
339 |
+
|
340 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
341 |
+
|
342 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
343 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
344 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
345 |
+
|
346 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
347 |
+
|
348 |
+
if self.is_decoder:
|
349 |
+
outputs = outputs + (past_key_value,)
|
350 |
+
return outputs
|
351 |
+
|
352 |
+
|
353 |
+
class BertSelfOutput(nn.Module):
|
354 |
+
def __init__(self, config):
|
355 |
+
super().__init__()
|
356 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
357 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
358 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
359 |
+
|
360 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
361 |
+
hidden_states = self.dense(hidden_states)
|
362 |
+
hidden_states = self.dropout(hidden_states)
|
363 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
364 |
+
return hidden_states
|
365 |
+
|
366 |
+
|
367 |
+
class BertAttention(nn.Module):
|
368 |
+
def __init__(self, config, position_embedding_type=None):
|
369 |
+
super().__init__()
|
370 |
+
self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type)
|
371 |
+
self.output = BertSelfOutput(config)
|
372 |
+
self.pruned_heads = set()
|
373 |
+
|
374 |
+
def prune_heads(self, heads):
|
375 |
+
if len(heads) == 0:
|
376 |
+
return
|
377 |
+
heads, index = find_pruneable_heads_and_indices(
|
378 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
379 |
+
)
|
380 |
+
|
381 |
+
# Prune linear layers
|
382 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
383 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
384 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
385 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
386 |
+
|
387 |
+
# Update hyper params and store pruned heads
|
388 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
389 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
390 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
391 |
+
|
392 |
+
def forward(
|
393 |
+
self,
|
394 |
+
hidden_states: torch.Tensor,
|
395 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
396 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
397 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
398 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
399 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
400 |
+
output_attentions: Optional[bool] = False,
|
401 |
+
) -> Tuple[torch.Tensor]:
|
402 |
+
self_outputs = self.self(
|
403 |
+
hidden_states,
|
404 |
+
attention_mask,
|
405 |
+
head_mask,
|
406 |
+
encoder_hidden_states,
|
407 |
+
encoder_attention_mask,
|
408 |
+
past_key_value,
|
409 |
+
output_attentions,
|
410 |
+
)
|
411 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
412 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
413 |
+
return outputs
|
414 |
+
|
415 |
+
|
416 |
+
class BertIntermediate(nn.Module):
|
417 |
+
def __init__(self, config):
|
418 |
+
super().__init__()
|
419 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
420 |
+
if isinstance(config.hidden_act, str):
|
421 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
422 |
+
else:
|
423 |
+
self.intermediate_act_fn = config.hidden_act
|
424 |
+
|
425 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
426 |
+
hidden_states = self.dense(hidden_states)
|
427 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
428 |
+
return hidden_states
|
429 |
+
|
430 |
+
|
431 |
+
class BertOutput(nn.Module):
|
432 |
+
def __init__(self, config):
|
433 |
+
super().__init__()
|
434 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
435 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
436 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
437 |
+
|
438 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
439 |
+
hidden_states = self.dense(hidden_states)
|
440 |
+
hidden_states = self.dropout(hidden_states)
|
441 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
442 |
+
return hidden_states
|
443 |
+
|
444 |
+
|
445 |
+
class BertLayer(nn.Module):
|
446 |
+
def __init__(self, config):
|
447 |
+
super().__init__()
|
448 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
449 |
+
self.seq_len_dim = 1
|
450 |
+
self.attention = BertAttention(config)
|
451 |
+
self.is_decoder = config.is_decoder
|
452 |
+
self.add_cross_attention = config.add_cross_attention
|
453 |
+
if self.add_cross_attention:
|
454 |
+
if not self.is_decoder:
|
455 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
456 |
+
self.crossattention = BertAttention(config, position_embedding_type="absolute")
|
457 |
+
self.intermediate = BertIntermediate(config)
|
458 |
+
self.output = BertOutput(config)
|
459 |
+
|
460 |
+
def forward(
|
461 |
+
self,
|
462 |
+
hidden_states: torch.Tensor,
|
463 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
464 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
465 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
466 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
467 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
468 |
+
output_attentions: Optional[bool] = False,
|
469 |
+
) -> Tuple[torch.Tensor]:
|
470 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
471 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
472 |
+
self_attention_outputs = self.attention(
|
473 |
+
hidden_states,
|
474 |
+
attention_mask,
|
475 |
+
head_mask,
|
476 |
+
output_attentions=output_attentions,
|
477 |
+
past_key_value=self_attn_past_key_value,
|
478 |
+
)
|
479 |
+
attention_output = self_attention_outputs[0]
|
480 |
+
|
481 |
+
# if decoder, the last output is tuple of self-attn cache
|
482 |
+
if self.is_decoder:
|
483 |
+
outputs = self_attention_outputs[1:-1]
|
484 |
+
present_key_value = self_attention_outputs[-1]
|
485 |
+
else:
|
486 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
487 |
+
|
488 |
+
cross_attn_present_key_value = None
|
489 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
490 |
+
if not hasattr(self, "crossattention"):
|
491 |
+
raise ValueError(
|
492 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
493 |
+
" by setting `config.add_cross_attention=True`"
|
494 |
+
)
|
495 |
+
|
496 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
497 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
498 |
+
cross_attention_outputs = self.crossattention(
|
499 |
+
attention_output,
|
500 |
+
attention_mask,
|
501 |
+
head_mask,
|
502 |
+
encoder_hidden_states,
|
503 |
+
encoder_attention_mask,
|
504 |
+
cross_attn_past_key_value,
|
505 |
+
output_attentions,
|
506 |
+
)
|
507 |
+
attention_output = cross_attention_outputs[0]
|
508 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
509 |
+
|
510 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
511 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
512 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
513 |
+
|
514 |
+
layer_output = apply_chunking_to_forward(
|
515 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
516 |
+
)
|
517 |
+
outputs = (layer_output,) + outputs
|
518 |
+
|
519 |
+
# if decoder, return the attn key/values as the last output
|
520 |
+
if self.is_decoder:
|
521 |
+
outputs = outputs + (present_key_value,)
|
522 |
+
|
523 |
+
return outputs
|
524 |
+
|
525 |
+
def feed_forward_chunk(self, attention_output):
|
526 |
+
intermediate_output = self.intermediate(attention_output)
|
527 |
+
layer_output = self.output(intermediate_output, attention_output)
|
528 |
+
return layer_output
|
529 |
+
|
530 |
+
|
531 |
+
class BertEncoder(nn.Module):
|
532 |
+
def __init__(self, config):
|
533 |
+
super().__init__()
|
534 |
+
self.config = config
|
535 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
536 |
+
self.gradient_checkpointing = False
|
537 |
+
|
538 |
+
def forward(
|
539 |
+
self,
|
540 |
+
hidden_states: torch.Tensor,
|
541 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
542 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
543 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
544 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
545 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
546 |
+
use_cache: Optional[bool] = None,
|
547 |
+
output_attentions: Optional[bool] = False,
|
548 |
+
output_hidden_states: Optional[bool] = False,
|
549 |
+
return_dict: Optional[bool] = True,
|
550 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
551 |
+
all_hidden_states = () if output_hidden_states else None
|
552 |
+
all_self_attentions = () if output_attentions else None
|
553 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
554 |
+
|
555 |
+
if self.gradient_checkpointing and self.training:
|
556 |
+
if use_cache:
|
557 |
+
logger.warning_once(
|
558 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
559 |
+
)
|
560 |
+
use_cache = False
|
561 |
+
|
562 |
+
next_decoder_cache = () if use_cache else None
|
563 |
+
for i, layer_module in enumerate(self.layer):
|
564 |
+
if output_hidden_states:
|
565 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
566 |
+
|
567 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
568 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
569 |
+
|
570 |
+
if self.gradient_checkpointing and self.training:
|
571 |
+
layer_outputs = self._gradient_checkpointing_func(
|
572 |
+
layer_module.__call__,
|
573 |
+
hidden_states,
|
574 |
+
attention_mask,
|
575 |
+
layer_head_mask,
|
576 |
+
encoder_hidden_states,
|
577 |
+
encoder_attention_mask,
|
578 |
+
past_key_value,
|
579 |
+
output_attentions,
|
580 |
+
)
|
581 |
+
else:
|
582 |
+
layer_outputs = layer_module(
|
583 |
+
hidden_states,
|
584 |
+
attention_mask,
|
585 |
+
layer_head_mask,
|
586 |
+
encoder_hidden_states,
|
587 |
+
encoder_attention_mask,
|
588 |
+
past_key_value,
|
589 |
+
output_attentions,
|
590 |
+
)
|
591 |
+
|
592 |
+
hidden_states = layer_outputs[0]
|
593 |
+
if use_cache:
|
594 |
+
next_decoder_cache += (layer_outputs[-1],)
|
595 |
+
if output_attentions:
|
596 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
597 |
+
if self.config.add_cross_attention:
|
598 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
599 |
+
|
600 |
+
if output_hidden_states:
|
601 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
602 |
+
|
603 |
+
if not return_dict:
|
604 |
+
return tuple(
|
605 |
+
v
|
606 |
+
for v in [
|
607 |
+
hidden_states,
|
608 |
+
next_decoder_cache,
|
609 |
+
all_hidden_states,
|
610 |
+
all_self_attentions,
|
611 |
+
all_cross_attentions,
|
612 |
+
]
|
613 |
+
if v is not None
|
614 |
+
)
|
615 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
616 |
+
last_hidden_state=hidden_states,
|
617 |
+
past_key_values=next_decoder_cache,
|
618 |
+
hidden_states=all_hidden_states,
|
619 |
+
attentions=all_self_attentions,
|
620 |
+
cross_attentions=all_cross_attentions,
|
621 |
+
)
|
622 |
+
|
623 |
+
|
624 |
+
class BertPooler(nn.Module):
|
625 |
+
def __init__(self, config):
|
626 |
+
super().__init__()
|
627 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
628 |
+
self.activation = nn.Tanh()
|
629 |
+
|
630 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
631 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
632 |
+
# to the first token.
|
633 |
+
first_token_tensor = hidden_states[:, 0]
|
634 |
+
pooled_output = self.dense(first_token_tensor)
|
635 |
+
pooled_output = self.activation(pooled_output)
|
636 |
+
return pooled_output
|
637 |
+
|
638 |
+
|
639 |
+
class BertPredictionHeadTransform(nn.Module):
|
640 |
+
def __init__(self, config):
|
641 |
+
super().__init__()
|
642 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
643 |
+
if isinstance(config.hidden_act, str):
|
644 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
645 |
+
else:
|
646 |
+
self.transform_act_fn = config.hidden_act
|
647 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
648 |
+
|
649 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
650 |
+
hidden_states = self.dense(hidden_states)
|
651 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
652 |
+
hidden_states = self.LayerNorm(hidden_states)
|
653 |
+
return hidden_states
|
654 |
+
|
655 |
+
|
656 |
+
class BertLMPredictionHead(nn.Module):
|
657 |
+
def __init__(self, config):
|
658 |
+
super().__init__()
|
659 |
+
self.transform = BertPredictionHeadTransform(config)
|
660 |
+
|
661 |
+
# The output weights are the same as the input embeddings, but there is
|
662 |
+
# an output-only bias for each token.
|
663 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
664 |
+
|
665 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
666 |
+
|
667 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
668 |
+
self.decoder.bias = self.bias
|
669 |
+
|
670 |
+
def forward(self, hidden_states):
|
671 |
+
hidden_states = self.transform(hidden_states)
|
672 |
+
hidden_states = self.decoder(hidden_states)
|
673 |
+
return hidden_states
|
674 |
+
|
675 |
+
|
676 |
+
class BertOnlyMLMHead(nn.Module):
|
677 |
+
def __init__(self, config):
|
678 |
+
super().__init__()
|
679 |
+
self.predictions = BertLMPredictionHead(config)
|
680 |
+
|
681 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
682 |
+
prediction_scores = self.predictions(sequence_output)
|
683 |
+
return prediction_scores
|
684 |
+
|
685 |
+
|
686 |
+
class BertOnlyNSPHead(nn.Module):
|
687 |
+
def __init__(self, config):
|
688 |
+
super().__init__()
|
689 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
690 |
+
|
691 |
+
def forward(self, pooled_output):
|
692 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
693 |
+
return seq_relationship_score
|
694 |
+
|
695 |
+
|
696 |
+
class BertPreTrainingHeads(nn.Module):
|
697 |
+
def __init__(self, config):
|
698 |
+
super().__init__()
|
699 |
+
self.predictions = BertLMPredictionHead(config)
|
700 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
701 |
+
|
702 |
+
def forward(self, sequence_output, pooled_output):
|
703 |
+
prediction_scores = self.predictions(sequence_output)
|
704 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
705 |
+
return prediction_scores, seq_relationship_score
|
706 |
+
|
707 |
+
|
708 |
+
class BertPreTrainedModel(PreTrainedModel):
|
709 |
+
"""
|
710 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
711 |
+
models.
|
712 |
+
"""
|
713 |
+
|
714 |
+
config_class = BertConfig
|
715 |
+
load_tf_weights = load_tf_weights_in_bert
|
716 |
+
base_model_prefix = "bert"
|
717 |
+
supports_gradient_checkpointing = True
|
718 |
+
|
719 |
+
def _init_weights(self, module):
|
720 |
+
"""Initialize the weights"""
|
721 |
+
if isinstance(module, nn.Linear):
|
722 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
723 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
724 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
725 |
+
if module.bias is not None:
|
726 |
+
module.bias.data.zero_()
|
727 |
+
elif isinstance(module, nn.Embedding):
|
728 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
729 |
+
if module.padding_idx is not None:
|
730 |
+
module.weight.data[module.padding_idx].zero_()
|
731 |
+
elif isinstance(module, nn.LayerNorm):
|
732 |
+
module.bias.data.zero_()
|
733 |
+
module.weight.data.fill_(1.0)
|
734 |
+
|
735 |
+
|
736 |
+
@dataclass
|
737 |
+
class BertForPreTrainingOutput(ModelOutput):
|
738 |
+
"""
|
739 |
+
Output type of [`BertForPreTraining`].
|
740 |
+
|
741 |
+
Args:
|
742 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
743 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
744 |
+
(classification) loss.
|
745 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
746 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
747 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
748 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
749 |
+
before SoftMax).
|
750 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
751 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
752 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
753 |
+
|
754 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
755 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
756 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
757 |
+
sequence_length)`.
|
758 |
+
|
759 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
760 |
+
heads.
|
761 |
+
"""
|
762 |
+
|
763 |
+
loss: Optional[torch.FloatTensor] = None
|
764 |
+
prediction_logits: torch.FloatTensor = None
|
765 |
+
seq_relationship_logits: torch.FloatTensor = None
|
766 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
767 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
768 |
+
|
769 |
+
|
770 |
+
BERT_START_DOCSTRING = r"""
|
771 |
+
|
772 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
773 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
774 |
+
etc.)
|
775 |
+
|
776 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
777 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
778 |
+
and behavior.
|
779 |
+
|
780 |
+
Parameters:
|
781 |
+
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
|
782 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
783 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
784 |
+
"""
|
785 |
+
|
786 |
+
BERT_INPUTS_DOCSTRING = r"""
|
787 |
+
Args:
|
788 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
789 |
+
Indices of input sequence tokens in the vocabulary.
|
790 |
+
|
791 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
792 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
793 |
+
|
794 |
+
[What are input IDs?](../glossary#input-ids)
|
795 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
796 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
797 |
+
|
798 |
+
- 1 for tokens that are **not masked**,
|
799 |
+
- 0 for tokens that are **masked**.
|
800 |
+
|
801 |
+
[What are attention masks?](../glossary#attention-mask)
|
802 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
803 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
804 |
+
1]`:
|
805 |
+
|
806 |
+
- 0 corresponds to a *sentence A* token,
|
807 |
+
- 1 corresponds to a *sentence B* token.
|
808 |
+
|
809 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
810 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
811 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
812 |
+
config.max_position_embeddings - 1]`.
|
813 |
+
|
814 |
+
[What are position IDs?](../glossary#position-ids)
|
815 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
816 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
817 |
+
|
818 |
+
- 1 indicates the head is **not masked**,
|
819 |
+
- 0 indicates the head is **masked**.
|
820 |
+
|
821 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
822 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
823 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
824 |
+
model's internal embedding lookup matrix.
|
825 |
+
output_attentions (`bool`, *optional*):
|
826 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
827 |
+
tensors for more detail.
|
828 |
+
output_hidden_states (`bool`, *optional*):
|
829 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
830 |
+
more detail.
|
831 |
+
return_dict (`bool`, *optional*):
|
832 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
833 |
+
"""
|
834 |
+
|
835 |
+
|
836 |
+
@add_start_docstrings(
|
837 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
838 |
+
BERT_START_DOCSTRING,
|
839 |
+
)
|
840 |
+
class BertModel(BertPreTrainedModel):
|
841 |
+
"""
|
842 |
+
|
843 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
844 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
845 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
846 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
847 |
+
|
848 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
849 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
850 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
851 |
+
"""
|
852 |
+
|
853 |
+
def __init__(self, config, add_pooling_layer=True):
|
854 |
+
super().__init__(config)
|
855 |
+
self.config = config
|
856 |
+
|
857 |
+
self.embeddings = BertEmbeddings(config)
|
858 |
+
self.encoder = BertEncoder(config)
|
859 |
+
|
860 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
861 |
+
|
862 |
+
# Initialize weights and apply final processing
|
863 |
+
self.post_init()
|
864 |
+
|
865 |
+
def get_input_embeddings(self):
|
866 |
+
return self.embeddings.word_embeddings
|
867 |
+
|
868 |
+
def set_input_embeddings(self, value):
|
869 |
+
self.embeddings.word_embeddings = value
|
870 |
+
|
871 |
+
def _prune_heads(self, heads_to_prune):
|
872 |
+
"""
|
873 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
874 |
+
class PreTrainedModel
|
875 |
+
"""
|
876 |
+
for layer, heads in heads_to_prune.items():
|
877 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
878 |
+
|
879 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
880 |
+
@add_code_sample_docstrings(
|
881 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
882 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
883 |
+
config_class=_CONFIG_FOR_DOC,
|
884 |
+
)
|
885 |
+
def forward(
|
886 |
+
self,
|
887 |
+
input_ids: Optional[torch.Tensor] = None,
|
888 |
+
attention_mask: Optional[torch.Tensor] = None,
|
889 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
890 |
+
position_ids: Optional[torch.Tensor] = None,
|
891 |
+
head_mask: Optional[torch.Tensor] = None,
|
892 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
893 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
894 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
895 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
896 |
+
use_cache: Optional[bool] = None,
|
897 |
+
output_attentions: Optional[bool] = None,
|
898 |
+
output_hidden_states: Optional[bool] = None,
|
899 |
+
return_dict: Optional[bool] = None,
|
900 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
901 |
+
r"""
|
902 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
903 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
904 |
+
the model is configured as a decoder.
|
905 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
906 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
907 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
908 |
+
|
909 |
+
- 1 for tokens that are **not masked**,
|
910 |
+
- 0 for tokens that are **masked**.
|
911 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
912 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
913 |
+
|
914 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
915 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
916 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
917 |
+
use_cache (`bool`, *optional*):
|
918 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
919 |
+
`past_key_values`).
|
920 |
+
"""
|
921 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
922 |
+
output_hidden_states = (
|
923 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
924 |
+
)
|
925 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
926 |
+
|
927 |
+
if self.config.is_decoder:
|
928 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
929 |
+
else:
|
930 |
+
use_cache = False
|
931 |
+
|
932 |
+
if input_ids is not None and inputs_embeds is not None:
|
933 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
934 |
+
elif input_ids is not None:
|
935 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
936 |
+
input_shape = input_ids.size()
|
937 |
+
elif inputs_embeds is not None:
|
938 |
+
input_shape = inputs_embeds.size()[:-1]
|
939 |
+
else:
|
940 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
941 |
+
|
942 |
+
batch_size, seq_length = input_shape
|
943 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
944 |
+
|
945 |
+
# past_key_values_length
|
946 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
947 |
+
|
948 |
+
if attention_mask is None:
|
949 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
950 |
+
|
951 |
+
if token_type_ids is None:
|
952 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
953 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
954 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
955 |
+
token_type_ids = buffered_token_type_ids_expanded
|
956 |
+
else:
|
957 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
958 |
+
|
959 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
960 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
961 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
962 |
+
|
963 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
964 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
965 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
966 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
967 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
968 |
+
if encoder_attention_mask is None:
|
969 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
970 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
971 |
+
else:
|
972 |
+
encoder_extended_attention_mask = None
|
973 |
+
|
974 |
+
# Prepare head mask if needed
|
975 |
+
# 1.0 in head_mask indicate we keep the head
|
976 |
+
# attention_probs has shape bsz x n_heads x N x N
|
977 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
978 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
979 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
980 |
+
|
981 |
+
embedding_output = self.embeddings(
|
982 |
+
input_ids=input_ids,
|
983 |
+
position_ids=position_ids,
|
984 |
+
token_type_ids=token_type_ids,
|
985 |
+
inputs_embeds=inputs_embeds,
|
986 |
+
past_key_values_length=past_key_values_length,
|
987 |
+
)
|
988 |
+
encoder_outputs = self.encoder(
|
989 |
+
embedding_output,
|
990 |
+
attention_mask=extended_attention_mask,
|
991 |
+
head_mask=head_mask,
|
992 |
+
encoder_hidden_states=encoder_hidden_states,
|
993 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
994 |
+
past_key_values=past_key_values,
|
995 |
+
use_cache=use_cache,
|
996 |
+
output_attentions=output_attentions,
|
997 |
+
output_hidden_states=output_hidden_states,
|
998 |
+
return_dict=return_dict,
|
999 |
+
)
|
1000 |
+
sequence_output = encoder_outputs[0]
|
1001 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1002 |
+
|
1003 |
+
if not return_dict:
|
1004 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1005 |
+
|
1006 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1007 |
+
last_hidden_state=sequence_output,
|
1008 |
+
pooler_output=pooled_output,
|
1009 |
+
past_key_values=encoder_outputs.past_key_values,
|
1010 |
+
hidden_states=encoder_outputs.hidden_states,
|
1011 |
+
attentions=encoder_outputs.attentions,
|
1012 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
|
1016 |
+
@add_start_docstrings(
|
1017 |
+
"""
|
1018 |
+
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
1019 |
+
sentence prediction (classification)` head.
|
1020 |
+
""",
|
1021 |
+
BERT_START_DOCSTRING,
|
1022 |
+
)
|
1023 |
+
class BertForPreTraining(BertPreTrainedModel):
|
1024 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1025 |
+
|
1026 |
+
def __init__(self, config):
|
1027 |
+
super().__init__(config)
|
1028 |
+
|
1029 |
+
self.bert = BertModel(config)
|
1030 |
+
self.cls = BertPreTrainingHeads(config)
|
1031 |
+
|
1032 |
+
# Initialize weights and apply final processing
|
1033 |
+
self.post_init()
|
1034 |
+
|
1035 |
+
def get_output_embeddings(self):
|
1036 |
+
return self.cls.predictions.decoder
|
1037 |
+
|
1038 |
+
def set_output_embeddings(self, new_embeddings):
|
1039 |
+
self.cls.predictions.decoder = new_embeddings
|
1040 |
+
|
1041 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1042 |
+
@replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1043 |
+
def forward(
|
1044 |
+
self,
|
1045 |
+
input_ids: Optional[torch.Tensor] = None,
|
1046 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1047 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1048 |
+
position_ids: Optional[torch.Tensor] = None,
|
1049 |
+
head_mask: Optional[torch.Tensor] = None,
|
1050 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1051 |
+
labels: Optional[torch.Tensor] = None,
|
1052 |
+
next_sentence_label: Optional[torch.Tensor] = None,
|
1053 |
+
output_attentions: Optional[bool] = None,
|
1054 |
+
output_hidden_states: Optional[bool] = None,
|
1055 |
+
return_dict: Optional[bool] = None,
|
1056 |
+
) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]:
|
1057 |
+
r"""
|
1058 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1059 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1060 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
|
1061 |
+
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1062 |
+
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1063 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
|
1064 |
+
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1065 |
+
|
1066 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1067 |
+
- 1 indicates sequence B is a random sequence.
|
1068 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1069 |
+
Used to hide legacy arguments that have been deprecated.
|
1070 |
+
|
1071 |
+
Returns:
|
1072 |
+
|
1073 |
+
Example:
|
1074 |
+
|
1075 |
+
```python
|
1076 |
+
>>> from transformers import AutoTokenizer, BertForPreTraining
|
1077 |
+
>>> import torch
|
1078 |
+
|
1079 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1080 |
+
>>> model = BertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
|
1081 |
+
|
1082 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1083 |
+
>>> outputs = model(**inputs)
|
1084 |
+
|
1085 |
+
>>> prediction_logits = outputs.prediction_logits
|
1086 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1087 |
+
```
|
1088 |
+
"""
|
1089 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1090 |
+
|
1091 |
+
outputs = self.bert(
|
1092 |
+
input_ids,
|
1093 |
+
attention_mask=attention_mask,
|
1094 |
+
token_type_ids=token_type_ids,
|
1095 |
+
position_ids=position_ids,
|
1096 |
+
head_mask=head_mask,
|
1097 |
+
inputs_embeds=inputs_embeds,
|
1098 |
+
output_attentions=output_attentions,
|
1099 |
+
output_hidden_states=output_hidden_states,
|
1100 |
+
return_dict=return_dict,
|
1101 |
+
)
|
1102 |
+
|
1103 |
+
sequence_output, pooled_output = outputs[:2]
|
1104 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
1105 |
+
|
1106 |
+
total_loss = None
|
1107 |
+
if labels is not None and next_sentence_label is not None:
|
1108 |
+
loss_fct = CrossEntropyLoss()
|
1109 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1110 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1111 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1112 |
+
|
1113 |
+
if not return_dict:
|
1114 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1115 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1116 |
+
|
1117 |
+
return BertForPreTrainingOutput(
|
1118 |
+
loss=total_loss,
|
1119 |
+
prediction_logits=prediction_scores,
|
1120 |
+
seq_relationship_logits=seq_relationship_score,
|
1121 |
+
hidden_states=outputs.hidden_states,
|
1122 |
+
attentions=outputs.attentions,
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
|
1126 |
+
@add_start_docstrings(
|
1127 |
+
"""Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING
|
1128 |
+
)
|
1129 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
1130 |
+
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1131 |
+
|
1132 |
+
def __init__(self, config):
|
1133 |
+
super().__init__(config)
|
1134 |
+
|
1135 |
+
if not config.is_decoder:
|
1136 |
+
logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
1137 |
+
|
1138 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1139 |
+
self.cls = BertOnlyMLMHead(config)
|
1140 |
+
|
1141 |
+
# Initialize weights and apply final processing
|
1142 |
+
self.post_init()
|
1143 |
+
|
1144 |
+
def get_output_embeddings(self):
|
1145 |
+
return self.cls.predictions.decoder
|
1146 |
+
|
1147 |
+
def set_output_embeddings(self, new_embeddings):
|
1148 |
+
self.cls.predictions.decoder = new_embeddings
|
1149 |
+
|
1150 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1151 |
+
@add_code_sample_docstrings(
|
1152 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1153 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
1154 |
+
config_class=_CONFIG_FOR_DOC,
|
1155 |
+
)
|
1156 |
+
def forward(
|
1157 |
+
self,
|
1158 |
+
input_ids: Optional[torch.Tensor] = None,
|
1159 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1160 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1161 |
+
position_ids: Optional[torch.Tensor] = None,
|
1162 |
+
head_mask: Optional[torch.Tensor] = None,
|
1163 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1164 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1165 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1166 |
+
labels: Optional[torch.Tensor] = None,
|
1167 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
1168 |
+
use_cache: Optional[bool] = None,
|
1169 |
+
output_attentions: Optional[bool] = None,
|
1170 |
+
output_hidden_states: Optional[bool] = None,
|
1171 |
+
return_dict: Optional[bool] = None,
|
1172 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
1173 |
+
r"""
|
1174 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1175 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1176 |
+
the model is configured as a decoder.
|
1177 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1178 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1179 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1180 |
+
|
1181 |
+
- 1 for tokens that are **not masked**,
|
1182 |
+
- 0 for tokens that are **masked**.
|
1183 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1184 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1185 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1186 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
1187 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1188 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1189 |
+
|
1190 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1191 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1192 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1193 |
+
use_cache (`bool`, *optional*):
|
1194 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1195 |
+
`past_key_values`).
|
1196 |
+
"""
|
1197 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1198 |
+
if labels is not None:
|
1199 |
+
use_cache = False
|
1200 |
+
|
1201 |
+
outputs = self.bert(
|
1202 |
+
input_ids,
|
1203 |
+
attention_mask=attention_mask,
|
1204 |
+
token_type_ids=token_type_ids,
|
1205 |
+
position_ids=position_ids,
|
1206 |
+
head_mask=head_mask,
|
1207 |
+
inputs_embeds=inputs_embeds,
|
1208 |
+
encoder_hidden_states=encoder_hidden_states,
|
1209 |
+
encoder_attention_mask=encoder_attention_mask,
|
1210 |
+
past_key_values=past_key_values,
|
1211 |
+
use_cache=use_cache,
|
1212 |
+
output_attentions=output_attentions,
|
1213 |
+
output_hidden_states=output_hidden_states,
|
1214 |
+
return_dict=return_dict,
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
sequence_output = outputs[0]
|
1218 |
+
prediction_scores = self.cls(sequence_output)
|
1219 |
+
|
1220 |
+
lm_loss = None
|
1221 |
+
if labels is not None:
|
1222 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1223 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1224 |
+
labels = labels[:, 1:].contiguous()
|
1225 |
+
loss_fct = CrossEntropyLoss()
|
1226 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1227 |
+
|
1228 |
+
if not return_dict:
|
1229 |
+
output = (prediction_scores,) + outputs[2:]
|
1230 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1231 |
+
|
1232 |
+
return CausalLMOutputWithCrossAttentions(
|
1233 |
+
loss=lm_loss,
|
1234 |
+
logits=prediction_scores,
|
1235 |
+
past_key_values=outputs.past_key_values,
|
1236 |
+
hidden_states=outputs.hidden_states,
|
1237 |
+
attentions=outputs.attentions,
|
1238 |
+
cross_attentions=outputs.cross_attentions,
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
def prepare_inputs_for_generation(
|
1242 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs
|
1243 |
+
):
|
1244 |
+
input_shape = input_ids.shape
|
1245 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1246 |
+
if attention_mask is None:
|
1247 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1248 |
+
|
1249 |
+
# cut decoder_input_ids if past_key_values is used
|
1250 |
+
if past_key_values is not None:
|
1251 |
+
past_length = past_key_values[0][0].shape[2]
|
1252 |
+
|
1253 |
+
# Some generation methods already pass only the last input ID
|
1254 |
+
if input_ids.shape[1] > past_length:
|
1255 |
+
remove_prefix_length = past_length
|
1256 |
+
else:
|
1257 |
+
# Default to old behavior: keep only final ID
|
1258 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1259 |
+
|
1260 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1261 |
+
|
1262 |
+
return {
|
1263 |
+
"input_ids": input_ids,
|
1264 |
+
"attention_mask": attention_mask,
|
1265 |
+
"past_key_values": past_key_values,
|
1266 |
+
"use_cache": use_cache,
|
1267 |
+
}
|
1268 |
+
|
1269 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1270 |
+
reordered_past = ()
|
1271 |
+
for layer_past in past_key_values:
|
1272 |
+
reordered_past += (
|
1273 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1274 |
+
)
|
1275 |
+
return reordered_past
|
1276 |
+
|
1277 |
+
|
1278 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
|
1279 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1280 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1281 |
+
|
1282 |
+
def __init__(self, config):
|
1283 |
+
super().__init__(config)
|
1284 |
+
|
1285 |
+
if config.is_decoder:
|
1286 |
+
logger.warning(
|
1287 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
1288 |
+
"bi-directional self-attention."
|
1289 |
+
)
|
1290 |
+
|
1291 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1292 |
+
self.cls = BertOnlyMLMHead(config)
|
1293 |
+
|
1294 |
+
# Initialize weights and apply final processing
|
1295 |
+
self.post_init()
|
1296 |
+
|
1297 |
+
def get_output_embeddings(self):
|
1298 |
+
return self.cls.predictions.decoder
|
1299 |
+
|
1300 |
+
def set_output_embeddings(self, new_embeddings):
|
1301 |
+
self.cls.predictions.decoder = new_embeddings
|
1302 |
+
|
1303 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1304 |
+
@add_code_sample_docstrings(
|
1305 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1306 |
+
output_type=MaskedLMOutput,
|
1307 |
+
config_class=_CONFIG_FOR_DOC,
|
1308 |
+
expected_output="'paris'",
|
1309 |
+
expected_loss=0.88,
|
1310 |
+
)
|
1311 |
+
def forward(
|
1312 |
+
self,
|
1313 |
+
input_ids: Optional[torch.Tensor] = None,
|
1314 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1315 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1316 |
+
position_ids: Optional[torch.Tensor] = None,
|
1317 |
+
head_mask: Optional[torch.Tensor] = None,
|
1318 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1319 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1320 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1321 |
+
labels: Optional[torch.Tensor] = None,
|
1322 |
+
output_attentions: Optional[bool] = None,
|
1323 |
+
output_hidden_states: Optional[bool] = None,
|
1324 |
+
return_dict: Optional[bool] = None,
|
1325 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1326 |
+
r"""
|
1327 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1328 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1329 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1330 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1331 |
+
"""
|
1332 |
+
|
1333 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1334 |
+
|
1335 |
+
outputs = self.bert(
|
1336 |
+
input_ids,
|
1337 |
+
attention_mask=attention_mask,
|
1338 |
+
token_type_ids=token_type_ids,
|
1339 |
+
position_ids=position_ids,
|
1340 |
+
head_mask=head_mask,
|
1341 |
+
inputs_embeds=inputs_embeds,
|
1342 |
+
encoder_hidden_states=encoder_hidden_states,
|
1343 |
+
encoder_attention_mask=encoder_attention_mask,
|
1344 |
+
output_attentions=output_attentions,
|
1345 |
+
output_hidden_states=output_hidden_states,
|
1346 |
+
return_dict=return_dict,
|
1347 |
+
)
|
1348 |
+
|
1349 |
+
sequence_output = outputs[0]
|
1350 |
+
prediction_scores = self.cls(sequence_output)
|
1351 |
+
|
1352 |
+
masked_lm_loss = None
|
1353 |
+
if labels is not None:
|
1354 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1355 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1356 |
+
|
1357 |
+
if not return_dict:
|
1358 |
+
output = (prediction_scores,) + outputs[2:]
|
1359 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1360 |
+
|
1361 |
+
return MaskedLMOutput(
|
1362 |
+
loss=masked_lm_loss,
|
1363 |
+
logits=prediction_scores,
|
1364 |
+
hidden_states=outputs.hidden_states,
|
1365 |
+
attentions=outputs.attentions,
|
1366 |
+
)
|
1367 |
+
|
1368 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1369 |
+
input_shape = input_ids.shape
|
1370 |
+
effective_batch_size = input_shape[0]
|
1371 |
+
|
1372 |
+
# add a dummy token
|
1373 |
+
if self.config.pad_token_id is None:
|
1374 |
+
raise ValueError("The PAD token should be defined for generation")
|
1375 |
+
|
1376 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1377 |
+
dummy_token = torch.full(
|
1378 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1379 |
+
)
|
1380 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1381 |
+
|
1382 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1383 |
+
|
1384 |
+
|
1385 |
+
@add_start_docstrings(
|
1386 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
|
1387 |
+
BERT_START_DOCSTRING,
|
1388 |
+
)
|
1389 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
1390 |
+
def __init__(self, config):
|
1391 |
+
super().__init__(config)
|
1392 |
+
|
1393 |
+
self.bert = BertModel(config)
|
1394 |
+
self.cls = BertOnlyNSPHead(config)
|
1395 |
+
|
1396 |
+
# Initialize weights and apply final processing
|
1397 |
+
self.post_init()
|
1398 |
+
|
1399 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1400 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1401 |
+
def forward(
|
1402 |
+
self,
|
1403 |
+
input_ids: Optional[torch.Tensor] = None,
|
1404 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1405 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1406 |
+
position_ids: Optional[torch.Tensor] = None,
|
1407 |
+
head_mask: Optional[torch.Tensor] = None,
|
1408 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1409 |
+
labels: Optional[torch.Tensor] = None,
|
1410 |
+
output_attentions: Optional[bool] = None,
|
1411 |
+
output_hidden_states: Optional[bool] = None,
|
1412 |
+
return_dict: Optional[bool] = None,
|
1413 |
+
**kwargs,
|
1414 |
+
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
|
1415 |
+
r"""
|
1416 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1417 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1418 |
+
(see `input_ids` docstring). Indices should be in `[0, 1]`:
|
1419 |
+
|
1420 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1421 |
+
- 1 indicates sequence B is a random sequence.
|
1422 |
+
|
1423 |
+
Returns:
|
1424 |
+
|
1425 |
+
Example:
|
1426 |
+
|
1427 |
+
```python
|
1428 |
+
>>> from transformers import AutoTokenizer, BertForNextSentencePrediction
|
1429 |
+
>>> import torch
|
1430 |
+
|
1431 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1432 |
+
>>> model = BertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
|
1433 |
+
|
1434 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1435 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1436 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
1437 |
+
|
1438 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
1439 |
+
>>> logits = outputs.logits
|
1440 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1441 |
+
```
|
1442 |
+
"""
|
1443 |
+
|
1444 |
+
if "next_sentence_label" in kwargs:
|
1445 |
+
warnings.warn(
|
1446 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
|
1447 |
+
" `labels` instead.",
|
1448 |
+
FutureWarning,
|
1449 |
+
)
|
1450 |
+
labels = kwargs.pop("next_sentence_label")
|
1451 |
+
|
1452 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1453 |
+
|
1454 |
+
outputs = self.bert(
|
1455 |
+
input_ids,
|
1456 |
+
attention_mask=attention_mask,
|
1457 |
+
token_type_ids=token_type_ids,
|
1458 |
+
position_ids=position_ids,
|
1459 |
+
head_mask=head_mask,
|
1460 |
+
inputs_embeds=inputs_embeds,
|
1461 |
+
output_attentions=output_attentions,
|
1462 |
+
output_hidden_states=output_hidden_states,
|
1463 |
+
return_dict=return_dict,
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
pooled_output = outputs[1]
|
1467 |
+
|
1468 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1469 |
+
|
1470 |
+
next_sentence_loss = None
|
1471 |
+
if labels is not None:
|
1472 |
+
loss_fct = CrossEntropyLoss()
|
1473 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1474 |
+
|
1475 |
+
if not return_dict:
|
1476 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1477 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1478 |
+
|
1479 |
+
return NextSentencePredictorOutput(
|
1480 |
+
loss=next_sentence_loss,
|
1481 |
+
logits=seq_relationship_scores,
|
1482 |
+
hidden_states=outputs.hidden_states,
|
1483 |
+
attentions=outputs.attentions,
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
|
1487 |
+
@add_start_docstrings(
|
1488 |
+
"""
|
1489 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1490 |
+
output) e.g. for GLUE tasks.
|
1491 |
+
""",
|
1492 |
+
BERT_START_DOCSTRING,
|
1493 |
+
)
|
1494 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
1495 |
+
def __init__(self, config):
|
1496 |
+
super().__init__(config)
|
1497 |
+
self.num_labels = config.num_labels
|
1498 |
+
self.config = config
|
1499 |
+
|
1500 |
+
self.bert = BertModel(config)
|
1501 |
+
classifier_dropout = (
|
1502 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1503 |
+
)
|
1504 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1505 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1506 |
+
|
1507 |
+
# Initialize weights and apply final processing
|
1508 |
+
self.post_init()
|
1509 |
+
|
1510 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1511 |
+
@add_code_sample_docstrings(
|
1512 |
+
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
|
1513 |
+
output_type=SequenceClassifierOutput,
|
1514 |
+
config_class=_CONFIG_FOR_DOC,
|
1515 |
+
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
1516 |
+
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
1517 |
+
)
|
1518 |
+
def forward(
|
1519 |
+
self,
|
1520 |
+
input_ids: Optional[torch.Tensor] = None,
|
1521 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1522 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1523 |
+
position_ids: Optional[torch.Tensor] = None,
|
1524 |
+
head_mask: Optional[torch.Tensor] = None,
|
1525 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1526 |
+
labels: Optional[torch.Tensor] = None,
|
1527 |
+
output_attentions: Optional[bool] = None,
|
1528 |
+
output_hidden_states: Optional[bool] = None,
|
1529 |
+
return_dict: Optional[bool] = None,
|
1530 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1531 |
+
r"""
|
1532 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1533 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1534 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1535 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1536 |
+
"""
|
1537 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1538 |
+
|
1539 |
+
outputs = self.bert(
|
1540 |
+
input_ids,
|
1541 |
+
attention_mask=attention_mask,
|
1542 |
+
token_type_ids=token_type_ids,
|
1543 |
+
position_ids=position_ids,
|
1544 |
+
head_mask=head_mask,
|
1545 |
+
inputs_embeds=inputs_embeds,
|
1546 |
+
output_attentions=output_attentions,
|
1547 |
+
output_hidden_states=output_hidden_states,
|
1548 |
+
return_dict=return_dict,
|
1549 |
+
)
|
1550 |
+
|
1551 |
+
pooled_output = outputs[1]
|
1552 |
+
|
1553 |
+
pooled_output = self.dropout(pooled_output)
|
1554 |
+
logits = self.classifier(pooled_output)
|
1555 |
+
|
1556 |
+
loss = None
|
1557 |
+
if labels is not None:
|
1558 |
+
if self.config.problem_type is None:
|
1559 |
+
if self.num_labels == 1:
|
1560 |
+
self.config.problem_type = "regression"
|
1561 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1562 |
+
self.config.problem_type = "single_label_classification"
|
1563 |
+
else:
|
1564 |
+
self.config.problem_type = "multi_label_classification"
|
1565 |
+
|
1566 |
+
if self.config.problem_type == "regression":
|
1567 |
+
loss_fct = MSELoss()
|
1568 |
+
if self.num_labels == 1:
|
1569 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1570 |
+
else:
|
1571 |
+
loss = loss_fct(logits, labels)
|
1572 |
+
elif self.config.problem_type == "single_label_classification":
|
1573 |
+
loss_fct = CrossEntropyLoss()
|
1574 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1575 |
+
elif self.config.problem_type == "multi_label_classification":
|
1576 |
+
loss_fct = BCEWithLogitsLoss()
|
1577 |
+
loss = loss_fct(logits, labels)
|
1578 |
+
if not return_dict:
|
1579 |
+
output = (logits,) + outputs[2:]
|
1580 |
+
return ((loss,) + output) if loss is not None else output
|
1581 |
+
|
1582 |
+
return SequenceClassifierOutput(
|
1583 |
+
loss=loss,
|
1584 |
+
logits=logits,
|
1585 |
+
hidden_states=outputs.hidden_states,
|
1586 |
+
attentions=outputs.attentions,
|
1587 |
+
)
|
1588 |
+
|
1589 |
+
|
1590 |
+
@add_start_docstrings(
|
1591 |
+
"""
|
1592 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1593 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1594 |
+
""",
|
1595 |
+
BERT_START_DOCSTRING,
|
1596 |
+
)
|
1597 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
1598 |
+
def __init__(self, config):
|
1599 |
+
super().__init__(config)
|
1600 |
+
|
1601 |
+
self.bert = BertModel(config)
|
1602 |
+
classifier_dropout = (
|
1603 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1604 |
+
)
|
1605 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1606 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1607 |
+
|
1608 |
+
# Initialize weights and apply final processing
|
1609 |
+
self.post_init()
|
1610 |
+
|
1611 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1612 |
+
@add_code_sample_docstrings(
|
1613 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1614 |
+
output_type=MultipleChoiceModelOutput,
|
1615 |
+
config_class=_CONFIG_FOR_DOC,
|
1616 |
+
)
|
1617 |
+
def forward(
|
1618 |
+
self,
|
1619 |
+
input_ids: Optional[torch.Tensor] = None,
|
1620 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1621 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1622 |
+
position_ids: Optional[torch.Tensor] = None,
|
1623 |
+
head_mask: Optional[torch.Tensor] = None,
|
1624 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1625 |
+
labels: Optional[torch.Tensor] = None,
|
1626 |
+
output_attentions: Optional[bool] = None,
|
1627 |
+
output_hidden_states: Optional[bool] = None,
|
1628 |
+
return_dict: Optional[bool] = None,
|
1629 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1630 |
+
r"""
|
1631 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1632 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1633 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1634 |
+
`input_ids` above)
|
1635 |
+
"""
|
1636 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1637 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1638 |
+
|
1639 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1640 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1641 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1642 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1643 |
+
inputs_embeds = (
|
1644 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1645 |
+
if inputs_embeds is not None
|
1646 |
+
else None
|
1647 |
+
)
|
1648 |
+
|
1649 |
+
outputs = self.bert(
|
1650 |
+
input_ids,
|
1651 |
+
attention_mask=attention_mask,
|
1652 |
+
token_type_ids=token_type_ids,
|
1653 |
+
position_ids=position_ids,
|
1654 |
+
head_mask=head_mask,
|
1655 |
+
inputs_embeds=inputs_embeds,
|
1656 |
+
output_attentions=output_attentions,
|
1657 |
+
output_hidden_states=output_hidden_states,
|
1658 |
+
return_dict=return_dict,
|
1659 |
+
)
|
1660 |
+
|
1661 |
+
pooled_output = outputs[1]
|
1662 |
+
|
1663 |
+
pooled_output = self.dropout(pooled_output)
|
1664 |
+
logits = self.classifier(pooled_output)
|
1665 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1666 |
+
|
1667 |
+
loss = None
|
1668 |
+
if labels is not None:
|
1669 |
+
loss_fct = CrossEntropyLoss()
|
1670 |
+
loss = loss_fct(reshaped_logits, labels)
|
1671 |
+
|
1672 |
+
if not return_dict:
|
1673 |
+
output = (reshaped_logits,) + outputs[2:]
|
1674 |
+
return ((loss,) + output) if loss is not None else output
|
1675 |
+
|
1676 |
+
return MultipleChoiceModelOutput(
|
1677 |
+
loss=loss,
|
1678 |
+
logits=reshaped_logits,
|
1679 |
+
hidden_states=outputs.hidden_states,
|
1680 |
+
attentions=outputs.attentions,
|
1681 |
+
)
|
1682 |
+
|
1683 |
+
|
1684 |
+
@add_start_docstrings(
|
1685 |
+
"""
|
1686 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1687 |
+
Named-Entity-Recognition (NER) tasks.
|
1688 |
+
""",
|
1689 |
+
BERT_START_DOCSTRING,
|
1690 |
+
)
|
1691 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
1692 |
+
def __init__(self, config):
|
1693 |
+
super().__init__(config)
|
1694 |
+
self.num_labels = config.num_labels
|
1695 |
+
|
1696 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1697 |
+
classifier_dropout = (
|
1698 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1699 |
+
)
|
1700 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1701 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1702 |
+
|
1703 |
+
# Initialize weights and apply final processing
|
1704 |
+
self.post_init()
|
1705 |
+
|
1706 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1707 |
+
@add_code_sample_docstrings(
|
1708 |
+
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
|
1709 |
+
output_type=TokenClassifierOutput,
|
1710 |
+
config_class=_CONFIG_FOR_DOC,
|
1711 |
+
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
|
1712 |
+
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
|
1713 |
+
)
|
1714 |
+
def forward(
|
1715 |
+
self,
|
1716 |
+
input_ids: Optional[torch.Tensor] = None,
|
1717 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1718 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1719 |
+
position_ids: Optional[torch.Tensor] = None,
|
1720 |
+
head_mask: Optional[torch.Tensor] = None,
|
1721 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1722 |
+
labels: Optional[torch.Tensor] = None,
|
1723 |
+
output_attentions: Optional[bool] = None,
|
1724 |
+
output_hidden_states: Optional[bool] = None,
|
1725 |
+
return_dict: Optional[bool] = None,
|
1726 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1727 |
+
r"""
|
1728 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1729 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1730 |
+
"""
|
1731 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1732 |
+
|
1733 |
+
outputs = self.bert(
|
1734 |
+
input_ids,
|
1735 |
+
attention_mask=attention_mask,
|
1736 |
+
token_type_ids=token_type_ids,
|
1737 |
+
position_ids=position_ids,
|
1738 |
+
head_mask=head_mask,
|
1739 |
+
inputs_embeds=inputs_embeds,
|
1740 |
+
output_attentions=output_attentions,
|
1741 |
+
output_hidden_states=output_hidden_states,
|
1742 |
+
return_dict=return_dict,
|
1743 |
+
)
|
1744 |
+
|
1745 |
+
sequence_output = outputs[0]
|
1746 |
+
|
1747 |
+
sequence_output = self.dropout(sequence_output)
|
1748 |
+
logits = self.classifier(sequence_output)
|
1749 |
+
|
1750 |
+
loss = None
|
1751 |
+
if labels is not None:
|
1752 |
+
loss_fct = CrossEntropyLoss()
|
1753 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1754 |
+
|
1755 |
+
if not return_dict:
|
1756 |
+
output = (logits,) + outputs[2:]
|
1757 |
+
return ((loss,) + output) if loss is not None else output
|
1758 |
+
|
1759 |
+
return TokenClassifierOutput(
|
1760 |
+
loss=loss,
|
1761 |
+
logits=logits,
|
1762 |
+
hidden_states=outputs.hidden_states,
|
1763 |
+
attentions=outputs.attentions,
|
1764 |
+
)
|
1765 |
+
|
1766 |
+
|
1767 |
+
@add_start_docstrings(
|
1768 |
+
"""
|
1769 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1770 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1771 |
+
""",
|
1772 |
+
BERT_START_DOCSTRING,
|
1773 |
+
)
|
1774 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
1775 |
+
def __init__(self, config):
|
1776 |
+
super().__init__(config)
|
1777 |
+
self.num_labels = config.num_labels
|
1778 |
+
|
1779 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1780 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1781 |
+
|
1782 |
+
# Initialize weights and apply final processing
|
1783 |
+
self.post_init()
|
1784 |
+
|
1785 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1786 |
+
@add_code_sample_docstrings(
|
1787 |
+
checkpoint=_CHECKPOINT_FOR_QA,
|
1788 |
+
output_type=QuestionAnsweringModelOutput,
|
1789 |
+
config_class=_CONFIG_FOR_DOC,
|
1790 |
+
qa_target_start_index=_QA_TARGET_START_INDEX,
|
1791 |
+
qa_target_end_index=_QA_TARGET_END_INDEX,
|
1792 |
+
expected_output=_QA_EXPECTED_OUTPUT,
|
1793 |
+
expected_loss=_QA_EXPECTED_LOSS,
|
1794 |
+
)
|
1795 |
+
def forward(
|
1796 |
+
self,
|
1797 |
+
input_ids: Optional[torch.Tensor] = None,
|
1798 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1799 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1800 |
+
position_ids: Optional[torch.Tensor] = None,
|
1801 |
+
head_mask: Optional[torch.Tensor] = None,
|
1802 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1803 |
+
start_positions: Optional[torch.Tensor] = None,
|
1804 |
+
end_positions: Optional[torch.Tensor] = None,
|
1805 |
+
output_attentions: Optional[bool] = None,
|
1806 |
+
output_hidden_states: Optional[bool] = None,
|
1807 |
+
return_dict: Optional[bool] = None,
|
1808 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1809 |
+
r"""
|
1810 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1811 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1812 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1813 |
+
are not taken into account for computing the loss.
|
1814 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1815 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1816 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1817 |
+
are not taken into account for computing the loss.
|
1818 |
+
"""
|
1819 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1820 |
+
|
1821 |
+
outputs = self.bert(
|
1822 |
+
input_ids,
|
1823 |
+
attention_mask=attention_mask,
|
1824 |
+
token_type_ids=token_type_ids,
|
1825 |
+
position_ids=position_ids,
|
1826 |
+
head_mask=head_mask,
|
1827 |
+
inputs_embeds=inputs_embeds,
|
1828 |
+
output_attentions=output_attentions,
|
1829 |
+
output_hidden_states=output_hidden_states,
|
1830 |
+
return_dict=return_dict,
|
1831 |
+
)
|
1832 |
+
|
1833 |
+
sequence_output = outputs[0]
|
1834 |
+
|
1835 |
+
logits = self.qa_outputs(sequence_output)
|
1836 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1837 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1838 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1839 |
+
|
1840 |
+
total_loss = None
|
1841 |
+
if start_positions is not None and end_positions is not None:
|
1842 |
+
# If we are on multi-GPU, split add a dimension
|
1843 |
+
if len(start_positions.size()) > 1:
|
1844 |
+
start_positions = start_positions.squeeze(-1)
|
1845 |
+
if len(end_positions.size()) > 1:
|
1846 |
+
end_positions = end_positions.squeeze(-1)
|
1847 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1848 |
+
ignored_index = start_logits.size(1)
|
1849 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1850 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1851 |
+
|
1852 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1853 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1854 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1855 |
+
total_loss = (start_loss + end_loss) / 2
|
1856 |
+
|
1857 |
+
if not return_dict:
|
1858 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1859 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1860 |
+
|
1861 |
+
return QuestionAnsweringModelOutput(
|
1862 |
+
loss=total_loss,
|
1863 |
+
start_logits=start_logits,
|
1864 |
+
end_logits=end_logits,
|
1865 |
+
hidden_states=outputs.hidden_states,
|
1866 |
+
attentions=outputs.attentions,
|
1867 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert/modeling_flax_bert.py
ADDED
@@ -0,0 +1,1713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Callable, Optional, Tuple
|
17 |
+
|
18 |
+
import flax
|
19 |
+
import flax.linen as nn
|
20 |
+
import jax
|
21 |
+
import jax.numpy as jnp
|
22 |
+
import numpy as np
|
23 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
24 |
+
from flax.linen import combine_masks, make_causal_mask
|
25 |
+
from flax.linen import partitioning as nn_partitioning
|
26 |
+
from flax.linen.attention import dot_product_attention_weights
|
27 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
28 |
+
from jax import lax
|
29 |
+
|
30 |
+
from ...modeling_flax_outputs import (
|
31 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
FlaxBaseModelOutputWithPooling,
|
33 |
+
FlaxBaseModelOutputWithPoolingAndCrossAttentions,
|
34 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
35 |
+
FlaxMaskedLMOutput,
|
36 |
+
FlaxMultipleChoiceModelOutput,
|
37 |
+
FlaxNextSentencePredictorOutput,
|
38 |
+
FlaxQuestionAnsweringModelOutput,
|
39 |
+
FlaxSequenceClassifierOutput,
|
40 |
+
FlaxTokenClassifierOutput,
|
41 |
+
)
|
42 |
+
from ...modeling_flax_utils import (
|
43 |
+
ACT2FN,
|
44 |
+
FlaxPreTrainedModel,
|
45 |
+
append_call_sample_docstring,
|
46 |
+
append_replace_return_docstrings,
|
47 |
+
overwrite_call_docstring,
|
48 |
+
)
|
49 |
+
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
50 |
+
from .configuration_bert import BertConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased"
|
56 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
57 |
+
|
58 |
+
remat = nn_partitioning.remat
|
59 |
+
|
60 |
+
|
61 |
+
@flax.struct.dataclass
|
62 |
+
class FlaxBertForPreTrainingOutput(ModelOutput):
|
63 |
+
"""
|
64 |
+
Output type of [`BertForPreTraining`].
|
65 |
+
|
66 |
+
Args:
|
67 |
+
prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
68 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
69 |
+
seq_relationship_logits (`jnp.ndarray` of shape `(batch_size, 2)`):
|
70 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
71 |
+
before SoftMax).
|
72 |
+
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
73 |
+
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
|
74 |
+
`(batch_size, sequence_length, hidden_size)`.
|
75 |
+
|
76 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
77 |
+
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
78 |
+
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
79 |
+
sequence_length)`.
|
80 |
+
|
81 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
82 |
+
heads.
|
83 |
+
"""
|
84 |
+
|
85 |
+
prediction_logits: jnp.ndarray = None
|
86 |
+
seq_relationship_logits: jnp.ndarray = None
|
87 |
+
hidden_states: Optional[Tuple[jnp.ndarray]] = None
|
88 |
+
attentions: Optional[Tuple[jnp.ndarray]] = None
|
89 |
+
|
90 |
+
|
91 |
+
BERT_START_DOCSTRING = r"""
|
92 |
+
|
93 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
94 |
+
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
|
95 |
+
|
96 |
+
This model is also a
|
97 |
+
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
|
98 |
+
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
|
99 |
+
behavior.
|
100 |
+
|
101 |
+
Finally, this model supports inherent JAX features such as:
|
102 |
+
|
103 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
104 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
105 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
106 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
107 |
+
|
108 |
+
Parameters:
|
109 |
+
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
|
110 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
111 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
112 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
113 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
114 |
+
`jax.numpy.bfloat16` (on TPUs).
|
115 |
+
|
116 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
117 |
+
specified all the computation will be performed with the given `dtype`.
|
118 |
+
|
119 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
120 |
+
parameters.**
|
121 |
+
|
122 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
123 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
124 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
125 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
126 |
+
`jax.numpy.bfloat16` (on TPUs).
|
127 |
+
|
128 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
129 |
+
specified all the computation will be performed with the given `dtype`.
|
130 |
+
|
131 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
132 |
+
parameters.**
|
133 |
+
|
134 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
135 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
136 |
+
|
137 |
+
"""
|
138 |
+
|
139 |
+
BERT_INPUTS_DOCSTRING = r"""
|
140 |
+
Args:
|
141 |
+
input_ids (`numpy.ndarray` of shape `({0})`):
|
142 |
+
Indices of input sequence tokens in the vocabulary.
|
143 |
+
|
144 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
145 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
146 |
+
|
147 |
+
[What are input IDs?](../glossary#input-ids)
|
148 |
+
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
|
149 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
150 |
+
|
151 |
+
- 1 for tokens that are **not masked**,
|
152 |
+
- 0 for tokens that are **masked**.
|
153 |
+
|
154 |
+
[What are attention masks?](../glossary#attention-mask)
|
155 |
+
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
|
156 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
157 |
+
1]`:
|
158 |
+
|
159 |
+
- 0 corresponds to a *sentence A* token,
|
160 |
+
- 1 corresponds to a *sentence B* token.
|
161 |
+
|
162 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
163 |
+
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
|
164 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
165 |
+
config.max_position_embeddings - 1]`.
|
166 |
+
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
|
167 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
168 |
+
|
169 |
+
- 1 indicates the head is **not masked**,
|
170 |
+
- 0 indicates the head is **masked**.
|
171 |
+
|
172 |
+
return_dict (`bool`, *optional*):
|
173 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
174 |
+
|
175 |
+
"""
|
176 |
+
|
177 |
+
|
178 |
+
class FlaxBertEmbeddings(nn.Module):
|
179 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
180 |
+
|
181 |
+
config: BertConfig
|
182 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
183 |
+
|
184 |
+
def setup(self):
|
185 |
+
self.word_embeddings = nn.Embed(
|
186 |
+
self.config.vocab_size,
|
187 |
+
self.config.hidden_size,
|
188 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
189 |
+
dtype=self.dtype,
|
190 |
+
)
|
191 |
+
self.position_embeddings = nn.Embed(
|
192 |
+
self.config.max_position_embeddings,
|
193 |
+
self.config.hidden_size,
|
194 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
195 |
+
dtype=self.dtype,
|
196 |
+
)
|
197 |
+
self.token_type_embeddings = nn.Embed(
|
198 |
+
self.config.type_vocab_size,
|
199 |
+
self.config.hidden_size,
|
200 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
201 |
+
dtype=self.dtype,
|
202 |
+
)
|
203 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
204 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
205 |
+
|
206 |
+
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
|
207 |
+
# Embed
|
208 |
+
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
|
209 |
+
position_embeds = self.position_embeddings(position_ids.astype("i4"))
|
210 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
|
211 |
+
|
212 |
+
# Sum all embeddings
|
213 |
+
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
|
214 |
+
|
215 |
+
# Layer Norm
|
216 |
+
hidden_states = self.LayerNorm(hidden_states)
|
217 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
218 |
+
return hidden_states
|
219 |
+
|
220 |
+
|
221 |
+
class FlaxBertSelfAttention(nn.Module):
|
222 |
+
config: BertConfig
|
223 |
+
causal: bool = False
|
224 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
225 |
+
|
226 |
+
def setup(self):
|
227 |
+
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
|
228 |
+
if self.config.hidden_size % self.config.num_attention_heads != 0:
|
229 |
+
raise ValueError(
|
230 |
+
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
|
231 |
+
" : {self.config.num_attention_heads}"
|
232 |
+
)
|
233 |
+
|
234 |
+
self.query = nn.Dense(
|
235 |
+
self.config.hidden_size,
|
236 |
+
dtype=self.dtype,
|
237 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
238 |
+
)
|
239 |
+
self.key = nn.Dense(
|
240 |
+
self.config.hidden_size,
|
241 |
+
dtype=self.dtype,
|
242 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
243 |
+
)
|
244 |
+
self.value = nn.Dense(
|
245 |
+
self.config.hidden_size,
|
246 |
+
dtype=self.dtype,
|
247 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
248 |
+
)
|
249 |
+
|
250 |
+
if self.causal:
|
251 |
+
self.causal_mask = make_causal_mask(
|
252 |
+
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
|
253 |
+
)
|
254 |
+
|
255 |
+
def _split_heads(self, hidden_states):
|
256 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
|
257 |
+
|
258 |
+
def _merge_heads(self, hidden_states):
|
259 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
|
260 |
+
|
261 |
+
@nn.compact
|
262 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
|
263 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
264 |
+
"""
|
265 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
266 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
267 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
268 |
+
"""
|
269 |
+
# detect if we're initializing by absence of existing cache data.
|
270 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
271 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
272 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
273 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
274 |
+
|
275 |
+
if is_initialized:
|
276 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
277 |
+
# update key, value caches with our new 1d spatial slices
|
278 |
+
cur_index = cache_index.value
|
279 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
280 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
281 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
282 |
+
cached_key.value = key
|
283 |
+
cached_value.value = value
|
284 |
+
num_updated_cache_vectors = query.shape[1]
|
285 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
286 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
287 |
+
pad_mask = jnp.broadcast_to(
|
288 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
289 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
290 |
+
)
|
291 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
292 |
+
return key, value, attention_mask
|
293 |
+
|
294 |
+
def __call__(
|
295 |
+
self,
|
296 |
+
hidden_states,
|
297 |
+
attention_mask,
|
298 |
+
layer_head_mask,
|
299 |
+
key_value_states: Optional[jnp.ndarray] = None,
|
300 |
+
init_cache: bool = False,
|
301 |
+
deterministic=True,
|
302 |
+
output_attentions: bool = False,
|
303 |
+
):
|
304 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
305 |
+
# for the decoder
|
306 |
+
is_cross_attention = key_value_states is not None
|
307 |
+
batch_size = hidden_states.shape[0]
|
308 |
+
|
309 |
+
# get query proj
|
310 |
+
query_states = self.query(hidden_states)
|
311 |
+
# get key, value proj
|
312 |
+
if is_cross_attention:
|
313 |
+
# cross_attentions
|
314 |
+
key_states = self.key(key_value_states)
|
315 |
+
value_states = self.value(key_value_states)
|
316 |
+
else:
|
317 |
+
# self_attention
|
318 |
+
key_states = self.key(hidden_states)
|
319 |
+
value_states = self.value(hidden_states)
|
320 |
+
|
321 |
+
query_states = self._split_heads(query_states)
|
322 |
+
key_states = self._split_heads(key_states)
|
323 |
+
value_states = self._split_heads(value_states)
|
324 |
+
|
325 |
+
# handle cache prepare causal attention mask
|
326 |
+
if self.causal:
|
327 |
+
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
328 |
+
if self.has_variable("cache", "cached_key"):
|
329 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
330 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
331 |
+
causal_mask = lax.dynamic_slice(
|
332 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
336 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
337 |
+
|
338 |
+
# combine masks if needed
|
339 |
+
if attention_mask is not None and self.causal:
|
340 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
341 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
342 |
+
elif self.causal:
|
343 |
+
attention_mask = causal_mask
|
344 |
+
elif attention_mask is not None:
|
345 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
346 |
+
|
347 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
348 |
+
# and cache the keys and values step by step.
|
349 |
+
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
350 |
+
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
351 |
+
key_states, value_states, query_states, attention_mask
|
352 |
+
)
|
353 |
+
|
354 |
+
# Convert the boolean attention mask to an attention bias.
|
355 |
+
if attention_mask is not None:
|
356 |
+
# attention mask in the form of attention bias
|
357 |
+
attention_bias = lax.select(
|
358 |
+
attention_mask > 0,
|
359 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
360 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
361 |
+
)
|
362 |
+
else:
|
363 |
+
attention_bias = None
|
364 |
+
|
365 |
+
dropout_rng = None
|
366 |
+
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
|
367 |
+
dropout_rng = self.make_rng("dropout")
|
368 |
+
|
369 |
+
attn_weights = dot_product_attention_weights(
|
370 |
+
query_states,
|
371 |
+
key_states,
|
372 |
+
bias=attention_bias,
|
373 |
+
dropout_rng=dropout_rng,
|
374 |
+
dropout_rate=self.config.attention_probs_dropout_prob,
|
375 |
+
broadcast_dropout=True,
|
376 |
+
deterministic=deterministic,
|
377 |
+
dtype=self.dtype,
|
378 |
+
precision=None,
|
379 |
+
)
|
380 |
+
|
381 |
+
# Mask heads if we want to
|
382 |
+
if layer_head_mask is not None:
|
383 |
+
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
|
384 |
+
|
385 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
386 |
+
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
|
387 |
+
|
388 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
389 |
+
return outputs
|
390 |
+
|
391 |
+
|
392 |
+
class FlaxBertSelfOutput(nn.Module):
|
393 |
+
config: BertConfig
|
394 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
395 |
+
|
396 |
+
def setup(self):
|
397 |
+
self.dense = nn.Dense(
|
398 |
+
self.config.hidden_size,
|
399 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
400 |
+
dtype=self.dtype,
|
401 |
+
)
|
402 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
403 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
404 |
+
|
405 |
+
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
|
406 |
+
hidden_states = self.dense(hidden_states)
|
407 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
408 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
409 |
+
return hidden_states
|
410 |
+
|
411 |
+
|
412 |
+
class FlaxBertAttention(nn.Module):
|
413 |
+
config: BertConfig
|
414 |
+
causal: bool = False
|
415 |
+
dtype: jnp.dtype = jnp.float32
|
416 |
+
|
417 |
+
def setup(self):
|
418 |
+
self.self = FlaxBertSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
|
419 |
+
self.output = FlaxBertSelfOutput(self.config, dtype=self.dtype)
|
420 |
+
|
421 |
+
def __call__(
|
422 |
+
self,
|
423 |
+
hidden_states,
|
424 |
+
attention_mask,
|
425 |
+
layer_head_mask,
|
426 |
+
key_value_states=None,
|
427 |
+
init_cache=False,
|
428 |
+
deterministic=True,
|
429 |
+
output_attentions: bool = False,
|
430 |
+
):
|
431 |
+
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
|
432 |
+
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
|
433 |
+
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
|
434 |
+
attn_outputs = self.self(
|
435 |
+
hidden_states,
|
436 |
+
attention_mask,
|
437 |
+
layer_head_mask=layer_head_mask,
|
438 |
+
key_value_states=key_value_states,
|
439 |
+
init_cache=init_cache,
|
440 |
+
deterministic=deterministic,
|
441 |
+
output_attentions=output_attentions,
|
442 |
+
)
|
443 |
+
attn_output = attn_outputs[0]
|
444 |
+
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
|
445 |
+
|
446 |
+
outputs = (hidden_states,)
|
447 |
+
|
448 |
+
if output_attentions:
|
449 |
+
outputs += (attn_outputs[1],)
|
450 |
+
|
451 |
+
return outputs
|
452 |
+
|
453 |
+
|
454 |
+
class FlaxBertIntermediate(nn.Module):
|
455 |
+
config: BertConfig
|
456 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
457 |
+
|
458 |
+
def setup(self):
|
459 |
+
self.dense = nn.Dense(
|
460 |
+
self.config.intermediate_size,
|
461 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
462 |
+
dtype=self.dtype,
|
463 |
+
)
|
464 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
465 |
+
|
466 |
+
def __call__(self, hidden_states):
|
467 |
+
hidden_states = self.dense(hidden_states)
|
468 |
+
hidden_states = self.activation(hidden_states)
|
469 |
+
return hidden_states
|
470 |
+
|
471 |
+
|
472 |
+
class FlaxBertOutput(nn.Module):
|
473 |
+
config: BertConfig
|
474 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
475 |
+
|
476 |
+
def setup(self):
|
477 |
+
self.dense = nn.Dense(
|
478 |
+
self.config.hidden_size,
|
479 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
480 |
+
dtype=self.dtype,
|
481 |
+
)
|
482 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
483 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
484 |
+
|
485 |
+
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
|
486 |
+
hidden_states = self.dense(hidden_states)
|
487 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
488 |
+
hidden_states = self.LayerNorm(hidden_states + attention_output)
|
489 |
+
return hidden_states
|
490 |
+
|
491 |
+
|
492 |
+
class FlaxBertLayer(nn.Module):
|
493 |
+
config: BertConfig
|
494 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
495 |
+
|
496 |
+
def setup(self):
|
497 |
+
self.attention = FlaxBertAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
|
498 |
+
self.intermediate = FlaxBertIntermediate(self.config, dtype=self.dtype)
|
499 |
+
self.output = FlaxBertOutput(self.config, dtype=self.dtype)
|
500 |
+
if self.config.add_cross_attention:
|
501 |
+
self.crossattention = FlaxBertAttention(self.config, causal=False, dtype=self.dtype)
|
502 |
+
|
503 |
+
def __call__(
|
504 |
+
self,
|
505 |
+
hidden_states,
|
506 |
+
attention_mask,
|
507 |
+
layer_head_mask,
|
508 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
509 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
510 |
+
init_cache: bool = False,
|
511 |
+
deterministic: bool = True,
|
512 |
+
output_attentions: bool = False,
|
513 |
+
):
|
514 |
+
# Self Attention
|
515 |
+
attention_outputs = self.attention(
|
516 |
+
hidden_states,
|
517 |
+
attention_mask,
|
518 |
+
layer_head_mask=layer_head_mask,
|
519 |
+
init_cache=init_cache,
|
520 |
+
deterministic=deterministic,
|
521 |
+
output_attentions=output_attentions,
|
522 |
+
)
|
523 |
+
attention_output = attention_outputs[0]
|
524 |
+
|
525 |
+
# Cross-Attention Block
|
526 |
+
if encoder_hidden_states is not None:
|
527 |
+
cross_attention_outputs = self.crossattention(
|
528 |
+
attention_output,
|
529 |
+
attention_mask=encoder_attention_mask,
|
530 |
+
layer_head_mask=layer_head_mask,
|
531 |
+
key_value_states=encoder_hidden_states,
|
532 |
+
deterministic=deterministic,
|
533 |
+
output_attentions=output_attentions,
|
534 |
+
)
|
535 |
+
attention_output = cross_attention_outputs[0]
|
536 |
+
|
537 |
+
hidden_states = self.intermediate(attention_output)
|
538 |
+
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
|
539 |
+
|
540 |
+
outputs = (hidden_states,)
|
541 |
+
|
542 |
+
if output_attentions:
|
543 |
+
outputs += (attention_outputs[1],)
|
544 |
+
if encoder_hidden_states is not None:
|
545 |
+
outputs += (cross_attention_outputs[1],)
|
546 |
+
return outputs
|
547 |
+
|
548 |
+
|
549 |
+
class FlaxBertLayerCollection(nn.Module):
|
550 |
+
config: BertConfig
|
551 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
552 |
+
gradient_checkpointing: bool = False
|
553 |
+
|
554 |
+
def setup(self):
|
555 |
+
if self.gradient_checkpointing:
|
556 |
+
FlaxBertCheckpointLayer = remat(FlaxBertLayer, static_argnums=(5, 6, 7))
|
557 |
+
self.layers = [
|
558 |
+
FlaxBertCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
|
559 |
+
for i in range(self.config.num_hidden_layers)
|
560 |
+
]
|
561 |
+
else:
|
562 |
+
self.layers = [
|
563 |
+
FlaxBertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
|
564 |
+
]
|
565 |
+
|
566 |
+
def __call__(
|
567 |
+
self,
|
568 |
+
hidden_states,
|
569 |
+
attention_mask,
|
570 |
+
head_mask,
|
571 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
572 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
573 |
+
init_cache: bool = False,
|
574 |
+
deterministic: bool = True,
|
575 |
+
output_attentions: bool = False,
|
576 |
+
output_hidden_states: bool = False,
|
577 |
+
return_dict: bool = True,
|
578 |
+
):
|
579 |
+
all_attentions = () if output_attentions else None
|
580 |
+
all_hidden_states = () if output_hidden_states else None
|
581 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
582 |
+
|
583 |
+
# Check if head_mask has a correct number of layers specified if desired
|
584 |
+
if head_mask is not None:
|
585 |
+
if head_mask.shape[0] != (len(self.layers)):
|
586 |
+
raise ValueError(
|
587 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
|
588 |
+
f" {head_mask.shape[0]}."
|
589 |
+
)
|
590 |
+
|
591 |
+
for i, layer in enumerate(self.layers):
|
592 |
+
if output_hidden_states:
|
593 |
+
all_hidden_states += (hidden_states,)
|
594 |
+
|
595 |
+
layer_outputs = layer(
|
596 |
+
hidden_states,
|
597 |
+
attention_mask,
|
598 |
+
head_mask[i] if head_mask is not None else None,
|
599 |
+
encoder_hidden_states,
|
600 |
+
encoder_attention_mask,
|
601 |
+
init_cache,
|
602 |
+
deterministic,
|
603 |
+
output_attentions,
|
604 |
+
)
|
605 |
+
|
606 |
+
hidden_states = layer_outputs[0]
|
607 |
+
|
608 |
+
if output_attentions:
|
609 |
+
all_attentions += (layer_outputs[1],)
|
610 |
+
|
611 |
+
if encoder_hidden_states is not None:
|
612 |
+
all_cross_attentions += (layer_outputs[2],)
|
613 |
+
|
614 |
+
if output_hidden_states:
|
615 |
+
all_hidden_states += (hidden_states,)
|
616 |
+
|
617 |
+
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
|
618 |
+
|
619 |
+
if not return_dict:
|
620 |
+
return tuple(v for v in outputs if v is not None)
|
621 |
+
|
622 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
623 |
+
last_hidden_state=hidden_states,
|
624 |
+
hidden_states=all_hidden_states,
|
625 |
+
attentions=all_attentions,
|
626 |
+
cross_attentions=all_cross_attentions,
|
627 |
+
)
|
628 |
+
|
629 |
+
|
630 |
+
class FlaxBertEncoder(nn.Module):
|
631 |
+
config: BertConfig
|
632 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
633 |
+
gradient_checkpointing: bool = False
|
634 |
+
|
635 |
+
def setup(self):
|
636 |
+
self.layer = FlaxBertLayerCollection(
|
637 |
+
self.config,
|
638 |
+
dtype=self.dtype,
|
639 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
640 |
+
)
|
641 |
+
|
642 |
+
def __call__(
|
643 |
+
self,
|
644 |
+
hidden_states,
|
645 |
+
attention_mask,
|
646 |
+
head_mask,
|
647 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
648 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
649 |
+
init_cache: bool = False,
|
650 |
+
deterministic: bool = True,
|
651 |
+
output_attentions: bool = False,
|
652 |
+
output_hidden_states: bool = False,
|
653 |
+
return_dict: bool = True,
|
654 |
+
):
|
655 |
+
return self.layer(
|
656 |
+
hidden_states,
|
657 |
+
attention_mask,
|
658 |
+
head_mask=head_mask,
|
659 |
+
encoder_hidden_states=encoder_hidden_states,
|
660 |
+
encoder_attention_mask=encoder_attention_mask,
|
661 |
+
init_cache=init_cache,
|
662 |
+
deterministic=deterministic,
|
663 |
+
output_attentions=output_attentions,
|
664 |
+
output_hidden_states=output_hidden_states,
|
665 |
+
return_dict=return_dict,
|
666 |
+
)
|
667 |
+
|
668 |
+
|
669 |
+
class FlaxBertPooler(nn.Module):
|
670 |
+
config: BertConfig
|
671 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
672 |
+
|
673 |
+
def setup(self):
|
674 |
+
self.dense = nn.Dense(
|
675 |
+
self.config.hidden_size,
|
676 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
677 |
+
dtype=self.dtype,
|
678 |
+
)
|
679 |
+
|
680 |
+
def __call__(self, hidden_states):
|
681 |
+
cls_hidden_state = hidden_states[:, 0]
|
682 |
+
cls_hidden_state = self.dense(cls_hidden_state)
|
683 |
+
return nn.tanh(cls_hidden_state)
|
684 |
+
|
685 |
+
|
686 |
+
class FlaxBertPredictionHeadTransform(nn.Module):
|
687 |
+
config: BertConfig
|
688 |
+
dtype: jnp.dtype = jnp.float32
|
689 |
+
|
690 |
+
def setup(self):
|
691 |
+
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
|
692 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
693 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
694 |
+
|
695 |
+
def __call__(self, hidden_states):
|
696 |
+
hidden_states = self.dense(hidden_states)
|
697 |
+
hidden_states = self.activation(hidden_states)
|
698 |
+
return self.LayerNorm(hidden_states)
|
699 |
+
|
700 |
+
|
701 |
+
class FlaxBertLMPredictionHead(nn.Module):
|
702 |
+
config: BertConfig
|
703 |
+
dtype: jnp.dtype = jnp.float32
|
704 |
+
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
|
705 |
+
|
706 |
+
def setup(self):
|
707 |
+
self.transform = FlaxBertPredictionHeadTransform(self.config, dtype=self.dtype)
|
708 |
+
self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
|
709 |
+
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
|
710 |
+
|
711 |
+
def __call__(self, hidden_states, shared_embedding=None):
|
712 |
+
hidden_states = self.transform(hidden_states)
|
713 |
+
|
714 |
+
if shared_embedding is not None:
|
715 |
+
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
716 |
+
else:
|
717 |
+
hidden_states = self.decoder(hidden_states)
|
718 |
+
|
719 |
+
bias = jnp.asarray(self.bias, self.dtype)
|
720 |
+
hidden_states += bias
|
721 |
+
return hidden_states
|
722 |
+
|
723 |
+
|
724 |
+
class FlaxBertOnlyMLMHead(nn.Module):
|
725 |
+
config: BertConfig
|
726 |
+
dtype: jnp.dtype = jnp.float32
|
727 |
+
|
728 |
+
def setup(self):
|
729 |
+
self.predictions = FlaxBertLMPredictionHead(self.config, dtype=self.dtype)
|
730 |
+
|
731 |
+
def __call__(self, hidden_states, shared_embedding=None):
|
732 |
+
hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding)
|
733 |
+
return hidden_states
|
734 |
+
|
735 |
+
|
736 |
+
class FlaxBertOnlyNSPHead(nn.Module):
|
737 |
+
dtype: jnp.dtype = jnp.float32
|
738 |
+
|
739 |
+
def setup(self):
|
740 |
+
self.seq_relationship = nn.Dense(2, dtype=self.dtype)
|
741 |
+
|
742 |
+
def __call__(self, pooled_output):
|
743 |
+
return self.seq_relationship(pooled_output)
|
744 |
+
|
745 |
+
|
746 |
+
class FlaxBertPreTrainingHeads(nn.Module):
|
747 |
+
config: BertConfig
|
748 |
+
dtype: jnp.dtype = jnp.float32
|
749 |
+
|
750 |
+
def setup(self):
|
751 |
+
self.predictions = FlaxBertLMPredictionHead(self.config, dtype=self.dtype)
|
752 |
+
self.seq_relationship = nn.Dense(2, dtype=self.dtype)
|
753 |
+
|
754 |
+
def __call__(self, hidden_states, pooled_output, shared_embedding=None):
|
755 |
+
prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding)
|
756 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
757 |
+
return prediction_scores, seq_relationship_score
|
758 |
+
|
759 |
+
|
760 |
+
class FlaxBertPreTrainedModel(FlaxPreTrainedModel):
|
761 |
+
"""
|
762 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
763 |
+
models.
|
764 |
+
"""
|
765 |
+
|
766 |
+
config_class = BertConfig
|
767 |
+
base_model_prefix = "bert"
|
768 |
+
module_class: nn.Module = None
|
769 |
+
|
770 |
+
def __init__(
|
771 |
+
self,
|
772 |
+
config: BertConfig,
|
773 |
+
input_shape: Tuple = (1, 1),
|
774 |
+
seed: int = 0,
|
775 |
+
dtype: jnp.dtype = jnp.float32,
|
776 |
+
_do_init: bool = True,
|
777 |
+
gradient_checkpointing: bool = False,
|
778 |
+
**kwargs,
|
779 |
+
):
|
780 |
+
module = self.module_class(
|
781 |
+
config=config,
|
782 |
+
dtype=dtype,
|
783 |
+
gradient_checkpointing=gradient_checkpointing,
|
784 |
+
**kwargs,
|
785 |
+
)
|
786 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
787 |
+
|
788 |
+
def enable_gradient_checkpointing(self):
|
789 |
+
self._module = self.module_class(
|
790 |
+
config=self.config,
|
791 |
+
dtype=self.dtype,
|
792 |
+
gradient_checkpointing=True,
|
793 |
+
)
|
794 |
+
|
795 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
796 |
+
# init input tensors
|
797 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
798 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
799 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
800 |
+
attention_mask = jnp.ones_like(input_ids)
|
801 |
+
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
|
802 |
+
|
803 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
804 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
805 |
+
|
806 |
+
if self.config.add_cross_attention:
|
807 |
+
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
|
808 |
+
encoder_attention_mask = attention_mask
|
809 |
+
module_init_outputs = self.module.init(
|
810 |
+
rngs,
|
811 |
+
input_ids,
|
812 |
+
attention_mask,
|
813 |
+
token_type_ids,
|
814 |
+
position_ids,
|
815 |
+
head_mask,
|
816 |
+
encoder_hidden_states,
|
817 |
+
encoder_attention_mask,
|
818 |
+
return_dict=False,
|
819 |
+
)
|
820 |
+
else:
|
821 |
+
module_init_outputs = self.module.init(
|
822 |
+
rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
|
823 |
+
)
|
824 |
+
|
825 |
+
random_params = module_init_outputs["params"]
|
826 |
+
|
827 |
+
if params is not None:
|
828 |
+
random_params = flatten_dict(unfreeze(random_params))
|
829 |
+
params = flatten_dict(unfreeze(params))
|
830 |
+
for missing_key in self._missing_keys:
|
831 |
+
params[missing_key] = random_params[missing_key]
|
832 |
+
self._missing_keys = set()
|
833 |
+
return freeze(unflatten_dict(params))
|
834 |
+
else:
|
835 |
+
return random_params
|
836 |
+
|
837 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
|
838 |
+
def init_cache(self, batch_size, max_length):
|
839 |
+
r"""
|
840 |
+
Args:
|
841 |
+
batch_size (`int`):
|
842 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
843 |
+
max_length (`int`):
|
844 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
845 |
+
cache.
|
846 |
+
"""
|
847 |
+
# init input variables to retrieve cache
|
848 |
+
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
849 |
+
attention_mask = jnp.ones_like(input_ids, dtype="i4")
|
850 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
851 |
+
|
852 |
+
init_variables = self.module.init(
|
853 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
|
854 |
+
)
|
855 |
+
return unfreeze(init_variables["cache"])
|
856 |
+
|
857 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
858 |
+
def __call__(
|
859 |
+
self,
|
860 |
+
input_ids,
|
861 |
+
attention_mask=None,
|
862 |
+
token_type_ids=None,
|
863 |
+
position_ids=None,
|
864 |
+
head_mask=None,
|
865 |
+
encoder_hidden_states=None,
|
866 |
+
encoder_attention_mask=None,
|
867 |
+
params: dict = None,
|
868 |
+
dropout_rng: jax.random.PRNGKey = None,
|
869 |
+
train: bool = False,
|
870 |
+
output_attentions: Optional[bool] = None,
|
871 |
+
output_hidden_states: Optional[bool] = None,
|
872 |
+
return_dict: Optional[bool] = None,
|
873 |
+
past_key_values: dict = None,
|
874 |
+
):
|
875 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
876 |
+
output_hidden_states = (
|
877 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
878 |
+
)
|
879 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
880 |
+
|
881 |
+
# init input tensors if not passed
|
882 |
+
if token_type_ids is None:
|
883 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
884 |
+
|
885 |
+
if position_ids is None:
|
886 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
887 |
+
|
888 |
+
if attention_mask is None:
|
889 |
+
attention_mask = jnp.ones_like(input_ids)
|
890 |
+
|
891 |
+
if head_mask is None:
|
892 |
+
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
|
893 |
+
|
894 |
+
# Handle any PRNG if needed
|
895 |
+
rngs = {}
|
896 |
+
if dropout_rng is not None:
|
897 |
+
rngs["dropout"] = dropout_rng
|
898 |
+
|
899 |
+
inputs = {"params": params or self.params}
|
900 |
+
|
901 |
+
if self.config.add_cross_attention:
|
902 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
|
903 |
+
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
|
904 |
+
# changed by FlaxBertAttention module
|
905 |
+
if past_key_values:
|
906 |
+
inputs["cache"] = past_key_values
|
907 |
+
mutable = ["cache"]
|
908 |
+
else:
|
909 |
+
mutable = False
|
910 |
+
|
911 |
+
outputs = self.module.apply(
|
912 |
+
inputs,
|
913 |
+
jnp.array(input_ids, dtype="i4"),
|
914 |
+
jnp.array(attention_mask, dtype="i4"),
|
915 |
+
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
|
916 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
917 |
+
head_mask=jnp.array(head_mask, dtype="i4"),
|
918 |
+
encoder_hidden_states=encoder_hidden_states,
|
919 |
+
encoder_attention_mask=encoder_attention_mask,
|
920 |
+
deterministic=not train,
|
921 |
+
output_attentions=output_attentions,
|
922 |
+
output_hidden_states=output_hidden_states,
|
923 |
+
return_dict=return_dict,
|
924 |
+
rngs=rngs,
|
925 |
+
mutable=mutable,
|
926 |
+
)
|
927 |
+
|
928 |
+
# add updated cache to model output
|
929 |
+
if past_key_values is not None and return_dict:
|
930 |
+
outputs, past_key_values = outputs
|
931 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
932 |
+
return outputs
|
933 |
+
elif past_key_values is not None and not return_dict:
|
934 |
+
outputs, past_key_values = outputs
|
935 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
936 |
+
|
937 |
+
else:
|
938 |
+
outputs = self.module.apply(
|
939 |
+
inputs,
|
940 |
+
jnp.array(input_ids, dtype="i4"),
|
941 |
+
jnp.array(attention_mask, dtype="i4"),
|
942 |
+
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
|
943 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
944 |
+
head_mask=jnp.array(head_mask, dtype="i4"),
|
945 |
+
deterministic=not train,
|
946 |
+
output_attentions=output_attentions,
|
947 |
+
output_hidden_states=output_hidden_states,
|
948 |
+
return_dict=return_dict,
|
949 |
+
rngs=rngs,
|
950 |
+
)
|
951 |
+
|
952 |
+
return outputs
|
953 |
+
|
954 |
+
|
955 |
+
class FlaxBertModule(nn.Module):
|
956 |
+
config: BertConfig
|
957 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
958 |
+
add_pooling_layer: bool = True
|
959 |
+
gradient_checkpointing: bool = False
|
960 |
+
|
961 |
+
def setup(self):
|
962 |
+
self.embeddings = FlaxBertEmbeddings(self.config, dtype=self.dtype)
|
963 |
+
self.encoder = FlaxBertEncoder(
|
964 |
+
self.config,
|
965 |
+
dtype=self.dtype,
|
966 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
967 |
+
)
|
968 |
+
self.pooler = FlaxBertPooler(self.config, dtype=self.dtype)
|
969 |
+
|
970 |
+
def __call__(
|
971 |
+
self,
|
972 |
+
input_ids,
|
973 |
+
attention_mask,
|
974 |
+
token_type_ids: Optional[jnp.ndarray] = None,
|
975 |
+
position_ids: Optional[jnp.ndarray] = None,
|
976 |
+
head_mask: Optional[jnp.ndarray] = None,
|
977 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
978 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
979 |
+
init_cache: bool = False,
|
980 |
+
deterministic: bool = True,
|
981 |
+
output_attentions: bool = False,
|
982 |
+
output_hidden_states: bool = False,
|
983 |
+
return_dict: bool = True,
|
984 |
+
):
|
985 |
+
# make sure `token_type_ids` is correctly initialized when not passed
|
986 |
+
if token_type_ids is None:
|
987 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
988 |
+
|
989 |
+
# make sure `position_ids` is correctly initialized when not passed
|
990 |
+
if position_ids is None:
|
991 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
992 |
+
|
993 |
+
hidden_states = self.embeddings(
|
994 |
+
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
|
995 |
+
)
|
996 |
+
outputs = self.encoder(
|
997 |
+
hidden_states,
|
998 |
+
attention_mask,
|
999 |
+
head_mask=head_mask,
|
1000 |
+
deterministic=deterministic,
|
1001 |
+
encoder_hidden_states=encoder_hidden_states,
|
1002 |
+
encoder_attention_mask=encoder_attention_mask,
|
1003 |
+
init_cache=init_cache,
|
1004 |
+
output_attentions=output_attentions,
|
1005 |
+
output_hidden_states=output_hidden_states,
|
1006 |
+
return_dict=return_dict,
|
1007 |
+
)
|
1008 |
+
hidden_states = outputs[0]
|
1009 |
+
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
|
1010 |
+
|
1011 |
+
if not return_dict:
|
1012 |
+
# if pooled is None, don't return it
|
1013 |
+
if pooled is None:
|
1014 |
+
return (hidden_states,) + outputs[1:]
|
1015 |
+
return (hidden_states, pooled) + outputs[1:]
|
1016 |
+
|
1017 |
+
return FlaxBaseModelOutputWithPoolingAndCrossAttentions(
|
1018 |
+
last_hidden_state=hidden_states,
|
1019 |
+
pooler_output=pooled,
|
1020 |
+
hidden_states=outputs.hidden_states,
|
1021 |
+
attentions=outputs.attentions,
|
1022 |
+
cross_attentions=outputs.cross_attentions,
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
|
1026 |
+
@add_start_docstrings(
|
1027 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
1028 |
+
BERT_START_DOCSTRING,
|
1029 |
+
)
|
1030 |
+
class FlaxBertModel(FlaxBertPreTrainedModel):
|
1031 |
+
module_class = FlaxBertModule
|
1032 |
+
|
1033 |
+
|
1034 |
+
append_call_sample_docstring(FlaxBertModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)
|
1035 |
+
|
1036 |
+
|
1037 |
+
class FlaxBertForPreTrainingModule(nn.Module):
|
1038 |
+
config: BertConfig
|
1039 |
+
dtype: jnp.dtype = jnp.float32
|
1040 |
+
gradient_checkpointing: bool = False
|
1041 |
+
|
1042 |
+
def setup(self):
|
1043 |
+
self.bert = FlaxBertModule(
|
1044 |
+
config=self.config,
|
1045 |
+
dtype=self.dtype,
|
1046 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1047 |
+
)
|
1048 |
+
self.cls = FlaxBertPreTrainingHeads(config=self.config, dtype=self.dtype)
|
1049 |
+
|
1050 |
+
def __call__(
|
1051 |
+
self,
|
1052 |
+
input_ids,
|
1053 |
+
attention_mask,
|
1054 |
+
token_type_ids,
|
1055 |
+
position_ids,
|
1056 |
+
head_mask,
|
1057 |
+
deterministic: bool = True,
|
1058 |
+
output_attentions: bool = False,
|
1059 |
+
output_hidden_states: bool = False,
|
1060 |
+
return_dict: bool = True,
|
1061 |
+
):
|
1062 |
+
# Model
|
1063 |
+
outputs = self.bert(
|
1064 |
+
input_ids,
|
1065 |
+
attention_mask,
|
1066 |
+
token_type_ids,
|
1067 |
+
position_ids,
|
1068 |
+
head_mask,
|
1069 |
+
deterministic=deterministic,
|
1070 |
+
output_attentions=output_attentions,
|
1071 |
+
output_hidden_states=output_hidden_states,
|
1072 |
+
return_dict=return_dict,
|
1073 |
+
)
|
1074 |
+
|
1075 |
+
if self.config.tie_word_embeddings:
|
1076 |
+
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
1077 |
+
else:
|
1078 |
+
shared_embedding = None
|
1079 |
+
|
1080 |
+
hidden_states = outputs[0]
|
1081 |
+
pooled_output = outputs[1]
|
1082 |
+
|
1083 |
+
prediction_scores, seq_relationship_score = self.cls(
|
1084 |
+
hidden_states, pooled_output, shared_embedding=shared_embedding
|
1085 |
+
)
|
1086 |
+
|
1087 |
+
if not return_dict:
|
1088 |
+
return (prediction_scores, seq_relationship_score) + outputs[2:]
|
1089 |
+
|
1090 |
+
return FlaxBertForPreTrainingOutput(
|
1091 |
+
prediction_logits=prediction_scores,
|
1092 |
+
seq_relationship_logits=seq_relationship_score,
|
1093 |
+
hidden_states=outputs.hidden_states,
|
1094 |
+
attentions=outputs.attentions,
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
|
1098 |
+
@add_start_docstrings(
|
1099 |
+
"""
|
1100 |
+
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
1101 |
+
sentence prediction (classification)` head.
|
1102 |
+
""",
|
1103 |
+
BERT_START_DOCSTRING,
|
1104 |
+
)
|
1105 |
+
class FlaxBertForPreTraining(FlaxBertPreTrainedModel):
|
1106 |
+
module_class = FlaxBertForPreTrainingModule
|
1107 |
+
|
1108 |
+
|
1109 |
+
FLAX_BERT_FOR_PRETRAINING_DOCSTRING = """
|
1110 |
+
Returns:
|
1111 |
+
|
1112 |
+
Example:
|
1113 |
+
|
1114 |
+
```python
|
1115 |
+
>>> from transformers import AutoTokenizer, FlaxBertForPreTraining
|
1116 |
+
|
1117 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1118 |
+
>>> model = FlaxBertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
|
1119 |
+
|
1120 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
|
1121 |
+
>>> outputs = model(**inputs)
|
1122 |
+
|
1123 |
+
>>> prediction_logits = outputs.prediction_logits
|
1124 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1125 |
+
```
|
1126 |
+
"""
|
1127 |
+
|
1128 |
+
overwrite_call_docstring(
|
1129 |
+
FlaxBertForPreTraining,
|
1130 |
+
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BERT_FOR_PRETRAINING_DOCSTRING,
|
1131 |
+
)
|
1132 |
+
append_replace_return_docstrings(
|
1133 |
+
FlaxBertForPreTraining, output_type=FlaxBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
|
1137 |
+
class FlaxBertForMaskedLMModule(nn.Module):
|
1138 |
+
config: BertConfig
|
1139 |
+
dtype: jnp.dtype = jnp.float32
|
1140 |
+
gradient_checkpointing: bool = False
|
1141 |
+
|
1142 |
+
def setup(self):
|
1143 |
+
self.bert = FlaxBertModule(
|
1144 |
+
config=self.config,
|
1145 |
+
add_pooling_layer=False,
|
1146 |
+
dtype=self.dtype,
|
1147 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1148 |
+
)
|
1149 |
+
self.cls = FlaxBertOnlyMLMHead(config=self.config, dtype=self.dtype)
|
1150 |
+
|
1151 |
+
def __call__(
|
1152 |
+
self,
|
1153 |
+
input_ids,
|
1154 |
+
attention_mask,
|
1155 |
+
token_type_ids,
|
1156 |
+
position_ids,
|
1157 |
+
head_mask,
|
1158 |
+
deterministic: bool = True,
|
1159 |
+
output_attentions: bool = False,
|
1160 |
+
output_hidden_states: bool = False,
|
1161 |
+
return_dict: bool = True,
|
1162 |
+
):
|
1163 |
+
# Model
|
1164 |
+
outputs = self.bert(
|
1165 |
+
input_ids,
|
1166 |
+
attention_mask,
|
1167 |
+
token_type_ids,
|
1168 |
+
position_ids,
|
1169 |
+
head_mask,
|
1170 |
+
deterministic=deterministic,
|
1171 |
+
output_attentions=output_attentions,
|
1172 |
+
output_hidden_states=output_hidden_states,
|
1173 |
+
return_dict=return_dict,
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
hidden_states = outputs[0]
|
1177 |
+
if self.config.tie_word_embeddings:
|
1178 |
+
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
1179 |
+
else:
|
1180 |
+
shared_embedding = None
|
1181 |
+
|
1182 |
+
# Compute the prediction scores
|
1183 |
+
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
|
1184 |
+
|
1185 |
+
if not return_dict:
|
1186 |
+
return (logits,) + outputs[1:]
|
1187 |
+
|
1188 |
+
return FlaxMaskedLMOutput(
|
1189 |
+
logits=logits,
|
1190 |
+
hidden_states=outputs.hidden_states,
|
1191 |
+
attentions=outputs.attentions,
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
|
1195 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
|
1196 |
+
class FlaxBertForMaskedLM(FlaxBertPreTrainedModel):
|
1197 |
+
module_class = FlaxBertForMaskedLMModule
|
1198 |
+
|
1199 |
+
|
1200 |
+
append_call_sample_docstring(FlaxBertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
|
1201 |
+
|
1202 |
+
|
1203 |
+
class FlaxBertForNextSentencePredictionModule(nn.Module):
|
1204 |
+
config: BertConfig
|
1205 |
+
dtype: jnp.dtype = jnp.float32
|
1206 |
+
gradient_checkpointing: bool = False
|
1207 |
+
|
1208 |
+
def setup(self):
|
1209 |
+
self.bert = FlaxBertModule(
|
1210 |
+
config=self.config,
|
1211 |
+
dtype=self.dtype,
|
1212 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1213 |
+
)
|
1214 |
+
self.cls = FlaxBertOnlyNSPHead(dtype=self.dtype)
|
1215 |
+
|
1216 |
+
def __call__(
|
1217 |
+
self,
|
1218 |
+
input_ids,
|
1219 |
+
attention_mask,
|
1220 |
+
token_type_ids,
|
1221 |
+
position_ids,
|
1222 |
+
head_mask,
|
1223 |
+
deterministic: bool = True,
|
1224 |
+
output_attentions: bool = False,
|
1225 |
+
output_hidden_states: bool = False,
|
1226 |
+
return_dict: bool = True,
|
1227 |
+
):
|
1228 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1229 |
+
|
1230 |
+
# Model
|
1231 |
+
outputs = self.bert(
|
1232 |
+
input_ids,
|
1233 |
+
attention_mask,
|
1234 |
+
token_type_ids,
|
1235 |
+
position_ids,
|
1236 |
+
head_mask,
|
1237 |
+
deterministic=deterministic,
|
1238 |
+
output_attentions=output_attentions,
|
1239 |
+
output_hidden_states=output_hidden_states,
|
1240 |
+
return_dict=return_dict,
|
1241 |
+
)
|
1242 |
+
|
1243 |
+
pooled_output = outputs[1]
|
1244 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1245 |
+
|
1246 |
+
if not return_dict:
|
1247 |
+
return (seq_relationship_scores,) + outputs[2:]
|
1248 |
+
|
1249 |
+
return FlaxNextSentencePredictorOutput(
|
1250 |
+
logits=seq_relationship_scores,
|
1251 |
+
hidden_states=outputs.hidden_states,
|
1252 |
+
attentions=outputs.attentions,
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
|
1256 |
+
@add_start_docstrings(
|
1257 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
|
1258 |
+
BERT_START_DOCSTRING,
|
1259 |
+
)
|
1260 |
+
class FlaxBertForNextSentencePrediction(FlaxBertPreTrainedModel):
|
1261 |
+
module_class = FlaxBertForNextSentencePredictionModule
|
1262 |
+
|
1263 |
+
|
1264 |
+
FLAX_BERT_FOR_NEXT_SENT_PRED_DOCSTRING = """
|
1265 |
+
Returns:
|
1266 |
+
|
1267 |
+
Example:
|
1268 |
+
|
1269 |
+
```python
|
1270 |
+
>>> from transformers import AutoTokenizer, FlaxBertForNextSentencePrediction
|
1271 |
+
|
1272 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1273 |
+
>>> model = FlaxBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
|
1274 |
+
|
1275 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1276 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1277 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="jax")
|
1278 |
+
|
1279 |
+
>>> outputs = model(**encoding)
|
1280 |
+
>>> logits = outputs.logits
|
1281 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1282 |
+
```
|
1283 |
+
"""
|
1284 |
+
|
1285 |
+
|
1286 |
+
overwrite_call_docstring(
|
1287 |
+
FlaxBertForNextSentencePrediction,
|
1288 |
+
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BERT_FOR_NEXT_SENT_PRED_DOCSTRING,
|
1289 |
+
)
|
1290 |
+
append_replace_return_docstrings(
|
1291 |
+
FlaxBertForNextSentencePrediction, output_type=FlaxNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
|
1295 |
+
class FlaxBertForSequenceClassificationModule(nn.Module):
|
1296 |
+
config: BertConfig
|
1297 |
+
dtype: jnp.dtype = jnp.float32
|
1298 |
+
gradient_checkpointing: bool = False
|
1299 |
+
|
1300 |
+
def setup(self):
|
1301 |
+
self.bert = FlaxBertModule(
|
1302 |
+
config=self.config,
|
1303 |
+
dtype=self.dtype,
|
1304 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1305 |
+
)
|
1306 |
+
classifier_dropout = (
|
1307 |
+
self.config.classifier_dropout
|
1308 |
+
if self.config.classifier_dropout is not None
|
1309 |
+
else self.config.hidden_dropout_prob
|
1310 |
+
)
|
1311 |
+
self.dropout = nn.Dropout(rate=classifier_dropout)
|
1312 |
+
self.classifier = nn.Dense(
|
1313 |
+
self.config.num_labels,
|
1314 |
+
dtype=self.dtype,
|
1315 |
+
)
|
1316 |
+
|
1317 |
+
def __call__(
|
1318 |
+
self,
|
1319 |
+
input_ids,
|
1320 |
+
attention_mask,
|
1321 |
+
token_type_ids,
|
1322 |
+
position_ids,
|
1323 |
+
head_mask,
|
1324 |
+
deterministic: bool = True,
|
1325 |
+
output_attentions: bool = False,
|
1326 |
+
output_hidden_states: bool = False,
|
1327 |
+
return_dict: bool = True,
|
1328 |
+
):
|
1329 |
+
# Model
|
1330 |
+
outputs = self.bert(
|
1331 |
+
input_ids,
|
1332 |
+
attention_mask,
|
1333 |
+
token_type_ids,
|
1334 |
+
position_ids,
|
1335 |
+
head_mask,
|
1336 |
+
deterministic=deterministic,
|
1337 |
+
output_attentions=output_attentions,
|
1338 |
+
output_hidden_states=output_hidden_states,
|
1339 |
+
return_dict=return_dict,
|
1340 |
+
)
|
1341 |
+
|
1342 |
+
pooled_output = outputs[1]
|
1343 |
+
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
|
1344 |
+
logits = self.classifier(pooled_output)
|
1345 |
+
|
1346 |
+
if not return_dict:
|
1347 |
+
return (logits,) + outputs[2:]
|
1348 |
+
|
1349 |
+
return FlaxSequenceClassifierOutput(
|
1350 |
+
logits=logits,
|
1351 |
+
hidden_states=outputs.hidden_states,
|
1352 |
+
attentions=outputs.attentions,
|
1353 |
+
)
|
1354 |
+
|
1355 |
+
|
1356 |
+
@add_start_docstrings(
|
1357 |
+
"""
|
1358 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1359 |
+
output) e.g. for GLUE tasks.
|
1360 |
+
""",
|
1361 |
+
BERT_START_DOCSTRING,
|
1362 |
+
)
|
1363 |
+
class FlaxBertForSequenceClassification(FlaxBertPreTrainedModel):
|
1364 |
+
module_class = FlaxBertForSequenceClassificationModule
|
1365 |
+
|
1366 |
+
|
1367 |
+
append_call_sample_docstring(
|
1368 |
+
FlaxBertForSequenceClassification,
|
1369 |
+
_CHECKPOINT_FOR_DOC,
|
1370 |
+
FlaxSequenceClassifierOutput,
|
1371 |
+
_CONFIG_FOR_DOC,
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
|
1375 |
+
class FlaxBertForMultipleChoiceModule(nn.Module):
|
1376 |
+
config: BertConfig
|
1377 |
+
dtype: jnp.dtype = jnp.float32
|
1378 |
+
gradient_checkpointing: bool = False
|
1379 |
+
|
1380 |
+
def setup(self):
|
1381 |
+
self.bert = FlaxBertModule(
|
1382 |
+
config=self.config,
|
1383 |
+
dtype=self.dtype,
|
1384 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1385 |
+
)
|
1386 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
1387 |
+
self.classifier = nn.Dense(1, dtype=self.dtype)
|
1388 |
+
|
1389 |
+
def __call__(
|
1390 |
+
self,
|
1391 |
+
input_ids,
|
1392 |
+
attention_mask,
|
1393 |
+
token_type_ids,
|
1394 |
+
position_ids,
|
1395 |
+
head_mask,
|
1396 |
+
deterministic: bool = True,
|
1397 |
+
output_attentions: bool = False,
|
1398 |
+
output_hidden_states: bool = False,
|
1399 |
+
return_dict: bool = True,
|
1400 |
+
):
|
1401 |
+
num_choices = input_ids.shape[1]
|
1402 |
+
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
|
1403 |
+
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
|
1404 |
+
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
|
1405 |
+
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
|
1406 |
+
|
1407 |
+
# Model
|
1408 |
+
outputs = self.bert(
|
1409 |
+
input_ids,
|
1410 |
+
attention_mask,
|
1411 |
+
token_type_ids,
|
1412 |
+
position_ids,
|
1413 |
+
head_mask,
|
1414 |
+
deterministic=deterministic,
|
1415 |
+
output_attentions=output_attentions,
|
1416 |
+
output_hidden_states=output_hidden_states,
|
1417 |
+
return_dict=return_dict,
|
1418 |
+
)
|
1419 |
+
|
1420 |
+
pooled_output = outputs[1]
|
1421 |
+
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
|
1422 |
+
logits = self.classifier(pooled_output)
|
1423 |
+
|
1424 |
+
reshaped_logits = logits.reshape(-1, num_choices)
|
1425 |
+
|
1426 |
+
if not return_dict:
|
1427 |
+
return (reshaped_logits,) + outputs[2:]
|
1428 |
+
|
1429 |
+
return FlaxMultipleChoiceModelOutput(
|
1430 |
+
logits=reshaped_logits,
|
1431 |
+
hidden_states=outputs.hidden_states,
|
1432 |
+
attentions=outputs.attentions,
|
1433 |
+
)
|
1434 |
+
|
1435 |
+
|
1436 |
+
@add_start_docstrings(
|
1437 |
+
"""
|
1438 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1439 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1440 |
+
""",
|
1441 |
+
BERT_START_DOCSTRING,
|
1442 |
+
)
|
1443 |
+
class FlaxBertForMultipleChoice(FlaxBertPreTrainedModel):
|
1444 |
+
module_class = FlaxBertForMultipleChoiceModule
|
1445 |
+
|
1446 |
+
|
1447 |
+
overwrite_call_docstring(
|
1448 |
+
FlaxBertForMultipleChoice, BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1449 |
+
)
|
1450 |
+
append_call_sample_docstring(
|
1451 |
+
FlaxBertForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC
|
1452 |
+
)
|
1453 |
+
|
1454 |
+
|
1455 |
+
class FlaxBertForTokenClassificationModule(nn.Module):
|
1456 |
+
config: BertConfig
|
1457 |
+
dtype: jnp.dtype = jnp.float32
|
1458 |
+
gradient_checkpointing: bool = False
|
1459 |
+
|
1460 |
+
def setup(self):
|
1461 |
+
self.bert = FlaxBertModule(
|
1462 |
+
config=self.config,
|
1463 |
+
dtype=self.dtype,
|
1464 |
+
add_pooling_layer=False,
|
1465 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1466 |
+
)
|
1467 |
+
classifier_dropout = (
|
1468 |
+
self.config.classifier_dropout
|
1469 |
+
if self.config.classifier_dropout is not None
|
1470 |
+
else self.config.hidden_dropout_prob
|
1471 |
+
)
|
1472 |
+
self.dropout = nn.Dropout(rate=classifier_dropout)
|
1473 |
+
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1474 |
+
|
1475 |
+
def __call__(
|
1476 |
+
self,
|
1477 |
+
input_ids,
|
1478 |
+
attention_mask,
|
1479 |
+
token_type_ids,
|
1480 |
+
position_ids,
|
1481 |
+
head_mask,
|
1482 |
+
deterministic: bool = True,
|
1483 |
+
output_attentions: bool = False,
|
1484 |
+
output_hidden_states: bool = False,
|
1485 |
+
return_dict: bool = True,
|
1486 |
+
):
|
1487 |
+
# Model
|
1488 |
+
outputs = self.bert(
|
1489 |
+
input_ids,
|
1490 |
+
attention_mask,
|
1491 |
+
token_type_ids,
|
1492 |
+
position_ids,
|
1493 |
+
head_mask,
|
1494 |
+
deterministic=deterministic,
|
1495 |
+
output_attentions=output_attentions,
|
1496 |
+
output_hidden_states=output_hidden_states,
|
1497 |
+
return_dict=return_dict,
|
1498 |
+
)
|
1499 |
+
|
1500 |
+
hidden_states = outputs[0]
|
1501 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
1502 |
+
logits = self.classifier(hidden_states)
|
1503 |
+
|
1504 |
+
if not return_dict:
|
1505 |
+
return (logits,) + outputs[1:]
|
1506 |
+
|
1507 |
+
return FlaxTokenClassifierOutput(
|
1508 |
+
logits=logits,
|
1509 |
+
hidden_states=outputs.hidden_states,
|
1510 |
+
attentions=outputs.attentions,
|
1511 |
+
)
|
1512 |
+
|
1513 |
+
|
1514 |
+
@add_start_docstrings(
|
1515 |
+
"""
|
1516 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1517 |
+
Named-Entity-Recognition (NER) tasks.
|
1518 |
+
""",
|
1519 |
+
BERT_START_DOCSTRING,
|
1520 |
+
)
|
1521 |
+
class FlaxBertForTokenClassification(FlaxBertPreTrainedModel):
|
1522 |
+
module_class = FlaxBertForTokenClassificationModule
|
1523 |
+
|
1524 |
+
|
1525 |
+
append_call_sample_docstring(
|
1526 |
+
FlaxBertForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC
|
1527 |
+
)
|
1528 |
+
|
1529 |
+
|
1530 |
+
class FlaxBertForQuestionAnsweringModule(nn.Module):
|
1531 |
+
config: BertConfig
|
1532 |
+
dtype: jnp.dtype = jnp.float32
|
1533 |
+
gradient_checkpointing: bool = False
|
1534 |
+
|
1535 |
+
def setup(self):
|
1536 |
+
self.bert = FlaxBertModule(
|
1537 |
+
config=self.config,
|
1538 |
+
dtype=self.dtype,
|
1539 |
+
add_pooling_layer=False,
|
1540 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1541 |
+
)
|
1542 |
+
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1543 |
+
|
1544 |
+
def __call__(
|
1545 |
+
self,
|
1546 |
+
input_ids,
|
1547 |
+
attention_mask,
|
1548 |
+
token_type_ids,
|
1549 |
+
position_ids,
|
1550 |
+
head_mask,
|
1551 |
+
deterministic: bool = True,
|
1552 |
+
output_attentions: bool = False,
|
1553 |
+
output_hidden_states: bool = False,
|
1554 |
+
return_dict: bool = True,
|
1555 |
+
):
|
1556 |
+
# Model
|
1557 |
+
outputs = self.bert(
|
1558 |
+
input_ids,
|
1559 |
+
attention_mask,
|
1560 |
+
token_type_ids,
|
1561 |
+
position_ids,
|
1562 |
+
head_mask,
|
1563 |
+
deterministic=deterministic,
|
1564 |
+
output_attentions=output_attentions,
|
1565 |
+
output_hidden_states=output_hidden_states,
|
1566 |
+
return_dict=return_dict,
|
1567 |
+
)
|
1568 |
+
|
1569 |
+
hidden_states = outputs[0]
|
1570 |
+
|
1571 |
+
logits = self.qa_outputs(hidden_states)
|
1572 |
+
start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1)
|
1573 |
+
start_logits = start_logits.squeeze(-1)
|
1574 |
+
end_logits = end_logits.squeeze(-1)
|
1575 |
+
|
1576 |
+
if not return_dict:
|
1577 |
+
return (start_logits, end_logits) + outputs[1:]
|
1578 |
+
|
1579 |
+
return FlaxQuestionAnsweringModelOutput(
|
1580 |
+
start_logits=start_logits,
|
1581 |
+
end_logits=end_logits,
|
1582 |
+
hidden_states=outputs.hidden_states,
|
1583 |
+
attentions=outputs.attentions,
|
1584 |
+
)
|
1585 |
+
|
1586 |
+
|
1587 |
+
@add_start_docstrings(
|
1588 |
+
"""
|
1589 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1590 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1591 |
+
""",
|
1592 |
+
BERT_START_DOCSTRING,
|
1593 |
+
)
|
1594 |
+
class FlaxBertForQuestionAnswering(FlaxBertPreTrainedModel):
|
1595 |
+
module_class = FlaxBertForQuestionAnsweringModule
|
1596 |
+
|
1597 |
+
|
1598 |
+
append_call_sample_docstring(
|
1599 |
+
FlaxBertForQuestionAnswering,
|
1600 |
+
_CHECKPOINT_FOR_DOC,
|
1601 |
+
FlaxQuestionAnsweringModelOutput,
|
1602 |
+
_CONFIG_FOR_DOC,
|
1603 |
+
)
|
1604 |
+
|
1605 |
+
|
1606 |
+
class FlaxBertForCausalLMModule(nn.Module):
|
1607 |
+
config: BertConfig
|
1608 |
+
dtype: jnp.dtype = jnp.float32
|
1609 |
+
gradient_checkpointing: bool = False
|
1610 |
+
|
1611 |
+
def setup(self):
|
1612 |
+
self.bert = FlaxBertModule(
|
1613 |
+
config=self.config,
|
1614 |
+
add_pooling_layer=False,
|
1615 |
+
dtype=self.dtype,
|
1616 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
1617 |
+
)
|
1618 |
+
self.cls = FlaxBertOnlyMLMHead(config=self.config, dtype=self.dtype)
|
1619 |
+
|
1620 |
+
def __call__(
|
1621 |
+
self,
|
1622 |
+
input_ids,
|
1623 |
+
attention_mask,
|
1624 |
+
position_ids,
|
1625 |
+
token_type_ids: Optional[jnp.ndarray] = None,
|
1626 |
+
head_mask: Optional[jnp.ndarray] = None,
|
1627 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
1628 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1629 |
+
init_cache: bool = False,
|
1630 |
+
deterministic: bool = True,
|
1631 |
+
output_attentions: bool = False,
|
1632 |
+
output_hidden_states: bool = False,
|
1633 |
+
return_dict: bool = True,
|
1634 |
+
):
|
1635 |
+
# Model
|
1636 |
+
outputs = self.bert(
|
1637 |
+
input_ids,
|
1638 |
+
attention_mask,
|
1639 |
+
token_type_ids,
|
1640 |
+
position_ids,
|
1641 |
+
head_mask,
|
1642 |
+
encoder_hidden_states=encoder_hidden_states,
|
1643 |
+
encoder_attention_mask=encoder_attention_mask,
|
1644 |
+
init_cache=init_cache,
|
1645 |
+
deterministic=deterministic,
|
1646 |
+
output_attentions=output_attentions,
|
1647 |
+
output_hidden_states=output_hidden_states,
|
1648 |
+
return_dict=return_dict,
|
1649 |
+
)
|
1650 |
+
|
1651 |
+
hidden_states = outputs[0]
|
1652 |
+
if self.config.tie_word_embeddings:
|
1653 |
+
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
1654 |
+
else:
|
1655 |
+
shared_embedding = None
|
1656 |
+
|
1657 |
+
# Compute the prediction scores
|
1658 |
+
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
|
1659 |
+
|
1660 |
+
if not return_dict:
|
1661 |
+
return (logits,) + outputs[1:]
|
1662 |
+
|
1663 |
+
return FlaxCausalLMOutputWithCrossAttentions(
|
1664 |
+
logits=logits,
|
1665 |
+
hidden_states=outputs.hidden_states,
|
1666 |
+
attentions=outputs.attentions,
|
1667 |
+
cross_attentions=outputs.cross_attentions,
|
1668 |
+
)
|
1669 |
+
|
1670 |
+
|
1671 |
+
@add_start_docstrings(
|
1672 |
+
"""
|
1673 |
+
Bert Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
|
1674 |
+
autoregressive tasks.
|
1675 |
+
""",
|
1676 |
+
BERT_START_DOCSTRING,
|
1677 |
+
)
|
1678 |
+
class FlaxBertForCausalLM(FlaxBertPreTrainedModel):
|
1679 |
+
module_class = FlaxBertForCausalLMModule
|
1680 |
+
|
1681 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
1682 |
+
# initializing the cache
|
1683 |
+
batch_size, seq_length = input_ids.shape
|
1684 |
+
|
1685 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
1686 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
1687 |
+
# But since the decoder uses a causal mask, those positions are masked anyway.
|
1688 |
+
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
|
1689 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
1690 |
+
if attention_mask is not None:
|
1691 |
+
position_ids = attention_mask.cumsum(axis=-1) - 1
|
1692 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
1693 |
+
else:
|
1694 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
1695 |
+
|
1696 |
+
return {
|
1697 |
+
"past_key_values": past_key_values,
|
1698 |
+
"attention_mask": extended_attention_mask,
|
1699 |
+
"position_ids": position_ids,
|
1700 |
+
}
|
1701 |
+
|
1702 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
1703 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
1704 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
1705 |
+
return model_kwargs
|
1706 |
+
|
1707 |
+
|
1708 |
+
append_call_sample_docstring(
|
1709 |
+
FlaxBertForCausalLM,
|
1710 |
+
_CHECKPOINT_FOR_DOC,
|
1711 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
1712 |
+
_CONFIG_FOR_DOC,
|
1713 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert/modeling_tf_bert.py
ADDED
@@ -0,0 +1,2114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" TF 2.0 BERT model."""
|
17 |
+
|
18 |
+
|
19 |
+
from __future__ import annotations
|
20 |
+
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
from dataclasses import dataclass
|
24 |
+
from typing import Dict, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
import tensorflow as tf
|
28 |
+
|
29 |
+
from ...activations_tf import get_tf_activation
|
30 |
+
from ...modeling_tf_outputs import (
|
31 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
TFBaseModelOutputWithPoolingAndCrossAttentions,
|
33 |
+
TFCausalLMOutputWithCrossAttentions,
|
34 |
+
TFMaskedLMOutput,
|
35 |
+
TFMultipleChoiceModelOutput,
|
36 |
+
TFNextSentencePredictorOutput,
|
37 |
+
TFQuestionAnsweringModelOutput,
|
38 |
+
TFSequenceClassifierOutput,
|
39 |
+
TFTokenClassifierOutput,
|
40 |
+
)
|
41 |
+
from ...modeling_tf_utils import (
|
42 |
+
TFCausalLanguageModelingLoss,
|
43 |
+
TFMaskedLanguageModelingLoss,
|
44 |
+
TFModelInputType,
|
45 |
+
TFMultipleChoiceLoss,
|
46 |
+
TFNextSentencePredictionLoss,
|
47 |
+
TFPreTrainedModel,
|
48 |
+
TFQuestionAnsweringLoss,
|
49 |
+
TFSequenceClassificationLoss,
|
50 |
+
TFTokenClassificationLoss,
|
51 |
+
get_initializer,
|
52 |
+
keras,
|
53 |
+
keras_serializable,
|
54 |
+
unpack_inputs,
|
55 |
+
)
|
56 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
57 |
+
from ...utils import (
|
58 |
+
ModelOutput,
|
59 |
+
add_code_sample_docstrings,
|
60 |
+
add_start_docstrings,
|
61 |
+
add_start_docstrings_to_model_forward,
|
62 |
+
logging,
|
63 |
+
replace_return_docstrings,
|
64 |
+
)
|
65 |
+
from .configuration_bert import BertConfig
|
66 |
+
|
67 |
+
|
68 |
+
logger = logging.get_logger(__name__)
|
69 |
+
|
70 |
+
_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased"
|
71 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
72 |
+
|
73 |
+
# TokenClassification docstring
|
74 |
+
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
75 |
+
_TOKEN_CLASS_EXPECTED_OUTPUT = (
|
76 |
+
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
|
77 |
+
)
|
78 |
+
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
|
79 |
+
|
80 |
+
# QuestionAnswering docstring
|
81 |
+
_CHECKPOINT_FOR_QA = "ydshieh/bert-base-cased-squad2"
|
82 |
+
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
|
83 |
+
_QA_EXPECTED_LOSS = 7.41
|
84 |
+
_QA_TARGET_START_INDEX = 14
|
85 |
+
_QA_TARGET_END_INDEX = 15
|
86 |
+
|
87 |
+
# SequenceClassification docstring
|
88 |
+
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ydshieh/bert-base-uncased-yelp-polarity"
|
89 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
|
90 |
+
_SEQ_CLASS_EXPECTED_LOSS = 0.01
|
91 |
+
|
92 |
+
|
93 |
+
from ..deprecated._archive_maps import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
94 |
+
|
95 |
+
|
96 |
+
class TFBertPreTrainingLoss:
|
97 |
+
"""
|
98 |
+
Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining
|
99 |
+
NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss
|
100 |
+
computation.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor:
|
104 |
+
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
|
105 |
+
|
106 |
+
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
|
107 |
+
unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0])
|
108 |
+
# make sure only labels that are not equal to -100
|
109 |
+
# are taken into account for the loss computation
|
110 |
+
lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype)
|
111 |
+
masked_lm_losses = unmasked_lm_losses * lm_loss_mask
|
112 |
+
reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask)
|
113 |
+
|
114 |
+
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
|
115 |
+
unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1])
|
116 |
+
ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype)
|
117 |
+
masked_ns_loss = unmasked_ns_loss * ns_loss_mask
|
118 |
+
|
119 |
+
reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask)
|
120 |
+
|
121 |
+
return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,))
|
122 |
+
|
123 |
+
|
124 |
+
class TFBertEmbeddings(keras.layers.Layer):
|
125 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
126 |
+
|
127 |
+
def __init__(self, config: BertConfig, **kwargs):
|
128 |
+
super().__init__(**kwargs)
|
129 |
+
|
130 |
+
self.config = config
|
131 |
+
self.hidden_size = config.hidden_size
|
132 |
+
self.max_position_embeddings = config.max_position_embeddings
|
133 |
+
self.initializer_range = config.initializer_range
|
134 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
135 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
136 |
+
|
137 |
+
def build(self, input_shape=None):
|
138 |
+
with tf.name_scope("word_embeddings"):
|
139 |
+
self.weight = self.add_weight(
|
140 |
+
name="weight",
|
141 |
+
shape=[self.config.vocab_size, self.hidden_size],
|
142 |
+
initializer=get_initializer(self.initializer_range),
|
143 |
+
)
|
144 |
+
|
145 |
+
with tf.name_scope("token_type_embeddings"):
|
146 |
+
self.token_type_embeddings = self.add_weight(
|
147 |
+
name="embeddings",
|
148 |
+
shape=[self.config.type_vocab_size, self.hidden_size],
|
149 |
+
initializer=get_initializer(self.initializer_range),
|
150 |
+
)
|
151 |
+
|
152 |
+
with tf.name_scope("position_embeddings"):
|
153 |
+
self.position_embeddings = self.add_weight(
|
154 |
+
name="embeddings",
|
155 |
+
shape=[self.max_position_embeddings, self.hidden_size],
|
156 |
+
initializer=get_initializer(self.initializer_range),
|
157 |
+
)
|
158 |
+
|
159 |
+
if self.built:
|
160 |
+
return
|
161 |
+
self.built = True
|
162 |
+
if getattr(self, "LayerNorm", None) is not None:
|
163 |
+
with tf.name_scope(self.LayerNorm.name):
|
164 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
165 |
+
|
166 |
+
def call(
|
167 |
+
self,
|
168 |
+
input_ids: tf.Tensor = None,
|
169 |
+
position_ids: tf.Tensor = None,
|
170 |
+
token_type_ids: tf.Tensor = None,
|
171 |
+
inputs_embeds: tf.Tensor = None,
|
172 |
+
past_key_values_length=0,
|
173 |
+
training: bool = False,
|
174 |
+
) -> tf.Tensor:
|
175 |
+
"""
|
176 |
+
Applies embedding based on inputs tensor.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
180 |
+
"""
|
181 |
+
if input_ids is None and inputs_embeds is None:
|
182 |
+
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
|
183 |
+
|
184 |
+
if input_ids is not None:
|
185 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
186 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
187 |
+
|
188 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
189 |
+
|
190 |
+
if token_type_ids is None:
|
191 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
192 |
+
|
193 |
+
if position_ids is None:
|
194 |
+
position_ids = tf.expand_dims(
|
195 |
+
tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
|
196 |
+
)
|
197 |
+
|
198 |
+
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
|
199 |
+
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
|
200 |
+
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
|
201 |
+
final_embeddings = self.LayerNorm(inputs=final_embeddings)
|
202 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
203 |
+
|
204 |
+
return final_embeddings
|
205 |
+
|
206 |
+
|
207 |
+
class TFBertSelfAttention(keras.layers.Layer):
|
208 |
+
def __init__(self, config: BertConfig, **kwargs):
|
209 |
+
super().__init__(**kwargs)
|
210 |
+
|
211 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
212 |
+
raise ValueError(
|
213 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
|
214 |
+
f"of attention heads ({config.num_attention_heads})"
|
215 |
+
)
|
216 |
+
|
217 |
+
self.num_attention_heads = config.num_attention_heads
|
218 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
219 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
220 |
+
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
|
221 |
+
|
222 |
+
self.query = keras.layers.Dense(
|
223 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
|
224 |
+
)
|
225 |
+
self.key = keras.layers.Dense(
|
226 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
|
227 |
+
)
|
228 |
+
self.value = keras.layers.Dense(
|
229 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
|
230 |
+
)
|
231 |
+
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
|
232 |
+
|
233 |
+
self.is_decoder = config.is_decoder
|
234 |
+
self.config = config
|
235 |
+
|
236 |
+
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
|
237 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
238 |
+
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
239 |
+
|
240 |
+
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
|
241 |
+
return tf.transpose(tensor, perm=[0, 2, 1, 3])
|
242 |
+
|
243 |
+
def call(
|
244 |
+
self,
|
245 |
+
hidden_states: tf.Tensor,
|
246 |
+
attention_mask: tf.Tensor,
|
247 |
+
head_mask: tf.Tensor,
|
248 |
+
encoder_hidden_states: tf.Tensor,
|
249 |
+
encoder_attention_mask: tf.Tensor,
|
250 |
+
past_key_value: Tuple[tf.Tensor],
|
251 |
+
output_attentions: bool,
|
252 |
+
training: bool = False,
|
253 |
+
) -> Tuple[tf.Tensor]:
|
254 |
+
batch_size = shape_list(hidden_states)[0]
|
255 |
+
mixed_query_layer = self.query(inputs=hidden_states)
|
256 |
+
|
257 |
+
# If this is instantiated as a cross-attention module, the keys
|
258 |
+
# and values come from an encoder; the attention mask needs to be
|
259 |
+
# such that the encoder's padding tokens are not attended to.
|
260 |
+
is_cross_attention = encoder_hidden_states is not None
|
261 |
+
|
262 |
+
if is_cross_attention and past_key_value is not None:
|
263 |
+
# reuse k,v, cross_attentions
|
264 |
+
key_layer = past_key_value[0]
|
265 |
+
value_layer = past_key_value[1]
|
266 |
+
attention_mask = encoder_attention_mask
|
267 |
+
elif is_cross_attention:
|
268 |
+
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
|
269 |
+
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
|
270 |
+
attention_mask = encoder_attention_mask
|
271 |
+
elif past_key_value is not None:
|
272 |
+
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
|
273 |
+
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
|
274 |
+
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
|
275 |
+
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
|
276 |
+
else:
|
277 |
+
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
|
278 |
+
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
|
279 |
+
|
280 |
+
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
281 |
+
|
282 |
+
if self.is_decoder:
|
283 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
284 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
285 |
+
# key/value_states (first "if" case)
|
286 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
287 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
288 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
289 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
290 |
+
past_key_value = (key_layer, value_layer)
|
291 |
+
|
292 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
293 |
+
# (batch size, num_heads, seq_len_q, seq_len_k)
|
294 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
295 |
+
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
|
296 |
+
attention_scores = tf.divide(attention_scores, dk)
|
297 |
+
|
298 |
+
if attention_mask is not None:
|
299 |
+
# Apply the attention mask is (precomputed for all layers in TFBertModel call() function)
|
300 |
+
attention_scores = tf.add(attention_scores, attention_mask)
|
301 |
+
|
302 |
+
# Normalize the attention scores to probabilities.
|
303 |
+
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
|
304 |
+
|
305 |
+
# This is actually dropping out entire tokens to attend to, which might
|
306 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
307 |
+
attention_probs = self.dropout(inputs=attention_probs, training=training)
|
308 |
+
|
309 |
+
# Mask heads if we want to
|
310 |
+
if head_mask is not None:
|
311 |
+
attention_probs = tf.multiply(attention_probs, head_mask)
|
312 |
+
|
313 |
+
attention_output = tf.matmul(attention_probs, value_layer)
|
314 |
+
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
|
315 |
+
|
316 |
+
# (batch_size, seq_len_q, all_head_size)
|
317 |
+
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
|
318 |
+
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
|
319 |
+
|
320 |
+
if self.is_decoder:
|
321 |
+
outputs = outputs + (past_key_value,)
|
322 |
+
return outputs
|
323 |
+
|
324 |
+
def build(self, input_shape=None):
|
325 |
+
if self.built:
|
326 |
+
return
|
327 |
+
self.built = True
|
328 |
+
if getattr(self, "query", None) is not None:
|
329 |
+
with tf.name_scope(self.query.name):
|
330 |
+
self.query.build([None, None, self.config.hidden_size])
|
331 |
+
if getattr(self, "key", None) is not None:
|
332 |
+
with tf.name_scope(self.key.name):
|
333 |
+
self.key.build([None, None, self.config.hidden_size])
|
334 |
+
if getattr(self, "value", None) is not None:
|
335 |
+
with tf.name_scope(self.value.name):
|
336 |
+
self.value.build([None, None, self.config.hidden_size])
|
337 |
+
|
338 |
+
|
339 |
+
class TFBertSelfOutput(keras.layers.Layer):
|
340 |
+
def __init__(self, config: BertConfig, **kwargs):
|
341 |
+
super().__init__(**kwargs)
|
342 |
+
|
343 |
+
self.dense = keras.layers.Dense(
|
344 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
345 |
+
)
|
346 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
347 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
348 |
+
self.config = config
|
349 |
+
|
350 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
351 |
+
hidden_states = self.dense(inputs=hidden_states)
|
352 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
353 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
354 |
+
|
355 |
+
return hidden_states
|
356 |
+
|
357 |
+
def build(self, input_shape=None):
|
358 |
+
if self.built:
|
359 |
+
return
|
360 |
+
self.built = True
|
361 |
+
if getattr(self, "dense", None) is not None:
|
362 |
+
with tf.name_scope(self.dense.name):
|
363 |
+
self.dense.build([None, None, self.config.hidden_size])
|
364 |
+
if getattr(self, "LayerNorm", None) is not None:
|
365 |
+
with tf.name_scope(self.LayerNorm.name):
|
366 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
367 |
+
|
368 |
+
|
369 |
+
class TFBertAttention(keras.layers.Layer):
|
370 |
+
def __init__(self, config: BertConfig, **kwargs):
|
371 |
+
super().__init__(**kwargs)
|
372 |
+
|
373 |
+
self.self_attention = TFBertSelfAttention(config, name="self")
|
374 |
+
self.dense_output = TFBertSelfOutput(config, name="output")
|
375 |
+
|
376 |
+
def prune_heads(self, heads):
|
377 |
+
raise NotImplementedError
|
378 |
+
|
379 |
+
def call(
|
380 |
+
self,
|
381 |
+
input_tensor: tf.Tensor,
|
382 |
+
attention_mask: tf.Tensor,
|
383 |
+
head_mask: tf.Tensor,
|
384 |
+
encoder_hidden_states: tf.Tensor,
|
385 |
+
encoder_attention_mask: tf.Tensor,
|
386 |
+
past_key_value: Tuple[tf.Tensor],
|
387 |
+
output_attentions: bool,
|
388 |
+
training: bool = False,
|
389 |
+
) -> Tuple[tf.Tensor]:
|
390 |
+
self_outputs = self.self_attention(
|
391 |
+
hidden_states=input_tensor,
|
392 |
+
attention_mask=attention_mask,
|
393 |
+
head_mask=head_mask,
|
394 |
+
encoder_hidden_states=encoder_hidden_states,
|
395 |
+
encoder_attention_mask=encoder_attention_mask,
|
396 |
+
past_key_value=past_key_value,
|
397 |
+
output_attentions=output_attentions,
|
398 |
+
training=training,
|
399 |
+
)
|
400 |
+
attention_output = self.dense_output(
|
401 |
+
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
|
402 |
+
)
|
403 |
+
# add attentions (possibly with past_key_value) if we output them
|
404 |
+
outputs = (attention_output,) + self_outputs[1:]
|
405 |
+
|
406 |
+
return outputs
|
407 |
+
|
408 |
+
def build(self, input_shape=None):
|
409 |
+
if self.built:
|
410 |
+
return
|
411 |
+
self.built = True
|
412 |
+
if getattr(self, "self_attention", None) is not None:
|
413 |
+
with tf.name_scope(self.self_attention.name):
|
414 |
+
self.self_attention.build(None)
|
415 |
+
if getattr(self, "dense_output", None) is not None:
|
416 |
+
with tf.name_scope(self.dense_output.name):
|
417 |
+
self.dense_output.build(None)
|
418 |
+
|
419 |
+
|
420 |
+
class TFBertIntermediate(keras.layers.Layer):
|
421 |
+
def __init__(self, config: BertConfig, **kwargs):
|
422 |
+
super().__init__(**kwargs)
|
423 |
+
|
424 |
+
self.dense = keras.layers.Dense(
|
425 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
426 |
+
)
|
427 |
+
|
428 |
+
if isinstance(config.hidden_act, str):
|
429 |
+
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
|
430 |
+
else:
|
431 |
+
self.intermediate_act_fn = config.hidden_act
|
432 |
+
self.config = config
|
433 |
+
|
434 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
435 |
+
hidden_states = self.dense(inputs=hidden_states)
|
436 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
437 |
+
|
438 |
+
return hidden_states
|
439 |
+
|
440 |
+
def build(self, input_shape=None):
|
441 |
+
if self.built:
|
442 |
+
return
|
443 |
+
self.built = True
|
444 |
+
if getattr(self, "dense", None) is not None:
|
445 |
+
with tf.name_scope(self.dense.name):
|
446 |
+
self.dense.build([None, None, self.config.hidden_size])
|
447 |
+
|
448 |
+
|
449 |
+
class TFBertOutput(keras.layers.Layer):
|
450 |
+
def __init__(self, config: BertConfig, **kwargs):
|
451 |
+
super().__init__(**kwargs)
|
452 |
+
|
453 |
+
self.dense = keras.layers.Dense(
|
454 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
455 |
+
)
|
456 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
457 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
458 |
+
self.config = config
|
459 |
+
|
460 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
461 |
+
hidden_states = self.dense(inputs=hidden_states)
|
462 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
463 |
+
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
|
464 |
+
|
465 |
+
return hidden_states
|
466 |
+
|
467 |
+
def build(self, input_shape=None):
|
468 |
+
if self.built:
|
469 |
+
return
|
470 |
+
self.built = True
|
471 |
+
if getattr(self, "dense", None) is not None:
|
472 |
+
with tf.name_scope(self.dense.name):
|
473 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
474 |
+
if getattr(self, "LayerNorm", None) is not None:
|
475 |
+
with tf.name_scope(self.LayerNorm.name):
|
476 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
477 |
+
|
478 |
+
|
479 |
+
class TFBertLayer(keras.layers.Layer):
|
480 |
+
def __init__(self, config: BertConfig, **kwargs):
|
481 |
+
super().__init__(**kwargs)
|
482 |
+
|
483 |
+
self.attention = TFBertAttention(config, name="attention")
|
484 |
+
self.is_decoder = config.is_decoder
|
485 |
+
self.add_cross_attention = config.add_cross_attention
|
486 |
+
if self.add_cross_attention:
|
487 |
+
if not self.is_decoder:
|
488 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
489 |
+
self.crossattention = TFBertAttention(config, name="crossattention")
|
490 |
+
self.intermediate = TFBertIntermediate(config, name="intermediate")
|
491 |
+
self.bert_output = TFBertOutput(config, name="output")
|
492 |
+
|
493 |
+
def call(
|
494 |
+
self,
|
495 |
+
hidden_states: tf.Tensor,
|
496 |
+
attention_mask: tf.Tensor,
|
497 |
+
head_mask: tf.Tensor,
|
498 |
+
encoder_hidden_states: tf.Tensor | None,
|
499 |
+
encoder_attention_mask: tf.Tensor | None,
|
500 |
+
past_key_value: Tuple[tf.Tensor] | None,
|
501 |
+
output_attentions: bool,
|
502 |
+
training: bool = False,
|
503 |
+
) -> Tuple[tf.Tensor]:
|
504 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
505 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
506 |
+
self_attention_outputs = self.attention(
|
507 |
+
input_tensor=hidden_states,
|
508 |
+
attention_mask=attention_mask,
|
509 |
+
head_mask=head_mask,
|
510 |
+
encoder_hidden_states=None,
|
511 |
+
encoder_attention_mask=None,
|
512 |
+
past_key_value=self_attn_past_key_value,
|
513 |
+
output_attentions=output_attentions,
|
514 |
+
training=training,
|
515 |
+
)
|
516 |
+
attention_output = self_attention_outputs[0]
|
517 |
+
|
518 |
+
# if decoder, the last output is tuple of self-attn cache
|
519 |
+
if self.is_decoder:
|
520 |
+
outputs = self_attention_outputs[1:-1]
|
521 |
+
present_key_value = self_attention_outputs[-1]
|
522 |
+
else:
|
523 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
524 |
+
|
525 |
+
cross_attn_present_key_value = None
|
526 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
527 |
+
if not hasattr(self, "crossattention"):
|
528 |
+
raise ValueError(
|
529 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
530 |
+
" by setting `config.add_cross_attention=True`"
|
531 |
+
)
|
532 |
+
|
533 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
534 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
535 |
+
cross_attention_outputs = self.crossattention(
|
536 |
+
input_tensor=attention_output,
|
537 |
+
attention_mask=attention_mask,
|
538 |
+
head_mask=head_mask,
|
539 |
+
encoder_hidden_states=encoder_hidden_states,
|
540 |
+
encoder_attention_mask=encoder_attention_mask,
|
541 |
+
past_key_value=cross_attn_past_key_value,
|
542 |
+
output_attentions=output_attentions,
|
543 |
+
training=training,
|
544 |
+
)
|
545 |
+
attention_output = cross_attention_outputs[0]
|
546 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
547 |
+
|
548 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
549 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
550 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
551 |
+
|
552 |
+
intermediate_output = self.intermediate(hidden_states=attention_output)
|
553 |
+
layer_output = self.bert_output(
|
554 |
+
hidden_states=intermediate_output, input_tensor=attention_output, training=training
|
555 |
+
)
|
556 |
+
outputs = (layer_output,) + outputs # add attentions if we output them
|
557 |
+
|
558 |
+
# if decoder, return the attn key/values as the last output
|
559 |
+
if self.is_decoder:
|
560 |
+
outputs = outputs + (present_key_value,)
|
561 |
+
|
562 |
+
return outputs
|
563 |
+
|
564 |
+
def build(self, input_shape=None):
|
565 |
+
if self.built:
|
566 |
+
return
|
567 |
+
self.built = True
|
568 |
+
if getattr(self, "attention", None) is not None:
|
569 |
+
with tf.name_scope(self.attention.name):
|
570 |
+
self.attention.build(None)
|
571 |
+
if getattr(self, "intermediate", None) is not None:
|
572 |
+
with tf.name_scope(self.intermediate.name):
|
573 |
+
self.intermediate.build(None)
|
574 |
+
if getattr(self, "bert_output", None) is not None:
|
575 |
+
with tf.name_scope(self.bert_output.name):
|
576 |
+
self.bert_output.build(None)
|
577 |
+
if getattr(self, "crossattention", None) is not None:
|
578 |
+
with tf.name_scope(self.crossattention.name):
|
579 |
+
self.crossattention.build(None)
|
580 |
+
|
581 |
+
|
582 |
+
class TFBertEncoder(keras.layers.Layer):
|
583 |
+
def __init__(self, config: BertConfig, **kwargs):
|
584 |
+
super().__init__(**kwargs)
|
585 |
+
self.config = config
|
586 |
+
self.layer = [TFBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
|
587 |
+
|
588 |
+
def call(
|
589 |
+
self,
|
590 |
+
hidden_states: tf.Tensor,
|
591 |
+
attention_mask: tf.Tensor,
|
592 |
+
head_mask: tf.Tensor,
|
593 |
+
encoder_hidden_states: tf.Tensor | None,
|
594 |
+
encoder_attention_mask: tf.Tensor | None,
|
595 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
|
596 |
+
use_cache: Optional[bool],
|
597 |
+
output_attentions: bool,
|
598 |
+
output_hidden_states: bool,
|
599 |
+
return_dict: bool,
|
600 |
+
training: bool = False,
|
601 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
602 |
+
all_hidden_states = () if output_hidden_states else None
|
603 |
+
all_attentions = () if output_attentions else None
|
604 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
605 |
+
|
606 |
+
next_decoder_cache = () if use_cache else None
|
607 |
+
for i, layer_module in enumerate(self.layer):
|
608 |
+
if output_hidden_states:
|
609 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
610 |
+
|
611 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
612 |
+
|
613 |
+
layer_outputs = layer_module(
|
614 |
+
hidden_states=hidden_states,
|
615 |
+
attention_mask=attention_mask,
|
616 |
+
head_mask=head_mask[i],
|
617 |
+
encoder_hidden_states=encoder_hidden_states,
|
618 |
+
encoder_attention_mask=encoder_attention_mask,
|
619 |
+
past_key_value=past_key_value,
|
620 |
+
output_attentions=output_attentions,
|
621 |
+
training=training,
|
622 |
+
)
|
623 |
+
hidden_states = layer_outputs[0]
|
624 |
+
|
625 |
+
if use_cache:
|
626 |
+
next_decoder_cache += (layer_outputs[-1],)
|
627 |
+
|
628 |
+
if output_attentions:
|
629 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
630 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
631 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
632 |
+
|
633 |
+
# Add last layer
|
634 |
+
if output_hidden_states:
|
635 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
636 |
+
|
637 |
+
if not return_dict:
|
638 |
+
return tuple(
|
639 |
+
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
|
640 |
+
)
|
641 |
+
|
642 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
643 |
+
last_hidden_state=hidden_states,
|
644 |
+
past_key_values=next_decoder_cache,
|
645 |
+
hidden_states=all_hidden_states,
|
646 |
+
attentions=all_attentions,
|
647 |
+
cross_attentions=all_cross_attentions,
|
648 |
+
)
|
649 |
+
|
650 |
+
def build(self, input_shape=None):
|
651 |
+
if self.built:
|
652 |
+
return
|
653 |
+
self.built = True
|
654 |
+
if getattr(self, "layer", None) is not None:
|
655 |
+
for layer in self.layer:
|
656 |
+
with tf.name_scope(layer.name):
|
657 |
+
layer.build(None)
|
658 |
+
|
659 |
+
|
660 |
+
class TFBertPooler(keras.layers.Layer):
|
661 |
+
def __init__(self, config: BertConfig, **kwargs):
|
662 |
+
super().__init__(**kwargs)
|
663 |
+
|
664 |
+
self.dense = keras.layers.Dense(
|
665 |
+
units=config.hidden_size,
|
666 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
667 |
+
activation="tanh",
|
668 |
+
name="dense",
|
669 |
+
)
|
670 |
+
self.config = config
|
671 |
+
|
672 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
673 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
674 |
+
# to the first token.
|
675 |
+
first_token_tensor = hidden_states[:, 0]
|
676 |
+
pooled_output = self.dense(inputs=first_token_tensor)
|
677 |
+
|
678 |
+
return pooled_output
|
679 |
+
|
680 |
+
def build(self, input_shape=None):
|
681 |
+
if self.built:
|
682 |
+
return
|
683 |
+
self.built = True
|
684 |
+
if getattr(self, "dense", None) is not None:
|
685 |
+
with tf.name_scope(self.dense.name):
|
686 |
+
self.dense.build([None, None, self.config.hidden_size])
|
687 |
+
|
688 |
+
|
689 |
+
class TFBertPredictionHeadTransform(keras.layers.Layer):
|
690 |
+
def __init__(self, config: BertConfig, **kwargs):
|
691 |
+
super().__init__(**kwargs)
|
692 |
+
|
693 |
+
self.dense = keras.layers.Dense(
|
694 |
+
units=config.hidden_size,
|
695 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
696 |
+
name="dense",
|
697 |
+
)
|
698 |
+
|
699 |
+
if isinstance(config.hidden_act, str):
|
700 |
+
self.transform_act_fn = get_tf_activation(config.hidden_act)
|
701 |
+
else:
|
702 |
+
self.transform_act_fn = config.hidden_act
|
703 |
+
|
704 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
705 |
+
self.config = config
|
706 |
+
|
707 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
708 |
+
hidden_states = self.dense(inputs=hidden_states)
|
709 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
710 |
+
hidden_states = self.LayerNorm(inputs=hidden_states)
|
711 |
+
|
712 |
+
return hidden_states
|
713 |
+
|
714 |
+
def build(self, input_shape=None):
|
715 |
+
if self.built:
|
716 |
+
return
|
717 |
+
self.built = True
|
718 |
+
if getattr(self, "dense", None) is not None:
|
719 |
+
with tf.name_scope(self.dense.name):
|
720 |
+
self.dense.build([None, None, self.config.hidden_size])
|
721 |
+
if getattr(self, "LayerNorm", None) is not None:
|
722 |
+
with tf.name_scope(self.LayerNorm.name):
|
723 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
724 |
+
|
725 |
+
|
726 |
+
class TFBertLMPredictionHead(keras.layers.Layer):
|
727 |
+
def __init__(self, config: BertConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
728 |
+
super().__init__(**kwargs)
|
729 |
+
|
730 |
+
self.config = config
|
731 |
+
self.hidden_size = config.hidden_size
|
732 |
+
|
733 |
+
self.transform = TFBertPredictionHeadTransform(config, name="transform")
|
734 |
+
|
735 |
+
# The output weights are the same as the input embeddings, but there is
|
736 |
+
# an output-only bias for each token.
|
737 |
+
self.input_embeddings = input_embeddings
|
738 |
+
|
739 |
+
def build(self, input_shape=None):
|
740 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
741 |
+
|
742 |
+
if self.built:
|
743 |
+
return
|
744 |
+
self.built = True
|
745 |
+
if getattr(self, "transform", None) is not None:
|
746 |
+
with tf.name_scope(self.transform.name):
|
747 |
+
self.transform.build(None)
|
748 |
+
|
749 |
+
def get_output_embeddings(self) -> keras.layers.Layer:
|
750 |
+
return self.input_embeddings
|
751 |
+
|
752 |
+
def set_output_embeddings(self, value: tf.Variable):
|
753 |
+
self.input_embeddings.weight = value
|
754 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
755 |
+
|
756 |
+
def get_bias(self) -> Dict[str, tf.Variable]:
|
757 |
+
return {"bias": self.bias}
|
758 |
+
|
759 |
+
def set_bias(self, value: tf.Variable):
|
760 |
+
self.bias = value["bias"]
|
761 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
762 |
+
|
763 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
764 |
+
hidden_states = self.transform(hidden_states=hidden_states)
|
765 |
+
seq_length = shape_list(hidden_states)[1]
|
766 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
|
767 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
|
768 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
769 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
770 |
+
|
771 |
+
return hidden_states
|
772 |
+
|
773 |
+
|
774 |
+
class TFBertMLMHead(keras.layers.Layer):
|
775 |
+
def __init__(self, config: BertConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
776 |
+
super().__init__(**kwargs)
|
777 |
+
|
778 |
+
self.predictions = TFBertLMPredictionHead(config, input_embeddings, name="predictions")
|
779 |
+
|
780 |
+
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
|
781 |
+
prediction_scores = self.predictions(hidden_states=sequence_output)
|
782 |
+
|
783 |
+
return prediction_scores
|
784 |
+
|
785 |
+
def build(self, input_shape=None):
|
786 |
+
if self.built:
|
787 |
+
return
|
788 |
+
self.built = True
|
789 |
+
if getattr(self, "predictions", None) is not None:
|
790 |
+
with tf.name_scope(self.predictions.name):
|
791 |
+
self.predictions.build(None)
|
792 |
+
|
793 |
+
|
794 |
+
class TFBertNSPHead(keras.layers.Layer):
|
795 |
+
def __init__(self, config: BertConfig, **kwargs):
|
796 |
+
super().__init__(**kwargs)
|
797 |
+
|
798 |
+
self.seq_relationship = keras.layers.Dense(
|
799 |
+
units=2,
|
800 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
801 |
+
name="seq_relationship",
|
802 |
+
)
|
803 |
+
self.config = config
|
804 |
+
|
805 |
+
def call(self, pooled_output: tf.Tensor) -> tf.Tensor:
|
806 |
+
seq_relationship_score = self.seq_relationship(inputs=pooled_output)
|
807 |
+
|
808 |
+
return seq_relationship_score
|
809 |
+
|
810 |
+
def build(self, input_shape=None):
|
811 |
+
if self.built:
|
812 |
+
return
|
813 |
+
self.built = True
|
814 |
+
if getattr(self, "seq_relationship", None) is not None:
|
815 |
+
with tf.name_scope(self.seq_relationship.name):
|
816 |
+
self.seq_relationship.build([None, None, self.config.hidden_size])
|
817 |
+
|
818 |
+
|
819 |
+
@keras_serializable
|
820 |
+
class TFBertMainLayer(keras.layers.Layer):
|
821 |
+
config_class = BertConfig
|
822 |
+
|
823 |
+
def __init__(self, config: BertConfig, add_pooling_layer: bool = True, **kwargs):
|
824 |
+
super().__init__(**kwargs)
|
825 |
+
|
826 |
+
self.config = config
|
827 |
+
self.is_decoder = config.is_decoder
|
828 |
+
|
829 |
+
self.embeddings = TFBertEmbeddings(config, name="embeddings")
|
830 |
+
self.encoder = TFBertEncoder(config, name="encoder")
|
831 |
+
self.pooler = TFBertPooler(config, name="pooler") if add_pooling_layer else None
|
832 |
+
|
833 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
834 |
+
return self.embeddings
|
835 |
+
|
836 |
+
def set_input_embeddings(self, value: tf.Variable):
|
837 |
+
self.embeddings.weight = value
|
838 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
839 |
+
|
840 |
+
def _prune_heads(self, heads_to_prune):
|
841 |
+
"""
|
842 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
843 |
+
class PreTrainedModel
|
844 |
+
"""
|
845 |
+
raise NotImplementedError
|
846 |
+
|
847 |
+
@unpack_inputs
|
848 |
+
def call(
|
849 |
+
self,
|
850 |
+
input_ids: TFModelInputType | None = None,
|
851 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
852 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
853 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
854 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
855 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
856 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
857 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
858 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
859 |
+
use_cache: Optional[bool] = None,
|
860 |
+
output_attentions: Optional[bool] = None,
|
861 |
+
output_hidden_states: Optional[bool] = None,
|
862 |
+
return_dict: Optional[bool] = None,
|
863 |
+
training: bool = False,
|
864 |
+
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
|
865 |
+
if not self.config.is_decoder:
|
866 |
+
use_cache = False
|
867 |
+
|
868 |
+
if input_ids is not None and inputs_embeds is not None:
|
869 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
870 |
+
elif input_ids is not None:
|
871 |
+
input_shape = shape_list(input_ids)
|
872 |
+
elif inputs_embeds is not None:
|
873 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
874 |
+
else:
|
875 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
876 |
+
|
877 |
+
batch_size, seq_length = input_shape
|
878 |
+
|
879 |
+
if past_key_values is None:
|
880 |
+
past_key_values_length = 0
|
881 |
+
past_key_values = [None] * len(self.encoder.layer)
|
882 |
+
else:
|
883 |
+
past_key_values_length = shape_list(past_key_values[0][0])[-2]
|
884 |
+
|
885 |
+
if attention_mask is None:
|
886 |
+
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
|
887 |
+
|
888 |
+
if token_type_ids is None:
|
889 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
890 |
+
|
891 |
+
embedding_output = self.embeddings(
|
892 |
+
input_ids=input_ids,
|
893 |
+
position_ids=position_ids,
|
894 |
+
token_type_ids=token_type_ids,
|
895 |
+
inputs_embeds=inputs_embeds,
|
896 |
+
past_key_values_length=past_key_values_length,
|
897 |
+
training=training,
|
898 |
+
)
|
899 |
+
|
900 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
901 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
902 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
903 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
904 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
905 |
+
attention_mask_shape = shape_list(attention_mask)
|
906 |
+
|
907 |
+
mask_seq_length = seq_length + past_key_values_length
|
908 |
+
# Copied from `modeling_tf_t5.py`
|
909 |
+
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
|
910 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
911 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
912 |
+
if self.is_decoder:
|
913 |
+
seq_ids = tf.range(mask_seq_length)
|
914 |
+
causal_mask = tf.less_equal(
|
915 |
+
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
|
916 |
+
seq_ids[None, :, None],
|
917 |
+
)
|
918 |
+
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
|
919 |
+
extended_attention_mask = causal_mask * attention_mask[:, None, :]
|
920 |
+
attention_mask_shape = shape_list(extended_attention_mask)
|
921 |
+
extended_attention_mask = tf.reshape(
|
922 |
+
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
|
923 |
+
)
|
924 |
+
if past_key_values[0] is not None:
|
925 |
+
# attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
|
926 |
+
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
|
927 |
+
else:
|
928 |
+
extended_attention_mask = tf.reshape(
|
929 |
+
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
|
930 |
+
)
|
931 |
+
|
932 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
933 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
934 |
+
# positions we want to attend and -10000.0 for masked positions.
|
935 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
936 |
+
# effectively the same as removing these entirely.
|
937 |
+
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
|
938 |
+
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
|
939 |
+
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
|
940 |
+
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
|
941 |
+
|
942 |
+
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
|
943 |
+
if self.is_decoder and encoder_attention_mask is not None:
|
944 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
945 |
+
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
946 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
947 |
+
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
|
948 |
+
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
|
949 |
+
if num_dims_encoder_attention_mask == 3:
|
950 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
|
951 |
+
if num_dims_encoder_attention_mask == 2:
|
952 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
|
953 |
+
|
954 |
+
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
|
955 |
+
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
|
956 |
+
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
|
957 |
+
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
|
958 |
+
|
959 |
+
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
|
960 |
+
else:
|
961 |
+
encoder_extended_attention_mask = None
|
962 |
+
|
963 |
+
# Prepare head mask if needed
|
964 |
+
# 1.0 in head_mask indicate we keep the head
|
965 |
+
# attention_probs has shape bsz x n_heads x N x N
|
966 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
967 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
968 |
+
if head_mask is not None:
|
969 |
+
raise NotImplementedError
|
970 |
+
else:
|
971 |
+
head_mask = [None] * self.config.num_hidden_layers
|
972 |
+
|
973 |
+
encoder_outputs = self.encoder(
|
974 |
+
hidden_states=embedding_output,
|
975 |
+
attention_mask=extended_attention_mask,
|
976 |
+
head_mask=head_mask,
|
977 |
+
encoder_hidden_states=encoder_hidden_states,
|
978 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
979 |
+
past_key_values=past_key_values,
|
980 |
+
use_cache=use_cache,
|
981 |
+
output_attentions=output_attentions,
|
982 |
+
output_hidden_states=output_hidden_states,
|
983 |
+
return_dict=return_dict,
|
984 |
+
training=training,
|
985 |
+
)
|
986 |
+
|
987 |
+
sequence_output = encoder_outputs[0]
|
988 |
+
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
|
989 |
+
|
990 |
+
if not return_dict:
|
991 |
+
return (
|
992 |
+
sequence_output,
|
993 |
+
pooled_output,
|
994 |
+
) + encoder_outputs[1:]
|
995 |
+
|
996 |
+
return TFBaseModelOutputWithPoolingAndCrossAttentions(
|
997 |
+
last_hidden_state=sequence_output,
|
998 |
+
pooler_output=pooled_output,
|
999 |
+
past_key_values=encoder_outputs.past_key_values,
|
1000 |
+
hidden_states=encoder_outputs.hidden_states,
|
1001 |
+
attentions=encoder_outputs.attentions,
|
1002 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
def build(self, input_shape=None):
|
1006 |
+
if self.built:
|
1007 |
+
return
|
1008 |
+
self.built = True
|
1009 |
+
if getattr(self, "embeddings", None) is not None:
|
1010 |
+
with tf.name_scope(self.embeddings.name):
|
1011 |
+
self.embeddings.build(None)
|
1012 |
+
if getattr(self, "encoder", None) is not None:
|
1013 |
+
with tf.name_scope(self.encoder.name):
|
1014 |
+
self.encoder.build(None)
|
1015 |
+
if getattr(self, "pooler", None) is not None:
|
1016 |
+
with tf.name_scope(self.pooler.name):
|
1017 |
+
self.pooler.build(None)
|
1018 |
+
|
1019 |
+
|
1020 |
+
class TFBertPreTrainedModel(TFPreTrainedModel):
|
1021 |
+
"""
|
1022 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1023 |
+
models.
|
1024 |
+
"""
|
1025 |
+
|
1026 |
+
config_class = BertConfig
|
1027 |
+
base_model_prefix = "bert"
|
1028 |
+
|
1029 |
+
|
1030 |
+
@dataclass
|
1031 |
+
class TFBertForPreTrainingOutput(ModelOutput):
|
1032 |
+
"""
|
1033 |
+
Output type of [`TFBertForPreTraining`].
|
1034 |
+
|
1035 |
+
Args:
|
1036 |
+
prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
1037 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
1038 |
+
seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`):
|
1039 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
1040 |
+
before SoftMax).
|
1041 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1042 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
1043 |
+
`(batch_size, sequence_length, hidden_size)`.
|
1044 |
+
|
1045 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1046 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
1047 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1048 |
+
sequence_length)`.
|
1049 |
+
|
1050 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1051 |
+
heads.
|
1052 |
+
"""
|
1053 |
+
|
1054 |
+
loss: tf.Tensor | None = None
|
1055 |
+
prediction_logits: tf.Tensor = None
|
1056 |
+
seq_relationship_logits: tf.Tensor = None
|
1057 |
+
hidden_states: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None
|
1058 |
+
attentions: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None
|
1059 |
+
|
1060 |
+
|
1061 |
+
BERT_START_DOCSTRING = r"""
|
1062 |
+
|
1063 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1064 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1065 |
+
etc.)
|
1066 |
+
|
1067 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
1068 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
1069 |
+
behavior.
|
1070 |
+
|
1071 |
+
<Tip>
|
1072 |
+
|
1073 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
1074 |
+
|
1075 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
1076 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
1077 |
+
|
1078 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
1079 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
1080 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
1081 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
1082 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
1083 |
+
positional argument:
|
1084 |
+
|
1085 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
1086 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
1087 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
1088 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
1089 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
1090 |
+
|
1091 |
+
Note that when creating models and layers with
|
1092 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
1093 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
1094 |
+
|
1095 |
+
</Tip>
|
1096 |
+
|
1097 |
+
Args:
|
1098 |
+
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
|
1099 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1100 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
1101 |
+
"""
|
1102 |
+
|
1103 |
+
BERT_INPUTS_DOCSTRING = r"""
|
1104 |
+
Args:
|
1105 |
+
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
|
1106 |
+
Indices of input sequence tokens in the vocabulary.
|
1107 |
+
|
1108 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
1109 |
+
[`PreTrainedTokenizer.encode`] for details.
|
1110 |
+
|
1111 |
+
[What are input IDs?](../glossary#input-ids)
|
1112 |
+
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1113 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1114 |
+
|
1115 |
+
- 1 for tokens that are **not masked**,
|
1116 |
+
- 0 for tokens that are **masked**.
|
1117 |
+
|
1118 |
+
[What are attention masks?](../glossary#attention-mask)
|
1119 |
+
token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1120 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
1121 |
+
1]`:
|
1122 |
+
|
1123 |
+
- 0 corresponds to a *sentence A* token,
|
1124 |
+
- 1 corresponds to a *sentence B* token.
|
1125 |
+
|
1126 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
1127 |
+
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1128 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1129 |
+
config.max_position_embeddings - 1]`.
|
1130 |
+
|
1131 |
+
[What are position IDs?](../glossary#position-ids)
|
1132 |
+
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1133 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
1134 |
+
|
1135 |
+
- 1 indicates the head is **not masked**,
|
1136 |
+
- 0 indicates the head is **masked**.
|
1137 |
+
|
1138 |
+
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
1139 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1140 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1141 |
+
model's internal embedding lookup matrix.
|
1142 |
+
output_attentions (`bool`, *optional*):
|
1143 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1144 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
1145 |
+
config will be used instead.
|
1146 |
+
output_hidden_states (`bool`, *optional*):
|
1147 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1148 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
1149 |
+
used instead.
|
1150 |
+
return_dict (`bool`, *optional*):
|
1151 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
1152 |
+
eager mode, in graph mode the value will always be set to True.
|
1153 |
+
training (`bool`, *optional*, defaults to `False``):
|
1154 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1155 |
+
behaviors between training and evaluation).
|
1156 |
+
"""
|
1157 |
+
|
1158 |
+
|
1159 |
+
@add_start_docstrings(
|
1160 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
1161 |
+
BERT_START_DOCSTRING,
|
1162 |
+
)
|
1163 |
+
class TFBertModel(TFBertPreTrainedModel):
|
1164 |
+
def __init__(self, config: BertConfig, add_pooling_layer: bool = True, *inputs, **kwargs):
|
1165 |
+
super().__init__(config, *inputs, **kwargs)
|
1166 |
+
|
1167 |
+
self.bert = TFBertMainLayer(config, add_pooling_layer, name="bert")
|
1168 |
+
|
1169 |
+
@unpack_inputs
|
1170 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1171 |
+
@add_code_sample_docstrings(
|
1172 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1173 |
+
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
|
1174 |
+
config_class=_CONFIG_FOR_DOC,
|
1175 |
+
)
|
1176 |
+
def call(
|
1177 |
+
self,
|
1178 |
+
input_ids: TFModelInputType | None = None,
|
1179 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1180 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1181 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1182 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1183 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1184 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1185 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1186 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1187 |
+
use_cache: Optional[bool] = None,
|
1188 |
+
output_attentions: Optional[bool] = None,
|
1189 |
+
output_hidden_states: Optional[bool] = None,
|
1190 |
+
return_dict: Optional[bool] = None,
|
1191 |
+
training: Optional[bool] = False,
|
1192 |
+
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
|
1193 |
+
r"""
|
1194 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1195 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1196 |
+
the model is configured as a decoder.
|
1197 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1198 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1199 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1200 |
+
|
1201 |
+
- 1 for tokens that are **not masked**,
|
1202 |
+
- 0 for tokens that are **masked**.
|
1203 |
+
|
1204 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
1205 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1206 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1207 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1208 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1209 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
1210 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1211 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
1212 |
+
"""
|
1213 |
+
outputs = self.bert(
|
1214 |
+
input_ids=input_ids,
|
1215 |
+
attention_mask=attention_mask,
|
1216 |
+
token_type_ids=token_type_ids,
|
1217 |
+
position_ids=position_ids,
|
1218 |
+
head_mask=head_mask,
|
1219 |
+
inputs_embeds=inputs_embeds,
|
1220 |
+
encoder_hidden_states=encoder_hidden_states,
|
1221 |
+
encoder_attention_mask=encoder_attention_mask,
|
1222 |
+
past_key_values=past_key_values,
|
1223 |
+
use_cache=use_cache,
|
1224 |
+
output_attentions=output_attentions,
|
1225 |
+
output_hidden_states=output_hidden_states,
|
1226 |
+
return_dict=return_dict,
|
1227 |
+
training=training,
|
1228 |
+
)
|
1229 |
+
return outputs
|
1230 |
+
|
1231 |
+
def build(self, input_shape=None):
|
1232 |
+
if self.built:
|
1233 |
+
return
|
1234 |
+
self.built = True
|
1235 |
+
if getattr(self, "bert", None) is not None:
|
1236 |
+
with tf.name_scope(self.bert.name):
|
1237 |
+
self.bert.build(None)
|
1238 |
+
|
1239 |
+
|
1240 |
+
@add_start_docstrings(
|
1241 |
+
"""
|
1242 |
+
Bert Model with two heads on top as done during the pretraining:
|
1243 |
+
a `masked language modeling` head and a `next sentence prediction (classification)` head.
|
1244 |
+
""",
|
1245 |
+
BERT_START_DOCSTRING,
|
1246 |
+
)
|
1247 |
+
class TFBertForPreTraining(TFBertPreTrainedModel, TFBertPreTrainingLoss):
|
1248 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1249 |
+
_keys_to_ignore_on_load_unexpected = [
|
1250 |
+
r"position_ids",
|
1251 |
+
r"cls.predictions.decoder.weight",
|
1252 |
+
r"cls.predictions.decoder.bias",
|
1253 |
+
]
|
1254 |
+
|
1255 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1256 |
+
super().__init__(config, *inputs, **kwargs)
|
1257 |
+
|
1258 |
+
self.bert = TFBertMainLayer(config, name="bert")
|
1259 |
+
self.nsp = TFBertNSPHead(config, name="nsp___cls")
|
1260 |
+
self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls")
|
1261 |
+
|
1262 |
+
def get_lm_head(self) -> keras.layers.Layer:
|
1263 |
+
return self.mlm.predictions
|
1264 |
+
|
1265 |
+
def get_prefix_bias_name(self) -> str:
|
1266 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1267 |
+
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
|
1268 |
+
|
1269 |
+
@unpack_inputs
|
1270 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1271 |
+
@replace_return_docstrings(output_type=TFBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1272 |
+
def call(
|
1273 |
+
self,
|
1274 |
+
input_ids: TFModelInputType | None = None,
|
1275 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1276 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1277 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1278 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1279 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1280 |
+
output_attentions: Optional[bool] = None,
|
1281 |
+
output_hidden_states: Optional[bool] = None,
|
1282 |
+
return_dict: Optional[bool] = None,
|
1283 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1284 |
+
next_sentence_label: np.ndarray | tf.Tensor | None = None,
|
1285 |
+
training: Optional[bool] = False,
|
1286 |
+
) -> Union[TFBertForPreTrainingOutput, Tuple[tf.Tensor]]:
|
1287 |
+
r"""
|
1288 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1289 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1290 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1291 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1292 |
+
next_sentence_label (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1293 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1294 |
+
(see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1295 |
+
|
1296 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1297 |
+
- 1 indicates sequence B is a random sequence.
|
1298 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1299 |
+
Used to hide legacy arguments that have been deprecated.
|
1300 |
+
|
1301 |
+
Return:
|
1302 |
+
|
1303 |
+
Examples:
|
1304 |
+
|
1305 |
+
```python
|
1306 |
+
>>> import tensorflow as tf
|
1307 |
+
>>> from transformers import AutoTokenizer, TFBertForPreTraining
|
1308 |
+
|
1309 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1310 |
+
>>> model = TFBertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
|
1311 |
+
>>> input_ids = tokenizer("Hello, my dog is cute", add_special_tokens=True, return_tensors="tf")
|
1312 |
+
>>> # Batch size 1
|
1313 |
+
|
1314 |
+
>>> outputs = model(input_ids)
|
1315 |
+
>>> prediction_logits, seq_relationship_logits = outputs[:2]
|
1316 |
+
```"""
|
1317 |
+
outputs = self.bert(
|
1318 |
+
input_ids=input_ids,
|
1319 |
+
attention_mask=attention_mask,
|
1320 |
+
token_type_ids=token_type_ids,
|
1321 |
+
position_ids=position_ids,
|
1322 |
+
head_mask=head_mask,
|
1323 |
+
inputs_embeds=inputs_embeds,
|
1324 |
+
output_attentions=output_attentions,
|
1325 |
+
output_hidden_states=output_hidden_states,
|
1326 |
+
return_dict=return_dict,
|
1327 |
+
training=training,
|
1328 |
+
)
|
1329 |
+
sequence_output, pooled_output = outputs[:2]
|
1330 |
+
prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
|
1331 |
+
seq_relationship_score = self.nsp(pooled_output=pooled_output)
|
1332 |
+
total_loss = None
|
1333 |
+
|
1334 |
+
if labels is not None and next_sentence_label is not None:
|
1335 |
+
d_labels = {"labels": labels}
|
1336 |
+
d_labels["next_sentence_label"] = next_sentence_label
|
1337 |
+
total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score))
|
1338 |
+
|
1339 |
+
if not return_dict:
|
1340 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1341 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1342 |
+
|
1343 |
+
return TFBertForPreTrainingOutput(
|
1344 |
+
loss=total_loss,
|
1345 |
+
prediction_logits=prediction_scores,
|
1346 |
+
seq_relationship_logits=seq_relationship_score,
|
1347 |
+
hidden_states=outputs.hidden_states,
|
1348 |
+
attentions=outputs.attentions,
|
1349 |
+
)
|
1350 |
+
|
1351 |
+
def build(self, input_shape=None):
|
1352 |
+
if self.built:
|
1353 |
+
return
|
1354 |
+
self.built = True
|
1355 |
+
if getattr(self, "bert", None) is not None:
|
1356 |
+
with tf.name_scope(self.bert.name):
|
1357 |
+
self.bert.build(None)
|
1358 |
+
if getattr(self, "nsp", None) is not None:
|
1359 |
+
with tf.name_scope(self.nsp.name):
|
1360 |
+
self.nsp.build(None)
|
1361 |
+
if getattr(self, "mlm", None) is not None:
|
1362 |
+
with tf.name_scope(self.mlm.name):
|
1363 |
+
self.mlm.build(None)
|
1364 |
+
|
1365 |
+
|
1366 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
|
1367 |
+
class TFBertForMaskedLM(TFBertPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1368 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1369 |
+
_keys_to_ignore_on_load_unexpected = [
|
1370 |
+
r"pooler",
|
1371 |
+
r"cls.seq_relationship",
|
1372 |
+
r"cls.predictions.decoder.weight",
|
1373 |
+
r"nsp___cls",
|
1374 |
+
]
|
1375 |
+
|
1376 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1377 |
+
super().__init__(config, *inputs, **kwargs)
|
1378 |
+
|
1379 |
+
if config.is_decoder:
|
1380 |
+
logger.warning(
|
1381 |
+
"If you want to use `TFBertForMaskedLM` make sure `config.is_decoder=False` for "
|
1382 |
+
"bi-directional self-attention."
|
1383 |
+
)
|
1384 |
+
|
1385 |
+
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
|
1386 |
+
self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls")
|
1387 |
+
|
1388 |
+
def get_lm_head(self) -> keras.layers.Layer:
|
1389 |
+
return self.mlm.predictions
|
1390 |
+
|
1391 |
+
def get_prefix_bias_name(self) -> str:
|
1392 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1393 |
+
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
|
1394 |
+
|
1395 |
+
@unpack_inputs
|
1396 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1397 |
+
@add_code_sample_docstrings(
|
1398 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1399 |
+
output_type=TFMaskedLMOutput,
|
1400 |
+
config_class=_CONFIG_FOR_DOC,
|
1401 |
+
expected_output="'paris'",
|
1402 |
+
expected_loss=0.88,
|
1403 |
+
)
|
1404 |
+
def call(
|
1405 |
+
self,
|
1406 |
+
input_ids: TFModelInputType | None = None,
|
1407 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1408 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1409 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1410 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1411 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1412 |
+
output_attentions: Optional[bool] = None,
|
1413 |
+
output_hidden_states: Optional[bool] = None,
|
1414 |
+
return_dict: Optional[bool] = None,
|
1415 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1416 |
+
training: Optional[bool] = False,
|
1417 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
1418 |
+
r"""
|
1419 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
1420 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1421 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1422 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1423 |
+
"""
|
1424 |
+
outputs = self.bert(
|
1425 |
+
input_ids=input_ids,
|
1426 |
+
attention_mask=attention_mask,
|
1427 |
+
token_type_ids=token_type_ids,
|
1428 |
+
position_ids=position_ids,
|
1429 |
+
head_mask=head_mask,
|
1430 |
+
inputs_embeds=inputs_embeds,
|
1431 |
+
output_attentions=output_attentions,
|
1432 |
+
output_hidden_states=output_hidden_states,
|
1433 |
+
return_dict=return_dict,
|
1434 |
+
training=training,
|
1435 |
+
)
|
1436 |
+
sequence_output = outputs[0]
|
1437 |
+
prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
|
1438 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
|
1439 |
+
|
1440 |
+
if not return_dict:
|
1441 |
+
output = (prediction_scores,) + outputs[2:]
|
1442 |
+
return ((loss,) + output) if loss is not None else output
|
1443 |
+
|
1444 |
+
return TFMaskedLMOutput(
|
1445 |
+
loss=loss,
|
1446 |
+
logits=prediction_scores,
|
1447 |
+
hidden_states=outputs.hidden_states,
|
1448 |
+
attentions=outputs.attentions,
|
1449 |
+
)
|
1450 |
+
|
1451 |
+
def build(self, input_shape=None):
|
1452 |
+
if self.built:
|
1453 |
+
return
|
1454 |
+
self.built = True
|
1455 |
+
if getattr(self, "bert", None) is not None:
|
1456 |
+
with tf.name_scope(self.bert.name):
|
1457 |
+
self.bert.build(None)
|
1458 |
+
if getattr(self, "mlm", None) is not None:
|
1459 |
+
with tf.name_scope(self.mlm.name):
|
1460 |
+
self.mlm.build(None)
|
1461 |
+
|
1462 |
+
|
1463 |
+
class TFBertLMHeadModel(TFBertPreTrainedModel, TFCausalLanguageModelingLoss):
|
1464 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1465 |
+
_keys_to_ignore_on_load_unexpected = [
|
1466 |
+
r"pooler",
|
1467 |
+
r"cls.seq_relationship",
|
1468 |
+
r"cls.predictions.decoder.weight",
|
1469 |
+
r"nsp___cls",
|
1470 |
+
]
|
1471 |
+
|
1472 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1473 |
+
super().__init__(config, *inputs, **kwargs)
|
1474 |
+
|
1475 |
+
if not config.is_decoder:
|
1476 |
+
logger.warning("If you want to use `TFBertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
1477 |
+
|
1478 |
+
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
|
1479 |
+
self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls")
|
1480 |
+
|
1481 |
+
def get_lm_head(self) -> keras.layers.Layer:
|
1482 |
+
return self.mlm.predictions
|
1483 |
+
|
1484 |
+
def get_prefix_bias_name(self) -> str:
|
1485 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1486 |
+
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
|
1487 |
+
|
1488 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
1489 |
+
input_shape = input_ids.shape
|
1490 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1491 |
+
if attention_mask is None:
|
1492 |
+
attention_mask = tf.ones(input_shape)
|
1493 |
+
|
1494 |
+
# cut decoder_input_ids if past is used
|
1495 |
+
if past_key_values is not None:
|
1496 |
+
input_ids = input_ids[:, -1:]
|
1497 |
+
|
1498 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
|
1499 |
+
|
1500 |
+
@unpack_inputs
|
1501 |
+
@add_code_sample_docstrings(
|
1502 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1503 |
+
output_type=TFCausalLMOutputWithCrossAttentions,
|
1504 |
+
config_class=_CONFIG_FOR_DOC,
|
1505 |
+
)
|
1506 |
+
def call(
|
1507 |
+
self,
|
1508 |
+
input_ids: TFModelInputType | None = None,
|
1509 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1510 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1511 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1512 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1513 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1514 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
1515 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1516 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1517 |
+
use_cache: Optional[bool] = None,
|
1518 |
+
output_attentions: Optional[bool] = None,
|
1519 |
+
output_hidden_states: Optional[bool] = None,
|
1520 |
+
return_dict: Optional[bool] = None,
|
1521 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1522 |
+
training: Optional[bool] = False,
|
1523 |
+
**kwargs,
|
1524 |
+
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
|
1525 |
+
r"""
|
1526 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1527 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1528 |
+
the model is configured as a decoder.
|
1529 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1530 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1531 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1532 |
+
|
1533 |
+
- 1 for tokens that are **not masked**,
|
1534 |
+
- 0 for tokens that are **masked**.
|
1535 |
+
|
1536 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
1537 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1538 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1539 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1540 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1541 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
1542 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1543 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
1544 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
1545 |
+
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
|
1546 |
+
config.vocab_size - 1]`.
|
1547 |
+
"""
|
1548 |
+
outputs = self.bert(
|
1549 |
+
input_ids=input_ids,
|
1550 |
+
attention_mask=attention_mask,
|
1551 |
+
token_type_ids=token_type_ids,
|
1552 |
+
position_ids=position_ids,
|
1553 |
+
head_mask=head_mask,
|
1554 |
+
inputs_embeds=inputs_embeds,
|
1555 |
+
encoder_hidden_states=encoder_hidden_states,
|
1556 |
+
encoder_attention_mask=encoder_attention_mask,
|
1557 |
+
past_key_values=past_key_values,
|
1558 |
+
use_cache=use_cache,
|
1559 |
+
output_attentions=output_attentions,
|
1560 |
+
output_hidden_states=output_hidden_states,
|
1561 |
+
return_dict=return_dict,
|
1562 |
+
training=training,
|
1563 |
+
)
|
1564 |
+
sequence_output = outputs[0]
|
1565 |
+
logits = self.mlm(sequence_output=sequence_output, training=training)
|
1566 |
+
loss = None
|
1567 |
+
|
1568 |
+
if labels is not None:
|
1569 |
+
# shift labels to the left and cut last logit token
|
1570 |
+
shifted_logits = logits[:, :-1]
|
1571 |
+
labels = labels[:, 1:]
|
1572 |
+
loss = self.hf_compute_loss(labels=labels, logits=shifted_logits)
|
1573 |
+
|
1574 |
+
if not return_dict:
|
1575 |
+
output = (logits,) + outputs[2:]
|
1576 |
+
return ((loss,) + output) if loss is not None else output
|
1577 |
+
|
1578 |
+
return TFCausalLMOutputWithCrossAttentions(
|
1579 |
+
loss=loss,
|
1580 |
+
logits=logits,
|
1581 |
+
past_key_values=outputs.past_key_values,
|
1582 |
+
hidden_states=outputs.hidden_states,
|
1583 |
+
attentions=outputs.attentions,
|
1584 |
+
cross_attentions=outputs.cross_attentions,
|
1585 |
+
)
|
1586 |
+
|
1587 |
+
def build(self, input_shape=None):
|
1588 |
+
if self.built:
|
1589 |
+
return
|
1590 |
+
self.built = True
|
1591 |
+
if getattr(self, "bert", None) is not None:
|
1592 |
+
with tf.name_scope(self.bert.name):
|
1593 |
+
self.bert.build(None)
|
1594 |
+
if getattr(self, "mlm", None) is not None:
|
1595 |
+
with tf.name_scope(self.mlm.name):
|
1596 |
+
self.mlm.build(None)
|
1597 |
+
|
1598 |
+
|
1599 |
+
@add_start_docstrings(
|
1600 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
|
1601 |
+
BERT_START_DOCSTRING,
|
1602 |
+
)
|
1603 |
+
class TFBertForNextSentencePrediction(TFBertPreTrainedModel, TFNextSentencePredictionLoss):
|
1604 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1605 |
+
_keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"cls.predictions"]
|
1606 |
+
|
1607 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1608 |
+
super().__init__(config, *inputs, **kwargs)
|
1609 |
+
|
1610 |
+
self.bert = TFBertMainLayer(config, name="bert")
|
1611 |
+
self.nsp = TFBertNSPHead(config, name="nsp___cls")
|
1612 |
+
|
1613 |
+
@unpack_inputs
|
1614 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1615 |
+
@replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1616 |
+
def call(
|
1617 |
+
self,
|
1618 |
+
input_ids: TFModelInputType | None = None,
|
1619 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1620 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1621 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1622 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1623 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1624 |
+
output_attentions: Optional[bool] = None,
|
1625 |
+
output_hidden_states: Optional[bool] = None,
|
1626 |
+
return_dict: Optional[bool] = None,
|
1627 |
+
next_sentence_label: np.ndarray | tf.Tensor | None = None,
|
1628 |
+
training: Optional[bool] = False,
|
1629 |
+
) -> Union[TFNextSentencePredictorOutput, Tuple[tf.Tensor]]:
|
1630 |
+
r"""
|
1631 |
+
Return:
|
1632 |
+
|
1633 |
+
Examples:
|
1634 |
+
|
1635 |
+
```python
|
1636 |
+
>>> import tensorflow as tf
|
1637 |
+
>>> from transformers import AutoTokenizer, TFBertForNextSentencePrediction
|
1638 |
+
|
1639 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1640 |
+
>>> model = TFBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
|
1641 |
+
|
1642 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1643 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1644 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf")
|
1645 |
+
|
1646 |
+
>>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0]
|
1647 |
+
>>> assert logits[0][0] < logits[0][1] # the next sentence was random
|
1648 |
+
```"""
|
1649 |
+
outputs = self.bert(
|
1650 |
+
input_ids=input_ids,
|
1651 |
+
attention_mask=attention_mask,
|
1652 |
+
token_type_ids=token_type_ids,
|
1653 |
+
position_ids=position_ids,
|
1654 |
+
head_mask=head_mask,
|
1655 |
+
inputs_embeds=inputs_embeds,
|
1656 |
+
output_attentions=output_attentions,
|
1657 |
+
output_hidden_states=output_hidden_states,
|
1658 |
+
return_dict=return_dict,
|
1659 |
+
training=training,
|
1660 |
+
)
|
1661 |
+
pooled_output = outputs[1]
|
1662 |
+
seq_relationship_scores = self.nsp(pooled_output=pooled_output)
|
1663 |
+
next_sentence_loss = (
|
1664 |
+
None
|
1665 |
+
if next_sentence_label is None
|
1666 |
+
else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores)
|
1667 |
+
)
|
1668 |
+
|
1669 |
+
if not return_dict:
|
1670 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1671 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1672 |
+
|
1673 |
+
return TFNextSentencePredictorOutput(
|
1674 |
+
loss=next_sentence_loss,
|
1675 |
+
logits=seq_relationship_scores,
|
1676 |
+
hidden_states=outputs.hidden_states,
|
1677 |
+
attentions=outputs.attentions,
|
1678 |
+
)
|
1679 |
+
|
1680 |
+
def build(self, input_shape=None):
|
1681 |
+
if self.built:
|
1682 |
+
return
|
1683 |
+
self.built = True
|
1684 |
+
if getattr(self, "bert", None) is not None:
|
1685 |
+
with tf.name_scope(self.bert.name):
|
1686 |
+
self.bert.build(None)
|
1687 |
+
if getattr(self, "nsp", None) is not None:
|
1688 |
+
with tf.name_scope(self.nsp.name):
|
1689 |
+
self.nsp.build(None)
|
1690 |
+
|
1691 |
+
|
1692 |
+
@add_start_docstrings(
|
1693 |
+
"""
|
1694 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1695 |
+
output) e.g. for GLUE tasks.
|
1696 |
+
""",
|
1697 |
+
BERT_START_DOCSTRING,
|
1698 |
+
)
|
1699 |
+
class TFBertForSequenceClassification(TFBertPreTrainedModel, TFSequenceClassificationLoss):
|
1700 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1701 |
+
_keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"]
|
1702 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1703 |
+
|
1704 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1705 |
+
super().__init__(config, *inputs, **kwargs)
|
1706 |
+
|
1707 |
+
self.num_labels = config.num_labels
|
1708 |
+
|
1709 |
+
self.bert = TFBertMainLayer(config, name="bert")
|
1710 |
+
classifier_dropout = (
|
1711 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1712 |
+
)
|
1713 |
+
self.dropout = keras.layers.Dropout(rate=classifier_dropout)
|
1714 |
+
self.classifier = keras.layers.Dense(
|
1715 |
+
units=config.num_labels,
|
1716 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1717 |
+
name="classifier",
|
1718 |
+
)
|
1719 |
+
self.config = config
|
1720 |
+
|
1721 |
+
@unpack_inputs
|
1722 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1723 |
+
@add_code_sample_docstrings(
|
1724 |
+
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
|
1725 |
+
output_type=TFSequenceClassifierOutput,
|
1726 |
+
config_class=_CONFIG_FOR_DOC,
|
1727 |
+
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
1728 |
+
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
1729 |
+
)
|
1730 |
+
def call(
|
1731 |
+
self,
|
1732 |
+
input_ids: TFModelInputType | None = None,
|
1733 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1734 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1735 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1736 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1737 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1738 |
+
output_attentions: Optional[bool] = None,
|
1739 |
+
output_hidden_states: Optional[bool] = None,
|
1740 |
+
return_dict: Optional[bool] = None,
|
1741 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1742 |
+
training: Optional[bool] = False,
|
1743 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1744 |
+
r"""
|
1745 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1746 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1747 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1748 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1749 |
+
"""
|
1750 |
+
outputs = self.bert(
|
1751 |
+
input_ids=input_ids,
|
1752 |
+
attention_mask=attention_mask,
|
1753 |
+
token_type_ids=token_type_ids,
|
1754 |
+
position_ids=position_ids,
|
1755 |
+
head_mask=head_mask,
|
1756 |
+
inputs_embeds=inputs_embeds,
|
1757 |
+
output_attentions=output_attentions,
|
1758 |
+
output_hidden_states=output_hidden_states,
|
1759 |
+
return_dict=return_dict,
|
1760 |
+
training=training,
|
1761 |
+
)
|
1762 |
+
pooled_output = outputs[1]
|
1763 |
+
pooled_output = self.dropout(inputs=pooled_output, training=training)
|
1764 |
+
logits = self.classifier(inputs=pooled_output)
|
1765 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1766 |
+
|
1767 |
+
if not return_dict:
|
1768 |
+
output = (logits,) + outputs[2:]
|
1769 |
+
return ((loss,) + output) if loss is not None else output
|
1770 |
+
|
1771 |
+
return TFSequenceClassifierOutput(
|
1772 |
+
loss=loss,
|
1773 |
+
logits=logits,
|
1774 |
+
hidden_states=outputs.hidden_states,
|
1775 |
+
attentions=outputs.attentions,
|
1776 |
+
)
|
1777 |
+
|
1778 |
+
def build(self, input_shape=None):
|
1779 |
+
if self.built:
|
1780 |
+
return
|
1781 |
+
self.built = True
|
1782 |
+
if getattr(self, "bert", None) is not None:
|
1783 |
+
with tf.name_scope(self.bert.name):
|
1784 |
+
self.bert.build(None)
|
1785 |
+
if getattr(self, "classifier", None) is not None:
|
1786 |
+
with tf.name_scope(self.classifier.name):
|
1787 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1788 |
+
|
1789 |
+
|
1790 |
+
@add_start_docstrings(
|
1791 |
+
"""
|
1792 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1793 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1794 |
+
""",
|
1795 |
+
BERT_START_DOCSTRING,
|
1796 |
+
)
|
1797 |
+
class TFBertForMultipleChoice(TFBertPreTrainedModel, TFMultipleChoiceLoss):
|
1798 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1799 |
+
_keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"]
|
1800 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1801 |
+
|
1802 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1803 |
+
super().__init__(config, *inputs, **kwargs)
|
1804 |
+
|
1805 |
+
self.bert = TFBertMainLayer(config, name="bert")
|
1806 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
1807 |
+
self.classifier = keras.layers.Dense(
|
1808 |
+
units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1809 |
+
)
|
1810 |
+
self.config = config
|
1811 |
+
|
1812 |
+
@unpack_inputs
|
1813 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1814 |
+
@add_code_sample_docstrings(
|
1815 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1816 |
+
output_type=TFMultipleChoiceModelOutput,
|
1817 |
+
config_class=_CONFIG_FOR_DOC,
|
1818 |
+
)
|
1819 |
+
def call(
|
1820 |
+
self,
|
1821 |
+
input_ids: TFModelInputType | None = None,
|
1822 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1823 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1824 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1825 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1826 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1827 |
+
output_attentions: Optional[bool] = None,
|
1828 |
+
output_hidden_states: Optional[bool] = None,
|
1829 |
+
return_dict: Optional[bool] = None,
|
1830 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1831 |
+
training: Optional[bool] = False,
|
1832 |
+
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
|
1833 |
+
r"""
|
1834 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1835 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
1836 |
+
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
|
1837 |
+
"""
|
1838 |
+
if input_ids is not None:
|
1839 |
+
num_choices = shape_list(input_ids)[1]
|
1840 |
+
seq_length = shape_list(input_ids)[2]
|
1841 |
+
else:
|
1842 |
+
num_choices = shape_list(inputs_embeds)[1]
|
1843 |
+
seq_length = shape_list(inputs_embeds)[2]
|
1844 |
+
|
1845 |
+
flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None
|
1846 |
+
flat_attention_mask = (
|
1847 |
+
tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None
|
1848 |
+
)
|
1849 |
+
flat_token_type_ids = (
|
1850 |
+
tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None
|
1851 |
+
)
|
1852 |
+
flat_position_ids = (
|
1853 |
+
tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None
|
1854 |
+
)
|
1855 |
+
flat_inputs_embeds = (
|
1856 |
+
tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]))
|
1857 |
+
if inputs_embeds is not None
|
1858 |
+
else None
|
1859 |
+
)
|
1860 |
+
outputs = self.bert(
|
1861 |
+
input_ids=flat_input_ids,
|
1862 |
+
attention_mask=flat_attention_mask,
|
1863 |
+
token_type_ids=flat_token_type_ids,
|
1864 |
+
position_ids=flat_position_ids,
|
1865 |
+
head_mask=head_mask,
|
1866 |
+
inputs_embeds=flat_inputs_embeds,
|
1867 |
+
output_attentions=output_attentions,
|
1868 |
+
output_hidden_states=output_hidden_states,
|
1869 |
+
return_dict=return_dict,
|
1870 |
+
training=training,
|
1871 |
+
)
|
1872 |
+
pooled_output = outputs[1]
|
1873 |
+
pooled_output = self.dropout(inputs=pooled_output, training=training)
|
1874 |
+
logits = self.classifier(inputs=pooled_output)
|
1875 |
+
reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices))
|
1876 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits)
|
1877 |
+
|
1878 |
+
if not return_dict:
|
1879 |
+
output = (reshaped_logits,) + outputs[2:]
|
1880 |
+
return ((loss,) + output) if loss is not None else output
|
1881 |
+
|
1882 |
+
return TFMultipleChoiceModelOutput(
|
1883 |
+
loss=loss,
|
1884 |
+
logits=reshaped_logits,
|
1885 |
+
hidden_states=outputs.hidden_states,
|
1886 |
+
attentions=outputs.attentions,
|
1887 |
+
)
|
1888 |
+
|
1889 |
+
def build(self, input_shape=None):
|
1890 |
+
if self.built:
|
1891 |
+
return
|
1892 |
+
self.built = True
|
1893 |
+
if getattr(self, "bert", None) is not None:
|
1894 |
+
with tf.name_scope(self.bert.name):
|
1895 |
+
self.bert.build(None)
|
1896 |
+
if getattr(self, "classifier", None) is not None:
|
1897 |
+
with tf.name_scope(self.classifier.name):
|
1898 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1899 |
+
|
1900 |
+
|
1901 |
+
@add_start_docstrings(
|
1902 |
+
"""
|
1903 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1904 |
+
Named-Entity-Recognition (NER) tasks.
|
1905 |
+
""",
|
1906 |
+
BERT_START_DOCSTRING,
|
1907 |
+
)
|
1908 |
+
class TFBertForTokenClassification(TFBertPreTrainedModel, TFTokenClassificationLoss):
|
1909 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1910 |
+
_keys_to_ignore_on_load_unexpected = [
|
1911 |
+
r"pooler",
|
1912 |
+
r"mlm___cls",
|
1913 |
+
r"nsp___cls",
|
1914 |
+
r"cls.predictions",
|
1915 |
+
r"cls.seq_relationship",
|
1916 |
+
]
|
1917 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1918 |
+
|
1919 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
1920 |
+
super().__init__(config, *inputs, **kwargs)
|
1921 |
+
|
1922 |
+
self.num_labels = config.num_labels
|
1923 |
+
|
1924 |
+
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
|
1925 |
+
classifier_dropout = (
|
1926 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1927 |
+
)
|
1928 |
+
self.dropout = keras.layers.Dropout(rate=classifier_dropout)
|
1929 |
+
self.classifier = keras.layers.Dense(
|
1930 |
+
units=config.num_labels,
|
1931 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1932 |
+
name="classifier",
|
1933 |
+
)
|
1934 |
+
self.config = config
|
1935 |
+
|
1936 |
+
@unpack_inputs
|
1937 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1938 |
+
@add_code_sample_docstrings(
|
1939 |
+
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
|
1940 |
+
output_type=TFTokenClassifierOutput,
|
1941 |
+
config_class=_CONFIG_FOR_DOC,
|
1942 |
+
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
|
1943 |
+
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
|
1944 |
+
)
|
1945 |
+
def call(
|
1946 |
+
self,
|
1947 |
+
input_ids: TFModelInputType | None = None,
|
1948 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1949 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1950 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1951 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1952 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1953 |
+
output_attentions: Optional[bool] = None,
|
1954 |
+
output_hidden_states: Optional[bool] = None,
|
1955 |
+
return_dict: Optional[bool] = None,
|
1956 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1957 |
+
training: Optional[bool] = False,
|
1958 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1959 |
+
r"""
|
1960 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
1961 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1962 |
+
"""
|
1963 |
+
outputs = self.bert(
|
1964 |
+
input_ids=input_ids,
|
1965 |
+
attention_mask=attention_mask,
|
1966 |
+
token_type_ids=token_type_ids,
|
1967 |
+
position_ids=position_ids,
|
1968 |
+
head_mask=head_mask,
|
1969 |
+
inputs_embeds=inputs_embeds,
|
1970 |
+
output_attentions=output_attentions,
|
1971 |
+
output_hidden_states=output_hidden_states,
|
1972 |
+
return_dict=return_dict,
|
1973 |
+
training=training,
|
1974 |
+
)
|
1975 |
+
sequence_output = outputs[0]
|
1976 |
+
sequence_output = self.dropout(inputs=sequence_output, training=training)
|
1977 |
+
logits = self.classifier(inputs=sequence_output)
|
1978 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1979 |
+
|
1980 |
+
if not return_dict:
|
1981 |
+
output = (logits,) + outputs[2:]
|
1982 |
+
return ((loss,) + output) if loss is not None else output
|
1983 |
+
|
1984 |
+
return TFTokenClassifierOutput(
|
1985 |
+
loss=loss,
|
1986 |
+
logits=logits,
|
1987 |
+
hidden_states=outputs.hidden_states,
|
1988 |
+
attentions=outputs.attentions,
|
1989 |
+
)
|
1990 |
+
|
1991 |
+
def build(self, input_shape=None):
|
1992 |
+
if self.built:
|
1993 |
+
return
|
1994 |
+
self.built = True
|
1995 |
+
if getattr(self, "bert", None) is not None:
|
1996 |
+
with tf.name_scope(self.bert.name):
|
1997 |
+
self.bert.build(None)
|
1998 |
+
if getattr(self, "classifier", None) is not None:
|
1999 |
+
with tf.name_scope(self.classifier.name):
|
2000 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
2001 |
+
|
2002 |
+
|
2003 |
+
@add_start_docstrings(
|
2004 |
+
"""
|
2005 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
2006 |
+
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
2007 |
+
""",
|
2008 |
+
BERT_START_DOCSTRING,
|
2009 |
+
)
|
2010 |
+
class TFBertForQuestionAnswering(TFBertPreTrainedModel, TFQuestionAnsweringLoss):
|
2011 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
2012 |
+
_keys_to_ignore_on_load_unexpected = [
|
2013 |
+
r"pooler",
|
2014 |
+
r"mlm___cls",
|
2015 |
+
r"nsp___cls",
|
2016 |
+
r"cls.predictions",
|
2017 |
+
r"cls.seq_relationship",
|
2018 |
+
]
|
2019 |
+
|
2020 |
+
def __init__(self, config: BertConfig, *inputs, **kwargs):
|
2021 |
+
super().__init__(config, *inputs, **kwargs)
|
2022 |
+
|
2023 |
+
self.num_labels = config.num_labels
|
2024 |
+
|
2025 |
+
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
|
2026 |
+
self.qa_outputs = keras.layers.Dense(
|
2027 |
+
units=config.num_labels,
|
2028 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
2029 |
+
name="qa_outputs",
|
2030 |
+
)
|
2031 |
+
self.config = config
|
2032 |
+
|
2033 |
+
@unpack_inputs
|
2034 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
2035 |
+
@add_code_sample_docstrings(
|
2036 |
+
checkpoint=_CHECKPOINT_FOR_QA,
|
2037 |
+
output_type=TFQuestionAnsweringModelOutput,
|
2038 |
+
config_class=_CONFIG_FOR_DOC,
|
2039 |
+
qa_target_start_index=_QA_TARGET_START_INDEX,
|
2040 |
+
qa_target_end_index=_QA_TARGET_END_INDEX,
|
2041 |
+
expected_output=_QA_EXPECTED_OUTPUT,
|
2042 |
+
expected_loss=_QA_EXPECTED_LOSS,
|
2043 |
+
)
|
2044 |
+
def call(
|
2045 |
+
self,
|
2046 |
+
input_ids: TFModelInputType | None = None,
|
2047 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
2048 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
2049 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
2050 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
2051 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
2052 |
+
output_attentions: Optional[bool] = None,
|
2053 |
+
output_hidden_states: Optional[bool] = None,
|
2054 |
+
return_dict: Optional[bool] = None,
|
2055 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
2056 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
2057 |
+
training: Optional[bool] = False,
|
2058 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
2059 |
+
r"""
|
2060 |
+
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
2061 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
2062 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
2063 |
+
are not taken into account for computing the loss.
|
2064 |
+
end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
2065 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
2066 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
2067 |
+
are not taken into account for computing the loss.
|
2068 |
+
"""
|
2069 |
+
outputs = self.bert(
|
2070 |
+
input_ids=input_ids,
|
2071 |
+
attention_mask=attention_mask,
|
2072 |
+
token_type_ids=token_type_ids,
|
2073 |
+
position_ids=position_ids,
|
2074 |
+
head_mask=head_mask,
|
2075 |
+
inputs_embeds=inputs_embeds,
|
2076 |
+
output_attentions=output_attentions,
|
2077 |
+
output_hidden_states=output_hidden_states,
|
2078 |
+
return_dict=return_dict,
|
2079 |
+
training=training,
|
2080 |
+
)
|
2081 |
+
sequence_output = outputs[0]
|
2082 |
+
logits = self.qa_outputs(inputs=sequence_output)
|
2083 |
+
start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
|
2084 |
+
start_logits = tf.squeeze(input=start_logits, axis=-1)
|
2085 |
+
end_logits = tf.squeeze(input=end_logits, axis=-1)
|
2086 |
+
loss = None
|
2087 |
+
|
2088 |
+
if start_positions is not None and end_positions is not None:
|
2089 |
+
labels = {"start_position": start_positions}
|
2090 |
+
labels["end_position"] = end_positions
|
2091 |
+
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
|
2092 |
+
|
2093 |
+
if not return_dict:
|
2094 |
+
output = (start_logits, end_logits) + outputs[2:]
|
2095 |
+
return ((loss,) + output) if loss is not None else output
|
2096 |
+
|
2097 |
+
return TFQuestionAnsweringModelOutput(
|
2098 |
+
loss=loss,
|
2099 |
+
start_logits=start_logits,
|
2100 |
+
end_logits=end_logits,
|
2101 |
+
hidden_states=outputs.hidden_states,
|
2102 |
+
attentions=outputs.attentions,
|
2103 |
+
)
|
2104 |
+
|
2105 |
+
def build(self, input_shape=None):
|
2106 |
+
if self.built:
|
2107 |
+
return
|
2108 |
+
self.built = True
|
2109 |
+
if getattr(self, "bert", None) is not None:
|
2110 |
+
with tf.name_scope(self.bert.name):
|
2111 |
+
self.bert.build(None)
|
2112 |
+
if getattr(self, "qa_outputs", None) is not None:
|
2113 |
+
with tf.name_scope(self.qa_outputs.name):
|
2114 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert/tokenization_bert_fast.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Fast Tokenization classes for Bert."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from tokenizers import normalizers
|
21 |
+
|
22 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
23 |
+
from ...utils import logging
|
24 |
+
from .tokenization_bert import BertTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
30 |
+
|
31 |
+
|
32 |
+
class BertTokenizerFast(PreTrainedTokenizerFast):
|
33 |
+
r"""
|
34 |
+
Construct a "fast" BERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
|
35 |
+
|
36 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
37 |
+
refer to this superclass for more information regarding those methods.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_file (`str`):
|
41 |
+
File containing the vocabulary.
|
42 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
43 |
+
Whether or not to lowercase the input when tokenizing.
|
44 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
45 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
46 |
+
token instead.
|
47 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
48 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
49 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
50 |
+
token of a sequence built with special tokens.
|
51 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
52 |
+
The token used for padding, for example when batching sequences of different lengths.
|
53 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
54 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
55 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
56 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
57 |
+
The token used for masking values. This is the token used when training this model with masked language
|
58 |
+
modeling. This is the token which the model will try to predict.
|
59 |
+
clean_text (`bool`, *optional*, defaults to `True`):
|
60 |
+
Whether or not to clean the text before tokenization by removing any control characters and replacing all
|
61 |
+
whitespaces by the classic one.
|
62 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
64 |
+
issue](https://github.com/huggingface/transformers/issues/328)).
|
65 |
+
strip_accents (`bool`, *optional*):
|
66 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
67 |
+
value for `lowercase` (as in the original BERT).
|
68 |
+
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
|
69 |
+
The prefix for subwords.
|
70 |
+
"""
|
71 |
+
|
72 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
73 |
+
slow_tokenizer_class = BertTokenizer
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
vocab_file=None,
|
78 |
+
tokenizer_file=None,
|
79 |
+
do_lower_case=True,
|
80 |
+
unk_token="[UNK]",
|
81 |
+
sep_token="[SEP]",
|
82 |
+
pad_token="[PAD]",
|
83 |
+
cls_token="[CLS]",
|
84 |
+
mask_token="[MASK]",
|
85 |
+
tokenize_chinese_chars=True,
|
86 |
+
strip_accents=None,
|
87 |
+
**kwargs,
|
88 |
+
):
|
89 |
+
super().__init__(
|
90 |
+
vocab_file,
|
91 |
+
tokenizer_file=tokenizer_file,
|
92 |
+
do_lower_case=do_lower_case,
|
93 |
+
unk_token=unk_token,
|
94 |
+
sep_token=sep_token,
|
95 |
+
pad_token=pad_token,
|
96 |
+
cls_token=cls_token,
|
97 |
+
mask_token=mask_token,
|
98 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
99 |
+
strip_accents=strip_accents,
|
100 |
+
**kwargs,
|
101 |
+
)
|
102 |
+
|
103 |
+
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
104 |
+
if (
|
105 |
+
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
|
106 |
+
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
|
107 |
+
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
|
108 |
+
):
|
109 |
+
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
110 |
+
normalizer_state["lowercase"] = do_lower_case
|
111 |
+
normalizer_state["strip_accents"] = strip_accents
|
112 |
+
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
|
113 |
+
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
114 |
+
|
115 |
+
self.do_lower_case = do_lower_case
|
116 |
+
|
117 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
118 |
+
"""
|
119 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
120 |
+
adding special tokens. A BERT sequence has the following format:
|
121 |
+
|
122 |
+
- single sequence: `[CLS] X [SEP]`
|
123 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
124 |
+
|
125 |
+
Args:
|
126 |
+
token_ids_0 (`List[int]`):
|
127 |
+
List of IDs to which the special tokens will be added.
|
128 |
+
token_ids_1 (`List[int]`, *optional*):
|
129 |
+
Optional second list of IDs for sequence pairs.
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
133 |
+
"""
|
134 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
135 |
+
|
136 |
+
if token_ids_1 is not None:
|
137 |
+
output += token_ids_1 + [self.sep_token_id]
|
138 |
+
|
139 |
+
return output
|
140 |
+
|
141 |
+
def create_token_type_ids_from_sequences(
|
142 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
143 |
+
) -> List[int]:
|
144 |
+
"""
|
145 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
146 |
+
pair mask has the following format:
|
147 |
+
|
148 |
+
```
|
149 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
150 |
+
| first sequence | second sequence |
|
151 |
+
```
|
152 |
+
|
153 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
154 |
+
|
155 |
+
Args:
|
156 |
+
token_ids_0 (`List[int]`):
|
157 |
+
List of IDs.
|
158 |
+
token_ids_1 (`List[int]`, *optional*):
|
159 |
+
Optional second list of IDs for sequence pairs.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
163 |
+
"""
|
164 |
+
sep = [self.sep_token_id]
|
165 |
+
cls = [self.cls_token_id]
|
166 |
+
if token_ids_1 is None:
|
167 |
+
return len(cls + token_ids_0 + sep) * [0]
|
168 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
169 |
+
|
170 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
171 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
172 |
+
return tuple(files)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert/tokenization_bert_tf.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Union
|
3 |
+
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow_text import BertTokenizer as BertTokenizerLayer
|
6 |
+
from tensorflow_text import FastBertTokenizer, ShrinkLongestTrimmer, case_fold_utf8, combine_segments, pad_model_inputs
|
7 |
+
|
8 |
+
from ...modeling_tf_utils import keras
|
9 |
+
from .tokenization_bert import BertTokenizer
|
10 |
+
|
11 |
+
|
12 |
+
class TFBertTokenizer(keras.layers.Layer):
|
13 |
+
"""
|
14 |
+
This is an in-graph tokenizer for BERT. It should be initialized similarly to other tokenizers, using the
|
15 |
+
`from_pretrained()` method. It can also be initialized with the `from_tokenizer()` method, which imports settings
|
16 |
+
from an existing standard tokenizer object.
|
17 |
+
|
18 |
+
In-graph tokenizers, unlike other Hugging Face tokenizers, are actually Keras layers and are designed to be run
|
19 |
+
when the model is called, rather than during preprocessing. As a result, they have somewhat more limited options
|
20 |
+
than standard tokenizer classes. They are most useful when you want to create an end-to-end model that goes
|
21 |
+
straight from `tf.string` inputs to outputs.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
vocab_list (`list`):
|
25 |
+
List containing the vocabulary.
|
26 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
27 |
+
Whether or not to lowercase the input when tokenizing.
|
28 |
+
cls_token_id (`str`, *optional*, defaults to `"[CLS]"`):
|
29 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
30 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
31 |
+
sep_token_id (`str`, *optional*, defaults to `"[SEP]"`):
|
32 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
33 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
34 |
+
token of a sequence built with special tokens.
|
35 |
+
pad_token_id (`str`, *optional*, defaults to `"[PAD]"`):
|
36 |
+
The token used for padding, for example when batching sequences of different lengths.
|
37 |
+
padding (`str`, defaults to `"longest"`):
|
38 |
+
The type of padding to use. Can be either `"longest"`, to pad only up to the longest sample in the batch,
|
39 |
+
or `"max_length", to pad all inputs to the maximum length supported by the tokenizer.
|
40 |
+
truncation (`bool`, *optional*, defaults to `True`):
|
41 |
+
Whether to truncate the sequence to the maximum length.
|
42 |
+
max_length (`int`, *optional*, defaults to `512`):
|
43 |
+
The maximum length of the sequence, used for padding (if `padding` is "max_length") and/or truncation (if
|
44 |
+
`truncation` is `True`).
|
45 |
+
pad_to_multiple_of (`int`, *optional*, defaults to `None`):
|
46 |
+
If set, the sequence will be padded to a multiple of this value.
|
47 |
+
return_token_type_ids (`bool`, *optional*, defaults to `True`):
|
48 |
+
Whether to return token_type_ids.
|
49 |
+
return_attention_mask (`bool`, *optional*, defaults to `True`):
|
50 |
+
Whether to return the attention_mask.
|
51 |
+
use_fast_bert_tokenizer (`bool`, *optional*, defaults to `True`):
|
52 |
+
If True, will use the FastBertTokenizer class from Tensorflow Text. If False, will use the BertTokenizer
|
53 |
+
class instead. BertTokenizer supports some additional options, but is slower and cannot be exported to
|
54 |
+
TFLite.
|
55 |
+
"""
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
vocab_list: List,
|
60 |
+
do_lower_case: bool,
|
61 |
+
cls_token_id: int = None,
|
62 |
+
sep_token_id: int = None,
|
63 |
+
pad_token_id: int = None,
|
64 |
+
padding: str = "longest",
|
65 |
+
truncation: bool = True,
|
66 |
+
max_length: int = 512,
|
67 |
+
pad_to_multiple_of: int = None,
|
68 |
+
return_token_type_ids: bool = True,
|
69 |
+
return_attention_mask: bool = True,
|
70 |
+
use_fast_bert_tokenizer: bool = True,
|
71 |
+
**tokenizer_kwargs,
|
72 |
+
):
|
73 |
+
super().__init__()
|
74 |
+
if use_fast_bert_tokenizer:
|
75 |
+
self.tf_tokenizer = FastBertTokenizer(
|
76 |
+
vocab_list, token_out_type=tf.int64, lower_case_nfd_strip_accents=do_lower_case, **tokenizer_kwargs
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
lookup_table = tf.lookup.StaticVocabularyTable(
|
80 |
+
tf.lookup.KeyValueTensorInitializer(
|
81 |
+
keys=vocab_list,
|
82 |
+
key_dtype=tf.string,
|
83 |
+
values=tf.range(tf.size(vocab_list, out_type=tf.int64), dtype=tf.int64),
|
84 |
+
value_dtype=tf.int64,
|
85 |
+
),
|
86 |
+
num_oov_buckets=1,
|
87 |
+
)
|
88 |
+
self.tf_tokenizer = BertTokenizerLayer(
|
89 |
+
lookup_table, token_out_type=tf.int64, lower_case=do_lower_case, **tokenizer_kwargs
|
90 |
+
)
|
91 |
+
|
92 |
+
self.vocab_list = vocab_list
|
93 |
+
self.do_lower_case = do_lower_case
|
94 |
+
self.cls_token_id = vocab_list.index("[CLS]") if cls_token_id is None else cls_token_id
|
95 |
+
self.sep_token_id = vocab_list.index("[SEP]") if sep_token_id is None else sep_token_id
|
96 |
+
self.pad_token_id = vocab_list.index("[PAD]") if pad_token_id is None else pad_token_id
|
97 |
+
self.paired_trimmer = ShrinkLongestTrimmer(max_length - 3, axis=1) # Allow room for special tokens
|
98 |
+
self.max_length = max_length
|
99 |
+
self.padding = padding
|
100 |
+
self.truncation = truncation
|
101 |
+
self.pad_to_multiple_of = pad_to_multiple_of
|
102 |
+
self.return_token_type_ids = return_token_type_ids
|
103 |
+
self.return_attention_mask = return_attention_mask
|
104 |
+
|
105 |
+
@classmethod
|
106 |
+
def from_tokenizer(cls, tokenizer: "PreTrainedTokenizerBase", **kwargs): # noqa: F821
|
107 |
+
"""
|
108 |
+
Initialize a `TFBertTokenizer` from an existing `Tokenizer`.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
tokenizer (`PreTrainedTokenizerBase`):
|
112 |
+
The tokenizer to use to initialize the `TFBertTokenizer`.
|
113 |
+
|
114 |
+
Examples:
|
115 |
+
|
116 |
+
```python
|
117 |
+
from transformers import AutoTokenizer, TFBertTokenizer
|
118 |
+
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
120 |
+
tf_tokenizer = TFBertTokenizer.from_tokenizer(tokenizer)
|
121 |
+
```
|
122 |
+
"""
|
123 |
+
do_lower_case = kwargs.pop("do_lower_case", None)
|
124 |
+
do_lower_case = tokenizer.do_lower_case if do_lower_case is None else do_lower_case
|
125 |
+
cls_token_id = kwargs.pop("cls_token_id", None)
|
126 |
+
cls_token_id = tokenizer.cls_token_id if cls_token_id is None else cls_token_id
|
127 |
+
sep_token_id = kwargs.pop("sep_token_id", None)
|
128 |
+
sep_token_id = tokenizer.sep_token_id if sep_token_id is None else sep_token_id
|
129 |
+
pad_token_id = kwargs.pop("pad_token_id", None)
|
130 |
+
pad_token_id = tokenizer.pad_token_id if pad_token_id is None else pad_token_id
|
131 |
+
|
132 |
+
vocab = tokenizer.get_vocab()
|
133 |
+
vocab = sorted(vocab.items(), key=lambda x: x[1])
|
134 |
+
vocab_list = [entry[0] for entry in vocab]
|
135 |
+
return cls(
|
136 |
+
vocab_list=vocab_list,
|
137 |
+
do_lower_case=do_lower_case,
|
138 |
+
cls_token_id=cls_token_id,
|
139 |
+
sep_token_id=sep_token_id,
|
140 |
+
pad_token_id=pad_token_id,
|
141 |
+
**kwargs,
|
142 |
+
)
|
143 |
+
|
144 |
+
@classmethod
|
145 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, **kwargs):
|
146 |
+
"""
|
147 |
+
Instantiate a `TFBertTokenizer` from a pre-trained tokenizer.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
151 |
+
The name or path to the pre-trained tokenizer.
|
152 |
+
|
153 |
+
Examples:
|
154 |
+
|
155 |
+
```python
|
156 |
+
from transformers import TFBertTokenizer
|
157 |
+
|
158 |
+
tf_tokenizer = TFBertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
159 |
+
```
|
160 |
+
"""
|
161 |
+
try:
|
162 |
+
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs)
|
163 |
+
except: # noqa: E722
|
164 |
+
from .tokenization_bert_fast import BertTokenizerFast
|
165 |
+
|
166 |
+
tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs)
|
167 |
+
return cls.from_tokenizer(tokenizer, **kwargs)
|
168 |
+
|
169 |
+
def unpaired_tokenize(self, texts):
|
170 |
+
if self.do_lower_case:
|
171 |
+
texts = case_fold_utf8(texts)
|
172 |
+
tokens = self.tf_tokenizer.tokenize(texts)
|
173 |
+
return tokens.merge_dims(1, -1)
|
174 |
+
|
175 |
+
def call(
|
176 |
+
self,
|
177 |
+
text,
|
178 |
+
text_pair=None,
|
179 |
+
padding=None,
|
180 |
+
truncation=None,
|
181 |
+
max_length=None,
|
182 |
+
pad_to_multiple_of=None,
|
183 |
+
return_token_type_ids=None,
|
184 |
+
return_attention_mask=None,
|
185 |
+
):
|
186 |
+
if padding is None:
|
187 |
+
padding = self.padding
|
188 |
+
if padding not in ("longest", "max_length"):
|
189 |
+
raise ValueError("Padding must be either 'longest' or 'max_length'!")
|
190 |
+
if max_length is not None and text_pair is not None:
|
191 |
+
# Because we have to instantiate a Trimmer to do it properly
|
192 |
+
raise ValueError("max_length cannot be overridden at call time when truncating paired texts!")
|
193 |
+
if max_length is None:
|
194 |
+
max_length = self.max_length
|
195 |
+
if truncation is None:
|
196 |
+
truncation = self.truncation
|
197 |
+
if pad_to_multiple_of is None:
|
198 |
+
pad_to_multiple_of = self.pad_to_multiple_of
|
199 |
+
if return_token_type_ids is None:
|
200 |
+
return_token_type_ids = self.return_token_type_ids
|
201 |
+
if return_attention_mask is None:
|
202 |
+
return_attention_mask = self.return_attention_mask
|
203 |
+
if not isinstance(text, tf.Tensor):
|
204 |
+
text = tf.convert_to_tensor(text)
|
205 |
+
if text_pair is not None and not isinstance(text_pair, tf.Tensor):
|
206 |
+
text_pair = tf.convert_to_tensor(text_pair)
|
207 |
+
if text_pair is not None:
|
208 |
+
if text.shape.rank > 1:
|
209 |
+
raise ValueError("text argument should not be multidimensional when a text pair is supplied!")
|
210 |
+
if text_pair.shape.rank > 1:
|
211 |
+
raise ValueError("text_pair should not be multidimensional!")
|
212 |
+
if text.shape.rank == 2:
|
213 |
+
text, text_pair = text[:, 0], text[:, 1]
|
214 |
+
text = self.unpaired_tokenize(text)
|
215 |
+
if text_pair is None: # Unpaired text
|
216 |
+
if truncation:
|
217 |
+
text = text[:, : max_length - 2] # Allow room for special tokens
|
218 |
+
input_ids, token_type_ids = combine_segments(
|
219 |
+
(text,), start_of_sequence_id=self.cls_token_id, end_of_segment_id=self.sep_token_id
|
220 |
+
)
|
221 |
+
else: # Paired text
|
222 |
+
text_pair = self.unpaired_tokenize(text_pair)
|
223 |
+
if truncation:
|
224 |
+
text, text_pair = self.paired_trimmer.trim([text, text_pair])
|
225 |
+
input_ids, token_type_ids = combine_segments(
|
226 |
+
(text, text_pair), start_of_sequence_id=self.cls_token_id, end_of_segment_id=self.sep_token_id
|
227 |
+
)
|
228 |
+
if padding == "longest":
|
229 |
+
pad_length = input_ids.bounding_shape(axis=1)
|
230 |
+
if pad_to_multiple_of is not None:
|
231 |
+
# No ceiling division in tensorflow, so we negate floordiv instead
|
232 |
+
pad_length = pad_to_multiple_of * (-tf.math.floordiv(-pad_length, pad_to_multiple_of))
|
233 |
+
else:
|
234 |
+
pad_length = max_length
|
235 |
+
|
236 |
+
input_ids, attention_mask = pad_model_inputs(input_ids, max_seq_length=pad_length, pad_value=self.pad_token_id)
|
237 |
+
output = {"input_ids": input_ids}
|
238 |
+
if return_attention_mask:
|
239 |
+
output["attention_mask"] = attention_mask
|
240 |
+
if return_token_type_ids:
|
241 |
+
token_type_ids, _ = pad_model_inputs(
|
242 |
+
token_type_ids, max_seq_length=pad_length, pad_value=self.pad_token_id
|
243 |
+
)
|
244 |
+
output["token_type_ids"] = token_type_ids
|
245 |
+
return output
|
246 |
+
|
247 |
+
def get_config(self):
|
248 |
+
return {
|
249 |
+
"vocab_list": self.vocab_list,
|
250 |
+
"do_lower_case": self.do_lower_case,
|
251 |
+
"cls_token_id": self.cls_token_id,
|
252 |
+
"sep_token_id": self.sep_token_id,
|
253 |
+
"pad_token_id": self.pad_token_id,
|
254 |
+
}
|
llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/__init__.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import _LazyModule
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {"tokenization_byt5": ["ByT5Tokenizer"]}
|
21 |
+
|
22 |
+
|
23 |
+
if TYPE_CHECKING:
|
24 |
+
from .tokenization_byt5 import ByT5Tokenizer
|
25 |
+
else:
|
26 |
+
import sys
|
27 |
+
|
28 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (506 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/convert_byt5_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc
ADDED
Binary file (9.23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The T5 authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert T5 checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
from transformers import T5Config, T5ForConditionalGeneration, load_tf_weights_in_t5
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logging.set_verbosity_info()
|
25 |
+
|
26 |
+
|
27 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path):
|
28 |
+
# Initialise PyTorch model
|
29 |
+
config = T5Config.from_json_file(config_file)
|
30 |
+
print(f"Building PyTorch model from configuration: {config}")
|
31 |
+
model = T5ForConditionalGeneration(config)
|
32 |
+
|
33 |
+
# Load weights from tf checkpoint
|
34 |
+
load_tf_weights_in_t5(model, config, tf_checkpoint_path)
|
35 |
+
|
36 |
+
# Save pytorch-model
|
37 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
38 |
+
model.save_pretrained(pytorch_dump_path)
|
39 |
+
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
parser = argparse.ArgumentParser()
|
43 |
+
# Required parameters
|
44 |
+
parser.add_argument(
|
45 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
46 |
+
)
|
47 |
+
parser.add_argument(
|
48 |
+
"--config_file",
|
49 |
+
default=None,
|
50 |
+
type=str,
|
51 |
+
required=True,
|
52 |
+
help=(
|
53 |
+
"The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture."
|
54 |
+
),
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
58 |
+
)
|
59 |
+
args = parser.parse_args()
|
60 |
+
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/byt5/tokenization_byt5.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 T5 Authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for model ByT5."""
|
16 |
+
|
17 |
+
|
18 |
+
import warnings
|
19 |
+
from typing import List, Optional, Tuple
|
20 |
+
|
21 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class ByT5Tokenizer(PreTrainedTokenizer):
|
29 |
+
"""
|
30 |
+
Construct a ByT5 tokenizer. ByT5 simply uses raw bytes utf-8 encoding.
|
31 |
+
|
32 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
33 |
+
this superclass for more information regarding those methods.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
37 |
+
The end of sequence token.
|
38 |
+
|
39 |
+
<Tip>
|
40 |
+
|
41 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
42 |
+
The token used is the `sep_token`.
|
43 |
+
|
44 |
+
</Tip>
|
45 |
+
|
46 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
47 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
48 |
+
token instead.
|
49 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
50 |
+
The token used for padding, for example when batching sequences of different lengths.
|
51 |
+
extra_ids (`int`, *optional*, defaults to 125):
|
52 |
+
Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are
|
53 |
+
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are
|
54 |
+
indexed from the end of the vocabulary up to beginning ("<extra_id_0>" is the last token in the vocabulary
|
55 |
+
like in ByT5 preprocessing see
|
56 |
+
[here](https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117)).
|
57 |
+
additional_special_tokens (`List[str]`, *optional*):
|
58 |
+
Additional special tokens used by the tokenizer.
|
59 |
+
"""
|
60 |
+
|
61 |
+
model_input_names = ["input_ids", "attention_mask"]
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
eos_token="</s>",
|
66 |
+
unk_token="<unk>",
|
67 |
+
pad_token="<pad>",
|
68 |
+
extra_ids=125,
|
69 |
+
additional_special_tokens=None,
|
70 |
+
**kwargs,
|
71 |
+
) -> None:
|
72 |
+
# Add extra_ids to the special token list
|
73 |
+
if extra_ids > 0 and additional_special_tokens is None:
|
74 |
+
additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
|
75 |
+
elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0:
|
76 |
+
# Check that we have the right number of extra_id special tokens
|
77 |
+
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
|
78 |
+
if extra_tokens != extra_ids:
|
79 |
+
raise ValueError(
|
80 |
+
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
|
81 |
+
" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"
|
82 |
+
" extra_ids tokens"
|
83 |
+
)
|
84 |
+
|
85 |
+
pad_token = AddedToken(pad_token, lstrip=True, rstrip=True) if isinstance(pad_token, str) else pad_token
|
86 |
+
# we force left and right stripping for backward compatibility. The byt5tests depend on this.
|
87 |
+
eos_token = AddedToken(eos_token, lstrip=True, rstrip=True) if isinstance(eos_token, str) else eos_token
|
88 |
+
unk_token = AddedToken(unk_token, lstrip=True, rstrip=True) if isinstance(unk_token, str) else unk_token
|
89 |
+
# unk token needs to be in the vocab with correct index
|
90 |
+
self._added_tokens_decoder = {0: pad_token, 1: eos_token, 2: unk_token}
|
91 |
+
self.offset = len(self._added_tokens_decoder)
|
92 |
+
self._utf_vocab_size = 2**8 # utf is 8 bits
|
93 |
+
super().__init__(
|
94 |
+
eos_token=eos_token,
|
95 |
+
unk_token=unk_token,
|
96 |
+
pad_token=pad_token,
|
97 |
+
extra_ids=0,
|
98 |
+
additional_special_tokens=additional_special_tokens, # TODO extra ids are not used :sweatywmile:
|
99 |
+
**kwargs,
|
100 |
+
)
|
101 |
+
|
102 |
+
@property
|
103 |
+
def vocab_size(self):
|
104 |
+
return self._utf_vocab_size
|
105 |
+
|
106 |
+
def get_vocab(self):
|
107 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
|
108 |
+
vocab.update(self.added_tokens_encoder)
|
109 |
+
return vocab
|
110 |
+
|
111 |
+
def get_special_tokens_mask(
|
112 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
113 |
+
) -> List[int]:
|
114 |
+
"""
|
115 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
116 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
token_ids_0 (`List[int]`):
|
120 |
+
List of IDs.
|
121 |
+
token_ids_1 (`List[int]`, *optional*):
|
122 |
+
Optional second list of IDs for sequence pairs.
|
123 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
124 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
128 |
+
"""
|
129 |
+
if already_has_special_tokens:
|
130 |
+
return super().get_special_tokens_mask(
|
131 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
132 |
+
)
|
133 |
+
|
134 |
+
# normal case: some special tokens
|
135 |
+
if token_ids_1 is None:
|
136 |
+
return ([0] * len(token_ids_0)) + [1]
|
137 |
+
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
138 |
+
|
139 |
+
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
140 |
+
"""Do not add eos again if user already added it."""
|
141 |
+
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
142 |
+
warnings.warn(
|
143 |
+
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
|
144 |
+
" eos tokens being added."
|
145 |
+
)
|
146 |
+
return token_ids
|
147 |
+
else:
|
148 |
+
return token_ids + [self.eos_token_id]
|
149 |
+
|
150 |
+
def create_token_type_ids_from_sequences(
|
151 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
152 |
+
) -> List[int]:
|
153 |
+
"""
|
154 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. ByT5 does not
|
155 |
+
make use of token type ids, therefore a list of zeros is returned.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
token_ids_0 (`List[int]`):
|
159 |
+
List of IDs.
|
160 |
+
token_ids_1 (`List[int]`, *optional*):
|
161 |
+
Optional second list of IDs for sequence pairs.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
`List[int]`: List of zeros.
|
165 |
+
"""
|
166 |
+
eos = [self.eos_token_id]
|
167 |
+
|
168 |
+
if token_ids_1 is None:
|
169 |
+
return len(token_ids_0 + eos) * [0]
|
170 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
171 |
+
|
172 |
+
def build_inputs_with_special_tokens(
|
173 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
174 |
+
) -> List[int]:
|
175 |
+
"""
|
176 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
177 |
+
adding special tokens. A sequence has the following format:
|
178 |
+
|
179 |
+
- single sequence: `X </s>`
|
180 |
+
- pair of sequences: `A </s> B </s>`
|
181 |
+
|
182 |
+
Args:
|
183 |
+
token_ids_0 (`List[int]`):
|
184 |
+
List of IDs to which the special tokens will be added.
|
185 |
+
token_ids_1 (`List[int]`, *optional*):
|
186 |
+
Optional second list of IDs for sequence pairs.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
190 |
+
"""
|
191 |
+
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
192 |
+
if token_ids_1 is None:
|
193 |
+
return token_ids_0
|
194 |
+
else:
|
195 |
+
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
196 |
+
return token_ids_0 + token_ids_1
|
197 |
+
|
198 |
+
def _tokenize(self, text: str) -> List[str]:
|
199 |
+
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
200 |
+
tokens = [chr(i) for i in text.encode("utf-8")]
|
201 |
+
return tokens
|
202 |
+
|
203 |
+
def _convert_token_to_id(self, token):
|
204 |
+
"""Converts a token (str) in an id using the vocab."""
|
205 |
+
|
206 |
+
if len(token) != 1:
|
207 |
+
token_id = None
|
208 |
+
else:
|
209 |
+
token_id = ord(token) + self.offset
|
210 |
+
|
211 |
+
return token_id
|
212 |
+
|
213 |
+
def _convert_id_to_token(self, index):
|
214 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
215 |
+
token = chr(index - self.offset)
|
216 |
+
return token
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens):
|
219 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
220 |
+
bstring = b""
|
221 |
+
for token in tokens:
|
222 |
+
if token in self.added_tokens_decoder:
|
223 |
+
tok_string = self.added_tokens_decoder[token].encode("utf-8")
|
224 |
+
elif token in self.added_tokens_encoder:
|
225 |
+
tok_string = token.encode("utf-8")
|
226 |
+
else:
|
227 |
+
tok_string = bytes([ord(token)])
|
228 |
+
bstring += tok_string
|
229 |
+
string = bstring.decode("utf-8", errors="ignore")
|
230 |
+
return string
|
231 |
+
|
232 |
+
# ByT5Tokenizer has no vocab file
|
233 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
234 |
+
return ()
|
llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__init__.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_cvt": ["CVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CvtConfig"]}
|
20 |
+
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_torch_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["modeling_cvt"] = [
|
29 |
+
"CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
30 |
+
"CvtForImageClassification",
|
31 |
+
"CvtModel",
|
32 |
+
"CvtPreTrainedModel",
|
33 |
+
]
|
34 |
+
|
35 |
+
try:
|
36 |
+
if not is_tf_available():
|
37 |
+
raise OptionalDependencyNotAvailable()
|
38 |
+
except OptionalDependencyNotAvailable:
|
39 |
+
pass
|
40 |
+
else:
|
41 |
+
_import_structure["modeling_tf_cvt"] = [
|
42 |
+
"TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
43 |
+
"TFCvtForImageClassification",
|
44 |
+
"TFCvtModel",
|
45 |
+
"TFCvtPreTrainedModel",
|
46 |
+
]
|
47 |
+
|
48 |
+
if TYPE_CHECKING:
|
49 |
+
from .configuration_cvt import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP, CvtConfig
|
50 |
+
|
51 |
+
try:
|
52 |
+
if not is_torch_available():
|
53 |
+
raise OptionalDependencyNotAvailable()
|
54 |
+
except OptionalDependencyNotAvailable:
|
55 |
+
pass
|
56 |
+
else:
|
57 |
+
from .modeling_cvt import (
|
58 |
+
CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
59 |
+
CvtForImageClassification,
|
60 |
+
CvtModel,
|
61 |
+
CvtPreTrainedModel,
|
62 |
+
)
|
63 |
+
|
64 |
+
try:
|
65 |
+
if not is_tf_available():
|
66 |
+
raise OptionalDependencyNotAvailable()
|
67 |
+
except OptionalDependencyNotAvailable:
|
68 |
+
pass
|
69 |
+
else:
|
70 |
+
from .modeling_tf_cvt import (
|
71 |
+
TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
72 |
+
TFCvtForImageClassification,
|
73 |
+
TFCvtModel,
|
74 |
+
TFCvtPreTrainedModel,
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
else:
|
79 |
+
import sys
|
80 |
+
|
81 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/configuration_cvt.cpython-310.pyc
ADDED
Binary file (6.01 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/convert_cvt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (9.45 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/modeling_cvt.cpython-310.pyc
ADDED
Binary file (22 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/__pycache__/modeling_tf_cvt.cpython-310.pyc
ADDED
Binary file (34.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/configuration_cvt.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" CvT model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class CvtConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`CvtModel`]. It is used to instantiate a CvT model
|
30 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
31 |
+
defaults will yield a similar configuration to that of the CvT
|
32 |
+
[microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
num_channels (`int`, *optional*, defaults to 3):
|
39 |
+
The number of input channels.
|
40 |
+
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3]`):
|
41 |
+
The kernel size of each encoder's patch embedding.
|
42 |
+
patch_stride (`List[int]`, *optional*, defaults to `[4, 2, 2]`):
|
43 |
+
The stride size of each encoder's patch embedding.
|
44 |
+
patch_padding (`List[int]`, *optional*, defaults to `[2, 1, 1]`):
|
45 |
+
The padding size of each encoder's patch embedding.
|
46 |
+
embed_dim (`List[int]`, *optional*, defaults to `[64, 192, 384]`):
|
47 |
+
Dimension of each of the encoder blocks.
|
48 |
+
num_heads (`List[int]`, *optional*, defaults to `[1, 3, 6]`):
|
49 |
+
Number of attention heads for each attention layer in each block of the Transformer encoder.
|
50 |
+
depth (`List[int]`, *optional*, defaults to `[1, 2, 10]`):
|
51 |
+
The number of layers in each encoder block.
|
52 |
+
mlp_ratios (`List[float]`, *optional*, defaults to `[4.0, 4.0, 4.0, 4.0]`):
|
53 |
+
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
|
54 |
+
encoder blocks.
|
55 |
+
attention_drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`):
|
56 |
+
The dropout ratio for the attention probabilities.
|
57 |
+
drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`):
|
58 |
+
The dropout ratio for the patch embeddings probabilities.
|
59 |
+
drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`):
|
60 |
+
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
|
61 |
+
qkv_bias (`List[bool]`, *optional*, defaults to `[True, True, True]`):
|
62 |
+
The bias bool for query, key and value in attentions
|
63 |
+
cls_token (`List[bool]`, *optional*, defaults to `[False, False, True]`):
|
64 |
+
Whether or not to add a classification token to the output of each of the last 3 stages.
|
65 |
+
qkv_projection_method (`List[string]`, *optional*, defaults to ["dw_bn", "dw_bn", "dw_bn"]`):
|
66 |
+
The projection method for query, key and value Default is depth-wise convolutions with batch norm. For
|
67 |
+
Linear projection use "avg".
|
68 |
+
kernel_qkv (`List[int]`, *optional*, defaults to `[3, 3, 3]`):
|
69 |
+
The kernel size for query, key and value in attention layer
|
70 |
+
padding_kv (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
|
71 |
+
The padding size for key and value in attention layer
|
72 |
+
stride_kv (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
|
73 |
+
The stride size for key and value in attention layer
|
74 |
+
padding_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
|
75 |
+
The padding size for query in attention layer
|
76 |
+
stride_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
|
77 |
+
The stride size for query in attention layer
|
78 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
79 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
80 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
81 |
+
The epsilon used by the layer normalization layers.
|
82 |
+
|
83 |
+
Example:
|
84 |
+
|
85 |
+
```python
|
86 |
+
>>> from transformers import CvtConfig, CvtModel
|
87 |
+
|
88 |
+
>>> # Initializing a Cvt msft/cvt style configuration
|
89 |
+
>>> configuration = CvtConfig()
|
90 |
+
|
91 |
+
>>> # Initializing a model (with random weights) from the msft/cvt style configuration
|
92 |
+
>>> model = CvtModel(configuration)
|
93 |
+
|
94 |
+
>>> # Accessing the model configuration
|
95 |
+
>>> configuration = model.config
|
96 |
+
```"""
|
97 |
+
|
98 |
+
model_type = "cvt"
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
num_channels=3,
|
103 |
+
patch_sizes=[7, 3, 3],
|
104 |
+
patch_stride=[4, 2, 2],
|
105 |
+
patch_padding=[2, 1, 1],
|
106 |
+
embed_dim=[64, 192, 384],
|
107 |
+
num_heads=[1, 3, 6],
|
108 |
+
depth=[1, 2, 10],
|
109 |
+
mlp_ratio=[4.0, 4.0, 4.0],
|
110 |
+
attention_drop_rate=[0.0, 0.0, 0.0],
|
111 |
+
drop_rate=[0.0, 0.0, 0.0],
|
112 |
+
drop_path_rate=[0.0, 0.0, 0.1],
|
113 |
+
qkv_bias=[True, True, True],
|
114 |
+
cls_token=[False, False, True],
|
115 |
+
qkv_projection_method=["dw_bn", "dw_bn", "dw_bn"],
|
116 |
+
kernel_qkv=[3, 3, 3],
|
117 |
+
padding_kv=[1, 1, 1],
|
118 |
+
stride_kv=[2, 2, 2],
|
119 |
+
padding_q=[1, 1, 1],
|
120 |
+
stride_q=[1, 1, 1],
|
121 |
+
initializer_range=0.02,
|
122 |
+
layer_norm_eps=1e-12,
|
123 |
+
**kwargs,
|
124 |
+
):
|
125 |
+
super().__init__(**kwargs)
|
126 |
+
self.num_channels = num_channels
|
127 |
+
self.patch_sizes = patch_sizes
|
128 |
+
self.patch_stride = patch_stride
|
129 |
+
self.patch_padding = patch_padding
|
130 |
+
self.embed_dim = embed_dim
|
131 |
+
self.num_heads = num_heads
|
132 |
+
self.depth = depth
|
133 |
+
self.mlp_ratio = mlp_ratio
|
134 |
+
self.attention_drop_rate = attention_drop_rate
|
135 |
+
self.drop_rate = drop_rate
|
136 |
+
self.drop_path_rate = drop_path_rate
|
137 |
+
self.qkv_bias = qkv_bias
|
138 |
+
self.cls_token = cls_token
|
139 |
+
self.qkv_projection_method = qkv_projection_method
|
140 |
+
self.kernel_qkv = kernel_qkv
|
141 |
+
self.padding_kv = padding_kv
|
142 |
+
self.stride_kv = stride_kv
|
143 |
+
self.padding_q = padding_q
|
144 |
+
self.stride_q = stride_q
|
145 |
+
self.initializer_range = initializer_range
|
146 |
+
self.layer_norm_eps = layer_norm_eps
|
llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert CvT checkpoints from the original repository.
|
16 |
+
|
17 |
+
URL: https://github.com/microsoft/CvT"""
|
18 |
+
|
19 |
+
|
20 |
+
import argparse
|
21 |
+
import json
|
22 |
+
from collections import OrderedDict
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from huggingface_hub import cached_download, hf_hub_url
|
26 |
+
|
27 |
+
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
|
28 |
+
|
29 |
+
|
30 |
+
def embeddings(idx):
|
31 |
+
"""
|
32 |
+
The function helps in renaming embedding layer weights.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
idx: stage number in original model
|
36 |
+
"""
|
37 |
+
embed = []
|
38 |
+
embed.append(
|
39 |
+
(
|
40 |
+
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight",
|
41 |
+
f"stage{idx}.patch_embed.proj.weight",
|
42 |
+
)
|
43 |
+
)
|
44 |
+
embed.append(
|
45 |
+
(
|
46 |
+
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias",
|
47 |
+
f"stage{idx}.patch_embed.proj.bias",
|
48 |
+
)
|
49 |
+
)
|
50 |
+
embed.append(
|
51 |
+
(
|
52 |
+
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight",
|
53 |
+
f"stage{idx}.patch_embed.norm.weight",
|
54 |
+
)
|
55 |
+
)
|
56 |
+
embed.append(
|
57 |
+
(
|
58 |
+
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias",
|
59 |
+
f"stage{idx}.patch_embed.norm.bias",
|
60 |
+
)
|
61 |
+
)
|
62 |
+
return embed
|
63 |
+
|
64 |
+
|
65 |
+
def attention(idx, cnt):
|
66 |
+
"""
|
67 |
+
The function helps in renaming attention block layers weights.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
idx: stage number in original model
|
71 |
+
cnt: count of blocks in each stage
|
72 |
+
"""
|
73 |
+
attention_weights = []
|
74 |
+
attention_weights.append(
|
75 |
+
(
|
76 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight",
|
77 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight",
|
78 |
+
)
|
79 |
+
)
|
80 |
+
attention_weights.append(
|
81 |
+
(
|
82 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight",
|
83 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight",
|
84 |
+
)
|
85 |
+
)
|
86 |
+
attention_weights.append(
|
87 |
+
(
|
88 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias",
|
89 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias",
|
90 |
+
)
|
91 |
+
)
|
92 |
+
attention_weights.append(
|
93 |
+
(
|
94 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean",
|
95 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean",
|
96 |
+
)
|
97 |
+
)
|
98 |
+
attention_weights.append(
|
99 |
+
(
|
100 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var",
|
101 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var",
|
102 |
+
)
|
103 |
+
)
|
104 |
+
attention_weights.append(
|
105 |
+
(
|
106 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked",
|
107 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked",
|
108 |
+
)
|
109 |
+
)
|
110 |
+
attention_weights.append(
|
111 |
+
(
|
112 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight",
|
113 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight",
|
114 |
+
)
|
115 |
+
)
|
116 |
+
attention_weights.append(
|
117 |
+
(
|
118 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight",
|
119 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight",
|
120 |
+
)
|
121 |
+
)
|
122 |
+
attention_weights.append(
|
123 |
+
(
|
124 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias",
|
125 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias",
|
126 |
+
)
|
127 |
+
)
|
128 |
+
attention_weights.append(
|
129 |
+
(
|
130 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean",
|
131 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean",
|
132 |
+
)
|
133 |
+
)
|
134 |
+
attention_weights.append(
|
135 |
+
(
|
136 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var",
|
137 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var",
|
138 |
+
)
|
139 |
+
)
|
140 |
+
attention_weights.append(
|
141 |
+
(
|
142 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked",
|
143 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked",
|
144 |
+
)
|
145 |
+
)
|
146 |
+
attention_weights.append(
|
147 |
+
(
|
148 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight",
|
149 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight",
|
150 |
+
)
|
151 |
+
)
|
152 |
+
attention_weights.append(
|
153 |
+
(
|
154 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight",
|
155 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight",
|
156 |
+
)
|
157 |
+
)
|
158 |
+
attention_weights.append(
|
159 |
+
(
|
160 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias",
|
161 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias",
|
162 |
+
)
|
163 |
+
)
|
164 |
+
attention_weights.append(
|
165 |
+
(
|
166 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean",
|
167 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean",
|
168 |
+
)
|
169 |
+
)
|
170 |
+
attention_weights.append(
|
171 |
+
(
|
172 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var",
|
173 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var",
|
174 |
+
)
|
175 |
+
)
|
176 |
+
attention_weights.append(
|
177 |
+
(
|
178 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked",
|
179 |
+
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked",
|
180 |
+
)
|
181 |
+
)
|
182 |
+
attention_weights.append(
|
183 |
+
(
|
184 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight",
|
185 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_q.weight",
|
186 |
+
)
|
187 |
+
)
|
188 |
+
attention_weights.append(
|
189 |
+
(
|
190 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias",
|
191 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_q.bias",
|
192 |
+
)
|
193 |
+
)
|
194 |
+
attention_weights.append(
|
195 |
+
(
|
196 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight",
|
197 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_k.weight",
|
198 |
+
)
|
199 |
+
)
|
200 |
+
attention_weights.append(
|
201 |
+
(
|
202 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias",
|
203 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_k.bias",
|
204 |
+
)
|
205 |
+
)
|
206 |
+
attention_weights.append(
|
207 |
+
(
|
208 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight",
|
209 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_v.weight",
|
210 |
+
)
|
211 |
+
)
|
212 |
+
attention_weights.append(
|
213 |
+
(
|
214 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias",
|
215 |
+
f"stage{idx}.blocks.{cnt}.attn.proj_v.bias",
|
216 |
+
)
|
217 |
+
)
|
218 |
+
attention_weights.append(
|
219 |
+
(
|
220 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight",
|
221 |
+
f"stage{idx}.blocks.{cnt}.attn.proj.weight",
|
222 |
+
)
|
223 |
+
)
|
224 |
+
attention_weights.append(
|
225 |
+
(
|
226 |
+
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias",
|
227 |
+
f"stage{idx}.blocks.{cnt}.attn.proj.bias",
|
228 |
+
)
|
229 |
+
)
|
230 |
+
attention_weights.append(
|
231 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight")
|
232 |
+
)
|
233 |
+
attention_weights.append(
|
234 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias")
|
235 |
+
)
|
236 |
+
attention_weights.append(
|
237 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight")
|
238 |
+
)
|
239 |
+
attention_weights.append(
|
240 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias")
|
241 |
+
)
|
242 |
+
attention_weights.append(
|
243 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight")
|
244 |
+
)
|
245 |
+
attention_weights.append(
|
246 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias")
|
247 |
+
)
|
248 |
+
attention_weights.append(
|
249 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight")
|
250 |
+
)
|
251 |
+
attention_weights.append(
|
252 |
+
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias")
|
253 |
+
)
|
254 |
+
return attention_weights
|
255 |
+
|
256 |
+
|
257 |
+
def cls_token(idx):
|
258 |
+
"""
|
259 |
+
Function helps in renaming cls_token weights
|
260 |
+
"""
|
261 |
+
token = []
|
262 |
+
token.append((f"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token"))
|
263 |
+
return token
|
264 |
+
|
265 |
+
|
266 |
+
def final():
|
267 |
+
"""
|
268 |
+
Function helps in renaming final classification layer
|
269 |
+
"""
|
270 |
+
head = []
|
271 |
+
head.append(("layernorm.weight", "norm.weight"))
|
272 |
+
head.append(("layernorm.bias", "norm.bias"))
|
273 |
+
head.append(("classifier.weight", "head.weight"))
|
274 |
+
head.append(("classifier.bias", "head.bias"))
|
275 |
+
return head
|
276 |
+
|
277 |
+
|
278 |
+
def convert_cvt_checkpoint(cvt_model, image_size, cvt_file_name, pytorch_dump_folder):
|
279 |
+
"""
|
280 |
+
Fucntion to convert the microsoft cvt checkpoint to huggingface checkpoint
|
281 |
+
"""
|
282 |
+
img_labels_file = "imagenet-1k-id2label.json"
|
283 |
+
num_labels = 1000
|
284 |
+
|
285 |
+
repo_id = "huggingface/label-files"
|
286 |
+
num_labels = num_labels
|
287 |
+
id2label = json.load(open(cached_download(hf_hub_url(repo_id, img_labels_file, repo_type="dataset")), "r"))
|
288 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
289 |
+
|
290 |
+
id2label = id2label
|
291 |
+
label2id = {v: k for k, v in id2label.items()}
|
292 |
+
|
293 |
+
config = config = CvtConfig(num_labels=num_labels, id2label=id2label, label2id=label2id)
|
294 |
+
|
295 |
+
# For depth size 13 (13 = 1+2+10)
|
296 |
+
if cvt_model.rsplit("/", 1)[-1][4:6] == "13":
|
297 |
+
config.depth = [1, 2, 10]
|
298 |
+
|
299 |
+
# For depth size 21 (21 = 1+4+16)
|
300 |
+
elif cvt_model.rsplit("/", 1)[-1][4:6] == "21":
|
301 |
+
config.depth = [1, 4, 16]
|
302 |
+
|
303 |
+
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
|
304 |
+
else:
|
305 |
+
config.depth = [2, 2, 20]
|
306 |
+
config.num_heads = [3, 12, 16]
|
307 |
+
config.embed_dim = [192, 768, 1024]
|
308 |
+
|
309 |
+
model = CvtForImageClassification(config)
|
310 |
+
image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k")
|
311 |
+
image_processor.size["shortest_edge"] = image_size
|
312 |
+
original_weights = torch.load(cvt_file_name, map_location=torch.device("cpu"))
|
313 |
+
|
314 |
+
huggingface_weights = OrderedDict()
|
315 |
+
list_of_state_dict = []
|
316 |
+
|
317 |
+
for idx in range(len(config.depth)):
|
318 |
+
if config.cls_token[idx]:
|
319 |
+
list_of_state_dict = list_of_state_dict + cls_token(idx)
|
320 |
+
list_of_state_dict = list_of_state_dict + embeddings(idx)
|
321 |
+
for cnt in range(config.depth[idx]):
|
322 |
+
list_of_state_dict = list_of_state_dict + attention(idx, cnt)
|
323 |
+
|
324 |
+
list_of_state_dict = list_of_state_dict + final()
|
325 |
+
for gg in list_of_state_dict:
|
326 |
+
print(gg)
|
327 |
+
for i in range(len(list_of_state_dict)):
|
328 |
+
huggingface_weights[list_of_state_dict[i][0]] = original_weights[list_of_state_dict[i][1]]
|
329 |
+
|
330 |
+
model.load_state_dict(huggingface_weights)
|
331 |
+
model.save_pretrained(pytorch_dump_folder)
|
332 |
+
image_processor.save_pretrained(pytorch_dump_folder)
|
333 |
+
|
334 |
+
|
335 |
+
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
|
336 |
+
|
337 |
+
if __name__ == "__main__":
|
338 |
+
parser = argparse.ArgumentParser()
|
339 |
+
parser.add_argument(
|
340 |
+
"--cvt_model",
|
341 |
+
default="cvt-w24",
|
342 |
+
type=str,
|
343 |
+
help="Name of the cvt model you'd like to convert.",
|
344 |
+
)
|
345 |
+
parser.add_argument(
|
346 |
+
"--image_size",
|
347 |
+
default=384,
|
348 |
+
type=int,
|
349 |
+
help="Input Image Size",
|
350 |
+
)
|
351 |
+
parser.add_argument(
|
352 |
+
"--cvt_file_name",
|
353 |
+
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
|
354 |
+
type=str,
|
355 |
+
help="Input Image Size",
|
356 |
+
)
|
357 |
+
parser.add_argument(
|
358 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
359 |
+
)
|
360 |
+
|
361 |
+
args = parser.parse_args()
|
362 |
+
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/modeling_cvt.py
ADDED
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch CvT model."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections.abc
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
28 |
+
from ...modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput
|
29 |
+
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
30 |
+
from ...utils import logging
|
31 |
+
from .configuration_cvt import CvtConfig
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
# General docstring
|
37 |
+
_CONFIG_FOR_DOC = "CvtConfig"
|
38 |
+
|
39 |
+
# Base docstring
|
40 |
+
_CHECKPOINT_FOR_DOC = "microsoft/cvt-13"
|
41 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 384, 14, 14]
|
42 |
+
|
43 |
+
# Image classification docstring
|
44 |
+
_IMAGE_CLASS_CHECKPOINT = "microsoft/cvt-13"
|
45 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
46 |
+
|
47 |
+
|
48 |
+
from ..deprecated._archive_maps import CVT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
49 |
+
|
50 |
+
|
51 |
+
@dataclass
|
52 |
+
class BaseModelOutputWithCLSToken(ModelOutput):
|
53 |
+
"""
|
54 |
+
Base class for model's outputs, with potential hidden states and attentions.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
58 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
59 |
+
cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`):
|
60 |
+
Classification token at the output of the last layer of the model.
|
61 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
62 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
63 |
+
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
64 |
+
plus the initial embedding outputs.
|
65 |
+
"""
|
66 |
+
|
67 |
+
last_hidden_state: torch.FloatTensor = None
|
68 |
+
cls_token_value: torch.FloatTensor = None
|
69 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
70 |
+
|
71 |
+
|
72 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
73 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
74 |
+
"""
|
75 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
76 |
+
|
77 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
78 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
79 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
80 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
81 |
+
argument.
|
82 |
+
"""
|
83 |
+
if drop_prob == 0.0 or not training:
|
84 |
+
return input
|
85 |
+
keep_prob = 1 - drop_prob
|
86 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
87 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
88 |
+
random_tensor.floor_() # binarize
|
89 |
+
output = input.div(keep_prob) * random_tensor
|
90 |
+
return output
|
91 |
+
|
92 |
+
|
93 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
|
94 |
+
class CvtDropPath(nn.Module):
|
95 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
96 |
+
|
97 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
98 |
+
super().__init__()
|
99 |
+
self.drop_prob = drop_prob
|
100 |
+
|
101 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
102 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
103 |
+
|
104 |
+
def extra_repr(self) -> str:
|
105 |
+
return "p={}".format(self.drop_prob)
|
106 |
+
|
107 |
+
|
108 |
+
class CvtEmbeddings(nn.Module):
|
109 |
+
"""
|
110 |
+
Construct the CvT embeddings.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(self, patch_size, num_channels, embed_dim, stride, padding, dropout_rate):
|
114 |
+
super().__init__()
|
115 |
+
self.convolution_embeddings = CvtConvEmbeddings(
|
116 |
+
patch_size=patch_size, num_channels=num_channels, embed_dim=embed_dim, stride=stride, padding=padding
|
117 |
+
)
|
118 |
+
self.dropout = nn.Dropout(dropout_rate)
|
119 |
+
|
120 |
+
def forward(self, pixel_values):
|
121 |
+
hidden_state = self.convolution_embeddings(pixel_values)
|
122 |
+
hidden_state = self.dropout(hidden_state)
|
123 |
+
return hidden_state
|
124 |
+
|
125 |
+
|
126 |
+
class CvtConvEmbeddings(nn.Module):
|
127 |
+
"""
|
128 |
+
Image to Conv Embedding.
|
129 |
+
"""
|
130 |
+
|
131 |
+
def __init__(self, patch_size, num_channels, embed_dim, stride, padding):
|
132 |
+
super().__init__()
|
133 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
134 |
+
self.patch_size = patch_size
|
135 |
+
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=stride, padding=padding)
|
136 |
+
self.normalization = nn.LayerNorm(embed_dim)
|
137 |
+
|
138 |
+
def forward(self, pixel_values):
|
139 |
+
pixel_values = self.projection(pixel_values)
|
140 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
141 |
+
hidden_size = height * width
|
142 |
+
# rearrange "b c h w -> b (h w) c"
|
143 |
+
pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
|
144 |
+
if self.normalization:
|
145 |
+
pixel_values = self.normalization(pixel_values)
|
146 |
+
# rearrange "b (h w) c" -> b c h w"
|
147 |
+
pixel_values = pixel_values.permute(0, 2, 1).view(batch_size, num_channels, height, width)
|
148 |
+
return pixel_values
|
149 |
+
|
150 |
+
|
151 |
+
class CvtSelfAttentionConvProjection(nn.Module):
|
152 |
+
def __init__(self, embed_dim, kernel_size, padding, stride):
|
153 |
+
super().__init__()
|
154 |
+
self.convolution = nn.Conv2d(
|
155 |
+
embed_dim,
|
156 |
+
embed_dim,
|
157 |
+
kernel_size=kernel_size,
|
158 |
+
padding=padding,
|
159 |
+
stride=stride,
|
160 |
+
bias=False,
|
161 |
+
groups=embed_dim,
|
162 |
+
)
|
163 |
+
self.normalization = nn.BatchNorm2d(embed_dim)
|
164 |
+
|
165 |
+
def forward(self, hidden_state):
|
166 |
+
hidden_state = self.convolution(hidden_state)
|
167 |
+
hidden_state = self.normalization(hidden_state)
|
168 |
+
return hidden_state
|
169 |
+
|
170 |
+
|
171 |
+
class CvtSelfAttentionLinearProjection(nn.Module):
|
172 |
+
def forward(self, hidden_state):
|
173 |
+
batch_size, num_channels, height, width = hidden_state.shape
|
174 |
+
hidden_size = height * width
|
175 |
+
# rearrange " b c h w -> b (h w) c"
|
176 |
+
hidden_state = hidden_state.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
|
177 |
+
return hidden_state
|
178 |
+
|
179 |
+
|
180 |
+
class CvtSelfAttentionProjection(nn.Module):
|
181 |
+
def __init__(self, embed_dim, kernel_size, padding, stride, projection_method="dw_bn"):
|
182 |
+
super().__init__()
|
183 |
+
if projection_method == "dw_bn":
|
184 |
+
self.convolution_projection = CvtSelfAttentionConvProjection(embed_dim, kernel_size, padding, stride)
|
185 |
+
self.linear_projection = CvtSelfAttentionLinearProjection()
|
186 |
+
|
187 |
+
def forward(self, hidden_state):
|
188 |
+
hidden_state = self.convolution_projection(hidden_state)
|
189 |
+
hidden_state = self.linear_projection(hidden_state)
|
190 |
+
return hidden_state
|
191 |
+
|
192 |
+
|
193 |
+
class CvtSelfAttention(nn.Module):
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
num_heads,
|
197 |
+
embed_dim,
|
198 |
+
kernel_size,
|
199 |
+
padding_q,
|
200 |
+
padding_kv,
|
201 |
+
stride_q,
|
202 |
+
stride_kv,
|
203 |
+
qkv_projection_method,
|
204 |
+
qkv_bias,
|
205 |
+
attention_drop_rate,
|
206 |
+
with_cls_token=True,
|
207 |
+
**kwargs,
|
208 |
+
):
|
209 |
+
super().__init__()
|
210 |
+
self.scale = embed_dim**-0.5
|
211 |
+
self.with_cls_token = with_cls_token
|
212 |
+
self.embed_dim = embed_dim
|
213 |
+
self.num_heads = num_heads
|
214 |
+
|
215 |
+
self.convolution_projection_query = CvtSelfAttentionProjection(
|
216 |
+
embed_dim,
|
217 |
+
kernel_size,
|
218 |
+
padding_q,
|
219 |
+
stride_q,
|
220 |
+
projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
|
221 |
+
)
|
222 |
+
self.convolution_projection_key = CvtSelfAttentionProjection(
|
223 |
+
embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
|
224 |
+
)
|
225 |
+
self.convolution_projection_value = CvtSelfAttentionProjection(
|
226 |
+
embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
|
227 |
+
)
|
228 |
+
|
229 |
+
self.projection_query = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
|
230 |
+
self.projection_key = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
|
231 |
+
self.projection_value = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
|
232 |
+
|
233 |
+
self.dropout = nn.Dropout(attention_drop_rate)
|
234 |
+
|
235 |
+
def rearrange_for_multi_head_attention(self, hidden_state):
|
236 |
+
batch_size, hidden_size, _ = hidden_state.shape
|
237 |
+
head_dim = self.embed_dim // self.num_heads
|
238 |
+
# rearrange 'b t (h d) -> b h t d'
|
239 |
+
return hidden_state.view(batch_size, hidden_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
|
240 |
+
|
241 |
+
def forward(self, hidden_state, height, width):
|
242 |
+
if self.with_cls_token:
|
243 |
+
cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
|
244 |
+
batch_size, hidden_size, num_channels = hidden_state.shape
|
245 |
+
# rearrange "b (h w) c -> b c h w"
|
246 |
+
hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
|
247 |
+
|
248 |
+
key = self.convolution_projection_key(hidden_state)
|
249 |
+
query = self.convolution_projection_query(hidden_state)
|
250 |
+
value = self.convolution_projection_value(hidden_state)
|
251 |
+
|
252 |
+
if self.with_cls_token:
|
253 |
+
query = torch.cat((cls_token, query), dim=1)
|
254 |
+
key = torch.cat((cls_token, key), dim=1)
|
255 |
+
value = torch.cat((cls_token, value), dim=1)
|
256 |
+
|
257 |
+
head_dim = self.embed_dim // self.num_heads
|
258 |
+
|
259 |
+
query = self.rearrange_for_multi_head_attention(self.projection_query(query))
|
260 |
+
key = self.rearrange_for_multi_head_attention(self.projection_key(key))
|
261 |
+
value = self.rearrange_for_multi_head_attention(self.projection_value(value))
|
262 |
+
|
263 |
+
attention_score = torch.einsum("bhlk,bhtk->bhlt", [query, key]) * self.scale
|
264 |
+
attention_probs = torch.nn.functional.softmax(attention_score, dim=-1)
|
265 |
+
attention_probs = self.dropout(attention_probs)
|
266 |
+
|
267 |
+
context = torch.einsum("bhlt,bhtv->bhlv", [attention_probs, value])
|
268 |
+
# rearrange"b h t d -> b t (h d)"
|
269 |
+
_, _, hidden_size, _ = context.shape
|
270 |
+
context = context.permute(0, 2, 1, 3).contiguous().view(batch_size, hidden_size, self.num_heads * head_dim)
|
271 |
+
return context
|
272 |
+
|
273 |
+
|
274 |
+
class CvtSelfOutput(nn.Module):
|
275 |
+
"""
|
276 |
+
The residual connection is defined in CvtLayer instead of here (as is the case with other models), due to the
|
277 |
+
layernorm applied before each block.
|
278 |
+
"""
|
279 |
+
|
280 |
+
def __init__(self, embed_dim, drop_rate):
|
281 |
+
super().__init__()
|
282 |
+
self.dense = nn.Linear(embed_dim, embed_dim)
|
283 |
+
self.dropout = nn.Dropout(drop_rate)
|
284 |
+
|
285 |
+
def forward(self, hidden_state, input_tensor):
|
286 |
+
hidden_state = self.dense(hidden_state)
|
287 |
+
hidden_state = self.dropout(hidden_state)
|
288 |
+
return hidden_state
|
289 |
+
|
290 |
+
|
291 |
+
class CvtAttention(nn.Module):
|
292 |
+
def __init__(
|
293 |
+
self,
|
294 |
+
num_heads,
|
295 |
+
embed_dim,
|
296 |
+
kernel_size,
|
297 |
+
padding_q,
|
298 |
+
padding_kv,
|
299 |
+
stride_q,
|
300 |
+
stride_kv,
|
301 |
+
qkv_projection_method,
|
302 |
+
qkv_bias,
|
303 |
+
attention_drop_rate,
|
304 |
+
drop_rate,
|
305 |
+
with_cls_token=True,
|
306 |
+
):
|
307 |
+
super().__init__()
|
308 |
+
self.attention = CvtSelfAttention(
|
309 |
+
num_heads,
|
310 |
+
embed_dim,
|
311 |
+
kernel_size,
|
312 |
+
padding_q,
|
313 |
+
padding_kv,
|
314 |
+
stride_q,
|
315 |
+
stride_kv,
|
316 |
+
qkv_projection_method,
|
317 |
+
qkv_bias,
|
318 |
+
attention_drop_rate,
|
319 |
+
with_cls_token,
|
320 |
+
)
|
321 |
+
self.output = CvtSelfOutput(embed_dim, drop_rate)
|
322 |
+
self.pruned_heads = set()
|
323 |
+
|
324 |
+
def prune_heads(self, heads):
|
325 |
+
if len(heads) == 0:
|
326 |
+
return
|
327 |
+
heads, index = find_pruneable_heads_and_indices(
|
328 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
329 |
+
)
|
330 |
+
|
331 |
+
# Prune linear layers
|
332 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
333 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
334 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
335 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
336 |
+
|
337 |
+
# Update hyper params and store pruned heads
|
338 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
339 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
340 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
341 |
+
|
342 |
+
def forward(self, hidden_state, height, width):
|
343 |
+
self_output = self.attention(hidden_state, height, width)
|
344 |
+
attention_output = self.output(self_output, hidden_state)
|
345 |
+
return attention_output
|
346 |
+
|
347 |
+
|
348 |
+
class CvtIntermediate(nn.Module):
|
349 |
+
def __init__(self, embed_dim, mlp_ratio):
|
350 |
+
super().__init__()
|
351 |
+
self.dense = nn.Linear(embed_dim, int(embed_dim * mlp_ratio))
|
352 |
+
self.activation = nn.GELU()
|
353 |
+
|
354 |
+
def forward(self, hidden_state):
|
355 |
+
hidden_state = self.dense(hidden_state)
|
356 |
+
hidden_state = self.activation(hidden_state)
|
357 |
+
return hidden_state
|
358 |
+
|
359 |
+
|
360 |
+
class CvtOutput(nn.Module):
|
361 |
+
def __init__(self, embed_dim, mlp_ratio, drop_rate):
|
362 |
+
super().__init__()
|
363 |
+
self.dense = nn.Linear(int(embed_dim * mlp_ratio), embed_dim)
|
364 |
+
self.dropout = nn.Dropout(drop_rate)
|
365 |
+
|
366 |
+
def forward(self, hidden_state, input_tensor):
|
367 |
+
hidden_state = self.dense(hidden_state)
|
368 |
+
hidden_state = self.dropout(hidden_state)
|
369 |
+
hidden_state = hidden_state + input_tensor
|
370 |
+
return hidden_state
|
371 |
+
|
372 |
+
|
373 |
+
class CvtLayer(nn.Module):
|
374 |
+
"""
|
375 |
+
CvtLayer composed by attention layers, normalization and multi-layer perceptrons (mlps).
|
376 |
+
"""
|
377 |
+
|
378 |
+
def __init__(
|
379 |
+
self,
|
380 |
+
num_heads,
|
381 |
+
embed_dim,
|
382 |
+
kernel_size,
|
383 |
+
padding_q,
|
384 |
+
padding_kv,
|
385 |
+
stride_q,
|
386 |
+
stride_kv,
|
387 |
+
qkv_projection_method,
|
388 |
+
qkv_bias,
|
389 |
+
attention_drop_rate,
|
390 |
+
drop_rate,
|
391 |
+
mlp_ratio,
|
392 |
+
drop_path_rate,
|
393 |
+
with_cls_token=True,
|
394 |
+
):
|
395 |
+
super().__init__()
|
396 |
+
self.attention = CvtAttention(
|
397 |
+
num_heads,
|
398 |
+
embed_dim,
|
399 |
+
kernel_size,
|
400 |
+
padding_q,
|
401 |
+
padding_kv,
|
402 |
+
stride_q,
|
403 |
+
stride_kv,
|
404 |
+
qkv_projection_method,
|
405 |
+
qkv_bias,
|
406 |
+
attention_drop_rate,
|
407 |
+
drop_rate,
|
408 |
+
with_cls_token,
|
409 |
+
)
|
410 |
+
|
411 |
+
self.intermediate = CvtIntermediate(embed_dim, mlp_ratio)
|
412 |
+
self.output = CvtOutput(embed_dim, mlp_ratio, drop_rate)
|
413 |
+
self.drop_path = CvtDropPath(drop_prob=drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
414 |
+
self.layernorm_before = nn.LayerNorm(embed_dim)
|
415 |
+
self.layernorm_after = nn.LayerNorm(embed_dim)
|
416 |
+
|
417 |
+
def forward(self, hidden_state, height, width):
|
418 |
+
self_attention_output = self.attention(
|
419 |
+
self.layernorm_before(hidden_state), # in Cvt, layernorm is applied before self-attention
|
420 |
+
height,
|
421 |
+
width,
|
422 |
+
)
|
423 |
+
attention_output = self_attention_output
|
424 |
+
attention_output = self.drop_path(attention_output)
|
425 |
+
|
426 |
+
# first residual connection
|
427 |
+
hidden_state = attention_output + hidden_state
|
428 |
+
|
429 |
+
# in Cvt, layernorm is also applied after self-attention
|
430 |
+
layer_output = self.layernorm_after(hidden_state)
|
431 |
+
layer_output = self.intermediate(layer_output)
|
432 |
+
|
433 |
+
# second residual connection is done here
|
434 |
+
layer_output = self.output(layer_output, hidden_state)
|
435 |
+
layer_output = self.drop_path(layer_output)
|
436 |
+
return layer_output
|
437 |
+
|
438 |
+
|
439 |
+
class CvtStage(nn.Module):
|
440 |
+
def __init__(self, config, stage):
|
441 |
+
super().__init__()
|
442 |
+
self.config = config
|
443 |
+
self.stage = stage
|
444 |
+
if self.config.cls_token[self.stage]:
|
445 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, self.config.embed_dim[-1]))
|
446 |
+
|
447 |
+
self.embedding = CvtEmbeddings(
|
448 |
+
patch_size=config.patch_sizes[self.stage],
|
449 |
+
stride=config.patch_stride[self.stage],
|
450 |
+
num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
|
451 |
+
embed_dim=config.embed_dim[self.stage],
|
452 |
+
padding=config.patch_padding[self.stage],
|
453 |
+
dropout_rate=config.drop_rate[self.stage],
|
454 |
+
)
|
455 |
+
|
456 |
+
drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate[self.stage], config.depth[stage])]
|
457 |
+
|
458 |
+
self.layers = nn.Sequential(
|
459 |
+
*[
|
460 |
+
CvtLayer(
|
461 |
+
num_heads=config.num_heads[self.stage],
|
462 |
+
embed_dim=config.embed_dim[self.stage],
|
463 |
+
kernel_size=config.kernel_qkv[self.stage],
|
464 |
+
padding_q=config.padding_q[self.stage],
|
465 |
+
padding_kv=config.padding_kv[self.stage],
|
466 |
+
stride_kv=config.stride_kv[self.stage],
|
467 |
+
stride_q=config.stride_q[self.stage],
|
468 |
+
qkv_projection_method=config.qkv_projection_method[self.stage],
|
469 |
+
qkv_bias=config.qkv_bias[self.stage],
|
470 |
+
attention_drop_rate=config.attention_drop_rate[self.stage],
|
471 |
+
drop_rate=config.drop_rate[self.stage],
|
472 |
+
drop_path_rate=drop_path_rates[self.stage],
|
473 |
+
mlp_ratio=config.mlp_ratio[self.stage],
|
474 |
+
with_cls_token=config.cls_token[self.stage],
|
475 |
+
)
|
476 |
+
for _ in range(config.depth[self.stage])
|
477 |
+
]
|
478 |
+
)
|
479 |
+
|
480 |
+
def forward(self, hidden_state):
|
481 |
+
cls_token = None
|
482 |
+
hidden_state = self.embedding(hidden_state)
|
483 |
+
batch_size, num_channels, height, width = hidden_state.shape
|
484 |
+
# rearrange b c h w -> b (h w) c"
|
485 |
+
hidden_state = hidden_state.view(batch_size, num_channels, height * width).permute(0, 2, 1)
|
486 |
+
if self.config.cls_token[self.stage]:
|
487 |
+
cls_token = self.cls_token.expand(batch_size, -1, -1)
|
488 |
+
hidden_state = torch.cat((cls_token, hidden_state), dim=1)
|
489 |
+
|
490 |
+
for layer in self.layers:
|
491 |
+
layer_outputs = layer(hidden_state, height, width)
|
492 |
+
hidden_state = layer_outputs
|
493 |
+
|
494 |
+
if self.config.cls_token[self.stage]:
|
495 |
+
cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
|
496 |
+
hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
|
497 |
+
return hidden_state, cls_token
|
498 |
+
|
499 |
+
|
500 |
+
class CvtEncoder(nn.Module):
|
501 |
+
def __init__(self, config):
|
502 |
+
super().__init__()
|
503 |
+
self.config = config
|
504 |
+
self.stages = nn.ModuleList([])
|
505 |
+
for stage_idx in range(len(config.depth)):
|
506 |
+
self.stages.append(CvtStage(config, stage_idx))
|
507 |
+
|
508 |
+
def forward(self, pixel_values, output_hidden_states=False, return_dict=True):
|
509 |
+
all_hidden_states = () if output_hidden_states else None
|
510 |
+
hidden_state = pixel_values
|
511 |
+
|
512 |
+
cls_token = None
|
513 |
+
for _, (stage_module) in enumerate(self.stages):
|
514 |
+
hidden_state, cls_token = stage_module(hidden_state)
|
515 |
+
if output_hidden_states:
|
516 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
517 |
+
|
518 |
+
if not return_dict:
|
519 |
+
return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)
|
520 |
+
|
521 |
+
return BaseModelOutputWithCLSToken(
|
522 |
+
last_hidden_state=hidden_state,
|
523 |
+
cls_token_value=cls_token,
|
524 |
+
hidden_states=all_hidden_states,
|
525 |
+
)
|
526 |
+
|
527 |
+
|
528 |
+
class CvtPreTrainedModel(PreTrainedModel):
|
529 |
+
"""
|
530 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
531 |
+
models.
|
532 |
+
"""
|
533 |
+
|
534 |
+
config_class = CvtConfig
|
535 |
+
base_model_prefix = "cvt"
|
536 |
+
main_input_name = "pixel_values"
|
537 |
+
|
538 |
+
def _init_weights(self, module):
|
539 |
+
"""Initialize the weights"""
|
540 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
541 |
+
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
|
542 |
+
if module.bias is not None:
|
543 |
+
module.bias.data.zero_()
|
544 |
+
elif isinstance(module, nn.LayerNorm):
|
545 |
+
module.bias.data.zero_()
|
546 |
+
module.weight.data.fill_(1.0)
|
547 |
+
elif isinstance(module, CvtStage):
|
548 |
+
if self.config.cls_token[module.stage]:
|
549 |
+
module.cls_token.data = nn.init.trunc_normal_(
|
550 |
+
torch.zeros(1, 1, self.config.embed_dim[-1]), mean=0.0, std=self.config.initializer_range
|
551 |
+
)
|
552 |
+
|
553 |
+
|
554 |
+
CVT_START_DOCSTRING = r"""
|
555 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
556 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
557 |
+
behavior.
|
558 |
+
|
559 |
+
Parameters:
|
560 |
+
config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
|
561 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
562 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
563 |
+
"""
|
564 |
+
|
565 |
+
CVT_INPUTS_DOCSTRING = r"""
|
566 |
+
Args:
|
567 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
568 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
|
569 |
+
for details.
|
570 |
+
output_hidden_states (`bool`, *optional*):
|
571 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
572 |
+
more detail.
|
573 |
+
return_dict (`bool`, *optional*):
|
574 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
575 |
+
"""
|
576 |
+
|
577 |
+
|
578 |
+
@add_start_docstrings(
|
579 |
+
"The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
|
580 |
+
CVT_START_DOCSTRING,
|
581 |
+
)
|
582 |
+
class CvtModel(CvtPreTrainedModel):
|
583 |
+
def __init__(self, config, add_pooling_layer=True):
|
584 |
+
super().__init__(config)
|
585 |
+
self.config = config
|
586 |
+
self.encoder = CvtEncoder(config)
|
587 |
+
self.post_init()
|
588 |
+
|
589 |
+
def _prune_heads(self, heads_to_prune):
|
590 |
+
"""
|
591 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
592 |
+
class PreTrainedModel
|
593 |
+
"""
|
594 |
+
for layer, heads in heads_to_prune.items():
|
595 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
596 |
+
|
597 |
+
@add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
|
598 |
+
@add_code_sample_docstrings(
|
599 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
600 |
+
output_type=BaseModelOutputWithCLSToken,
|
601 |
+
config_class=_CONFIG_FOR_DOC,
|
602 |
+
modality="vision",
|
603 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
604 |
+
)
|
605 |
+
def forward(
|
606 |
+
self,
|
607 |
+
pixel_values: Optional[torch.Tensor] = None,
|
608 |
+
output_hidden_states: Optional[bool] = None,
|
609 |
+
return_dict: Optional[bool] = None,
|
610 |
+
) -> Union[Tuple, BaseModelOutputWithCLSToken]:
|
611 |
+
output_hidden_states = (
|
612 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
613 |
+
)
|
614 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
615 |
+
|
616 |
+
if pixel_values is None:
|
617 |
+
raise ValueError("You have to specify pixel_values")
|
618 |
+
|
619 |
+
encoder_outputs = self.encoder(
|
620 |
+
pixel_values,
|
621 |
+
output_hidden_states=output_hidden_states,
|
622 |
+
return_dict=return_dict,
|
623 |
+
)
|
624 |
+
sequence_output = encoder_outputs[0]
|
625 |
+
|
626 |
+
if not return_dict:
|
627 |
+
return (sequence_output,) + encoder_outputs[1:]
|
628 |
+
|
629 |
+
return BaseModelOutputWithCLSToken(
|
630 |
+
last_hidden_state=sequence_output,
|
631 |
+
cls_token_value=encoder_outputs.cls_token_value,
|
632 |
+
hidden_states=encoder_outputs.hidden_states,
|
633 |
+
)
|
634 |
+
|
635 |
+
|
636 |
+
@add_start_docstrings(
|
637 |
+
"""
|
638 |
+
Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
|
639 |
+
the [CLS] token) e.g. for ImageNet.
|
640 |
+
""",
|
641 |
+
CVT_START_DOCSTRING,
|
642 |
+
)
|
643 |
+
class CvtForImageClassification(CvtPreTrainedModel):
|
644 |
+
def __init__(self, config):
|
645 |
+
super().__init__(config)
|
646 |
+
|
647 |
+
self.num_labels = config.num_labels
|
648 |
+
self.cvt = CvtModel(config, add_pooling_layer=False)
|
649 |
+
self.layernorm = nn.LayerNorm(config.embed_dim[-1])
|
650 |
+
# Classifier head
|
651 |
+
self.classifier = (
|
652 |
+
nn.Linear(config.embed_dim[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
|
653 |
+
)
|
654 |
+
|
655 |
+
# Initialize weights and apply final processing
|
656 |
+
self.post_init()
|
657 |
+
|
658 |
+
@add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
|
659 |
+
@add_code_sample_docstrings(
|
660 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
661 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
662 |
+
config_class=_CONFIG_FOR_DOC,
|
663 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
664 |
+
)
|
665 |
+
def forward(
|
666 |
+
self,
|
667 |
+
pixel_values: Optional[torch.Tensor] = None,
|
668 |
+
labels: Optional[torch.Tensor] = None,
|
669 |
+
output_hidden_states: Optional[bool] = None,
|
670 |
+
return_dict: Optional[bool] = None,
|
671 |
+
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
|
672 |
+
r"""
|
673 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
674 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
675 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
676 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
677 |
+
"""
|
678 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
679 |
+
outputs = self.cvt(
|
680 |
+
pixel_values,
|
681 |
+
output_hidden_states=output_hidden_states,
|
682 |
+
return_dict=return_dict,
|
683 |
+
)
|
684 |
+
|
685 |
+
sequence_output = outputs[0]
|
686 |
+
cls_token = outputs[1]
|
687 |
+
if self.config.cls_token[-1]:
|
688 |
+
sequence_output = self.layernorm(cls_token)
|
689 |
+
else:
|
690 |
+
batch_size, num_channels, height, width = sequence_output.shape
|
691 |
+
# rearrange "b c h w -> b (h w) c"
|
692 |
+
sequence_output = sequence_output.view(batch_size, num_channels, height * width).permute(0, 2, 1)
|
693 |
+
sequence_output = self.layernorm(sequence_output)
|
694 |
+
|
695 |
+
sequence_output_mean = sequence_output.mean(dim=1)
|
696 |
+
logits = self.classifier(sequence_output_mean)
|
697 |
+
|
698 |
+
loss = None
|
699 |
+
if labels is not None:
|
700 |
+
if self.config.problem_type is None:
|
701 |
+
if self.config.num_labels == 1:
|
702 |
+
self.config.problem_type = "regression"
|
703 |
+
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
704 |
+
self.config.problem_type = "single_label_classification"
|
705 |
+
else:
|
706 |
+
self.config.problem_type = "multi_label_classification"
|
707 |
+
|
708 |
+
if self.config.problem_type == "regression":
|
709 |
+
loss_fct = MSELoss()
|
710 |
+
if self.config.num_labels == 1:
|
711 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
712 |
+
else:
|
713 |
+
loss = loss_fct(logits, labels)
|
714 |
+
elif self.config.problem_type == "single_label_classification":
|
715 |
+
loss_fct = CrossEntropyLoss()
|
716 |
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
717 |
+
elif self.config.problem_type == "multi_label_classification":
|
718 |
+
loss_fct = BCEWithLogitsLoss()
|
719 |
+
loss = loss_fct(logits, labels)
|
720 |
+
|
721 |
+
if not return_dict:
|
722 |
+
output = (logits,) + outputs[2:]
|
723 |
+
return ((loss,) + output) if loss is not None else output
|
724 |
+
|
725 |
+
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/cvt/modeling_tf_cvt.py
ADDED
@@ -0,0 +1,1097 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 Cvt model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import collections.abc
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Tuple, Union
|
23 |
+
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...modeling_tf_outputs import TFImageClassifierOutputWithNoAttention
|
27 |
+
from ...modeling_tf_utils import (
|
28 |
+
TFModelInputType,
|
29 |
+
TFPreTrainedModel,
|
30 |
+
TFSequenceClassificationLoss,
|
31 |
+
get_initializer,
|
32 |
+
keras,
|
33 |
+
keras_serializable,
|
34 |
+
unpack_inputs,
|
35 |
+
)
|
36 |
+
from ...tf_utils import shape_list, stable_softmax
|
37 |
+
from ...utils import (
|
38 |
+
ModelOutput,
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
logging,
|
42 |
+
replace_return_docstrings,
|
43 |
+
)
|
44 |
+
from .configuration_cvt import CvtConfig
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
# General docstring
|
50 |
+
_CONFIG_FOR_DOC = "CvtConfig"
|
51 |
+
|
52 |
+
|
53 |
+
from ..deprecated._archive_maps import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
54 |
+
|
55 |
+
|
56 |
+
@dataclass
|
57 |
+
class TFBaseModelOutputWithCLSToken(ModelOutput):
|
58 |
+
"""
|
59 |
+
Base class for model's outputs.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
63 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
64 |
+
cls_token_value (`tf.Tensor` of shape `(batch_size, 1, hidden_size)`):
|
65 |
+
Classification token at the output of the last layer of the model.
|
66 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
67 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
68 |
+
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
|
69 |
+
the initial embedding outputs.
|
70 |
+
"""
|
71 |
+
|
72 |
+
last_hidden_state: tf.Tensor = None
|
73 |
+
cls_token_value: tf.Tensor = None
|
74 |
+
hidden_states: Tuple[tf.Tensor, ...] | None = None
|
75 |
+
|
76 |
+
|
77 |
+
class TFCvtDropPath(keras.layers.Layer):
|
78 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
79 |
+
References:
|
80 |
+
(1) github.com:rwightman/pytorch-image-models
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(self, drop_prob: float, **kwargs):
|
84 |
+
super().__init__(**kwargs)
|
85 |
+
self.drop_prob = drop_prob
|
86 |
+
|
87 |
+
def call(self, x: tf.Tensor, training=None):
|
88 |
+
if self.drop_prob == 0.0 or not training:
|
89 |
+
return x
|
90 |
+
keep_prob = 1 - self.drop_prob
|
91 |
+
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
|
92 |
+
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1, dtype=self.compute_dtype)
|
93 |
+
random_tensor = tf.floor(random_tensor)
|
94 |
+
return (x / keep_prob) * random_tensor
|
95 |
+
|
96 |
+
|
97 |
+
class TFCvtEmbeddings(keras.layers.Layer):
|
98 |
+
"""Construct the Convolutional Token Embeddings."""
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
config: CvtConfig,
|
103 |
+
patch_size: int,
|
104 |
+
num_channels: int,
|
105 |
+
embed_dim: int,
|
106 |
+
stride: int,
|
107 |
+
padding: int,
|
108 |
+
dropout_rate: float,
|
109 |
+
**kwargs,
|
110 |
+
):
|
111 |
+
super().__init__(**kwargs)
|
112 |
+
self.convolution_embeddings = TFCvtConvEmbeddings(
|
113 |
+
config,
|
114 |
+
patch_size=patch_size,
|
115 |
+
num_channels=num_channels,
|
116 |
+
embed_dim=embed_dim,
|
117 |
+
stride=stride,
|
118 |
+
padding=padding,
|
119 |
+
name="convolution_embeddings",
|
120 |
+
)
|
121 |
+
self.dropout = keras.layers.Dropout(dropout_rate)
|
122 |
+
|
123 |
+
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
|
124 |
+
hidden_state = self.convolution_embeddings(pixel_values)
|
125 |
+
hidden_state = self.dropout(hidden_state, training=training)
|
126 |
+
return hidden_state
|
127 |
+
|
128 |
+
def build(self, input_shape=None):
|
129 |
+
if self.built:
|
130 |
+
return
|
131 |
+
self.built = True
|
132 |
+
if getattr(self, "convolution_embeddings", None) is not None:
|
133 |
+
with tf.name_scope(self.convolution_embeddings.name):
|
134 |
+
self.convolution_embeddings.build(None)
|
135 |
+
|
136 |
+
|
137 |
+
class TFCvtConvEmbeddings(keras.layers.Layer):
|
138 |
+
"""Image to Convolution Embeddings. This convolutional operation aims to model local spatial contexts."""
|
139 |
+
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
config: CvtConfig,
|
143 |
+
patch_size: int,
|
144 |
+
num_channels: int,
|
145 |
+
embed_dim: int,
|
146 |
+
stride: int,
|
147 |
+
padding: int,
|
148 |
+
**kwargs,
|
149 |
+
):
|
150 |
+
super().__init__(**kwargs)
|
151 |
+
self.padding = keras.layers.ZeroPadding2D(padding=padding)
|
152 |
+
self.patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
153 |
+
self.projection = keras.layers.Conv2D(
|
154 |
+
filters=embed_dim,
|
155 |
+
kernel_size=patch_size,
|
156 |
+
strides=stride,
|
157 |
+
padding="valid",
|
158 |
+
data_format="channels_last",
|
159 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
160 |
+
name="projection",
|
161 |
+
)
|
162 |
+
# Using the same default epsilon as PyTorch
|
163 |
+
self.normalization = keras.layers.LayerNormalization(epsilon=1e-5, name="normalization")
|
164 |
+
self.num_channels = num_channels
|
165 |
+
self.embed_dim = embed_dim
|
166 |
+
|
167 |
+
def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
|
168 |
+
if isinstance(pixel_values, dict):
|
169 |
+
pixel_values = pixel_values["pixel_values"]
|
170 |
+
|
171 |
+
pixel_values = self.projection(self.padding(pixel_values))
|
172 |
+
|
173 |
+
# "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
|
174 |
+
batch_size, height, width, num_channels = shape_list(pixel_values)
|
175 |
+
hidden_size = height * width
|
176 |
+
pixel_values = tf.reshape(pixel_values, shape=(batch_size, hidden_size, num_channels))
|
177 |
+
pixel_values = self.normalization(pixel_values)
|
178 |
+
|
179 |
+
# "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
|
180 |
+
pixel_values = tf.reshape(pixel_values, shape=(batch_size, height, width, num_channels))
|
181 |
+
return pixel_values
|
182 |
+
|
183 |
+
def build(self, input_shape=None):
|
184 |
+
if self.built:
|
185 |
+
return
|
186 |
+
self.built = True
|
187 |
+
if getattr(self, "projection", None) is not None:
|
188 |
+
with tf.name_scope(self.projection.name):
|
189 |
+
self.projection.build([None, None, None, self.num_channels])
|
190 |
+
if getattr(self, "normalization", None) is not None:
|
191 |
+
with tf.name_scope(self.normalization.name):
|
192 |
+
self.normalization.build([None, None, self.embed_dim])
|
193 |
+
|
194 |
+
|
195 |
+
class TFCvtSelfAttentionConvProjection(keras.layers.Layer):
|
196 |
+
"""Convolutional projection layer."""
|
197 |
+
|
198 |
+
def __init__(self, config: CvtConfig, embed_dim: int, kernel_size: int, stride: int, padding: int, **kwargs):
|
199 |
+
super().__init__(**kwargs)
|
200 |
+
self.padding = keras.layers.ZeroPadding2D(padding=padding)
|
201 |
+
self.convolution = keras.layers.Conv2D(
|
202 |
+
filters=embed_dim,
|
203 |
+
kernel_size=kernel_size,
|
204 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
205 |
+
padding="valid",
|
206 |
+
strides=stride,
|
207 |
+
use_bias=False,
|
208 |
+
name="convolution",
|
209 |
+
groups=embed_dim,
|
210 |
+
)
|
211 |
+
# Using the same default epsilon as PyTorch, TF uses (1 - pytorch momentum)
|
212 |
+
self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization")
|
213 |
+
self.embed_dim = embed_dim
|
214 |
+
|
215 |
+
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
|
216 |
+
hidden_state = self.convolution(self.padding(hidden_state))
|
217 |
+
hidden_state = self.normalization(hidden_state, training=training)
|
218 |
+
return hidden_state
|
219 |
+
|
220 |
+
def build(self, input_shape=None):
|
221 |
+
if self.built:
|
222 |
+
return
|
223 |
+
self.built = True
|
224 |
+
if getattr(self, "convolution", None) is not None:
|
225 |
+
with tf.name_scope(self.convolution.name):
|
226 |
+
self.convolution.build([None, None, None, self.embed_dim])
|
227 |
+
if getattr(self, "normalization", None) is not None:
|
228 |
+
with tf.name_scope(self.normalization.name):
|
229 |
+
self.normalization.build([None, None, None, self.embed_dim])
|
230 |
+
|
231 |
+
|
232 |
+
class TFCvtSelfAttentionLinearProjection(keras.layers.Layer):
|
233 |
+
"""Linear projection layer used to flatten tokens into 1D."""
|
234 |
+
|
235 |
+
def call(self, hidden_state: tf.Tensor) -> tf.Tensor:
|
236 |
+
# "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
|
237 |
+
batch_size, height, width, num_channels = shape_list(hidden_state)
|
238 |
+
hidden_size = height * width
|
239 |
+
hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels))
|
240 |
+
return hidden_state
|
241 |
+
|
242 |
+
|
243 |
+
class TFCvtSelfAttentionProjection(keras.layers.Layer):
|
244 |
+
"""Convolutional Projection for Attention."""
|
245 |
+
|
246 |
+
def __init__(
|
247 |
+
self,
|
248 |
+
config: CvtConfig,
|
249 |
+
embed_dim: int,
|
250 |
+
kernel_size: int,
|
251 |
+
stride: int,
|
252 |
+
padding: int,
|
253 |
+
projection_method: str = "dw_bn",
|
254 |
+
**kwargs,
|
255 |
+
):
|
256 |
+
super().__init__(**kwargs)
|
257 |
+
if projection_method == "dw_bn":
|
258 |
+
self.convolution_projection = TFCvtSelfAttentionConvProjection(
|
259 |
+
config, embed_dim, kernel_size, stride, padding, name="convolution_projection"
|
260 |
+
)
|
261 |
+
self.linear_projection = TFCvtSelfAttentionLinearProjection()
|
262 |
+
|
263 |
+
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
|
264 |
+
hidden_state = self.convolution_projection(hidden_state, training=training)
|
265 |
+
hidden_state = self.linear_projection(hidden_state)
|
266 |
+
return hidden_state
|
267 |
+
|
268 |
+
def build(self, input_shape=None):
|
269 |
+
if self.built:
|
270 |
+
return
|
271 |
+
self.built = True
|
272 |
+
if getattr(self, "convolution_projection", None) is not None:
|
273 |
+
with tf.name_scope(self.convolution_projection.name):
|
274 |
+
self.convolution_projection.build(None)
|
275 |
+
|
276 |
+
|
277 |
+
class TFCvtSelfAttention(keras.layers.Layer):
|
278 |
+
"""
|
279 |
+
Self-attention layer. A depth-wise separable convolution operation (Convolutional Projection), is applied for
|
280 |
+
query, key, and value embeddings.
|
281 |
+
"""
|
282 |
+
|
283 |
+
def __init__(
|
284 |
+
self,
|
285 |
+
config: CvtConfig,
|
286 |
+
num_heads: int,
|
287 |
+
embed_dim: int,
|
288 |
+
kernel_size: int,
|
289 |
+
stride_q: int,
|
290 |
+
stride_kv: int,
|
291 |
+
padding_q: int,
|
292 |
+
padding_kv: int,
|
293 |
+
qkv_projection_method: str,
|
294 |
+
qkv_bias: bool,
|
295 |
+
attention_drop_rate: float,
|
296 |
+
with_cls_token: bool = True,
|
297 |
+
**kwargs,
|
298 |
+
):
|
299 |
+
super().__init__(**kwargs)
|
300 |
+
self.scale = embed_dim**-0.5
|
301 |
+
self.with_cls_token = with_cls_token
|
302 |
+
self.embed_dim = embed_dim
|
303 |
+
self.num_heads = num_heads
|
304 |
+
|
305 |
+
self.convolution_projection_query = TFCvtSelfAttentionProjection(
|
306 |
+
config,
|
307 |
+
embed_dim,
|
308 |
+
kernel_size,
|
309 |
+
stride_q,
|
310 |
+
padding_q,
|
311 |
+
projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
|
312 |
+
name="convolution_projection_query",
|
313 |
+
)
|
314 |
+
self.convolution_projection_key = TFCvtSelfAttentionProjection(
|
315 |
+
config,
|
316 |
+
embed_dim,
|
317 |
+
kernel_size,
|
318 |
+
stride_kv,
|
319 |
+
padding_kv,
|
320 |
+
projection_method=qkv_projection_method,
|
321 |
+
name="convolution_projection_key",
|
322 |
+
)
|
323 |
+
self.convolution_projection_value = TFCvtSelfAttentionProjection(
|
324 |
+
config,
|
325 |
+
embed_dim,
|
326 |
+
kernel_size,
|
327 |
+
stride_kv,
|
328 |
+
padding_kv,
|
329 |
+
projection_method=qkv_projection_method,
|
330 |
+
name="convolution_projection_value",
|
331 |
+
)
|
332 |
+
|
333 |
+
self.projection_query = keras.layers.Dense(
|
334 |
+
units=embed_dim,
|
335 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
336 |
+
use_bias=qkv_bias,
|
337 |
+
bias_initializer="zeros",
|
338 |
+
name="projection_query",
|
339 |
+
)
|
340 |
+
self.projection_key = keras.layers.Dense(
|
341 |
+
units=embed_dim,
|
342 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
343 |
+
use_bias=qkv_bias,
|
344 |
+
bias_initializer="zeros",
|
345 |
+
name="projection_key",
|
346 |
+
)
|
347 |
+
self.projection_value = keras.layers.Dense(
|
348 |
+
units=embed_dim,
|
349 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
350 |
+
use_bias=qkv_bias,
|
351 |
+
bias_initializer="zeros",
|
352 |
+
name="projection_value",
|
353 |
+
)
|
354 |
+
self.dropout = keras.layers.Dropout(attention_drop_rate)
|
355 |
+
|
356 |
+
def rearrange_for_multi_head_attention(self, hidden_state: tf.Tensor) -> tf.Tensor:
|
357 |
+
batch_size, hidden_size, _ = shape_list(hidden_state)
|
358 |
+
head_dim = self.embed_dim // self.num_heads
|
359 |
+
hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, self.num_heads, head_dim))
|
360 |
+
hidden_state = tf.transpose(hidden_state, perm=(0, 2, 1, 3))
|
361 |
+
return hidden_state
|
362 |
+
|
363 |
+
def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor:
|
364 |
+
if self.with_cls_token:
|
365 |
+
cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1)
|
366 |
+
|
367 |
+
# "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
|
368 |
+
batch_size, hidden_size, num_channels = shape_list(hidden_state)
|
369 |
+
hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels))
|
370 |
+
|
371 |
+
key = self.convolution_projection_key(hidden_state, training=training)
|
372 |
+
query = self.convolution_projection_query(hidden_state, training=training)
|
373 |
+
value = self.convolution_projection_value(hidden_state, training=training)
|
374 |
+
|
375 |
+
if self.with_cls_token:
|
376 |
+
query = tf.concat((cls_token, query), axis=1)
|
377 |
+
key = tf.concat((cls_token, key), axis=1)
|
378 |
+
value = tf.concat((cls_token, value), axis=1)
|
379 |
+
|
380 |
+
head_dim = self.embed_dim // self.num_heads
|
381 |
+
|
382 |
+
query = self.rearrange_for_multi_head_attention(self.projection_query(query))
|
383 |
+
key = self.rearrange_for_multi_head_attention(self.projection_key(key))
|
384 |
+
value = self.rearrange_for_multi_head_attention(self.projection_value(value))
|
385 |
+
|
386 |
+
attention_score = tf.matmul(query, key, transpose_b=True) * self.scale
|
387 |
+
attention_probs = stable_softmax(logits=attention_score, axis=-1)
|
388 |
+
attention_probs = self.dropout(attention_probs, training=training)
|
389 |
+
|
390 |
+
context = tf.matmul(attention_probs, value)
|
391 |
+
# "batch_size, num_heads, hidden_size, head_dim -> batch_size, hidden_size, (num_heads*head_dim)"
|
392 |
+
_, _, hidden_size, _ = shape_list(context)
|
393 |
+
context = tf.transpose(context, perm=(0, 2, 1, 3))
|
394 |
+
context = tf.reshape(context, (batch_size, hidden_size, self.num_heads * head_dim))
|
395 |
+
return context
|
396 |
+
|
397 |
+
def build(self, input_shape=None):
|
398 |
+
if self.built:
|
399 |
+
return
|
400 |
+
self.built = True
|
401 |
+
if getattr(self, "convolution_projection_query", None) is not None:
|
402 |
+
with tf.name_scope(self.convolution_projection_query.name):
|
403 |
+
self.convolution_projection_query.build(None)
|
404 |
+
if getattr(self, "convolution_projection_key", None) is not None:
|
405 |
+
with tf.name_scope(self.convolution_projection_key.name):
|
406 |
+
self.convolution_projection_key.build(None)
|
407 |
+
if getattr(self, "convolution_projection_value", None) is not None:
|
408 |
+
with tf.name_scope(self.convolution_projection_value.name):
|
409 |
+
self.convolution_projection_value.build(None)
|
410 |
+
if getattr(self, "projection_query", None) is not None:
|
411 |
+
with tf.name_scope(self.projection_query.name):
|
412 |
+
self.projection_query.build([None, None, self.embed_dim])
|
413 |
+
if getattr(self, "projection_key", None) is not None:
|
414 |
+
with tf.name_scope(self.projection_key.name):
|
415 |
+
self.projection_key.build([None, None, self.embed_dim])
|
416 |
+
if getattr(self, "projection_value", None) is not None:
|
417 |
+
with tf.name_scope(self.projection_value.name):
|
418 |
+
self.projection_value.build([None, None, self.embed_dim])
|
419 |
+
|
420 |
+
|
421 |
+
class TFCvtSelfOutput(keras.layers.Layer):
|
422 |
+
"""Output of the Attention layer ."""
|
423 |
+
|
424 |
+
def __init__(self, config: CvtConfig, embed_dim: int, drop_rate: float, **kwargs):
|
425 |
+
super().__init__(**kwargs)
|
426 |
+
self.dense = keras.layers.Dense(
|
427 |
+
units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
428 |
+
)
|
429 |
+
self.dropout = keras.layers.Dropout(drop_rate)
|
430 |
+
self.embed_dim = embed_dim
|
431 |
+
|
432 |
+
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
|
433 |
+
hidden_state = self.dense(inputs=hidden_state)
|
434 |
+
hidden_state = self.dropout(inputs=hidden_state, training=training)
|
435 |
+
return hidden_state
|
436 |
+
|
437 |
+
def build(self, input_shape=None):
|
438 |
+
if self.built:
|
439 |
+
return
|
440 |
+
self.built = True
|
441 |
+
if getattr(self, "dense", None) is not None:
|
442 |
+
with tf.name_scope(self.dense.name):
|
443 |
+
self.dense.build([None, None, self.embed_dim])
|
444 |
+
|
445 |
+
|
446 |
+
class TFCvtAttention(keras.layers.Layer):
|
447 |
+
"""Attention layer. First chunk of the convolutional transformer block."""
|
448 |
+
|
449 |
+
def __init__(
|
450 |
+
self,
|
451 |
+
config: CvtConfig,
|
452 |
+
num_heads: int,
|
453 |
+
embed_dim: int,
|
454 |
+
kernel_size: int,
|
455 |
+
stride_q: int,
|
456 |
+
stride_kv: int,
|
457 |
+
padding_q: int,
|
458 |
+
padding_kv: int,
|
459 |
+
qkv_projection_method: str,
|
460 |
+
qkv_bias: bool,
|
461 |
+
attention_drop_rate: float,
|
462 |
+
drop_rate: float,
|
463 |
+
with_cls_token: bool = True,
|
464 |
+
**kwargs,
|
465 |
+
):
|
466 |
+
super().__init__(**kwargs)
|
467 |
+
self.attention = TFCvtSelfAttention(
|
468 |
+
config,
|
469 |
+
num_heads,
|
470 |
+
embed_dim,
|
471 |
+
kernel_size,
|
472 |
+
stride_q,
|
473 |
+
stride_kv,
|
474 |
+
padding_q,
|
475 |
+
padding_kv,
|
476 |
+
qkv_projection_method,
|
477 |
+
qkv_bias,
|
478 |
+
attention_drop_rate,
|
479 |
+
with_cls_token,
|
480 |
+
name="attention",
|
481 |
+
)
|
482 |
+
self.dense_output = TFCvtSelfOutput(config, embed_dim, drop_rate, name="output")
|
483 |
+
|
484 |
+
def prune_heads(self, heads):
|
485 |
+
raise NotImplementedError
|
486 |
+
|
487 |
+
def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False):
|
488 |
+
self_output = self.attention(hidden_state, height, width, training=training)
|
489 |
+
attention_output = self.dense_output(self_output, training=training)
|
490 |
+
return attention_output
|
491 |
+
|
492 |
+
def build(self, input_shape=None):
|
493 |
+
if self.built:
|
494 |
+
return
|
495 |
+
self.built = True
|
496 |
+
if getattr(self, "attention", None) is not None:
|
497 |
+
with tf.name_scope(self.attention.name):
|
498 |
+
self.attention.build(None)
|
499 |
+
if getattr(self, "dense_output", None) is not None:
|
500 |
+
with tf.name_scope(self.dense_output.name):
|
501 |
+
self.dense_output.build(None)
|
502 |
+
|
503 |
+
|
504 |
+
class TFCvtIntermediate(keras.layers.Layer):
|
505 |
+
"""Intermediate dense layer. Second chunk of the convolutional transformer block."""
|
506 |
+
|
507 |
+
def __init__(self, config: CvtConfig, embed_dim: int, mlp_ratio: int, **kwargs):
|
508 |
+
super().__init__(**kwargs)
|
509 |
+
self.dense = keras.layers.Dense(
|
510 |
+
units=int(embed_dim * mlp_ratio),
|
511 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
512 |
+
activation="gelu",
|
513 |
+
name="dense",
|
514 |
+
)
|
515 |
+
self.embed_dim = embed_dim
|
516 |
+
|
517 |
+
def call(self, hidden_state: tf.Tensor) -> tf.Tensor:
|
518 |
+
hidden_state = self.dense(hidden_state)
|
519 |
+
return hidden_state
|
520 |
+
|
521 |
+
def build(self, input_shape=None):
|
522 |
+
if self.built:
|
523 |
+
return
|
524 |
+
self.built = True
|
525 |
+
if getattr(self, "dense", None) is not None:
|
526 |
+
with tf.name_scope(self.dense.name):
|
527 |
+
self.dense.build([None, None, self.embed_dim])
|
528 |
+
|
529 |
+
|
530 |
+
class TFCvtOutput(keras.layers.Layer):
|
531 |
+
"""
|
532 |
+
Output of the Convolutional Transformer Block (last chunk). It consists of a MLP and a residual connection.
|
533 |
+
"""
|
534 |
+
|
535 |
+
def __init__(self, config: CvtConfig, embed_dim: int, mlp_ratio: int, drop_rate: int, **kwargs):
|
536 |
+
super().__init__(**kwargs)
|
537 |
+
self.dense = keras.layers.Dense(
|
538 |
+
units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
539 |
+
)
|
540 |
+
self.dropout = keras.layers.Dropout(drop_rate)
|
541 |
+
self.embed_dim = embed_dim
|
542 |
+
self.mlp_ratio = mlp_ratio
|
543 |
+
|
544 |
+
def call(self, hidden_state: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
545 |
+
hidden_state = self.dense(inputs=hidden_state)
|
546 |
+
hidden_state = self.dropout(inputs=hidden_state, training=training)
|
547 |
+
hidden_state = hidden_state + input_tensor
|
548 |
+
return hidden_state
|
549 |
+
|
550 |
+
def build(self, input_shape=None):
|
551 |
+
if self.built:
|
552 |
+
return
|
553 |
+
self.built = True
|
554 |
+
if getattr(self, "dense", None) is not None:
|
555 |
+
with tf.name_scope(self.dense.name):
|
556 |
+
self.dense.build([None, None, int(self.embed_dim * self.mlp_ratio)])
|
557 |
+
|
558 |
+
|
559 |
+
class TFCvtLayer(keras.layers.Layer):
|
560 |
+
"""
|
561 |
+
Convolutional Transformer Block composed by attention layers, normalization and multi-layer perceptrons (mlps). It
|
562 |
+
consists of 3 chunks : an attention layer, an intermediate dense layer and an output layer. This corresponds to the
|
563 |
+
`Block` class in the original implementation.
|
564 |
+
"""
|
565 |
+
|
566 |
+
def __init__(
|
567 |
+
self,
|
568 |
+
config: CvtConfig,
|
569 |
+
num_heads: int,
|
570 |
+
embed_dim: int,
|
571 |
+
kernel_size: int,
|
572 |
+
stride_q: int,
|
573 |
+
stride_kv: int,
|
574 |
+
padding_q: int,
|
575 |
+
padding_kv: int,
|
576 |
+
qkv_projection_method: str,
|
577 |
+
qkv_bias: bool,
|
578 |
+
attention_drop_rate: float,
|
579 |
+
drop_rate: float,
|
580 |
+
mlp_ratio: float,
|
581 |
+
drop_path_rate: float,
|
582 |
+
with_cls_token: bool = True,
|
583 |
+
**kwargs,
|
584 |
+
):
|
585 |
+
super().__init__(**kwargs)
|
586 |
+
self.attention = TFCvtAttention(
|
587 |
+
config,
|
588 |
+
num_heads,
|
589 |
+
embed_dim,
|
590 |
+
kernel_size,
|
591 |
+
stride_q,
|
592 |
+
stride_kv,
|
593 |
+
padding_q,
|
594 |
+
padding_kv,
|
595 |
+
qkv_projection_method,
|
596 |
+
qkv_bias,
|
597 |
+
attention_drop_rate,
|
598 |
+
drop_rate,
|
599 |
+
with_cls_token,
|
600 |
+
name="attention",
|
601 |
+
)
|
602 |
+
self.intermediate = TFCvtIntermediate(config, embed_dim, mlp_ratio, name="intermediate")
|
603 |
+
self.dense_output = TFCvtOutput(config, embed_dim, mlp_ratio, drop_rate, name="output")
|
604 |
+
# Using `layers.Activation` instead of `tf.identity` to better control `training` behaviour.
|
605 |
+
self.drop_path = (
|
606 |
+
TFCvtDropPath(drop_path_rate, name="drop_path")
|
607 |
+
if drop_path_rate > 0.0
|
608 |
+
else keras.layers.Activation("linear", name="drop_path")
|
609 |
+
)
|
610 |
+
# Using the same default epsilon as PyTorch
|
611 |
+
self.layernorm_before = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_before")
|
612 |
+
self.layernorm_after = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_after")
|
613 |
+
self.embed_dim = embed_dim
|
614 |
+
|
615 |
+
def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor:
|
616 |
+
# in Cvt, layernorm is applied before self-attention
|
617 |
+
attention_output = self.attention(self.layernorm_before(hidden_state), height, width, training=training)
|
618 |
+
attention_output = self.drop_path(attention_output, training=training)
|
619 |
+
|
620 |
+
# first residual connection
|
621 |
+
hidden_state = attention_output + hidden_state
|
622 |
+
|
623 |
+
# in Cvt, layernorm is also applied after self-attention
|
624 |
+
layer_output = self.layernorm_after(hidden_state)
|
625 |
+
layer_output = self.intermediate(layer_output)
|
626 |
+
|
627 |
+
# second residual connection is done here
|
628 |
+
layer_output = self.dense_output(layer_output, hidden_state)
|
629 |
+
layer_output = self.drop_path(layer_output, training=training)
|
630 |
+
return layer_output
|
631 |
+
|
632 |
+
def build(self, input_shape=None):
|
633 |
+
if self.built:
|
634 |
+
return
|
635 |
+
self.built = True
|
636 |
+
if getattr(self, "attention", None) is not None:
|
637 |
+
with tf.name_scope(self.attention.name):
|
638 |
+
self.attention.build(None)
|
639 |
+
if getattr(self, "intermediate", None) is not None:
|
640 |
+
with tf.name_scope(self.intermediate.name):
|
641 |
+
self.intermediate.build(None)
|
642 |
+
if getattr(self, "dense_output", None) is not None:
|
643 |
+
with tf.name_scope(self.dense_output.name):
|
644 |
+
self.dense_output.build(None)
|
645 |
+
if getattr(self, "drop_path", None) is not None:
|
646 |
+
with tf.name_scope(self.drop_path.name):
|
647 |
+
self.drop_path.build(None)
|
648 |
+
if getattr(self, "layernorm_before", None) is not None:
|
649 |
+
with tf.name_scope(self.layernorm_before.name):
|
650 |
+
self.layernorm_before.build([None, None, self.embed_dim])
|
651 |
+
if getattr(self, "layernorm_after", None) is not None:
|
652 |
+
with tf.name_scope(self.layernorm_after.name):
|
653 |
+
self.layernorm_after.build([None, None, self.embed_dim])
|
654 |
+
|
655 |
+
|
656 |
+
class TFCvtStage(keras.layers.Layer):
|
657 |
+
"""
|
658 |
+
Cvt stage (encoder block). Each stage has 2 parts :
|
659 |
+
- (1) A Convolutional Token Embedding layer
|
660 |
+
- (2) A Convolutional Transformer Block (layer).
|
661 |
+
The classification token is added only in the last stage.
|
662 |
+
|
663 |
+
Args:
|
664 |
+
config ([`CvtConfig`]): Model configuration class.
|
665 |
+
stage (`int`): Stage number.
|
666 |
+
"""
|
667 |
+
|
668 |
+
def __init__(self, config: CvtConfig, stage: int, **kwargs):
|
669 |
+
super().__init__(**kwargs)
|
670 |
+
self.config = config
|
671 |
+
self.stage = stage
|
672 |
+
if self.config.cls_token[self.stage]:
|
673 |
+
self.cls_token = self.add_weight(
|
674 |
+
shape=(1, 1, self.config.embed_dim[-1]),
|
675 |
+
initializer=get_initializer(self.config.initializer_range),
|
676 |
+
trainable=True,
|
677 |
+
name="cvt.encoder.stages.2.cls_token",
|
678 |
+
)
|
679 |
+
|
680 |
+
self.embedding = TFCvtEmbeddings(
|
681 |
+
self.config,
|
682 |
+
patch_size=config.patch_sizes[self.stage],
|
683 |
+
num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
|
684 |
+
stride=config.patch_stride[self.stage],
|
685 |
+
embed_dim=config.embed_dim[self.stage],
|
686 |
+
padding=config.patch_padding[self.stage],
|
687 |
+
dropout_rate=config.drop_rate[self.stage],
|
688 |
+
name="embedding",
|
689 |
+
)
|
690 |
+
|
691 |
+
drop_path_rates = tf.linspace(0.0, config.drop_path_rate[self.stage], config.depth[stage])
|
692 |
+
drop_path_rates = [x.numpy().item() for x in drop_path_rates]
|
693 |
+
self.layers = [
|
694 |
+
TFCvtLayer(
|
695 |
+
config,
|
696 |
+
num_heads=config.num_heads[self.stage],
|
697 |
+
embed_dim=config.embed_dim[self.stage],
|
698 |
+
kernel_size=config.kernel_qkv[self.stage],
|
699 |
+
stride_q=config.stride_q[self.stage],
|
700 |
+
stride_kv=config.stride_kv[self.stage],
|
701 |
+
padding_q=config.padding_q[self.stage],
|
702 |
+
padding_kv=config.padding_kv[self.stage],
|
703 |
+
qkv_projection_method=config.qkv_projection_method[self.stage],
|
704 |
+
qkv_bias=config.qkv_bias[self.stage],
|
705 |
+
attention_drop_rate=config.attention_drop_rate[self.stage],
|
706 |
+
drop_rate=config.drop_rate[self.stage],
|
707 |
+
mlp_ratio=config.mlp_ratio[self.stage],
|
708 |
+
drop_path_rate=drop_path_rates[self.stage],
|
709 |
+
with_cls_token=config.cls_token[self.stage],
|
710 |
+
name=f"layers.{j}",
|
711 |
+
)
|
712 |
+
for j in range(config.depth[self.stage])
|
713 |
+
]
|
714 |
+
|
715 |
+
def call(self, hidden_state: tf.Tensor, training: bool = False):
|
716 |
+
cls_token = None
|
717 |
+
hidden_state = self.embedding(hidden_state, training)
|
718 |
+
|
719 |
+
# "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels"
|
720 |
+
batch_size, height, width, num_channels = shape_list(hidden_state)
|
721 |
+
hidden_size = height * width
|
722 |
+
hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels))
|
723 |
+
|
724 |
+
if self.config.cls_token[self.stage]:
|
725 |
+
cls_token = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
|
726 |
+
hidden_state = tf.concat((cls_token, hidden_state), axis=1)
|
727 |
+
|
728 |
+
for layer in self.layers:
|
729 |
+
layer_outputs = layer(hidden_state, height, width, training=training)
|
730 |
+
hidden_state = layer_outputs
|
731 |
+
|
732 |
+
if self.config.cls_token[self.stage]:
|
733 |
+
cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1)
|
734 |
+
|
735 |
+
# "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels"
|
736 |
+
hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels))
|
737 |
+
return hidden_state, cls_token
|
738 |
+
|
739 |
+
def build(self, input_shape=None):
|
740 |
+
if self.built:
|
741 |
+
return
|
742 |
+
self.built = True
|
743 |
+
if getattr(self, "embedding", None) is not None:
|
744 |
+
with tf.name_scope(self.embedding.name):
|
745 |
+
self.embedding.build(None)
|
746 |
+
if getattr(self, "layers", None) is not None:
|
747 |
+
for layer in self.layers:
|
748 |
+
with tf.name_scope(layer.name):
|
749 |
+
layer.build(None)
|
750 |
+
|
751 |
+
|
752 |
+
class TFCvtEncoder(keras.layers.Layer):
|
753 |
+
"""
|
754 |
+
Convolutional Vision Transformer encoder. CVT has 3 stages of encoder blocks with their respective number of layers
|
755 |
+
(depth) being 1, 2 and 10.
|
756 |
+
|
757 |
+
Args:
|
758 |
+
config ([`CvtConfig`]): Model configuration class.
|
759 |
+
"""
|
760 |
+
|
761 |
+
config_class = CvtConfig
|
762 |
+
|
763 |
+
def __init__(self, config: CvtConfig, **kwargs):
|
764 |
+
super().__init__(**kwargs)
|
765 |
+
self.config = config
|
766 |
+
self.stages = [
|
767 |
+
TFCvtStage(config, stage_idx, name=f"stages.{stage_idx}") for stage_idx in range(len(config.depth))
|
768 |
+
]
|
769 |
+
|
770 |
+
def call(
|
771 |
+
self,
|
772 |
+
pixel_values: TFModelInputType,
|
773 |
+
output_hidden_states: Optional[bool] = False,
|
774 |
+
return_dict: Optional[bool] = True,
|
775 |
+
training: Optional[bool] = False,
|
776 |
+
) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
|
777 |
+
all_hidden_states = () if output_hidden_states else None
|
778 |
+
hidden_state = pixel_values
|
779 |
+
# When running on CPU, `keras.layers.Conv2D` doesn't support (batch_size, num_channels, height, width)
|
780 |
+
# as input format. So change the input format to (batch_size, height, width, num_channels).
|
781 |
+
hidden_state = tf.transpose(hidden_state, perm=(0, 2, 3, 1))
|
782 |
+
|
783 |
+
cls_token = None
|
784 |
+
for _, (stage_module) in enumerate(self.stages):
|
785 |
+
hidden_state, cls_token = stage_module(hidden_state, training=training)
|
786 |
+
if output_hidden_states:
|
787 |
+
all_hidden_states = all_hidden_states + (hidden_state,)
|
788 |
+
|
789 |
+
# Change back to (batch_size, num_channels, height, width) format to have uniformity in the modules
|
790 |
+
hidden_state = tf.transpose(hidden_state, perm=(0, 3, 1, 2))
|
791 |
+
if output_hidden_states:
|
792 |
+
all_hidden_states = tuple([tf.transpose(hs, perm=(0, 3, 1, 2)) for hs in all_hidden_states])
|
793 |
+
|
794 |
+
if not return_dict:
|
795 |
+
return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)
|
796 |
+
|
797 |
+
return TFBaseModelOutputWithCLSToken(
|
798 |
+
last_hidden_state=hidden_state,
|
799 |
+
cls_token_value=cls_token,
|
800 |
+
hidden_states=all_hidden_states,
|
801 |
+
)
|
802 |
+
|
803 |
+
def build(self, input_shape=None):
|
804 |
+
if self.built:
|
805 |
+
return
|
806 |
+
self.built = True
|
807 |
+
if getattr(self, "stages", None) is not None:
|
808 |
+
for layer in self.stages:
|
809 |
+
with tf.name_scope(layer.name):
|
810 |
+
layer.build(None)
|
811 |
+
|
812 |
+
|
813 |
+
@keras_serializable
|
814 |
+
class TFCvtMainLayer(keras.layers.Layer):
|
815 |
+
"""Construct the Cvt model."""
|
816 |
+
|
817 |
+
config_class = CvtConfig
|
818 |
+
|
819 |
+
def __init__(self, config: CvtConfig, **kwargs):
|
820 |
+
super().__init__(**kwargs)
|
821 |
+
self.config = config
|
822 |
+
self.encoder = TFCvtEncoder(config, name="encoder")
|
823 |
+
|
824 |
+
@unpack_inputs
|
825 |
+
def call(
|
826 |
+
self,
|
827 |
+
pixel_values: TFModelInputType | None = None,
|
828 |
+
output_hidden_states: Optional[bool] = None,
|
829 |
+
return_dict: Optional[bool] = None,
|
830 |
+
training: Optional[bool] = False,
|
831 |
+
) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
|
832 |
+
if pixel_values is None:
|
833 |
+
raise ValueError("You have to specify pixel_values")
|
834 |
+
|
835 |
+
encoder_outputs = self.encoder(
|
836 |
+
pixel_values,
|
837 |
+
output_hidden_states=output_hidden_states,
|
838 |
+
return_dict=return_dict,
|
839 |
+
training=training,
|
840 |
+
)
|
841 |
+
|
842 |
+
sequence_output = encoder_outputs[0]
|
843 |
+
|
844 |
+
if not return_dict:
|
845 |
+
return (sequence_output,) + encoder_outputs[1:]
|
846 |
+
|
847 |
+
return TFBaseModelOutputWithCLSToken(
|
848 |
+
last_hidden_state=sequence_output,
|
849 |
+
cls_token_value=encoder_outputs.cls_token_value,
|
850 |
+
hidden_states=encoder_outputs.hidden_states,
|
851 |
+
)
|
852 |
+
|
853 |
+
def build(self, input_shape=None):
|
854 |
+
if self.built:
|
855 |
+
return
|
856 |
+
self.built = True
|
857 |
+
if getattr(self, "encoder", None) is not None:
|
858 |
+
with tf.name_scope(self.encoder.name):
|
859 |
+
self.encoder.build(None)
|
860 |
+
|
861 |
+
|
862 |
+
class TFCvtPreTrainedModel(TFPreTrainedModel):
|
863 |
+
"""
|
864 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
865 |
+
models.
|
866 |
+
"""
|
867 |
+
|
868 |
+
config_class = CvtConfig
|
869 |
+
base_model_prefix = "cvt"
|
870 |
+
main_input_name = "pixel_values"
|
871 |
+
|
872 |
+
|
873 |
+
TFCVT_START_DOCSTRING = r"""
|
874 |
+
|
875 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
876 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
877 |
+
etc.)
|
878 |
+
|
879 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
880 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
881 |
+
behavior.
|
882 |
+
|
883 |
+
<Tip>
|
884 |
+
|
885 |
+
TF 2.0 models accepts two formats as inputs:
|
886 |
+
|
887 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
888 |
+
- having all inputs as a list, tuple or dict in the first positional arguments.
|
889 |
+
|
890 |
+
This second option is useful when using [`keras.Model.fit`] method which currently requires having all the
|
891 |
+
tensors in the first argument of the model call function: `model(inputs)`.
|
892 |
+
|
893 |
+
</Tip>
|
894 |
+
|
895 |
+
Args:
|
896 |
+
config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
|
897 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
898 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
899 |
+
"""
|
900 |
+
|
901 |
+
TFCVT_INPUTS_DOCSTRING = r"""
|
902 |
+
Args:
|
903 |
+
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
|
904 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
|
905 |
+
for details.
|
906 |
+
|
907 |
+
output_hidden_states (`bool`, *optional*):
|
908 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
909 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
910 |
+
used instead.
|
911 |
+
return_dict (`bool`, *optional*):
|
912 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
913 |
+
eager mode, in graph mode the value will always be set to True.
|
914 |
+
training (`bool`, *optional*, defaults to `False``):
|
915 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
916 |
+
behaviors between training and evaluation).
|
917 |
+
"""
|
918 |
+
|
919 |
+
|
920 |
+
@add_start_docstrings(
|
921 |
+
"The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
|
922 |
+
TFCVT_START_DOCSTRING,
|
923 |
+
)
|
924 |
+
class TFCvtModel(TFCvtPreTrainedModel):
|
925 |
+
def __init__(self, config: CvtConfig, *inputs, **kwargs):
|
926 |
+
super().__init__(config, *inputs, **kwargs)
|
927 |
+
|
928 |
+
self.cvt = TFCvtMainLayer(config, name="cvt")
|
929 |
+
|
930 |
+
@unpack_inputs
|
931 |
+
@add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING)
|
932 |
+
@replace_return_docstrings(output_type=TFBaseModelOutputWithCLSToken, config_class=_CONFIG_FOR_DOC)
|
933 |
+
def call(
|
934 |
+
self,
|
935 |
+
pixel_values: tf.Tensor | None = None,
|
936 |
+
output_hidden_states: Optional[bool] = None,
|
937 |
+
return_dict: Optional[bool] = None,
|
938 |
+
training: Optional[bool] = False,
|
939 |
+
) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]:
|
940 |
+
r"""
|
941 |
+
Returns:
|
942 |
+
|
943 |
+
Examples:
|
944 |
+
|
945 |
+
```python
|
946 |
+
>>> from transformers import AutoImageProcessor, TFCvtModel
|
947 |
+
>>> from PIL import Image
|
948 |
+
>>> import requests
|
949 |
+
|
950 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
951 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
952 |
+
|
953 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13")
|
954 |
+
>>> model = TFCvtModel.from_pretrained("microsoft/cvt-13")
|
955 |
+
|
956 |
+
>>> inputs = image_processor(images=image, return_tensors="tf")
|
957 |
+
>>> outputs = model(**inputs)
|
958 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
959 |
+
```"""
|
960 |
+
|
961 |
+
if pixel_values is None:
|
962 |
+
raise ValueError("You have to specify pixel_values")
|
963 |
+
|
964 |
+
outputs = self.cvt(
|
965 |
+
pixel_values=pixel_values,
|
966 |
+
output_hidden_states=output_hidden_states,
|
967 |
+
return_dict=return_dict,
|
968 |
+
training=training,
|
969 |
+
)
|
970 |
+
|
971 |
+
if not return_dict:
|
972 |
+
return (outputs[0],) + outputs[1:]
|
973 |
+
|
974 |
+
return TFBaseModelOutputWithCLSToken(
|
975 |
+
last_hidden_state=outputs.last_hidden_state,
|
976 |
+
cls_token_value=outputs.cls_token_value,
|
977 |
+
hidden_states=outputs.hidden_states,
|
978 |
+
)
|
979 |
+
|
980 |
+
def build(self, input_shape=None):
|
981 |
+
if self.built:
|
982 |
+
return
|
983 |
+
self.built = True
|
984 |
+
if getattr(self, "cvt", None) is not None:
|
985 |
+
with tf.name_scope(self.cvt.name):
|
986 |
+
self.cvt.build(None)
|
987 |
+
|
988 |
+
|
989 |
+
@add_start_docstrings(
|
990 |
+
"""
|
991 |
+
Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
|
992 |
+
the [CLS] token) e.g. for ImageNet.
|
993 |
+
""",
|
994 |
+
TFCVT_START_DOCSTRING,
|
995 |
+
)
|
996 |
+
class TFCvtForImageClassification(TFCvtPreTrainedModel, TFSequenceClassificationLoss):
|
997 |
+
def __init__(self, config: CvtConfig, *inputs, **kwargs):
|
998 |
+
super().__init__(config, *inputs, **kwargs)
|
999 |
+
|
1000 |
+
self.num_labels = config.num_labels
|
1001 |
+
self.cvt = TFCvtMainLayer(config, name="cvt")
|
1002 |
+
# Using same default epsilon as in the original implementation.
|
1003 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm")
|
1004 |
+
|
1005 |
+
# Classifier head
|
1006 |
+
self.classifier = keras.layers.Dense(
|
1007 |
+
units=config.num_labels,
|
1008 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1009 |
+
use_bias=True,
|
1010 |
+
bias_initializer="zeros",
|
1011 |
+
name="classifier",
|
1012 |
+
)
|
1013 |
+
self.config = config
|
1014 |
+
|
1015 |
+
@unpack_inputs
|
1016 |
+
@add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING)
|
1017 |
+
@replace_return_docstrings(output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC)
|
1018 |
+
def call(
|
1019 |
+
self,
|
1020 |
+
pixel_values: tf.Tensor | None = None,
|
1021 |
+
labels: tf.Tensor | None = None,
|
1022 |
+
output_hidden_states: Optional[bool] = None,
|
1023 |
+
return_dict: Optional[bool] = None,
|
1024 |
+
training: Optional[bool] = False,
|
1025 |
+
) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]:
|
1026 |
+
r"""
|
1027 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1028 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1029 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1030 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1031 |
+
|
1032 |
+
Returns:
|
1033 |
+
|
1034 |
+
Examples:
|
1035 |
+
|
1036 |
+
```python
|
1037 |
+
>>> from transformers import AutoImageProcessor, TFCvtForImageClassification
|
1038 |
+
>>> import tensorflow as tf
|
1039 |
+
>>> from PIL import Image
|
1040 |
+
>>> import requests
|
1041 |
+
|
1042 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1043 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1044 |
+
|
1045 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13")
|
1046 |
+
>>> model = TFCvtForImageClassification.from_pretrained("microsoft/cvt-13")
|
1047 |
+
|
1048 |
+
>>> inputs = image_processor(images=image, return_tensors="tf")
|
1049 |
+
>>> outputs = model(**inputs)
|
1050 |
+
>>> logits = outputs.logits
|
1051 |
+
>>> # model predicts one of the 1000 ImageNet classes
|
1052 |
+
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
|
1053 |
+
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
|
1054 |
+
```"""
|
1055 |
+
|
1056 |
+
outputs = self.cvt(
|
1057 |
+
pixel_values,
|
1058 |
+
output_hidden_states=output_hidden_states,
|
1059 |
+
return_dict=return_dict,
|
1060 |
+
training=training,
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
sequence_output = outputs[0]
|
1064 |
+
cls_token = outputs[1]
|
1065 |
+
if self.config.cls_token[-1]:
|
1066 |
+
sequence_output = self.layernorm(cls_token)
|
1067 |
+
else:
|
1068 |
+
# rearrange "batch_size, num_channels, height, width -> batch_size, (height*width), num_channels"
|
1069 |
+
batch_size, num_channels, height, width = shape_list(sequence_output)
|
1070 |
+
sequence_output = tf.reshape(sequence_output, shape=(batch_size, num_channels, height * width))
|
1071 |
+
sequence_output = tf.transpose(sequence_output, perm=(0, 2, 1))
|
1072 |
+
sequence_output = self.layernorm(sequence_output)
|
1073 |
+
|
1074 |
+
sequence_output_mean = tf.reduce_mean(sequence_output, axis=1)
|
1075 |
+
logits = self.classifier(sequence_output_mean)
|
1076 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1077 |
+
|
1078 |
+
if not return_dict:
|
1079 |
+
output = (logits,) + outputs[2:]
|
1080 |
+
return ((loss,) + output) if loss is not None else output
|
1081 |
+
|
1082 |
+
return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
|
1083 |
+
|
1084 |
+
def build(self, input_shape=None):
|
1085 |
+
if self.built:
|
1086 |
+
return
|
1087 |
+
self.built = True
|
1088 |
+
if getattr(self, "cvt", None) is not None:
|
1089 |
+
with tf.name_scope(self.cvt.name):
|
1090 |
+
self.cvt.build(None)
|
1091 |
+
if getattr(self, "layernorm", None) is not None:
|
1092 |
+
with tf.name_scope(self.layernorm.name):
|
1093 |
+
self.layernorm.build([None, None, self.config.embed_dim[-1]])
|
1094 |
+
if getattr(self, "classifier", None) is not None:
|
1095 |
+
if hasattr(self.classifier, "name"):
|
1096 |
+
with tf.name_scope(self.classifier.name):
|
1097 |
+
self.classifier.build([None, None, self.config.embed_dim[-1]])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/phi/__init__.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Microsoft and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import TYPE_CHECKING
|
17 |
+
|
18 |
+
from ...utils import (
|
19 |
+
OptionalDependencyNotAvailable,
|
20 |
+
_LazyModule,
|
21 |
+
is_sentencepiece_available,
|
22 |
+
is_tokenizers_available,
|
23 |
+
is_torch_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {
|
28 |
+
"configuration_phi": ["PHI_PRETRAINED_CONFIG_ARCHIVE_MAP", "PhiConfig"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_torch_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["modeling_phi"] = [
|
38 |
+
"PHI_PRETRAINED_MODEL_ARCHIVE_LIST",
|
39 |
+
"PhiPreTrainedModel",
|
40 |
+
"PhiModel",
|
41 |
+
"PhiForCausalLM",
|
42 |
+
"PhiForSequenceClassification",
|
43 |
+
"PhiForTokenClassification",
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
if TYPE_CHECKING:
|
48 |
+
from .configuration_phi import PHI_PRETRAINED_CONFIG_ARCHIVE_MAP, PhiConfig
|
49 |
+
|
50 |
+
try:
|
51 |
+
if not is_torch_available():
|
52 |
+
raise OptionalDependencyNotAvailable()
|
53 |
+
except OptionalDependencyNotAvailable:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
from .modeling_phi import (
|
57 |
+
PHI_PRETRAINED_MODEL_ARCHIVE_LIST,
|
58 |
+
PhiForCausalLM,
|
59 |
+
PhiForSequenceClassification,
|
60 |
+
PhiForTokenClassification,
|
61 |
+
PhiModel,
|
62 |
+
PhiPreTrainedModel,
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
else:
|
67 |
+
import sys
|
68 |
+
|
69 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/phi/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/phi/__pycache__/configuration_phi.cpython-310.pyc
ADDED
Binary file (7.78 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/phi/__pycache__/convert_phi_weights_to_hf.cpython-310.pyc
ADDED
Binary file (4.97 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/phi/__pycache__/modeling_phi.cpython-310.pyc
ADDED
Binary file (42.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/phi/configuration_phi.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
from ..deprecated._archive_maps import PHI_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
27 |
+
|
28 |
+
|
29 |
+
class PhiConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
|
32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
+
defaults will yield a similar configuration to that of the Phi
|
34 |
+
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 51200):
|
41 |
+
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`PhiModel`].
|
43 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
48 |
+
Number of hidden layers in the Transformer decoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
51 |
+
num_key_value_heads (`int`, *optional*):
|
52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
58 |
+
`num_attention_heads`.
|
59 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
60 |
+
Dropout probability for mlp outputs.
|
61 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
62 |
+
The dropout ratio for the embeddings.
|
63 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio after computing the attention scores.
|
65 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
66 |
+
The non-linear activation function (function or string) in the decoder.
|
67 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
68 |
+
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
|
69 |
+
tokens.
|
70 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
71 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
72 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
73 |
+
The epsilon used by the rms normalization layers.
|
74 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
75 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
76 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
77 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
78 |
+
Whether to tie weight embeddings
|
79 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
80 |
+
The base period of the RoPE embeddings.
|
81 |
+
rope_scaling (`Dict`, *optional*):
|
82 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
83 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
84 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
85 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
86 |
+
these scaling strategies behave:
|
87 |
+
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
88 |
+
is an experimental feature, subject to breaking API changes in future versions.
|
89 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
90 |
+
Percentage of the query and keys which will have rotary embedding.
|
91 |
+
qk_layernorm (`bool`, *optional*, defaults to `False`):
|
92 |
+
Whether or not to normalize the Queries and Keys after projecting the hidden states.
|
93 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
94 |
+
Denotes beginning of sequences token id.
|
95 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
96 |
+
Denotes end of sequences token id.
|
97 |
+
|
98 |
+
Example:
|
99 |
+
|
100 |
+
```python
|
101 |
+
>>> from transformers import PhiModel, PhiConfig
|
102 |
+
|
103 |
+
>>> # Initializing a Phi-1 style configuration
|
104 |
+
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
|
105 |
+
|
106 |
+
>>> # Initializing a model from the configuration
|
107 |
+
>>> model = PhiModel(configuration)
|
108 |
+
|
109 |
+
>>> # Accessing the model configuration
|
110 |
+
>>> configuration = model.config
|
111 |
+
```"""
|
112 |
+
|
113 |
+
model_type = "phi"
|
114 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
vocab_size=51200,
|
119 |
+
hidden_size=2048,
|
120 |
+
intermediate_size=8192,
|
121 |
+
num_hidden_layers=24,
|
122 |
+
num_attention_heads=32,
|
123 |
+
num_key_value_heads=None,
|
124 |
+
resid_pdrop=0.0,
|
125 |
+
embd_pdrop=0.0,
|
126 |
+
attention_dropout=0.0,
|
127 |
+
hidden_act="gelu_new",
|
128 |
+
max_position_embeddings=2048,
|
129 |
+
initializer_range=0.02,
|
130 |
+
layer_norm_eps=1e-5,
|
131 |
+
use_cache=True,
|
132 |
+
tie_word_embeddings=False,
|
133 |
+
rope_theta=10000.0,
|
134 |
+
rope_scaling=None,
|
135 |
+
partial_rotary_factor=0.5,
|
136 |
+
qk_layernorm=False,
|
137 |
+
bos_token_id=1,
|
138 |
+
eos_token_id=2,
|
139 |
+
**kwargs,
|
140 |
+
):
|
141 |
+
self.vocab_size = vocab_size
|
142 |
+
self.hidden_size = hidden_size
|
143 |
+
self.intermediate_size = intermediate_size
|
144 |
+
self.num_hidden_layers = num_hidden_layers
|
145 |
+
self.num_attention_heads = num_attention_heads
|
146 |
+
|
147 |
+
if num_key_value_heads is None:
|
148 |
+
num_key_value_heads = num_attention_heads
|
149 |
+
|
150 |
+
self.num_key_value_heads = num_key_value_heads
|
151 |
+
self.resid_pdrop = resid_pdrop
|
152 |
+
self.embd_pdrop = embd_pdrop
|
153 |
+
self.attention_dropout = attention_dropout
|
154 |
+
self.hidden_act = hidden_act
|
155 |
+
self.max_position_embeddings = max_position_embeddings
|
156 |
+
self.initializer_range = initializer_range
|
157 |
+
self.layer_norm_eps = layer_norm_eps
|
158 |
+
self.use_cache = use_cache
|
159 |
+
self.rope_theta = rope_theta
|
160 |
+
self.rope_scaling = rope_scaling
|
161 |
+
self.partial_rotary_factor = partial_rotary_factor
|
162 |
+
self.qk_layernorm = qk_layernorm
|
163 |
+
self._rope_scaling_validation()
|
164 |
+
|
165 |
+
super().__init__(
|
166 |
+
bos_token_id=bos_token_id,
|
167 |
+
eos_token_id=eos_token_id,
|
168 |
+
tie_word_embeddings=tie_word_embeddings,
|
169 |
+
**kwargs,
|
170 |
+
)
|
171 |
+
|
172 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
173 |
+
def _rope_scaling_validation(self):
|
174 |
+
"""
|
175 |
+
Validate the `rope_scaling` configuration.
|
176 |
+
"""
|
177 |
+
if self.rope_scaling is None:
|
178 |
+
return
|
179 |
+
|
180 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
181 |
+
raise ValueError(
|
182 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
183 |
+
)
|
184 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
185 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
186 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
187 |
+
raise ValueError(
|
188 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
189 |
+
)
|
190 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
191 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
llmeval-env/lib/python3.10/site-packages/transformers/models/phi/convert_phi_weights_to_hf.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Weights conversion script for Phi
|
18 |
+
|
19 |
+
This script downloads both Phi-1 and Phi-1.5 checkpoints to "checkpoint_path" and then converts the weights to
|
20 |
+
HugfgingFace model's format and saves them in "pytorch_dump_folder_path".
|
21 |
+
|
22 |
+
Example : $python ./convert_phi_weights_to_hf.py --model_name "microsoft/phi-2" --pytorch_dump_folder ./dump_folder/ --checkpoint_path ./ckpt_path/
|
23 |
+
"""
|
24 |
+
|
25 |
+
import argparse
|
26 |
+
import gc
|
27 |
+
import os
|
28 |
+
|
29 |
+
import safetensors
|
30 |
+
import torch
|
31 |
+
from huggingface_hub import hf_hub_download
|
32 |
+
|
33 |
+
from transformers import PhiConfig, PhiForCausalLM
|
34 |
+
|
35 |
+
|
36 |
+
_MODELS = {
|
37 |
+
"microsoft/phi-1": ["https://huggingface.co/microsoft/phi-1/blob/main/pytorch_model.bin"],
|
38 |
+
"microsoft/phi-1_5": ["https://huggingface.co/microsoft/phi-1_5/blob/main/pytorch_model.bin"],
|
39 |
+
"microsoft/phi-2": [
|
40 |
+
"https://huggingface.co/microsoft/phi-2/blob/main/model-00001-of-00002.safetensors",
|
41 |
+
"https://huggingface.co/microsoft/phi-2/blob/main/model-00002-of-00002.safetensors",
|
42 |
+
],
|
43 |
+
}
|
44 |
+
|
45 |
+
PHI_MAPPING = {
|
46 |
+
"transformer.embd.wte.weight": "model.embed_tokens.weight",
|
47 |
+
"lm_head.linear": "lm_head",
|
48 |
+
"lm_head.ln": "model.final_layernorm",
|
49 |
+
"layers": "model.layers",
|
50 |
+
"transformer": "model",
|
51 |
+
".h.": ".layers.",
|
52 |
+
"ln": "input_layernorm",
|
53 |
+
"mixer": "self_attn",
|
54 |
+
"Wqkv": "query_key_value",
|
55 |
+
"out_proj": "dense",
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
def convert_weights(original_weights, mapping, config):
|
60 |
+
converted_weights = {}
|
61 |
+
original_weights_keys = sorted(original_weights.keys())
|
62 |
+
|
63 |
+
for original_weights_key in original_weights_keys:
|
64 |
+
new_key = original_weights_key
|
65 |
+
|
66 |
+
if "rotary_emb" in new_key:
|
67 |
+
continue
|
68 |
+
|
69 |
+
if "Wqkv" in new_key:
|
70 |
+
if "weight" in new_key:
|
71 |
+
weight = original_weights[new_key]
|
72 |
+
weights_shape = weight.shape
|
73 |
+
weight = (
|
74 |
+
weight.view(3, config.num_attention_heads, -1, config.hidden_size)
|
75 |
+
.transpose(0, 1)
|
76 |
+
.reshape(*weights_shape)
|
77 |
+
)
|
78 |
+
original_weights[new_key] = weight
|
79 |
+
elif "bias" in new_key:
|
80 |
+
bias = original_weights[new_key]
|
81 |
+
bias_shape = bias.shape
|
82 |
+
bias = bias.view(3, config.num_attention_heads, -1).transpose(0, 1).reshape(*bias_shape)
|
83 |
+
original_weights[new_key] = bias
|
84 |
+
|
85 |
+
for k, v in mapping.items():
|
86 |
+
if k in new_key:
|
87 |
+
new_key = new_key.replace(k, v)
|
88 |
+
|
89 |
+
converted_weights[new_key] = original_weights.pop(original_weights_key)
|
90 |
+
|
91 |
+
return converted_weights
|
92 |
+
|
93 |
+
|
94 |
+
def _download(url: str, root: str):
|
95 |
+
repo_id = f"{url.split('/')[3]}/{url.split('/')[4]}"
|
96 |
+
filename = f"{url.split('/')[-1]}"
|
97 |
+
hf_hub_download(
|
98 |
+
repo_id=repo_id,
|
99 |
+
filename=filename,
|
100 |
+
force_filename=root,
|
101 |
+
local_dir_use_symlinks=False,
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
def convert_phi_weights(
|
106 |
+
model_name, checkpoint_path, pytorch_dump_folder_path, use_cuda, save_weights_directly, _MODELS
|
107 |
+
):
|
108 |
+
_MODELS = _MODELS if model_name not in _MODELS.keys() else {model_name: _MODELS.get(model_name)}
|
109 |
+
device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
|
110 |
+
for model_name, model_url in _MODELS.items():
|
111 |
+
converted_checkpoint = {}
|
112 |
+
model_checkpoint = {}
|
113 |
+
|
114 |
+
# for phi-2 the weights are stored in 2 different safetensors file so we need to iterate over that list and download one at a time
|
115 |
+
for model_each_url in model_url:
|
116 |
+
model_path = os.path.join(checkpoint_path, model_name + "_" + model_each_url.split("/")[-1])
|
117 |
+
if not os.path.exists(model_path):
|
118 |
+
print(f"\n{model_name} was not found! Downloading it to {model_path}")
|
119 |
+
_download(url=model_each_url, root=model_path)
|
120 |
+
|
121 |
+
if model_path.endswith("safetensors"):
|
122 |
+
loaded_weights = safetensors.torch.load_file(model_path, device=device)
|
123 |
+
else:
|
124 |
+
loaded_weights = torch.load(model_path, map_location=device)
|
125 |
+
model_checkpoint.update(**loaded_weights)
|
126 |
+
|
127 |
+
model_type = model_name.split("/")[1] # phi-1 or phi-1_5 or phi-2
|
128 |
+
|
129 |
+
# init the config for phi-1 and phi-1.5
|
130 |
+
config = PhiConfig()
|
131 |
+
# if we are dealing with phi-2 then update the config
|
132 |
+
if model_type == "phi-2":
|
133 |
+
config.hidden_size = 2560
|
134 |
+
config.intermediate_size = 10240
|
135 |
+
config.num_hidden_layers = 32
|
136 |
+
config.resid_pdrop = 0.1
|
137 |
+
config.partial_rotary_factor = 0.4
|
138 |
+
config.num_hidden_layers = 32
|
139 |
+
config.torch_dtype = "float16"
|
140 |
+
|
141 |
+
# Converting the weights
|
142 |
+
converted_checkpoint.update(**convert_weights(model_checkpoint, PHI_MAPPING, config))
|
143 |
+
|
144 |
+
# Save either the whole model or the converted weights
|
145 |
+
if save_weights_directly:
|
146 |
+
save_weights_path = os.path.join(pytorch_dump_folder_path, model_type + "_pytorch_model.bin")
|
147 |
+
torch.save(converted_checkpoint, save_weights_path)
|
148 |
+
print(f"Model weights saved at {save_weights_path}!")
|
149 |
+
|
150 |
+
else:
|
151 |
+
model = PhiForCausalLM(config).to(device)
|
152 |
+
model.load_state_dict(converted_checkpoint, strict=True)
|
153 |
+
save_model_path = os.path.join(pytorch_dump_folder_path, model_type)
|
154 |
+
model.save_pretrained(save_model_path)
|
155 |
+
print(f"Model saved at {save_model_path}!")
|
156 |
+
|
157 |
+
# release GPU memory for the 2nd model if cuda was used.
|
158 |
+
del config, model
|
159 |
+
|
160 |
+
# release GPU memory for the 2nd model if cuda was used.
|
161 |
+
del model_checkpoint, converted_checkpoint
|
162 |
+
if use_cuda:
|
163 |
+
torch.cuda.empty_cache()
|
164 |
+
gc.collect()
|
165 |
+
|
166 |
+
|
167 |
+
if __name__ == "__main__":
|
168 |
+
parser = argparse.ArgumentParser()
|
169 |
+
# # Required parameters
|
170 |
+
parser.add_argument(
|
171 |
+
"--model_name",
|
172 |
+
type=str,
|
173 |
+
help="Name of the model to convert. (Please enter one of the following: phi-1, phi-1_5, phi-2). If nothing is provided, all models will be converted.",
|
174 |
+
default=None,
|
175 |
+
)
|
176 |
+
parser.add_argument(
|
177 |
+
"--checkpoint_path", type=str, help="Path to the folder of downloaded checkpoints. (Please enter full path)"
|
178 |
+
)
|
179 |
+
parser.add_argument(
|
180 |
+
"--pytorch_dump_folder_path",
|
181 |
+
default=None,
|
182 |
+
type=str,
|
183 |
+
help="Path to the output PyTorch model. (Please enter full path)",
|
184 |
+
)
|
185 |
+
parser.add_argument(
|
186 |
+
"--use_cuda",
|
187 |
+
default=False,
|
188 |
+
type=bool,
|
189 |
+
help="Whether to load the weights on GPU during conversion or not, False by default",
|
190 |
+
)
|
191 |
+
parser.add_argument(
|
192 |
+
"--save_weights_directly",
|
193 |
+
default=True,
|
194 |
+
type=bool,
|
195 |
+
help="Whether to save the weights directly after conversion or load the weight to the Phi model and then save "
|
196 |
+
"the Phi model along with weights. True by default",
|
197 |
+
)
|
198 |
+
|
199 |
+
args = parser.parse_args()
|
200 |
+
convert_phi_weights(
|
201 |
+
args.model_name,
|
202 |
+
args.checkpoint_path,
|
203 |
+
args.pytorch_dump_folder_path,
|
204 |
+
args.use_cuda,
|
205 |
+
args.save_weights_directly,
|
206 |
+
_MODELS,
|
207 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/phi/modeling_phi.py
ADDED
@@ -0,0 +1,1489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" PyTorch Phi model."""
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from packaging import version
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from ...activations import ACT2FN
|
30 |
+
from ...cache_utils import Cache, DynamicCache
|
31 |
+
from ...modeling_attn_mask_utils import (
|
32 |
+
_prepare_4d_causal_attention_mask,
|
33 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
34 |
+
)
|
35 |
+
from ...modeling_outputs import (
|
36 |
+
BaseModelOutputWithPast,
|
37 |
+
CausalLMOutputWithPast,
|
38 |
+
SequenceClassifierOutputWithPast,
|
39 |
+
TokenClassifierOutput,
|
40 |
+
)
|
41 |
+
from ...modeling_utils import PreTrainedModel
|
42 |
+
from ...utils import (
|
43 |
+
add_code_sample_docstrings,
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
get_torch_version,
|
47 |
+
is_flash_attn_2_available,
|
48 |
+
is_flash_attn_greater_or_equal_2_10,
|
49 |
+
logging,
|
50 |
+
replace_return_docstrings,
|
51 |
+
)
|
52 |
+
from .configuration_phi import PhiConfig
|
53 |
+
|
54 |
+
|
55 |
+
if is_flash_attn_2_available():
|
56 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
57 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__)
|
61 |
+
|
62 |
+
_CHECKPOINT_FOR_DOC = "microsoft/phi-1"
|
63 |
+
_CONFIG_FOR_DOC = "PhiConfig"
|
64 |
+
|
65 |
+
|
66 |
+
from ..deprecated._archive_maps import PHI_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
70 |
+
def _get_unpad_data(attention_mask):
|
71 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
72 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
73 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
74 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
75 |
+
return (
|
76 |
+
indices,
|
77 |
+
cu_seqlens,
|
78 |
+
max_seqlen_in_batch,
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Phi
|
83 |
+
class PhiRotaryEmbedding(nn.Module):
|
84 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
85 |
+
super().__init__()
|
86 |
+
|
87 |
+
self.dim = dim
|
88 |
+
self.max_position_embeddings = max_position_embeddings
|
89 |
+
self.base = base
|
90 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
91 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
92 |
+
|
93 |
+
# Build here to make `torch.jit.trace` work.
|
94 |
+
self._set_cos_sin_cache(
|
95 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
96 |
+
)
|
97 |
+
|
98 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
99 |
+
self.max_seq_len_cached = seq_len
|
100 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
101 |
+
|
102 |
+
freqs = torch.outer(t, self.inv_freq)
|
103 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
104 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
105 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
106 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
107 |
+
|
108 |
+
def forward(self, x, seq_len=None):
|
109 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
110 |
+
if seq_len > self.max_seq_len_cached:
|
111 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
112 |
+
|
113 |
+
return (
|
114 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
115 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
116 |
+
)
|
117 |
+
|
118 |
+
|
119 |
+
# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->Phi
|
120 |
+
class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
|
121 |
+
"""PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
122 |
+
|
123 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
124 |
+
self.scaling_factor = scaling_factor
|
125 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
126 |
+
|
127 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
128 |
+
self.max_seq_len_cached = seq_len
|
129 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
130 |
+
t = t / self.scaling_factor
|
131 |
+
|
132 |
+
freqs = torch.outer(t, self.inv_freq)
|
133 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
134 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
135 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
136 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
137 |
+
|
138 |
+
|
139 |
+
# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->Phi
|
140 |
+
class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding):
|
141 |
+
"""PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
142 |
+
|
143 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
144 |
+
self.scaling_factor = scaling_factor
|
145 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
146 |
+
|
147 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
148 |
+
self.max_seq_len_cached = seq_len
|
149 |
+
|
150 |
+
if seq_len > self.max_position_embeddings:
|
151 |
+
base = self.base * (
|
152 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
153 |
+
) ** (self.dim / (self.dim - 2))
|
154 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
155 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
156 |
+
|
157 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
158 |
+
|
159 |
+
freqs = torch.outer(t, self.inv_freq)
|
160 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
161 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
162 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
163 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
164 |
+
|
165 |
+
|
166 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
167 |
+
def rotate_half(x):
|
168 |
+
"""Rotates half the hidden dims of the input."""
|
169 |
+
x1 = x[..., : x.shape[-1] // 2]
|
170 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
171 |
+
return torch.cat((-x2, x1), dim=-1)
|
172 |
+
|
173 |
+
|
174 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
175 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
176 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
q (`torch.Tensor`): The query tensor.
|
180 |
+
k (`torch.Tensor`): The key tensor.
|
181 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
182 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
183 |
+
position_ids (`torch.Tensor`):
|
184 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
185 |
+
used to pass offsetted position ids when working with a KV-cache.
|
186 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
187 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
188 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
189 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
190 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
191 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
192 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
193 |
+
Returns:
|
194 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
195 |
+
"""
|
196 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
197 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
198 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
199 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
200 |
+
return q_embed, k_embed
|
201 |
+
|
202 |
+
|
203 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi
|
204 |
+
class PhiMLP(nn.Module):
|
205 |
+
def __init__(self, config):
|
206 |
+
super().__init__()
|
207 |
+
self.config = config
|
208 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
209 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
210 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
211 |
+
|
212 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
213 |
+
hidden_states = self.fc1(hidden_states)
|
214 |
+
hidden_states = self.activation_fn(hidden_states)
|
215 |
+
hidden_states = self.fc2(hidden_states)
|
216 |
+
return hidden_states
|
217 |
+
|
218 |
+
|
219 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
220 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
221 |
+
"""
|
222 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
223 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
224 |
+
"""
|
225 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
226 |
+
if n_rep == 1:
|
227 |
+
return hidden_states
|
228 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
229 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
230 |
+
|
231 |
+
|
232 |
+
class PhiAttention(nn.Module):
|
233 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
234 |
+
|
235 |
+
def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None):
|
236 |
+
super().__init__()
|
237 |
+
self.config = config
|
238 |
+
self.layer_idx = layer_idx
|
239 |
+
if layer_idx is None:
|
240 |
+
logger.warning_once(
|
241 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
242 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
243 |
+
"when creating this class."
|
244 |
+
)
|
245 |
+
|
246 |
+
self.attention_dropout = config.attention_dropout
|
247 |
+
self.hidden_size = config.hidden_size
|
248 |
+
self.num_heads = config.num_attention_heads
|
249 |
+
self.head_dim = self.hidden_size // self.num_heads
|
250 |
+
self.num_key_value_heads = config.num_key_value_heads
|
251 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
252 |
+
self.max_position_embeddings = config.max_position_embeddings
|
253 |
+
self.rope_theta = config.rope_theta
|
254 |
+
self.partial_rotary_factor = config.partial_rotary_factor
|
255 |
+
self.is_causal = True
|
256 |
+
|
257 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
258 |
+
raise ValueError(
|
259 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
260 |
+
f" and `num_heads`: {self.num_heads})."
|
261 |
+
)
|
262 |
+
|
263 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
264 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
265 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
266 |
+
self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True)
|
267 |
+
|
268 |
+
self.qk_layernorm = config.qk_layernorm
|
269 |
+
if self.qk_layernorm:
|
270 |
+
self.q_layernorm = nn.LayerNorm(
|
271 |
+
config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
|
272 |
+
)
|
273 |
+
self.k_layernorm = nn.LayerNorm(
|
274 |
+
config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
|
275 |
+
)
|
276 |
+
|
277 |
+
self._init_rope()
|
278 |
+
|
279 |
+
def _init_rope(self):
|
280 |
+
if self.config.rope_scaling is None:
|
281 |
+
self.rotary_emb = PhiRotaryEmbedding(
|
282 |
+
int(self.partial_rotary_factor * self.head_dim),
|
283 |
+
max_position_embeddings=self.max_position_embeddings,
|
284 |
+
base=self.rope_theta,
|
285 |
+
)
|
286 |
+
else:
|
287 |
+
scaling_type = self.config.rope_scaling["type"]
|
288 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
289 |
+
if scaling_type == "linear":
|
290 |
+
self.rotary_emb = PhiLinearScalingRotaryEmbedding(
|
291 |
+
int(self.partial_rotary_factor * self.head_dim),
|
292 |
+
max_position_embeddings=self.max_position_embeddings,
|
293 |
+
scaling_factor=scaling_factor,
|
294 |
+
base=self.rope_theta,
|
295 |
+
)
|
296 |
+
elif scaling_type == "dynamic":
|
297 |
+
self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding(
|
298 |
+
int(self.partial_rotary_factor * self.head_dim),
|
299 |
+
max_position_embeddings=self.max_position_embeddings,
|
300 |
+
scaling_factor=scaling_factor,
|
301 |
+
base=self.rope_theta,
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
305 |
+
|
306 |
+
def forward(
|
307 |
+
self,
|
308 |
+
hidden_states: torch.Tensor,
|
309 |
+
attention_mask: Optional[torch.Tensor] = None,
|
310 |
+
position_ids: Optional[torch.LongTensor] = None,
|
311 |
+
past_key_value: Optional[Cache] = None,
|
312 |
+
output_attentions: bool = False,
|
313 |
+
use_cache: bool = False,
|
314 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
315 |
+
bsz, q_len, _ = hidden_states.size()
|
316 |
+
|
317 |
+
query_states = self.q_proj(hidden_states)
|
318 |
+
key_states = self.k_proj(hidden_states)
|
319 |
+
value_states = self.v_proj(hidden_states)
|
320 |
+
|
321 |
+
if self.qk_layernorm:
|
322 |
+
query_states = self.q_layernorm(query_states)
|
323 |
+
key_states = self.k_layernorm(key_states)
|
324 |
+
|
325 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
326 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
327 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
328 |
+
|
329 |
+
kv_seq_len = key_states.shape[-2]
|
330 |
+
if past_key_value is not None:
|
331 |
+
if self.layer_idx is None:
|
332 |
+
raise ValueError(
|
333 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
334 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
335 |
+
"with a layer index."
|
336 |
+
)
|
337 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
338 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
339 |
+
|
340 |
+
# Partial rotary embedding
|
341 |
+
query_rot, query_pass = (
|
342 |
+
query_states[..., : self.rotary_emb.dim],
|
343 |
+
query_states[..., self.rotary_emb.dim :],
|
344 |
+
)
|
345 |
+
key_rot, key_pass = (
|
346 |
+
key_states[..., : self.rotary_emb.dim],
|
347 |
+
key_states[..., self.rotary_emb.dim :],
|
348 |
+
)
|
349 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
350 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
351 |
+
|
352 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
353 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
354 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
355 |
+
|
356 |
+
if past_key_value is not None:
|
357 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
358 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
359 |
+
|
360 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
361 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
362 |
+
|
363 |
+
# Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
|
364 |
+
attn_weights = torch.matmul(
|
365 |
+
query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
|
366 |
+
) / math.sqrt(self.head_dim)
|
367 |
+
|
368 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
369 |
+
raise ValueError(
|
370 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
371 |
+
f" {attn_weights.size()}"
|
372 |
+
)
|
373 |
+
|
374 |
+
if attention_mask is not None:
|
375 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
376 |
+
raise ValueError(
|
377 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
378 |
+
)
|
379 |
+
attn_weights = attn_weights + attention_mask
|
380 |
+
|
381 |
+
# upcast attention to fp32
|
382 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
383 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
384 |
+
|
385 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
386 |
+
|
387 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
388 |
+
raise ValueError(
|
389 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
390 |
+
f" {attn_output.size()}"
|
391 |
+
)
|
392 |
+
|
393 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
394 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
395 |
+
|
396 |
+
attn_output = self.dense(attn_output)
|
397 |
+
|
398 |
+
if not output_attentions:
|
399 |
+
attn_weights = None
|
400 |
+
|
401 |
+
return attn_output, attn_weights, past_key_value
|
402 |
+
|
403 |
+
|
404 |
+
class PhiFlashAttention2(PhiAttention):
|
405 |
+
"""
|
406 |
+
Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays
|
407 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
408 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
409 |
+
"""
|
410 |
+
|
411 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
412 |
+
def __init__(self, *args, **kwargs):
|
413 |
+
super().__init__(*args, **kwargs)
|
414 |
+
|
415 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
416 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
417 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
418 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
419 |
+
|
420 |
+
def forward(
|
421 |
+
self,
|
422 |
+
hidden_states: torch.Tensor,
|
423 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
424 |
+
position_ids: Optional[torch.LongTensor] = None,
|
425 |
+
past_key_value: Optional[Cache] = None,
|
426 |
+
output_attentions: bool = False,
|
427 |
+
use_cache: bool = False,
|
428 |
+
**kwargs,
|
429 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
430 |
+
# PhiFlashAttention2 attention does not support output_attentions
|
431 |
+
|
432 |
+
output_attentions = False
|
433 |
+
|
434 |
+
bsz, q_len, _ = hidden_states.size()
|
435 |
+
|
436 |
+
query_states = self.q_proj(hidden_states)
|
437 |
+
key_states = self.k_proj(hidden_states)
|
438 |
+
value_states = self.v_proj(hidden_states)
|
439 |
+
|
440 |
+
if self.qk_layernorm:
|
441 |
+
query_states = self.q_layernorm(query_states)
|
442 |
+
key_states = self.k_layernorm(key_states)
|
443 |
+
|
444 |
+
# Flash attention requires the input to have the shape
|
445 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
446 |
+
# therefore we just need to keep the original shape
|
447 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
448 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
449 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
450 |
+
|
451 |
+
kv_seq_len = key_states.shape[-2]
|
452 |
+
if past_key_value is not None:
|
453 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
454 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
455 |
+
|
456 |
+
# Partial rotary embedding
|
457 |
+
query_rot, query_pass = (
|
458 |
+
query_states[..., : self.rotary_emb.dim],
|
459 |
+
query_states[..., self.rotary_emb.dim :],
|
460 |
+
)
|
461 |
+
key_rot, key_pass = (
|
462 |
+
key_states[..., : self.rotary_emb.dim],
|
463 |
+
key_states[..., self.rotary_emb.dim :],
|
464 |
+
)
|
465 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
466 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
467 |
+
|
468 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
469 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
470 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
471 |
+
|
472 |
+
if past_key_value is not None:
|
473 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
474 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
475 |
+
|
476 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
477 |
+
# to be able to avoid many of these transpose/reshape/view.
|
478 |
+
query_states = query_states.transpose(1, 2)
|
479 |
+
key_states = key_states.transpose(1, 2)
|
480 |
+
value_states = value_states.transpose(1, 2)
|
481 |
+
|
482 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
483 |
+
|
484 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
485 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
486 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
487 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
488 |
+
# in fp32.
|
489 |
+
|
490 |
+
if query_states.dtype == torch.float32:
|
491 |
+
if torch.is_autocast_enabled():
|
492 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
493 |
+
# Handle the case where the model is quantized
|
494 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
495 |
+
target_dtype = self.config._pre_quantization_dtype
|
496 |
+
else:
|
497 |
+
target_dtype = self.q_proj.weight.dtype
|
498 |
+
|
499 |
+
logger.warning_once(
|
500 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
501 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
502 |
+
f" {target_dtype}."
|
503 |
+
)
|
504 |
+
|
505 |
+
query_states = query_states.to(target_dtype)
|
506 |
+
key_states = key_states.to(target_dtype)
|
507 |
+
value_states = value_states.to(target_dtype)
|
508 |
+
|
509 |
+
attn_output = self._flash_attention_forward(
|
510 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=attn_dropout, softmax_scale=None
|
511 |
+
)
|
512 |
+
|
513 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
514 |
+
attn_output = self.dense(attn_output)
|
515 |
+
|
516 |
+
if not output_attentions:
|
517 |
+
attn_weights = None
|
518 |
+
|
519 |
+
return attn_output, attn_weights, past_key_value
|
520 |
+
|
521 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
522 |
+
def _flash_attention_forward(
|
523 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
524 |
+
):
|
525 |
+
"""
|
526 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
527 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
query_states (`torch.Tensor`):
|
531 |
+
Input query states to be passed to Flash Attention API
|
532 |
+
key_states (`torch.Tensor`):
|
533 |
+
Input key states to be passed to Flash Attention API
|
534 |
+
value_states (`torch.Tensor`):
|
535 |
+
Input value states to be passed to Flash Attention API
|
536 |
+
attention_mask (`torch.Tensor`):
|
537 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
538 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
539 |
+
dropout (`float`):
|
540 |
+
Attention dropout
|
541 |
+
softmax_scale (`float`, *optional*):
|
542 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
543 |
+
"""
|
544 |
+
if not self._flash_attn_uses_top_left_mask:
|
545 |
+
causal = self.is_causal
|
546 |
+
else:
|
547 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
548 |
+
causal = self.is_causal and query_length != 1
|
549 |
+
|
550 |
+
# Contains at least one padding token in the sequence
|
551 |
+
if attention_mask is not None:
|
552 |
+
batch_size = query_states.shape[0]
|
553 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
554 |
+
query_states, key_states, value_states, attention_mask, query_length
|
555 |
+
)
|
556 |
+
|
557 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
558 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
559 |
+
|
560 |
+
attn_output_unpad = flash_attn_varlen_func(
|
561 |
+
query_states,
|
562 |
+
key_states,
|
563 |
+
value_states,
|
564 |
+
cu_seqlens_q=cu_seqlens_q,
|
565 |
+
cu_seqlens_k=cu_seqlens_k,
|
566 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
567 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
568 |
+
dropout_p=dropout,
|
569 |
+
softmax_scale=softmax_scale,
|
570 |
+
causal=causal,
|
571 |
+
)
|
572 |
+
|
573 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
574 |
+
else:
|
575 |
+
attn_output = flash_attn_func(
|
576 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
577 |
+
)
|
578 |
+
|
579 |
+
return attn_output
|
580 |
+
|
581 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
582 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
583 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
584 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
585 |
+
|
586 |
+
key_layer = index_first_axis(
|
587 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
588 |
+
)
|
589 |
+
value_layer = index_first_axis(
|
590 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
591 |
+
)
|
592 |
+
if query_length == kv_seq_len:
|
593 |
+
query_layer = index_first_axis(
|
594 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
595 |
+
)
|
596 |
+
cu_seqlens_q = cu_seqlens_k
|
597 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
598 |
+
indices_q = indices_k
|
599 |
+
elif query_length == 1:
|
600 |
+
max_seqlen_in_batch_q = 1
|
601 |
+
cu_seqlens_q = torch.arange(
|
602 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
603 |
+
) # There is a memcpy here, that is very bad.
|
604 |
+
indices_q = cu_seqlens_q[:-1]
|
605 |
+
query_layer = query_layer.squeeze(1)
|
606 |
+
else:
|
607 |
+
# The -q_len: slice assumes left padding.
|
608 |
+
attention_mask = attention_mask[:, -query_length:]
|
609 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
610 |
+
|
611 |
+
return (
|
612 |
+
query_layer,
|
613 |
+
key_layer,
|
614 |
+
value_layer,
|
615 |
+
indices_q,
|
616 |
+
(cu_seqlens_q, cu_seqlens_k),
|
617 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
618 |
+
)
|
619 |
+
|
620 |
+
|
621 |
+
class PhiSdpaAttention(PhiAttention):
|
622 |
+
def __init__(self, *args, **kwargs):
|
623 |
+
super().__init__(*args, **kwargs)
|
624 |
+
self.require_contiguous_qkv = version.parse(get_torch_version()) < version.parse("2.2.0")
|
625 |
+
|
626 |
+
"""
|
627 |
+
SDPA attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
628 |
+
`PhiAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
629 |
+
SDPA API.
|
630 |
+
"""
|
631 |
+
|
632 |
+
# Adapted from PhiAttention.forward
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
hidden_states: torch.Tensor,
|
636 |
+
attention_mask: Optional[torch.Tensor] = None,
|
637 |
+
position_ids: Optional[torch.LongTensor] = None,
|
638 |
+
past_key_value: Optional[Cache] = None,
|
639 |
+
output_attentions: bool = False,
|
640 |
+
use_cache: bool = False,
|
641 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
642 |
+
if output_attentions:
|
643 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
644 |
+
logger.warning_once(
|
645 |
+
"PhiModel is using PhiSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not "
|
646 |
+
"support `output_attentions=True`. Falling back to the manual attention implementation, but specifying "
|
647 |
+
"the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can "
|
648 |
+
'be removed using the argument `attn_implementation="eager"` when loading the model.'
|
649 |
+
)
|
650 |
+
return super().forward(
|
651 |
+
hidden_states=hidden_states,
|
652 |
+
attention_mask=attention_mask,
|
653 |
+
position_ids=position_ids,
|
654 |
+
past_key_value=past_key_value,
|
655 |
+
output_attentions=output_attentions,
|
656 |
+
use_cache=use_cache,
|
657 |
+
)
|
658 |
+
|
659 |
+
bsz, q_len, _ = hidden_states.size()
|
660 |
+
|
661 |
+
query_states = self.q_proj(hidden_states)
|
662 |
+
key_states = self.k_proj(hidden_states)
|
663 |
+
value_states = self.v_proj(hidden_states)
|
664 |
+
|
665 |
+
if self.qk_layernorm:
|
666 |
+
query_states = self.q_layernorm(query_states)
|
667 |
+
key_states = self.k_layernorm(key_states)
|
668 |
+
|
669 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
670 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
671 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
672 |
+
|
673 |
+
kv_seq_len = key_states.shape[-2]
|
674 |
+
if past_key_value is not None:
|
675 |
+
if self.layer_idx is None:
|
676 |
+
raise ValueError(
|
677 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
678 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
679 |
+
"with a layer index."
|
680 |
+
)
|
681 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
682 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
683 |
+
|
684 |
+
# Partial rotary embedding
|
685 |
+
query_rot, query_pass = (
|
686 |
+
query_states[..., : self.rotary_emb.dim],
|
687 |
+
query_states[..., self.rotary_emb.dim :],
|
688 |
+
)
|
689 |
+
key_rot, key_pass = (
|
690 |
+
key_states[..., : self.rotary_emb.dim],
|
691 |
+
key_states[..., self.rotary_emb.dim :],
|
692 |
+
)
|
693 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
694 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
695 |
+
|
696 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
697 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
698 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
699 |
+
|
700 |
+
if past_key_value is not None:
|
701 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
702 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
703 |
+
|
704 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
705 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
706 |
+
|
707 |
+
# SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
|
708 |
+
# attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0.
|
709 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577
|
710 |
+
if self.require_contiguous_qkv and query_states.device.type == "cuda" and attention_mask is not None:
|
711 |
+
query_states = query_states.contiguous()
|
712 |
+
key_states = key_states.contiguous()
|
713 |
+
value_states = value_states.contiguous()
|
714 |
+
|
715 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
716 |
+
query_states,
|
717 |
+
key_states,
|
718 |
+
value_states,
|
719 |
+
attn_mask=attention_mask,
|
720 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
721 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
722 |
+
)
|
723 |
+
|
724 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
725 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
726 |
+
|
727 |
+
attn_output = self.dense(attn_output)
|
728 |
+
|
729 |
+
return attn_output, None, past_key_value
|
730 |
+
|
731 |
+
|
732 |
+
PHI_ATTENTION_CLASSES = {
|
733 |
+
"eager": PhiAttention,
|
734 |
+
"flash_attention_2": PhiFlashAttention2,
|
735 |
+
"sdpa": PhiSdpaAttention,
|
736 |
+
}
|
737 |
+
|
738 |
+
|
739 |
+
class PhiDecoderLayer(nn.Module):
|
740 |
+
def __init__(self, config: PhiConfig, layer_idx: int):
|
741 |
+
super().__init__()
|
742 |
+
self.self_attn = PHI_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
743 |
+
self.mlp = PhiMLP(config)
|
744 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
745 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
746 |
+
|
747 |
+
def forward(
|
748 |
+
self,
|
749 |
+
hidden_states: torch.Tensor,
|
750 |
+
attention_mask: Optional[torch.Tensor] = None,
|
751 |
+
position_ids: Optional[torch.LongTensor] = None,
|
752 |
+
output_attentions: Optional[bool] = False,
|
753 |
+
use_cache: Optional[bool] = False,
|
754 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
755 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
756 |
+
"""
|
757 |
+
Args:
|
758 |
+
hidden_states (`torch.FloatTensor`):
|
759 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
760 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
761 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
762 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
763 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
764 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
765 |
+
output_attentions (`bool`, *optional*):
|
766 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
767 |
+
returned tensors for more detail.
|
768 |
+
use_cache (`bool`, *optional*):
|
769 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
770 |
+
(see `past_key_values`).
|
771 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
772 |
+
"""
|
773 |
+
|
774 |
+
residual = hidden_states
|
775 |
+
|
776 |
+
hidden_states = self.input_layernorm(hidden_states)
|
777 |
+
|
778 |
+
# Self Attention
|
779 |
+
attn_outputs, self_attn_weights, present_key_value = self.self_attn(
|
780 |
+
hidden_states=hidden_states,
|
781 |
+
attention_mask=attention_mask,
|
782 |
+
position_ids=position_ids,
|
783 |
+
past_key_value=past_key_value,
|
784 |
+
output_attentions=output_attentions,
|
785 |
+
use_cache=use_cache,
|
786 |
+
)
|
787 |
+
attn_outputs = self.resid_dropout(attn_outputs)
|
788 |
+
|
789 |
+
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
790 |
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
791 |
+
outputs = (hidden_states,)
|
792 |
+
|
793 |
+
if output_attentions:
|
794 |
+
outputs += (self_attn_weights,)
|
795 |
+
|
796 |
+
if use_cache:
|
797 |
+
outputs += (present_key_value,)
|
798 |
+
|
799 |
+
return outputs
|
800 |
+
|
801 |
+
|
802 |
+
PHI_START_DOCSTRING = r"""
|
803 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
804 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
805 |
+
etc.)
|
806 |
+
|
807 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
808 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
809 |
+
and behavior.
|
810 |
+
|
811 |
+
Parameters:
|
812 |
+
config ([`PhiConfig`]):
|
813 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
814 |
+
load the weights associated with the model, only the configuration. Check out the
|
815 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
816 |
+
"""
|
817 |
+
|
818 |
+
|
819 |
+
@add_start_docstrings(
|
820 |
+
"The bare Phi Model outputting raw hidden-states without any specific head on top.",
|
821 |
+
PHI_START_DOCSTRING,
|
822 |
+
)
|
823 |
+
class PhiPreTrainedModel(PreTrainedModel):
|
824 |
+
config_class = PhiConfig
|
825 |
+
base_model_prefix = "model"
|
826 |
+
supports_gradient_checkpointing = True
|
827 |
+
_no_split_modules = ["PhiDecoderLayer"]
|
828 |
+
_skip_keys_device_placement = "past_key_values"
|
829 |
+
_supports_flash_attn_2 = True
|
830 |
+
_supports_sdpa = True
|
831 |
+
_supports_cache_class = True
|
832 |
+
|
833 |
+
def _init_weights(self, module):
|
834 |
+
std = self.config.initializer_range
|
835 |
+
if isinstance(module, nn.Linear):
|
836 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
837 |
+
if module.bias is not None:
|
838 |
+
module.bias.data.zero_()
|
839 |
+
elif isinstance(module, nn.Embedding):
|
840 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
841 |
+
if module.padding_idx is not None:
|
842 |
+
module.weight.data[module.padding_idx].zero_()
|
843 |
+
|
844 |
+
|
845 |
+
PHI_INPUTS_DOCSTRING = r"""
|
846 |
+
Args:
|
847 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
848 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
849 |
+
it.
|
850 |
+
|
851 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
852 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
853 |
+
|
854 |
+
[What are input IDs?](../glossary#input-ids)
|
855 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
856 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
857 |
+
|
858 |
+
- 1 for tokens that are **not masked**,
|
859 |
+
- 0 for tokens that are **masked**.
|
860 |
+
|
861 |
+
[What are attention masks?](../glossary#attention-mask)
|
862 |
+
|
863 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
864 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
865 |
+
|
866 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
867 |
+
`past_key_values`).
|
868 |
+
|
869 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
870 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
871 |
+
information on the default strategy.
|
872 |
+
|
873 |
+
- 1 indicates the head is **not masked**,
|
874 |
+
- 0 indicates the head is **masked**.
|
875 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
876 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
877 |
+
config.n_positions - 1]`.
|
878 |
+
|
879 |
+
[What are position IDs?](../glossary#position-ids)
|
880 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
881 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
882 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
883 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
884 |
+
|
885 |
+
Two formats are allowed:
|
886 |
+
- a [`~cache_utils.Cache`] instance;
|
887 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
888 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
889 |
+
cache format.
|
890 |
+
|
891 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
892 |
+
legacy cache format will be returned.
|
893 |
+
|
894 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
895 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
896 |
+
of shape `(batch_size, sequence_length)`.
|
897 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
898 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
899 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
900 |
+
model's internal embedding lookup matrix.
|
901 |
+
use_cache (`bool`, *optional*):
|
902 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
903 |
+
`past_key_values`).
|
904 |
+
output_attentions (`bool`, *optional*):
|
905 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
906 |
+
tensors for more detail.
|
907 |
+
output_hidden_states (`bool`, *optional*):
|
908 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
909 |
+
more detail.
|
910 |
+
return_dict (`bool`, *optional*):
|
911 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
912 |
+
"""
|
913 |
+
|
914 |
+
|
915 |
+
@add_start_docstrings(
|
916 |
+
"The bare Phi Model outputting raw hidden-states without any specific head on top.",
|
917 |
+
PHI_START_DOCSTRING,
|
918 |
+
)
|
919 |
+
class PhiModel(PhiPreTrainedModel):
|
920 |
+
"""
|
921 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`]
|
922 |
+
|
923 |
+
Args:
|
924 |
+
config: PhiConfig
|
925 |
+
"""
|
926 |
+
|
927 |
+
def __init__(self, config: PhiConfig):
|
928 |
+
super().__init__(config)
|
929 |
+
self.padding_idx = config.pad_token_id
|
930 |
+
self.vocab_size = config.vocab_size
|
931 |
+
|
932 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
933 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
934 |
+
self.layers = nn.ModuleList(
|
935 |
+
[PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
936 |
+
)
|
937 |
+
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
938 |
+
|
939 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
940 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
941 |
+
|
942 |
+
self.gradient_checkpointing = False
|
943 |
+
# Initialize weights and apply final processing
|
944 |
+
self.post_init()
|
945 |
+
|
946 |
+
def get_input_embeddings(self):
|
947 |
+
return self.embed_tokens
|
948 |
+
|
949 |
+
def set_input_embeddings(self, value):
|
950 |
+
self.embed_tokens = value
|
951 |
+
|
952 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
953 |
+
def forward(
|
954 |
+
self,
|
955 |
+
input_ids: torch.LongTensor = None,
|
956 |
+
attention_mask: Optional[torch.Tensor] = None,
|
957 |
+
position_ids: Optional[torch.LongTensor] = None,
|
958 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
959 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
960 |
+
use_cache: Optional[bool] = None,
|
961 |
+
output_attentions: Optional[bool] = None,
|
962 |
+
output_hidden_states: Optional[bool] = None,
|
963 |
+
return_dict: Optional[bool] = None,
|
964 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
965 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
966 |
+
output_hidden_states = (
|
967 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
968 |
+
)
|
969 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
970 |
+
|
971 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
972 |
+
|
973 |
+
# retrieve input_ids and inputs_embeds
|
974 |
+
if input_ids is not None and inputs_embeds is not None:
|
975 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
976 |
+
elif input_ids is not None:
|
977 |
+
batch_size, seq_length = input_ids.shape[:2]
|
978 |
+
elif inputs_embeds is not None:
|
979 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
980 |
+
else:
|
981 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
982 |
+
|
983 |
+
past_key_values_length = 0
|
984 |
+
|
985 |
+
if self.gradient_checkpointing and self.training:
|
986 |
+
if use_cache:
|
987 |
+
logger.warning_once(
|
988 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
989 |
+
)
|
990 |
+
use_cache = False
|
991 |
+
|
992 |
+
if use_cache:
|
993 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
994 |
+
if use_legacy_cache:
|
995 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
996 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
997 |
+
|
998 |
+
if position_ids is None:
|
999 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1000 |
+
position_ids = torch.arange(
|
1001 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1002 |
+
)
|
1003 |
+
position_ids = position_ids.unsqueeze(0)
|
1004 |
+
|
1005 |
+
if inputs_embeds is None:
|
1006 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1007 |
+
|
1008 |
+
inputs_embeds = self.embed_dropout(inputs_embeds)
|
1009 |
+
|
1010 |
+
# Attention mask.
|
1011 |
+
if self._use_flash_attention_2:
|
1012 |
+
# 2d mask is passed through the layers
|
1013 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1014 |
+
elif self._use_sdpa and not output_attentions:
|
1015 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1016 |
+
attention_mask,
|
1017 |
+
(batch_size, seq_length),
|
1018 |
+
inputs_embeds,
|
1019 |
+
past_key_values_length,
|
1020 |
+
)
|
1021 |
+
else:
|
1022 |
+
# 4d mask is passed through the layers
|
1023 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1024 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
hidden_states = inputs_embeds
|
1028 |
+
|
1029 |
+
# decoder layers
|
1030 |
+
all_hidden_states = () if output_hidden_states else None
|
1031 |
+
all_self_attns = () if output_attentions else None
|
1032 |
+
next_decoder_cache = None
|
1033 |
+
|
1034 |
+
for decoder_layer in self.layers:
|
1035 |
+
if output_hidden_states:
|
1036 |
+
all_hidden_states += (hidden_states,)
|
1037 |
+
|
1038 |
+
if self.gradient_checkpointing and self.training:
|
1039 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1040 |
+
decoder_layer.__call__,
|
1041 |
+
hidden_states,
|
1042 |
+
attention_mask,
|
1043 |
+
position_ids,
|
1044 |
+
past_key_values,
|
1045 |
+
output_attentions,
|
1046 |
+
)
|
1047 |
+
else:
|
1048 |
+
layer_outputs = decoder_layer(
|
1049 |
+
hidden_states,
|
1050 |
+
attention_mask=attention_mask,
|
1051 |
+
position_ids=position_ids,
|
1052 |
+
past_key_value=past_key_values,
|
1053 |
+
output_attentions=output_attentions,
|
1054 |
+
use_cache=use_cache,
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
hidden_states = layer_outputs[0]
|
1058 |
+
|
1059 |
+
if use_cache:
|
1060 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1061 |
+
|
1062 |
+
if output_attentions:
|
1063 |
+
all_self_attns += (layer_outputs[1],)
|
1064 |
+
|
1065 |
+
hidden_states = self.final_layernorm(hidden_states)
|
1066 |
+
|
1067 |
+
# add hidden states from the last decoder layer
|
1068 |
+
if output_hidden_states:
|
1069 |
+
all_hidden_states += (hidden_states,)
|
1070 |
+
|
1071 |
+
next_cache = None
|
1072 |
+
if use_cache:
|
1073 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1074 |
+
if not return_dict:
|
1075 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1076 |
+
return BaseModelOutputWithPast(
|
1077 |
+
last_hidden_state=hidden_states,
|
1078 |
+
past_key_values=next_cache,
|
1079 |
+
hidden_states=all_hidden_states,
|
1080 |
+
attentions=all_self_attns,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
|
1084 |
+
class PhiForCausalLM(PhiPreTrainedModel):
|
1085 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1086 |
+
|
1087 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True
|
1088 |
+
def __init__(self, config):
|
1089 |
+
super().__init__(config)
|
1090 |
+
self.model = PhiModel(config)
|
1091 |
+
self.vocab_size = config.vocab_size
|
1092 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
|
1093 |
+
|
1094 |
+
# Initialize weights and apply final processing
|
1095 |
+
self.post_init()
|
1096 |
+
|
1097 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1098 |
+
def get_input_embeddings(self):
|
1099 |
+
return self.model.embed_tokens
|
1100 |
+
|
1101 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1102 |
+
def set_input_embeddings(self, value):
|
1103 |
+
self.model.embed_tokens = value
|
1104 |
+
|
1105 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1106 |
+
def get_output_embeddings(self):
|
1107 |
+
return self.lm_head
|
1108 |
+
|
1109 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1110 |
+
def set_output_embeddings(self, new_embeddings):
|
1111 |
+
self.lm_head = new_embeddings
|
1112 |
+
|
1113 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1114 |
+
def set_decoder(self, decoder):
|
1115 |
+
self.model = decoder
|
1116 |
+
|
1117 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1118 |
+
def get_decoder(self):
|
1119 |
+
return self.model
|
1120 |
+
|
1121 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
1122 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1123 |
+
def forward(
|
1124 |
+
self,
|
1125 |
+
input_ids: torch.LongTensor = None,
|
1126 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1127 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1128 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1129 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1130 |
+
labels: Optional[torch.LongTensor] = None,
|
1131 |
+
use_cache: Optional[bool] = None,
|
1132 |
+
output_attentions: Optional[bool] = None,
|
1133 |
+
output_hidden_states: Optional[bool] = None,
|
1134 |
+
return_dict: Optional[bool] = None,
|
1135 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1136 |
+
r"""
|
1137 |
+
Args:
|
1138 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1139 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1140 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1141 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1142 |
+
|
1143 |
+
Returns:
|
1144 |
+
|
1145 |
+
Example:
|
1146 |
+
|
1147 |
+
```python
|
1148 |
+
>>> from transformers import AutoTokenizer, PhiForCausalLM
|
1149 |
+
|
1150 |
+
>>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1")
|
1151 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
|
1152 |
+
|
1153 |
+
>>> prompt = "This is an example script ."
|
1154 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1155 |
+
|
1156 |
+
>>> # Generate
|
1157 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1158 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1159 |
+
'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str'
|
1160 |
+
```"""
|
1161 |
+
|
1162 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1163 |
+
output_hidden_states = (
|
1164 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1165 |
+
)
|
1166 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1167 |
+
|
1168 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1169 |
+
outputs = self.model(
|
1170 |
+
input_ids=input_ids,
|
1171 |
+
attention_mask=attention_mask,
|
1172 |
+
position_ids=position_ids,
|
1173 |
+
past_key_values=past_key_values,
|
1174 |
+
inputs_embeds=inputs_embeds,
|
1175 |
+
use_cache=use_cache,
|
1176 |
+
output_attentions=output_attentions,
|
1177 |
+
output_hidden_states=output_hidden_states,
|
1178 |
+
return_dict=return_dict,
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
hidden_states = outputs[0]
|
1182 |
+
logits = self.lm_head(hidden_states)
|
1183 |
+
logits = logits.float()
|
1184 |
+
|
1185 |
+
loss = None
|
1186 |
+
if labels is not None:
|
1187 |
+
# Shift so that tokens < n predict n
|
1188 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1189 |
+
shift_labels = labels[..., 1:].contiguous()
|
1190 |
+
# Flatten the tokens
|
1191 |
+
loss_fct = CrossEntropyLoss()
|
1192 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1193 |
+
shift_labels = shift_labels.view(-1)
|
1194 |
+
# Enable model parallelism
|
1195 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1196 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1197 |
+
|
1198 |
+
if not return_dict:
|
1199 |
+
output = (logits,) + outputs[1:]
|
1200 |
+
return (loss,) + output if loss is not None else output
|
1201 |
+
|
1202 |
+
return CausalLMOutputWithPast(
|
1203 |
+
loss=loss,
|
1204 |
+
logits=logits,
|
1205 |
+
past_key_values=outputs.past_key_values,
|
1206 |
+
hidden_states=outputs.hidden_states,
|
1207 |
+
attentions=outputs.attentions,
|
1208 |
+
)
|
1209 |
+
|
1210 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
|
1211 |
+
def prepare_inputs_for_generation(
|
1212 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1213 |
+
):
|
1214 |
+
if past_key_values is not None:
|
1215 |
+
if isinstance(past_key_values, Cache):
|
1216 |
+
cache_length = past_key_values.get_seq_length()
|
1217 |
+
past_length = past_key_values.seen_tokens
|
1218 |
+
max_cache_length = past_key_values.get_max_length()
|
1219 |
+
else:
|
1220 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1221 |
+
max_cache_length = None
|
1222 |
+
|
1223 |
+
# Keep only the unprocessed tokens:
|
1224 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1225 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1226 |
+
# input)
|
1227 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1228 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1229 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1230 |
+
# input_ids based on the past_length.
|
1231 |
+
elif past_length < input_ids.shape[1]:
|
1232 |
+
input_ids = input_ids[:, past_length:]
|
1233 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1234 |
+
|
1235 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1236 |
+
if (
|
1237 |
+
max_cache_length is not None
|
1238 |
+
and attention_mask is not None
|
1239 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1240 |
+
):
|
1241 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1242 |
+
|
1243 |
+
position_ids = kwargs.get("position_ids", None)
|
1244 |
+
if attention_mask is not None and position_ids is None:
|
1245 |
+
# create position_ids on the fly for batch generation
|
1246 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1247 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1248 |
+
if past_key_values:
|
1249 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1250 |
+
|
1251 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1252 |
+
if inputs_embeds is not None and past_key_values is None:
|
1253 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1254 |
+
else:
|
1255 |
+
model_inputs = {"input_ids": input_ids}
|
1256 |
+
|
1257 |
+
model_inputs.update(
|
1258 |
+
{
|
1259 |
+
"position_ids": position_ids,
|
1260 |
+
"past_key_values": past_key_values,
|
1261 |
+
"use_cache": kwargs.get("use_cache"),
|
1262 |
+
"attention_mask": attention_mask,
|
1263 |
+
}
|
1264 |
+
)
|
1265 |
+
return model_inputs
|
1266 |
+
|
1267 |
+
@staticmethod
|
1268 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
|
1269 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1270 |
+
reordered_past = ()
|
1271 |
+
for layer_past in past_key_values:
|
1272 |
+
reordered_past += (
|
1273 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1274 |
+
)
|
1275 |
+
return reordered_past
|
1276 |
+
|
1277 |
+
|
1278 |
+
@add_start_docstrings(
|
1279 |
+
"""
|
1280 |
+
The PhiModel with a sequence classification head on top (linear layer).
|
1281 |
+
|
1282 |
+
[`PhiForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1283 |
+
(e.g. GPT-2) do.
|
1284 |
+
|
1285 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1286 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1287 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1288 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1289 |
+
each row of the batch).
|
1290 |
+
""",
|
1291 |
+
PHI_START_DOCSTRING,
|
1292 |
+
)
|
1293 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->PHI,Llama->Phi with self.transformer->self.model, transformer_outputs->model_outputs
|
1294 |
+
class PhiForSequenceClassification(PhiPreTrainedModel):
|
1295 |
+
def __init__(self, config):
|
1296 |
+
super().__init__(config)
|
1297 |
+
self.num_labels = config.num_labels
|
1298 |
+
self.model = PhiModel(config)
|
1299 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1300 |
+
|
1301 |
+
# Initialize weights and apply final processing
|
1302 |
+
self.post_init()
|
1303 |
+
|
1304 |
+
def get_input_embeddings(self):
|
1305 |
+
return self.model.embed_tokens
|
1306 |
+
|
1307 |
+
def set_input_embeddings(self, value):
|
1308 |
+
self.model.embed_tokens = value
|
1309 |
+
|
1310 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
1311 |
+
def forward(
|
1312 |
+
self,
|
1313 |
+
input_ids: torch.LongTensor = None,
|
1314 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1315 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1316 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1317 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1318 |
+
labels: Optional[torch.LongTensor] = None,
|
1319 |
+
use_cache: Optional[bool] = None,
|
1320 |
+
output_attentions: Optional[bool] = None,
|
1321 |
+
output_hidden_states: Optional[bool] = None,
|
1322 |
+
return_dict: Optional[bool] = None,
|
1323 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1324 |
+
r"""
|
1325 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1326 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1327 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1328 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1329 |
+
"""
|
1330 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1331 |
+
|
1332 |
+
model_outputs = self.model(
|
1333 |
+
input_ids,
|
1334 |
+
attention_mask=attention_mask,
|
1335 |
+
position_ids=position_ids,
|
1336 |
+
past_key_values=past_key_values,
|
1337 |
+
inputs_embeds=inputs_embeds,
|
1338 |
+
use_cache=use_cache,
|
1339 |
+
output_attentions=output_attentions,
|
1340 |
+
output_hidden_states=output_hidden_states,
|
1341 |
+
return_dict=return_dict,
|
1342 |
+
)
|
1343 |
+
hidden_states = model_outputs[0]
|
1344 |
+
logits = self.score(hidden_states)
|
1345 |
+
|
1346 |
+
if input_ids is not None:
|
1347 |
+
batch_size = input_ids.shape[0]
|
1348 |
+
else:
|
1349 |
+
batch_size = inputs_embeds.shape[0]
|
1350 |
+
|
1351 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1352 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1353 |
+
if self.config.pad_token_id is None:
|
1354 |
+
sequence_lengths = -1
|
1355 |
+
else:
|
1356 |
+
if input_ids is not None:
|
1357 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1358 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1359 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1360 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1361 |
+
else:
|
1362 |
+
sequence_lengths = -1
|
1363 |
+
|
1364 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1365 |
+
|
1366 |
+
loss = None
|
1367 |
+
if labels is not None:
|
1368 |
+
labels = labels.to(logits.device)
|
1369 |
+
if self.config.problem_type is None:
|
1370 |
+
if self.num_labels == 1:
|
1371 |
+
self.config.problem_type = "regression"
|
1372 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1373 |
+
self.config.problem_type = "single_label_classification"
|
1374 |
+
else:
|
1375 |
+
self.config.problem_type = "multi_label_classification"
|
1376 |
+
|
1377 |
+
if self.config.problem_type == "regression":
|
1378 |
+
loss_fct = MSELoss()
|
1379 |
+
if self.num_labels == 1:
|
1380 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1381 |
+
else:
|
1382 |
+
loss = loss_fct(pooled_logits, labels)
|
1383 |
+
elif self.config.problem_type == "single_label_classification":
|
1384 |
+
loss_fct = CrossEntropyLoss()
|
1385 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1386 |
+
elif self.config.problem_type == "multi_label_classification":
|
1387 |
+
loss_fct = BCEWithLogitsLoss()
|
1388 |
+
loss = loss_fct(pooled_logits, labels)
|
1389 |
+
if not return_dict:
|
1390 |
+
output = (pooled_logits,) + model_outputs[1:]
|
1391 |
+
return ((loss,) + output) if loss is not None else output
|
1392 |
+
|
1393 |
+
return SequenceClassifierOutputWithPast(
|
1394 |
+
loss=loss,
|
1395 |
+
logits=pooled_logits,
|
1396 |
+
past_key_values=model_outputs.past_key_values,
|
1397 |
+
hidden_states=model_outputs.hidden_states,
|
1398 |
+
attentions=model_outputs.attentions,
|
1399 |
+
)
|
1400 |
+
|
1401 |
+
|
1402 |
+
@add_start_docstrings(
|
1403 |
+
"""
|
1404 |
+
PhiModel with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1405 |
+
Named-Entity-Recognition (NER) tasks.
|
1406 |
+
""",
|
1407 |
+
PHI_START_DOCSTRING,
|
1408 |
+
)
|
1409 |
+
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with MPT->PHI,Mpt->Phi,self.transformer->self.model,transformer_outputs->model_outputs
|
1410 |
+
class PhiForTokenClassification(PhiPreTrainedModel):
|
1411 |
+
def __init__(self, config: PhiConfig):
|
1412 |
+
super().__init__(config)
|
1413 |
+
self.num_labels = config.num_labels
|
1414 |
+
|
1415 |
+
self.model = PhiModel(config)
|
1416 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
1417 |
+
classifier_dropout = config.classifier_dropout
|
1418 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
1419 |
+
classifier_dropout = config.hidden_dropout
|
1420 |
+
else:
|
1421 |
+
classifier_dropout = 0.1
|
1422 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1423 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1424 |
+
|
1425 |
+
# Initialize weights and apply final processing
|
1426 |
+
self.post_init()
|
1427 |
+
|
1428 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
1429 |
+
@add_code_sample_docstrings(
|
1430 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1431 |
+
output_type=TokenClassifierOutput,
|
1432 |
+
config_class=_CONFIG_FOR_DOC,
|
1433 |
+
)
|
1434 |
+
def forward(
|
1435 |
+
self,
|
1436 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1437 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1438 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1439 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1440 |
+
labels: Optional[torch.Tensor] = None,
|
1441 |
+
use_cache: Optional[bool] = None,
|
1442 |
+
output_attentions: Optional[bool] = None,
|
1443 |
+
output_hidden_states: Optional[bool] = None,
|
1444 |
+
return_dict: Optional[bool] = None,
|
1445 |
+
**deprecated_arguments,
|
1446 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1447 |
+
r"""
|
1448 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1449 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1450 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1451 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1452 |
+
"""
|
1453 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1454 |
+
|
1455 |
+
model_outputs = self.model(
|
1456 |
+
input_ids,
|
1457 |
+
past_key_values=past_key_values,
|
1458 |
+
attention_mask=attention_mask,
|
1459 |
+
inputs_embeds=inputs_embeds,
|
1460 |
+
use_cache=use_cache,
|
1461 |
+
output_attentions=output_attentions,
|
1462 |
+
output_hidden_states=output_hidden_states,
|
1463 |
+
return_dict=return_dict,
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
hidden_states = model_outputs[0]
|
1467 |
+
hidden_states = self.dropout(hidden_states)
|
1468 |
+
logits = self.classifier(hidden_states)
|
1469 |
+
|
1470 |
+
loss = None
|
1471 |
+
if labels is not None:
|
1472 |
+
# move labels to correct device to enable model parallelism
|
1473 |
+
labels = labels.to(logits.device)
|
1474 |
+
batch_size, seq_length = labels.shape
|
1475 |
+
loss_fct = CrossEntropyLoss()
|
1476 |
+
loss = loss_fct(
|
1477 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
1478 |
+
)
|
1479 |
+
|
1480 |
+
if not return_dict:
|
1481 |
+
output = (logits,) + model_outputs[2:]
|
1482 |
+
return ((loss,) + output) if loss is not None else output
|
1483 |
+
|
1484 |
+
return TokenClassifierOutput(
|
1485 |
+
loss=loss,
|
1486 |
+
logits=logits,
|
1487 |
+
hidden_states=model_outputs.hidden_states,
|
1488 |
+
attentions=model_outputs.attentions,
|
1489 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_encoder_decoder/__init__.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_torch_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["modeling_speech_encoder_decoder"] = ["SpeechEncoderDecoderModel"]
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_flax_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["modeling_flax_speech_encoder_decoder"] = ["FlaxSpeechEncoderDecoderModel"]
|
37 |
+
|
38 |
+
if TYPE_CHECKING:
|
39 |
+
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
|
40 |
+
|
41 |
+
try:
|
42 |
+
if not is_torch_available():
|
43 |
+
raise OptionalDependencyNotAvailable()
|
44 |
+
except OptionalDependencyNotAvailable:
|
45 |
+
pass
|
46 |
+
else:
|
47 |
+
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_flax_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
|
56 |
+
|
57 |
+
else:
|
58 |
+
import sys
|
59 |
+
|
60 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|