applied-ai-018 commited on
Commit
3d26694
·
verified ·
1 Parent(s): e33b413

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. lm-evaluation/lm_eval/tasks/glue/README.md +72 -0
  2. lm-evaluation/lm_eval/tasks/glue/cola/default.yaml +16 -0
  3. lm-evaluation/lm_eval/tasks/glue/mnli/default.yaml +14 -0
  4. lm-evaluation/lm_eval/tasks/glue/mnli/mismatch.yaml +3 -0
  5. lm-evaluation/lm_eval/tasks/glue/mnli/utils.py +6 -0
  6. lm-evaluation/lm_eval/tasks/glue/mrpc/default.yaml +15 -0
  7. lm-evaluation/lm_eval/tasks/glue/qqp/default.yaml +15 -0
  8. lm-evaluation/lm_eval/tasks/glue/rte/default.yaml +14 -0
  9. lm-evaluation/lm_eval/tasks/glue/sst2/default.yaml +14 -0
  10. lm-evaluation/lm_eval/tasks/glue/wnli/default.yaml +14 -0
  11. lm-evaluation/lm_eval/tasks/kmmlu/README.md +54 -0
  12. lm-evaluation/lm_eval/tasks/kmmlu/direct/_direct_kmmlu_yaml +27 -0
  13. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_accounting.yaml +3 -0
  14. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_biology.yaml +3 -0
  15. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_civil_engineering.yaml +3 -0
  16. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_computer_science.yaml +3 -0
  17. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_construction.yaml +3 -0
  18. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_ecology.yaml +3 -0
  19. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_health.yaml +3 -0
  20. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_korean_history.yaml +3 -0
  21. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_machine_design_and_manufacturing.yaml +3 -0
  22. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_math.yaml +3 -0
  23. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_patent.yaml +3 -0
  24. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_political_science_and_sociology.yaml +3 -0
  25. lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_social_welfare.yaml +3 -0
  26. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_accounting.yaml +3 -0
  27. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_agricultural_sciences.yaml +3 -0
  28. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_aviation_engineering_and_maintenance.yaml +3 -0
  29. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_biology.yaml +3 -0
  30. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_chemical_engineering.yaml +3 -0
  31. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_civil_engineering.yaml +3 -0
  32. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_computer_science.yaml +3 -0
  33. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_construction.yaml +3 -0
  34. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_ecology.yaml +3 -0
  35. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_economics.yaml +3 -0
  36. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_education.yaml +3 -0
  37. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_electronics_engineering.yaml +3 -0
  38. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_energy_management.yaml +3 -0
  39. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_environmental_science.yaml +3 -0
  40. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_fashion.yaml +3 -0
  41. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_food_processing.yaml +3 -0
  42. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_gas_technology_and_engineering.yaml +3 -0
  43. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_geomatics.yaml +3 -0
  44. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_health.yaml +3 -0
  45. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_industrial_engineer.yaml +3 -0
  46. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_interior_architecture_and_design.yaml +3 -0
  47. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_korean_history.yaml +3 -0
  48. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_law.yaml +3 -0
  49. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_machine_design_and_manufacturing.yaml +3 -0
  50. lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_maritime_engineering.yaml +3 -0
lm-evaluation/lm_eval/tasks/glue/README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GLUE
2
+ **NOTE**: GLUE benchmark tasks do not provide publicly accessible labels for their test sets, so we default to the validation sets for all sub-tasks.
3
+
4
+ ### Paper
5
+
6
+ Title: `GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding`
7
+
8
+ Abstract: https://openreview.net/pdf?id=rJ4km2R5t7
9
+
10
+ The General Language Understanding Evaluation (GLUE) benchmark is a collection of
11
+ resources for training, evaluating, and analyzing natural language understanding
12
+ systems. GLUE consists of:
13
+ - A benchmark of nine sentence- or sentence-pair language understanding tasks built
14
+ on established existing datasets and selected to cover a diverse range of dataset
15
+ sizes, text genres, and degrees of difficulty, and
16
+ - A diagnostic dataset designed to evaluate and analyze model performance with
17
+ respect to a wide range of linguistic phenomena found in natural language.
18
+
19
+ Homepage: https://gluebenchmark.com/
20
+
21
+ ### Citation
22
+
23
+ ```
24
+ @inproceedings{wang-etal-2018-glue,
25
+ title = "{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding",
26
+ author = "Wang, Alex and
27
+ Singh, Amanpreet and
28
+ Michael, Julian and
29
+ Hill, Felix and
30
+ Levy, Omer and
31
+ Bowman, Samuel",
32
+ booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
33
+ month = nov,
34
+ year = "2018",
35
+ address = "Brussels, Belgium",
36
+ publisher = "Association for Computational Linguistics",
37
+ url = "https://aclanthology.org/W18-5446",
38
+ doi = "10.18653/v1/W18-5446",
39
+ pages = "353--355",
40
+ abstract = "Human ability to understand language is \textit{general, flexible, and robust}. In contrast, most NLU models above the word level are designed for a specific task and struggle with out-of-domain data. If we aspire to develop models with understanding beyond the detection of superficial correspondences between inputs and outputs, then it is critical to develop a unified model that can execute a range of linguistic tasks across different domains. To facilitate research in this direction, we present the General Language Understanding Evaluation (GLUE, gluebenchmark.com): a benchmark of nine diverse NLU tasks, an auxiliary dataset for probing models for understanding of specific linguistic phenomena, and an online platform for evaluating and comparing models. For some benchmark tasks, training data is plentiful, but for others it is limited or does not match the genre of the test set. GLUE thus favors models that can represent linguistic knowledge in a way that facilitates sample-efficient learning and effective knowledge-transfer across tasks. While none of the datasets in GLUE were created from scratch for the benchmark, four of them feature privately-held test data, which is used to ensure that the benchmark is used fairly. We evaluate baselines that use ELMo (Peters et al., 2018), a powerful transfer learning technique, as well as state-of-the-art sentence representation models. The best models still achieve fairly low absolute scores. Analysis with our diagnostic dataset yields similarly weak performance over all phenomena tested, with some exceptions.",
41
+ }
42
+ ```
43
+
44
+ ### Groups and Tasks
45
+
46
+ #### Groups
47
+
48
+ * `glue`: Run all Glue subtasks.
49
+
50
+ #### Tasks
51
+
52
+ * `cola`
53
+ * `mnli`
54
+ * `mrpc`
55
+ * `qnli`
56
+ * `qqp`
57
+ * `rte`
58
+ * `sst`
59
+ * `wnli`
60
+
61
+ ### Checklist
62
+
63
+ For adding novel benchmarks/datasets to the library:
64
+ * [ ] Is the task an existing benchmark in the literature?
65
+ * [ ] Have you referenced the original paper that introduced the task?
66
+ * [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
67
+
68
+
69
+ If other tasks on this dataset are already supported:
70
+ * [ ] Is the "Main" variant of this task clearly denoted?
71
+ * [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
72
+ * [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
lm-evaluation/lm_eval/tasks/glue/cola/default.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group: glue
2
+ task: cola
3
+ dataset_path: glue
4
+ dataset_name: cola
5
+ output_type: multiple_choice
6
+ training_split: train
7
+ validation_split: validation
8
+ doc_to_text: "{{sentence}}\nQuestion: Does this sentence make sense?\nAnswer:"
9
+ doc_to_target: label
10
+ doc_to_choice: ["no", "yes"]
11
+ should_decontaminate: true
12
+ doc_to_decontamination_query: sentence
13
+ metric_list:
14
+ - metric: mcc
15
+ metadata:
16
+ version: 1.0
lm-evaluation/lm_eval/tasks/glue/mnli/default.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group: glue
2
+ task: mnli
3
+ dataset_path: glue
4
+ dataset_name: mnli
5
+ output_type: multiple_choice
6
+ training_split: train
7
+ validation_split: validation_matched
8
+ doc_to_text: !function utils.doc_to_text
9
+ doc_to_target: label
10
+ doc_to_choice: ["True", "Neither", "False"]
11
+ metric_list:
12
+ - metric: acc
13
+ metadata:
14
+ version: 1.0
lm-evaluation/lm_eval/tasks/glue/mnli/mismatch.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ include: default.yaml
2
+ task: mnli_mismatch
3
+ validation_split: validation_mismatched
lm-evaluation/lm_eval/tasks/glue/mnli/utils.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ def doc_to_text(doc) -> str:
2
+ return "{}\nQuestion: {} True, False or Neither?\nAnswer:".format(
3
+ doc["premise"],
4
+ doc["hypothesis"].strip()
5
+ + ("" if doc["hypothesis"].strip().endswith(".") else "."),
6
+ )
lm-evaluation/lm_eval/tasks/glue/mrpc/default.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group: glue
2
+ task: mrpc
3
+ dataset_path: glue
4
+ dataset_name: mrpc
5
+ output_type: multiple_choice
6
+ training_split: train
7
+ validation_split: validation
8
+ doc_to_text: "Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\nQuestion: Do both sentences mean the same thing?\nAnswer:"
9
+ doc_to_target: label
10
+ doc_to_choice: ["no", "yes"]
11
+ metric_list:
12
+ - metric: acc
13
+ - metric: f1
14
+ metadata:
15
+ version: 1.0
lm-evaluation/lm_eval/tasks/glue/qqp/default.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group: glue
2
+ task: qqp
3
+ dataset_path: glue
4
+ dataset_name: qqp
5
+ output_type: multiple_choice
6
+ training_split: train
7
+ validation_split: validation
8
+ doc_to_text: "Question 1: {{question1}}\nQuestion 2: {{question2}}\nQuestion: Do both questions ask the same thing?\nAnswer:"
9
+ doc_to_target: label
10
+ doc_to_choice: ["no", "yes"]
11
+ metric_list:
12
+ - metric: acc
13
+ - metric: f1
14
+ metadata:
15
+ version: 2.0
lm-evaluation/lm_eval/tasks/glue/rte/default.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group: glue
2
+ task: rte
3
+ dataset_path: glue
4
+ dataset_name: rte
5
+ output_type: multiple_choice
6
+ training_split: train
7
+ validation_split: validation
8
+ doc_to_text: "{{sentence1}}\nQuestion: {{sentence2}} True or False?\nAnswer:"
9
+ doc_to_target: label
10
+ doc_to_choice: ["True", "False"]
11
+ metric_list:
12
+ - metric: acc
13
+ metadata:
14
+ version: 1.0
lm-evaluation/lm_eval/tasks/glue/sst2/default.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group: glue
2
+ task: sst2
3
+ dataset_path: glue
4
+ dataset_name: sst2
5
+ output_type: multiple_choice
6
+ training_split: train
7
+ validation_split: validation
8
+ doc_to_text: "{{sentence}}\nQuestion: Is this sentence positive or negative?\nAnswer:"
9
+ doc_to_target: label
10
+ doc_to_choice: ["negative", "positive"]
11
+ metric_list:
12
+ - metric: acc
13
+ metadata:
14
+ version: 1.0
lm-evaluation/lm_eval/tasks/glue/wnli/default.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group: glue
2
+ task: wnli
3
+ dataset_path: glue
4
+ dataset_name: wnli
5
+ output_type: multiple_choice
6
+ training_split: train
7
+ validation_split: validation
8
+ doc_to_text: "{{sentence1}}\nQuestion: {{sentence2}} True or False?\nAnswer:"
9
+ doc_to_target: label
10
+ doc_to_choice: ["False", "True"]
11
+ metric_list:
12
+ - metric: acc
13
+ metadata:
14
+ version: 2.0
lm-evaluation/lm_eval/tasks/kmmlu/README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # k_mmlu
2
+
3
+ ### Paper
4
+
5
+ Title: `KMMLU : Measuring Massive Multitask Language Understanding in Korean`
6
+
7
+ Abstract: `We propose KMMLU, a new Korean benchmark with 35,030 expert-level multiple-choice questions across 45 subjects ranging from humanities to STEM. Unlike previous Korean benchmarks that are translated from existing English benchmarks, KMMLU is collected from original Korean exams, capturing linguistic and cultural aspects of the Korean language. We test 26 publicly available and proprietary LLMs, identifying significant room for improvement. The best publicly available model achieves 50.54% on KMMLU, far below the average human performance of 62.6%. This model was primarily trained for English and Chinese, not Korean. Current LLMs tailored to Korean, such as Polyglot-Ko, perform far worse. Surprisingly, even the most capable proprietary LLMs, e.g., GPT-4 and HyperCLOVA X, achieve 59.95% and 53.40%, respectively. This suggests that further work is needed to improve Korean LLMs, and KMMLU offers the right tool to track this progress. We make our dataset publicly available on the Hugging Face Hub and integrate the benchmark into EleutherAI's Language Model Evaluation Harness.`
8
+
9
+ Note: lm-eval-harness is using the micro average as the default. To replicate the test results in the paper, take the macro average for the scores evaluated with lm-eval-harness
10
+
11
+ Homepage: https://huggingface.co/datasets/HAERAE-HUB/KMMLU
12
+
13
+ ### Citation
14
+
15
+ @article{son2024kmmlu,
16
+ title={KMMLU: Measuring Massive Multitask Language Understanding in Korean},
17
+ author={Guijin Son and Hanwool Lee and Sungdong Kim and Seungone Kim and Niklas Muennighoff and Taekyoon Choi and Cheonbok Park and Kang Min Yoo and Stella Biderman},
18
+ journal={arXiv preprint arXiv:2402.11548},
19
+ year={2024}
20
+ }
21
+
22
+ ### Groups and Tasks
23
+
24
+ #### Groups
25
+
26
+ * `kmmlu`: 'All 45 subjects of the KMMLU dataset, evaluated following the methodology in MMLU's original implementation'
27
+ * `kmmlu_direct`: 'kmmlu_direct solves questions using a straightforward *generative* multiple-choice question-answering approach'
28
+ * `kmmlu_hard`: 'kmmlu_hard comprises difficult questions that at least one proprietary model failed to answer correctly using log-likelihood approach'
29
+ * `kmmlu_hard_direct`: 'kmmlu_hard_direct solves questions of kmmlu_hard using direct(generative) approach'
30
+ * `kmmlu_hard_cot`: 'kmmlu_hard_cot includes 5-shot of exemplars for chain-of-thought approach'
31
+
32
+ #### Tasks
33
+
34
+ The following tasks evaluate subjects in the KMMLU dataset
35
+ - `kmmlu_direct_{subject_english}`
36
+
37
+ The following tasks evaluate subjects in the KMMLU-Hard dataset
38
+ - `kmmlu_hard_{subject_english}`
39
+ - `kmmlu_hard_cot_{subject_english}`
40
+ - `kmmlu_hard_direct_{subject_english}`
41
+
42
+
43
+ ### Checklist
44
+
45
+ For adding novel benchmarks/datasets to the library:
46
+ * [x] Is the task an existing benchmark in the literature?
47
+ * [x] Have you referenced the original paper that introduced the task?
48
+ * [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
49
+
50
+
51
+ If other tasks on this dataset are already supported:
52
+ * [ ] Is the "Main" variant of this task clearly denoted?
53
+ * [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
54
+ * [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
lm-evaluation/lm_eval/tasks/kmmlu/direct/_direct_kmmlu_yaml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group:
2
+ - kmmlu
3
+ - kmmlu_direct
4
+ dataset_path: HAERAE-HUB/KMMLU
5
+ output_type: generate_until
6
+ test_split: test
7
+ fewshot_split: dev
8
+ doc_to_text: "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n정답:"
9
+ doc_to_target: "{{['A', 'B', 'C', 'D'][answer-1]}}"
10
+ metric_list:
11
+ - metric: exact_match
12
+ aggregation: mean
13
+ higher_is_better: true
14
+ ignore_case: true
15
+ ignore_punctuation: true
16
+ regexes_to_ignore:
17
+ - " "
18
+ generation_kwargs:
19
+ until:
20
+ - "Q:"
21
+ - "\n\n"
22
+ - "</s>"
23
+ - "."
24
+ do_sample: false
25
+ temperature: 0.0
26
+ metadata:
27
+ version: 2.0
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_accounting.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Accounting
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_accounting
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_biology.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Biology
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_biology
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_civil_engineering.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Civil-Engineering
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_civil_engineering
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_computer_science.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Computer-Science
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_computer_science
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_construction.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Construction
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_construction
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_ecology.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Ecology
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_ecology
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_health.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Health
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_health
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_korean_history.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Korean-History
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_korean_history
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_machine_design_and_manufacturing.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Machine-Design-and-Manufacturing
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_machine_design_and_manufacturing
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_math.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Math
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_math
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_patent.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Patent
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_patent
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_political_science_and_sociology.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Political-Science-and-Sociology
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_political_science_and_sociology
lm-evaluation/lm_eval/tasks/kmmlu/direct/kmmlu_direct_social_welfare.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: Social-Welfare
2
+ include: _direct_kmmlu_yaml
3
+ task: kmmlu_direct_social_welfare
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_accounting.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: accounting
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_accounting
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_agricultural_sciences.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: agricultural_sciences
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_agricultural_sciences
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_aviation_engineering_and_maintenance.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: aviation_engineering_and_maintenance
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_aviation_engineering_and_maintenance
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_biology.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: biology
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_biology
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_chemical_engineering.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: chemical_engineering
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_chemical_engineering
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_civil_engineering.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: civil_engineering
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_civil_engineering
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_computer_science.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: computer_science
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_computer_science
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_construction.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: construction
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_construction
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_ecology.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: ecology
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_ecology
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_economics.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: economics
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_economics
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_education.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: education
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_education
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_electronics_engineering.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: electronics_engineering
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_electronics_engineering
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_energy_management.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: energy_management
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_energy_management
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_environmental_science.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: environmental_science
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_environmental_science
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_fashion.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: fashion
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_fashion
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_food_processing.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: food_processing
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_food_processing
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_gas_technology_and_engineering.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: gas_technology_and_engineering
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_gas_technology_and_engineering
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_geomatics.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: geomatics
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_geomatics
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_health.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: health
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_health
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_industrial_engineer.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: industrial_engineer
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_industrial_engineer
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_interior_architecture_and_design.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: interior_architecture_and_design
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_interior_architecture_and_design
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_korean_history.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: korean_history
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_korean_history
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_law.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: law
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_law
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_machine_design_and_manufacturing.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: machine_design_and_manufacturing
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_machine_design_and_manufacturing
lm-evaluation/lm_eval/tasks/kmmlu/direct_hard/kmmlu_direct_hard_maritime_engineering.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ dataset_name: maritime_engineering
2
+ include: _direct_hard_kmmlu_yaml
3
+ task: kmmlu_hard_direct_maritime_engineering