applied-ai-018 commited on
Commit
40cafe9
·
verified ·
1 Parent(s): 7218152

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. lm-evaluation/lm_eval/tasks/belebele/_generate_configs.py +66 -0
  2. lm-evaluation/lm_eval/tasks/belebele/belebele_acm_Arab.yaml +4 -0
  3. lm-evaluation/lm_eval/tasks/belebele/belebele_arz_Arab.yaml +4 -0
  4. lm-evaluation/lm_eval/tasks/belebele/belebele_bod_Tibt.yaml +4 -0
  5. lm-evaluation/lm_eval/tasks/belebele/belebele_ces_Latn.yaml +4 -0
  6. lm-evaluation/lm_eval/tasks/belebele/belebele_hin_Latn.yaml +4 -0
  7. lm-evaluation/lm_eval/tasks/belebele/belebele_hun_Latn.yaml +4 -0
  8. lm-evaluation/lm_eval/tasks/belebele/belebele_khk_Cyrl.yaml +4 -0
  9. lm-evaluation/lm_eval/tasks/belebele/belebele_kor_Hang.yaml +4 -0
  10. lm-evaluation/lm_eval/tasks/belebele/belebele_lvs_Latn.yaml +4 -0
  11. lm-evaluation/lm_eval/tasks/belebele/belebele_mal_Mlym.yaml +4 -0
  12. lm-evaluation/lm_eval/tasks/belebele/belebele_nso_Latn.yaml +4 -0
  13. lm-evaluation/lm_eval/tasks/belebele/belebele_pbt_Arab.yaml +4 -0
  14. lm-evaluation/lm_eval/tasks/belebele/belebele_sin_Latn.yaml +4 -0
  15. lm-evaluation/lm_eval/tasks/belebele/belebele_sot_Latn.yaml +4 -0
  16. lm-evaluation/lm_eval/tasks/belebele/belebele_tgl_Latn.yaml +4 -0
  17. lm-evaluation/lm_eval/tasks/belebele/belebele_wol_Latn.yaml +4 -0
  18. lm-evaluation/lm_eval/tasks/french_bench/README.md +94 -0
  19. lm-evaluation/lm_eval/tasks/french_bench/_default_template_yaml +4 -0
  20. lm-evaluation/lm_eval/tasks/french_bench/french_bench_arc_challenge.yaml +21 -0
  21. lm-evaluation/lm_eval/tasks/french_bench/french_bench_boolqa.yaml +23 -0
  22. lm-evaluation/lm_eval/tasks/french_bench/french_bench_fquadv2.yaml +29 -0
  23. lm-evaluation/lm_eval/tasks/french_bench/french_bench_fquadv2_bool.yaml +21 -0
  24. lm-evaluation/lm_eval/tasks/french_bench/french_bench_fquadv2_genq.yaml +31 -0
  25. lm-evaluation/lm_eval/tasks/french_bench/french_bench_fquadv2_hasAns.yaml +34 -0
  26. lm-evaluation/lm_eval/tasks/french_bench/french_bench_grammar.yaml +20 -0
  27. lm-evaluation/lm_eval/tasks/french_bench/french_bench_hellaswag.yaml +20 -0
  28. lm-evaluation/lm_eval/tasks/french_bench/french_bench_multifquad.yaml +34 -0
  29. lm-evaluation/lm_eval/tasks/french_bench/french_bench_opus_perplexity.yaml +23 -0
  30. lm-evaluation/lm_eval/tasks/french_bench/french_bench_orangesum_title.yaml +28 -0
  31. lm-evaluation/lm_eval/tasks/french_bench/french_bench_reading_comp.yaml +22 -0
  32. lm-evaluation/lm_eval/tasks/french_bench/french_bench_topic_based_nli.yaml +23 -0
  33. lm-evaluation/lm_eval/tasks/french_bench/french_bench_trivia.yaml +36 -0
  34. lm-evaluation/lm_eval/tasks/french_bench/french_bench_vocab.yaml +20 -0
  35. lm-evaluation/lm_eval/tasks/french_bench/french_bench_wikitext_fr.yaml +25 -0
  36. lm-evaluation/lm_eval/tasks/french_bench/french_bench_xnli.yaml +21 -0
  37. lm-evaluation/lm_eval/tasks/french_bench/preprocess_wikitext.py +48 -0
  38. lm-evaluation/lm_eval/tasks/french_bench/utils.py +102 -0
  39. lm-evaluation/lm_eval/tasks/ifeval/instructions_registry.py +167 -0
  40. lm-evaluation/lm_eval/tasks/ifeval/instructions_util.py +1682 -0
  41. lm-evaluation/lm_eval/tasks/ifeval/utils.py +139 -0
  42. lm-evaluation/lm_eval/tasks/tmmluplus/README.md +47 -0
  43. lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_accounting.yaml +7 -0
  44. lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_advance_chemistry.yaml +7 -0
  45. lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_basic_medical_science.yaml +7 -0
  46. lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_chinese_language_and_literature.yaml +7 -0
  47. lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_computer_science.yaml +7 -0
  48. lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_educational_psychology.yaml +7 -0
  49. lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_engineering_math.yaml +7 -0
  50. lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_fire_science.yaml +7 -0
lm-evaluation/lm_eval/tasks/belebele/_generate_configs.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Take in a YAML, and output all other splits with this YAML
3
+ """
4
+ import argparse
5
+ import os
6
+
7
+ import requests
8
+ import yaml
9
+ from tqdm import tqdm
10
+
11
+ from lm_eval.utils import logging
12
+
13
+
14
+ API_URL = "https://datasets-server.huggingface.co/splits?dataset=facebook/belebele"
15
+
16
+
17
+ def parse_args():
18
+ parser = argparse.ArgumentParser()
19
+ parser.add_argument("--base_yaml_path", required=True)
20
+ parser.add_argument("--save_prefix_path", default="belebele")
21
+ parser.add_argument("--cot_prompt_path", default=None)
22
+ parser.add_argument("--task_prefix", default="")
23
+ return parser.parse_args()
24
+
25
+
26
+ if __name__ == "__main__":
27
+ args = parse_args()
28
+
29
+ # get filename of base_yaml so we can `"include": ` it in our other YAMLs.
30
+ base_yaml_name = os.path.split(args.base_yaml_path)[-1]
31
+ with open(args.base_yaml_path, encoding="utf-8") as f:
32
+ base_yaml = yaml.full_load(f)
33
+
34
+ if args.cot_prompt_path is not None:
35
+ import json
36
+
37
+ with open(args.cot_prompt_path, encoding="utf-8") as f:
38
+ cot_file = json.load(f)
39
+
40
+ def query():
41
+ response = requests.get(API_URL)
42
+ return response.json()["splits"]
43
+
44
+ print(query())
45
+ languages = [split["split"] for split in query()]
46
+
47
+ for lang in tqdm([lang for lang in languages if "default" not in lang]):
48
+ yaml_dict = {
49
+ "include": base_yaml_name,
50
+ "task": f"belebele_{args.task_prefix}_{lang}"
51
+ if args.task_prefix != ""
52
+ else f"belebele_{lang}",
53
+ "test_split": lang,
54
+ "fewshot_split": lang,
55
+ }
56
+
57
+ file_save_path = args.save_prefix_path + f"_{lang}.yaml"
58
+ logging.info(f"Saving yaml for subset {lang} to {file_save_path}")
59
+ with open(file_save_path, "w", encoding="utf-8") as yaml_file:
60
+ yaml.dump(
61
+ yaml_dict,
62
+ yaml_file,
63
+ width=float("inf"),
64
+ allow_unicode=True,
65
+ default_style='"',
66
+ )
lm-evaluation/lm_eval/tasks/belebele/belebele_acm_Arab.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "acm_Arab"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_acm_Arab"
4
+ "test_split": "acm_Arab"
lm-evaluation/lm_eval/tasks/belebele/belebele_arz_Arab.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "arz_Arab"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_arz_Arab"
4
+ "test_split": "arz_Arab"
lm-evaluation/lm_eval/tasks/belebele/belebele_bod_Tibt.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "bod_Tibt"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_bod_Tibt"
4
+ "test_split": "bod_Tibt"
lm-evaluation/lm_eval/tasks/belebele/belebele_ces_Latn.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "ces_Latn"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_ces_Latn"
4
+ "test_split": "ces_Latn"
lm-evaluation/lm_eval/tasks/belebele/belebele_hin_Latn.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "hin_Latn"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_hin_Latn"
4
+ "test_split": "hin_Latn"
lm-evaluation/lm_eval/tasks/belebele/belebele_hun_Latn.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "hun_Latn"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_hun_Latn"
4
+ "test_split": "hun_Latn"
lm-evaluation/lm_eval/tasks/belebele/belebele_khk_Cyrl.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "khk_Cyrl"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_khk_Cyrl"
4
+ "test_split": "khk_Cyrl"
lm-evaluation/lm_eval/tasks/belebele/belebele_kor_Hang.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "kor_Hang"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_kor_Hang"
4
+ "test_split": "kor_Hang"
lm-evaluation/lm_eval/tasks/belebele/belebele_lvs_Latn.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "lvs_Latn"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_lvs_Latn"
4
+ "test_split": "lvs_Latn"
lm-evaluation/lm_eval/tasks/belebele/belebele_mal_Mlym.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "mal_Mlym"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_mal_Mlym"
4
+ "test_split": "mal_Mlym"
lm-evaluation/lm_eval/tasks/belebele/belebele_nso_Latn.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "nso_Latn"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_nso_Latn"
4
+ "test_split": "nso_Latn"
lm-evaluation/lm_eval/tasks/belebele/belebele_pbt_Arab.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "pbt_Arab"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_pbt_Arab"
4
+ "test_split": "pbt_Arab"
lm-evaluation/lm_eval/tasks/belebele/belebele_sin_Latn.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "sin_Latn"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_sin_Latn"
4
+ "test_split": "sin_Latn"
lm-evaluation/lm_eval/tasks/belebele/belebele_sot_Latn.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "sot_Latn"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_sot_Latn"
4
+ "test_split": "sot_Latn"
lm-evaluation/lm_eval/tasks/belebele/belebele_tgl_Latn.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "tgl_Latn"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_tgl_Latn"
4
+ "test_split": "tgl_Latn"
lm-evaluation/lm_eval/tasks/belebele/belebele_wol_Latn.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "fewshot_split": "wol_Latn"
2
+ "include": "_default_template_yaml"
3
+ "task": "belebele_wol_Latn"
4
+ "test_split": "wol_Latn"
lm-evaluation/lm_eval/tasks/french_bench/README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FrenchBench
2
+
3
+ ### Paper
4
+
5
+ FrenchBench is a benchmark for evaluating French language models, introduced in the paper
6
+ [CroissantLLM: A Truly Bilingual French-English Language Model](https://arxiv.org/abs/2402.00786).
7
+ It is a collection of tasks that evaluate the ability of a language model to understand and generate French text.
8
+ This benchmark is constructed both from openly available datasets, as well as newly released manually annotated data.
9
+
10
+ ### Citation
11
+
12
+ ```bibtex
13
+ @misc{faysse2024croissantllm,
14
+ title={CroissantLLM: A Truly Bilingual French-English Language Model},
15
+ author={Manuel Faysse and Patrick Fernandes and Nuno M. Guerreiro and António Loison and Duarte M. Alves and Caio Corro and Nicolas Boizard and João Alves and Ricardo Rei and Pedro H. Martins and Antoni Bigata Casademunt and François Yvon and André F. T. Martins and Gautier Viaud and Céline Hudelot and Pierre Colombo},
16
+ year={2024},
17
+ eprint={2402.00786},
18
+ archivePrefix={arXiv},
19
+ primaryClass={cs.CL}
20
+ }
21
+ ```
22
+
23
+ ### Groups and Tasks
24
+
25
+ #### Groups
26
+
27
+ - `french_bench`: All tasks (non-perplexity based)
28
+ - `french_bench_gen`: All official generative tasks
29
+ - `french_bench_mc`: All official multiple choice tasks
30
+ - `french_bench_perplexity`: All perplexity-based tasks (0 shot is recommended)
31
+ - `french_bench_extra`: All extra tasks
32
+
33
+ #### Tasks
34
+
35
+
36
+ The following tasks evaluate tasks on the French Bench dataset using various scoring methods.
37
+ - french_bench_boolqa
38
+ - french_bench_fquadv2
39
+ - french_bench_fquadv2_bool
40
+ - french_bench_fquadv2_genq
41
+ - french_bench_fquadv2_hasAns
42
+ - french_bench_topic_based_nli
43
+ - french_bench_multifquad
44
+ - french_bench_grammar
45
+ - french_bench_vocab
46
+ - french_bench_reading_comp
47
+ - french_bench_xnli (modified XNLI)
48
+ - french_bench_orangesum_abstract
49
+ - french_bench_orangesum_title
50
+ - french_bench_trivia
51
+ - french_bench_hellaswag
52
+ - french_bench_arc_challenge
53
+
54
+ The french bench also includes other tasks from various benchmarks:
55
+ - `belebele_fra_Latn`: Belebele French
56
+ - `wmt14-en-fr`: WMT14 English-French
57
+ - `wmt14-fr-en`: WMT14 French-English
58
+
59
+ # Not to use in few-shot
60
+ - `crows_pairs_french`: Crows Pairs French
61
+ - `french_bench_opus_perplexity`: Opus Perplexity
62
+
63
+
64
+ ### Usage
65
+
66
+ ```bash
67
+ # openai
68
+ lm_eval --model openai-completions --model_args engine=text-davinci-003 --tasks french_bench --limit 100 --num_fewshot 3 --batch_size auto --output_path data/french_bench/davinci-003/results_french_bench_3shot.json
69
+ lm_eval --model openai-completions --model_args engine=text-davinci-003 --tasks french_bench_opus_perplexity,crows_pairs_french --limit 100 --batch_size auto --output_path data/french_bench/davinci-003/results_french_bench2_0shot.json
70
+
71
+
72
+ lm_eval --model hf --model_args pretrained=gpt2 --tasks french_bench --device cuda:0 --limit 100 --num_fewshot 3 --batch_size 8 --output_path data/french_bench/gpt2/results_french_bench_3shot.json
73
+ lm_eval --model hf --model_args pretrained=gpt2 --tasks french_bench_opus_perplexity,crows_pairs_french --device cuda:0 --limit 100 --batch_size auto --output_path data/french_bench/gpt2/results_french_bench2_0shot.json
74
+
75
+ lm_eval --model hf --model_args pretrained=meta-llama/Llama-2-7b-hf --tasks french_bench --device cuda:0 --limit 100 --num_fewshot 3 --batch_size 4 --output_path data/french_bench/llama-2-7b-hf/results_french_bench_3shot.json
76
+ lm_eval --model hf --model_args pretrained=meta-llama/Llama-2-7b-hf --tasks french_bench_opus_perplexity,crows_pairs_french --device cuda:0 --limit 100 --batch_size auto --output_path data/french_bench/llama-2-7b-hf/results_french_bench2_0shot.json
77
+ ```
78
+
79
+ HF and Accelerate options can be added when loading a model:
80
+ ```bash
81
+ accelerate launch -m lm_eval --model hf --model_args pretrained=meta-llama/Llama-2-7b-hf,dtype="float16" --tasks french_bench
82
+ ```
83
+
84
+ ### Checklist
85
+
86
+ * [x] Is the task an existing benchmark in the literature?
87
+ * [x] Have you referenced the original paper that introduced the task?
88
+ * [x] If yes, does the original paper provide a reference implementation?
89
+ * [x] Yes, original implementation contributed by author of the benchmark
90
+
91
+ If other tasks on this dataset are already supported:
92
+ * [x] Is the "Main" variant of this task clearly denoted?
93
+ * [x] Have you provided a short sentence in a README on what each new variant adds / evaluates?
94
+ * [x] Have you noted which, if any, published evaluation setups are matched by this variant?
lm-evaluation/lm_eval/tasks/french_bench/_default_template_yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ test_split: test
2
+ fewshot_split: valid
3
+ fewshot_config:
4
+ sampler: first_n
lm-evaluation/lm_eval/tasks/french_bench/french_bench_arc_challenge.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group:
2
+ - french_bench
3
+ - french_bench_mc
4
+ task: french_bench_arc_challenge
5
+ dataset_path: manu/french_bench_arc_challenge
6
+ output_type: multiple_choice
7
+ training_split: train
8
+ validation_split: validation
9
+ test_split: test
10
+ doc_to_text: "Question: {{question}}\nRéponse:"
11
+ doc_to_target: "{{['A', 'B', 'C', 'D'].index(answerKey)}}"
12
+ doc_to_choice: "{{choices}}"
13
+ should_decontaminate: true
14
+ doc_to_decontamination_query: "Question: {{question}}\nRéponse:"
15
+ metric_list:
16
+ - metric: acc
17
+ aggregation: mean
18
+ higher_is_better: true
19
+ - metric: acc_norm
20
+ aggregation: mean
21
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/french_bench_boolqa.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_extra
5
+ description: "D'après l'information dans le contexte donné, quelle est la réponse à la question ?"
6
+ task: french_bench_boolqa
7
+ dataset_path: manu/french_boolq
8
+ output_type: multiple_choice
9
+ validation_split: valid
10
+ doc_to_text: "\nContexte: {{passage}}\n\nQuestion: {{question}}\n"
11
+ doc_to_choice: ["Oui", "Non"]
12
+ # doc_to_text: "\nContexte: {{passage}}\n\nQuestion: {{question}}\n\nD'après l'information dans le contexte, la réponse est:\nA. Oui \nB. Non\n\nRéponse:"
13
+ # doc_to_choice: ["A", "B"]
14
+ doc_to_target: "{{[1, 0].index(label)}}"
15
+ should_decontaminate: true
16
+ doc_to_decontamination_query: passage
17
+ metric_list:
18
+ - metric: acc
19
+ aggregation: mean
20
+ higher_is_better: true
21
+ - metric: acc_norm
22
+ aggregation: mean
23
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/french_bench_fquadv2.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_extra
5
+ description: "D'après l'information dans le contexte donné, donne la réponse à la question en citant quelques mots du contexte. Si il est impossible de répondre avec les informations du contexte, répond 'Impossible'."
6
+ task: french_bench_fquadv2
7
+ dataset_path: manu/fquad2_test
8
+ output_type: generate_until
9
+ validation_split: valid
10
+ doc_to_text: "\nContexte: {{context}}\n\nQuestion: {{question}}\n\nRéponse:"
11
+ doc_to_target: "{% if answers.text| length > 0 %}{{answers.text[0]}}{% else %}{{['Impossible']}}{% endif %}"
12
+ target_delimiter: " "
13
+ should_decontaminate: true
14
+ doc_to_decontamination_query: context
15
+ generation_kwargs:
16
+ until:
17
+ - "\n"
18
+ # filter_list:
19
+ # - name: remove_whitespace
20
+ # filter:
21
+ # - function: remove_whitespace
22
+ # - function: take_first
23
+ metric_list:
24
+ - metric: !function utils.exact
25
+ aggregation: mean
26
+ higher_is_better: true
27
+ - metric: !function utils.f1
28
+ aggregation: mean
29
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/french_bench_fquadv2_bool.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_extra
5
+ description: "D'après l'information présente dans le contexte, est il possible de répondre à la question ?"
6
+ task: french_bench_fquadv2_bool
7
+ dataset_path: manu/fquad2_test
8
+ output_type: multiple_choice
9
+ validation_split: valid
10
+ doc_to_text: "\nContexte: {{context}}\n\nQuestion: {{question}}\n\nD'après l'information présente dans le contexte, répondre à la question est:\nA. Possible \nB. Impossible\n\nRéponse:"
11
+ doc_to_choice: ["A", "B"]
12
+ doc_to_target: "{{[False, True].index(is_impossible)}}"
13
+ should_decontaminate: true
14
+ doc_to_decontamination_query: context
15
+ metric_list:
16
+ - metric: acc
17
+ aggregation: mean
18
+ higher_is_better: true
19
+ - metric: acc_norm
20
+ aggregation: mean
21
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/french_bench_fquadv2_genq.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_gen
5
+ description: "D'après l'information dans le contexte donné, quelle question a été posée pour obtenir la réponse donnée ?"
6
+ task: french_bench_fquadv2_genq
7
+ dataset_path: manu/fquad2_test
8
+ output_type: generate_until
9
+ validation_split: valid_hasAns
10
+ test_split: test_hasAns
11
+ fewshot_split: valid_hasAns
12
+ doc_to_text: "\nContexte: {{context}}\n\nRéponse: {% if answers.text| length > 0 %}{{answers.text[0]}}{% else %}{{['Impossible']}}{% endif %}\n\nQuestion:"
13
+ doc_to_target: "{{question}}"
14
+ target_delimiter: " "
15
+ should_decontaminate: true
16
+ doc_to_decontamination_query: question
17
+ generation_kwargs:
18
+ until:
19
+ - "\n"
20
+ # filter_list:
21
+ # - name: remove_whitespace
22
+ # filter:
23
+ # - function: remove_whitespace
24
+ # - function: take_first
25
+ metric_list:
26
+ - metric: !function utils.rouge1
27
+ higher_is_better: true
28
+ aggregation: !function utils.rouge1_agg
29
+ - metric: !function utils.f1
30
+ aggregation: mean
31
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/french_bench_fquadv2_hasAns.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_gen
5
+ description: "D'après l'information dans le contexte donné, donne la réponse à la question en citant quelques mots du contexte. Si il est impossible de répondre avec les informations du contexte, répond 'Impossible'."
6
+ task: french_bench_fquadv2_hasAns
7
+ dataset_path: manu/fquad2_test
8
+ output_type: generate_until
9
+ validation_split: valid_hasAns
10
+ test_split: test_hasAns
11
+ fewshot_split: valid_hasAns
12
+ doc_to_text: "\nContexte: {{context}}\n\nQuestion: {{question}}\n\nRéponse:"
13
+ doc_to_target: "{% if answers.text| length > 0 %}{{answers.text[0]}}{% else %}{{['Impossible']}}{% endif %}"
14
+ target_delimiter: " "
15
+ should_decontaminate: true
16
+ doc_to_decontamination_query: context
17
+ generation_kwargs:
18
+ until:
19
+ - "\n"
20
+ # filter_list:
21
+ # - name: remove_whitespace
22
+ # filter:
23
+ # - function: remove_whitespace
24
+ # - function: take_first
25
+ metric_list:
26
+ - metric: !function utils.exact
27
+ aggregation: mean
28
+ higher_is_better: true
29
+ - metric: !function utils.f1
30
+ aggregation: mean
31
+ higher_is_better: true
32
+ - metric: !function utils.rouge1
33
+ higher_is_better: true
34
+ aggregation: !function utils.rouge1_agg
lm-evaluation/lm_eval/tasks/french_bench/french_bench_grammar.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_mc
5
+ description: "Répond au mieux en complétant la question avec une des réponses proposées."
6
+ dataset_path: manu/french-bench-grammar-vocab-reading
7
+ output_type: multiple_choice
8
+ validation_split: Grammar
9
+ fewshot_split: Grammar
10
+ test_split: Grammar
11
+ #doc_to_text: "Question: {{question.strip()}}\nA: {{answerA}}\nB: {{answerB}}\nC: {{answerC}}\nD: {{answerD}}\nRéponse:"
12
+ #doc_to_choice: ["A", "B", "C", "D"]
13
+ doc_to_text: "La phrase suivante est correcte grammaticalement:\n"
14
+ doc_to_choice: "{{[question.replace('<...>', answerA), question.replace('<...>', answerB), question.replace('<...>', answerC), question.replace('<...>', answerD)]}}"
15
+ doc_to_target: '{{["answerA", "answerB", "answerC", "answerD"].index("answer" + answer)}}'
16
+ task: french_bench_grammar
17
+ metric_list:
18
+ - metric: acc
19
+ aggregation: mean
20
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/french_bench_hellaswag.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group:
2
+ - french_bench
3
+ - french_bench_mc
4
+ task: french_bench_hellaswag
5
+ dataset_path: manu/french_bench_hellaswag
6
+ output_type: multiple_choice
7
+ training_split: validation
8
+ validation_split: validation
9
+ test_split: null
10
+ process_docs: !function utils.process_docs
11
+ doc_to_text: "{{query}}"
12
+ doc_to_target: "{{label}}"
13
+ doc_to_choice: "{{choices}}"
14
+ metric_list:
15
+ - metric: acc
16
+ aggregation: mean
17
+ higher_is_better: true
18
+ - metric: acc_norm
19
+ aggregation: mean
20
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/french_bench_multifquad.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_gen
5
+ description: "D'après l'information dans le contexte donné, donne la réponse à la question en citant quelques extraits du contexte."
6
+ task: french_bench_multifquad
7
+ dataset_path: manu/multifquad_test
8
+ output_type: generate_until
9
+ validation_split: valid
10
+ test_split: test
11
+ fewshot_split: valid
12
+ doc_to_text: "\nContexte: {{context}}\n\nQuestion: {{question}}\n\nRéponse:"
13
+ doc_to_target: "{{', '.join(answers.text)}}"
14
+ target_delimiter: " "
15
+ should_decontaminate: true
16
+ doc_to_decontamination_query: context
17
+ generation_kwargs:
18
+ until:
19
+ - "\n"
20
+ # filter_list:
21
+ # - name: remove_whitespace
22
+ # filter:
23
+ # - function: remove_whitespace
24
+ # - function: take_first
25
+ metric_list:
26
+ - metric: !function utils.exact
27
+ aggregation: mean
28
+ higher_is_better: true
29
+ - metric: !function utils.f1
30
+ aggregation: mean
31
+ higher_is_better: true
32
+ - metric: !function utils.rouge1
33
+ higher_is_better: true
34
+ aggregation: !function utils.rouge1_agg
lm-evaluation/lm_eval/tasks/french_bench/french_bench_opus_perplexity.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group:
2
+ - french_bench_perplexity
3
+ task: french_bench_opus_perplexity
4
+ dataset_path: manu/opus100-en-fr
5
+ output_type: loglikelihood_rolling
6
+ test_split: test
7
+ fewshot_split: validation
8
+ validation_split: validation
9
+ num_fewshot: 0
10
+ doc_to_text: ""
11
+ doc_to_target: "{{text}}"
12
+ should_decontaminate: true
13
+ doc_to_decontamination_query: "{{text}}"
14
+ metric_list:
15
+ - metric: word_perplexity
16
+ aggregation: weighted_perplexity
17
+ higher_is_better: false
18
+ - metric: byte_perplexity
19
+ aggregation: weighted_perplexity
20
+ higher_is_better: false
21
+ - metric: bits_per_byte
22
+ aggregation: bits_per_byte
23
+ higher_is_better: false
lm-evaluation/lm_eval/tasks/french_bench/french_bench_orangesum_title.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_extra
5
+ description: "Trouve le titre de l'article."
6
+ task: french_bench_orangesum_title
7
+ dataset_path: orange_sum
8
+ dataset_name: title
9
+ output_type: generate_until
10
+ validation_split: validation
11
+ fewshot_split: validation
12
+ doc_to_text: "\nArticle: {{text}}\n\nTitre:"
13
+ doc_to_target: "{{summary}}"
14
+ target_delimiter: " "
15
+ should_decontaminate: true
16
+ doc_to_decontamination_query: summary
17
+ generation_kwargs:
18
+ until:
19
+ - "\n"
20
+ # filter_list:
21
+ # - name: remove_whitespace
22
+ # filter:
23
+ # - function: remove_whitespace
24
+ # - function: take_first
25
+ metric_list:
26
+ - metric: !function utils.rouge1
27
+ higher_is_better: true
28
+ aggregation: !function utils.rouge1_agg
lm-evaluation/lm_eval/tasks/french_bench/french_bench_reading_comp.yaml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_extra
5
+ # description: "Répond au mieux en complétant la question avec une des réponses proposées."
6
+ dataset_path: manu/french-bench-grammar-vocab-reading
7
+ output_type: multiple_choice
8
+ validation_split: Reading
9
+ fewshot_split: Reading
10
+ test_split: Reading
11
+ # doc_to_text: "Context: {{context}}\nQuestion: {{question.strip()}}\nA: {{answerA}}\nB: {{answerB}}\nC: {{answerC}}\nD: {{answerD}}\nRéponse:"
12
+ # doc_to_choice: "{{['A: '+answerA, 'B: '+answerB, 'C: '+answerC, 'D: '+answerD]}}"
13
+ doc_to_text: "Context: {{context}}\n\n"
14
+ doc_to_choice: "{{[question.replace('<...>', answerA) if '<...>' in question else question + ' ' +answerA, question.replace('<...>', answerB) if '<...>' in question else question + ' ' + answerB, question.replace('<...>', answerC) if '<...>' in question else question + ' ' + answerC, question.replace('<...>', answerD) if '<...>' in question else question + ' ' + answerD]}}"
15
+ doc_to_target: '{{["answerA", "answerB", "answerC", "answerD"].index("answer" + answer)}}'
16
+ # doc_to_choice: "{{['A: '+answerA, 'B: '+answerB, 'C: '+answerC, 'D: '+answerD]}}"
17
+ # doc_to_target: answer
18
+ task: french_bench_reading_comp
19
+ metric_list:
20
+ - metric: acc
21
+ aggregation: mean
22
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/french_bench_topic_based_nli.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_extra
5
+ description: "A propos du thème spécifié, l'avis client est il positif, négatif, ou neutre ?"
6
+ task: french_bench_topic_based_nli
7
+ dataset_path: manu/topic_based_nli_test
8
+ output_type: multiple_choice
9
+ validation_split: valid
10
+ # doc_to_text: "\nAvis Client: {{text}}\n\nEn considèrant uniquement le thème \"{{topic}}\", l'avis client est plutot:\nA. Positif \nB. Négatif\nC. Mitigé \nD. Neutre\nE. Absent\n\nRéponse:"
11
+ # doc_to_choice: ["A", "B", "C", "D", "E"]
12
+ doc_to_text: "\nAvis Client: {{text}}\n\nA propos du thème \"{{topic}}\", l'avis client est"
13
+ doc_to_choice: ['positif', 'négatif', 'neutre']
14
+ doc_to_target: "{{['positif', 'negatif', 'neutre'].index(polarity)}}"
15
+ should_decontaminate: true
16
+ doc_to_decontamination_query: texte
17
+ metric_list:
18
+ - metric: acc
19
+ aggregation: mean
20
+ higher_is_better: true
21
+ - metric: acc_norm
22
+ aggregation: mean
23
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/french_bench_trivia.yaml ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_gen
5
+ task: french_bench_trivia
6
+ dataset_path: manu/french-trivia
7
+ output_type: generate_until
8
+ validation_split: train
9
+ test_split: train
10
+ fewshot_split: train
11
+ doc_to_text: "{{Question}}\nAnswer:"
12
+ doc_to_target: "{{Answer}}"
13
+ target_delimiter: " "
14
+ should_decontaminate: true
15
+ doc_to_decontamination_query: Question
16
+ generation_kwargs:
17
+ until:
18
+ - "\n"
19
+ # filter_list:
20
+ # - name: remove_whitespace
21
+ # filter:
22
+ # - function: remove_whitespace
23
+ # - function: take_first
24
+ metric_list:
25
+ - metric: !function utils.exact
26
+ aggregation: mean
27
+ higher_is_better: true
28
+ - metric: !function utils.f1
29
+ aggregation: mean
30
+ higher_is_better: true
31
+ - metric: !function utils.rouge1
32
+ higher_is_better: true
33
+ aggregation: !function utils.rouge1_agg
34
+ - metric: !function utils.is_included
35
+ higher_is_better: true
36
+ aggregation: mean
lm-evaluation/lm_eval/tasks/french_bench/french_bench_vocab.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_mc
5
+ # description: "Répond au mieux en complétant la question avec une des réponses proposées."
6
+ dataset_path: manu/french-bench-grammar-vocab-reading
7
+ output_type: multiple_choice
8
+ validation_split: Vocabulary
9
+ fewshot_split: Vocabulary
10
+ test_split: Vocabulary
11
+ # doc_to_text: "Question: {{question.strip()}}\nA: {{answerA}}\nB: {{answerB}}\nC: {{answerC}}\nD: {{answerD}}\nRéponse:"
12
+ # doc_to_choice: ["A", "B", "C", "D"]
13
+ doc_to_text: "La phrase suivante est logique sémantiquement:\n"
14
+ doc_to_choice: "{{[question.replace('<...>', answerA), question.replace('<...>', answerB), question.replace('<...>', answerC), question.replace('<...>', answerD)]}}"
15
+ doc_to_target: '{{["answerA", "answerB", "answerC", "answerD"].index("answer" + answer)}}'
16
+ task: french_bench_vocab
17
+ metric_list:
18
+ - metric: acc
19
+ aggregation: mean
20
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/french_bench_wikitext_fr.yaml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ group:
2
+ - french_bench_perplexity
3
+ task: french_bench_wikitext_fr
4
+ dataset_path: asi/wikitext_fr
5
+ dataset_name: wikitext-35
6
+ output_type: loglikelihood_rolling
7
+ training_split: train
8
+ validation_split: validation
9
+ test_split: test
10
+ num_fewshot: 0
11
+ doc_to_text: ""
12
+ doc_to_target: !function preprocess_wikitext.wikitext_detokenizer
13
+ process_results: !function preprocess_wikitext.process_results
14
+ should_decontaminate: true
15
+ doc_to_decontamination_query: "{{paragraph}}"
16
+ metric_list:
17
+ - metric: word_perplexity
18
+ aggregation: weighted_perplexity
19
+ higher_is_better: false
20
+ - metric: byte_perplexity
21
+ aggregation: weighted_perplexity
22
+ higher_is_better: false
23
+ - metric: bits_per_byte
24
+ aggregation: bits_per_byte
25
+ higher_is_better: false
lm-evaluation/lm_eval/tasks/french_bench/french_bench_xnli.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ include: "_default_template_yaml"
2
+ group:
3
+ - french_bench
4
+ - french_bench_extra
5
+ description: "La prémisse et l'hypothèse sont elles en accord, neutres en elles, ou en contradiction ?"
6
+ dataset_path: xnli
7
+ dataset_name: fr
8
+ output_type: multiple_choice
9
+ validation_split: validation
10
+ fewshot_split: validation
11
+ test_split: test
12
+ # doc_to_text: "\nPrémisse: {{premise}}\n\nHypothèse: {{hypothesis}}\n\nLa prémisse et l'hypothèse sont:\nA. En accord\nB. Neutre\nC. En contradiction\nRéponse:"
13
+ # doc_to_choice: "{{['A: En accord', 'B: Neutre', 'C: En contradiction']}}"
14
+ doc_to_text: "\nPrémisse: {{premise}}\n\nHypothèse: {{hypothesis}}\n\nLa prémisse et l'hypothèse sont"
15
+ doc_to_choice: "{{['en accord', 'neutres entre elles', 'en contradiction']}}"
16
+ doc_to_target: label
17
+ task: french_bench_xnli
18
+ metric_list:
19
+ - metric: acc
20
+ aggregation: mean
21
+ higher_is_better: true
lm-evaluation/lm_eval/tasks/french_bench/preprocess_wikitext.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+
4
+ def wikitext_detokenizer(doc):
5
+ string = doc["paragraph"]
6
+ # contractions
7
+ string = string.replace("s '", "s'")
8
+ string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string)
9
+ # number separators
10
+ string = string.replace(" @-@ ", "-")
11
+ string = string.replace(" @,@ ", ",")
12
+ string = string.replace(" @.@ ", ".")
13
+ # punctuation
14
+ string = string.replace(" : ", ": ")
15
+ string = string.replace(" ; ", "; ")
16
+ string = string.replace(" . ", ". ")
17
+ string = string.replace(" ! ", "! ")
18
+ string = string.replace(" ? ", "? ")
19
+ string = string.replace(" , ", ", ")
20
+ # double brackets
21
+ string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string)
22
+ string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string)
23
+ string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string)
24
+ string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string)
25
+ string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string)
26
+ # miscellaneous
27
+ string = string.replace("= = = =", "====")
28
+ string = string.replace("= = =", "===")
29
+ string = string.replace("= =", "==")
30
+ string = string.replace(" " + chr(176) + " ", chr(176))
31
+ string = string.replace(" \n", "\n")
32
+ string = string.replace("\n ", "\n")
33
+ string = string.replace(" N ", " 1 ")
34
+ string = string.replace(" 's", "'s")
35
+
36
+ return string
37
+
38
+
39
+ def process_results(doc, results):
40
+ (loglikelihood,) = results
41
+ # IMPORTANT: wikitext counts number of words in *original doc before detokenization*
42
+ _words = len(re.split(r"\s+", doc["paragraph"]))
43
+ _bytes = len(doc["paragraph"].encode("utf-8"))
44
+ return {
45
+ "word_perplexity": (loglikelihood, _words),
46
+ "byte_perplexity": (loglikelihood, _bytes),
47
+ "bits_per_byte": (loglikelihood, _bytes),
48
+ }
lm-evaluation/lm_eval/tasks/french_bench/utils.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import re
3
+ import string
4
+
5
+ import datasets
6
+ import evaluate
7
+
8
+
9
+ def normalize_answer(s):
10
+ """Lower text and remove punctuation, articles and extra whitespace."""
11
+
12
+ def remove_articles(text):
13
+ regex = re.compile(r"\b(un|une|des|le|la|les)\b", re.UNICODE)
14
+ return re.sub(regex, " ", text)
15
+
16
+ def white_space_fix(text):
17
+ return " ".join(text.split())
18
+
19
+ def remove_punc(text):
20
+ exclude = set(string.punctuation)
21
+ return "".join(ch for ch in text if ch not in exclude)
22
+
23
+ def lower(text):
24
+ return text.lower()
25
+
26
+ return white_space_fix(remove_articles(remove_punc(lower(s))))
27
+
28
+
29
+ def get_tokens(s):
30
+ if not s:
31
+ return []
32
+ return normalize_answer(s).split()
33
+
34
+
35
+ # Exact match (the normalized answer exactly match the gold answer)
36
+ def exact(predictions, references):
37
+ return int(normalize_answer(references[0]) == normalize_answer(predictions[0]))
38
+
39
+
40
+ # The F-score of predicted tokens versus the gold answer
41
+ def f1(predictions, references):
42
+ gold_toks = get_tokens(references[0])
43
+ pred_toks = get_tokens(predictions[0])
44
+ common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
45
+ num_same = sum(common.values())
46
+ if len(gold_toks) == 0 or len(pred_toks) == 0:
47
+ # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
48
+ return int(gold_toks == pred_toks)
49
+ if num_same == 0:
50
+ return 0
51
+ precision = 1.0 * num_same / len(pred_toks)
52
+ recall = 1.0 * num_same / len(gold_toks)
53
+ f1 = (2 * precision * recall) / (precision + recall)
54
+ return f1
55
+
56
+
57
+ def rouge1(items):
58
+ """
59
+ # passthrough for efficiency
60
+ """
61
+ return items
62
+
63
+
64
+ def rouge1_agg(items):
65
+ """
66
+ Higher is better
67
+ """
68
+ refs = list(zip(*items))[0]
69
+ preds = list(zip(*items))[1]
70
+ rouge_scorer = evaluate.load("rouge")
71
+ return rouge_scorer.compute(predictions=preds, references=refs)["rouge1"]
72
+
73
+
74
+ def is_included(items):
75
+ """
76
+ # passthrough for efficiency
77
+ """
78
+ if items[0] in items[1]:
79
+ return True
80
+ return False
81
+
82
+
83
+ def preprocess(text):
84
+ text = text.strip()
85
+ # NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
86
+ text = text.replace(" [title]", ". ")
87
+ text = re.sub("\\[.*?\\]", "", text)
88
+ text = text.replace(" ", " ")
89
+ return text
90
+
91
+
92
+ def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
93
+ def _process_doc(doc):
94
+ ctx = doc["ctx_a"] + " " + doc["ctx_b"].capitalize()
95
+ out_doc = {
96
+ "query": preprocess(doc["activity_label"] + ": " + ctx),
97
+ "choices": [preprocess(ending) for ending in doc["endings"]],
98
+ "gold": int(doc["label"]),
99
+ }
100
+ return out_doc
101
+
102
+ return dataset.map(_process_doc)
lm-evaluation/lm_eval/tasks/ifeval/instructions_registry.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The Google Research Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """Registry of all instructions."""
16
+ from lm_eval.tasks.ifeval import instructions
17
+
18
+
19
+ _KEYWORD = "keywords:"
20
+
21
+ _LANGUAGE = "language:"
22
+
23
+ _LENGTH = "length_constraints:"
24
+
25
+ _CONTENT = "detectable_content:"
26
+
27
+ _FORMAT = "detectable_format:"
28
+
29
+ _MULTITURN = "multi-turn:"
30
+
31
+ _COMBINATION = "combination:"
32
+
33
+ _STARTEND = "startend:"
34
+
35
+ _CHANGE_CASES = "change_case:"
36
+
37
+ _PUNCTUATION = "punctuation:"
38
+
39
+ INSTRUCTION_DICT = {
40
+ _KEYWORD + "existence": instructions.KeywordChecker,
41
+ _KEYWORD + "frequency": instructions.KeywordFrequencyChecker,
42
+ # TODO(jeffreyzhou): make a proper set of sentences to choose from
43
+ # _KEYWORD + "key_sentences": instructions.KeySentenceChecker,
44
+ _KEYWORD + "forbidden_words": instructions.ForbiddenWords,
45
+ _KEYWORD + "letter_frequency": instructions.LetterFrequencyChecker,
46
+ _LANGUAGE + "response_language": instructions.ResponseLanguageChecker,
47
+ _LENGTH + "number_sentences": instructions.NumberOfSentences,
48
+ _LENGTH + "number_paragraphs": instructions.ParagraphChecker,
49
+ _LENGTH + "number_words": instructions.NumberOfWords,
50
+ _LENGTH + "nth_paragraph_first_word": instructions.ParagraphFirstWordCheck,
51
+ _CONTENT + "number_placeholders": instructions.PlaceholderChecker,
52
+ _CONTENT + "postscript": instructions.PostscriptChecker,
53
+ _FORMAT + "number_bullet_lists": instructions.BulletListChecker,
54
+ # TODO(jeffreyzhou): Pre-create paragraph or use prompt to replace
55
+ # _CONTENT + "rephrase_paragraph": instructions.RephraseParagraph,
56
+ _FORMAT + "constrained_response": instructions.ConstrainedResponseChecker,
57
+ _FORMAT + "number_highlighted_sections": (instructions.HighlightSectionChecker),
58
+ _FORMAT + "multiple_sections": instructions.SectionChecker,
59
+ # TODO(tianjianlu): Re-enable rephrasing with preprocessing the message.
60
+ # _FORMAT + "rephrase": instructions.RephraseChecker,
61
+ _FORMAT + "json_format": instructions.JsonFormat,
62
+ _FORMAT + "title": instructions.TitleChecker,
63
+ # TODO(tianjianlu): Re-enable with specific prompts.
64
+ # _MULTITURN + "constrained_start": instructions.ConstrainedStartChecker,
65
+ _COMBINATION + "two_responses": instructions.TwoResponsesChecker,
66
+ _COMBINATION + "repeat_prompt": instructions.RepeatPromptThenAnswer,
67
+ _STARTEND + "end_checker": instructions.EndChecker,
68
+ _CHANGE_CASES + "capital_word_frequency": instructions.CapitalWordFrequencyChecker,
69
+ _CHANGE_CASES + "english_capital": instructions.CapitalLettersEnglishChecker,
70
+ _CHANGE_CASES + "english_lowercase": instructions.LowercaseLettersEnglishChecker,
71
+ _PUNCTUATION + "no_comma": instructions.CommaChecker,
72
+ _STARTEND + "quotation": instructions.QuotationChecker,
73
+ }
74
+
75
+ INSTRUCTION_CONFLICTS = {
76
+ _KEYWORD + "existence": {_KEYWORD + "existence"},
77
+ _KEYWORD + "frequency": {_KEYWORD + "frequency"},
78
+ # TODO(jeffreyzhou): make a proper set of sentences to choose from
79
+ # _KEYWORD + "key_sentences": instructions.KeySentenceChecker,
80
+ _KEYWORD + "forbidden_words": {_KEYWORD + "forbidden_words"},
81
+ _KEYWORD + "letter_frequency": {_KEYWORD + "letter_frequency"},
82
+ _LANGUAGE + "response_language": {
83
+ _LANGUAGE + "response_language",
84
+ _FORMAT + "multiple_sections",
85
+ _KEYWORD + "existence",
86
+ _KEYWORD + "frequency",
87
+ _KEYWORD + "forbidden_words",
88
+ _STARTEND + "end_checker",
89
+ _CHANGE_CASES + "english_capital",
90
+ _CHANGE_CASES + "english_lowercase",
91
+ },
92
+ _LENGTH + "number_sentences": {_LENGTH + "number_sentences"},
93
+ _LENGTH + "number_paragraphs": {
94
+ _LENGTH + "number_paragraphs",
95
+ _LENGTH + "nth_paragraph_first_word",
96
+ _LENGTH + "number_sentences",
97
+ _LENGTH + "nth_paragraph_first_word",
98
+ },
99
+ _LENGTH + "number_words": {_LENGTH + "number_words"},
100
+ _LENGTH + "nth_paragraph_first_word": {
101
+ _LENGTH + "nth_paragraph_first_word",
102
+ _LENGTH + "number_paragraphs",
103
+ },
104
+ _CONTENT + "number_placeholders": {_CONTENT + "number_placeholders"},
105
+ _CONTENT + "postscript": {_CONTENT + "postscript"},
106
+ _FORMAT + "number_bullet_lists": {_FORMAT + "number_bullet_lists"},
107
+ # TODO(jeffreyzhou): Pre-create paragraph or use prompt to replace
108
+ # _CONTENT + "rephrase_paragraph": instructions.RephraseParagraph,
109
+ _FORMAT + "constrained_response": set(INSTRUCTION_DICT.keys()),
110
+ _FORMAT + "number_highlighted_sections": {_FORMAT + "number_highlighted_sections"},
111
+ _FORMAT + "multiple_sections": {
112
+ _FORMAT + "multiple_sections",
113
+ _LANGUAGE + "response_language",
114
+ _FORMAT + "number_highlighted_sections",
115
+ },
116
+ # TODO(tianjianlu): Re-enable rephrasing with preprocessing the message.
117
+ # _FORMAT + "rephrase": instructions.RephraseChecker,
118
+ _FORMAT + "json_format": set(INSTRUCTION_DICT.keys()).difference(
119
+ {_KEYWORD + "forbidden_words", _KEYWORD + "existence"}
120
+ ),
121
+ _FORMAT + "title": {_FORMAT + "title"},
122
+ # TODO(tianjianlu): Re-enable with specific prompts.
123
+ # _MULTITURN + "constrained_start": instructions.ConstrainedStartChecker,
124
+ _COMBINATION + "two_responses": set(INSTRUCTION_DICT.keys()).difference(
125
+ {
126
+ _KEYWORD + "forbidden_words",
127
+ _KEYWORD + "existence",
128
+ _LANGUAGE + "response_language",
129
+ _FORMAT + "title",
130
+ _PUNCTUATION + "no_comma",
131
+ }
132
+ ),
133
+ _COMBINATION + "repeat_prompt": set(INSTRUCTION_DICT.keys()).difference(
134
+ {_KEYWORD + "existence", _FORMAT + "title", _PUNCTUATION + "no_comma"}
135
+ ),
136
+ _STARTEND + "end_checker": {_STARTEND + "end_checker"},
137
+ _CHANGE_CASES + "capital_word_frequency": {
138
+ _CHANGE_CASES + "capital_word_frequency",
139
+ _CHANGE_CASES + "english_lowercase",
140
+ _CHANGE_CASES + "english_capital",
141
+ },
142
+ _CHANGE_CASES + "english_capital": {_CHANGE_CASES + "english_capital"},
143
+ _CHANGE_CASES + "english_lowercase": {
144
+ _CHANGE_CASES + "english_lowercase",
145
+ _CHANGE_CASES + "english_capital",
146
+ },
147
+ _PUNCTUATION + "no_comma": {_PUNCTUATION + "no_comma"},
148
+ _STARTEND + "quotation": {_STARTEND + "quotation", _FORMAT + "title"},
149
+ }
150
+
151
+
152
+ def conflict_make(conflicts):
153
+ """Makes sure if A conflicts with B, B will conflict with A.
154
+
155
+ Args:
156
+ conflicts: Dictionary of potential conflicts where key is instruction id
157
+ and value is set of instruction ids that it conflicts with.
158
+
159
+ Returns:
160
+ Revised version of the dictionary. All instructions conflict with
161
+ themselves. If A conflicts with B, B will conflict with A.
162
+ """
163
+ for key in conflicts:
164
+ for k in conflicts[key]:
165
+ conflicts[k].add(key)
166
+ conflicts[key].add(key)
167
+ return conflicts
lm-evaluation/lm_eval/tasks/ifeval/instructions_util.py ADDED
@@ -0,0 +1,1682 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The Google Research Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """Utility library of instructions."""
16
+
17
+ import functools
18
+ import random
19
+ import re
20
+
21
+ import immutabledict
22
+ import nltk
23
+
24
+
25
+ def download_nltk_resources():
26
+ """Download 'punkt' if not already installed"""
27
+ try:
28
+ nltk.data.find("tokenizers/punkt")
29
+ except LookupError:
30
+ nltk.download("punkt")
31
+
32
+
33
+ download_nltk_resources()
34
+
35
+ WORD_LIST = [
36
+ "western",
37
+ "sentence",
38
+ "signal",
39
+ "dump",
40
+ "spot",
41
+ "opposite",
42
+ "bottom",
43
+ "potato",
44
+ "administration",
45
+ "working",
46
+ "welcome",
47
+ "morning",
48
+ "good",
49
+ "agency",
50
+ "primary",
51
+ "wish",
52
+ "responsibility",
53
+ "press",
54
+ "problem",
55
+ "president",
56
+ "steal",
57
+ "brush",
58
+ "read",
59
+ "type",
60
+ "beat",
61
+ "trainer",
62
+ "growth",
63
+ "lock",
64
+ "bone",
65
+ "case",
66
+ "equal",
67
+ "comfortable",
68
+ "region",
69
+ "replacement",
70
+ "performance",
71
+ "mate",
72
+ "walk",
73
+ "medicine",
74
+ "film",
75
+ "thing",
76
+ "rock",
77
+ "tap",
78
+ "total",
79
+ "competition",
80
+ "ease",
81
+ "south",
82
+ "establishment",
83
+ "gather",
84
+ "parking",
85
+ "world",
86
+ "plenty",
87
+ "breath",
88
+ "claim",
89
+ "alcohol",
90
+ "trade",
91
+ "dear",
92
+ "highlight",
93
+ "street",
94
+ "matter",
95
+ "decision",
96
+ "mess",
97
+ "agreement",
98
+ "studio",
99
+ "coach",
100
+ "assist",
101
+ "brain",
102
+ "wing",
103
+ "style",
104
+ "private",
105
+ "top",
106
+ "brown",
107
+ "leg",
108
+ "buy",
109
+ "procedure",
110
+ "method",
111
+ "speed",
112
+ "high",
113
+ "company",
114
+ "valuable",
115
+ "pie",
116
+ "analyst",
117
+ "session",
118
+ "pattern",
119
+ "district",
120
+ "pleasure",
121
+ "dinner",
122
+ "swimming",
123
+ "joke",
124
+ "order",
125
+ "plate",
126
+ "department",
127
+ "motor",
128
+ "cell",
129
+ "spend",
130
+ "cabinet",
131
+ "difference",
132
+ "power",
133
+ "examination",
134
+ "engine",
135
+ "horse",
136
+ "dimension",
137
+ "pay",
138
+ "toe",
139
+ "curve",
140
+ "literature",
141
+ "bother",
142
+ "fire",
143
+ "possibility",
144
+ "debate",
145
+ "activity",
146
+ "passage",
147
+ "hello",
148
+ "cycle",
149
+ "background",
150
+ "quiet",
151
+ "author",
152
+ "effect",
153
+ "actor",
154
+ "page",
155
+ "bicycle",
156
+ "error",
157
+ "throat",
158
+ "attack",
159
+ "character",
160
+ "phone",
161
+ "tea",
162
+ "increase",
163
+ "outcome",
164
+ "file",
165
+ "specific",
166
+ "inspector",
167
+ "internal",
168
+ "potential",
169
+ "staff",
170
+ "building",
171
+ "employer",
172
+ "shoe",
173
+ "hand",
174
+ "direction",
175
+ "garden",
176
+ "purchase",
177
+ "interview",
178
+ "study",
179
+ "recognition",
180
+ "member",
181
+ "spiritual",
182
+ "oven",
183
+ "sandwich",
184
+ "weird",
185
+ "passenger",
186
+ "particular",
187
+ "response",
188
+ "reaction",
189
+ "size",
190
+ "variation",
191
+ "a",
192
+ "cancel",
193
+ "candy",
194
+ "exit",
195
+ "guest",
196
+ "condition",
197
+ "fly",
198
+ "price",
199
+ "weakness",
200
+ "convert",
201
+ "hotel",
202
+ "great",
203
+ "mouth",
204
+ "mind",
205
+ "song",
206
+ "sugar",
207
+ "suspect",
208
+ "telephone",
209
+ "ear",
210
+ "roof",
211
+ "paint",
212
+ "refrigerator",
213
+ "organization",
214
+ "jury",
215
+ "reward",
216
+ "engineering",
217
+ "day",
218
+ "possession",
219
+ "crew",
220
+ "bar",
221
+ "road",
222
+ "description",
223
+ "celebration",
224
+ "score",
225
+ "mark",
226
+ "letter",
227
+ "shower",
228
+ "suggestion",
229
+ "sir",
230
+ "luck",
231
+ "national",
232
+ "progress",
233
+ "hall",
234
+ "stroke",
235
+ "theory",
236
+ "offer",
237
+ "story",
238
+ "tax",
239
+ "definition",
240
+ "history",
241
+ "ride",
242
+ "medium",
243
+ "opening",
244
+ "glass",
245
+ "elevator",
246
+ "stomach",
247
+ "question",
248
+ "ability",
249
+ "leading",
250
+ "village",
251
+ "computer",
252
+ "city",
253
+ "grand",
254
+ "confidence",
255
+ "candle",
256
+ "priest",
257
+ "recommendation",
258
+ "point",
259
+ "necessary",
260
+ "body",
261
+ "desk",
262
+ "secret",
263
+ "horror",
264
+ "noise",
265
+ "culture",
266
+ "warning",
267
+ "water",
268
+ "round",
269
+ "diet",
270
+ "flower",
271
+ "bus",
272
+ "tough",
273
+ "permission",
274
+ "week",
275
+ "prompt",
276
+ "connection",
277
+ "abuse",
278
+ "height",
279
+ "save",
280
+ "corner",
281
+ "border",
282
+ "stress",
283
+ "drive",
284
+ "stop",
285
+ "rip",
286
+ "meal",
287
+ "listen",
288
+ "confusion",
289
+ "girlfriend",
290
+ "living",
291
+ "relation",
292
+ "significance",
293
+ "plan",
294
+ "creative",
295
+ "atmosphere",
296
+ "blame",
297
+ "invite",
298
+ "housing",
299
+ "paper",
300
+ "drink",
301
+ "roll",
302
+ "silver",
303
+ "drunk",
304
+ "age",
305
+ "damage",
306
+ "smoke",
307
+ "environment",
308
+ "pack",
309
+ "savings",
310
+ "influence",
311
+ "tourist",
312
+ "rain",
313
+ "post",
314
+ "sign",
315
+ "grandmother",
316
+ "run",
317
+ "profit",
318
+ "push",
319
+ "clerk",
320
+ "final",
321
+ "wine",
322
+ "swim",
323
+ "pause",
324
+ "stuff",
325
+ "singer",
326
+ "funeral",
327
+ "average",
328
+ "source",
329
+ "scene",
330
+ "tradition",
331
+ "personal",
332
+ "snow",
333
+ "nobody",
334
+ "distance",
335
+ "sort",
336
+ "sensitive",
337
+ "animal",
338
+ "major",
339
+ "negotiation",
340
+ "click",
341
+ "mood",
342
+ "period",
343
+ "arrival",
344
+ "expression",
345
+ "holiday",
346
+ "repeat",
347
+ "dust",
348
+ "closet",
349
+ "gold",
350
+ "bad",
351
+ "sail",
352
+ "combination",
353
+ "clothes",
354
+ "emphasis",
355
+ "duty",
356
+ "black",
357
+ "step",
358
+ "school",
359
+ "jump",
360
+ "document",
361
+ "professional",
362
+ "lip",
363
+ "chemical",
364
+ "front",
365
+ "wake",
366
+ "while",
367
+ "inside",
368
+ "watch",
369
+ "row",
370
+ "subject",
371
+ "penalty",
372
+ "balance",
373
+ "possible",
374
+ "adult",
375
+ "aside",
376
+ "sample",
377
+ "appeal",
378
+ "wedding",
379
+ "depth",
380
+ "king",
381
+ "award",
382
+ "wife",
383
+ "blow",
384
+ "site",
385
+ "camp",
386
+ "music",
387
+ "safe",
388
+ "gift",
389
+ "fault",
390
+ "guess",
391
+ "act",
392
+ "shame",
393
+ "drama",
394
+ "capital",
395
+ "exam",
396
+ "stupid",
397
+ "record",
398
+ "sound",
399
+ "swing",
400
+ "novel",
401
+ "minimum",
402
+ "ratio",
403
+ "machine",
404
+ "shape",
405
+ "lead",
406
+ "operation",
407
+ "salary",
408
+ "cloud",
409
+ "affair",
410
+ "hit",
411
+ "chapter",
412
+ "stage",
413
+ "quantity",
414
+ "access",
415
+ "army",
416
+ "chain",
417
+ "traffic",
418
+ "kick",
419
+ "analysis",
420
+ "airport",
421
+ "time",
422
+ "vacation",
423
+ "philosophy",
424
+ "ball",
425
+ "chest",
426
+ "thanks",
427
+ "place",
428
+ "mountain",
429
+ "advertising",
430
+ "red",
431
+ "past",
432
+ "rent",
433
+ "return",
434
+ "tour",
435
+ "house",
436
+ "construction",
437
+ "net",
438
+ "native",
439
+ "war",
440
+ "figure",
441
+ "fee",
442
+ "spray",
443
+ "user",
444
+ "dirt",
445
+ "shot",
446
+ "task",
447
+ "stick",
448
+ "friend",
449
+ "software",
450
+ "promotion",
451
+ "interaction",
452
+ "surround",
453
+ "block",
454
+ "purpose",
455
+ "practice",
456
+ "conflict",
457
+ "routine",
458
+ "requirement",
459
+ "bonus",
460
+ "hole",
461
+ "state",
462
+ "junior",
463
+ "sweet",
464
+ "catch",
465
+ "tear",
466
+ "fold",
467
+ "wall",
468
+ "editor",
469
+ "life",
470
+ "position",
471
+ "pound",
472
+ "respect",
473
+ "bathroom",
474
+ "coat",
475
+ "script",
476
+ "job",
477
+ "teach",
478
+ "birth",
479
+ "view",
480
+ "resolve",
481
+ "theme",
482
+ "employee",
483
+ "doubt",
484
+ "market",
485
+ "education",
486
+ "serve",
487
+ "recover",
488
+ "tone",
489
+ "harm",
490
+ "miss",
491
+ "union",
492
+ "understanding",
493
+ "cow",
494
+ "river",
495
+ "association",
496
+ "concept",
497
+ "training",
498
+ "recipe",
499
+ "relationship",
500
+ "reserve",
501
+ "depression",
502
+ "proof",
503
+ "hair",
504
+ "revenue",
505
+ "independent",
506
+ "lift",
507
+ "assignment",
508
+ "temporary",
509
+ "amount",
510
+ "loss",
511
+ "edge",
512
+ "track",
513
+ "check",
514
+ "rope",
515
+ "estimate",
516
+ "pollution",
517
+ "stable",
518
+ "message",
519
+ "delivery",
520
+ "perspective",
521
+ "mirror",
522
+ "assistant",
523
+ "representative",
524
+ "witness",
525
+ "nature",
526
+ "judge",
527
+ "fruit",
528
+ "tip",
529
+ "devil",
530
+ "town",
531
+ "emergency",
532
+ "upper",
533
+ "drop",
534
+ "stay",
535
+ "human",
536
+ "neck",
537
+ "speaker",
538
+ "network",
539
+ "sing",
540
+ "resist",
541
+ "league",
542
+ "trip",
543
+ "signature",
544
+ "lawyer",
545
+ "importance",
546
+ "gas",
547
+ "choice",
548
+ "engineer",
549
+ "success",
550
+ "part",
551
+ "external",
552
+ "worker",
553
+ "simple",
554
+ "quarter",
555
+ "student",
556
+ "heart",
557
+ "pass",
558
+ "spite",
559
+ "shift",
560
+ "rough",
561
+ "lady",
562
+ "grass",
563
+ "community",
564
+ "garage",
565
+ "youth",
566
+ "standard",
567
+ "skirt",
568
+ "promise",
569
+ "blind",
570
+ "television",
571
+ "disease",
572
+ "commission",
573
+ "positive",
574
+ "energy",
575
+ "calm",
576
+ "presence",
577
+ "tune",
578
+ "basis",
579
+ "preference",
580
+ "head",
581
+ "common",
582
+ "cut",
583
+ "somewhere",
584
+ "presentation",
585
+ "current",
586
+ "thought",
587
+ "revolution",
588
+ "effort",
589
+ "master",
590
+ "implement",
591
+ "republic",
592
+ "floor",
593
+ "principle",
594
+ "stranger",
595
+ "shoulder",
596
+ "grade",
597
+ "button",
598
+ "tennis",
599
+ "police",
600
+ "collection",
601
+ "account",
602
+ "register",
603
+ "glove",
604
+ "divide",
605
+ "professor",
606
+ "chair",
607
+ "priority",
608
+ "combine",
609
+ "peace",
610
+ "extension",
611
+ "maybe",
612
+ "evening",
613
+ "frame",
614
+ "sister",
615
+ "wave",
616
+ "code",
617
+ "application",
618
+ "mouse",
619
+ "match",
620
+ "counter",
621
+ "bottle",
622
+ "half",
623
+ "cheek",
624
+ "resolution",
625
+ "back",
626
+ "knowledge",
627
+ "make",
628
+ "discussion",
629
+ "screw",
630
+ "length",
631
+ "accident",
632
+ "battle",
633
+ "dress",
634
+ "knee",
635
+ "log",
636
+ "package",
637
+ "it",
638
+ "turn",
639
+ "hearing",
640
+ "newspaper",
641
+ "layer",
642
+ "wealth",
643
+ "profile",
644
+ "imagination",
645
+ "answer",
646
+ "weekend",
647
+ "teacher",
648
+ "appearance",
649
+ "meet",
650
+ "bike",
651
+ "rise",
652
+ "belt",
653
+ "crash",
654
+ "bowl",
655
+ "equivalent",
656
+ "support",
657
+ "image",
658
+ "poem",
659
+ "risk",
660
+ "excitement",
661
+ "remote",
662
+ "secretary",
663
+ "public",
664
+ "produce",
665
+ "plane",
666
+ "display",
667
+ "money",
668
+ "sand",
669
+ "situation",
670
+ "punch",
671
+ "customer",
672
+ "title",
673
+ "shake",
674
+ "mortgage",
675
+ "option",
676
+ "number",
677
+ "pop",
678
+ "window",
679
+ "extent",
680
+ "nothing",
681
+ "experience",
682
+ "opinion",
683
+ "departure",
684
+ "dance",
685
+ "indication",
686
+ "boy",
687
+ "material",
688
+ "band",
689
+ "leader",
690
+ "sun",
691
+ "beautiful",
692
+ "muscle",
693
+ "farmer",
694
+ "variety",
695
+ "fat",
696
+ "handle",
697
+ "director",
698
+ "opportunity",
699
+ "calendar",
700
+ "outside",
701
+ "pace",
702
+ "bath",
703
+ "fish",
704
+ "consequence",
705
+ "put",
706
+ "owner",
707
+ "go",
708
+ "doctor",
709
+ "information",
710
+ "share",
711
+ "hurt",
712
+ "protection",
713
+ "career",
714
+ "finance",
715
+ "force",
716
+ "golf",
717
+ "garbage",
718
+ "aspect",
719
+ "kid",
720
+ "food",
721
+ "boot",
722
+ "milk",
723
+ "respond",
724
+ "objective",
725
+ "reality",
726
+ "raw",
727
+ "ring",
728
+ "mall",
729
+ "one",
730
+ "impact",
731
+ "area",
732
+ "news",
733
+ "international",
734
+ "series",
735
+ "impress",
736
+ "mother",
737
+ "shelter",
738
+ "strike",
739
+ "loan",
740
+ "month",
741
+ "seat",
742
+ "anything",
743
+ "entertainment",
744
+ "familiar",
745
+ "clue",
746
+ "year",
747
+ "glad",
748
+ "supermarket",
749
+ "natural",
750
+ "god",
751
+ "cost",
752
+ "conversation",
753
+ "tie",
754
+ "ruin",
755
+ "comfort",
756
+ "earth",
757
+ "storm",
758
+ "percentage",
759
+ "assistance",
760
+ "budget",
761
+ "strength",
762
+ "beginning",
763
+ "sleep",
764
+ "other",
765
+ "young",
766
+ "unit",
767
+ "fill",
768
+ "store",
769
+ "desire",
770
+ "hide",
771
+ "value",
772
+ "cup",
773
+ "maintenance",
774
+ "nurse",
775
+ "function",
776
+ "tower",
777
+ "role",
778
+ "class",
779
+ "camera",
780
+ "database",
781
+ "panic",
782
+ "nation",
783
+ "basket",
784
+ "ice",
785
+ "art",
786
+ "spirit",
787
+ "chart",
788
+ "exchange",
789
+ "feedback",
790
+ "statement",
791
+ "reputation",
792
+ "search",
793
+ "hunt",
794
+ "exercise",
795
+ "nasty",
796
+ "notice",
797
+ "male",
798
+ "yard",
799
+ "annual",
800
+ "collar",
801
+ "date",
802
+ "platform",
803
+ "plant",
804
+ "fortune",
805
+ "passion",
806
+ "friendship",
807
+ "spread",
808
+ "cancer",
809
+ "ticket",
810
+ "attitude",
811
+ "island",
812
+ "active",
813
+ "object",
814
+ "service",
815
+ "buyer",
816
+ "bite",
817
+ "card",
818
+ "face",
819
+ "steak",
820
+ "proposal",
821
+ "patient",
822
+ "heat",
823
+ "rule",
824
+ "resident",
825
+ "broad",
826
+ "politics",
827
+ "west",
828
+ "knife",
829
+ "expert",
830
+ "girl",
831
+ "design",
832
+ "salt",
833
+ "baseball",
834
+ "grab",
835
+ "inspection",
836
+ "cousin",
837
+ "couple",
838
+ "magazine",
839
+ "cook",
840
+ "dependent",
841
+ "security",
842
+ "chicken",
843
+ "version",
844
+ "currency",
845
+ "ladder",
846
+ "scheme",
847
+ "kitchen",
848
+ "employment",
849
+ "local",
850
+ "attention",
851
+ "manager",
852
+ "fact",
853
+ "cover",
854
+ "sad",
855
+ "guard",
856
+ "relative",
857
+ "county",
858
+ "rate",
859
+ "lunch",
860
+ "program",
861
+ "initiative",
862
+ "gear",
863
+ "bridge",
864
+ "breast",
865
+ "talk",
866
+ "dish",
867
+ "guarantee",
868
+ "beer",
869
+ "vehicle",
870
+ "reception",
871
+ "woman",
872
+ "substance",
873
+ "copy",
874
+ "lecture",
875
+ "advantage",
876
+ "park",
877
+ "cold",
878
+ "death",
879
+ "mix",
880
+ "hold",
881
+ "scale",
882
+ "tomorrow",
883
+ "blood",
884
+ "request",
885
+ "green",
886
+ "cookie",
887
+ "church",
888
+ "strip",
889
+ "forever",
890
+ "beyond",
891
+ "debt",
892
+ "tackle",
893
+ "wash",
894
+ "following",
895
+ "feel",
896
+ "maximum",
897
+ "sector",
898
+ "sea",
899
+ "property",
900
+ "economics",
901
+ "menu",
902
+ "bench",
903
+ "try",
904
+ "language",
905
+ "start",
906
+ "call",
907
+ "solid",
908
+ "address",
909
+ "income",
910
+ "foot",
911
+ "senior",
912
+ "honey",
913
+ "few",
914
+ "mixture",
915
+ "cash",
916
+ "grocery",
917
+ "link",
918
+ "map",
919
+ "form",
920
+ "factor",
921
+ "pot",
922
+ "model",
923
+ "writer",
924
+ "farm",
925
+ "winter",
926
+ "skill",
927
+ "anywhere",
928
+ "birthday",
929
+ "policy",
930
+ "release",
931
+ "husband",
932
+ "lab",
933
+ "hurry",
934
+ "mail",
935
+ "equipment",
936
+ "sink",
937
+ "pair",
938
+ "driver",
939
+ "consideration",
940
+ "leather",
941
+ "skin",
942
+ "blue",
943
+ "boat",
944
+ "sale",
945
+ "brick",
946
+ "two",
947
+ "feed",
948
+ "square",
949
+ "dot",
950
+ "rush",
951
+ "dream",
952
+ "location",
953
+ "afternoon",
954
+ "manufacturer",
955
+ "control",
956
+ "occasion",
957
+ "trouble",
958
+ "introduction",
959
+ "advice",
960
+ "bet",
961
+ "eat",
962
+ "kill",
963
+ "category",
964
+ "manner",
965
+ "office",
966
+ "estate",
967
+ "pride",
968
+ "awareness",
969
+ "slip",
970
+ "crack",
971
+ "client",
972
+ "nail",
973
+ "shoot",
974
+ "membership",
975
+ "soft",
976
+ "anybody",
977
+ "web",
978
+ "official",
979
+ "individual",
980
+ "pizza",
981
+ "interest",
982
+ "bag",
983
+ "spell",
984
+ "profession",
985
+ "queen",
986
+ "deal",
987
+ "resource",
988
+ "ship",
989
+ "guy",
990
+ "chocolate",
991
+ "joint",
992
+ "formal",
993
+ "upstairs",
994
+ "car",
995
+ "resort",
996
+ "abroad",
997
+ "dealer",
998
+ "associate",
999
+ "finger",
1000
+ "surgery",
1001
+ "comment",
1002
+ "team",
1003
+ "detail",
1004
+ "crazy",
1005
+ "path",
1006
+ "tale",
1007
+ "initial",
1008
+ "arm",
1009
+ "radio",
1010
+ "demand",
1011
+ "single",
1012
+ "draw",
1013
+ "yellow",
1014
+ "contest",
1015
+ "piece",
1016
+ "quote",
1017
+ "pull",
1018
+ "commercial",
1019
+ "shirt",
1020
+ "contribution",
1021
+ "cream",
1022
+ "channel",
1023
+ "suit",
1024
+ "discipline",
1025
+ "instruction",
1026
+ "concert",
1027
+ "speech",
1028
+ "low",
1029
+ "effective",
1030
+ "hang",
1031
+ "scratch",
1032
+ "industry",
1033
+ "breakfast",
1034
+ "lay",
1035
+ "join",
1036
+ "metal",
1037
+ "bedroom",
1038
+ "minute",
1039
+ "product",
1040
+ "rest",
1041
+ "temperature",
1042
+ "many",
1043
+ "give",
1044
+ "argument",
1045
+ "print",
1046
+ "purple",
1047
+ "laugh",
1048
+ "health",
1049
+ "credit",
1050
+ "investment",
1051
+ "sell",
1052
+ "setting",
1053
+ "lesson",
1054
+ "egg",
1055
+ "middle",
1056
+ "marriage",
1057
+ "level",
1058
+ "evidence",
1059
+ "phrase",
1060
+ "love",
1061
+ "self",
1062
+ "benefit",
1063
+ "guidance",
1064
+ "affect",
1065
+ "you",
1066
+ "dad",
1067
+ "anxiety",
1068
+ "special",
1069
+ "boyfriend",
1070
+ "test",
1071
+ "blank",
1072
+ "payment",
1073
+ "soup",
1074
+ "obligation",
1075
+ "reply",
1076
+ "smile",
1077
+ "deep",
1078
+ "complaint",
1079
+ "addition",
1080
+ "review",
1081
+ "box",
1082
+ "towel",
1083
+ "minor",
1084
+ "fun",
1085
+ "soil",
1086
+ "issue",
1087
+ "cigarette",
1088
+ "internet",
1089
+ "gain",
1090
+ "tell",
1091
+ "entry",
1092
+ "spare",
1093
+ "incident",
1094
+ "family",
1095
+ "refuse",
1096
+ "branch",
1097
+ "can",
1098
+ "pen",
1099
+ "grandfather",
1100
+ "constant",
1101
+ "tank",
1102
+ "uncle",
1103
+ "climate",
1104
+ "ground",
1105
+ "volume",
1106
+ "communication",
1107
+ "kind",
1108
+ "poet",
1109
+ "child",
1110
+ "screen",
1111
+ "mine",
1112
+ "quit",
1113
+ "gene",
1114
+ "lack",
1115
+ "charity",
1116
+ "memory",
1117
+ "tooth",
1118
+ "fear",
1119
+ "mention",
1120
+ "marketing",
1121
+ "reveal",
1122
+ "reason",
1123
+ "court",
1124
+ "season",
1125
+ "freedom",
1126
+ "land",
1127
+ "sport",
1128
+ "audience",
1129
+ "classroom",
1130
+ "law",
1131
+ "hook",
1132
+ "win",
1133
+ "carry",
1134
+ "eye",
1135
+ "smell",
1136
+ "distribution",
1137
+ "research",
1138
+ "country",
1139
+ "dare",
1140
+ "hope",
1141
+ "whereas",
1142
+ "stretch",
1143
+ "library",
1144
+ "if",
1145
+ "delay",
1146
+ "college",
1147
+ "plastic",
1148
+ "book",
1149
+ "present",
1150
+ "use",
1151
+ "worry",
1152
+ "champion",
1153
+ "goal",
1154
+ "economy",
1155
+ "march",
1156
+ "election",
1157
+ "reflection",
1158
+ "midnight",
1159
+ "slide",
1160
+ "inflation",
1161
+ "action",
1162
+ "challenge",
1163
+ "guitar",
1164
+ "coast",
1165
+ "apple",
1166
+ "campaign",
1167
+ "field",
1168
+ "jacket",
1169
+ "sense",
1170
+ "way",
1171
+ "visual",
1172
+ "remove",
1173
+ "weather",
1174
+ "trash",
1175
+ "cable",
1176
+ "regret",
1177
+ "buddy",
1178
+ "beach",
1179
+ "historian",
1180
+ "courage",
1181
+ "sympathy",
1182
+ "truck",
1183
+ "tension",
1184
+ "permit",
1185
+ "nose",
1186
+ "bed",
1187
+ "son",
1188
+ "person",
1189
+ "base",
1190
+ "meat",
1191
+ "usual",
1192
+ "air",
1193
+ "meeting",
1194
+ "worth",
1195
+ "game",
1196
+ "independence",
1197
+ "physical",
1198
+ "brief",
1199
+ "play",
1200
+ "raise",
1201
+ "board",
1202
+ "she",
1203
+ "key",
1204
+ "writing",
1205
+ "pick",
1206
+ "command",
1207
+ "party",
1208
+ "yesterday",
1209
+ "spring",
1210
+ "candidate",
1211
+ "physics",
1212
+ "university",
1213
+ "concern",
1214
+ "development",
1215
+ "change",
1216
+ "string",
1217
+ "target",
1218
+ "instance",
1219
+ "room",
1220
+ "bitter",
1221
+ "bird",
1222
+ "football",
1223
+ "normal",
1224
+ "split",
1225
+ "impression",
1226
+ "wood",
1227
+ "long",
1228
+ "meaning",
1229
+ "stock",
1230
+ "cap",
1231
+ "leadership",
1232
+ "media",
1233
+ "ambition",
1234
+ "fishing",
1235
+ "essay",
1236
+ "salad",
1237
+ "repair",
1238
+ "today",
1239
+ "designer",
1240
+ "night",
1241
+ "bank",
1242
+ "drawing",
1243
+ "inevitable",
1244
+ "phase",
1245
+ "vast",
1246
+ "chip",
1247
+ "anger",
1248
+ "switch",
1249
+ "cry",
1250
+ "twist",
1251
+ "personality",
1252
+ "attempt",
1253
+ "storage",
1254
+ "being",
1255
+ "preparation",
1256
+ "bat",
1257
+ "selection",
1258
+ "white",
1259
+ "technology",
1260
+ "contract",
1261
+ "side",
1262
+ "section",
1263
+ "station",
1264
+ "till",
1265
+ "structure",
1266
+ "tongue",
1267
+ "taste",
1268
+ "truth",
1269
+ "difficulty",
1270
+ "group",
1271
+ "limit",
1272
+ "main",
1273
+ "move",
1274
+ "feeling",
1275
+ "light",
1276
+ "example",
1277
+ "mission",
1278
+ "might",
1279
+ "wait",
1280
+ "wheel",
1281
+ "shop",
1282
+ "host",
1283
+ "classic",
1284
+ "alternative",
1285
+ "cause",
1286
+ "agent",
1287
+ "consist",
1288
+ "table",
1289
+ "airline",
1290
+ "text",
1291
+ "pool",
1292
+ "craft",
1293
+ "range",
1294
+ "fuel",
1295
+ "tool",
1296
+ "partner",
1297
+ "load",
1298
+ "entrance",
1299
+ "deposit",
1300
+ "hate",
1301
+ "article",
1302
+ "video",
1303
+ "summer",
1304
+ "feature",
1305
+ "extreme",
1306
+ "mobile",
1307
+ "hospital",
1308
+ "flight",
1309
+ "fall",
1310
+ "pension",
1311
+ "piano",
1312
+ "fail",
1313
+ "result",
1314
+ "rub",
1315
+ "gap",
1316
+ "system",
1317
+ "report",
1318
+ "suck",
1319
+ "ordinary",
1320
+ "wind",
1321
+ "nerve",
1322
+ "ask",
1323
+ "shine",
1324
+ "note",
1325
+ "line",
1326
+ "mom",
1327
+ "perception",
1328
+ "brother",
1329
+ "reference",
1330
+ "bend",
1331
+ "charge",
1332
+ "treat",
1333
+ "trick",
1334
+ "term",
1335
+ "homework",
1336
+ "bake",
1337
+ "bid",
1338
+ "status",
1339
+ "project",
1340
+ "strategy",
1341
+ "orange",
1342
+ "let",
1343
+ "enthusiasm",
1344
+ "parent",
1345
+ "concentrate",
1346
+ "device",
1347
+ "travel",
1348
+ "poetry",
1349
+ "business",
1350
+ "society",
1351
+ "kiss",
1352
+ "end",
1353
+ "vegetable",
1354
+ "employ",
1355
+ "schedule",
1356
+ "hour",
1357
+ "brave",
1358
+ "focus",
1359
+ "process",
1360
+ "movie",
1361
+ "illegal",
1362
+ "general",
1363
+ "coffee",
1364
+ "ad",
1365
+ "highway",
1366
+ "chemistry",
1367
+ "psychology",
1368
+ "hire",
1369
+ "bell",
1370
+ "conference",
1371
+ "relief",
1372
+ "show",
1373
+ "neat",
1374
+ "funny",
1375
+ "weight",
1376
+ "quality",
1377
+ "club",
1378
+ "daughter",
1379
+ "zone",
1380
+ "touch",
1381
+ "tonight",
1382
+ "shock",
1383
+ "burn",
1384
+ "excuse",
1385
+ "name",
1386
+ "survey",
1387
+ "landscape",
1388
+ "advance",
1389
+ "satisfaction",
1390
+ "bread",
1391
+ "disaster",
1392
+ "item",
1393
+ "hat",
1394
+ "prior",
1395
+ "shopping",
1396
+ "visit",
1397
+ "east",
1398
+ "photo",
1399
+ "home",
1400
+ "idea",
1401
+ "father",
1402
+ "comparison",
1403
+ "cat",
1404
+ "pipe",
1405
+ "winner",
1406
+ "count",
1407
+ "lake",
1408
+ "fight",
1409
+ "prize",
1410
+ "foundation",
1411
+ "dog",
1412
+ "keep",
1413
+ "ideal",
1414
+ "fan",
1415
+ "struggle",
1416
+ "peak",
1417
+ "safety",
1418
+ "solution",
1419
+ "hell",
1420
+ "conclusion",
1421
+ "population",
1422
+ "strain",
1423
+ "alarm",
1424
+ "measurement",
1425
+ "second",
1426
+ "train",
1427
+ "race",
1428
+ "due",
1429
+ "insurance",
1430
+ "boss",
1431
+ "tree",
1432
+ "monitor",
1433
+ "sick",
1434
+ "course",
1435
+ "drag",
1436
+ "appointment",
1437
+ "slice",
1438
+ "still",
1439
+ "care",
1440
+ "patience",
1441
+ "rich",
1442
+ "escape",
1443
+ "emotion",
1444
+ "royal",
1445
+ "female",
1446
+ "childhood",
1447
+ "government",
1448
+ "picture",
1449
+ "will",
1450
+ "sock",
1451
+ "big",
1452
+ "gate",
1453
+ "oil",
1454
+ "cross",
1455
+ "pin",
1456
+ "improvement",
1457
+ "championship",
1458
+ "silly",
1459
+ "help",
1460
+ "sky",
1461
+ "pitch",
1462
+ "man",
1463
+ "diamond",
1464
+ "most",
1465
+ "transition",
1466
+ "work",
1467
+ "science",
1468
+ "committee",
1469
+ "moment",
1470
+ "fix",
1471
+ "teaching",
1472
+ "dig",
1473
+ "specialist",
1474
+ "complex",
1475
+ "guide",
1476
+ "people",
1477
+ "dead",
1478
+ "voice",
1479
+ "original",
1480
+ "break",
1481
+ "topic",
1482
+ "data",
1483
+ "degree",
1484
+ "reading",
1485
+ "recording",
1486
+ "bunch",
1487
+ "reach",
1488
+ "judgment",
1489
+ "lie",
1490
+ "regular",
1491
+ "set",
1492
+ "painting",
1493
+ "mode",
1494
+ "list",
1495
+ "player",
1496
+ "bear",
1497
+ "north",
1498
+ "wonder",
1499
+ "carpet",
1500
+ "heavy",
1501
+ "officer",
1502
+ "negative",
1503
+ "clock",
1504
+ "unique",
1505
+ "baby",
1506
+ "pain",
1507
+ "assumption",
1508
+ "disk",
1509
+ "iron",
1510
+ "bill",
1511
+ "drawer",
1512
+ "look",
1513
+ "double",
1514
+ "mistake",
1515
+ "finish",
1516
+ "future",
1517
+ "brilliant",
1518
+ "contact",
1519
+ "math",
1520
+ "rice",
1521
+ "leave",
1522
+ "restaurant",
1523
+ "discount",
1524
+ "sex",
1525
+ "virus",
1526
+ "bit",
1527
+ "trust",
1528
+ "event",
1529
+ "wear",
1530
+ "juice",
1531
+ "failure",
1532
+ "bug",
1533
+ "context",
1534
+ "mud",
1535
+ "whole",
1536
+ "wrap",
1537
+ "intention",
1538
+ "draft",
1539
+ "pressure",
1540
+ "cake",
1541
+ "dark",
1542
+ "explanation",
1543
+ "space",
1544
+ "angle",
1545
+ "word",
1546
+ "efficiency",
1547
+ "management",
1548
+ "habit",
1549
+ "star",
1550
+ "chance",
1551
+ "finding",
1552
+ "transportation",
1553
+ "stand",
1554
+ "criticism",
1555
+ "flow",
1556
+ "door",
1557
+ "injury",
1558
+ "insect",
1559
+ "surprise",
1560
+ "apartment",
1561
+ ] # pylint: disable=line-too-long
1562
+
1563
+ # ISO 639-1 codes to language names.
1564
+ LANGUAGE_CODES = immutabledict.immutabledict(
1565
+ {
1566
+ "en": "English",
1567
+ "es": "Spanish",
1568
+ "pt": "Portuguese",
1569
+ "ar": "Arabic",
1570
+ "hi": "Hindi",
1571
+ "fr": "French",
1572
+ "ru": "Russian",
1573
+ "de": "German",
1574
+ "ja": "Japanese",
1575
+ "it": "Italian",
1576
+ "bn": "Bengali",
1577
+ "uk": "Ukrainian",
1578
+ "th": "Thai",
1579
+ "ur": "Urdu",
1580
+ "ta": "Tamil",
1581
+ "te": "Telugu",
1582
+ "bg": "Bulgarian",
1583
+ "ko": "Korean",
1584
+ "pl": "Polish",
1585
+ "he": "Hebrew",
1586
+ "fa": "Persian",
1587
+ "vi": "Vietnamese",
1588
+ "ne": "Nepali",
1589
+ "sw": "Swahili",
1590
+ "kn": "Kannada",
1591
+ "mr": "Marathi",
1592
+ "gu": "Gujarati",
1593
+ "pa": "Punjabi",
1594
+ "ml": "Malayalam",
1595
+ "fi": "Finnish",
1596
+ }
1597
+ )
1598
+
1599
+ _ALPHABETS = "([A-Za-z])"
1600
+ _PREFIXES = "(Mr|St|Mrs|Ms|Dr)[.]"
1601
+ _SUFFIXES = "(Inc|Ltd|Jr|Sr|Co)"
1602
+ _STARTERS = r"(Mr|Mrs|Ms|Dr|Prof|Capt|Cpt|Lt|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)"
1603
+ _ACRONYMS = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
1604
+ _WEBSITES = "[.](com|net|org|io|gov|edu|me)"
1605
+ _DIGITS = "([0-9])"
1606
+ _MULTIPLE_DOTS = r"\.{2,}"
1607
+
1608
+
1609
+ def split_into_sentences(text):
1610
+ """Split the text into sentences.
1611
+
1612
+ Args:
1613
+ text: A string that consists of more than or equal to one sentences.
1614
+
1615
+ Returns:
1616
+ A list of strings where each string is a sentence.
1617
+ """
1618
+ text = " " + text + " "
1619
+ text = text.replace("\n", " ")
1620
+ text = re.sub(_PREFIXES, "\\1<prd>", text)
1621
+ text = re.sub(_WEBSITES, "<prd>\\1", text)
1622
+ text = re.sub(_DIGITS + "[.]" + _DIGITS, "\\1<prd>\\2", text)
1623
+ text = re.sub(
1624
+ _MULTIPLE_DOTS,
1625
+ lambda match: "<prd>" * len(match.group(0)) + "<stop>",
1626
+ text,
1627
+ )
1628
+ if "Ph.D" in text:
1629
+ text = text.replace("Ph.D.", "Ph<prd>D<prd>")
1630
+ text = re.sub(r"\s" + _ALPHABETS + "[.] ", " \\1<prd> ", text)
1631
+ text = re.sub(_ACRONYMS + " " + _STARTERS, "\\1<stop> \\2", text)
1632
+ text = re.sub(
1633
+ _ALPHABETS + "[.]" + _ALPHABETS + "[.]" + _ALPHABETS + "[.]",
1634
+ "\\1<prd>\\2<prd>\\3<prd>",
1635
+ text,
1636
+ )
1637
+ text = re.sub(_ALPHABETS + "[.]" + _ALPHABETS + "[.]", "\\1<prd>\\2<prd>", text)
1638
+ text = re.sub(" " + _SUFFIXES + "[.] " + _STARTERS, " \\1<stop> \\2", text)
1639
+ text = re.sub(" " + _SUFFIXES + "[.]", " \\1<prd>", text)
1640
+ text = re.sub(" " + _ALPHABETS + "[.]", " \\1<prd>", text)
1641
+ if "”" in text:
1642
+ text = text.replace(".”", "”.")
1643
+ if '"' in text:
1644
+ text = text.replace('."', '".')
1645
+ if "!" in text:
1646
+ text = text.replace('!"', '"!')
1647
+ if "?" in text:
1648
+ text = text.replace('?"', '"?')
1649
+ text = text.replace(".", ".<stop>")
1650
+ text = text.replace("?", "?<stop>")
1651
+ text = text.replace("!", "!<stop>")
1652
+ text = text.replace("<prd>", ".")
1653
+ sentences = text.split("<stop>")
1654
+ sentences = [s.strip() for s in sentences]
1655
+ if sentences and not sentences[-1]:
1656
+ sentences = sentences[:-1]
1657
+ return sentences
1658
+
1659
+
1660
+ def count_words(text):
1661
+ """Counts the number of words."""
1662
+ tokenizer = nltk.tokenize.RegexpTokenizer(r"\w+")
1663
+ tokens = tokenizer.tokenize(text)
1664
+ num_words = len(tokens)
1665
+ return num_words
1666
+
1667
+
1668
+ @functools.lru_cache(maxsize=None)
1669
+ def _get_sentence_tokenizer():
1670
+ return nltk.data.load("nltk:tokenizers/punkt/english.pickle")
1671
+
1672
+
1673
+ def count_sentences(text):
1674
+ """Count the number of sentences."""
1675
+ tokenizer = _get_sentence_tokenizer()
1676
+ tokenized_sentences = tokenizer.tokenize(text)
1677
+ return len(tokenized_sentences)
1678
+
1679
+
1680
+ def generate_keywords(num_keywords):
1681
+ """Randomly generates a few keywords."""
1682
+ return random.sample(WORD_LIST, k=num_keywords)
lm-evaluation/lm_eval/tasks/ifeval/utils.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from typing import Dict, Optional, Union
3
+
4
+ from lm_eval.tasks.ifeval import instructions_registry
5
+ from lm_eval.utils import eval_logger
6
+
7
+
8
+ @dataclasses.dataclass
9
+ class InputExample:
10
+ key: int
11
+ instruction_id_list: list[str]
12
+ prompt: str
13
+ kwargs: list[Dict[str, Optional[Union[str, int]]]]
14
+
15
+
16
+ @dataclasses.dataclass
17
+ class OutputExample:
18
+ instruction_id_list: list[str]
19
+ prompt: str
20
+ response: str
21
+ follow_all_instructions: bool
22
+ follow_instruction_list: list[bool]
23
+
24
+
25
+ def test_instruction_following_strict(
26
+ inp,
27
+ response,
28
+ ):
29
+ """Tests response to see if instructions are followed."""
30
+ instruction_list = inp.instruction_id_list
31
+ is_following_list = []
32
+
33
+ for index, instruction_id in enumerate(instruction_list):
34
+ instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
35
+ instruction = instruction_cls(instruction_id)
36
+
37
+ # Remove None values from kwargs to avoid unexpected keyword argument errors in build_description method.
38
+ kwargs = {k: v for k, v in inp.kwargs[index].items() if v}
39
+ instruction.build_description(**kwargs)
40
+ args = instruction.get_instruction_args()
41
+ if args and "prompt" in args:
42
+ instruction.build_description(prompt=inp.prompt)
43
+
44
+ if response.strip() and instruction.check_following(response):
45
+ is_following_list.append(True)
46
+ else:
47
+ is_following_list.append(False)
48
+
49
+ return OutputExample(
50
+ instruction_id_list=inp.instruction_id_list,
51
+ prompt=inp.prompt,
52
+ response=response,
53
+ follow_all_instructions=all(is_following_list),
54
+ follow_instruction_list=is_following_list,
55
+ )
56
+
57
+
58
+ def test_instruction_following_loose(
59
+ inp,
60
+ response,
61
+ ):
62
+ """Tests response for an upper bound for following instructions."""
63
+ r = response.split("\n")
64
+ response_remove_first = "\n".join(r[1:]).strip()
65
+ response_remove_last = "\n".join(r[:-1]).strip()
66
+ response_remove_both = "\n".join(r[1:-1]).strip()
67
+ revised_response = response.replace("*", "")
68
+ revised_response_remove_first = response_remove_first.replace("*", "")
69
+ revised_response_remove_last = response_remove_last.replace("*", "")
70
+ revised_response_remove_both = response_remove_both.replace("*", "")
71
+ all_responses = [
72
+ response,
73
+ revised_response,
74
+ response_remove_first,
75
+ response_remove_last,
76
+ response_remove_both,
77
+ revised_response_remove_first,
78
+ revised_response_remove_last,
79
+ revised_response_remove_both,
80
+ ]
81
+ instruction_list = inp.instruction_id_list
82
+ is_following_list = []
83
+
84
+ for index, instruction_id in enumerate(instruction_list):
85
+ instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
86
+ instruction = instruction_cls(instruction_id)
87
+
88
+ # Remove None values from kwargs to avoid unexpected keyword argument errors in build_description method.
89
+ kwargs = {k: v for k, v in inp.kwargs[index].items() if v}
90
+ instruction.build_description(**kwargs)
91
+ args = instruction.get_instruction_args()
92
+ if args and "prompt" in args:
93
+ instruction.build_description(prompt=inp.prompt)
94
+
95
+ is_following = False
96
+ for r in all_responses:
97
+ if r.strip() and instruction.check_following(r):
98
+ is_following = True
99
+ break
100
+
101
+ is_following_list.append(is_following)
102
+
103
+ return OutputExample(
104
+ instruction_id_list=inp.instruction_id_list,
105
+ prompt=inp.prompt,
106
+ response=response,
107
+ follow_all_instructions=all(is_following_list),
108
+ follow_instruction_list=is_following_list,
109
+ )
110
+
111
+
112
+ def process_results(doc, results):
113
+ eval_logger.warning(
114
+ "This task is meant for chat-finetuned models, and may not give meaningful results for models other than `openai` or `anthropic` if `doc_to_text` in its YAML is not wrapped in the appropriate chat template string. This warning will be removed when chat templating support is added natively to local models"
115
+ )
116
+
117
+ inp = InputExample(
118
+ key=doc["key"],
119
+ instruction_id_list=doc["instruction_id_list"],
120
+ prompt=doc["prompt"],
121
+ kwargs=doc["kwargs"],
122
+ )
123
+ response = results[0]
124
+
125
+ out_strict = test_instruction_following_strict(inp, response)
126
+ out_loose = test_instruction_following_loose(inp, response)
127
+
128
+ return {
129
+ "prompt_level_strict_acc": out_strict.follow_all_instructions,
130
+ "inst_level_strict_acc": out_strict.follow_instruction_list,
131
+ "prompt_level_loose_acc": out_loose.follow_all_instructions,
132
+ "inst_level_loose_acc": out_loose.follow_instruction_list,
133
+ }
134
+
135
+
136
+ def agg_inst_level_acc(items):
137
+ flat_items = [item for sublist in items for item in sublist]
138
+ inst_level_acc = sum(flat_items) / len(flat_items)
139
+ return inst_level_acc
lm-evaluation/lm_eval/tasks/tmmluplus/README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TMMLU+
2
+
3
+ ### Paper
4
+
5
+ Title: `An Improved Traditional Chinese Evaluation Suite for Foundation Model`
6
+
7
+ Abstract: `We present TMMLU+, a comprehensive dataset designed for the Traditional Chinese massive multitask language understanding dataset. TMMLU+ is a multiple-choice question-answering dataset with 66 subjects from elementary to professional level. Compared to its predecessor, TMMLU, TMMLU+ is six times larger and boasts a more balanced subject distribution. We included benchmark results in TMMLU+ from closed-source models and 24 open-weight Chinese large language models of parameters ranging from 1.8B to 72B. Our findings reveal that Traditional Chinese models still trail behind their Simplified Chinese counterparts. Additionally, current large language models have yet to outperform human performance in average scores. We publicly release our dataset and the corresponding benchmark source code.`
8
+
9
+
10
+ Homepage: [https://huggingface.co/datasets/ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus)
11
+
12
+
13
+ ### Citation
14
+
15
+ ```
16
+ @article{ikala2024improved,
17
+ title={An Improved Traditional Chinese Evaluation Suite for Foundation Model},
18
+ author={Tam, Zhi-Rui and Pai, Ya-Ting and Lee, Yen-Wei and Cheng, Sega and Shuai, Hong-Han},
19
+ journal={arXiv preprint arXiv:2403.01858},
20
+ year={2024}
21
+ }
22
+ ```
23
+
24
+ ### Groups and Tasks
25
+
26
+ #### Groups
27
+
28
+ * `tmmluplus`: `The dataset comprises 22,690 multiple-choice questions from 66 subjects ranging from primary to professional level. `
29
+
30
+ #### Tasks
31
+
32
+ The following tasks evaluate subjects in the TMMLU+ dataset using loglikelihood-based multiple-choice scoring:
33
+
34
+ * `tmmluplus_{subject_english}`
35
+
36
+ ### Checklist
37
+
38
+ For adding novel benchmarks/datasets to the library:
39
+ * [x] Is the task an existing benchmark in the literature?
40
+ * [x] Have you referenced the original paper that introduced the task?
41
+ * [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
42
+
43
+
44
+ If other tasks on this dataset are already supported:
45
+ * [x] Is the "Main" variant of this task clearly denoted?
46
+ * [x] Have you provided a short sentence in a README on what each new variant adds / evaluates?
47
+ * [x] Have you noted which, if any, published evaluation setups are matched by this variant?
lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_accounting.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ "dataset_name": "accounting"
2
+ "description": "以下為會計學的單選題,請提供正確答案的選項。\n\n"
3
+ "group": "tmmluplus_other"
4
+ "group_alias": "other"
5
+ "include": "_default_template_yaml"
6
+ "task": "tmmluplus_accounting"
7
+ "task_alias": "accounting"
lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_advance_chemistry.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ "dataset_name": "advance_chemistry"
2
+ "description": "以下為化學的單選題,請提供正確答案的選項。\n\n"
3
+ "group": "tmmluplus_STEM"
4
+ "group_alias": "STEM"
5
+ "include": "_default_template_yaml"
6
+ "task": "tmmluplus_advance_chemistry"
7
+ "task_alias": "advance chemistry"
lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_basic_medical_science.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ "dataset_name": "basic_medical_science"
2
+ "description": "以下為基礎醫學的單選題,請提供正確答案的選項。\n\n"
3
+ "group": "tmmluplus_STEM"
4
+ "group_alias": "STEM"
5
+ "include": "_default_template_yaml"
6
+ "task": "tmmluplus_basic_medical_science"
7
+ "task_alias": "basic medical science"
lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_chinese_language_and_literature.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ "dataset_name": "chinese_language_and_literature"
2
+ "description": "以下為國文的單選題,請提供正確答案的選項。\n\n"
3
+ "group": "tmmluplus_social_sciences"
4
+ "group_alias": "social sciences"
5
+ "include": "_default_template_yaml"
6
+ "task": "tmmluplus_chinese_language_and_literature"
7
+ "task_alias": "chinese language and literature"
lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_computer_science.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ "dataset_name": "computer_science"
2
+ "description": "以下為資訊工程的單選題,請提供正確答案的選項。\n\n"
3
+ "group": "tmmluplus_STEM"
4
+ "group_alias": "STEM"
5
+ "include": "_default_template_yaml"
6
+ "task": "tmmluplus_computer_science"
7
+ "task_alias": "computer science"
lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_educational_psychology.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ "dataset_name": "educational_psychology"
2
+ "description": "以下為教育心理的單選題,請提供正確答案的選項。\n\n"
3
+ "group": "tmmluplus_social_sciences"
4
+ "group_alias": "social sciences"
5
+ "include": "_default_template_yaml"
6
+ "task": "tmmluplus_educational_psychology"
7
+ "task_alias": "educational psychology"
lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_engineering_math.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ "dataset_name": "engineering_math"
2
+ "description": "以下為工程數學的單選題,請提供正確答案的選項。\n\n"
3
+ "group": "tmmluplus_STEM"
4
+ "group_alias": "STEM"
5
+ "include": "_default_template_yaml"
6
+ "task": "tmmluplus_engineering_math"
7
+ "task_alias": "engineering math"
lm-evaluation/lm_eval/tasks/tmmluplus/default/tmmluplus_fire_science.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ "dataset_name": "fire_science"
2
+ "description": "以下為火災學的單選題,請提供正確答案的選項。\n\n"
3
+ "group": "tmmluplus_other"
4
+ "group_alias": "other"
5
+ "include": "_default_template_yaml"
6
+ "task": "tmmluplus_fire_science"
7
+ "task_alias": "fire science"