Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/__pycache__/_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/__pycache__/op_registry_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/checkpoint/__init__.py +12 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/checkpoint/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__init__.py +9 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__pycache__/_common.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__pycache__/binary_cmp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__pycache__/misc_ops.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__pycache__/tensor_ops.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/_common.py +107 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/binary_cmp.py +68 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/misc_ops.py +12 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/tensor_ops.py +215 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/__init__.py +12 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/__pycache__/_internals.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/__pycache__/api.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/__pycache__/chunk_sharding_spec.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/_internals.py +209 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/api.py +242 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec.py +202 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/__pycache__/_common.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/__pycache__/embedding.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/__pycache__/embedding_bag.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/_common.py +349 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/embedding.py +293 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/embedding_bag.py +476 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_sharded_tensor/__init__.py +12 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/_sharded_tensor/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/algorithms/__init__.py +3 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/algorithms/join.py +346 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/averagers.py +120 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/utils.py +72 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/__init__.py +77 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/agent/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/__init__.py +41 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/__pycache__/local_elastic_agent.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py +954 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py +339 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/api.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/handlers.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/events/api.py +112 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__init__.py +235 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py +873 -0
- llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/tail_log.py +153 -0
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (321 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/__pycache__/_utils.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/__pycache__/op_registry_utils.cpython-310.pyc
ADDED
Binary file (1.22 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/checkpoint/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Keep old package for BC purposes, this file should be removed once
|
2 |
+
# everything moves to the `torch.distributed.checkpoint` package.
|
3 |
+
import sys
|
4 |
+
import torch
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
from torch.distributed.checkpoint import * # noqa: F403
|
8 |
+
warnings.warn(
|
9 |
+
"torch.distributed._shard.checkpoint will be deprecated, use torch.distributed.checkpoint instead",
|
10 |
+
DeprecationWarning
|
11 |
+
)
|
12 |
+
sys.modules['torch.distributed._shard.checkpoint'] = torch.distributed.checkpoint
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/checkpoint/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (536 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.distributed._shard.sharded_tensor._ops.misc_ops
|
2 |
+
import torch.distributed._shard.sharded_tensor._ops.tensor_ops
|
3 |
+
|
4 |
+
from .binary_cmp import equal, allclose
|
5 |
+
from .init import kaiming_uniform_, normal_, uniform_, constant_
|
6 |
+
|
7 |
+
# Import all ChunkShardingSpec ops
|
8 |
+
from torch.distributed._shard.sharding_spec.chunk_sharding_spec_ops.embedding import sharded_embedding
|
9 |
+
from torch.distributed._shard.sharding_spec.chunk_sharding_spec_ops.embedding_bag import sharded_embedding_bag
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (758 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__pycache__/_common.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__pycache__/binary_cmp.cpython-310.pyc
ADDED
Binary file (1.98 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__pycache__/misc_ops.cpython-310.pyc
ADDED
Binary file (534 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/__pycache__/tensor_ops.cpython-310.pyc
ADDED
Binary file (5.56 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/_common.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from torch.distributed._shard.sharded_tensor import (
|
3 |
+
_sharded_op_impl,
|
4 |
+
Shard,
|
5 |
+
ShardedTensor,
|
6 |
+
)
|
7 |
+
from torch.distributed._shard.common_op_utils import _basic_validation
|
8 |
+
|
9 |
+
def _sharded_op_common(op, early_stop_func, extra_check):
|
10 |
+
"""
|
11 |
+
Inject sharded tensor op registration with common logics executed before
|
12 |
+
different behaviors are done on either local shards or a local tensor.
|
13 |
+
|
14 |
+
Example::
|
15 |
+
>>> # xdoctest: +SKIP("Undefined variables")
|
16 |
+
>>> op = torch.transpose
|
17 |
+
>>> @_sharded_op_impl(op)
|
18 |
+
>>> @_sharded_op_common(op, early_stop_func, extra_check)
|
19 |
+
>>> def sharded_tensor_op(types, args, kwargs, process_group):
|
20 |
+
>>> ...
|
21 |
+
>>>
|
22 |
+
>>> st = sharded_tensor.rand(32, 16)
|
23 |
+
>>> st.transpose(1, 2)
|
24 |
+
>>> # This will call '_sharded_op_common'
|
25 |
+
|
26 |
+
Args:
|
27 |
+
op: The op to be registered and applied to all shards of the st.
|
28 |
+
early_stop_func (Callable, optional): the func for early stop.
|
29 |
+
Default: if ``None``, no early stop.
|
30 |
+
extra_check (Callable, optional): the func for extra condition check.
|
31 |
+
Default: if ``None``, no extra check.
|
32 |
+
|
33 |
+
Return:
|
34 |
+
func (Callable): Torch function for which we want to provide a sharded
|
35 |
+
implementation (ex: torch.transpose)
|
36 |
+
"""
|
37 |
+
def decorator_sharded_func(wrapped_func):
|
38 |
+
@functools.wraps(wrapped_func)
|
39 |
+
def wrapper(types, args=(), kwargs=None, pg=None):
|
40 |
+
_basic_validation(op, args, kwargs)
|
41 |
+
|
42 |
+
st = args[0]
|
43 |
+
if kwargs is None:
|
44 |
+
kwargs = {}
|
45 |
+
if extra_check:
|
46 |
+
extra_check(*args, **kwargs)
|
47 |
+
if early_stop_func:
|
48 |
+
early_stop = early_stop_func(*args, **kwargs)
|
49 |
+
if early_stop:
|
50 |
+
return st
|
51 |
+
return wrapped_func(types, args, kwargs, pg)
|
52 |
+
|
53 |
+
return wrapper
|
54 |
+
|
55 |
+
return decorator_sharded_func
|
56 |
+
|
57 |
+
def _register_sharded_op_on_local_shards(
|
58 |
+
op, early_stop_func=None, extra_check=None, customized_func=None
|
59 |
+
):
|
60 |
+
"""
|
61 |
+
Handles ``__torch_function__`` dispatch for ops which are performed on
|
62 |
+
each shard of the sharded tensor such as elementwise op like
|
63 |
+
``torch.nn.functional.gelu`` or ``torch.nn.functional.relu``.
|
64 |
+
|
65 |
+
For more complicated ops, a customized func can be used to generate
|
66 |
+
the new shards and sharded tensor size.
|
67 |
+
|
68 |
+
This function expects that the original ShardingSpec for the ShardedTensor
|
69 |
+
is preserved irrespective of whether or not a customized function is used.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
op: The op to be registered and applied to all shards of the st.
|
73 |
+
early_stop_func (Callable, optional): the func for early stop.
|
74 |
+
Default: if ``None``, no early stop.
|
75 |
+
extra_check (Callable, optional): the func for extra condition check.
|
76 |
+
Default: if ``None``, no extra check.
|
77 |
+
customized_func (Callable, optional): the func for customized logic
|
78 |
+
to generate new shards and sharded tensor size.
|
79 |
+
Default: if ``None``, we simply lower to the real op call with
|
80 |
+
all local shards of the st.
|
81 |
+
|
82 |
+
Return:
|
83 |
+
func (Callable): registered implementation for sharded op for
|
84 |
+
``__torch_function__`` dispatch.
|
85 |
+
"""
|
86 |
+
@_sharded_op_impl(op)
|
87 |
+
@_sharded_op_common(op, early_stop_func, extra_check)
|
88 |
+
def sharded_tensor_op_on_local_shards(types, args=(), kwargs=None, pg=None):
|
89 |
+
st = args[0]
|
90 |
+
st_metadata = st.metadata()
|
91 |
+
local_shards = st.local_shards()
|
92 |
+
local_shards_new = []
|
93 |
+
if customized_func:
|
94 |
+
local_shards_new, st_metadata = customized_func(args, kwargs, pg)
|
95 |
+
else:
|
96 |
+
for local_shard in local_shards:
|
97 |
+
args = (local_shard.tensor, *args[1:])
|
98 |
+
local_shards_new.append(
|
99 |
+
Shard(op(*args, **kwargs), local_shard.metadata)
|
100 |
+
)
|
101 |
+
return ShardedTensor._init_from_local_shards_and_global_metadata(
|
102 |
+
local_shards_new,
|
103 |
+
st_metadata,
|
104 |
+
process_group=pg,
|
105 |
+
init_rrefs=st._init_rrefs,
|
106 |
+
sharding_spec=st.sharding_spec()
|
107 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/binary_cmp.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.distributed as dist
|
3 |
+
import torch.distributed.distributed_c10d as distributed_c10d
|
4 |
+
from torch.distributed._shard.sharded_tensor import (
|
5 |
+
ShardedTensor,
|
6 |
+
_sharded_op_impl
|
7 |
+
)
|
8 |
+
|
9 |
+
def _communicate_result(result, pg):
|
10 |
+
# Gather results from all ranks.
|
11 |
+
if result:
|
12 |
+
result_tensor = torch.ones(1, device=torch.device(torch.cuda.current_device()))
|
13 |
+
else:
|
14 |
+
result_tensor = torch.zeros(1, device=torch.device(torch.cuda.current_device()))
|
15 |
+
|
16 |
+
dist.all_reduce(result_tensor, group=pg)
|
17 |
+
|
18 |
+
expected_result = torch.ones(1, device=torch.device(torch.cuda.current_device())) * dist.get_world_size(pg)
|
19 |
+
|
20 |
+
return torch.equal(result_tensor, expected_result)
|
21 |
+
|
22 |
+
def binary_cmp(cmp_fun, types, args, kwargs=None, process_group=None):
|
23 |
+
if len(args) != 2:
|
24 |
+
raise ValueError(f'Expected two arguments for torch.{cmp_fun.__name__}')
|
25 |
+
|
26 |
+
result = True
|
27 |
+
st1 = args[0]
|
28 |
+
st2 = args[1]
|
29 |
+
if not (isinstance(st1, ShardedTensor) and isinstance(st2, ShardedTensor)):
|
30 |
+
raise TypeError(f'Both arguments to torch.{cmp_fun.__name__} need to be of type ShardedTensor')
|
31 |
+
|
32 |
+
# Verify same PG
|
33 |
+
if st1._process_group != st2._process_group:
|
34 |
+
return False
|
35 |
+
|
36 |
+
if distributed_c10d._rank_not_in_group(st1._process_group) or distributed_c10d._rank_not_in_group(st2._process_group):
|
37 |
+
return distributed_c10d._rank_not_in_group(st1._process_group) == distributed_c10d._rank_not_in_group(st2._process_group)
|
38 |
+
|
39 |
+
# Verify metadata
|
40 |
+
if st1.metadata() != st2.metadata():
|
41 |
+
return _communicate_result(False, st1._process_group)
|
42 |
+
|
43 |
+
# Verify number of local shards
|
44 |
+
st1_local_shards = st1.local_shards()
|
45 |
+
st2_local_shards = st2.local_shards()
|
46 |
+
if len(st1_local_shards) != len(st2_local_shards):
|
47 |
+
return _communicate_result(False, st1._process_group)
|
48 |
+
|
49 |
+
# kwargs must be dict-like
|
50 |
+
if kwargs is None:
|
51 |
+
kwargs = {}
|
52 |
+
# Verify each local shard
|
53 |
+
for idx in range(len(st1_local_shards)):
|
54 |
+
if st1_local_shards[idx].metadata != st2_local_shards[idx].metadata:
|
55 |
+
return _communicate_result(False, st1._process_group)
|
56 |
+
if not cmp_fun(st1_local_shards[idx].tensor, st2_local_shards[idx].tensor, **kwargs):
|
57 |
+
return _communicate_result(False, st1._process_group)
|
58 |
+
|
59 |
+
|
60 |
+
return _communicate_result(True, st1._process_group)
|
61 |
+
|
62 |
+
@_sharded_op_impl(torch.equal)
|
63 |
+
def equal(types, args, kwargs, process_group):
|
64 |
+
return binary_cmp(torch.equal, types, args, kwargs, process_group)
|
65 |
+
|
66 |
+
@_sharded_op_impl(torch.allclose)
|
67 |
+
def allclose(types, args, kwargs, process_group):
|
68 |
+
return binary_cmp(torch.allclose, types, args, kwargs, process_group)
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/misc_ops.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.distributed._shard.sharded_tensor import (
|
3 |
+
_sharded_op_impl,
|
4 |
+
)
|
5 |
+
|
6 |
+
# This is used by `_apply()` within module.py to set new
|
7 |
+
# parameters after apply a certain method, we should follow
|
8 |
+
# the future behavior of overwriting the existing tensor
|
9 |
+
# instead of doing in-place change using `.data = `.
|
10 |
+
@_sharded_op_impl(torch._has_compatible_shallow_copy_type)
|
11 |
+
def tensor_has_compatible_shallow_copy_type(types, args=(), kwargs=None, pg=None):
|
12 |
+
return False
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/tensor_ops.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import torch
|
3 |
+
from torch.distributed._shard.sharded_tensor import (
|
4 |
+
_sharded_op_impl,
|
5 |
+
Shard,
|
6 |
+
ShardedTensor,
|
7 |
+
)
|
8 |
+
from ._common import (
|
9 |
+
_register_sharded_op_on_local_shards,
|
10 |
+
)
|
11 |
+
from torch.distributed._shard.common_op_utils import _register_default_op
|
12 |
+
|
13 |
+
|
14 |
+
# Tensor properties access
|
15 |
+
_register_default_op(torch.Tensor.shape.__get__, _sharded_op_impl) # type: ignore[attr-defined]
|
16 |
+
_register_default_op(torch.Tensor.dtype.__get__, _sharded_op_impl) # type: ignore[attr-defined]
|
17 |
+
_register_default_op(torch.Tensor.layout.__get__, _sharded_op_impl) # type: ignore[attr-defined]
|
18 |
+
_register_default_op(torch.Tensor.size, _sharded_op_impl)
|
19 |
+
_register_default_op(torch.Tensor.dim, _sharded_op_impl)
|
20 |
+
_register_default_op(torch.Tensor.ndim.__get__, _sharded_op_impl) # type: ignore[attr-defined]
|
21 |
+
_register_default_op(torch.Tensor.is_contiguous, _sharded_op_impl)
|
22 |
+
_register_default_op(torch.Tensor.contiguous, _sharded_op_impl)
|
23 |
+
_register_default_op(torch.Tensor.is_floating_point, _sharded_op_impl)
|
24 |
+
|
25 |
+
# __reduce_ex__ to dispatch to get_state/set_state
|
26 |
+
_register_default_op(torch.Tensor.__reduce_ex__, _sharded_op_impl)
|
27 |
+
|
28 |
+
# autograd related properties
|
29 |
+
_register_default_op(torch.Tensor.requires_grad.__get__, _sharded_op_impl) # type: ignore[attr-defined]
|
30 |
+
# TODO: set grad with a ShardedTensor that consists of all local grads
|
31 |
+
_register_default_op(torch.Tensor.grad.__get__, _sharded_op_impl) # type: ignore[union-attr]
|
32 |
+
_register_default_op(torch.Tensor.grad_fn.__get__, _sharded_op_impl) # type: ignore[union-attr]
|
33 |
+
_register_default_op(torch.Tensor.is_leaf.__get__, _sharded_op_impl) # type: ignore[attr-defined]
|
34 |
+
|
35 |
+
# device property is ambiguous as from a global prospective,
|
36 |
+
# ShardedTensor.device consists of multiple devices (might even across hosts)
|
37 |
+
# We choose to return the current device of the local tensor to represent
|
38 |
+
# the device property on each rank
|
39 |
+
@_sharded_op_impl(torch.Tensor.device.__get__)
|
40 |
+
def tensor_device(types, args=(), kwargs=None, pg=None):
|
41 |
+
self_st = args[0]
|
42 |
+
# Validate types
|
43 |
+
if not isinstance(self_st, ShardedTensor):
|
44 |
+
raise TypeError("input needs to be a ShardedTensor")
|
45 |
+
dev: torch.device
|
46 |
+
if self_st._local_shards:
|
47 |
+
dev = self_st._local_shards[0].tensor.device
|
48 |
+
elif pg and pg._get_backend_name() == "gloo":
|
49 |
+
dev = torch.device("cpu")
|
50 |
+
else:
|
51 |
+
dev = torch.device(torch.cuda.current_device())
|
52 |
+
return dev
|
53 |
+
|
54 |
+
@_sharded_op_impl(torch.Tensor.is_meta.__get__) # type: ignore[attr-defined]
|
55 |
+
def st_is_meta(types, args=(), kwargs=None, pg=None):
|
56 |
+
return args[0].local_tensor().is_meta
|
57 |
+
|
58 |
+
|
59 |
+
def sharded_type_as_check(*args, **kwargs):
|
60 |
+
"""
|
61 |
+
Perform extra checks for the sharded_type_as op such as the input needs to
|
62 |
+
be either a Tensor or ShardedTensor.
|
63 |
+
|
64 |
+
Args: same as ``torch.Tensor.type_as``.
|
65 |
+
|
66 |
+
Return: None
|
67 |
+
"""
|
68 |
+
if len(args) < 2:
|
69 |
+
raise ValueError("Needs to give a tensor to cast type as!")
|
70 |
+
if not isinstance(args[1], torch.Tensor) and not isinstance(args[1], ShardedTensor):
|
71 |
+
raise ValueError("Needs to give a Tensor or ShardedTensor to cast type as!")
|
72 |
+
|
73 |
+
|
74 |
+
def same_dtype(*args, **kwargs):
|
75 |
+
"""
|
76 |
+
When the dtype is the same, return the original ShardedTensor.
|
77 |
+
|
78 |
+
Args: same as ``torch.Tensor.type_as``.
|
79 |
+
|
80 |
+
Return (bool): Whether to return early or not.
|
81 |
+
"""
|
82 |
+
return args[0].dtype == args[1].dtype
|
83 |
+
|
84 |
+
|
85 |
+
def sharded_type_as(args, kwargs, pg):
|
86 |
+
"""
|
87 |
+
Handles ``__torch_function__`` dispatch for the ``torch.Tensor.type_as`` op.
|
88 |
+
|
89 |
+
Args: same as ``torch.Tensor.type_as``.
|
90 |
+
|
91 |
+
Return:
|
92 |
+
new_local_shards (List[Shard]): Local shards for the new sharded tensor.
|
93 |
+
st_meta (ShardedTensorMetadata): Metadata of the new sharded tensor.
|
94 |
+
"""
|
95 |
+
st = args[0]
|
96 |
+
tensor = args[1]
|
97 |
+
if isinstance(tensor, ShardedTensor):
|
98 |
+
tensor = tensor.local_tensor()
|
99 |
+
new_local_shards = []
|
100 |
+
for shard in st.local_shards():
|
101 |
+
new_local_shards.append(Shard(shard.tensor.type_as(tensor), shard.metadata))
|
102 |
+
st_meta = copy.deepcopy(st._metadata)
|
103 |
+
st_meta.tensor_properties.dtype = tensor.dtype
|
104 |
+
return new_local_shards, st_meta
|
105 |
+
|
106 |
+
|
107 |
+
_register_sharded_op_on_local_shards(
|
108 |
+
torch.Tensor.type_as,
|
109 |
+
early_stop_func=same_dtype,
|
110 |
+
extra_check=sharded_type_as_check,
|
111 |
+
customized_func=sharded_type_as,
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
def sharded_deepcopy(args, kwargs, pg):
|
116 |
+
# NOTE: we directly implement deepcopy magic method
|
117 |
+
# instead of using the default tensor.__deepcopy__
|
118 |
+
# and implement clone(). This is because the default
|
119 |
+
# tensor deepcopy copies every attribute, but the
|
120 |
+
# process_group in ShardedTensor cannot be deep copied.
|
121 |
+
self_st = args[0]
|
122 |
+
new_local_shards = copy.deepcopy(self_st.local_shards())
|
123 |
+
new_metadata = copy.deepcopy(self_st.metadata())
|
124 |
+
return new_local_shards, new_metadata
|
125 |
+
|
126 |
+
|
127 |
+
_register_sharded_op_on_local_shards(
|
128 |
+
torch.Tensor.__deepcopy__,
|
129 |
+
customized_func=sharded_deepcopy,
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
@_sharded_op_impl(torch.Tensor.copy_)
|
134 |
+
def sharded_inplace_copy(types, args, kwargs, pg):
|
135 |
+
# NOTE: inplace op don't need to rewrap
|
136 |
+
kwargs = {} if kwargs is None else kwargs
|
137 |
+
self_st = args[0]
|
138 |
+
new_st = args[1]
|
139 |
+
nonblocking = kwargs.get("non_blocking", False)
|
140 |
+
for local_shard, new_shard in zip(self_st.local_shards(), new_st.local_shards()):
|
141 |
+
if local_shard.metadata != new_shard.metadata:
|
142 |
+
raise RuntimeError(
|
143 |
+
"inplace copy can only happen between two ShardedTensor with same metadata!"
|
144 |
+
)
|
145 |
+
for local_shard, new_shard in zip(self_st.local_shards(), new_st.local_shards()):
|
146 |
+
local_shard.tensor.copy_(new_shard.tensor, nonblocking)
|
147 |
+
|
148 |
+
return self_st
|
149 |
+
|
150 |
+
|
151 |
+
def sharded_clone(args, kwargs, pg):
|
152 |
+
self_st = args[0]
|
153 |
+
desire_memory_format = kwargs.get("memory_format", None)
|
154 |
+
if desire_memory_format and desire_memory_format != torch.preserve_format:
|
155 |
+
raise RuntimeError("Only support torch.preserve_format for ShardedTensor!")
|
156 |
+
cloned_local_shards = [
|
157 |
+
Shard(
|
158 |
+
local_shard.tensor.clone(memory_format=desire_memory_format),
|
159 |
+
metadata=copy.deepcopy(local_shard.metadata),
|
160 |
+
)
|
161 |
+
for local_shard in self_st.local_shards()
|
162 |
+
]
|
163 |
+
new_metadata = copy.deepcopy(self_st.metadata())
|
164 |
+
return cloned_local_shards, new_metadata
|
165 |
+
|
166 |
+
|
167 |
+
_register_sharded_op_on_local_shards(
|
168 |
+
torch.Tensor.clone,
|
169 |
+
customized_func=sharded_clone,
|
170 |
+
)
|
171 |
+
|
172 |
+
|
173 |
+
def sharded_detach(args, kwargs, pg):
|
174 |
+
self_st = args[0]
|
175 |
+
detached_local_shards = [
|
176 |
+
Shard(
|
177 |
+
local_shard.tensor.detach(),
|
178 |
+
metadata=copy.deepcopy(local_shard.metadata),
|
179 |
+
)
|
180 |
+
for local_shard in self_st.local_shards()
|
181 |
+
]
|
182 |
+
new_metadata = copy.deepcopy(self_st.metadata())
|
183 |
+
new_metadata.tensor_properties.requires_grad = False
|
184 |
+
return detached_local_shards, new_metadata
|
185 |
+
|
186 |
+
|
187 |
+
_register_sharded_op_on_local_shards(
|
188 |
+
torch.Tensor.detach,
|
189 |
+
customized_func=sharded_detach,
|
190 |
+
)
|
191 |
+
|
192 |
+
|
193 |
+
@_sharded_op_impl(torch.Tensor.requires_grad_)
|
194 |
+
def tensor_requires_grad_set(types, args=(), kwargs=None, pg=None):
|
195 |
+
self_st = args[0]
|
196 |
+
# Validate types
|
197 |
+
if not isinstance(self_st, ShardedTensor):
|
198 |
+
raise TypeError("input needs to be a ShardedTensor")
|
199 |
+
|
200 |
+
if kwargs is None:
|
201 |
+
kwargs = {}
|
202 |
+
|
203 |
+
requires_grad = args[1] if len(args) > 1 else kwargs.get("requires_grad", True)
|
204 |
+
if requires_grad == self_st.requires_grad:
|
205 |
+
return self_st
|
206 |
+
|
207 |
+
for local_shard in self_st.local_shards():
|
208 |
+
local_shard.tensor.requires_grad_(requires_grad)
|
209 |
+
|
210 |
+
# update the wrapper class property
|
211 |
+
with torch._C.DisableTorchFunctionSubclass():
|
212 |
+
self_st.requires_grad_(requires_grad)
|
213 |
+
# update the metadata in the meanwhile
|
214 |
+
self_st._metadata.tensor_properties.requires_grad = requires_grad
|
215 |
+
return self_st
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .api import (
|
2 |
+
DevicePlacementSpec,
|
3 |
+
EnumerableShardingSpec,
|
4 |
+
PlacementSpec,
|
5 |
+
ShardingSpec,
|
6 |
+
_infer_sharding_spec_from_shards_metadata,
|
7 |
+
)
|
8 |
+
from .chunk_sharding_spec import (
|
9 |
+
ChunkShardingSpec as ChunkShardingSpec,
|
10 |
+
)
|
11 |
+
|
12 |
+
from torch.distributed._shard.metadata import ShardMetadata
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (527 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/__pycache__/_internals.cpython-310.pyc
ADDED
Binary file (6.01 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/__pycache__/api.cpython-310.pyc
ADDED
Binary file (9.23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/__pycache__/chunk_sharding_spec.cpython-310.pyc
ADDED
Binary file (5.76 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/_internals.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple
|
2 |
+
|
3 |
+
from torch.distributed._shard.metadata import ShardMetadata
|
4 |
+
|
5 |
+
|
6 |
+
def _check_shard_metadata_pair_overlap(shard1: ShardMetadata, shard2: ShardMetadata):
|
7 |
+
"""
|
8 |
+
Checks if two shards overlap.
|
9 |
+
"""
|
10 |
+
|
11 |
+
# For each dim of each shard, check if one shard resides on the other
|
12 |
+
# end of second shard with respect to that dim. As an example for a 2D
|
13 |
+
# shard, we would check if one shard is above or on the left of the
|
14 |
+
# other shard.
|
15 |
+
ndims = len(shard1.shard_offsets)
|
16 |
+
for i in range(ndims):
|
17 |
+
if shard1.shard_offsets[i] >= shard2.shard_offsets[i] + shard2.shard_sizes[i]:
|
18 |
+
return False
|
19 |
+
if shard2.shard_offsets[i] >= shard1.shard_offsets[i] + shard1.shard_sizes[i]:
|
20 |
+
return False
|
21 |
+
|
22 |
+
return True
|
23 |
+
|
24 |
+
|
25 |
+
def _find_nd_overlapping_shards(
|
26 |
+
shards: List[ShardMetadata], sharded_dims: List[int]
|
27 |
+
) -> Optional[Tuple[int, int]]:
|
28 |
+
# Each rank has len(sharded_dims) tuples. Each tuple represent the
|
29 |
+
# [begin, end] (inclusive) pair of that dimension.
|
30 |
+
shard_intervals = [
|
31 |
+
[
|
32 |
+
(s.shard_offsets[dim], s.shard_offsets[dim] + s.shard_sizes[dim] - 1)
|
33 |
+
for dim in sharded_dims
|
34 |
+
]
|
35 |
+
for s in shards
|
36 |
+
]
|
37 |
+
|
38 |
+
for i in range(len(shards)):
|
39 |
+
shard_i = shard_intervals[i]
|
40 |
+
for j in range(i + 1, len(shards)):
|
41 |
+
shard_j = shard_intervals[j]
|
42 |
+
# For each dim of each shard, check if one shard resides on the other
|
43 |
+
# end of second shard with respect to that dim. As an example for a 2D
|
44 |
+
# shard, we would check if one shard is above or on the left of the
|
45 |
+
# other shard.
|
46 |
+
overlap = True
|
47 |
+
for interval_i, interval_j in zip(shard_i, shard_j):
|
48 |
+
if interval_i[0] > interval_j[1] or interval_j[0] > interval_i[1]:
|
49 |
+
overlap = False
|
50 |
+
break
|
51 |
+
if overlap:
|
52 |
+
return (i, j)
|
53 |
+
return None
|
54 |
+
|
55 |
+
|
56 |
+
def _find_1d_overlapping_shards(
|
57 |
+
shards: List[ShardMetadata], dim: int
|
58 |
+
) -> Optional[Tuple[int, int]]:
|
59 |
+
# (begin, end, index_in_shards). Begin and end are inclusive.
|
60 |
+
intervals = [
|
61 |
+
(s.shard_offsets[dim], s.shard_offsets[dim] + s.shard_sizes[dim] - 1, i)
|
62 |
+
for i, s in enumerate(shards)
|
63 |
+
]
|
64 |
+
intervals.sort()
|
65 |
+
for i in range(len(shards) - 1):
|
66 |
+
if intervals[i][1] >= intervals[i + 1][0]:
|
67 |
+
return (intervals[i][2], intervals[i + 1][2])
|
68 |
+
return None
|
69 |
+
|
70 |
+
|
71 |
+
def validate_non_overlapping_shards_metadata(shards: List[ShardMetadata]):
|
72 |
+
"""
|
73 |
+
Ensures none of the shards overlap with each other.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
shards(List[ShardMetadata]): List of :class:`ShardMetadata` objects representing
|
77 |
+
each shard.
|
78 |
+
Raises:
|
79 |
+
``ValueError`` if there's overlap in any two shards.
|
80 |
+
"""
|
81 |
+
if not shards or len(shards) == 1:
|
82 |
+
return
|
83 |
+
|
84 |
+
sharded_dims: List[int] = []
|
85 |
+
for dim in range(len(shards[0].shard_offsets)):
|
86 |
+
for i in range(1, len(shards)):
|
87 |
+
if (
|
88 |
+
shards[i].shard_offsets[dim] != shards[0].shard_offsets[dim] or
|
89 |
+
shards[i].shard_sizes[dim] != shards[0].shard_sizes[dim]
|
90 |
+
):
|
91 |
+
sharded_dims.append(dim)
|
92 |
+
break
|
93 |
+
|
94 |
+
pair: Optional[Tuple[int, int]] = None
|
95 |
+
if len(sharded_dims) == 0:
|
96 |
+
# All shards are the same, all dims are not partitioned. Choose any 2.
|
97 |
+
pair = (0, 1)
|
98 |
+
elif len(sharded_dims) == 1:
|
99 |
+
# Shards are partitioned over only one dimension. Overlap can be found
|
100 |
+
# using a O(nlogn) overlapping interval algorithm.
|
101 |
+
pair = _find_1d_overlapping_shards(shards, sharded_dims[0])
|
102 |
+
else:
|
103 |
+
# Shards are partitioned over more than one dimension. Fall back to
|
104 |
+
# pair-wise check. Even though O(nlogn) algorithms (line sweep) exist
|
105 |
+
# for 2D overlap, the implementation is not trivial and may not justify
|
106 |
+
# the time saving in most cases.
|
107 |
+
pair = _find_nd_overlapping_shards(shards, sharded_dims)
|
108 |
+
|
109 |
+
if pair:
|
110 |
+
raise ValueError(f'Shards {shards[pair[0]]} and {shards[pair[1]]} overlap')
|
111 |
+
|
112 |
+
|
113 |
+
def check_tensor(shards_metadata, tensor_dims) -> None:
|
114 |
+
"""
|
115 |
+
Checks if the shards_metadata is compatible with the provided tensor dims.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
shards_metadata(List[ShardMetadata]): List of :class:`ShardMetadata`
|
119 |
+
objects representing each shard of the tensor.
|
120 |
+
tensor_dims(Sequence of int): Dimensions of tensor to verify
|
121 |
+
Raises:
|
122 |
+
``ValueError`` if not compatible.
|
123 |
+
"""
|
124 |
+
|
125 |
+
# If the tensor's volume matches the total volume of all shards and
|
126 |
+
# all shard boundaries are within tensor dims, we have a compatible
|
127 |
+
# sharding spec for this tensor. Note that we have already verified
|
128 |
+
# we don't have overlapping shards.
|
129 |
+
tensor_rank = len(tensor_dims)
|
130 |
+
shards_rank = len(shards_metadata[0].shard_offsets)
|
131 |
+
if tensor_rank != shards_rank:
|
132 |
+
raise ValueError(f'Rank of tensor is {tensor_rank}, but shards rank is {shards_rank}')
|
133 |
+
|
134 |
+
total_shard_volume = 0
|
135 |
+
for shard in shards_metadata:
|
136 |
+
shard_volume = 1
|
137 |
+
for i, shard_length in enumerate(shard.shard_sizes):
|
138 |
+
shard_volume *= shard_length
|
139 |
+
if shard.shard_offsets[i] + shard.shard_sizes[i] > tensor_dims[i]:
|
140 |
+
raise ValueError(
|
141 |
+
f'Shard offset {shard.shard_offsets[i]} and length '
|
142 |
+
f'{shard.shard_sizes[i]} exceeds tensor dim: {tensor_dims[i]} for shard {shard}')
|
143 |
+
total_shard_volume += shard_volume
|
144 |
+
|
145 |
+
tensor_volume = 1
|
146 |
+
for size in tensor_dims:
|
147 |
+
tensor_volume *= size
|
148 |
+
|
149 |
+
if total_shard_volume != tensor_volume:
|
150 |
+
# TODO: Can we improve this error message to point out the gaps?
|
151 |
+
raise ValueError(
|
152 |
+
f'Total volume of shards: {total_shard_volume} '
|
153 |
+
f'does not match tensor volume: {tensor_volume}, in other words '
|
154 |
+
f'all the individual shards do not cover the entire tensor')
|
155 |
+
|
156 |
+
def get_split_size(dim_size, chunks):
|
157 |
+
"""
|
158 |
+
Computes the split size inline with ``torch.chunk``
|
159 |
+
|
160 |
+
Args:
|
161 |
+
dim_size(int): Size of the dimension being chunked.
|
162 |
+
chunks(int): Number of chunks to create for ``dim_size``.
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
An int indicating the split size to use.
|
166 |
+
"""
|
167 |
+
return (dim_size + chunks - 1) // chunks
|
168 |
+
|
169 |
+
def get_chunked_dim_size(dim_size, split_size, idx):
|
170 |
+
"""
|
171 |
+
Computes the dim size of the chunk for provided ``idx`` given ``dim_size``
|
172 |
+
and ``split_size``.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
dim_size(int): Size of the dimension being chunked.
|
176 |
+
split_size(int): The chunk size for each chunk of ``dim_size``.
|
177 |
+
idx(int): The index of chunk whose dim size is being requested.
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
An int indicating the dim size of the chunk.
|
181 |
+
"""
|
182 |
+
return max(min(dim_size, split_size * (idx + 1)) - split_size * idx, 0)
|
183 |
+
|
184 |
+
def get_chunk_sharding_params(sharding_dim_size, world_size, spec, rank):
|
185 |
+
"""
|
186 |
+
Generate the start pos and offset length for the current rank for
|
187 |
+
chunk sharding.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
sharding_dim_size(int): The dimension length which we shard on.
|
191 |
+
world_size(int): number of ranks.
|
192 |
+
spec (:class:`torch.distributed._shard.sharding_spec.ChunkShardingSpec`):
|
193 |
+
sharding spec.
|
194 |
+
rank(int): # of cuda process.
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
start_pos(int): start position of sharded tensor on the given rank.
|
198 |
+
chunk_size(int): chunk size of sharded tensor on the given rank.
|
199 |
+
"""
|
200 |
+
split_size = get_split_size(sharding_dim_size, world_size)
|
201 |
+
current_offsets = 0
|
202 |
+
start_pos = current_offsets
|
203 |
+
for idx, placement in enumerate(spec.placements):
|
204 |
+
chunk_size = get_chunked_dim_size(sharding_dim_size, split_size, idx)
|
205 |
+
if rank == placement.rank():
|
206 |
+
start_pos = current_offsets
|
207 |
+
break
|
208 |
+
current_offsets += chunk_size
|
209 |
+
return start_pos, chunk_size # type: ignore[possibly-undefined]
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/api.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from dataclasses import dataclass
|
3 |
+
import functools
|
4 |
+
from typing import Callable, Dict, List, TYPE_CHECKING
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from ._internals import (
|
9 |
+
check_tensor,
|
10 |
+
get_chunked_dim_size,
|
11 |
+
get_split_size,
|
12 |
+
validate_non_overlapping_shards_metadata
|
13 |
+
)
|
14 |
+
from torch.distributed._shard.metadata import ShardMetadata
|
15 |
+
|
16 |
+
import torch.distributed._shard.sharded_tensor.metadata as sharded_tensor_meta
|
17 |
+
from torch.distributed._shard.op_registry_utils import _decorator_func
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
# Only include ShardedTensor when do type checking, exclude it
|
21 |
+
# from run-time to resolve circular dependency.
|
22 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
23 |
+
|
24 |
+
class PlacementSpec(ABC): # noqa: B024
|
25 |
+
"""
|
26 |
+
Base class representing the placement of an entity. Subclasses of this
|
27 |
+
class can be used to specify customized placements which might not be
|
28 |
+
covered by existing APIs.
|
29 |
+
"""
|
30 |
+
pass
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class DevicePlacementSpec(PlacementSpec):
|
35 |
+
"""
|
36 |
+
Associates placement of an entity with a single device.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
device(:class:`torch.distributed._remote_device`): The device to place the entity on.
|
40 |
+
"""
|
41 |
+
|
42 |
+
device: torch.distributed._remote_device
|
43 |
+
|
44 |
+
def __post_init__(self):
|
45 |
+
if not isinstance(self.device, torch.distributed._remote_device):
|
46 |
+
self.device = torch.distributed._remote_device(self.device)
|
47 |
+
|
48 |
+
class ShardingSpec(ABC):
|
49 |
+
"""
|
50 |
+
Base class representing sharding specifications.
|
51 |
+
"""
|
52 |
+
@abstractmethod
|
53 |
+
def build_metadata(self,
|
54 |
+
tensor_sizes: torch.Size,
|
55 |
+
tensor_properties: sharded_tensor_meta.TensorProperties,
|
56 |
+
) -> sharded_tensor_meta.ShardedTensorMetadata:
|
57 |
+
"""
|
58 |
+
Given a global tensor size, define how to shard a tensor like this shape
|
59 |
+
across ranks, return ShardedTensorMetadata
|
60 |
+
Args:
|
61 |
+
tensor_sizes (:class:`torch.Size`):
|
62 |
+
The tensor shape to shard on, a `torch.Size` object that represents the
|
63 |
+
tensor shape to be sharded according to the ShardingSpec.
|
64 |
+
tensor_properties(:class:`torch.distributed._shard.sharded_tensor.TensorProperties):
|
65 |
+
Tensor properties used to create a ShardedTensor.
|
66 |
+
Returns:
|
67 |
+
A :class:`ShardedTensorMetadata` object that encodes the information about
|
68 |
+
the layout of the ShardedTensor and its properties.
|
69 |
+
"""
|
70 |
+
|
71 |
+
@abstractmethod
|
72 |
+
def shard(self, tensor: torch.Tensor, src_rank: int = 0, process_group=None) -> "ShardedTensor":
|
73 |
+
"""
|
74 |
+
Given a global tensor on src_rank, shard this tensor
|
75 |
+
across ranks within the process group, return a ShardedTensor.
|
76 |
+
Args:
|
77 |
+
tensor (:class:`torch.Tensor`): Tensor needs to be sharded.
|
78 |
+
Keyword args:
|
79 |
+
src_rank (int, optional): The source rank which is used as the ground truth of
|
80 |
+
the data for the parameter that would be sharded and scattered
|
81 |
+
across the rest of the ranks.
|
82 |
+
Default: 0.
|
83 |
+
process_group (ProcessGroup, optional): The process group to work on. If None,
|
84 |
+
the default process group will be used.
|
85 |
+
Returns:
|
86 |
+
A :class:`ShardedTensor` sharded from the given tensor.
|
87 |
+
"""
|
88 |
+
|
89 |
+
# Ops customized for a particular ShardingSpec.
|
90 |
+
_CUSTOM_SHARDING_SPEC_OPS: Dict[str, Dict[Callable, Callable]] = {}
|
91 |
+
|
92 |
+
def _has_custom_op(sharding_spec, op):
|
93 |
+
"""
|
94 |
+
Returns whether or not the ShardingSpec has a custom op implementation.
|
95 |
+
"""
|
96 |
+
class_name = type(sharding_spec).__qualname__
|
97 |
+
return class_name in _CUSTOM_SHARDING_SPEC_OPS and op in _CUSTOM_SHARDING_SPEC_OPS[class_name]
|
98 |
+
|
99 |
+
def _dispatch_custom_op(sharding_spec, op: Callable, types, args, kwargs, process_group):
|
100 |
+
"""
|
101 |
+
Calls the custom op for this ShardingSpec if it exists.
|
102 |
+
"""
|
103 |
+
class_name = type(sharding_spec).__qualname__
|
104 |
+
if not _has_custom_op(sharding_spec, op):
|
105 |
+
raise RuntimeError(f'Custom op: {op} not registered for {class_name}')
|
106 |
+
func = _CUSTOM_SHARDING_SPEC_OPS[class_name][op]
|
107 |
+
return func(types, args, kwargs, process_group)
|
108 |
+
|
109 |
+
def custom_sharding_spec_op(sharding_spec_class, func):
|
110 |
+
"""
|
111 |
+
Decorator to allow custom registration of ops.
|
112 |
+
Args:
|
113 |
+
sharding_spec_class(type): The ShardingSpec for which we need to add this custom op.
|
114 |
+
func(Callable): The op to override (ex: torch.bmm)
|
115 |
+
"""
|
116 |
+
class_name = sharding_spec_class.__qualname__
|
117 |
+
if class_name not in _CUSTOM_SHARDING_SPEC_OPS:
|
118 |
+
_CUSTOM_SHARDING_SPEC_OPS[class_name] = {}
|
119 |
+
return functools.partial(
|
120 |
+
_decorator_func,
|
121 |
+
op=func,
|
122 |
+
op_table=_CUSTOM_SHARDING_SPEC_OPS[class_name]
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
@dataclass
|
127 |
+
class EnumerableShardingSpec(ShardingSpec):
|
128 |
+
"""
|
129 |
+
This is a type of PlacementSpec that allows users to specify a generic
|
130 |
+
sharding scheme by enumerating exactly how each shard is laid out.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
shards(List[ShardMetadata]): List of :class:`ShardMetadata` objects representing
|
134 |
+
each shard. Note that none of the shards should overlap.
|
135 |
+
"""
|
136 |
+
|
137 |
+
shards: List[ShardMetadata]
|
138 |
+
|
139 |
+
def __post_init__(self):
|
140 |
+
if len(self.shards) == 0:
|
141 |
+
raise ValueError(f'Empty shard list provided: {self.shards}')
|
142 |
+
|
143 |
+
# Validate each shard has same rank.
|
144 |
+
rank = -1
|
145 |
+
for shard in self.shards:
|
146 |
+
if rank != -1 and rank != len(shard.shard_offsets):
|
147 |
+
raise ValueError(f'Found inconsistent ranks for shards: {rank} and {len(shard.shard_offsets)}')
|
148 |
+
rank = len(shard.shard_offsets)
|
149 |
+
|
150 |
+
validate_non_overlapping_shards_metadata(self.shards)
|
151 |
+
|
152 |
+
def build_metadata(self,
|
153 |
+
tensor_sizes: torch.Size,
|
154 |
+
tensor_properties: sharded_tensor_meta.TensorProperties,
|
155 |
+
) -> sharded_tensor_meta.ShardedTensorMetadata:
|
156 |
+
# check if shards form a valid tensor
|
157 |
+
check_tensor(self.shards, tensor_sizes)
|
158 |
+
return sharded_tensor_meta.ShardedTensorMetadata(
|
159 |
+
self.shards,
|
160 |
+
tensor_sizes,
|
161 |
+
tensor_properties
|
162 |
+
)
|
163 |
+
|
164 |
+
def shard(self, tensor: torch.Tensor, src_rank: int = 0, process_group=None) -> "ShardedTensor":
|
165 |
+
# TODO: figure out a generic and efficient way to scatter the shards for EnumerableShardingSpec
|
166 |
+
raise NotImplementedError("EnumerableShardingSpec.shard not implemented yet!")
|
167 |
+
|
168 |
+
|
169 |
+
def _infer_sharding_spec_from_shards_metadata(shards_metadata):
|
170 |
+
"""
|
171 |
+
Infer the sharding spec from the metadata of each shard of a ShardedTensor.
|
172 |
+
If the tensor is sharded only on one dimension, we can then verify whether it's
|
173 |
+
a ChunkShardingSpec or not. The way to verify it is to first get the total length
|
174 |
+
and perform a chunk sharding with the given placements to see if we can have the
|
175 |
+
same chunk size as the given shards_metadata. If not, we assume it's enum sharded.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
shards_metadata (List[ShardMetadata]): List of Metadata of local shards.
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
A :class:`torch.distributed._shard.sharding_spec.ShardingSpec` object of sharding
|
182 |
+
spec for one sharded tensor.
|
183 |
+
"""
|
184 |
+
placements = []
|
185 |
+
chunk_sharding_dim = None
|
186 |
+
chunk_offset_list = []
|
187 |
+
shard_size_list = []
|
188 |
+
shard_offset_list = []
|
189 |
+
# collect local shard metadatas from the global sharded_tensor_metadata
|
190 |
+
for shard_metadata in shards_metadata: # type: ignore[attr-defined]
|
191 |
+
placements.append(shard_metadata.placement)
|
192 |
+
local_offsets = shard_metadata.shard_offsets
|
193 |
+
chunk_offset_list.append(sum(local_offsets))
|
194 |
+
shard_size_list.append(shard_metadata.shard_sizes)
|
195 |
+
shard_offset_list.append(shard_metadata.shard_offsets)
|
196 |
+
shard_dims = [idx for idx, e in enumerate(local_offsets) if e != 0]
|
197 |
+
# If the offset is [0, 0, ..., 0] (all zeros),
|
198 |
+
# we cannot decide whether how the tensor is sharded.
|
199 |
+
if len(shard_dims) == 0:
|
200 |
+
continue
|
201 |
+
# If the offset is [0, N, .,0, M, 0, .., 0],
|
202 |
+
# we are sure it's sharded by more than one dimension.
|
203 |
+
if len(shard_dims) != 1:
|
204 |
+
chunk_sharding_dim = None
|
205 |
+
break
|
206 |
+
# If the offset is [0, 0, .,0, M, 0, .., 0], aka, it's sharded by just
|
207 |
+
# one dimension, we need to make sure all ranks share the same dimension.
|
208 |
+
if not chunk_sharding_dim:
|
209 |
+
chunk_sharding_dim = shard_dims[0]
|
210 |
+
elif chunk_sharding_dim != shard_dims[0]:
|
211 |
+
chunk_sharding_dim = None
|
212 |
+
break
|
213 |
+
|
214 |
+
if chunk_sharding_dim is not None:
|
215 |
+
# Ensure we infer the correct placement order from offsets
|
216 |
+
placements = [
|
217 |
+
x for _, x in sorted(zip(chunk_offset_list, placements), key=lambda e: e[0])
|
218 |
+
]
|
219 |
+
|
220 |
+
from .chunk_sharding_spec import ChunkShardingSpec
|
221 |
+
chunk_spec = ChunkShardingSpec(
|
222 |
+
dim=chunk_sharding_dim,
|
223 |
+
placements=placements,
|
224 |
+
)
|
225 |
+
|
226 |
+
shard_sizes = sorted([x[chunk_sharding_dim] for x in shard_size_list])
|
227 |
+
shard_total_length = sum(shard_sizes)
|
228 |
+
shard_offsets = sorted([x[chunk_sharding_dim] for x in shard_offset_list])
|
229 |
+
|
230 |
+
chunks = len(placements)
|
231 |
+
split_size = get_split_size(shard_total_length, chunks)
|
232 |
+
chunk_shard_sizes = sorted(
|
233 |
+
[
|
234 |
+
get_chunked_dim_size(shard_total_length, split_size, idx)
|
235 |
+
for idx in range(chunks)
|
236 |
+
]
|
237 |
+
)
|
238 |
+
# Should match ChunkShardingSpec offsets calculation
|
239 |
+
chunk_shard_offsets = [split_size * idx for idx in range(chunks)]
|
240 |
+
if shard_sizes == chunk_shard_sizes and shard_offsets == chunk_shard_offsets:
|
241 |
+
return chunk_spec
|
242 |
+
return EnumerableShardingSpec(shards_metadata)
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import torch
|
3 |
+
import torch.distributed._shard.sharded_tensor.metadata as sharded_tensor_meta
|
4 |
+
from torch.distributed._shard.metadata import ShardMetadata
|
5 |
+
from torch.distributed._shard.sharded_tensor.shard import Shard
|
6 |
+
from torch.distributed._shard.sharded_tensor.utils import (
|
7 |
+
_parse_and_validate_remote_device
|
8 |
+
)
|
9 |
+
from torch.distributed._shard._utils import narrow_tensor
|
10 |
+
import torch.distributed as dist
|
11 |
+
import torch.distributed.distributed_c10d as distributed_c10d
|
12 |
+
from typing import List, Union, TYPE_CHECKING
|
13 |
+
from ._internals import (
|
14 |
+
get_chunked_dim_size,
|
15 |
+
get_split_size,
|
16 |
+
)
|
17 |
+
|
18 |
+
from .api import ShardingSpec
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
# Only include ShardedTensor when do type checking, exclude it
|
22 |
+
# from run-time to resolve circular dependency.
|
23 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class ChunkShardingSpec(ShardingSpec):
|
27 |
+
"""
|
28 |
+
This is a type of PlacementSpec that defines the placement as being sharded
|
29 |
+
across multiple devices. In particular, it represents sharding a Tensor
|
30 |
+
along a single dimension into equal chunks (similar to :meth:`torch.chunk`).
|
31 |
+
|
32 |
+
The semantics of how a tensor is partitioned is inline with
|
33 |
+
:meth:`torch.chunk`, where ``dim`` in torch.chunk corresponds to the
|
34 |
+
specified ``dim`` and ``chunks`` in torch.chunk is the number of elements
|
35 |
+
in the placement specified.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
dim (int or str):
|
39 |
+
The dimension to shard on, could be an integer representing the
|
40 |
+
dimension or a string in case of named tensors where dimensions are
|
41 |
+
named. Note that named tensor support is not added yet.
|
42 |
+
placement(List[Union[_remote_device, str]]):
|
43 |
+
Specifies the placement of each shard of the Tensor. The size of
|
44 |
+
the list represents the number of shards to be created. This could
|
45 |
+
be a list of
|
46 |
+
:class:`torch.distributed._remote_device`'s. This list
|
47 |
+
could also contain a string which represents remote
|
48 |
+
device as accepted by
|
49 |
+
:class:`torch.distributed._remote_device`
|
50 |
+
"""
|
51 |
+
|
52 |
+
ShardingDim = Union[int, str]
|
53 |
+
|
54 |
+
dim: ShardingDim
|
55 |
+
placements: List[Union[torch.distributed._remote_device, str]]
|
56 |
+
|
57 |
+
def __post_init__(self):
|
58 |
+
self._verify_dim(self.dim)
|
59 |
+
for i, remote_device in enumerate(self.placements):
|
60 |
+
if not isinstance(remote_device, torch.distributed._remote_device):
|
61 |
+
self.placements[i] = torch.distributed._remote_device(remote_device)
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def _verify_dim(dim):
|
65 |
+
# Validate the sharding spec.
|
66 |
+
# TODO: support named dimension
|
67 |
+
if isinstance(dim, str):
|
68 |
+
raise NotImplementedError(
|
69 |
+
"ChunkShardingSpec does not support named dimension yet!"
|
70 |
+
)
|
71 |
+
|
72 |
+
if not isinstance(dim, int):
|
73 |
+
raise ValueError(
|
74 |
+
f"Sharding dim needs to be an integer, found: {dim}"
|
75 |
+
)
|
76 |
+
|
77 |
+
def build_metadata(self,
|
78 |
+
tensor_sizes: torch.Size,
|
79 |
+
tensor_properties: sharded_tensor_meta.TensorProperties,
|
80 |
+
) -> sharded_tensor_meta.ShardedTensorMetadata:
|
81 |
+
tensor_num_dim = len(tensor_sizes)
|
82 |
+
|
83 |
+
self._verify_dim(self.dim)
|
84 |
+
if self.dim >= tensor_num_dim or self.dim < -tensor_num_dim: # type: ignore[operator]
|
85 |
+
raise ValueError(f"Invalid sharding dim: {self.dim}")
|
86 |
+
|
87 |
+
shards_metadata = []
|
88 |
+
sharding_dim_size = tensor_sizes[self.dim] # type: ignore[index]
|
89 |
+
chunks = len(self.placements)
|
90 |
+
split_size = get_split_size(sharding_dim_size, chunks)
|
91 |
+
for idx, placement in enumerate(self.placements):
|
92 |
+
# generate ShardMetadata for each placement device
|
93 |
+
chunked_dim_size = get_chunked_dim_size(sharding_dim_size, split_size, idx)
|
94 |
+
shard_size = list(tensor_sizes)
|
95 |
+
current_offsets = [0] * tensor_num_dim
|
96 |
+
current_offsets[self.dim] = split_size * idx # type: ignore[index]
|
97 |
+
shard_size[self.dim] = chunked_dim_size # type: ignore[index]
|
98 |
+
|
99 |
+
shard_metadata = ShardMetadata(
|
100 |
+
shard_offsets=current_offsets,
|
101 |
+
shard_sizes=shard_size,
|
102 |
+
placement=placement,
|
103 |
+
)
|
104 |
+
shards_metadata.append(shard_metadata)
|
105 |
+
|
106 |
+
return sharded_tensor_meta.ShardedTensorMetadata(
|
107 |
+
shards_metadata,
|
108 |
+
tensor_sizes,
|
109 |
+
tensor_properties
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
def shard(self, tensor: torch.Tensor, src_rank: int = 0, process_group=None) -> "ShardedTensor":
|
114 |
+
"""
|
115 |
+
Args:
|
116 |
+
src_rank: group rank relative to ``process_group``
|
117 |
+
|
118 |
+
N.B. If ``process_group`` is None, ``src_rank`` is a global rank.
|
119 |
+
"""
|
120 |
+
# relative imports to avoid circular dependency
|
121 |
+
from torch.distributed._shard.sharded_tensor import (
|
122 |
+
ShardedTensor
|
123 |
+
)
|
124 |
+
tensor_properties = sharded_tensor_meta.TensorProperties(
|
125 |
+
dtype=tensor.dtype,
|
126 |
+
layout=tensor.layout,
|
127 |
+
requires_grad=tensor.requires_grad,
|
128 |
+
memory_format=torch.contiguous_format,
|
129 |
+
pin_memory=tensor.is_pinned()
|
130 |
+
)
|
131 |
+
current_rank = dist.get_rank(process_group)
|
132 |
+
tensor_meta = self.build_metadata(tensor.size(), tensor_properties)
|
133 |
+
local_shards = []
|
134 |
+
local_tensor = None
|
135 |
+
local_metadata = None
|
136 |
+
tensors_to_scatter = [None] * dist.get_world_size(process_group)
|
137 |
+
|
138 |
+
sharding_dim_size = tensor.size()[self.dim] # type: ignore[index]
|
139 |
+
chunks = len(self.placements)
|
140 |
+
split_size = get_split_size(sharding_dim_size, chunks)
|
141 |
+
scatter_shape = list(tensor.size())
|
142 |
+
scatter_shape[self.dim] = split_size # type: ignore[index]
|
143 |
+
|
144 |
+
for shard_meta in tensor_meta.shards_metadata:
|
145 |
+
rank, device = _parse_and_validate_remote_device(process_group, shard_meta.placement)
|
146 |
+
if current_rank == src_rank:
|
147 |
+
# Reshape to get shard for this rank and we don't want autograd
|
148 |
+
# recording here for the narrow op and 'local_shard' should be a
|
149 |
+
# leaf variable in the autograd graph.
|
150 |
+
narrowed_tensor = narrow_tensor(tensor, shard_meta)
|
151 |
+
if shard_meta.shard_sizes[self.dim] < split_size: # type: ignore[index]
|
152 |
+
# for the last shard that might be smaller to other shards
|
153 |
+
# resize the narrowed tensor to the same size and use it for
|
154 |
+
# the scatter collective as dist.scatter requires same size
|
155 |
+
# inputs on every rank
|
156 |
+
tensor_to_scatter = narrowed_tensor.detach().clone().resize_(scatter_shape)
|
157 |
+
else:
|
158 |
+
tensor_to_scatter = narrowed_tensor.detach().clone().contiguous()
|
159 |
+
|
160 |
+
tensors_to_scatter[rank] = tensor_to_scatter
|
161 |
+
|
162 |
+
if current_rank == rank:
|
163 |
+
local_tensor = torch.empty(
|
164 |
+
scatter_shape, dtype=tensor.dtype, layout=tensor.layout, device=device)
|
165 |
+
local_metadata = shard_meta
|
166 |
+
|
167 |
+
# each rank should have local_tensor and local_metadata initialized if we build
|
168 |
+
# the metadata list in a correct way.
|
169 |
+
assert local_tensor is not None
|
170 |
+
assert local_metadata is not None
|
171 |
+
|
172 |
+
# Scatter the shards to all ranks in the pg
|
173 |
+
# scatter takes the global rank as ``src``
|
174 |
+
src_for_scatter = src_rank
|
175 |
+
if process_group is not None and process_group is not distributed_c10d._get_default_group():
|
176 |
+
src_for_scatter = distributed_c10d.get_global_rank(process_group, src_for_scatter)
|
177 |
+
|
178 |
+
dist.scatter(
|
179 |
+
local_tensor,
|
180 |
+
scatter_list=tensors_to_scatter if current_rank == src_rank else None,
|
181 |
+
src=src_for_scatter,
|
182 |
+
group=process_group
|
183 |
+
)
|
184 |
+
|
185 |
+
if list(local_tensor.size()) != local_metadata.shard_sizes:
|
186 |
+
# detach again after receiving to ensure local shards remain a leaf node
|
187 |
+
local_tensor = local_tensor.resize_(local_metadata.shard_sizes).detach()
|
188 |
+
|
189 |
+
# Sync requires_grad to local_shard.
|
190 |
+
local_tensor.requires_grad = tensor.requires_grad
|
191 |
+
|
192 |
+
local_shards.append(Shard(tensor=local_tensor, metadata=local_metadata))
|
193 |
+
|
194 |
+
st = ShardedTensor._init_from_local_shards_and_global_metadata(
|
195 |
+
local_shards,
|
196 |
+
tensor_meta,
|
197 |
+
process_group=process_group)
|
198 |
+
|
199 |
+
# Manually set sharding_spec
|
200 |
+
st._sharding_spec = self
|
201 |
+
|
202 |
+
return st
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (235 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/__pycache__/_common.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/__pycache__/embedding.cpython-310.pyc
ADDED
Binary file (9.44 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/__pycache__/embedding_bag.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/_common.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.distributed as dist
|
4 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
5 |
+
from torch.distributed._shard.sharded_tensor._ops._common import _sharded_op_common
|
6 |
+
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
|
7 |
+
from torch.distributed._shard.sharding_spec._internals import (
|
8 |
+
get_chunk_sharding_params,
|
9 |
+
get_chunked_dim_size,
|
10 |
+
get_split_size,
|
11 |
+
)
|
12 |
+
from torch.distributed._shard.sharding_spec.api import custom_sharding_spec_op
|
13 |
+
from torch.distributed.nn.functional import (
|
14 |
+
_all_gather_base,
|
15 |
+
all_reduce,
|
16 |
+
all_to_all_single,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
def _chunk_sharding_spec_check(spec, op):
|
21 |
+
"""
|
22 |
+
For the given op implementation check if the sharding spec is ChunkShardingSpec.
|
23 |
+
"""
|
24 |
+
if not isinstance(spec, ChunkShardingSpec):
|
25 |
+
raise NotImplementedError(
|
26 |
+
f"Only ChunkShardingSpec supported for '{op.__name__}'."
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
def _register_sharded_op_on_local_tensor(
|
31 |
+
op, early_stop_func=None, extra_check=None, customized_func=None
|
32 |
+
):
|
33 |
+
"""
|
34 |
+
Handles ``__torch_function__`` dispatch for ops which are performed on
|
35 |
+
the single local tensor of the sharded tensor such as op like
|
36 |
+
``torch.nn.functional.softmax`` or ``torch.Tensor.view``.
|
37 |
+
|
38 |
+
For more complicated ops, a customized func can be used to generate
|
39 |
+
the new local tensor, sharding spec and sharded tensor size.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
op: The op to be registered and applied to all shards of the st.
|
43 |
+
early_stop_func (Callable, optional): the func for early stop.
|
44 |
+
Default: if ``None``, no early stop.
|
45 |
+
extra_check (Callable, optional): the func for extra condition check.
|
46 |
+
Default: if ``None``, no extra check.
|
47 |
+
customized_func (Callable, optional): the func for customized logic
|
48 |
+
to generate the new local tensor, sharding spec and sharded tensor size.
|
49 |
+
Default: if ``None``, we simply lower to the real op call with
|
50 |
+
the single local tensor of the st.
|
51 |
+
|
52 |
+
Return:
|
53 |
+
func (Callable): registered implementation for sharded op for
|
54 |
+
``__torch_function__`` dispatch.
|
55 |
+
"""
|
56 |
+
|
57 |
+
@custom_sharding_spec_op(ChunkShardingSpec, op)
|
58 |
+
@_sharded_op_common(op, early_stop_func, extra_check)
|
59 |
+
def sharded_tensor_op_on_local_tensor(types, args=(), kwargs=None, pg=None):
|
60 |
+
st = args[0]
|
61 |
+
sharding_spec = st.sharding_spec()
|
62 |
+
if len(st.local_shards()) != 1:
|
63 |
+
raise TypeError(
|
64 |
+
f"torch function '{op.__name__}', with args: {args} and "
|
65 |
+
f"kwargs: {kwargs} only supported for single local tensor!"
|
66 |
+
)
|
67 |
+
st_size = st.size()
|
68 |
+
if customized_func:
|
69 |
+
local_tensor, sharding_spec, st_size = customized_func(args, kwargs, pg)
|
70 |
+
else:
|
71 |
+
args = (st.local_tensor(), *args[1:])
|
72 |
+
local_tensor = op(*args, **kwargs)
|
73 |
+
return ShardedTensor._init_from_local_tensor(
|
74 |
+
local_tensor.contiguous(),
|
75 |
+
sharding_spec,
|
76 |
+
st_size, # type: ignore[arg-type]
|
77 |
+
process_group=pg,
|
78 |
+
init_rrefs=st._init_rrefs,
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
def _handle_col_wise_sharding_base(
|
83 |
+
op_func,
|
84 |
+
col_dim,
|
85 |
+
input,
|
86 |
+
world_size,
|
87 |
+
weight,
|
88 |
+
local_shard,
|
89 |
+
pg,
|
90 |
+
gathered_inputs,
|
91 |
+
mode=None,
|
92 |
+
gathered_per_sample_weights=None,
|
93 |
+
gathered_offsets=None,
|
94 |
+
padding_idx=None,
|
95 |
+
):
|
96 |
+
"""
|
97 |
+
For col-wise sharding of weight, lots of logic are common.
|
98 |
+
So we extract the common logic and put in this function:
|
99 |
+
Step 1. To get input from each rank and
|
100 |
+
Step 2. To perform the op on the concatenated tensor.
|
101 |
+
Step 3. To distribute results to each rank with col rearrangement.
|
102 |
+
Step 4. To concatenate all results from all ranks.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
op_func: operator which is applied to the input tensor.
|
106 |
+
col_dim: dim of result tensor after the operation.
|
107 |
+
input: tensor to be applied op on.
|
108 |
+
world_size: number of ranks.
|
109 |
+
weight: sharded weight tensor.
|
110 |
+
local_shard: col-wise sharded weight tensor.
|
111 |
+
pg: process group.
|
112 |
+
gathered_inputs: list of inputs from all ranks. If specified, we
|
113 |
+
don't need to communicate with each rank any more.
|
114 |
+
mode: aggregation mode of EmbeddingBag.
|
115 |
+
gathered_per_sample_weights: per_sample_weights across all ranks.
|
116 |
+
gathered_offsets: offsets across all ranks.
|
117 |
+
padding_idx: If specified, the entries at padding_idx do
|
118 |
+
not contribute to the gradient; therefore, the embedding
|
119 |
+
vector at padding_idx is not updated during training,
|
120 |
+
i.e. it remains as a fixed “pad”.
|
121 |
+
Note that the embedding vector at padding_idx is
|
122 |
+
excluded from the reduction.
|
123 |
+
|
124 |
+
Return: final result of input being applied with the op.
|
125 |
+
"""
|
126 |
+
# run the operator's function for all the inputs.
|
127 |
+
results = []
|
128 |
+
for i, inp in enumerate(gathered_inputs):
|
129 |
+
if op_func == torch.nn.functional.embedding_bag:
|
130 |
+
result = op_func(
|
131 |
+
inp,
|
132 |
+
local_shard,
|
133 |
+
offsets=gathered_offsets[i] if gathered_offsets is not None else None,
|
134 |
+
mode=mode,
|
135 |
+
per_sample_weights=gathered_per_sample_weights[i]
|
136 |
+
if gathered_per_sample_weights is not None
|
137 |
+
else None,
|
138 |
+
padding_idx=padding_idx,
|
139 |
+
)
|
140 |
+
elif op_func == torch.nn.functional.embedding:
|
141 |
+
result = op_func(
|
142 |
+
inp,
|
143 |
+
local_shard,
|
144 |
+
padding_idx=padding_idx,
|
145 |
+
)
|
146 |
+
else:
|
147 |
+
result = op_func(inp, local_shard)
|
148 |
+
results.append(torch.transpose(result, 0, col_dim))
|
149 |
+
|
150 |
+
# Distribute results to each rank with col rearrangement.
|
151 |
+
output = _result_distribute_with_col_rearrange(
|
152 |
+
results, input, world_size, weight, pg
|
153 |
+
)
|
154 |
+
|
155 |
+
# transpose the output and return result.
|
156 |
+
return torch.transpose(output, 0, col_dim)
|
157 |
+
|
158 |
+
|
159 |
+
def _result_distribute_with_col_rearrange(results, input, world_size, weight, pg):
|
160 |
+
"""
|
161 |
+
For col-wise sharding of weight, we need to distribute
|
162 |
+
results to each rank. We do them in this function.
|
163 |
+
Note that, if the index in the Sharding Spec is not equal to
|
164 |
+
the rank number, we need to do the rearrangement based on the
|
165 |
+
order given by the Sharding Spec (placement).
|
166 |
+
|
167 |
+
Args:
|
168 |
+
results: results from ops applied to inputs from all ranks.
|
169 |
+
We need to distribute them back to their original ranks.
|
170 |
+
input: tensor to be applied op to.
|
171 |
+
world_size: number of ranks.
|
172 |
+
weight: sharded weight tensor.
|
173 |
+
pg: process group.
|
174 |
+
|
175 |
+
Return: column rearranged result.
|
176 |
+
"""
|
177 |
+
# Process results and outputs for all2all.
|
178 |
+
sharding_dim = weight._sharding_spec.dim
|
179 |
+
sharding_dim_size = weight.size(sharding_dim)
|
180 |
+
dims = list(results[0].size())
|
181 |
+
dims[0] = sharding_dim_size
|
182 |
+
combined_results = torch.cat(results)
|
183 |
+
output = torch.empty(
|
184 |
+
*dims, device=combined_results.device, dtype=combined_results.dtype
|
185 |
+
)
|
186 |
+
|
187 |
+
# Compute output splits
|
188 |
+
split_size = get_split_size(sharding_dim_size, world_size)
|
189 |
+
output_split_sizes = [0] * world_size
|
190 |
+
for idx, placement in enumerate(weight._sharding_spec.placements):
|
191 |
+
output_split_sizes[placement.rank()] = get_chunked_dim_size(
|
192 |
+
sharding_dim_size, split_size, idx
|
193 |
+
)
|
194 |
+
|
195 |
+
# distribute the outputs using all2all.
|
196 |
+
output = all_to_all_single(
|
197 |
+
output, combined_results, output_split_sizes=output_split_sizes, group=pg
|
198 |
+
)
|
199 |
+
|
200 |
+
# Check if we need to rearrange columns appropriately for output.
|
201 |
+
rearrange_columns = any(
|
202 |
+
idx != placement.rank()
|
203 |
+
for idx, placement in enumerate(weight._sharding_spec.placements)
|
204 |
+
)
|
205 |
+
if not rearrange_columns:
|
206 |
+
return output
|
207 |
+
|
208 |
+
indices = []
|
209 |
+
for placement in weight._sharding_spec.placements:
|
210 |
+
dim_size = output_split_sizes[placement.rank()]
|
211 |
+
start = sum(
|
212 |
+
[
|
213 |
+
split_size if i < placement.rank() else 0
|
214 |
+
for i, split_size in enumerate(output_split_sizes)
|
215 |
+
]
|
216 |
+
)
|
217 |
+
indices += list(range(start, start + dim_size))
|
218 |
+
|
219 |
+
return output.index_select(0, torch.tensor(indices, device=output.device))
|
220 |
+
|
221 |
+
|
222 |
+
def _handle_max_norm_col_wise(
|
223 |
+
max_norm,
|
224 |
+
norm_type,
|
225 |
+
local_shard,
|
226 |
+
input,
|
227 |
+
world_size,
|
228 |
+
gathered_inputs,
|
229 |
+
pg,
|
230 |
+
):
|
231 |
+
"""
|
232 |
+
For col-wise sharding of weight, we need to aggregate the
|
233 |
+
norm across all ranks before we can perform the proper re-norm.
|
234 |
+
Note that, the max_norm logic is only applied to the embedding
|
235 |
+
indices that are looked up and not the whole shard.
|
236 |
+
|
237 |
+
Args:
|
238 |
+
max_norm: If given, each embedding vector with norm larger
|
239 |
+
than max_norm is renormalized to have norm max_norm.
|
240 |
+
Note: this will modify weight in-place.
|
241 |
+
norm_type: The p in the p-norm to compute for the max_norm option.
|
242 |
+
local_shard: col-wise shared local weight used for lookup.
|
243 |
+
input: tensor to be applied op to.
|
244 |
+
world_size: number of ranks.
|
245 |
+
gathered_inputs: list of inputs from all ranks.
|
246 |
+
pg: process group.
|
247 |
+
|
248 |
+
Return:
|
249 |
+
local_shard_norm_renormed: local_shard re-normed to max_norm if the norm is larger
|
250 |
+
than it.
|
251 |
+
|
252 |
+
"""
|
253 |
+
norm_type = norm_type if norm_type is not None else 2.0
|
254 |
+
unique_inp = torch.unique(torch.cat(gathered_inputs))
|
255 |
+
local_shard_sum = torch.sum(
|
256 |
+
torch.pow(torch.abs(local_shard), norm_type), dim=1, dtype=local_shard.dtype
|
257 |
+
)
|
258 |
+
# For col-wise sharding, we need to first aggregate the powered sum
|
259 |
+
# from each rank first and then calculate the norm.
|
260 |
+
local_shard_sum = all_reduce(local_shard_sum, group=pg)
|
261 |
+
local_shard_norm = torch.pow(local_shard_sum, 1.0 / norm_type)
|
262 |
+
max_norm_tensor = torch.full(
|
263 |
+
(local_shard.size(0),),
|
264 |
+
float("inf"),
|
265 |
+
dtype=local_shard.dtype,
|
266 |
+
device=input.device,
|
267 |
+
)
|
268 |
+
max_norm_tensor[unique_inp] = max_norm
|
269 |
+
local_shard_t = local_shard.t().contiguous()
|
270 |
+
normalized_tensor = torch.where(
|
271 |
+
local_shard_norm > max_norm_tensor, max_norm_tensor, local_shard_norm
|
272 |
+
)
|
273 |
+
# Make sure divisor is not zero.
|
274 |
+
local_shard_norm[local_shard_norm == 0.0] = 1.0
|
275 |
+
local_shard_norm_renormed = (
|
276 |
+
torch.div(torch.mul(local_shard_t, normalized_tensor), local_shard_norm)
|
277 |
+
.t()
|
278 |
+
.contiguous()
|
279 |
+
)
|
280 |
+
return local_shard_norm_renormed
|
281 |
+
|
282 |
+
|
283 |
+
def _all_gather_base_input(input, pg):
|
284 |
+
"""
|
285 |
+
Use _all_gather_base to get a concatenated input from each rank.
|
286 |
+
|
287 |
+
Args:
|
288 |
+
input: tensor to be applied op on.
|
289 |
+
pg: process group.
|
290 |
+
|
291 |
+
Returns:
|
292 |
+
gathered_inputs: input gathered from each rank and concat by dim 0.
|
293 |
+
"""
|
294 |
+
# allgather the inputs first.
|
295 |
+
gather_inp_size = list(input.size())
|
296 |
+
gather_inp_size[0] = input.size(0) * dist.get_world_size(pg)
|
297 |
+
gather_inp = torch.empty(gather_inp_size, device=input.device, dtype=input.dtype)
|
298 |
+
return _all_gather_base(gather_inp, input, group=pg)
|
299 |
+
|
300 |
+
|
301 |
+
def _handle_row_wise_mask(gather_inp, padding_idx, weight, world_size, rank):
|
302 |
+
"""
|
303 |
+
Mask the input for embedding look-up for IDs which are not stored
|
304 |
+
on the current rank. This function also adjust the ``padding_idx``
|
305 |
+
so that it is only used on the rank where the corresponding row is
|
306 |
+
stored.
|
307 |
+
|
308 |
+
Note that, with ``max_norm`` flag on, only weights of rows being
|
309 |
+
looked up will be re-normed. So we need an extra row for masked ID
|
310 |
+
so that it does not affect the final result and ``max_norm``.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
gather_inp: tensor to be applied op on gathered from all ranks.
|
314 |
+
padding_idx: If specified, the entries at padding_idx do
|
315 |
+
not contribute to the gradient; therefore, the embedding
|
316 |
+
vector at padding_idx is not updated during training,
|
317 |
+
i.e. it remains as a fixed “pad”.
|
318 |
+
Note that the embedding vector at padding_idx is
|
319 |
+
excluded from the reduction.
|
320 |
+
weight: weight tensor of Embedding look-up table.
|
321 |
+
world_size: number of ranks.
|
322 |
+
rank: # of cuda process.
|
323 |
+
|
324 |
+
Returns:
|
325 |
+
lookup_input: Tensor of masked input.
|
326 |
+
padding_idx: adjusted padding_idx.
|
327 |
+
padding_row: The extra row we used during lookup so that
|
328 |
+
looking up does not affect ``max_norm``.
|
329 |
+
"""
|
330 |
+
(start_pos, chunk_size) = get_chunk_sharding_params(
|
331 |
+
weight.size(0), world_size, weight._sharding_spec, rank
|
332 |
+
)
|
333 |
+
mask = (gather_inp < start_pos) | (gather_inp >= start_pos + chunk_size)
|
334 |
+
lookup_input = gather_inp.clone() - start_pos
|
335 |
+
lookup_input[mask] = chunk_size
|
336 |
+
if (
|
337 |
+
padding_idx is not None
|
338 |
+
and padding_idx >= start_pos
|
339 |
+
and padding_idx < (start_pos + chunk_size)
|
340 |
+
):
|
341 |
+
padding_idx = padding_idx - start_pos
|
342 |
+
else:
|
343 |
+
padding_idx = None
|
344 |
+
|
345 |
+
# When max_norm is set, it will only re-norm the row being looked up.
|
346 |
+
padding_row = torch.zeros(
|
347 |
+
1, weight.size(1), device=gather_inp.device, dtype=weight.dtype
|
348 |
+
)
|
349 |
+
return lookup_input, padding_idx, padding_row
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/embedding.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.distributed as dist
|
4 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
5 |
+
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
|
6 |
+
from torch.distributed._shard.sharding_spec.api import custom_sharding_spec_op
|
7 |
+
from torch.distributed.nn.functional import all_gather, reduce_scatter
|
8 |
+
|
9 |
+
from ._common import (
|
10 |
+
_all_gather_base_input,
|
11 |
+
_handle_col_wise_sharding_base,
|
12 |
+
_handle_max_norm_col_wise,
|
13 |
+
_handle_row_wise_mask,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
@custom_sharding_spec_op(ChunkShardingSpec, torch.nn.functional.embedding)
|
18 |
+
def sharded_embedding(types, args, kwargs, pg):
|
19 |
+
"""
|
20 |
+
Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding``.
|
21 |
+
This method computes a sharded embedding lookup and has the following limitations:
|
22 |
+
|
23 |
+
1. Supports only sharding of ``weight``.
|
24 |
+
2. Supports only ``ChunkShardingSpec``.
|
25 |
+
3. Supports only a single local shard per rank.
|
26 |
+
4. Supports all specs except for scale_grad_by_freq, sparse, etc.
|
27 |
+
|
28 |
+
Based on the dimension that the weight is sharded on, there are two
|
29 |
+
algorithms:
|
30 |
+
|
31 |
+
ROWWISE SHARDING
|
32 |
+
================
|
33 |
+
For row-wise sharding the weight is sharded on dimension 0.
|
34 |
+
|
35 |
+
The overall algorithm can be best explained with an example. Let's assume
|
36 |
+
the dims for input are (4 x 6) and W are (10 x 17) and W is sharded across
|
37 |
+
4 GPUs creating 3 shard of (3 x 17) and 1 shard of (1 x 17).
|
38 |
+
The algorithm is as follows:
|
39 |
+
|
40 |
+
1. First the input is all gathered to all ranks, since this is SPMD and
|
41 |
+
input is actually sharded across all ranks. The inputs then become a
|
42 |
+
4 (4 x 6) tensor on each rank. For example if the given input is
|
43 |
+
tensor([[6, 5, 2, 9, 6, 3],
|
44 |
+
[3, 1, 2, 4, 7, 6],
|
45 |
+
[4, 0, 4, 9, 8, 9],
|
46 |
+
[8, 6, 6, 4, 6, 1]])
|
47 |
+
on rank 0.
|
48 |
+
Then on every rank, we will have this tensor.
|
49 |
+
If input itself is already replicated, no all-gather will be done.
|
50 |
+
2. Next, we mask the ID which are not stored on that rank.
|
51 |
+
For example on rank 0, we store ID [0, 1, 2]. We only keep the ID
|
52 |
+
inside the set of numbers. The rest of them will be masked to an extra row.
|
53 |
+
The masked matrix will be used for embedding look up and is like:
|
54 |
+
tensor([[4, 4, 2, 4, 4, 4],
|
55 |
+
[4, 1, 2, 4, 4, 4],
|
56 |
+
[4, 0, 4, 4, 4, 4],
|
57 |
+
[4, 4, 4, 4, 4, 1]])
|
58 |
+
The reason of having an extra row (aka, number 4 in the example) is
|
59 |
+
because when max_norm is specified only weight which has looked will
|
60 |
+
be re-normed so mask IDs whose embeddings are not stored in current
|
61 |
+
rank will to an extra row will ensure max_norm still works as expected.
|
62 |
+
3. If max_norm is specified, the extra row guarantees that the mask ID will
|
63 |
+
not affect the behavior of weigh re-norm.
|
64 |
+
|
65 |
+
COLWISE SHARDING
|
66 |
+
================
|
67 |
+
For col-wise sharding the weight is sharded on dimension 1.
|
68 |
+
|
69 |
+
The overall algorithm can be best explained with an example. Let's assume
|
70 |
+
the dims for input are (4 x 6) and W are (16 x 17) and W is sharded across
|
71 |
+
4 GPUs creating 3 shards of (16 x 5) and 1 shard of (16 x 2).
|
72 |
+
The algorithm is as follows:
|
73 |
+
|
74 |
+
1. First the input is broadcasted to all ranks, since this is SPMD we
|
75 |
+
actually do an all_gather for all the inputs resulting in 4 (4 x 6)
|
76 |
+
inputs on each rank.
|
77 |
+
2. Next we perform local embedding lookup operation by apply each
|
78 |
+
input (4 x 6) with the local shard (16 x 5) ((16 x 2) for the last).
|
79 |
+
This results in 4 (5 x 6 x 4) ((2 x 6 x 4) for the last) matrices
|
80 |
+
on each rank. We transpose dim 0 and dim 2.
|
81 |
+
3. Next, we concat these 4 matrices and perform an all2all to share the
|
82 |
+
appropriate (5 x 6 x 4) or (2 x 6 x 4) matrices to each rank.
|
83 |
+
4. Now, each rank receives a (17 x 6 x 4) matrix which is basically the
|
84 |
+
size of the result we need.
|
85 |
+
5. If placements are not in order any appropriate rearrangement of columns
|
86 |
+
are done for the (17 x 6 x 4) matrix and finally we transpose the
|
87 |
+
dim 0 and dim 2 again.
|
88 |
+
6. If max_norm is specified, we manually sum up the norm and renorm. Because
|
89 |
+
the renorm must be in place, we need to override the local_shard to mimic
|
90 |
+
this behavior.
|
91 |
+
"""
|
92 |
+
# Validate input params
|
93 |
+
_validate_embedding_param(args, kwargs)
|
94 |
+
|
95 |
+
input = args[0]
|
96 |
+
weight = args[1]
|
97 |
+
max_norm = kwargs.get("max_norm")
|
98 |
+
norm_type = kwargs.get("norm_type")
|
99 |
+
padding_idx = kwargs.get("padding_idx")
|
100 |
+
|
101 |
+
local_shard = weight.local_tensor().contiguous()
|
102 |
+
sharding_dim = weight._sharding_spec.dim
|
103 |
+
world_size = dist.get_world_size(pg)
|
104 |
+
rank = dist.get_rank(pg)
|
105 |
+
|
106 |
+
if sharding_dim == 1:
|
107 |
+
output, local_shard = _handle_col_wise_sharding(
|
108 |
+
input, world_size, weight, local_shard, max_norm, norm_type, padding_idx, pg
|
109 |
+
)
|
110 |
+
weight.local_shards()[0].tensor = local_shard
|
111 |
+
return output
|
112 |
+
elif sharding_dim == 0:
|
113 |
+
return _handle_row_wise_sharding(
|
114 |
+
input,
|
115 |
+
world_size,
|
116 |
+
weight,
|
117 |
+
local_shard,
|
118 |
+
max_norm,
|
119 |
+
norm_type,
|
120 |
+
padding_idx,
|
121 |
+
rank,
|
122 |
+
pg,
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
raise RuntimeError(
|
126 |
+
f"nn.Embedding weight sharded on dim {sharding_dim} not supported!"
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
def _validate_embedding_param(args, kwargs):
|
131 |
+
"""
|
132 |
+
Validate input params of sharded embedding op.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
input: list of ID used for lookup.
|
136 |
+
weight: sharded weight tensor.
|
137 |
+
kwargs: same as normal Embedding.
|
138 |
+
|
139 |
+
Return: None.
|
140 |
+
"""
|
141 |
+
|
142 |
+
input = args[0]
|
143 |
+
weight = args[1]
|
144 |
+
max_norm = kwargs.get("max_norm")
|
145 |
+
scale_grad_by_freq = kwargs.get("scale_grad_by_freq")
|
146 |
+
sparse = kwargs.get("sparse")
|
147 |
+
|
148 |
+
# Validate types
|
149 |
+
if not isinstance(input, torch.Tensor):
|
150 |
+
raise TypeError("input need to be torch.Tensor")
|
151 |
+
if not isinstance(weight, ShardedTensor):
|
152 |
+
raise TypeError("weight needs to be ShardedTensor")
|
153 |
+
weight_size = weight.size()
|
154 |
+
if len(weight_size) != 2:
|
155 |
+
raise ValueError("Weight needs to have exactly 2 dims")
|
156 |
+
if int(torch.min(input).item()) < 0:
|
157 |
+
raise ValueError(
|
158 |
+
"Index out of range in Input %d %d",
|
159 |
+
int(torch.min(input).item()),
|
160 |
+
weight_size[1],
|
161 |
+
)
|
162 |
+
if int(torch.max(input).item()) >= weight_size[0]:
|
163 |
+
raise ValueError(
|
164 |
+
"Index out of range in Input %d %d",
|
165 |
+
int(torch.max(input).item()),
|
166 |
+
weight_size[1],
|
167 |
+
)
|
168 |
+
if scale_grad_by_freq:
|
169 |
+
raise RuntimeError(
|
170 |
+
'nn.Embedding weight sharded with flag on "scale_grad_by_freq" not supported!'
|
171 |
+
)
|
172 |
+
if sparse:
|
173 |
+
raise RuntimeError(
|
174 |
+
'nn.Embedding weight sharded with flag on "sparse" not supported!'
|
175 |
+
)
|
176 |
+
if max_norm and max_norm <= 0.0:
|
177 |
+
raise ValueError('"max_norm" must be larger than zero!')
|
178 |
+
|
179 |
+
if not isinstance(weight._sharding_spec, ChunkShardingSpec):
|
180 |
+
raise ValueError("Only ChunkShardingSpec supported for ShardedTensor ops!")
|
181 |
+
if len(weight.local_shards()) != 1:
|
182 |
+
raise ValueError("Only one local shard supported!")
|
183 |
+
|
184 |
+
|
185 |
+
def _handle_col_wise_sharding(
|
186 |
+
input, world_size, weight, local_shard, max_norm, norm_type, padding_idx, pg
|
187 |
+
):
|
188 |
+
"""
|
189 |
+
Entry-point function to handle the logic of col-wise sharding of weight
|
190 |
+
for embedding. (Detailed explanations of the logic can be found in
|
191 |
+
the comment for sharded_embedding.)
|
192 |
+
|
193 |
+
Args:
|
194 |
+
input: list of ID used for lookup and aggregation.
|
195 |
+
world_size: number of ranks.
|
196 |
+
weight: sharded weight tensor.
|
197 |
+
local_shard: col-wise shared local weight used for lookup.
|
198 |
+
max_norm: If given, each embedding vector with norm larger
|
199 |
+
than max_norm is renormalized to have norm max_norm.
|
200 |
+
Note: this will modify weight in-place.
|
201 |
+
norm_type: The p in the p-norm to compute for the max_norm option.
|
202 |
+
padding_idx: If specified, the entries at padding_idx do
|
203 |
+
not contribute to the gradient; therefore, the embedding
|
204 |
+
vector at padding_idx is not updated during training,
|
205 |
+
i.e. it remains as a fixed “pad”.
|
206 |
+
pg: process group.
|
207 |
+
|
208 |
+
Returns: final result of lookup.
|
209 |
+
"""
|
210 |
+
# allgather the inputs first for non Replicated Tensor.
|
211 |
+
gathered_inputs = all_gather(input, group=pg)
|
212 |
+
|
213 |
+
if max_norm is not None:
|
214 |
+
# max_norm changes the weight in-place
|
215 |
+
local_shard = _handle_max_norm_col_wise(
|
216 |
+
max_norm, norm_type, local_shard, input, world_size, gathered_inputs, pg
|
217 |
+
)
|
218 |
+
|
219 |
+
output = _handle_col_wise_sharding_base(
|
220 |
+
torch.nn.functional.embedding,
|
221 |
+
len(input.size()),
|
222 |
+
input,
|
223 |
+
world_size,
|
224 |
+
weight,
|
225 |
+
local_shard,
|
226 |
+
pg,
|
227 |
+
gathered_inputs,
|
228 |
+
padding_idx=padding_idx,
|
229 |
+
)
|
230 |
+
return (output, local_shard)
|
231 |
+
|
232 |
+
|
233 |
+
def _handle_row_wise_sharding(
|
234 |
+
input, world_size, weight, local_shard, max_norm, norm_type, padding_idx, rank, pg
|
235 |
+
):
|
236 |
+
"""
|
237 |
+
Entry-point function to handle the logic of row-wise sharding of weight
|
238 |
+
for embedding. (Detailed explanations of the logic can be found in
|
239 |
+
the comment for sharded_embedding.)
|
240 |
+
|
241 |
+
Args:
|
242 |
+
input: list of ID used for lookup and aggregation.
|
243 |
+
world_size: number of ranks.
|
244 |
+
weight: sharded weight tensor.
|
245 |
+
local_shard: row-wise shared local weight used for lookup.
|
246 |
+
max_norm: If given, each embedding vector with norm larger
|
247 |
+
than max_norm is renormalized to have norm max_norm.
|
248 |
+
Note: this will modify weight in-place.
|
249 |
+
norm_type: The p in the p-norm to compute for the max_norm option.
|
250 |
+
padding_idx: If specified, the entries at padding_idx do
|
251 |
+
not contribute to the gradient; therefore, the embedding
|
252 |
+
vector at padding_idx is not updated during training,
|
253 |
+
i.e. it remains as a fixed “pad”.
|
254 |
+
rank: # of cuda process.
|
255 |
+
pg: process group.
|
256 |
+
|
257 |
+
Returns: final result of lookup.
|
258 |
+
"""
|
259 |
+
# allgather the inputs first for non Replicated Tensor.
|
260 |
+
gather_inp = _all_gather_base_input(input, pg)
|
261 |
+
|
262 |
+
# Mask the input according to sharding spec.
|
263 |
+
lookup_input, padding_idx, padding_row = _handle_row_wise_mask(
|
264 |
+
gather_inp, padding_idx, weight, world_size, rank
|
265 |
+
)
|
266 |
+
|
267 |
+
# When input is a large tensor, the value of weight is changed.
|
268 |
+
# This is a walk-around for now. GH issue: #81717
|
269 |
+
if max_norm is not None:
|
270 |
+
torch.nn.functional.embedding(
|
271 |
+
torch.unique(lookup_input)[:-1],
|
272 |
+
local_shard,
|
273 |
+
padding_idx=padding_idx,
|
274 |
+
max_norm=max_norm,
|
275 |
+
norm_type=norm_type,
|
276 |
+
)
|
277 |
+
max_norm = None
|
278 |
+
|
279 |
+
local_input_embeddings = torch.nn.functional.embedding(
|
280 |
+
lookup_input,
|
281 |
+
torch.cat([local_shard, padding_row]),
|
282 |
+
padding_idx=padding_idx,
|
283 |
+
max_norm=max_norm,
|
284 |
+
norm_type=norm_type,
|
285 |
+
)
|
286 |
+
|
287 |
+
# TODO: Make the result a PartialTensor.
|
288 |
+
local_shards = local_input_embeddings.chunk(pg.size())
|
289 |
+
return reduce_scatter(
|
290 |
+
torch.empty_like(local_shards[0]),
|
291 |
+
list(local_shards),
|
292 |
+
group=pg,
|
293 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_shard/sharding_spec/chunk_sharding_spec_ops/embedding_bag.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import cast, List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.distributed as dist
|
6 |
+
from torch._C._distributed_c10d import ReduceOp
|
7 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
8 |
+
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
|
9 |
+
from torch.distributed._shard.sharding_spec.api import custom_sharding_spec_op
|
10 |
+
from torch.distributed.nn.functional import all_gather, reduce_scatter
|
11 |
+
|
12 |
+
from ._common import (
|
13 |
+
_all_gather_base_input,
|
14 |
+
_handle_col_wise_sharding_base,
|
15 |
+
_handle_max_norm_col_wise,
|
16 |
+
_handle_row_wise_mask,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
@custom_sharding_spec_op(ChunkShardingSpec, torch.nn.functional.embedding_bag)
|
21 |
+
def sharded_embedding_bag(types, args, kwargs, pg):
|
22 |
+
"""
|
23 |
+
Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding_bag``.
|
24 |
+
This method computes a sharded embedding bag aggregation and has the following limitations:
|
25 |
+
|
26 |
+
1. Supports only sharding of ``weight``.
|
27 |
+
2. Supports only ``ChunkShardingSpec``.
|
28 |
+
3. Supports only a single local shard per rank.
|
29 |
+
4. Supports all specs except for scale_grad_by_freq, sparse, etc.
|
30 |
+
|
31 |
+
Based on the dimension that the weight is sharded on, there are two
|
32 |
+
algorithms:
|
33 |
+
|
34 |
+
ROWWISE SHARDING
|
35 |
+
================
|
36 |
+
For row-wise sharding the weight is sharded on dimension 0.
|
37 |
+
|
38 |
+
The overall algorithm can be best explained with an example. Let's assume
|
39 |
+
the dims for input are (4 x 6) and W are (16 x 17) and W is sharded across
|
40 |
+
4 GPUs creating 4 shard of (4 x 17).
|
41 |
+
The algorithm is as follows:
|
42 |
+
|
43 |
+
1. First the input is all gathered to all ranks, since this is SPMD and
|
44 |
+
input is actually sharded across all ranks. The inputs then become a
|
45 |
+
4 (4 x 6) tensor on each rank. For example if the given input is
|
46 |
+
tensor([[6, 5, 2, 9, 6, 3],
|
47 |
+
[3, 1, 2, 4, 7, 6],
|
48 |
+
[4, 0, 4, 9, 8, 9],
|
49 |
+
[8, 6, 6, 4, 6, 1]])
|
50 |
+
on rank 0.
|
51 |
+
Then on every rank, we will have this tensor.
|
52 |
+
If input itself is already replicated, no all-gather will be done.
|
53 |
+
2. Next, we mask the ID which are not stored on that rank.
|
54 |
+
For example on rank 0, we store ID [0, 1, 2]. We only keep the ID
|
55 |
+
inside the set of numbers. The rest of them will be masked to an extra row.
|
56 |
+
The masked matrix will be used for embedding look up and is like:
|
57 |
+
tensor([[4, 4, 2, 4, 4, 4],
|
58 |
+
[4, 1, 2, 4, 4, 4],
|
59 |
+
[4, 0, 4, 4, 4, 4],
|
60 |
+
[4, 4, 4, 4, 4, 1]])
|
61 |
+
3. If ``max_norm`` is specified, the extra row guarantees that the mask ID will
|
62 |
+
not affect the behavior of weigh re-norm.
|
63 |
+
4. The example above only happens in one rank and each rank does a very similar thing.
|
64 |
+
For "Mean" mode we need to divide by either column size (2D) or the interval length
|
65 |
+
defined by the offset (excluding the row specified in ``padding_idx``).
|
66 |
+
We also need to mask the unexisting row to neg Inf so that negative value does not
|
67 |
+
gets wiped out in the "Max" mode.
|
68 |
+
|
69 |
+
COLWISE SHARDING
|
70 |
+
================
|
71 |
+
For col-wise sharding the weight is sharded on dimension 1.
|
72 |
+
|
73 |
+
The overall algorithm can be best explained with an example. Let's assume
|
74 |
+
the dims for input are (4 x 6) and W are (16 x 17) and W is sharded across
|
75 |
+
4 GPUs creating 3 shards of (16 x 5) and 1 shard of (16 x 2).
|
76 |
+
The algorithm is as follows:
|
77 |
+
|
78 |
+
1. First the input is broadcasted to all ranks, since this is SPMD we
|
79 |
+
actually do an all_gather for all the inputs resulting in 4 (4 x 6)
|
80 |
+
inputs on each rank.
|
81 |
+
2. Next we perform local embedding bag operation under the given mode by
|
82 |
+
apply each input (4 x 6) with the local shard (16 x 5) ((16 x 2) for the last).
|
83 |
+
This results in 4 (5 x 4) ((2 x 4) for the last) matrices on each rank.
|
84 |
+
We transpose the aggregation result.
|
85 |
+
3. Next, we concatenate these 4 matrices and perform an all2all to share the
|
86 |
+
appropriate (5 x 4) or (2 x 4) matrices to each rank.
|
87 |
+
4. Now, each rank receives a (17 x 4) matrix which is basically the
|
88 |
+
size of the result we need.
|
89 |
+
5. If placements are not in order any appropriate rearrangement of columns
|
90 |
+
are done for the (17 x 4) matrix and finally we transpose the output again.
|
91 |
+
6. If max_norm is specified, we manually sum up the norm and renorm. Because
|
92 |
+
the renorm must be in place, we need to override the local_shard to mimic
|
93 |
+
this behavior.
|
94 |
+
"""
|
95 |
+
# Validate input params
|
96 |
+
_validate_embedding_bag_param(args, kwargs)
|
97 |
+
|
98 |
+
input = args[0]
|
99 |
+
weight = args[1]
|
100 |
+
offsets = kwargs.get("offsets")
|
101 |
+
per_sample_weights = kwargs.get("per_sample_weights")
|
102 |
+
mode = kwargs.get("mode")
|
103 |
+
max_norm = kwargs.get("max_norm")
|
104 |
+
norm_type = kwargs.get("norm_type")
|
105 |
+
include_last_offset = kwargs.get("include_last_offset")
|
106 |
+
padding_idx = kwargs.get("padding_idx")
|
107 |
+
|
108 |
+
local_shard = weight.local_tensor().contiguous()
|
109 |
+
sharding_dim = weight._sharding_spec.dim
|
110 |
+
world_size = dist.get_world_size(pg)
|
111 |
+
rank = dist.get_rank(pg)
|
112 |
+
if include_last_offset:
|
113 |
+
offsets = offsets[:-1]
|
114 |
+
|
115 |
+
if sharding_dim == 1:
|
116 |
+
output, local_shard = _handle_col_wise_sharding(
|
117 |
+
input,
|
118 |
+
world_size,
|
119 |
+
weight,
|
120 |
+
local_shard,
|
121 |
+
offsets,
|
122 |
+
per_sample_weights,
|
123 |
+
mode,
|
124 |
+
max_norm,
|
125 |
+
norm_type,
|
126 |
+
padding_idx,
|
127 |
+
pg,
|
128 |
+
)
|
129 |
+
weight.local_shards()[0].tensor = local_shard
|
130 |
+
return output
|
131 |
+
elif sharding_dim == 0:
|
132 |
+
return _handle_row_wise_sharding(
|
133 |
+
input,
|
134 |
+
world_size,
|
135 |
+
weight,
|
136 |
+
local_shard,
|
137 |
+
offsets,
|
138 |
+
per_sample_weights,
|
139 |
+
mode,
|
140 |
+
max_norm,
|
141 |
+
norm_type,
|
142 |
+
padding_idx,
|
143 |
+
rank,
|
144 |
+
pg,
|
145 |
+
)
|
146 |
+
else:
|
147 |
+
raise RuntimeError(
|
148 |
+
f"nn.EmbeddingBag weight sharded on dim {sharding_dim} not supported!"
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
def _validate_embedding_bag_param(args, kwargs):
|
153 |
+
"""
|
154 |
+
Validate input params of sharded embeddingBag op.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
input: list of ID used for lookup and aggregation.
|
158 |
+
weight: sharded weight tensor.
|
159 |
+
kwargs: same as normal EmbeddingBag.
|
160 |
+
|
161 |
+
Return: None.
|
162 |
+
"""
|
163 |
+
|
164 |
+
input = args[0]
|
165 |
+
weight = args[1]
|
166 |
+
offsets = kwargs.get("offsets")
|
167 |
+
per_sample_weights = kwargs.get("per_sample_weights")
|
168 |
+
mode = kwargs.get("mode")
|
169 |
+
max_norm = kwargs.get("max_norm")
|
170 |
+
scale_grad_by_freq = kwargs.get("scale_grad_by_freq")
|
171 |
+
sparse = kwargs.get("sparse")
|
172 |
+
include_last_offset = kwargs.get("include_last_offset")
|
173 |
+
|
174 |
+
# Validate types
|
175 |
+
if not isinstance(input, torch.Tensor):
|
176 |
+
raise TypeError("input need to be torch.Tensor")
|
177 |
+
if offsets is not None and not isinstance(offsets, torch.Tensor):
|
178 |
+
raise TypeError("offsets need to be torch.Tensor")
|
179 |
+
if per_sample_weights is not None and not isinstance(
|
180 |
+
per_sample_weights, torch.Tensor
|
181 |
+
):
|
182 |
+
raise TypeError("per_sample_weights need to be torch.Tensor")
|
183 |
+
if not isinstance(weight, ShardedTensor):
|
184 |
+
raise TypeError("weight needs to be ShardedTensor")
|
185 |
+
if len(input.size()) > 2:
|
186 |
+
raise ValueError("Input more than 2 dims not supported")
|
187 |
+
weight_size = weight.size()
|
188 |
+
if len(weight_size) != 2:
|
189 |
+
raise ValueError("Weight needs to have exactly 2 dims")
|
190 |
+
if int(torch.min(input).item()) < 0:
|
191 |
+
raise ValueError(
|
192 |
+
"Index out of range in Input %d %d",
|
193 |
+
int(torch.min(input).item()),
|
194 |
+
weight_size[1],
|
195 |
+
)
|
196 |
+
if int(torch.max(input).item()) >= weight_size[0]:
|
197 |
+
raise ValueError(
|
198 |
+
"Index out of range in Input %d %d",
|
199 |
+
int(torch.max(input).item()),
|
200 |
+
weight_size[1],
|
201 |
+
)
|
202 |
+
if offsets is not None and len(input.size()) != 1:
|
203 |
+
raise ValueError("Input dimension needs to be exactly 1 dim")
|
204 |
+
if len(input.size()) == 1 and offsets is None:
|
205 |
+
raise ValueError("offsets is required for 1D input")
|
206 |
+
if per_sample_weights is not None and per_sample_weights.size() != input.size():
|
207 |
+
raise ValueError(
|
208 |
+
f"per_sample_weights size {per_sample_weights.size()} not equal to input size {input.size()}"
|
209 |
+
)
|
210 |
+
if mode is None:
|
211 |
+
mode = "mean"
|
212 |
+
if mode not in ["sum", "mean", "max"]:
|
213 |
+
raise ValueError(f"mode '{mode}' is not supported")
|
214 |
+
if scale_grad_by_freq:
|
215 |
+
raise RuntimeError(
|
216 |
+
'nn.Embedding weight sharded with flag on "scale_grad_by_freq" not supported!'
|
217 |
+
)
|
218 |
+
if sparse:
|
219 |
+
raise RuntimeError(
|
220 |
+
'nn.Embedding weight sharded with flag on "sparse" not supported!'
|
221 |
+
)
|
222 |
+
if include_last_offset and offsets is None:
|
223 |
+
raise ValueError('offsets is required for flag "include_last_offset"!')
|
224 |
+
if include_last_offset and cast(List[int], offsets)[-1] != input.size(0):
|
225 |
+
raise ValueError(
|
226 |
+
'offsets need to have the input size in the end when the flag "include_last_offset" is on!'
|
227 |
+
)
|
228 |
+
|
229 |
+
if max_norm and max_norm <= 0.0:
|
230 |
+
raise ValueError('"max_norm" must be larger than zero!')
|
231 |
+
|
232 |
+
if not isinstance(weight._sharding_spec, ChunkShardingSpec):
|
233 |
+
raise ValueError("Only ChunkShardingSpec supported for ShardedTensor ops!")
|
234 |
+
if len(weight.local_shards()) != 1:
|
235 |
+
raise ValueError("Only one local shard supported!")
|
236 |
+
|
237 |
+
|
238 |
+
def _handle_col_wise_sharding(
|
239 |
+
input,
|
240 |
+
world_size,
|
241 |
+
weight,
|
242 |
+
local_shard,
|
243 |
+
offsets,
|
244 |
+
per_sample_weights,
|
245 |
+
mode,
|
246 |
+
max_norm,
|
247 |
+
norm_type,
|
248 |
+
padding_idx,
|
249 |
+
pg,
|
250 |
+
):
|
251 |
+
"""
|
252 |
+
Entry-point function to handle the logic of col-wise sharding of weight
|
253 |
+
for embeddingBag. (Detailed explanations of the logic can be found in
|
254 |
+
the comment for sharded_embedding_bag.)
|
255 |
+
|
256 |
+
Args:
|
257 |
+
input: list of ID used for lookup and aggregation.
|
258 |
+
world_size: number of ranks.
|
259 |
+
weight: sharded weight tensor.
|
260 |
+
local_shard: col-wise shared local weight used for lookup.
|
261 |
+
offsets: list of start positions of each bag for 1D input.
|
262 |
+
per_sample_weights: weights for weighted sum mode.
|
263 |
+
mode: aggregation method of each bag.
|
264 |
+
max_norm: If given, each embedding vector with norm larger
|
265 |
+
than max_norm is renormalized to have norm max_norm.
|
266 |
+
Note: this will modify weight in-place.
|
267 |
+
norm_type: The p in the p-norm to compute for the max_norm option.
|
268 |
+
padding_idx: If specified, the entries at padding_idx do
|
269 |
+
not contribute to the gradient; therefore, the embedding
|
270 |
+
vector at padding_idx is not updated during training,
|
271 |
+
i.e. it remains as a fixed “pad”.
|
272 |
+
Note that the embedding vector at padding_idx is
|
273 |
+
excluded from the reduction.
|
274 |
+
pg: process group.
|
275 |
+
|
276 |
+
Return:
|
277 |
+
output: final result of lookup and aggregation.
|
278 |
+
local_shard: col-wise shared local weight used for lookup.
|
279 |
+
If max_norm, this will be the renormed weight.
|
280 |
+
"""
|
281 |
+
# allgather the special input of embedding bag first.
|
282 |
+
(
|
283 |
+
gathered_inputs,
|
284 |
+
gathered_per_sample_weights,
|
285 |
+
gathered_offsets,
|
286 |
+
) = _all_gather_embedding_bag_input(input, per_sample_weights, offsets, pg)
|
287 |
+
|
288 |
+
if max_norm is not None:
|
289 |
+
# max_norm changes the weight in-place
|
290 |
+
local_shard = _handle_max_norm_col_wise(
|
291 |
+
max_norm, norm_type, local_shard, input, world_size, gathered_inputs, pg
|
292 |
+
)
|
293 |
+
|
294 |
+
output = _handle_col_wise_sharding_base(
|
295 |
+
torch.nn.functional.embedding_bag,
|
296 |
+
1,
|
297 |
+
input,
|
298 |
+
world_size,
|
299 |
+
weight,
|
300 |
+
local_shard,
|
301 |
+
pg,
|
302 |
+
gathered_inputs,
|
303 |
+
mode=mode,
|
304 |
+
gathered_per_sample_weights=gathered_per_sample_weights,
|
305 |
+
gathered_offsets=gathered_offsets,
|
306 |
+
padding_idx=padding_idx,
|
307 |
+
)
|
308 |
+
return (output, local_shard)
|
309 |
+
|
310 |
+
|
311 |
+
def _handle_row_wise_sharding(
|
312 |
+
input,
|
313 |
+
world_size,
|
314 |
+
weight,
|
315 |
+
local_shard,
|
316 |
+
offsets,
|
317 |
+
per_sample_weights,
|
318 |
+
mode,
|
319 |
+
max_norm,
|
320 |
+
norm_type,
|
321 |
+
padding_idx,
|
322 |
+
rank,
|
323 |
+
pg,
|
324 |
+
):
|
325 |
+
"""
|
326 |
+
Entry-point function to handle the logic of row-wise sharding of weight
|
327 |
+
for embeddingBag. (Detailed explanations of the logic can be found in
|
328 |
+
the comment for sharded_embedding_bag.)
|
329 |
+
|
330 |
+
Args:
|
331 |
+
input: list of ID used for lookup and aggregation.
|
332 |
+
world_size: number of ranks.
|
333 |
+
weight: sharded weight tensor.
|
334 |
+
local_shard: row-wise shared local weight used for lookup.
|
335 |
+
offsets: list of start positions of each bag for 1D input.
|
336 |
+
per_sample_weights: weights for weighted sum mode.
|
337 |
+
mode: aggregation method of each bag.
|
338 |
+
max_norm: If given, each embedding vector with norm larger
|
339 |
+
than max_norm is renormalized to have norm max_norm.
|
340 |
+
Note: this will modify weight in-place.
|
341 |
+
norm_type: The p in the p-norm to compute for the max_norm option.
|
342 |
+
padding_idx: If specified, the entries at padding_idx do
|
343 |
+
not contribute to the gradient; therefore, the embedding
|
344 |
+
vector at padding_idx is not updated during training,
|
345 |
+
i.e. it remains as a fixed “pad”.
|
346 |
+
Note that the embedding vector at padding_idx is
|
347 |
+
excluded from the reduction.
|
348 |
+
rank: # of cuda process.
|
349 |
+
pg: process group.
|
350 |
+
|
351 |
+
Returns:
|
352 |
+
gathered_output: final result of lookup and aggregation.
|
353 |
+
"""
|
354 |
+
if input.dim() > 1 and per_sample_weights is None:
|
355 |
+
# allgather the inputs first for non Replicated Tensor.
|
356 |
+
gather_inp = _all_gather_base_input(input, pg)
|
357 |
+
else:
|
358 |
+
(
|
359 |
+
gathered_inputs,
|
360 |
+
gathered_per_sample_weights,
|
361 |
+
gathered_offsets,
|
362 |
+
) = _all_gather_embedding_bag_input(input, per_sample_weights, offsets, pg)
|
363 |
+
cat_dim = 0 if input.dim() != 1 else -1
|
364 |
+
gather_inp = torch.cat(gathered_inputs, dim=cat_dim)
|
365 |
+
if per_sample_weights is not None:
|
366 |
+
per_sample_weights = torch.cat(gathered_per_sample_weights, dim=cat_dim)
|
367 |
+
offset_add = 0 if input.dim() > 1 else input.size(0)
|
368 |
+
if offsets is not None:
|
369 |
+
offsets_list = torch.cat(
|
370 |
+
[gathered_offsets[i] + (offset_add * i) for i in range(pg.size())],
|
371 |
+
dim=cat_dim,
|
372 |
+
)
|
373 |
+
|
374 |
+
# Mask the input according to sharding spec.
|
375 |
+
lookup_input, padding_local, padding_row = _handle_row_wise_mask(
|
376 |
+
gather_inp, padding_idx, weight, world_size, rank
|
377 |
+
)
|
378 |
+
if mode == "max":
|
379 |
+
padding_row[:] = -float("Inf")
|
380 |
+
|
381 |
+
# When input is a large tensor, the value of weight is changed.
|
382 |
+
# This is a walk-around for now. GH issue: #81717.
|
383 |
+
if max_norm is not None:
|
384 |
+
torch.nn.functional.embedding_bag(
|
385 |
+
torch.unique(lookup_input)[:-1],
|
386 |
+
local_shard,
|
387 |
+
offsets=torch.tensor([0], device=local_shard.device, dtype=torch.long),
|
388 |
+
mode=mode,
|
389 |
+
per_sample_weights=None,
|
390 |
+
max_norm=max_norm,
|
391 |
+
norm_type=norm_type,
|
392 |
+
padding_idx=padding_local,
|
393 |
+
)
|
394 |
+
max_norm = None
|
395 |
+
result = torch.nn.functional.embedding_bag(
|
396 |
+
lookup_input,
|
397 |
+
torch.cat([local_shard, padding_row]),
|
398 |
+
offsets=offsets_list if offsets is not None else offsets, # type: ignore[possibly-undefined]
|
399 |
+
mode=mode if mode != "mean" else "sum",
|
400 |
+
per_sample_weights=per_sample_weights,
|
401 |
+
max_norm=max_norm,
|
402 |
+
norm_type=norm_type,
|
403 |
+
padding_idx=padding_local,
|
404 |
+
)
|
405 |
+
|
406 |
+
op = ReduceOp.SUM if mode != "max" else ReduceOp.MAX
|
407 |
+
# TODO: Make the result a PartialTensor and move the logic below there.
|
408 |
+
local_shards = result.chunk(pg.size())
|
409 |
+
result = reduce_scatter(
|
410 |
+
torch.empty_like(local_shards[0]),
|
411 |
+
list(local_shards),
|
412 |
+
op=op,
|
413 |
+
group=pg,
|
414 |
+
)
|
415 |
+
|
416 |
+
# For Mean, we cannot do the division until very end because the sum of means
|
417 |
+
# not equal to the mean of sum. (Divisor is different)
|
418 |
+
if mode == "mean":
|
419 |
+
if input.dim() > 1:
|
420 |
+
padding_idx = padding_idx if padding_idx is not None else -1
|
421 |
+
split_sizes = torch.sum(
|
422 |
+
torch.ne(input, padding_idx), dim=-1, dtype=local_shard.dtype
|
423 |
+
)
|
424 |
+
else:
|
425 |
+
split_sizes = torch.cat(
|
426 |
+
(
|
427 |
+
offsets[1 : offsets.size(0)] - offsets[0:-1],
|
428 |
+
(input.size(0) - offsets[-1]).unsqueeze(0),
|
429 |
+
),
|
430 |
+
dim=-1,
|
431 |
+
)
|
432 |
+
return torch.div(result, split_sizes.unsqueeze(1))
|
433 |
+
|
434 |
+
# Return the appropriate local result.
|
435 |
+
return result
|
436 |
+
|
437 |
+
|
438 |
+
def _all_gather_embedding_bag_input(input, per_sample_weights, offsets, pg):
|
439 |
+
"""
|
440 |
+
In case we need to gather input and all other parameters of embeddingBag
|
441 |
+
ops, we need to stack all input together to perform ``all_gather``
|
442 |
+
collective communication just once.
|
443 |
+
|
444 |
+
Note that since offsets does not share the same size as input and
|
445 |
+
is always smaller than input, we resize it during the communication.
|
446 |
+
|
447 |
+
Args:
|
448 |
+
input: tensor to be applied op on.
|
449 |
+
per_sample_weights: weights for weighted sum mode.
|
450 |
+
offsets: when input is 1D. offsets determines the starting
|
451 |
+
index position of each bag (sequence) in input.
|
452 |
+
pg: process group.
|
453 |
+
|
454 |
+
Returns:
|
455 |
+
gathered_inputs: list of input tensor gathered from each rank.
|
456 |
+
gathered_per_sample_weights: list of per_sample_weights from each rank.
|
457 |
+
gathered_offsets: list of offsets from each rank.
|
458 |
+
"""
|
459 |
+
input_to_gather = [input]
|
460 |
+
if per_sample_weights is not None:
|
461 |
+
input_to_gather.append(per_sample_weights)
|
462 |
+
if offsets is not None:
|
463 |
+
input_to_gather.append(offsets.clone().resize_(input.size()))
|
464 |
+
gathered_inputs = all_gather(torch.stack(input_to_gather), group=pg)
|
465 |
+
|
466 |
+
gathered_per_sample_weights = None
|
467 |
+
if per_sample_weights is not None:
|
468 |
+
gathered_per_sample_weights = [t[1] for t in gathered_inputs]
|
469 |
+
gathered_offsets = None
|
470 |
+
if offsets is not None:
|
471 |
+
idx = 2 if per_sample_weights is not None else 1
|
472 |
+
gathered_offsets = [
|
473 |
+
t[idx].resize_(offsets.size()).to(offsets.dtype) for t in gathered_inputs
|
474 |
+
]
|
475 |
+
gathered_inputs = [t[0].to(input.dtype) for t in gathered_inputs]
|
476 |
+
return gathered_inputs, gathered_per_sample_weights, gathered_offsets
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_sharded_tensor/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Keep old package for BC purposes, this file should be removed once
|
2 |
+
# everything moves to the `torch.distributed._shard` package.
|
3 |
+
import sys
|
4 |
+
import torch
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
from torch.distributed._shard.sharded_tensor import * # noqa: F403
|
8 |
+
warnings.warn(
|
9 |
+
"torch.distributed._sharded_tensor will be deprecated, use torch.distributed._shard.sharded_tensor instead",
|
10 |
+
DeprecationWarning
|
11 |
+
)
|
12 |
+
sys.modules['torch.distributed._sharded_tensor'] = torch.distributed._shard.sharded_tensor
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/_sharded_tensor/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (566 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/algorithms/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .join import Join
|
2 |
+
from .join import Joinable
|
3 |
+
from .join import JoinHook
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/algorithms/join.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from types import TracebackType
|
4 |
+
from typing import Any, List, NamedTuple, Optional, Type
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.distributed as dist
|
8 |
+
|
9 |
+
__all__ = ['JoinHook', 'Joinable', 'Join']
|
10 |
+
|
11 |
+
class JoinHook:
|
12 |
+
r"""
|
13 |
+
This defines a join hook, which provides two entry points in the join context manager.
|
14 |
+
|
15 |
+
Entry points : a main hook, which is called repeatedly while there exists a non-joined
|
16 |
+
process, and a post-hook, which is called once all processes have joined.
|
17 |
+
|
18 |
+
To implement a join hook for the generic join context manager, define a
|
19 |
+
class that inherits from :class:`JoinHook` and override ``main_hook()`` and
|
20 |
+
``post_hook()`` as appropriate.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def main_hook(self) -> None:
|
24 |
+
r"""Call this hook while there exists a non-joined process to shadow collective communications in a training iteration.
|
25 |
+
|
26 |
+
Training iteration i.e., in one forward pass, backward pass, and optimizer step.
|
27 |
+
"""
|
28 |
+
...
|
29 |
+
|
30 |
+
def post_hook(self, is_last_joiner: bool) -> None:
|
31 |
+
r"""
|
32 |
+
Call hook after all processes have joined.
|
33 |
+
|
34 |
+
It is passed an additional ``bool`` argument ``is_last_joiner``, which indicates if the rank is one of the last to join.
|
35 |
+
|
36 |
+
Arguments:
|
37 |
+
is_last_joiner (bool): ``True`` if the rank is one of the last to
|
38 |
+
join; ``False`` otherwise.
|
39 |
+
"""
|
40 |
+
...
|
41 |
+
|
42 |
+
|
43 |
+
class Joinable(ABC):
|
44 |
+
r"""
|
45 |
+
This defines an abstract base class for joinable classes.
|
46 |
+
|
47 |
+
A joinable class
|
48 |
+
(inheriting from :class:`Joinable`) should implement :meth:`join_hook`,
|
49 |
+
which returns a :class:`JoinHook` instance, in addition to
|
50 |
+
:meth:`join_device` and :meth:`join_process_group` that return device and
|
51 |
+
process group information, respectively.
|
52 |
+
"""
|
53 |
+
|
54 |
+
@abstractmethod
|
55 |
+
def __init__(self):
|
56 |
+
super().__init__()
|
57 |
+
self._join_config = _JoinConfig.construct_disabled_join_config()
|
58 |
+
|
59 |
+
@abstractmethod
|
60 |
+
def join_hook(self, **kwargs) -> JoinHook:
|
61 |
+
r"""
|
62 |
+
Return a :class:`JoinHook` instance for the given :class:`Joinable`.
|
63 |
+
|
64 |
+
Arguments:
|
65 |
+
kwargs (dict): a :class:`dict` containing any keyword arguments
|
66 |
+
to modify the behavior of the join hook at run time; all
|
67 |
+
:class:`Joinable` instances sharing the same join context
|
68 |
+
manager are forwarded the same value for ``kwargs``.
|
69 |
+
"""
|
70 |
+
...
|
71 |
+
|
72 |
+
@property
|
73 |
+
@abstractmethod
|
74 |
+
def join_device(self) -> torch.device:
|
75 |
+
r"""Return the device from which to perform collective communications needed by the join context manager."""
|
76 |
+
...
|
77 |
+
|
78 |
+
@property
|
79 |
+
@abstractmethod
|
80 |
+
def join_process_group(self) -> Any:
|
81 |
+
r"""Returns the process group for the collective communications needed by the join context manager itself."""
|
82 |
+
...
|
83 |
+
|
84 |
+
|
85 |
+
class _JoinConfig(NamedTuple):
|
86 |
+
r"""This includes all fields needed from a :class:`Joinable` instance for the join context manager side."""
|
87 |
+
|
88 |
+
enable: bool
|
89 |
+
throw_on_early_termination: bool
|
90 |
+
is_first_joinable: bool
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def construct_disabled_join_config():
|
94 |
+
r"""Return a :class:`_JoinConfig` instance indicating that join-related logic should be disabled.
|
95 |
+
|
96 |
+
e.g. if the caller is not in a join context manager.
|
97 |
+
"""
|
98 |
+
return _JoinConfig(
|
99 |
+
enable=False,
|
100 |
+
throw_on_early_termination=False,
|
101 |
+
is_first_joinable=False
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
class Join:
|
107 |
+
r"""
|
108 |
+
This class defines the generic join context manager, which allows custom hooks to be called after a process joins.
|
109 |
+
|
110 |
+
These hooks should shadow the
|
111 |
+
collective communications of non-joined processes to prevent hanging and
|
112 |
+
erroring and to ensure algorithmic correctness. Refer to :class:`JoinHook`
|
113 |
+
for details about the hook definition.
|
114 |
+
|
115 |
+
.. warning::
|
116 |
+
The context manager requires each participating :class:`Joinable` to
|
117 |
+
call the method :meth:`notify_join_context()` before its own per-
|
118 |
+
iteration collective communications to ensure correctness.
|
119 |
+
|
120 |
+
.. warning::
|
121 |
+
The context manager requires that all ``process_group`` attributes in
|
122 |
+
the :class:`JoinHook` objects are the same. If there are multiple
|
123 |
+
:class:`JoinHook` objects, then the ``device`` of the first is used.
|
124 |
+
The process group and device information is used for checking for non-
|
125 |
+
joined processes and for notifying processes to throw an exception if
|
126 |
+
``throw_on_early_termination`` is enabled, both of which using an all-
|
127 |
+
reduce.
|
128 |
+
|
129 |
+
Arguments:
|
130 |
+
joinables (List[Joinable]): a list of the participating
|
131 |
+
:class:`Joinable` s; their hooks are iterated over in the given
|
132 |
+
order.
|
133 |
+
|
134 |
+
enable (bool): a flag enabling uneven input detection; setting to
|
135 |
+
``False`` disables the context manager's functionality and should
|
136 |
+
only be set when the user knows the inputs will not be uneven
|
137 |
+
(default: ``True``).
|
138 |
+
|
139 |
+
throw_on_early_termination (bool): a flag controlling whether to throw an
|
140 |
+
exception upon detecting uneven inputs (default: ``False``).
|
141 |
+
|
142 |
+
Example::
|
143 |
+
|
144 |
+
>>> import os
|
145 |
+
>>> import torch
|
146 |
+
>>> import torch.distributed as dist
|
147 |
+
>>> import torch.multiprocessing as mp
|
148 |
+
>>> # xdoctest: +SKIP
|
149 |
+
>>> import torch.nn.parallel.DistributedDataParallel as DDP
|
150 |
+
>>> import torch.distributed.optim.ZeroRedundancyOptimizer as ZeRO
|
151 |
+
>>> from torch.distributed.algorithms.join import Join
|
152 |
+
>>>
|
153 |
+
>>> # On each spawned worker
|
154 |
+
>>> def worker(rank):
|
155 |
+
>>> dist.init_process_group("nccl", rank=rank, world_size=2)
|
156 |
+
>>> model = DDP(torch.nn.Linear(1, 1).to(rank), device_ids=[rank])
|
157 |
+
>>> optim = ZeRO(model.parameters(), torch.optim.Adam, lr=0.01)
|
158 |
+
>>> # Rank 1 gets one more input than rank 0
|
159 |
+
>>> inputs = [torch.tensor([1.]).to(rank) for _ in range(10 + rank)]
|
160 |
+
>>> with Join([model, optim]):
|
161 |
+
>>> for input in inputs:
|
162 |
+
>>> loss = model(input).sum()
|
163 |
+
>>> loss.backward()
|
164 |
+
>>> optim.step()
|
165 |
+
>>> # All ranks reach here without hanging/erroring
|
166 |
+
"""
|
167 |
+
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
joinables: List[Joinable],
|
171 |
+
enable: bool = True,
|
172 |
+
throw_on_early_termination: bool = False,
|
173 |
+
**kwargs,
|
174 |
+
):
|
175 |
+
if len(joinables) == 0:
|
176 |
+
raise ValueError("The join context manager requires at least one joinable")
|
177 |
+
self._joinables = joinables
|
178 |
+
self._join_hooks = [joinable.join_hook(**kwargs) for joinable in self._joinables]
|
179 |
+
self._enable = enable
|
180 |
+
self._throw_on_early_termination = throw_on_early_termination
|
181 |
+
self._set_joinable_configs()
|
182 |
+
self._extract_dist_info()
|
183 |
+
|
184 |
+
def _set_joinable_configs(self) -> None:
|
185 |
+
r"""Set the :class:`_JoinConfig` of each participating :class:`Joinable`."""
|
186 |
+
assert len(self._joinables) > 0
|
187 |
+
is_first_joinable = True
|
188 |
+
for joinable in self._joinables:
|
189 |
+
joinable._join_config = _JoinConfig(
|
190 |
+
enable=self._enable,
|
191 |
+
throw_on_early_termination=self._throw_on_early_termination,
|
192 |
+
is_first_joinable=is_first_joinable
|
193 |
+
)
|
194 |
+
is_first_joinable = False
|
195 |
+
|
196 |
+
def _extract_dist_info(self) -> None:
|
197 |
+
r"""
|
198 |
+
Extract the process group and device information from the joinables.
|
199 |
+
|
200 |
+
If there are multiple joinables, then the context manager uses the
|
201 |
+
first specified device.
|
202 |
+
|
203 |
+
Preconditions:
|
204 |
+
``self._joinables`` is not ``None`` and is non-empty.
|
205 |
+
|
206 |
+
Raises:
|
207 |
+
ValueError
|
208 |
+
If there are multiple conflicting ``process_group`` attributes
|
209 |
+
among the ``Joinable`` objects.
|
210 |
+
"""
|
211 |
+
process_group = None
|
212 |
+
device = None
|
213 |
+
for joinable in self._joinables:
|
214 |
+
if process_group is None:
|
215 |
+
process_group = joinable.join_process_group
|
216 |
+
elif process_group != joinable.join_process_group:
|
217 |
+
raise ValueError("Using join context manager with multiple process groups")
|
218 |
+
if device is None:
|
219 |
+
device = joinable.join_device
|
220 |
+
self._process_group = process_group
|
221 |
+
self._rank = dist.get_rank(self._process_group)
|
222 |
+
self._device = device
|
223 |
+
|
224 |
+
def __enter__(self):
|
225 |
+
...
|
226 |
+
|
227 |
+
def __exit__(
|
228 |
+
self,
|
229 |
+
type: Optional[Type[BaseException]],
|
230 |
+
value: Optional[BaseException],
|
231 |
+
traceback: Optional[TracebackType]
|
232 |
+
):
|
233 |
+
r"""
|
234 |
+
Repeatedly runs the main hooks until all processes join; then, runs the post-hooks.
|
235 |
+
|
236 |
+
Raises:
|
237 |
+
RuntimeError
|
238 |
+
If ``throw_on_early_termination=True``.
|
239 |
+
"""
|
240 |
+
if not self._enable or type:
|
241 |
+
return # propagate the exception directly if one was raised
|
242 |
+
|
243 |
+
all_procs_joined = False
|
244 |
+
is_last_joiner = True
|
245 |
+
|
246 |
+
i = 0
|
247 |
+
WARN_THRESHOLD = 1000
|
248 |
+
warnings.simplefilter("once")
|
249 |
+
|
250 |
+
while not all_procs_joined:
|
251 |
+
if i > WARN_THRESHOLD:
|
252 |
+
warnings.warn(
|
253 |
+
"Detected uneven input skew of greater than "
|
254 |
+
f"{WARN_THRESHOLD}. This means that rank "
|
255 |
+
f"{self._rank} has at least {WARN_THRESHOLD} "
|
256 |
+
f"fewer inputs than other currently-active ranks. "
|
257 |
+
"This level of skew could lead to performance "
|
258 |
+
"degradation during training."
|
259 |
+
)
|
260 |
+
# Shadow the all-reduce in non-joined processes
|
261 |
+
num_nonjoined_procs = self._get_num_nonjoined_procs()
|
262 |
+
if num_nonjoined_procs == 0:
|
263 |
+
all_procs_joined = True
|
264 |
+
else:
|
265 |
+
if self._throw_on_early_termination:
|
266 |
+
self._notify_procs_to_terminate()
|
267 |
+
|
268 |
+
# Run main hooks
|
269 |
+
for join_hook in self._join_hooks:
|
270 |
+
join_hook.main_hook()
|
271 |
+
|
272 |
+
is_last_joiner = False
|
273 |
+
i += 1
|
274 |
+
|
275 |
+
# Run post-hooks
|
276 |
+
for join_hook in self._join_hooks:
|
277 |
+
join_hook.post_hook(is_last_joiner)
|
278 |
+
|
279 |
+
def _get_num_nonjoined_procs(self):
|
280 |
+
r"""Return the number of non-joined processes by shadowing an all-reduce in the non-joined processes."""
|
281 |
+
num_nonjoined_procs = torch.zeros(1, device=self._device)
|
282 |
+
dist.all_reduce(num_nonjoined_procs, group=self._process_group)
|
283 |
+
return num_nonjoined_procs.item()
|
284 |
+
|
285 |
+
def _notify_procs_to_terminate(self):
|
286 |
+
r"""Schedule an all-reduce to notify non-joined processes to terminate.
|
287 |
+
|
288 |
+
Also raise a ``RuntimeError`` indicating that the current process has exhausted its inputs.
|
289 |
+
"""
|
290 |
+
ones = torch.ones(1, device=self._device)
|
291 |
+
dist.all_reduce(ones, group=self._process_group)
|
292 |
+
raise RuntimeError(f"Rank {self._rank} exhausted all inputs.")
|
293 |
+
|
294 |
+
@staticmethod
|
295 |
+
def notify_join_context(joinable: Joinable):
|
296 |
+
r"""
|
297 |
+
Notifies the join context manager that the calling process has not yet joined.
|
298 |
+
|
299 |
+
Then, if ``throw_on_early_termination=True``, checks if uneven inputs have been detected
|
300 |
+
(i.e. if one process has already joined) and throws an exception if so.
|
301 |
+
|
302 |
+
This method should be called from a :class:`Joinable` object before
|
303 |
+
its per-iteration collective communications. For example, this should
|
304 |
+
be called at the beginning of the forward pass in
|
305 |
+
:class:`DistributedDataParallel`.
|
306 |
+
|
307 |
+
Only the first :class:`Joinable` object passed into the context
|
308 |
+
manager performs the collective communications in this method, and
|
309 |
+
for the others, this method is vacuous.
|
310 |
+
|
311 |
+
Arguments:
|
312 |
+
joinable (Joinable): the :class:`Joinable` object calling this
|
313 |
+
method.
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
An async work handle for the all-reduce meant to notify the context
|
317 |
+
manager that the process has not yet joined if ``joinable`` is the
|
318 |
+
first one passed into the context manager; ``None`` otherwise.
|
319 |
+
"""
|
320 |
+
assert hasattr(joinable, "_join_config"), \
|
321 |
+
f"Check that the {type(joinable)} constructor calls the " \
|
322 |
+
"``Joinable`` constructor"
|
323 |
+
|
324 |
+
join_config = joinable._join_config
|
325 |
+
# First joinable is responsible for the collective communications
|
326 |
+
if not join_config.is_first_joinable or not join_config.enable:
|
327 |
+
return None
|
328 |
+
|
329 |
+
device = joinable.join_device
|
330 |
+
process_group = joinable.join_process_group
|
331 |
+
|
332 |
+
# Schedule an all-reduce to indicate that the caller has not yet joined
|
333 |
+
ones = torch.ones(1, device=device)
|
334 |
+
work = dist.all_reduce(ones, group=process_group, async_op=True)
|
335 |
+
|
336 |
+
if join_config.throw_on_early_termination:
|
337 |
+
# Check if uneven inputs have been detected
|
338 |
+
zeros = torch.zeros(1, device=device)
|
339 |
+
dist.all_reduce(zeros, group=process_group)
|
340 |
+
should_throw = zeros.item()
|
341 |
+
if should_throw:
|
342 |
+
raise RuntimeError(
|
343 |
+
"Detected at least one rank that exhausted inputs. "
|
344 |
+
"Throwing across all ranks."
|
345 |
+
)
|
346 |
+
return work
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/averagers.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from typing import Union, Iterable, Dict
|
4 |
+
import torch
|
5 |
+
import torch.distributed as dist
|
6 |
+
import torch.distributed.algorithms.model_averaging.utils as utils
|
7 |
+
|
8 |
+
__all__ = ['ModelAverager', 'PeriodicModelAverager']
|
9 |
+
|
10 |
+
class ModelAverager(ABC):
|
11 |
+
r"""Base class for all model averagers.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
process_group: The process group to be used for all-reduce.
|
15 |
+
If ``None``, the default process group, which
|
16 |
+
is created by :func:`torch.distributed.init_process_group`,
|
17 |
+
will be used. (default: ``None``)
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, process_group=None):
|
21 |
+
self.process_group = (
|
22 |
+
process_group if process_group is not None else dist.group.WORLD
|
23 |
+
)
|
24 |
+
self.step = 0
|
25 |
+
|
26 |
+
@abstractmethod
|
27 |
+
def average_parameters(self, params):
|
28 |
+
raise NotImplementedError
|
29 |
+
|
30 |
+
|
31 |
+
class PeriodicModelAverager(ModelAverager):
|
32 |
+
r"""
|
33 |
+
Averages parameters periodically after the warm-up stage.
|
34 |
+
|
35 |
+
This can be used for running `post-local SGD <https://arxiv.org/abs/1808.07217>`_,
|
36 |
+
by running :class:`~torch.nn.DistributedDataParallel` (DDP)
|
37 |
+
using the subgroups created by :meth:`~torch.distributed.new_subgroups`.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
period (int): The number of steps per model averaging.
|
41 |
+
Usually the period should be greater than ``1`` to reduce the communication cost.
|
42 |
+
Otherwise, only DDP needs to be used.
|
43 |
+
warmup_steps (int): The number of warm-up steps. During this stage,
|
44 |
+
model averaging is skipped.
|
45 |
+
process_group: The process group to be used for all-reduce.
|
46 |
+
If ``None``, the default process group, which
|
47 |
+
is created by :func:`torch.distributed.init_process_group`,
|
48 |
+
will be used. (default: ``None``)
|
49 |
+
|
50 |
+
Example::
|
51 |
+
|
52 |
+
>>> # xdoctest: +SKIP("undefined variables")
|
53 |
+
>>> import torch
|
54 |
+
>>> import torch.distributed as dist
|
55 |
+
>>> import torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook as post_localSGD
|
56 |
+
>>> import torch.distributed.algorithms.model_averaging.averagers as averagers
|
57 |
+
>>> import torch.nn as nn
|
58 |
+
>>>
|
59 |
+
>>> dist.init_process_group("nccl", rank=rank, world_size=16)
|
60 |
+
>>> torch.cuda.set_device(rank)
|
61 |
+
>>> module = nn.Linear(1, 1, bias=False).cuda()
|
62 |
+
>>> model = nn.parallel.DistributedDataParallel(
|
63 |
+
>>> module, device_ids=[rank], output_device=rank
|
64 |
+
>>> )
|
65 |
+
>>> # Register a post-localSGD communication hook.
|
66 |
+
>>> state = PostLocalSGDState(process_group=None, subgroup=None, start_localSGD_iter=100)
|
67 |
+
>>> model.register_comm_hook(state, post_localSGD_hook)
|
68 |
+
>>>
|
69 |
+
>>> # In the first 100 steps, run global gradient averaging like normal DDP at every step.
|
70 |
+
>>> # After 100 steps, run model averaging every 4 steps.
|
71 |
+
>>> # Note that ``warmup_steps`` must be the same as ``start_localSGD_iter`` used in ``PostLocalSGDState``.
|
72 |
+
>>> averager = averagers.PeriodicModelAverager(period=4, warmup_steps=100)
|
73 |
+
>>> for step in range(0, 200):
|
74 |
+
>>> optimizer.zero_grad()
|
75 |
+
>>> loss = loss_fn(output, labels)
|
76 |
+
>>> loss.backward()
|
77 |
+
>>> optimizer.step()
|
78 |
+
>>> # Will average model parameters globally every 4 steps. Thus,
|
79 |
+
>>> # inter-node communication only occurs every 4 iterations after
|
80 |
+
>>> # the initial ``warmup_steps`` period.
|
81 |
+
>>> averager.average_parameters(model.parameters())
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
period,
|
87 |
+
warmup_steps=0,
|
88 |
+
process_group=None
|
89 |
+
):
|
90 |
+
super().__init__(process_group)
|
91 |
+
if warmup_steps < 0:
|
92 |
+
raise ValueError("Arg ``warmup_steps`` must be a non-negative number.")
|
93 |
+
self.warmup_steps = warmup_steps
|
94 |
+
if period < 1:
|
95 |
+
raise ValueError("Arg ``period`` must be a positive value.")
|
96 |
+
elif period == 1:
|
97 |
+
warnings.warn(
|
98 |
+
"When period is 1, no need to use model averaging because the communication cost "
|
99 |
+
"of all-reducing parameters will be no less than the cost of all-reducing gradients "
|
100 |
+
"by DistributedDataParallel in the backward pass. Therefore, only "
|
101 |
+
"DistributedDataParallel should be used for this case."
|
102 |
+
)
|
103 |
+
self.period = period
|
104 |
+
|
105 |
+
def average_parameters(self, params: Union[Iterable[torch.nn.Parameter], Iterable[Dict[str, torch.nn.Parameter]]]):
|
106 |
+
"""
|
107 |
+
Averages parameters or parameter groups of an optimizer if ``step`` is no less than ``warmup_steps``.
|
108 |
+
|
109 |
+
Can be divided by ``period``, where ``step`` is increased by 1
|
110 |
+
at each iteration in the training loop.
|
111 |
+
Args:
|
112 |
+
params: The parameters of a model or parameter groups of an optimizer.
|
113 |
+
|
114 |
+
"""
|
115 |
+
if (
|
116 |
+
self.step >= self.warmup_steps
|
117 |
+
and (self.step - self.warmup_steps) % self.period == 0
|
118 |
+
):
|
119 |
+
utils.average_parameters_or_parameter_groups(params, self.process_group)
|
120 |
+
self.step += 1
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/utils.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa C101
|
2 |
+
import itertools
|
3 |
+
from typing import Union, Iterable, Dict, Iterator
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
# The two imports below are not always available depending on the
|
8 |
+
# USE_DISTRIBUTED compile flag. Make sure they raise import error
|
9 |
+
# if we're trying to use them.
|
10 |
+
from torch.distributed import ProcessGroup, group
|
11 |
+
|
12 |
+
__all__ = ["average_parameters", "get_params_to_average", "average_parameters_or_parameter_groups"]
|
13 |
+
|
14 |
+
def average_parameters(
|
15 |
+
params: Iterator[torch.nn.Parameter], process_group: ProcessGroup
|
16 |
+
):
|
17 |
+
"""
|
18 |
+
Averages all the given parameters.
|
19 |
+
|
20 |
+
For allreduce efficiency, all the parameters are flattened into a contiguous buffer.
|
21 |
+
Thus, it requires extra memory of the same size as the given parameters.
|
22 |
+
"""
|
23 |
+
group_to_use = process_group if process_group is not None else group.WORLD
|
24 |
+
# Do not update any parameter if not in the process group.
|
25 |
+
if dist._rank_not_in_group(group_to_use):
|
26 |
+
return
|
27 |
+
|
28 |
+
params_it1, params_it2 = itertools.tee(params)
|
29 |
+
# If the input parameters have different data types,
|
30 |
+
# packing these parameters will trigger an implicit type up-casting.
|
31 |
+
# The original parameter data types will be restored during the subsequent unpacking.
|
32 |
+
flat_params = torch.cat([p.data.reshape(-1) for p in params_it1])
|
33 |
+
flat_params /= dist.get_world_size(group_to_use)
|
34 |
+
# Make sure the allreduce will not conflict with any other ongoing process group.
|
35 |
+
if torch.cuda.is_available():
|
36 |
+
torch.cuda.synchronize()
|
37 |
+
dist.all_reduce(flat_params, group=group_to_use)
|
38 |
+
|
39 |
+
offset = 0
|
40 |
+
for p in params_it2:
|
41 |
+
p.data = flat_params[offset : offset + p.numel()].view_as(p).type_as(p)
|
42 |
+
offset += p.numel()
|
43 |
+
|
44 |
+
|
45 |
+
def get_params_to_average(params: Union[Iterable[torch.nn.Parameter], Iterable[Dict[str, torch.nn.Parameter]]]):
|
46 |
+
"""
|
47 |
+
Return a list of parameters that need to average.
|
48 |
+
|
49 |
+
This filters out the parameters that do not contain any gradients.
|
50 |
+
Args:
|
51 |
+
params: The parameters of a model or parameter groups of an optimizer.
|
52 |
+
"""
|
53 |
+
filtered_params = []
|
54 |
+
for param in params:
|
55 |
+
if isinstance(param, torch.nn.Parameter):
|
56 |
+
# model.parameters() input
|
57 |
+
param_data = param
|
58 |
+
if param_data.grad is not None:
|
59 |
+
filtered_params.append(param_data)
|
60 |
+
elif isinstance(param, dict):
|
61 |
+
# optimizer.param_groups input
|
62 |
+
for param_data in param["params"]:
|
63 |
+
if param_data.grad is not None:
|
64 |
+
filtered_params.append(param_data)
|
65 |
+
else:
|
66 |
+
raise NotImplementedError(f"Parameter input of type {type(param)} is not supported")
|
67 |
+
return filtered_params
|
68 |
+
|
69 |
+
|
70 |
+
def average_parameters_or_parameter_groups(params: Union[Iterable[torch.nn.Parameter], Iterable[Dict[str, torch.nn.Parameter]]], process_group: ProcessGroup):
|
71 |
+
"""Averages parameters of a model or parameter groups of an optimizer."""
|
72 |
+
average_parameters(iter(get_params_to_average(params)), process_group)
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/__init__.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env/python3
|
2 |
+
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This source code is licensed under the BSD-style license found in the
|
7 |
+
# LICENSE file in the root directory of this source tree.
|
8 |
+
|
9 |
+
"""
|
10 |
+
|
11 |
+
Torchelastic agent and user worker failover contract:
|
12 |
+
|
13 |
+
**TL;DR;**:
|
14 |
+
|
15 |
+
* TE(torchelastic) expects user workers to finish with the 5 minutes drift
|
16 |
+
* It is better to design DDP app to fail for all workers, rather than a single one.
|
17 |
+
* TE does not synchronize number of restarts between agents
|
18 |
+
* TE re-rendezvous does not trigger restart decrease
|
19 |
+
* When a single agent finishes its job(successfully or not), it will close rendezvous.
|
20 |
+
If other agents still have workers in progress, they will be terminated.
|
21 |
+
* Based on above, scale down does not work if at least single agent finishes the job.
|
22 |
+
* When Scale up is detected by agents, it will not decrease ``max_restarts``
|
23 |
+
|
24 |
+
|
25 |
+
In general TE(torchelastic) can launch arbitrary user code, but there is some
|
26 |
+
clarifications need to be done around what failover mechanism torchelastic
|
27 |
+
provides and what failover mechanism it expects from user workers.
|
28 |
+
|
29 |
+
Torchelastic currently supports DDP style applications. That means that
|
30 |
+
TE expects *ALL* workers finish approximately at the same time. In practice,
|
31 |
+
it is nearly to impossible to guarantee that all workers in arbitrary
|
32 |
+
DDP application finish at the time, so TE provides a finalization barrier
|
33 |
+
that waits for TIMEOUT(5 minutes) for worker finalization.
|
34 |
+
|
35 |
+
**Worker Failure**
|
36 |
+
|
37 |
+
When worker fails, TE will check the number of restarts
|
38 |
+
available, if there is more than 0 restarts, TE will start a new rendezvous
|
39 |
+
round and restart the worker process. New rendezvous round will other
|
40 |
+
TE agents to terminate their workers.
|
41 |
+
|
42 |
+
.. note:: The TE agent does not synchronize restarts between themselves.
|
43 |
+
When a single agent performs restart, it will trigger a local ``max_restarts``
|
44 |
+
decrease, other agent will not decrease their ``max_restarts``.
|
45 |
+
the user to run the distributed application locally on a dev host.
|
46 |
+
|
47 |
+
A single worker failure can cause the whole cluster to fail:
|
48 |
+
If a single worker is constantly failing, it will cause the TE agent
|
49 |
+
``max_restarts`` to go to zero. This will cause an agent to finish its
|
50 |
+
work and close rendezvous. If there are any other workers on different
|
51 |
+
agents, they will be terminated.
|
52 |
+
|
53 |
+
|
54 |
+
**Re-Rendezvous**
|
55 |
+
|
56 |
+
Re-rendezvous occurs when TE agents detect a new node
|
57 |
+
trying to joint a cluster. TE will not decrease ``max_restarts``. TE agents
|
58 |
+
will terminate its workers and start a new rendezvous round.
|
59 |
+
|
60 |
+
Note about DynamicRendezvous(etcd-v2, c10d-experimental): If the rendezvous
|
61 |
+
has already max_nodes, the new node won't be added to the wait list right
|
62 |
+
away since there is no need to tear down a rendezvous that is already fully
|
63 |
+
utilized. The new node will wait until its timeout (600 secs by default)
|
64 |
+
and periodically check the number of participants. If the number becomes
|
65 |
+
less than max_nodes, it will be added to the wait list; otherwise, it will time out after 600 secs.
|
66 |
+
|
67 |
+
*Scale up event*. When scale up event happens, torchelastic rendezvous
|
68 |
+
will detect that there are new nodes trying to join. Torchelastic agent
|
69 |
+
will stop all workers and perform re-rendezvous. Note: when scale up event
|
70 |
+
happens, *``max_restarts``* will *not* decrease.
|
71 |
+
|
72 |
+
*Scale down event*. When scale down event happens, rendezvous will not
|
73 |
+
notify the torchelastic agent about it. If TE agent launched with ``max_restarts=0`` ,
|
74 |
+
it relies on the underlying scheduler to handle job restart. If the ``max_restarts>0`` ,
|
75 |
+
TE agent will terminate workers and start a new rdzv round, which is a *Scale up event*.
|
76 |
+
|
77 |
+
"""
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/agent/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/__init__.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This source code is licensed under the BSD-style license found in the
|
7 |
+
# LICENSE file in the root directory of this source tree.
|
8 |
+
|
9 |
+
"""
|
10 |
+
The elastic agent is the control plane of torchelastic.
|
11 |
+
|
12 |
+
It is a process that launches and manages underlying worker processes.
|
13 |
+
The agent is responsible for:
|
14 |
+
|
15 |
+
1. Working with distributed torch: the workers are started with all the
|
16 |
+
necessary information to successfully and trivially call
|
17 |
+
``torch.distributed.init_process_group()``.
|
18 |
+
|
19 |
+
2. Fault tolerance: monitors workers and upon detecting worker failures
|
20 |
+
or unhealthiness, tears down all workers and restarts everyone.
|
21 |
+
|
22 |
+
3. Elasticity: Reacts to membership changes and restarts workers with the new
|
23 |
+
members.
|
24 |
+
|
25 |
+
The simplest agents are deployed per node and works with local processes.
|
26 |
+
A more advanced agent can launch and manage workers remotely. Agents can
|
27 |
+
be completely decentralized, making decisions based on the workers it manages.
|
28 |
+
Or can be coordinated, communicating to other agents (that manage workers
|
29 |
+
in the same job) to make a collective decision.
|
30 |
+
"""
|
31 |
+
|
32 |
+
from .api import ( # noqa: F401
|
33 |
+
ElasticAgent,
|
34 |
+
RunResult,
|
35 |
+
SimpleElasticAgent,
|
36 |
+
Worker,
|
37 |
+
WorkerGroup,
|
38 |
+
WorkerSpec,
|
39 |
+
WorkerState,
|
40 |
+
)
|
41 |
+
from .local_elastic_agent import TORCHELASTIC_ENABLE_FILE_TIMER, TORCHELASTIC_TIMER_FILE
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/__pycache__/local_elastic_agent.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py
ADDED
@@ -0,0 +1,954 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This source code is licensed under the BSD-style license found in the
|
7 |
+
# LICENSE file in the root directory of this source tree.
|
8 |
+
|
9 |
+
import abc
|
10 |
+
import functools
|
11 |
+
import json
|
12 |
+
import os
|
13 |
+
import signal
|
14 |
+
import socket
|
15 |
+
import time
|
16 |
+
import traceback
|
17 |
+
import warnings
|
18 |
+
from contextlib import closing
|
19 |
+
from dataclasses import dataclass, field
|
20 |
+
from enum import Enum
|
21 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch.distributed.elastic.rendezvous as rdzv
|
24 |
+
import torch.distributed.elastic.utils.store as store_util
|
25 |
+
from torch.distributed.elastic.rendezvous import RendezvousGracefulExitError
|
26 |
+
from torch.distributed import Store
|
27 |
+
from torch.distributed.elastic.events import Event, EventSource, record
|
28 |
+
from torch.distributed.elastic.metrics import prof, put_metric
|
29 |
+
from torch.distributed.elastic.multiprocessing import (
|
30 |
+
ProcessFailure,
|
31 |
+
SignalException,
|
32 |
+
)
|
33 |
+
from torch.distributed.elastic.utils.logging import get_logger
|
34 |
+
|
35 |
+
__all__ = [
|
36 |
+
"WorkerSpec",
|
37 |
+
"Worker",
|
38 |
+
"WorkerState",
|
39 |
+
"WorkerGroup",
|
40 |
+
"RunResult",
|
41 |
+
"ElasticAgent",
|
42 |
+
"SimpleElasticAgent",
|
43 |
+
]
|
44 |
+
_TERMINAL_STATE_SYNC_ID = "torchelastic/agent/terminal_state"
|
45 |
+
|
46 |
+
DEFAULT_ROLE = "default"
|
47 |
+
log = get_logger(__name__)
|
48 |
+
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class WorkerSpec:
|
52 |
+
"""Blueprint information about a particular type of worker.
|
53 |
+
|
54 |
+
For a given role, there must only exist a single worker spec.
|
55 |
+
Worker spec is expected to be homogeneous across all nodes (machine),
|
56 |
+
that is each node runs the same number of workers for a particular spec.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
role: user-defined role for the workers with this spec
|
60 |
+
local_world_size: number local workers to run
|
61 |
+
fn: (deprecated use entrypoint instead)
|
62 |
+
entrypoint: worker function or command
|
63 |
+
args: arguments to pass to ``entrypoint``
|
64 |
+
rdzv_handler: handles rdzv for this set of workers
|
65 |
+
max_restarts: number of max retries for the workers
|
66 |
+
monitor_interval: monitor status of workers every ``n`` seconds
|
67 |
+
master_port: fixed port to run the c10d store on rank 0
|
68 |
+
if not specified then will chose a random free port
|
69 |
+
master_addr: fixed master_addr to run the c10d store on rank 0
|
70 |
+
if not specified then will chose hostname on agent rank 0
|
71 |
+
redirects: redirect std streams to a file,
|
72 |
+
selectively redirect for a particular
|
73 |
+
local rank by passing a map
|
74 |
+
tee: tees the specified std stream(s) to console + file,
|
75 |
+
selectively tee for a particular local rank by passing a map,
|
76 |
+
takes precedence over ``redirects`` settings.
|
77 |
+
|
78 |
+
"""
|
79 |
+
|
80 |
+
role: str
|
81 |
+
local_world_size: int
|
82 |
+
rdzv_handler: rdzv.RendezvousHandler
|
83 |
+
fn: Optional[Callable] = None
|
84 |
+
# TODO @kiuk - make entrypoint a required field
|
85 |
+
entrypoint: Union[Callable, str, None] = None
|
86 |
+
args: Tuple = ()
|
87 |
+
max_restarts: int = 3
|
88 |
+
monitor_interval: float = 30.0
|
89 |
+
master_port: Optional[int] = None
|
90 |
+
master_addr: Optional[str] = None
|
91 |
+
local_addr: Optional[str] = None
|
92 |
+
|
93 |
+
def __post_init__(self):
|
94 |
+
assert self.local_world_size > 0
|
95 |
+
assert self.monitor_interval > 0
|
96 |
+
|
97 |
+
if self.fn:
|
98 |
+
warnings.warn(
|
99 |
+
"WorkerSpec.fn will be deprecated,"
|
100 |
+
" please use WorkerSpec.entrypoint instead",
|
101 |
+
category=DeprecationWarning,
|
102 |
+
)
|
103 |
+
self.entrypoint = self.fn
|
104 |
+
assert self.entrypoint
|
105 |
+
|
106 |
+
def get_entrypoint_name(self):
|
107 |
+
"""Get the entry point name.
|
108 |
+
|
109 |
+
If the entrypoint is a function (e.g. ``Callable``) returns its ``__qualname__``
|
110 |
+
else if the entrypoint is a binary (e.g. ``str``), returns the binary name.
|
111 |
+
"""
|
112 |
+
if isinstance(self.entrypoint, str):
|
113 |
+
return os.path.basename(self.entrypoint)
|
114 |
+
else:
|
115 |
+
assert self.entrypoint is not None
|
116 |
+
return self.entrypoint.__qualname__
|
117 |
+
|
118 |
+
|
119 |
+
class Worker:
|
120 |
+
"""A worker instance.
|
121 |
+
|
122 |
+
Contrast this with ``WorkerSpec`` that represents the specifications of a
|
123 |
+
worker. A ``Worker`` is created from a ``WorkerSpec``. A ``Worker`` is to
|
124 |
+
a ``WorkerSpec`` as an object is to a class.
|
125 |
+
|
126 |
+
The ``id`` of the worker is interpreted
|
127 |
+
by the specific implementation of ``ElasticAgent``. For a local
|
128 |
+
agent, it could be the ``pid (int)`` of the worker, for a remote
|
129 |
+
agent it could be encoded as ``host:port (string)``.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
id (Any): uniquely identifies a worker (interpreted by the agent)
|
133 |
+
local_rank (int): local rank of the worker
|
134 |
+
global_rank (int): global rank of the worker
|
135 |
+
role_rank (int): rank of the worker across all workers that have the same role
|
136 |
+
world_size (int): number of workers (globally)
|
137 |
+
role_world_size (int): number of workers that have the same role
|
138 |
+
"""
|
139 |
+
|
140 |
+
__slots__ = [
|
141 |
+
"id",
|
142 |
+
"local_rank",
|
143 |
+
"global_rank",
|
144 |
+
"role_rank",
|
145 |
+
"world_size",
|
146 |
+
"role_world_size",
|
147 |
+
]
|
148 |
+
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
local_rank: int,
|
152 |
+
global_rank: int = -1,
|
153 |
+
role_rank: int = -1,
|
154 |
+
world_size: int = -1,
|
155 |
+
role_world_size: int = -1,
|
156 |
+
):
|
157 |
+
# unique identifier for this worker
|
158 |
+
self.id: Any = None
|
159 |
+
|
160 |
+
# rank of the worker among workers with the same role being monitored
|
161 |
+
# by the same ``agent`` instance.
|
162 |
+
self.local_rank: int = local_rank
|
163 |
+
|
164 |
+
# rank of the worker among all the workers across all roles
|
165 |
+
# across all ``agent`` instances.
|
166 |
+
# Global rank is not stable between re-rendezvous.
|
167 |
+
self.global_rank: int = global_rank
|
168 |
+
|
169 |
+
# rank of the worker among all the workers with the same role
|
170 |
+
# across all ``agent`` instances.
|
171 |
+
# Role rank is not stable between re-rendezvous.
|
172 |
+
self.role_rank: int = role_rank
|
173 |
+
|
174 |
+
# total number of workers (globally). Due to elasticity
|
175 |
+
# the world size may change between re-rendezvous.
|
176 |
+
self.world_size: int = world_size
|
177 |
+
|
178 |
+
# total number of workers that share the same role. Due to elasticity
|
179 |
+
# the role world size may change between re-rendezvous.
|
180 |
+
self.role_world_size: int = role_world_size
|
181 |
+
|
182 |
+
def __str__(self):
|
183 |
+
return (
|
184 |
+
f"local_rank={self.local_rank},global_rank={self.global_rank}"
|
185 |
+
f",role_rank={self.role_rank},world_size={self.world_size}"
|
186 |
+
f",role_world_size={self.role_world_size}"
|
187 |
+
)
|
188 |
+
|
189 |
+
def __repr__(self):
|
190 |
+
return str(self)
|
191 |
+
|
192 |
+
|
193 |
+
class WorkerState(str, Enum):
|
194 |
+
"""A state of the ``WorkerGroup``.
|
195 |
+
|
196 |
+
Workers in a worker group change state as a unit. If a single worker
|
197 |
+
in a worker group fails the entire set is considered failed::
|
198 |
+
|
199 |
+
UNKNOWN - agent lost track of worker group state, unrecoverable
|
200 |
+
INIT - worker group object created not yet started
|
201 |
+
HEALTHY - workers running and healthy
|
202 |
+
UNHEALTHY - workers running and unhealthy
|
203 |
+
STOPPED - workers stopped (interrupted) by the agent
|
204 |
+
SUCCEEDED - workers finished running (exit 0)
|
205 |
+
FAILED - workers failed to successfully finish (exit !0)
|
206 |
+
|
207 |
+
|
208 |
+
A worker group starts from an initial ``INIT`` state,
|
209 |
+
then progresses to ``HEALTHY`` or ``UNHEALTHY`` states,
|
210 |
+
and finally reaches a terminal ``SUCCEEDED`` or ``FAILED`` state.
|
211 |
+
|
212 |
+
Worker groups can be interrupted and temporarily put into ``STOPPED`` state
|
213 |
+
by the agent. Workers in ``STOPPED`` state are scheduled to be restarted
|
214 |
+
in the near future by the agent. Some examples of workers being put into
|
215 |
+
``STOPPED`` state are:
|
216 |
+
|
217 |
+
1. Worker group failure|unhealthy observed
|
218 |
+
2. Membership change detected
|
219 |
+
|
220 |
+
When actions (start, stop, rdzv, retry, etc) on worker group fails
|
221 |
+
and results in the action being partially applied to the worker group
|
222 |
+
the state will be ``UNKNOWN``. Typically this happens on uncaught/unhandled
|
223 |
+
exceptions during state change events on the agent. The agent is not
|
224 |
+
expected to recover worker groups in ``UNKNOWN`` state and is better off
|
225 |
+
self terminating and allowing the job manager to retry the node.
|
226 |
+
"""
|
227 |
+
|
228 |
+
UNKNOWN = "UNKNOWN"
|
229 |
+
INIT = "INIT"
|
230 |
+
HEALTHY = "HEALTHY"
|
231 |
+
UNHEALTHY = "UNHEALTHY"
|
232 |
+
STOPPED = "STOPPED"
|
233 |
+
SUCCEEDED = "SUCCEEDED"
|
234 |
+
FAILED = "FAILED"
|
235 |
+
|
236 |
+
@staticmethod
|
237 |
+
def is_running(state: "WorkerState") -> bool:
|
238 |
+
"""Return the state of the Worker.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
True if the worker state represents workers still running
|
242 |
+
(e.g. that the process exists but not necessarily healthy).
|
243 |
+
"""
|
244 |
+
return state in {WorkerState.HEALTHY, WorkerState.UNHEALTHY}
|
245 |
+
|
246 |
+
|
247 |
+
class WorkerGroup:
|
248 |
+
"""A set of ``Worker`` instances.
|
249 |
+
|
250 |
+
The class defines a set of ``Worker`` instances for the given ``WorkerSpec`` managed by ``ElasticAgent``. Whether the worker
|
251 |
+
group contains cross instance workers or not depends on the implementation of the agent.
|
252 |
+
"""
|
253 |
+
|
254 |
+
__slots__ = ["spec", "workers", "store", "group_rank", "group_world_size", "state"]
|
255 |
+
|
256 |
+
def __init__(self, spec: WorkerSpec):
|
257 |
+
self.spec = spec
|
258 |
+
self.workers = [Worker(local_rank=i) for i in range(self.spec.local_world_size)]
|
259 |
+
|
260 |
+
# assigned after rdzv
|
261 |
+
self.store = None
|
262 |
+
self.group_rank = None
|
263 |
+
self.group_world_size = None
|
264 |
+
|
265 |
+
self.state = WorkerState.INIT
|
266 |
+
|
267 |
+
|
268 |
+
class _RoleInstanceInfo:
|
269 |
+
"""The class is used by the agent to exchange the information with other agents.
|
270 |
+
|
271 |
+
The information is used to determine the rank of the workers that agent
|
272 |
+
manages in heterogeneous environments, where different agents can have
|
273 |
+
different number of workers.
|
274 |
+
"""
|
275 |
+
|
276 |
+
__slots__ = ["role", "rank", "local_world_size"]
|
277 |
+
|
278 |
+
def __init__(self, role: str, rank: int, local_world_size: int):
|
279 |
+
r"""Initialize the agent class instance.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
role (str): user-defined role for the workers with this spec
|
283 |
+
rank (int): the rank of the agent
|
284 |
+
local_world_size (int): number of local workers to run
|
285 |
+
"""
|
286 |
+
self.role = role
|
287 |
+
self.rank = rank
|
288 |
+
self.local_world_size = local_world_size
|
289 |
+
|
290 |
+
def serialize(self) -> bytes:
|
291 |
+
dict_data = {
|
292 |
+
"role": self.role,
|
293 |
+
"rank": self.rank,
|
294 |
+
"local_world_size": self.local_world_size,
|
295 |
+
}
|
296 |
+
return json.dumps(dict_data).encode(encoding="UTF-8")
|
297 |
+
|
298 |
+
@staticmethod
|
299 |
+
def deserialize(data: bytes):
|
300 |
+
dict_data = json.loads(data.decode(encoding="UTF-8"))
|
301 |
+
return _RoleInstanceInfo(
|
302 |
+
dict_data["role"], dict_data["rank"], dict_data["local_world_size"]
|
303 |
+
)
|
304 |
+
|
305 |
+
@staticmethod
|
306 |
+
def compare(obj1, obj2) -> int:
|
307 |
+
if obj1.role == obj2.role:
|
308 |
+
return obj1.rank - obj2.rank
|
309 |
+
elif obj1.role > obj2.role:
|
310 |
+
return 1
|
311 |
+
else:
|
312 |
+
return -1
|
313 |
+
|
314 |
+
@staticmethod
|
315 |
+
def find_role_boundaries(roles_infos: List, role: str) -> Tuple[int, int]:
|
316 |
+
start_idx, end_idx = -1, -1
|
317 |
+
for idx, role_info in enumerate(roles_infos):
|
318 |
+
if role_info.role == role:
|
319 |
+
if start_idx == -1:
|
320 |
+
start_idx = idx
|
321 |
+
end_idx = idx
|
322 |
+
return (start_idx, end_idx)
|
323 |
+
|
324 |
+
|
325 |
+
@dataclass
|
326 |
+
class RunResult:
|
327 |
+
"""Return results of the worker executions.
|
328 |
+
|
329 |
+
Run results follow an "all-or-nothing" policy where the run is successful if and
|
330 |
+
only if ALL local workers managed by this agent complete successfully.
|
331 |
+
|
332 |
+
If the result is successful (e.g. ``is_failed() = False``) then the ``return_values``
|
333 |
+
field contains the outputs (return values) of the workers managed by THIS agent mapped
|
334 |
+
by their GLOBAL ranks. That is ``result.return_values[0]`` is the return value of
|
335 |
+
global rank 0.
|
336 |
+
|
337 |
+
.. note:: ``return_values`` are only meaningful for when the worker entrypoint
|
338 |
+
is a function. Workers specified as a binary entrypoint do not canonically
|
339 |
+
have a return value and the ``return_values`` field is meaningless and
|
340 |
+
may be empty.
|
341 |
+
|
342 |
+
If ``is_failed()`` returns ``True`` then the ``failures`` field contains the
|
343 |
+
failure information, again, mapped by the GLOBAL rank of the worker that failed.
|
344 |
+
|
345 |
+
The keys in ``return_values`` and ``failures`` are mutually exclusive, that is,
|
346 |
+
a worker's final state can only be one of: succeeded, failed. Workers intentionally
|
347 |
+
terminated by the agent according to the agent's restart policy, are not represented
|
348 |
+
in either ``return_values`` nor ``failures``.
|
349 |
+
"""
|
350 |
+
|
351 |
+
state: WorkerState
|
352 |
+
return_values: Dict[int, Any] = field(default_factory=dict)
|
353 |
+
failures: Dict[int, ProcessFailure] = field(default_factory=dict)
|
354 |
+
|
355 |
+
def is_failed(self) -> bool:
|
356 |
+
return self.state == WorkerState.FAILED
|
357 |
+
|
358 |
+
|
359 |
+
def _get_socket_with_port() -> socket.socket:
|
360 |
+
"""Return a free port on localhost.
|
361 |
+
|
362 |
+
The free port is "reserved" by binding a temporary socket on it.
|
363 |
+
Close the socket before passing the port to the entity that
|
364 |
+
requires it. Usage example::
|
365 |
+
|
366 |
+
sock = _get_socket_with_port()
|
367 |
+
with closing(sock):
|
368 |
+
port = sock.getsockname()[1]
|
369 |
+
sock.close()
|
370 |
+
# there is still a race-condition that some other process
|
371 |
+
# may grab this port before func() runs
|
372 |
+
func(port)
|
373 |
+
"""
|
374 |
+
addrs = socket.getaddrinfo(
|
375 |
+
host="localhost", port=None, family=socket.AF_UNSPEC, type=socket.SOCK_STREAM
|
376 |
+
)
|
377 |
+
for addr in addrs:
|
378 |
+
family, type, proto, _, _ = addr
|
379 |
+
s = socket.socket(family, type, proto)
|
380 |
+
try:
|
381 |
+
s.bind(("localhost", 0))
|
382 |
+
s.listen(0)
|
383 |
+
return s
|
384 |
+
except OSError as e:
|
385 |
+
s.close()
|
386 |
+
log.info("Socket creation attempt failed.", exc_info=e)
|
387 |
+
raise RuntimeError("Failed to create a socket")
|
388 |
+
|
389 |
+
|
390 |
+
def _get_fq_hostname() -> str:
|
391 |
+
return socket.getfqdn(socket.gethostname())
|
392 |
+
|
393 |
+
|
394 |
+
class ElasticAgent(abc.ABC):
|
395 |
+
"""An agent process responsible for managing one or more worker processes.
|
396 |
+
|
397 |
+
The worker processes are assumed to be regular distributed PyTorch scripts.
|
398 |
+
When the worker process is created by the agent, the agent provides the
|
399 |
+
necessary information for the worker processes to properly initialize
|
400 |
+
a torch process group.
|
401 |
+
|
402 |
+
The exact deployment topology and ratio of agent-to-worker is dependent
|
403 |
+
on the specific implementation of the agent and the user's job placement
|
404 |
+
preferences. For instance, to run a distributed training job on GPU with
|
405 |
+
8 trainers (one per GPU) one can:
|
406 |
+
|
407 |
+
1. Use 8 x single GPU instances, place an agent per instance, managing
|
408 |
+
1 worker per agent.
|
409 |
+
2. Use 4 x double GPU instances, place an agent per instance, managing
|
410 |
+
2 workers per agent.
|
411 |
+
3. Use 2 x quad GPU instances, place an agent per instance, managing
|
412 |
+
4 workers per agent.
|
413 |
+
4. Use 1 x 8 GPU instance, place an agent per instance, managing
|
414 |
+
8 workers per agent.
|
415 |
+
|
416 |
+
Usage
|
417 |
+
::
|
418 |
+
|
419 |
+
group_result = agent.run()
|
420 |
+
if group_result.is_failed():
|
421 |
+
# workers failed
|
422 |
+
failure = group_result.failures[0]
|
423 |
+
log.exception("worker 0 failed with exit code : %s", failure.exit_code)
|
424 |
+
else:
|
425 |
+
return group_result.return_values[0] # return rank 0's results
|
426 |
+
|
427 |
+
"""
|
428 |
+
|
429 |
+
@abc.abstractmethod
|
430 |
+
def run(self, role: str = DEFAULT_ROLE) -> RunResult:
|
431 |
+
"""Run the agent.
|
432 |
+
|
433 |
+
Supports retrying the worker group on failures up to ``max_restarts``.
|
434 |
+
|
435 |
+
Returns:
|
436 |
+
The result of the execution, containing the return values or
|
437 |
+
failure details for each worker mapped by the worker's global rank.
|
438 |
+
|
439 |
+
Raises:
|
440 |
+
Exception - any other failures NOT related to worker process
|
441 |
+
"""
|
442 |
+
raise NotImplementedError()
|
443 |
+
|
444 |
+
@abc.abstractmethod
|
445 |
+
def get_worker_group(self, role: str = DEFAULT_ROLE) -> WorkerGroup:
|
446 |
+
"""Return the ``WorkerGroup`` for the given ``role``.
|
447 |
+
|
448 |
+
Note that the worker group is a mutable object and hence in a
|
449 |
+
multi-threaded/process environment it may change state.
|
450 |
+
Implementors are encouraged (but not required) to return
|
451 |
+
a defensive read-only copy.
|
452 |
+
"""
|
453 |
+
raise NotImplementedError()
|
454 |
+
|
455 |
+
|
456 |
+
class SimpleElasticAgent(ElasticAgent):
|
457 |
+
"""An ``ElasticAgent`` that manages one particular type of worker role.
|
458 |
+
|
459 |
+
An ``ElasticAgent`` that manages workers (``WorkerGroup``) for a single ``WorkerSpec``
|
460 |
+
such as one particular type of worker role.
|
461 |
+
"""
|
462 |
+
|
463 |
+
def __init__(self, spec: WorkerSpec, exit_barrier_timeout: float = 300):
|
464 |
+
self._worker_group = WorkerGroup(spec)
|
465 |
+
self._remaining_restarts = self._worker_group.spec.max_restarts
|
466 |
+
self._store = None
|
467 |
+
self._exit_barrier_timeout = exit_barrier_timeout
|
468 |
+
self._total_execution_time = 0
|
469 |
+
|
470 |
+
def get_worker_group(self, role: str = DEFAULT_ROLE) -> WorkerGroup:
|
471 |
+
return self._worker_group
|
472 |
+
|
473 |
+
@abc.abstractmethod
|
474 |
+
def _start_workers(self, worker_group: WorkerGroup) -> Dict[int, Any]:
|
475 |
+
r"""Start ``worker_group.spec.local_world_size`` number of workers.
|
476 |
+
|
477 |
+
This is according to worker spec for the worker group .
|
478 |
+
Returns a map of ``local_rank`` to worker ``id``.
|
479 |
+
"""
|
480 |
+
raise NotImplementedError()
|
481 |
+
|
482 |
+
@abc.abstractmethod
|
483 |
+
def _stop_workers(self, worker_group: WorkerGroup) -> None:
|
484 |
+
r"""Stop all workers in the given worker group.
|
485 |
+
|
486 |
+
Implementors must deal with workers in all states defined by
|
487 |
+
``WorkerState``. That is, it must gracefully handle stopping
|
488 |
+
non-existent workers, unhealthy (stuck) workers, etc.
|
489 |
+
"""
|
490 |
+
raise NotImplementedError()
|
491 |
+
|
492 |
+
@abc.abstractmethod
|
493 |
+
def _monitor_workers(self, worker_group: WorkerGroup) -> RunResult:
|
494 |
+
r"""Check on the workers for the ``worker_group``.
|
495 |
+
|
496 |
+
This function also returns the new state of the worker group.
|
497 |
+
"""
|
498 |
+
raise NotImplementedError()
|
499 |
+
|
500 |
+
@abc.abstractmethod
|
501 |
+
def _shutdown(self, death_sig: signal.Signals = signal.SIGTERM) -> None:
|
502 |
+
"""Clean up any resources that were allocated during the agent's work.
|
503 |
+
|
504 |
+
Args:
|
505 |
+
death_sig: Signal to send to the child process, SIGTERM is default
|
506 |
+
"""
|
507 |
+
raise NotImplementedError()
|
508 |
+
|
509 |
+
@staticmethod
|
510 |
+
def _set_master_addr_port(
|
511 |
+
store: Store,
|
512 |
+
master_addr: Optional[str],
|
513 |
+
master_port: Optional[int],
|
514 |
+
local_addr: Optional[str],
|
515 |
+
):
|
516 |
+
if master_port is None:
|
517 |
+
sock = _get_socket_with_port()
|
518 |
+
with closing(sock):
|
519 |
+
master_port = sock.getsockname()[1]
|
520 |
+
|
521 |
+
if master_addr is None:
|
522 |
+
# If user specified the address for the local node, use it as the master addr if not exist
|
523 |
+
if local_addr:
|
524 |
+
master_addr = local_addr
|
525 |
+
else:
|
526 |
+
master_addr = _get_fq_hostname()
|
527 |
+
|
528 |
+
store.set("MASTER_ADDR", master_addr.encode(encoding="UTF-8"))
|
529 |
+
store.set("MASTER_PORT", str(master_port).encode(encoding="UTF-8"))
|
530 |
+
|
531 |
+
@staticmethod
|
532 |
+
def _get_master_addr_port(store: Store) -> Tuple[str, int]:
|
533 |
+
master_addr = store.get("MASTER_ADDR").decode(encoding="UTF-8")
|
534 |
+
master_port = int(store.get("MASTER_PORT").decode(encoding="UTF-8"))
|
535 |
+
return (master_addr, master_port)
|
536 |
+
|
537 |
+
# pyre-fixme[56]: Pyre was not able to infer the type of the decorator
|
538 |
+
# `torch.distributed.elastic.metrics.prof`.
|
539 |
+
@prof
|
540 |
+
def _rendezvous(self, worker_group: WorkerGroup) -> None:
|
541 |
+
r"""Run rendezvous for the workers specified by the worker spec.
|
542 |
+
|
543 |
+
Assigns workers a new global rank and world size.
|
544 |
+
Updates the rendezvous store for the worker group.
|
545 |
+
"""
|
546 |
+
spec = worker_group.spec
|
547 |
+
|
548 |
+
store, group_rank, group_world_size = spec.rdzv_handler.next_rendezvous()
|
549 |
+
self._store = store
|
550 |
+
|
551 |
+
workers = self._assign_worker_ranks(store, group_rank, group_world_size, spec)
|
552 |
+
worker_group.workers = workers
|
553 |
+
worker_group.store = store
|
554 |
+
worker_group.group_rank = group_rank
|
555 |
+
worker_group.group_world_size = group_world_size
|
556 |
+
|
557 |
+
if group_rank == 0:
|
558 |
+
self._set_master_addr_port(
|
559 |
+
store,
|
560 |
+
spec.master_addr,
|
561 |
+
spec.master_port,
|
562 |
+
spec.local_addr,
|
563 |
+
)
|
564 |
+
|
565 |
+
master_addr, master_port = self._get_master_addr_port(store)
|
566 |
+
restart_count = spec.max_restarts - self._remaining_restarts
|
567 |
+
|
568 |
+
log.info(
|
569 |
+
"[%(role)s] Rendezvous complete for workers. Result:\n"
|
570 |
+
" restart_count=%(restart_count)s\n"
|
571 |
+
" master_addr=%(master_addr)s\n"
|
572 |
+
" master_port=%(master_port)s\n"
|
573 |
+
" group_rank=%(group_rank)s\n"
|
574 |
+
" group_world_size=%(group_world_size)s\n"
|
575 |
+
" local_ranks=%(local_ranks)s\n"
|
576 |
+
" role_ranks=%(role_ranks)s\n"
|
577 |
+
" global_ranks=%(global_ranks)s\n"
|
578 |
+
" role_world_sizes=%(role_world_sizes)s\n"
|
579 |
+
" global_world_sizes=%(global_world_sizes)s\n",
|
580 |
+
{
|
581 |
+
"role": spec.role,
|
582 |
+
"restart_count": restart_count,
|
583 |
+
"master_addr": master_addr,
|
584 |
+
"master_port": master_port,
|
585 |
+
"group_rank": group_rank,
|
586 |
+
"group_world_size": group_world_size,
|
587 |
+
"local_ranks": [worker.local_rank for worker in workers],
|
588 |
+
"role_ranks": [worker.role_rank for worker in workers],
|
589 |
+
"global_ranks": [worker.global_rank for worker in workers],
|
590 |
+
"role_world_sizes": [worker.role_world_size for worker in workers],
|
591 |
+
"global_world_sizes": [worker.world_size for worker in workers]
|
592 |
+
}
|
593 |
+
)
|
594 |
+
|
595 |
+
def _get_ranks(
|
596 |
+
self,
|
597 |
+
role_infos: List[_RoleInstanceInfo],
|
598 |
+
role_idx: int,
|
599 |
+
start_idx: int = 0,
|
600 |
+
end_idx: int = -1,
|
601 |
+
) -> Tuple[int, List[int]]:
|
602 |
+
if end_idx == -1:
|
603 |
+
end_idx = len(role_infos)
|
604 |
+
prefix_sum = 0
|
605 |
+
total_sum = 0
|
606 |
+
for idx in range(start_idx, end_idx):
|
607 |
+
if role_idx > idx:
|
608 |
+
prefix_sum += role_infos[idx].local_world_size
|
609 |
+
total_sum += role_infos[idx].local_world_size
|
610 |
+
return (
|
611 |
+
total_sum,
|
612 |
+
list(range(prefix_sum, prefix_sum + role_infos[role_idx].local_world_size)),
|
613 |
+
)
|
614 |
+
|
615 |
+
# pyre-fixme[56]: Pyre was not able to infer the type of the decorator
|
616 |
+
# `torch.distributed.elastic.metrics.prof`.
|
617 |
+
@prof
|
618 |
+
def _assign_worker_ranks(
|
619 |
+
self, store, group_rank: int, group_world_size: int, spec: WorkerSpec
|
620 |
+
) -> List[Worker]:
|
621 |
+
"""Determine proper ranks for worker processes.
|
622 |
+
|
623 |
+
The rank assignment is done according to the following algorithm:
|
624 |
+
|
625 |
+
1. Each agent writes its configuration(group_rank, group_world_size
|
626 |
+
, num_workers) to the common store.
|
627 |
+
2. Each agent retrieves configuration for all agents
|
628 |
+
and performs two level sort using role and rank.
|
629 |
+
3. Determine the global rank: the global rank of the workers for the current
|
630 |
+
agent is the offset of the infos array up to group_rank of the agent.
|
631 |
+
The offset is computed as a sum of local_world_size of all agents that
|
632 |
+
have rank less than the group_rank. The workers would have the ranks:
|
633 |
+
[offset, offset+local_world_size)
|
634 |
+
4. Determine the role rank: The role rank is determined using the algorithms
|
635 |
+
in the point 3 with the exception that the offset is done from the first
|
636 |
+
agent that has the same role as current one and has the minimum group rank.
|
637 |
+
"""
|
638 |
+
role_infos = self._share_and_gather(store, group_rank, group_world_size, spec)
|
639 |
+
my_role_info = role_infos[group_rank]
|
640 |
+
worker_world_size, worker_global_ranks = self._get_ranks(role_infos, group_rank)
|
641 |
+
role_infos = sorted(
|
642 |
+
role_infos, key=functools.cmp_to_key(_RoleInstanceInfo.compare)
|
643 |
+
)
|
644 |
+
role_start_idx, role_end_idx = _RoleInstanceInfo.find_role_boundaries(
|
645 |
+
role_infos, my_role_info.role
|
646 |
+
)
|
647 |
+
role_pos = next(
|
648 |
+
idx
|
649 |
+
for idx, role_info in enumerate(role_infos)
|
650 |
+
if _RoleInstanceInfo.compare(role_info, my_role_info) == 0
|
651 |
+
)
|
652 |
+
role_world_size, role_ranks = self._get_ranks(
|
653 |
+
role_infos, role_pos, role_start_idx, role_end_idx + 1
|
654 |
+
)
|
655 |
+
workers = []
|
656 |
+
for ind in range(spec.local_world_size):
|
657 |
+
worker = Worker(
|
658 |
+
local_rank=ind,
|
659 |
+
global_rank=worker_global_ranks[ind],
|
660 |
+
role_rank=role_ranks[ind],
|
661 |
+
world_size=worker_world_size,
|
662 |
+
role_world_size=role_world_size,
|
663 |
+
)
|
664 |
+
workers.append(worker)
|
665 |
+
return workers
|
666 |
+
|
667 |
+
def _share_and_gather(
|
668 |
+
self, store, group_rank: int, group_world_size: int, spec: WorkerSpec
|
669 |
+
) -> List:
|
670 |
+
agent_role_info = _RoleInstanceInfo(
|
671 |
+
spec.role, group_rank, spec.local_world_size
|
672 |
+
)
|
673 |
+
key_prefix = "torchelastic/role_info"
|
674 |
+
agent_config_enc = agent_role_info.serialize()
|
675 |
+
role_infos_bytes = store_util.synchronize(
|
676 |
+
store, agent_config_enc, group_rank, group_world_size, key_prefix
|
677 |
+
)
|
678 |
+
role_infos = [
|
679 |
+
_RoleInstanceInfo.deserialize(role_info_bytes)
|
680 |
+
for role_info_bytes in role_infos_bytes
|
681 |
+
]
|
682 |
+
return role_infos
|
683 |
+
|
684 |
+
# pyre-fixme[56]: Pyre was not able to infer the type of the decorator
|
685 |
+
# `torch.distributed.elastic.metrics.prof`.
|
686 |
+
@prof
|
687 |
+
def _initialize_workers(self, worker_group: WorkerGroup) -> None:
|
688 |
+
r"""Start a fresh set of workers for the worker_group.
|
689 |
+
|
690 |
+
Essentially, a rendezvous followed by a ``start_workers``.
|
691 |
+
The caller should first call ``_stop_workers()`` to stop running workers
|
692 |
+
prior to calling this method.
|
693 |
+
|
694 |
+
Optimistically sets the state of the worker group that
|
695 |
+
just started as ``HEALTHY`` and delegates the actual monitoring
|
696 |
+
of state to ``_monitor_workers()`` method
|
697 |
+
"""
|
698 |
+
role = worker_group.spec.role
|
699 |
+
log.info("[%s] Rendezvous'ing worker group", role)
|
700 |
+
|
701 |
+
# TODO after stopping workers, wait at least monitor_interval*2 for
|
702 |
+
# workers on different nodes to fail on a collective op before waiting
|
703 |
+
# on the rdzv barrier, this way we ensure that nodes enter rdzv
|
704 |
+
# at around the same time and reduce false positive rdzv timeout errors
|
705 |
+
self._rendezvous(worker_group)
|
706 |
+
|
707 |
+
log.info("[%s] Starting worker group", role)
|
708 |
+
worker_ids = self._start_workers(worker_group)
|
709 |
+
for local_rank, w_id in worker_ids.items():
|
710 |
+
worker = worker_group.workers[local_rank]
|
711 |
+
worker.id = w_id
|
712 |
+
|
713 |
+
worker_group.state = WorkerState.HEALTHY
|
714 |
+
|
715 |
+
# pyre-fixme[56]: Pyre was not able to infer the type of the decorator
|
716 |
+
# `torch.distributed.elastic.metrics.prof`.
|
717 |
+
@prof
|
718 |
+
def _restart_workers(self, worker_group: WorkerGroup) -> None:
|
719 |
+
"""Restart (stops, rendezvous, starts) all local workers in the group."""
|
720 |
+
role = worker_group.spec.role
|
721 |
+
log.info("[%s] Stopping worker group", role)
|
722 |
+
self._stop_workers(worker_group)
|
723 |
+
worker_group.state = WorkerState.STOPPED
|
724 |
+
self._initialize_workers(worker_group)
|
725 |
+
|
726 |
+
# pyre-fixme[56]: Pyre was not able to infer the type of the decorator
|
727 |
+
# `torch.distributed.elastic.metrics.prof`.
|
728 |
+
@prof
|
729 |
+
def run(self, role: str = DEFAULT_ROLE) -> RunResult:
|
730 |
+
start_time = time.monotonic()
|
731 |
+
shutdown_called: bool = False
|
732 |
+
try:
|
733 |
+
result = self._invoke_run(role)
|
734 |
+
self._total_execution_time = int(time.monotonic() - start_time)
|
735 |
+
self._record_metrics(result)
|
736 |
+
self._record_worker_events(result)
|
737 |
+
return result
|
738 |
+
except RendezvousGracefulExitError as e:
|
739 |
+
log.info("Rendezvous gracefully exited: %s", e)
|
740 |
+
except SignalException as e:
|
741 |
+
log.warning("Received %s death signal, shutting down workers", e.sigval)
|
742 |
+
self._shutdown(e.sigval)
|
743 |
+
shutdown_called = True
|
744 |
+
raise
|
745 |
+
finally:
|
746 |
+
if not shutdown_called:
|
747 |
+
self._shutdown()
|
748 |
+
# record the execution time in case there were any exceptions during run.
|
749 |
+
self._total_execution_time = int(time.monotonic() - start_time)
|
750 |
+
|
751 |
+
def get_event_failed(self) -> Event:
|
752 |
+
return self._construct_event(
|
753 |
+
state="FAILED",
|
754 |
+
source=EventSource.AGENT,
|
755 |
+
raw_error=traceback.format_exc(),
|
756 |
+
)
|
757 |
+
|
758 |
+
def get_event_succeeded(self) -> Event:
|
759 |
+
return self._construct_event(
|
760 |
+
state="SUCCEEDED",
|
761 |
+
source=EventSource.AGENT,
|
762 |
+
)
|
763 |
+
|
764 |
+
def _record_worker_events(self, result: RunResult) -> None:
|
765 |
+
for worker in self._worker_group.workers:
|
766 |
+
failure = result.failures.get(worker.global_rank)
|
767 |
+
state: str = self._get_worker_state(worker, result)
|
768 |
+
raw_error = json.dumps(failure.error_file_data) if failure else None
|
769 |
+
record(self._construct_event(state, EventSource.WORKER, worker, raw_error))
|
770 |
+
|
771 |
+
def _get_worker_state(self, worker: Worker, result: RunResult) -> str:
|
772 |
+
failure = result.failures.get(worker.global_rank)
|
773 |
+
if result.state in {WorkerState.UNHEALTHY, WorkerState.FAILED} and not failure:
|
774 |
+
# The worker got terminated by the torchelastic agent via SIGTERM signal
|
775 |
+
return "TERMINATED"
|
776 |
+
elif failure or worker.global_rank in result.return_values:
|
777 |
+
return result.state.value
|
778 |
+
else:
|
779 |
+
raise ValueError(f"Unknown worker: {worker.global_rank}")
|
780 |
+
|
781 |
+
def _construct_event(
|
782 |
+
self,
|
783 |
+
state: str,
|
784 |
+
source: EventSource,
|
785 |
+
worker: Optional[Worker] = None,
|
786 |
+
raw_error: Optional[str] = None,
|
787 |
+
) -> Event:
|
788 |
+
wg = self._worker_group
|
789 |
+
spec = wg.spec
|
790 |
+
md = {
|
791 |
+
"group_world_size": wg.group_world_size,
|
792 |
+
"entry_point": spec.get_entrypoint_name(),
|
793 |
+
}
|
794 |
+
if worker:
|
795 |
+
md["local_rank"] = (worker.local_rank,)
|
796 |
+
md["role_rank"] = (worker.role_rank,)
|
797 |
+
md["role_world_size"] = (worker.role_world_size,)
|
798 |
+
global_rank = worker.global_rank
|
799 |
+
worker_id = str(worker.id)
|
800 |
+
else:
|
801 |
+
global_rank = None
|
802 |
+
worker_id = None
|
803 |
+
md_str = json.dumps(md)
|
804 |
+
metadata = {
|
805 |
+
"run_id": spec.rdzv_handler.get_run_id(),
|
806 |
+
"global_rank": global_rank,
|
807 |
+
"group_rank": wg.group_rank,
|
808 |
+
"worker_id": worker_id,
|
809 |
+
"role": spec.role,
|
810 |
+
"hostname": _get_fq_hostname(),
|
811 |
+
"state": state,
|
812 |
+
"total_run_time": self._total_execution_time,
|
813 |
+
"rdzv_backend": spec.rdzv_handler.get_backend(),
|
814 |
+
"raw_error": raw_error,
|
815 |
+
"metadata": md_str,
|
816 |
+
"agent_restarts": spec.max_restarts - self._remaining_restarts,
|
817 |
+
}
|
818 |
+
return Event(
|
819 |
+
f"torchelastic.worker.status.{state}", source=source, metadata=metadata
|
820 |
+
)
|
821 |
+
|
822 |
+
def _record_metrics(self, group_results: RunResult):
|
823 |
+
is_failed = group_results.is_failed()
|
824 |
+
self._record_flakiness_metric(is_failed)
|
825 |
+
spec = self._worker_group.spec
|
826 |
+
restarts_happened = self._remaining_restarts != spec.max_restarts
|
827 |
+
put_metric(f"workers.{spec.role}.run_total", 1)
|
828 |
+
self._record_metric_with_condition(
|
829 |
+
"run_success_with_retries", not is_failed and restarts_happened
|
830 |
+
)
|
831 |
+
self._record_metric_with_condition(
|
832 |
+
"run_success_no_retries", not is_failed and not restarts_happened
|
833 |
+
)
|
834 |
+
self._record_metric_with_condition(
|
835 |
+
"run_failed_with_retries", is_failed and restarts_happened
|
836 |
+
)
|
837 |
+
self._record_metric_with_condition(
|
838 |
+
"run_failed_no_retries", is_failed and not restarts_happened
|
839 |
+
)
|
840 |
+
|
841 |
+
def _record_metric_with_condition(self, metric_name, condition):
|
842 |
+
spec = self._worker_group.spec
|
843 |
+
if condition:
|
844 |
+
put_metric(f"workers.{spec.role}.{metric_name}", 1)
|
845 |
+
else:
|
846 |
+
put_metric(f"workers.{spec.role}.{metric_name}", 0)
|
847 |
+
|
848 |
+
def _record_flakiness_metric(self, is_failed: bool = False):
|
849 |
+
if is_failed:
|
850 |
+
flakiness = 100.0
|
851 |
+
else:
|
852 |
+
spec = self._worker_group.spec
|
853 |
+
flakiness = 100.0 - 100.0 * (self._remaining_restarts + 1) / (
|
854 |
+
spec.max_restarts + 1
|
855 |
+
)
|
856 |
+
spec = self._worker_group.spec
|
857 |
+
|
858 |
+
put_metric(f"workers.{spec.role}.flakiness", int(flakiness))
|
859 |
+
|
860 |
+
def _invoke_run(self, role: str = DEFAULT_ROLE) -> RunResult:
|
861 |
+
# NOTE: currently only works for a single role
|
862 |
+
|
863 |
+
spec = self._worker_group.spec
|
864 |
+
role = spec.role
|
865 |
+
|
866 |
+
log.info(
|
867 |
+
"[%s] starting workers for entrypoint: %s", role, spec.get_entrypoint_name()
|
868 |
+
)
|
869 |
+
|
870 |
+
self._initialize_workers(self._worker_group)
|
871 |
+
monitor_interval = spec.monitor_interval
|
872 |
+
rdzv_handler = spec.rdzv_handler
|
873 |
+
|
874 |
+
while True:
|
875 |
+
assert self._worker_group.state != WorkerState.INIT
|
876 |
+
time.sleep(monitor_interval)
|
877 |
+
run_result = self._monitor_workers(self._worker_group)
|
878 |
+
state = run_result.state
|
879 |
+
self._worker_group.state = state
|
880 |
+
|
881 |
+
put_metric(f"workers.{role}.remaining_restarts", self._remaining_restarts)
|
882 |
+
put_metric(f"workers.{role}.{state.name.lower()}", 1)
|
883 |
+
|
884 |
+
if state == WorkerState.SUCCEEDED:
|
885 |
+
log.info(
|
886 |
+
"[%s] worker group successfully finished."
|
887 |
+
" Waiting %s seconds for other agents to finish.",
|
888 |
+
role, self._exit_barrier_timeout
|
889 |
+
)
|
890 |
+
self._exit_barrier()
|
891 |
+
return run_result
|
892 |
+
elif state in {WorkerState.UNHEALTHY, WorkerState.FAILED}:
|
893 |
+
if self._remaining_restarts > 0:
|
894 |
+
log.info(
|
895 |
+
"[%s] Worker group %s. "
|
896 |
+
"%s/%s attempts left;"
|
897 |
+
" will restart worker group",
|
898 |
+
role, state.name, self._remaining_restarts, spec.max_restarts
|
899 |
+
)
|
900 |
+
self._remaining_restarts -= 1
|
901 |
+
self._restart_workers(self._worker_group)
|
902 |
+
else:
|
903 |
+
self._stop_workers(self._worker_group)
|
904 |
+
self._worker_group.state = WorkerState.FAILED
|
905 |
+
return run_result
|
906 |
+
elif state == WorkerState.HEALTHY:
|
907 |
+
# membership changes do not count as retries
|
908 |
+
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
|
909 |
+
group_rank = self._worker_group.group_rank
|
910 |
+
if num_nodes_waiting > 0:
|
911 |
+
log.info(
|
912 |
+
"[%s] Detected %s "
|
913 |
+
"new nodes from group_rank=%s; "
|
914 |
+
"will restart worker group",
|
915 |
+
role, num_nodes_waiting, group_rank
|
916 |
+
)
|
917 |
+
self._restart_workers(self._worker_group)
|
918 |
+
else:
|
919 |
+
raise Exception(f"[{role}] Worker group in {state.name} state")
|
920 |
+
|
921 |
+
def _exit_barrier(self):
|
922 |
+
"""
|
923 |
+
Define a barrier that keeps the agent process alive until all workers finish.
|
924 |
+
|
925 |
+
Wait for ``exit_barrier_timeout`` seconds for all agents to finish
|
926 |
+
executing their local workers (either successfully or not). This
|
927 |
+
acts as a safety guard against user scripts that terminate at different
|
928 |
+
times.
|
929 |
+
"""
|
930 |
+
log.info(
|
931 |
+
"Local worker group finished (%s). "
|
932 |
+
"Waiting %s seconds for other agents to finish",
|
933 |
+
self._worker_group.state, self._exit_barrier_timeout
|
934 |
+
)
|
935 |
+
start = time.time()
|
936 |
+
try:
|
937 |
+
store_util.barrier(
|
938 |
+
self._store,
|
939 |
+
self._worker_group.group_rank,
|
940 |
+
self._worker_group.group_world_size,
|
941 |
+
key_prefix=_TERMINAL_STATE_SYNC_ID,
|
942 |
+
barrier_timeout=self._exit_barrier_timeout,
|
943 |
+
)
|
944 |
+
log.info(
|
945 |
+
"Done waiting for other agents. Elapsed: %s seconds", time.time() - start
|
946 |
+
)
|
947 |
+
except SignalException as e:
|
948 |
+
log.warning("Got termination signal: %s", e.sigval)
|
949 |
+
raise
|
950 |
+
except Exception:
|
951 |
+
log.exception(
|
952 |
+
"Error waiting on exit barrier. Elapsed: %s seconds",
|
953 |
+
time.time() - start
|
954 |
+
)
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/local_elastic_agent.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This source code is licensed under the BSD-style license found in the
|
7 |
+
# LICENSE file in the root directory of this source tree.
|
8 |
+
|
9 |
+
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
import signal
|
13 |
+
import socket
|
14 |
+
from string import Template
|
15 |
+
import uuid
|
16 |
+
from typing import Any, Dict, Optional, Tuple
|
17 |
+
|
18 |
+
import torch.distributed.elastic.timer as timer
|
19 |
+
from torch.distributed.elastic import events
|
20 |
+
|
21 |
+
from torch.distributed.elastic.agent.server.api import (
|
22 |
+
RunResult,
|
23 |
+
SimpleElasticAgent,
|
24 |
+
WorkerGroup,
|
25 |
+
WorkerSpec,
|
26 |
+
WorkerState,
|
27 |
+
)
|
28 |
+
from torch.distributed.elastic.events.api import EventMetadataValue
|
29 |
+
from torch.distributed.elastic.metrics.api import prof
|
30 |
+
from torch.distributed.elastic.multiprocessing import PContext, start_processes, LogsSpecs
|
31 |
+
from torch.distributed.elastic.utils import macros
|
32 |
+
from torch.distributed.elastic.utils.logging import get_logger
|
33 |
+
|
34 |
+
log = get_logger(__name__)
|
35 |
+
|
36 |
+
__all__ = [
|
37 |
+
"LocalElasticAgent",
|
38 |
+
"TORCHELASTIC_ENABLE_FILE_TIMER",
|
39 |
+
"TORCHELASTIC_TIMER_FILE",
|
40 |
+
]
|
41 |
+
|
42 |
+
TORCHELASTIC_ENABLE_FILE_TIMER = "TORCHELASTIC_ENABLE_FILE_TIMER"
|
43 |
+
TORCHELASTIC_TIMER_FILE = "TORCHELASTIC_TIMER_FILE"
|
44 |
+
|
45 |
+
class LocalElasticAgent(SimpleElasticAgent):
|
46 |
+
"""An implementation of :py:class:`torchelastic.agent.server.ElasticAgent` that handles host-local workers.
|
47 |
+
|
48 |
+
This agent is deployed per host and is configured to spawn ``n`` workers.
|
49 |
+
When using GPUs, ``n`` maps to the number of GPUs available on the host.
|
50 |
+
|
51 |
+
The local agent does not communicate to other local agents deployed on
|
52 |
+
other hosts, even if the workers may communicate inter-host. The worker id
|
53 |
+
is interpreted to be a local process. The agent starts and stops all worker
|
54 |
+
processes as a single unit.
|
55 |
+
|
56 |
+
|
57 |
+
The worker function and argument passed to the worker function must be
|
58 |
+
python multiprocessing compatible. To pass multiprocessing data structures
|
59 |
+
to the workers you may create the data structure in the same multiprocessing
|
60 |
+
context as the specified ``start_method`` and pass it as a function argument.
|
61 |
+
|
62 |
+
The ``exit_barrier_timeout`` specifies the amount of time (in seconds) to wait
|
63 |
+
for other agents to finish. This acts as a safety net to handle cases where
|
64 |
+
workers finish at different times, to prevent agents from viewing workers
|
65 |
+
that finished early as a scale-down event. It is strongly advised that the
|
66 |
+
user code deal with ensuring that workers are terminated in a synchronous
|
67 |
+
manner rather than relying on the exit_barrier_timeout.
|
68 |
+
|
69 |
+
A named pipe based watchdog can be enabled in ```LocalElasticAgent``` if an
|
70 |
+
environment variable ``TORCHELASTIC_ENABLE_FILE_TIMER`` with value 1 has
|
71 |
+
been defined in the ```LocalElasticAgent``` process.
|
72 |
+
Optionally, another environment variable ```TORCHELASTIC_TIMER_FILE```
|
73 |
+
can be set with a unique file name for the named pipe. If the environment
|
74 |
+
variable ```TORCHELASTIC_TIMER_FILE``` is not set, ```LocalElasticAgent```
|
75 |
+
will internally create a unique file name and set it to the environment
|
76 |
+
variable ```TORCHELASTIC_TIMER_FILE```, and this environment variable will
|
77 |
+
be propagated to the worker processes to allow them to connect to the same
|
78 |
+
named pipe that ```LocalElasticAgent``` uses.
|
79 |
+
|
80 |
+
Logs are written to the specified log directory. Each log line will be by default
|
81 |
+
prefixed by ``[${role_name}${local_rank}]:`` (e.g. ``[trainer0]: foobar``).
|
82 |
+
Log prefixes can be customized by passing a `template string
|
83 |
+
<https://docs.python.org/3/library/string.html#template-strings>`_ as the
|
84 |
+
``log_line_prefix_template`` argument.
|
85 |
+
The following macros (identifiers) are substituted at runtime:
|
86 |
+
``${role_name}, ${local_rank}, ${rank}``. For example, to prefix each log line with
|
87 |
+
global rank instead of the local rank, set ``log_line_prefix_template = "[${rank}]:``.
|
88 |
+
|
89 |
+
|
90 |
+
Example launching function
|
91 |
+
|
92 |
+
::
|
93 |
+
|
94 |
+
def trainer(args) -> str:
|
95 |
+
return "do train"
|
96 |
+
|
97 |
+
def main():
|
98 |
+
start_method="spawn"
|
99 |
+
shared_queue= multiprocessing.get_context(start_method).Queue()
|
100 |
+
spec = WorkerSpec(
|
101 |
+
role="trainer",
|
102 |
+
local_world_size=nproc_per_process,
|
103 |
+
entrypoint=trainer,
|
104 |
+
args=("foobar",),
|
105 |
+
...<OTHER_PARAMS...>)
|
106 |
+
agent = LocalElasticAgent(spec, start_method)
|
107 |
+
results = agent.run()
|
108 |
+
|
109 |
+
if results.is_failed():
|
110 |
+
print("trainer failed")
|
111 |
+
else:
|
112 |
+
print(f"rank 0 return value: {results.return_values[0]}")
|
113 |
+
# prints -> rank 0 return value: do train
|
114 |
+
|
115 |
+
Example launching binary
|
116 |
+
|
117 |
+
::
|
118 |
+
|
119 |
+
def main():
|
120 |
+
spec = WorkerSpec(
|
121 |
+
role="trainer",
|
122 |
+
local_world_size=nproc_per_process,
|
123 |
+
entrypoint="/usr/local/bin/trainer",
|
124 |
+
args=("--trainer-args", "foobar"),
|
125 |
+
...<OTHER_PARAMS...>)
|
126 |
+
agent = LocalElasticAgent(spec)
|
127 |
+
results = agent.run()
|
128 |
+
|
129 |
+
if not results.is_failed():
|
130 |
+
print("binary launches do not have return values")
|
131 |
+
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
spec: WorkerSpec,
|
137 |
+
logs_specs: LogsSpecs,
|
138 |
+
start_method="spawn",
|
139 |
+
exit_barrier_timeout: float = 300,
|
140 |
+
log_line_prefix_template: Optional[str] = None,
|
141 |
+
):
|
142 |
+
super().__init__(spec, exit_barrier_timeout)
|
143 |
+
self._start_method = start_method
|
144 |
+
self._pcontext: Optional[PContext] = None
|
145 |
+
self._rdzv_handler = spec.rdzv_handler
|
146 |
+
self._log_line_prefix_template = log_line_prefix_template
|
147 |
+
self._worker_watchdog: Optional[timer.FileTimerServer] = None
|
148 |
+
self._logs_specs = logs_specs
|
149 |
+
|
150 |
+
|
151 |
+
def _setup_local_watchdog(self, envs: Dict[int, Dict[str, str]]) -> None:
|
152 |
+
enable_watchdog_env_name = TORCHELASTIC_ENABLE_FILE_TIMER
|
153 |
+
watchdog_enabled = os.getenv(enable_watchdog_env_name)
|
154 |
+
watchdog_file_env_name = TORCHELASTIC_TIMER_FILE
|
155 |
+
watchdog_file_path = os.getenv(watchdog_file_env_name)
|
156 |
+
if watchdog_enabled is not None and str(watchdog_enabled) == "1":
|
157 |
+
if watchdog_file_path is None:
|
158 |
+
watchdog_file_path = "/tmp/watchdog_timer_" + str(uuid.uuid4())
|
159 |
+
log.info("Starting a FileTimerServer with %s ...", watchdog_file_path)
|
160 |
+
self._worker_watchdog = timer.FileTimerServer(
|
161 |
+
file_path=watchdog_file_path,
|
162 |
+
max_interval=0.1,
|
163 |
+
daemon=True,
|
164 |
+
log_event=self._log_watchdog_event)
|
165 |
+
self._worker_watchdog.start()
|
166 |
+
log.info("FileTimerServer started")
|
167 |
+
else:
|
168 |
+
log.info("Environment variable '%s' not found. Do not start FileTimerServer.", enable_watchdog_env_name)
|
169 |
+
# Propagate the watchdog file env to worker processes
|
170 |
+
if watchdog_file_path is not None:
|
171 |
+
for worker_env in envs.values():
|
172 |
+
worker_env[watchdog_file_env_name] = watchdog_file_path
|
173 |
+
|
174 |
+
|
175 |
+
def _get_fq_hostname(self) -> str:
|
176 |
+
return socket.getfqdn(socket.gethostname())
|
177 |
+
|
178 |
+
def _log_watchdog_event(
|
179 |
+
self,
|
180 |
+
name: str,
|
181 |
+
request: Optional[timer.FileTimerRequest],
|
182 |
+
) -> None:
|
183 |
+
wg = self._worker_group
|
184 |
+
spec = wg.spec
|
185 |
+
md = {
|
186 |
+
"watchdog_event": name
|
187 |
+
}
|
188 |
+
if request is not None:
|
189 |
+
md["worker_pid"] = str(request.worker_pid)
|
190 |
+
md["scope_id"] = request.scope_id
|
191 |
+
md["expiration_time"] = str(request.expiration_time)
|
192 |
+
md["signal"] = str(request.signal)
|
193 |
+
md_str = json.dumps(md)
|
194 |
+
state = "RUNNING"
|
195 |
+
metadata: Dict[str, EventMetadataValue] = {
|
196 |
+
"run_id": spec.rdzv_handler.get_run_id(),
|
197 |
+
"global_rank": None,
|
198 |
+
"group_rank": wg.group_rank,
|
199 |
+
"worker_id": None,
|
200 |
+
"role": spec.role,
|
201 |
+
"hostname": self._get_fq_hostname(),
|
202 |
+
"state": state,
|
203 |
+
"total_run_time": self._total_execution_time,
|
204 |
+
"rdzv_backend": spec.rdzv_handler.get_backend(),
|
205 |
+
"raw_error": None,
|
206 |
+
"metadata": md_str,
|
207 |
+
"agent_restarts": spec.max_restarts - self._remaining_restarts,
|
208 |
+
}
|
209 |
+
# Note: The 'metadata' field of the Event is converted to a TorchelasticStatusLogEntry later.
|
210 |
+
# The 'name' field of the Event is NOT used in the TorchelasticStatusLogEntry.
|
211 |
+
event = events.Event(
|
212 |
+
name=name, source=events.EventSource.AGENT, metadata=metadata
|
213 |
+
)
|
214 |
+
events.record(event)
|
215 |
+
|
216 |
+
# pyre-fixme[56]: Pyre was not able to infer the type of the decorator
|
217 |
+
# `torch.distributed.elastic.metrics.prof`.
|
218 |
+
@prof
|
219 |
+
def _stop_workers(self, worker_group: WorkerGroup) -> None:
|
220 |
+
self._shutdown()
|
221 |
+
|
222 |
+
# pyre-fixme[56]: Pyre was not able to infer the type of the decorator
|
223 |
+
# `torch.distributed.elastic.metrics.prof`.
|
224 |
+
@prof
|
225 |
+
def _start_workers(self, worker_group: WorkerGroup) -> Dict[int, Any]:
|
226 |
+
spec = worker_group.spec
|
227 |
+
store = worker_group.store
|
228 |
+
assert store is not None
|
229 |
+
master_addr, master_port = super()._get_master_addr_port(store)
|
230 |
+
restart_count = spec.max_restarts - self._remaining_restarts
|
231 |
+
|
232 |
+
use_agent_store = spec.rdzv_handler.get_backend() == "static"
|
233 |
+
|
234 |
+
args: Dict[int, Tuple] = {}
|
235 |
+
envs: Dict[int, Dict[str, str]] = {}
|
236 |
+
log_line_prefixes: Optional[Dict[int, str]] = {} if self._log_line_prefix_template else None
|
237 |
+
for worker in worker_group.workers:
|
238 |
+
local_rank = worker.local_rank
|
239 |
+
worker_env = {
|
240 |
+
"LOCAL_RANK": str(local_rank),
|
241 |
+
"RANK": str(worker.global_rank),
|
242 |
+
"GROUP_RANK": str(worker_group.group_rank),
|
243 |
+
"ROLE_RANK": str(worker.role_rank),
|
244 |
+
"ROLE_NAME": spec.role,
|
245 |
+
"LOCAL_WORLD_SIZE": str(spec.local_world_size),
|
246 |
+
"WORLD_SIZE": str(worker.world_size),
|
247 |
+
"GROUP_WORLD_SIZE": str(worker_group.group_world_size),
|
248 |
+
"ROLE_WORLD_SIZE": str(worker.role_world_size),
|
249 |
+
"MASTER_ADDR": master_addr,
|
250 |
+
"MASTER_PORT": str(master_port),
|
251 |
+
"TORCHELASTIC_RESTART_COUNT": str(restart_count),
|
252 |
+
"TORCHELASTIC_MAX_RESTARTS": str(spec.max_restarts),
|
253 |
+
"TORCHELASTIC_RUN_ID": spec.rdzv_handler.get_run_id(),
|
254 |
+
"TORCHELASTIC_USE_AGENT_STORE": str(use_agent_store),
|
255 |
+
"TORCH_NCCL_ASYNC_ERROR_HANDLING": os.getenv(
|
256 |
+
"TORCH_NCCL_ASYNC_ERROR_HANDLING", str(1)
|
257 |
+
),
|
258 |
+
}
|
259 |
+
if "OMP_NUM_THREADS" in os.environ:
|
260 |
+
worker_env["OMP_NUM_THREADS"] = os.environ["OMP_NUM_THREADS"]
|
261 |
+
|
262 |
+
|
263 |
+
if self._log_line_prefix_template:
|
264 |
+
log_line_prefix = Template(self._log_line_prefix_template).safe_substitute(
|
265 |
+
role_name=spec.role,
|
266 |
+
rank=worker.global_rank,
|
267 |
+
local_rank=local_rank,)
|
268 |
+
log_line_prefixes[local_rank] = log_line_prefix
|
269 |
+
|
270 |
+
envs[local_rank] = worker_env
|
271 |
+
worker_args = list(spec.args)
|
272 |
+
worker_args = macros.substitute(worker_args, str(local_rank))
|
273 |
+
args[local_rank] = tuple(worker_args)
|
274 |
+
|
275 |
+
self._setup_local_watchdog(envs=envs)
|
276 |
+
|
277 |
+
assert spec.entrypoint is not None
|
278 |
+
assert self._logs_specs is not None
|
279 |
+
self._pcontext = start_processes(
|
280 |
+
name=spec.role,
|
281 |
+
entrypoint=spec.entrypoint,
|
282 |
+
args=args,
|
283 |
+
envs=envs,
|
284 |
+
logs_specs=self._logs_specs,
|
285 |
+
log_line_prefixes=log_line_prefixes,
|
286 |
+
start_method=self._start_method,
|
287 |
+
)
|
288 |
+
|
289 |
+
return self._pcontext.pids()
|
290 |
+
|
291 |
+
def _shutdown(self, death_sig: signal.Signals = signal.SIGTERM) -> None:
|
292 |
+
if self._worker_watchdog is not None:
|
293 |
+
self._worker_watchdog.stop()
|
294 |
+
self._worker_watchdog = None
|
295 |
+
if self._pcontext:
|
296 |
+
self._pcontext.close(death_sig)
|
297 |
+
if self._rdzv_handler:
|
298 |
+
self._rdzv_handler.shutdown()
|
299 |
+
|
300 |
+
# pyre-fixme[56]: Pyre was not able to infer the type of the decorator
|
301 |
+
# `torch.distributed.elastic.metrics.prof`.
|
302 |
+
@prof
|
303 |
+
def _monitor_workers(self, worker_group: WorkerGroup) -> RunResult:
|
304 |
+
role = worker_group.spec.role
|
305 |
+
worker_pids = {w.id for w in worker_group.workers}
|
306 |
+
assert self._pcontext is not None
|
307 |
+
pc_pids = set(self._pcontext.pids().values())
|
308 |
+
if worker_pids != pc_pids:
|
309 |
+
log.error(
|
310 |
+
"[%s] worker pids do not match process_context pids."
|
311 |
+
" Expected: %s, actual: %s",
|
312 |
+
role, worker_pids, pc_pids
|
313 |
+
)
|
314 |
+
return RunResult(state=WorkerState.UNKNOWN)
|
315 |
+
|
316 |
+
result = self._pcontext.wait(0)
|
317 |
+
if result:
|
318 |
+
if result.is_failed():
|
319 |
+
# map local rank failure to global rank
|
320 |
+
worker_failures = {}
|
321 |
+
for local_rank, failure in result.failures.items():
|
322 |
+
worker = worker_group.workers[local_rank]
|
323 |
+
worker_failures[worker.global_rank] = failure
|
324 |
+
return RunResult(
|
325 |
+
state=WorkerState.FAILED,
|
326 |
+
failures=worker_failures,
|
327 |
+
)
|
328 |
+
else:
|
329 |
+
# copy ret_val_queue into a map with a global ranks
|
330 |
+
workers_ret_vals = {}
|
331 |
+
for local_rank, ret_val in result.return_values.items():
|
332 |
+
worker = worker_group.workers[local_rank]
|
333 |
+
workers_ret_vals[worker.global_rank] = ret_val
|
334 |
+
return RunResult(
|
335 |
+
state=WorkerState.SUCCEEDED,
|
336 |
+
return_values=workers_ret_vals,
|
337 |
+
)
|
338 |
+
else:
|
339 |
+
return RunResult(state=WorkerState.HEALTHY)
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/api.cpython-310.pyc
ADDED
Binary file (3.82 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/events/__pycache__/handlers.cpython-310.pyc
ADDED
Binary file (596 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/events/api.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This source code is licensed under the BSD-style license found in the
|
7 |
+
# LICENSE file in the root directory of this source tree.
|
8 |
+
|
9 |
+
import json
|
10 |
+
from dataclasses import asdict, dataclass, field
|
11 |
+
from enum import Enum
|
12 |
+
from typing import Dict, Union, Optional
|
13 |
+
|
14 |
+
__all__ = ['EventSource', 'Event', 'NodeState', 'RdzvEvent']
|
15 |
+
|
16 |
+
EventMetadataValue = Union[str, int, float, bool, None]
|
17 |
+
|
18 |
+
|
19 |
+
class EventSource(str, Enum):
|
20 |
+
"""Known identifiers of the event producers."""
|
21 |
+
|
22 |
+
AGENT = "AGENT"
|
23 |
+
WORKER = "WORKER"
|
24 |
+
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class Event:
|
28 |
+
"""
|
29 |
+
The class represents the generic event that occurs during the torchelastic job execution.
|
30 |
+
|
31 |
+
The event can be any kind of meaningful action.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
name: event name.
|
35 |
+
source: the event producer, e.g. agent or worker
|
36 |
+
timestamp: timestamp in milliseconds when event occurred.
|
37 |
+
metadata: additional data that is associated with the event.
|
38 |
+
"""
|
39 |
+
|
40 |
+
name: str
|
41 |
+
source: EventSource
|
42 |
+
timestamp: int = 0
|
43 |
+
metadata: Dict[str, EventMetadataValue] = field(default_factory=dict)
|
44 |
+
|
45 |
+
def __str__(self):
|
46 |
+
return self.serialize()
|
47 |
+
|
48 |
+
@staticmethod
|
49 |
+
def deserialize(data: Union[str, "Event"]) -> "Event":
|
50 |
+
if isinstance(data, Event):
|
51 |
+
return data
|
52 |
+
if isinstance(data, str):
|
53 |
+
data_dict = json.loads(data)
|
54 |
+
data_dict["source"] = EventSource[data_dict["source"]] # type: ignore[possibly-undefined]
|
55 |
+
return Event(**data_dict)
|
56 |
+
|
57 |
+
def serialize(self) -> str:
|
58 |
+
return json.dumps(asdict(self))
|
59 |
+
|
60 |
+
|
61 |
+
class NodeState(str, Enum):
|
62 |
+
"""The states that a node can be in rendezvous."""
|
63 |
+
|
64 |
+
INIT = "INIT"
|
65 |
+
RUNNING = "RUNNING"
|
66 |
+
SUCCEEDED = "SUCCEEDED"
|
67 |
+
FAILED = "FAILED"
|
68 |
+
|
69 |
+
|
70 |
+
@dataclass
|
71 |
+
class RdzvEvent:
|
72 |
+
"""
|
73 |
+
Dataclass to represent any rendezvous event.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
name: Event name. (E.g. Current action being performed)
|
77 |
+
run_id: The run id of the rendezvous
|
78 |
+
message: The message describing the event
|
79 |
+
hostname: Hostname of the node
|
80 |
+
pid: The process id of the node
|
81 |
+
node_state: The state of the node (INIT, RUNNING, SUCCEEDED, FAILED)
|
82 |
+
master_endpoint: The master endpoint for the rendezvous store, if known
|
83 |
+
rank: The rank of the node, if known
|
84 |
+
local_id: The local_id of the node, if defined in dynamic_rendezvous.py
|
85 |
+
error_trace: Error stack trace, if this is an error event.
|
86 |
+
"""
|
87 |
+
|
88 |
+
name: str
|
89 |
+
run_id: str
|
90 |
+
message: str
|
91 |
+
hostname: str
|
92 |
+
pid: int
|
93 |
+
node_state: NodeState
|
94 |
+
master_endpoint: str = ""
|
95 |
+
rank: Optional[int] = None
|
96 |
+
local_id: Optional[int] = None
|
97 |
+
error_trace: str = ""
|
98 |
+
|
99 |
+
def __str__(self):
|
100 |
+
return self.serialize()
|
101 |
+
|
102 |
+
@staticmethod
|
103 |
+
def deserialize(data: Union[str, "RdzvEvent"]) -> "RdzvEvent":
|
104 |
+
if isinstance(data, RdzvEvent):
|
105 |
+
return data
|
106 |
+
if isinstance(data, str):
|
107 |
+
data_dict = json.loads(data)
|
108 |
+
data_dict["node_state"] = NodeState[data_dict["node_state"]] # type: ignore[possibly-undefined]
|
109 |
+
return RdzvEvent(**data_dict)
|
110 |
+
|
111 |
+
def serialize(self) -> str:
|
112 |
+
return json.dumps(asdict(self))
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__init__.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This source code is licensed under the BSD-style license found in the
|
7 |
+
# LICENSE file in the root directory of this source tree.
|
8 |
+
|
9 |
+
"""
|
10 |
+
Library that launches and manages ``n`` copies of worker subprocesses either specified by a function or a binary.
|
11 |
+
|
12 |
+
For functions, it uses ``torch.multiprocessing`` (and therefore python
|
13 |
+
``multiprocessing``) to spawn/fork worker processes. For binaries it uses python
|
14 |
+
``subprocessing.Popen`` to create worker processes.
|
15 |
+
|
16 |
+
|
17 |
+
Usage 1: Launching two trainers as a function
|
18 |
+
|
19 |
+
::
|
20 |
+
|
21 |
+
from torch.distributed.elastic.multiprocessing import Std, start_processes
|
22 |
+
|
23 |
+
def trainer(a, b, c):
|
24 |
+
pass # train
|
25 |
+
|
26 |
+
|
27 |
+
# runs two trainers
|
28 |
+
# LOCAL_RANK=0 trainer(1,2,3)
|
29 |
+
# LOCAL_RANK=1 trainer(4,5,6)
|
30 |
+
ctx = start_processes(
|
31 |
+
name="trainer",
|
32 |
+
entrypoint=trainer,
|
33 |
+
args={0: (1,2,3), 1: (4,5,6)},
|
34 |
+
envs={0: {"LOCAL_RANK": 0}, 1: {"LOCAL_RANK": 1}},
|
35 |
+
log_dir="/tmp/foobar",
|
36 |
+
redirects=Std.ALL, # write all worker stdout/stderr to a log file
|
37 |
+
tee={0: Std.ERR}, # tee only local rank 0's stderr to console
|
38 |
+
)
|
39 |
+
|
40 |
+
# waits for all copies of trainer to finish
|
41 |
+
ctx.wait()
|
42 |
+
|
43 |
+
Usage 2: Launching 2 echo workers as a binary
|
44 |
+
|
45 |
+
::
|
46 |
+
|
47 |
+
# same as invoking
|
48 |
+
# echo hello
|
49 |
+
# echo world > stdout.log
|
50 |
+
ctx = start_processes(
|
51 |
+
name="echo"
|
52 |
+
entrypoint="echo",
|
53 |
+
log_dir="/tmp/foobar",
|
54 |
+
args={0: "hello", 1: "world"},
|
55 |
+
redirects={1: Std.OUT},
|
56 |
+
)
|
57 |
+
|
58 |
+
Just like ``torch.multiprocessing``, the return value of the function
|
59 |
+
:func:`start_processes` is a process context (:class:`api.PContext`). If a function
|
60 |
+
was launched, a :class:`api.MultiprocessContext` is returned and if a binary
|
61 |
+
was launched a :class:`api.SubprocessContext` is returned. Both are specific
|
62 |
+
implementations of the parent :class:`api.PContext` class.
|
63 |
+
"""
|
64 |
+
|
65 |
+
import os
|
66 |
+
from typing import Callable, Dict, Optional, Tuple, Union, Set
|
67 |
+
|
68 |
+
from torch.distributed.elastic.multiprocessing.api import ( # noqa: F401
|
69 |
+
_validate_full_rank,
|
70 |
+
DefaultLogsSpecs,
|
71 |
+
LogsDest,
|
72 |
+
LogsSpecs,
|
73 |
+
MultiprocessContext,
|
74 |
+
PContext,
|
75 |
+
ProcessFailure,
|
76 |
+
RunProcsResult,
|
77 |
+
SignalException,
|
78 |
+
Std,
|
79 |
+
SubprocessContext,
|
80 |
+
to_map,
|
81 |
+
)
|
82 |
+
from torch.distributed.elastic.utils.logging import get_logger
|
83 |
+
|
84 |
+
__all__ = [
|
85 |
+
"start_processes",
|
86 |
+
"MultiprocessContext",
|
87 |
+
"PContext",
|
88 |
+
"ProcessFailure",
|
89 |
+
"RunProcsResult",
|
90 |
+
"SignalException",
|
91 |
+
"Std",
|
92 |
+
"LogsDest",
|
93 |
+
"LogsSpecs",
|
94 |
+
"DefaultLogsSpecs",
|
95 |
+
"SubprocessContext",
|
96 |
+
"to_map",
|
97 |
+
]
|
98 |
+
|
99 |
+
log = get_logger(__name__)
|
100 |
+
|
101 |
+
|
102 |
+
def start_processes(
|
103 |
+
name: str,
|
104 |
+
entrypoint: Union[Callable, str],
|
105 |
+
args: Dict[int, Tuple],
|
106 |
+
envs: Dict[int, Dict[str, str]],
|
107 |
+
logs_specs: LogsSpecs,
|
108 |
+
log_line_prefixes: Optional[Dict[int, str]] = None,
|
109 |
+
start_method: str = "spawn",
|
110 |
+
) -> PContext:
|
111 |
+
"""
|
112 |
+
Start ``n`` copies of ``entrypoint`` processes with the provided options.
|
113 |
+
|
114 |
+
``entrypoint`` is either a ``Callable`` (function) or a ``str`` (binary).
|
115 |
+
The number of copies is determined by the number of entries for ``args`` and
|
116 |
+
``envs`` arguments, which need to have the same key set.
|
117 |
+
|
118 |
+
``args`` and ``env`` parameters are the arguments and environment variables
|
119 |
+
to pass down to the entrypoint mapped by the replica index (local rank).
|
120 |
+
All local ranks must be accounted for.
|
121 |
+
That is, the keyset should be ``{0,1,...,(nprocs-1)}``.
|
122 |
+
|
123 |
+
.. note:: When the ``entrypoint`` is a binary (``str``), ``args`` can only be strings.
|
124 |
+
If any other type is given, then it is casted to a string representation
|
125 |
+
(e.g. ``str(arg1)``). Furthermore, a binary failure will only write
|
126 |
+
an ``error.json`` error file if the main function is annotated with
|
127 |
+
``torch.distributed.elastic.multiprocessing.errors.record``. For function launches,
|
128 |
+
this is done by default and there is no need to manually annotate
|
129 |
+
with the ``@record`` annotation.
|
130 |
+
|
131 |
+
``redirects`` and ``tee`` are bitmasks specifying which std stream(s) to redirect
|
132 |
+
to a log file in the ``log_dir``. Valid mask values are defined in ``Std``.
|
133 |
+
To redirect/tee only certain local ranks, pass ``redirects`` as a map with the key as
|
134 |
+
the local rank to specify the redirect behavior for.
|
135 |
+
Any missing local ranks will default to ``Std.NONE``.
|
136 |
+
|
137 |
+
``tee`` acts like the unix "tee" command in that it redirects + prints to console.
|
138 |
+
To avoid worker stdout/stderr from printing to console, use the ``redirects`` parameter.
|
139 |
+
|
140 |
+
For each process, the ``log_dir`` will contain:
|
141 |
+
|
142 |
+
#. ``{local_rank}/error.json``: if the process failed, a file with the error info
|
143 |
+
#. ``{local_rank}/stdout.json``: if ``redirect & STDOUT == STDOUT``
|
144 |
+
#. ``{local_rank}/stderr.json``: if ``redirect & STDERR == STDERR``
|
145 |
+
|
146 |
+
.. note:: It is expected that the ``log_dir`` exists, is empty, and is a directory.
|
147 |
+
|
148 |
+
Example:
|
149 |
+
::
|
150 |
+
|
151 |
+
log_dir = "/tmp/test"
|
152 |
+
|
153 |
+
# ok; two copies of foo: foo("bar0"), foo("bar1")
|
154 |
+
start_processes(
|
155 |
+
name="trainer",
|
156 |
+
entrypoint=foo,
|
157 |
+
args:{0:("bar0",), 1:("bar1",),
|
158 |
+
envs:{0:{}, 1:{}},
|
159 |
+
log_dir=log_dir
|
160 |
+
)
|
161 |
+
|
162 |
+
# invalid; envs missing for local rank 1
|
163 |
+
start_processes(
|
164 |
+
name="trainer",
|
165 |
+
entrypoint=foo,
|
166 |
+
args:{0:("bar0",), 1:("bar1",),
|
167 |
+
envs:{0:{}},
|
168 |
+
log_dir=log_dir
|
169 |
+
)
|
170 |
+
|
171 |
+
# ok; two copies of /usr/bin/touch: touch file1, touch file2
|
172 |
+
start_processes(
|
173 |
+
name="trainer",
|
174 |
+
entrypoint="/usr/bin/touch",
|
175 |
+
args:{0:("file1",), 1:("file2",),
|
176 |
+
envs:{0:{}, 1:{}},
|
177 |
+
log_dir=log_dir
|
178 |
+
)
|
179 |
+
|
180 |
+
# caution; arguments casted to string, runs:
|
181 |
+
# echo "1" "2" "3" and echo "[1, 2, 3]"
|
182 |
+
start_processes(
|
183 |
+
name="trainer",
|
184 |
+
entrypoint="/usr/bin/echo",
|
185 |
+
args:{0:(1,2,3), 1:([1,2,3],),
|
186 |
+
envs:{0:{}, 1:{}},
|
187 |
+
log_dir=log_dir
|
188 |
+
)
|
189 |
+
|
190 |
+
Args:
|
191 |
+
name: a human readable short name that describes what the processes are
|
192 |
+
(used as header when tee'ing stdout/stderr outputs)
|
193 |
+
entrypoint: either a ``Callable`` (function) or ``cmd`` (binary)
|
194 |
+
args: arguments to each replica
|
195 |
+
envs: env vars to each replica
|
196 |
+
log_dir: directory used to write log files
|
197 |
+
start_method: multiprocessing start method (spawn, fork, forkserver)
|
198 |
+
ignored for binaries
|
199 |
+
redirects: which std streams to redirect to a log file
|
200 |
+
tee: which std streams to redirect + print to console
|
201 |
+
local_ranks_filter: which ranks' logs to print to console
|
202 |
+
|
203 |
+
"""
|
204 |
+
|
205 |
+
nprocs = len(args)
|
206 |
+
_validate_full_rank(args, nprocs, "args")
|
207 |
+
_validate_full_rank(envs, nprocs, "envs")
|
208 |
+
|
209 |
+
context: PContext
|
210 |
+
if isinstance(entrypoint, str):
|
211 |
+
context = SubprocessContext(
|
212 |
+
name=name,
|
213 |
+
entrypoint=entrypoint,
|
214 |
+
args=args,
|
215 |
+
envs=envs,
|
216 |
+
logs_specs=logs_specs,
|
217 |
+
log_line_prefixes=log_line_prefixes,
|
218 |
+
)
|
219 |
+
else:
|
220 |
+
context = MultiprocessContext(
|
221 |
+
name=name,
|
222 |
+
entrypoint=entrypoint,
|
223 |
+
args=args,
|
224 |
+
envs=envs,
|
225 |
+
log_line_prefixes=log_line_prefixes,
|
226 |
+
start_method=start_method,
|
227 |
+
logs_specs=logs_specs,
|
228 |
+
)
|
229 |
+
|
230 |
+
try:
|
231 |
+
context.start()
|
232 |
+
return context
|
233 |
+
except Exception:
|
234 |
+
context.close()
|
235 |
+
raise
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py
ADDED
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This source code is licensed under the BSD-style license found in the
|
7 |
+
# LICENSE file in the root directory of this source tree.
|
8 |
+
|
9 |
+
import abc
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
import re
|
13 |
+
import shutil
|
14 |
+
import signal
|
15 |
+
import subprocess
|
16 |
+
import sys
|
17 |
+
import tempfile
|
18 |
+
import time
|
19 |
+
from contextlib import nullcontext
|
20 |
+
from dataclasses import dataclass, field
|
21 |
+
from enum import IntFlag
|
22 |
+
from multiprocessing import synchronize
|
23 |
+
from types import FrameType
|
24 |
+
from typing import Any, Callable, Dict, Optional, Set, Tuple, Union
|
25 |
+
from abc import ABC, abstractmethod
|
26 |
+
|
27 |
+
import torch.multiprocessing as mp
|
28 |
+
from torch.distributed.elastic.multiprocessing.errors import ProcessFailure, record
|
29 |
+
from torch.distributed.elastic.multiprocessing.redirects import (
|
30 |
+
redirect_stderr,
|
31 |
+
redirect_stdout,
|
32 |
+
)
|
33 |
+
|
34 |
+
from torch.distributed.elastic.multiprocessing.subprocess_handler import SubprocessHandler, get_subprocess_handler
|
35 |
+
from torch.distributed.elastic.multiprocessing.tail_log import TailLog
|
36 |
+
|
37 |
+
IS_WINDOWS = sys.platform == "win32"
|
38 |
+
IS_MACOS = sys.platform == "darwin"
|
39 |
+
|
40 |
+
|
41 |
+
log = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
__all__ = [
|
44 |
+
"DefaultLogsSpecs",
|
45 |
+
"SignalException",
|
46 |
+
"Std",
|
47 |
+
"to_map",
|
48 |
+
"RunProcsResult",
|
49 |
+
"PContext",
|
50 |
+
"get_std_cm",
|
51 |
+
"MultiprocessContext",
|
52 |
+
"SubprocessContext",
|
53 |
+
]
|
54 |
+
|
55 |
+
class SignalException(Exception):
|
56 |
+
"""
|
57 |
+
Exception is raised inside the torchelastic agent process by the termination handler
|
58 |
+
if the death signal got received by the process.
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self, msg: str, sigval: signal.Signals) -> None:
|
62 |
+
super().__init__(msg)
|
63 |
+
self.sigval = sigval
|
64 |
+
|
65 |
+
|
66 |
+
def _terminate_process_handler(signum: int, frame: Optional[FrameType]) -> None:
|
67 |
+
"""Termination handler that raises exceptions on the main process.
|
68 |
+
|
69 |
+
When the process receives death signal(SIGTERM, SIGINT), this termination handler will
|
70 |
+
be invoked. It raises the ``SignalException`` exception that should be processed by the
|
71 |
+
user code. Python does not terminate process after the termination handler is finished,
|
72 |
+
so the exception should not be silently ignored, otherwise the process will never
|
73 |
+
be terminated.
|
74 |
+
"""
|
75 |
+
sigval = signal.Signals(signum)
|
76 |
+
raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval)
|
77 |
+
|
78 |
+
|
79 |
+
def _get_kill_signal() -> signal.Signals:
|
80 |
+
"""Get the kill signal. SIGKILL for unix, CTRL_C_EVENT for windows."""
|
81 |
+
if IS_WINDOWS:
|
82 |
+
return signal.CTRL_C_EVENT # type: ignore[attr-defined] # noqa: F821
|
83 |
+
else:
|
84 |
+
return signal.SIGKILL
|
85 |
+
|
86 |
+
|
87 |
+
def _get_default_signal() -> signal.Signals:
|
88 |
+
"""Get the default termination signal. SIGTERM for unix, CTRL_C_EVENT for windows."""
|
89 |
+
if IS_WINDOWS:
|
90 |
+
return signal.CTRL_C_EVENT # type: ignore[attr-defined] # noqa: F821
|
91 |
+
else:
|
92 |
+
return signal.SIGTERM
|
93 |
+
|
94 |
+
|
95 |
+
def _validate_full_rank(d: Dict[int, Any], nprocs: int, what: str):
|
96 |
+
actual_keys = set(d.keys())
|
97 |
+
expected_keys = set(range(nprocs))
|
98 |
+
|
99 |
+
if actual_keys != expected_keys:
|
100 |
+
raise RuntimeError(
|
101 |
+
f"{what}, local rank mapping mismatch,"
|
102 |
+
f" expected: {expected_keys}, actual: {actual_keys}"
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
_MAPPING_REGEX = r"^(\d:[0123],)*(\d:[0123])$"
|
107 |
+
_VALUE_REGEX = r"^[0123]$"
|
108 |
+
|
109 |
+
|
110 |
+
class Std(IntFlag):
|
111 |
+
NONE = 0
|
112 |
+
OUT = 1
|
113 |
+
ERR = 2
|
114 |
+
ALL = OUT | ERR
|
115 |
+
|
116 |
+
@classmethod
|
117 |
+
def from_str(cls, vm: str) -> Union["Std", Dict[int, "Std"]]:
|
118 |
+
"""
|
119 |
+
Example:
|
120 |
+
::
|
121 |
+
|
122 |
+
from_str("0") -> Std.NONE
|
123 |
+
from_str("1") -> Std.OUT
|
124 |
+
from_str("0:3,1:0,2:1,3:2") -> {0: Std.ALL, 1: Std.NONE, 2: Std.OUT, 3: Std.ERR}
|
125 |
+
|
126 |
+
Any other input raises an exception
|
127 |
+
"""
|
128 |
+
|
129 |
+
def to_std(v: str) -> Std: # type: ignore[return]
|
130 |
+
s = Std(int(v))
|
131 |
+
if s in Std:
|
132 |
+
return s
|
133 |
+
# return None -> should NEVER reach here since we regex check input
|
134 |
+
|
135 |
+
if re.match(_VALUE_REGEX, vm): # vm is a number (e.g. 0)
|
136 |
+
return to_std(vm)
|
137 |
+
elif re.match(_MAPPING_REGEX, vm): # vm is a mapping (e.g. 0:1,1:2)
|
138 |
+
d: Dict[int, Std] = {}
|
139 |
+
for m in vm.split(","):
|
140 |
+
i, v = m.split(":")
|
141 |
+
d[int(i)] = to_std(v)
|
142 |
+
return d
|
143 |
+
else:
|
144 |
+
raise ValueError(
|
145 |
+
f"{vm} does not match: <{_VALUE_REGEX}> or <{_MAPPING_REGEX}>"
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
def to_map(
|
150 |
+
val_or_map: Union[Std, Dict[int, Std]], local_world_size: int
|
151 |
+
) -> Dict[int, Std]:
|
152 |
+
"""
|
153 |
+
Certain APIs take redirect settings either as a single value (e.g. apply to all
|
154 |
+
local ranks) or as an explicit user-provided mapping. This method is a convenience
|
155 |
+
method that converts a value or mapping into a mapping.
|
156 |
+
|
157 |
+
Example:
|
158 |
+
::
|
159 |
+
|
160 |
+
to_map(Std.OUT, local_world_size=2) # returns: {0: Std.OUT, 1: Std.OUT}
|
161 |
+
to_map({1: Std.OUT}, local_world_size=2) # returns: {0: Std.NONE, 1: Std.OUT}
|
162 |
+
to_map({0: Std.OUT, 1: Std.OUT}, local_world_size=2) # returns: {0: Std.OUT, 1: Std.OUT}
|
163 |
+
"""
|
164 |
+
if isinstance(val_or_map, Std):
|
165 |
+
return dict.fromkeys(range(local_world_size), val_or_map)
|
166 |
+
else:
|
167 |
+
map = {}
|
168 |
+
for i in range(local_world_size):
|
169 |
+
map[i] = val_or_map.get(i, Std.NONE)
|
170 |
+
return map
|
171 |
+
|
172 |
+
|
173 |
+
@dataclass
|
174 |
+
class LogsDest:
|
175 |
+
"""
|
176 |
+
For each log type, holds mapping of local rank ids to file paths.
|
177 |
+
"""
|
178 |
+
stdouts: Dict[int, str] = field(default_factory=dict)
|
179 |
+
stderrs: Dict[int, str] = field(default_factory=dict)
|
180 |
+
tee_stdouts: Dict[int, str] = field(default_factory=dict)
|
181 |
+
tee_stderrs: Dict[int, str] = field(default_factory=dict)
|
182 |
+
error_files: Dict[int, str] = field(default_factory=dict)
|
183 |
+
|
184 |
+
|
185 |
+
class LogsSpecs(ABC):
|
186 |
+
"""
|
187 |
+
Defines logs processing and redirection for each worker process.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
log_dir:
|
191 |
+
Base directory where logs will be written.
|
192 |
+
redirects:
|
193 |
+
Streams to redirect to files. Pass a single ``Std``
|
194 |
+
enum to redirect for all workers, or a mapping keyed
|
195 |
+
by local_rank to selectively redirect.
|
196 |
+
tee:
|
197 |
+
Streams to duplicate to stdout/stderr.
|
198 |
+
Pass a single ``Std`` enum to duplicate streams for all workers,
|
199 |
+
or a mapping keyed by local_rank to selectively duplicate.
|
200 |
+
"""
|
201 |
+
|
202 |
+
def __init__(
|
203 |
+
self,
|
204 |
+
log_dir: Optional[str] = None,
|
205 |
+
redirects: Union[Std, Dict[int, Std]] = Std.NONE,
|
206 |
+
tee: Union[Std, Dict[int, Std]] = Std.NONE,
|
207 |
+
local_ranks_filter: Optional[Set[int]] = None,
|
208 |
+
) -> None:
|
209 |
+
self._root_log_dir = log_dir
|
210 |
+
self._redirects = redirects
|
211 |
+
self._tee = tee
|
212 |
+
self._local_ranks_filter = local_ranks_filter
|
213 |
+
|
214 |
+
@abstractmethod
|
215 |
+
def reify(self, envs: Dict[int, Dict[str, str]],) -> LogsDest:
|
216 |
+
"""
|
217 |
+
Given the environment variables, builds destination of log files for each of the local ranks.
|
218 |
+
|
219 |
+
Envs parameter contains env variables dict for each of the local ranks, where entries are defined in:
|
220 |
+
:func:`~torchelastic.distributed.elastic.agent.server.local_elastic_agent.LocalElasticAgent._start_workers`.
|
221 |
+
"""
|
222 |
+
pass
|
223 |
+
|
224 |
+
@property
|
225 |
+
@abstractmethod
|
226 |
+
def root_log_dir(self) -> str:
|
227 |
+
pass
|
228 |
+
|
229 |
+
class DefaultLogsSpecs(LogsSpecs):
|
230 |
+
"""
|
231 |
+
Default LogsSpecs implementation:
|
232 |
+
|
233 |
+
- `log_dir` will be created if it doesn't exist
|
234 |
+
- Generates nested folders for each attempt and rank.
|
235 |
+
"""
|
236 |
+
def __init__(
|
237 |
+
self,
|
238 |
+
log_dir: Optional[str] = None,
|
239 |
+
redirects: Union[Std, Dict[int, Std]] = Std.NONE,
|
240 |
+
tee: Union[Std, Dict[int, Std]] = Std.NONE,
|
241 |
+
local_ranks_filter: Optional[Set[int]] = None,
|
242 |
+
) -> None:
|
243 |
+
if log_dir != os.devnull:
|
244 |
+
if not log_dir:
|
245 |
+
log_dir = tempfile.mkdtemp(prefix="torchelastic_")
|
246 |
+
elif not os.path.exists(log_dir):
|
247 |
+
os.makedirs(log_dir)
|
248 |
+
else:
|
249 |
+
if os.path.isfile(log_dir):
|
250 |
+
raise NotADirectoryError(f"log_dir: {log_dir} is a file")
|
251 |
+
super().__init__(log_dir, redirects, tee, local_ranks_filter)
|
252 |
+
# initialized only once
|
253 |
+
self._run_log_dir = None
|
254 |
+
|
255 |
+
@property
|
256 |
+
def root_log_dir(self) -> str:
|
257 |
+
return str(self._root_log_dir)
|
258 |
+
|
259 |
+
def _make_log_dir(self, log_dir: Optional[str], rdzv_run_id: str):
|
260 |
+
base_log_dir = log_dir or tempfile.mkdtemp(prefix="torchelastic_")
|
261 |
+
os.makedirs(base_log_dir, exist_ok=True)
|
262 |
+
dir = tempfile.mkdtemp(prefix=f"{rdzv_run_id}_", dir=base_log_dir)
|
263 |
+
log.info("log directory set to: %s", dir)
|
264 |
+
return dir
|
265 |
+
|
266 |
+
def reify(self, envs: Dict[int, Dict[str, str]],) -> LogsDest:
|
267 |
+
"""
|
268 |
+
Uses following scheme to build log destination paths:
|
269 |
+
|
270 |
+
- `<log_dir>/<rdzv_run_id>/attempt_<attempt>/<rank>/stdout.log`
|
271 |
+
- `<log_dir>/<rdzv_run_id>/attempt_<attempt>/<rank>/stderr.log`
|
272 |
+
- `<log_dir>/<rdzv_run_id>/attempt_<attempt>/<rank>/error.json`
|
273 |
+
"""
|
274 |
+
nprocs = len(envs)
|
275 |
+
global_env = {} # use only to query properies that are not dependent on a rank
|
276 |
+
if nprocs > 0:
|
277 |
+
global_env = envs[0]
|
278 |
+
else:
|
279 |
+
log.warning("Empty envs map provided when defining logging destinations.")
|
280 |
+
# Keys are always defined, but values can be missing in unit tests
|
281 |
+
run_id = global_env.get("TORCHELASTIC_RUN_ID", "test_run_id")
|
282 |
+
restart_count = global_env.get("TORCHELASTIC_RESTART_COUNT", "0")
|
283 |
+
|
284 |
+
attempt_log_dir: str = ""
|
285 |
+
if self._root_log_dir != os.devnull:
|
286 |
+
if not self._run_log_dir:
|
287 |
+
self._run_log_dir = self._make_log_dir(self._root_log_dir, run_id)
|
288 |
+
|
289 |
+
attempt_log_dir = os.path.join(self._run_log_dir, f"attempt_{restart_count}") # type: ignore[call-overload]
|
290 |
+
shutil.rmtree(attempt_log_dir, ignore_errors=True)
|
291 |
+
os.makedirs(attempt_log_dir)
|
292 |
+
|
293 |
+
if self._root_log_dir == os.devnull:
|
294 |
+
attempt_log_dir = os.devnull
|
295 |
+
|
296 |
+
# create subdirs for each local rank in the logs_dir
|
297 |
+
# logs_dir
|
298 |
+
# |- 0
|
299 |
+
# |- error.json
|
300 |
+
# |- stdout.log
|
301 |
+
# |- stderr.log
|
302 |
+
# |- ...
|
303 |
+
# |- (nprocs-1)
|
304 |
+
redirs = to_map(self._redirects, nprocs)
|
305 |
+
ts = to_map(self._tee, nprocs)
|
306 |
+
|
307 |
+
# to tee stdout/stderr we first redirect into a file
|
308 |
+
# then tail -f stdout.log/stderr.log so add tee settings to redirects
|
309 |
+
for local_rank, tee_std in ts.items():
|
310 |
+
redirect_std = redirs[local_rank]
|
311 |
+
redirs[local_rank] = redirect_std | tee_std
|
312 |
+
|
313 |
+
SYS_STREAM = "" # special case to indicate to output to console
|
314 |
+
stdouts = dict.fromkeys(range(nprocs), SYS_STREAM)
|
315 |
+
stderrs = dict.fromkeys(range(nprocs), SYS_STREAM)
|
316 |
+
tee_stdouts: Dict[int, str] = {}
|
317 |
+
tee_stderrs: Dict[int, str] = {}
|
318 |
+
error_files = {}
|
319 |
+
|
320 |
+
for local_rank in range(nprocs):
|
321 |
+
|
322 |
+
if attempt_log_dir == os.devnull:
|
323 |
+
tee_stdouts[local_rank] = os.devnull
|
324 |
+
tee_stderrs[local_rank] = os.devnull
|
325 |
+
error_files[local_rank] = os.devnull
|
326 |
+
envs[local_rank]["TORCHELASTIC_ERROR_FILE"] = ""
|
327 |
+
else:
|
328 |
+
clogdir = os.path.join(attempt_log_dir, str(local_rank))
|
329 |
+
os.mkdir(clogdir)
|
330 |
+
|
331 |
+
rd = redirs[local_rank]
|
332 |
+
if (rd & Std.OUT) == Std.OUT:
|
333 |
+
stdouts[local_rank] = os.path.join(clogdir, "stdout.log")
|
334 |
+
if (rd & Std.ERR) == Std.ERR:
|
335 |
+
stderrs[local_rank] = os.path.join(clogdir, "stderr.log")
|
336 |
+
|
337 |
+
t = ts[local_rank]
|
338 |
+
if t & Std.OUT == Std.OUT:
|
339 |
+
tee_stdouts[local_rank] = stdouts[local_rank]
|
340 |
+
if t & Std.ERR == Std.ERR:
|
341 |
+
tee_stderrs[local_rank] = stderrs[local_rank]
|
342 |
+
|
343 |
+
if self._local_ranks_filter and local_rank not in self._local_ranks_filter:
|
344 |
+
# If stream is tee'd, only write to file, but don't tail
|
345 |
+
if local_rank in tee_stdouts:
|
346 |
+
tee_stdouts.pop(local_rank, None)
|
347 |
+
if local_rank in tee_stderrs:
|
348 |
+
tee_stderrs.pop(local_rank, None)
|
349 |
+
|
350 |
+
# If stream is not redirected, don't print
|
351 |
+
if stdouts[local_rank] == SYS_STREAM:
|
352 |
+
stdouts[local_rank] = os.devnull
|
353 |
+
if stderrs[local_rank] == SYS_STREAM:
|
354 |
+
stderrs[local_rank] = os.devnull
|
355 |
+
|
356 |
+
error_file = os.path.join(clogdir, "error.json")
|
357 |
+
error_files[local_rank] = error_file
|
358 |
+
log.info("Setting worker%s reply file to: %s", local_rank, error_file)
|
359 |
+
envs[local_rank]["TORCHELASTIC_ERROR_FILE"] = error_file
|
360 |
+
|
361 |
+
return LogsDest(stdouts, stderrs, tee_stdouts, tee_stderrs, error_files)
|
362 |
+
|
363 |
+
def __repr__(self) -> str:
|
364 |
+
return (
|
365 |
+
f"DefaultLogsSpecs(root_log_dir={self._root_log_dir}, redirects={self._redirects}, "
|
366 |
+
f"tee={self._tee}, local_ranks_filter={self._local_ranks_filter})"
|
367 |
+
)
|
368 |
+
|
369 |
+
def __eq__(self, other: object) -> bool:
|
370 |
+
if not isinstance(other, DefaultLogsSpecs):
|
371 |
+
return False
|
372 |
+
|
373 |
+
return (
|
374 |
+
self._root_log_dir == other._root_log_dir
|
375 |
+
and self._redirects == other._redirects
|
376 |
+
and self._tee == other._tee
|
377 |
+
and self._local_ranks_filter == other._local_ranks_filter
|
378 |
+
)
|
379 |
+
|
380 |
+
|
381 |
+
@dataclass
|
382 |
+
class RunProcsResult:
|
383 |
+
"""
|
384 |
+
Results of a completed run of processes started with ``start_processes()``. Returned by ``PContext``.
|
385 |
+
|
386 |
+
Note the following:
|
387 |
+
|
388 |
+
1. All fields are mapped by local rank
|
389 |
+
2. ``return_values`` - only populated for functions (not the binaries).
|
390 |
+
3. ``stdouts`` - path to stdout.log (empty string if no redirect)
|
391 |
+
4. ``stderrs`` - path to stderr.log (empty string if no redirect)
|
392 |
+
|
393 |
+
"""
|
394 |
+
|
395 |
+
return_values: Dict[int, Any] = field(default_factory=dict)
|
396 |
+
failures: Dict[int, ProcessFailure] = field(default_factory=dict)
|
397 |
+
stdouts: Dict[int, str] = field(default_factory=dict)
|
398 |
+
stderrs: Dict[int, str] = field(default_factory=dict)
|
399 |
+
|
400 |
+
def is_failed(self) -> bool:
|
401 |
+
return len(self.failures) > 0
|
402 |
+
|
403 |
+
|
404 |
+
class PContext(abc.ABC):
|
405 |
+
"""
|
406 |
+
The base class that standardizes operations over a set of processes that are launched via different mechanisms.
|
407 |
+
|
408 |
+
The name ``PContext`` is intentional to disambiguate with ``torch.multiprocessing.ProcessContext``.
|
409 |
+
|
410 |
+
.. warning:: stdouts and stderrs should ALWAYS be a superset of
|
411 |
+
tee_stdouts and tee_stderrs (respectively) this is b/c
|
412 |
+
tee is implemented as a redirect + tail -f <stdout/stderr.log>
|
413 |
+
"""
|
414 |
+
|
415 |
+
def __init__(
|
416 |
+
self,
|
417 |
+
name: str,
|
418 |
+
entrypoint: Union[Callable, str],
|
419 |
+
args: Dict[int, Tuple],
|
420 |
+
envs: Dict[int, Dict[str, str]],
|
421 |
+
logs_specs: LogsSpecs,
|
422 |
+
log_line_prefixes: Optional[Dict[int, str]] = None,
|
423 |
+
|
424 |
+
):
|
425 |
+
self.name = name
|
426 |
+
# validate that all mappings have the same number of keys and
|
427 |
+
# all local ranks are accounted for
|
428 |
+
nprocs = len(args)
|
429 |
+
|
430 |
+
# TODO log_line_prefixes can be exanded too
|
431 |
+
logs_dest = logs_specs.reify(envs)
|
432 |
+
|
433 |
+
_validate_full_rank(logs_dest.stdouts, nprocs, "stdouts")
|
434 |
+
_validate_full_rank(logs_dest.stderrs, nprocs, "stderrs")
|
435 |
+
|
436 |
+
self.entrypoint = entrypoint
|
437 |
+
self.args = args
|
438 |
+
self.envs = envs
|
439 |
+
self.stdouts = logs_dest.stdouts
|
440 |
+
self.stderrs = logs_dest.stderrs
|
441 |
+
self.error_files = logs_dest.error_files
|
442 |
+
self.nprocs = nprocs
|
443 |
+
|
444 |
+
self._stdout_tail = TailLog(name, logs_dest.tee_stdouts, sys.stdout, log_line_prefixes)
|
445 |
+
self._stderr_tail = TailLog(name, logs_dest.tee_stderrs, sys.stderr, log_line_prefixes)
|
446 |
+
|
447 |
+
def start(self) -> None:
|
448 |
+
"""Start processes using parameters defined in the constructor."""
|
449 |
+
signal.signal(signal.SIGTERM, _terminate_process_handler)
|
450 |
+
signal.signal(signal.SIGINT, _terminate_process_handler)
|
451 |
+
if not IS_WINDOWS:
|
452 |
+
signal.signal(signal.SIGHUP, _terminate_process_handler)
|
453 |
+
signal.signal(signal.SIGQUIT, _terminate_process_handler)
|
454 |
+
self._start()
|
455 |
+
self._stdout_tail.start()
|
456 |
+
self._stderr_tail.start()
|
457 |
+
|
458 |
+
@abc.abstractmethod
|
459 |
+
def _start(self) -> None:
|
460 |
+
"""Start processes using strategy defined in a particular context."""
|
461 |
+
raise NotImplementedError()
|
462 |
+
|
463 |
+
@abc.abstractmethod
|
464 |
+
def _poll(self) -> Optional[RunProcsResult]:
|
465 |
+
"""
|
466 |
+
Poll the run status of the processes running under this context.
|
467 |
+
This method follows an "all-or-nothing" policy and returns
|
468 |
+
a ``RunProcessResults`` object if either all processes complete
|
469 |
+
successfully or any process fails. Returns ``None`` if
|
470 |
+
all processes are still running.
|
471 |
+
"""
|
472 |
+
raise NotImplementedError()
|
473 |
+
|
474 |
+
def wait(self, timeout: float = -1, period: float = 1) -> Optional[RunProcsResult]:
|
475 |
+
"""
|
476 |
+
Wait for the specified ``timeout`` seconds, polling every ``period`` seconds
|
477 |
+
for the processes to be done. Returns ``None`` if the processes are still running
|
478 |
+
on timeout expiry. Negative timeout values are interpreted as "wait-forever".
|
479 |
+
A timeout value of zero simply queries the status of the processes (e.g. equivalent
|
480 |
+
to a poll).
|
481 |
+
|
482 |
+
..note: Multiprocessing library registers SIGTERM and SIGINT signal handlers that raise
|
483 |
+
``SignalException`` when the signals received. It is up to the consumer of the code
|
484 |
+
to properly handle the exception. It is important not to swallow the exception otherwise
|
485 |
+
the process would not terminate. Example of the typical workflow can be:
|
486 |
+
|
487 |
+
.. code-block:: python
|
488 |
+
pc = start_processes(...)
|
489 |
+
try:
|
490 |
+
pc.wait(1)
|
491 |
+
.. do some other work
|
492 |
+
except SignalException as e:
|
493 |
+
pc.shutdown(e.sigval, timeout=30)
|
494 |
+
|
495 |
+
If SIGTERM or SIGINT occurs, the code above will try to shutdown child processes by propagating
|
496 |
+
received signal. If child processes will not terminate in the timeout time, the process will send
|
497 |
+
the SIGKILL.
|
498 |
+
"""
|
499 |
+
if timeout == 0:
|
500 |
+
return self._poll()
|
501 |
+
|
502 |
+
if timeout < 0:
|
503 |
+
timeout = sys.maxsize
|
504 |
+
|
505 |
+
expiry = time.time() + timeout
|
506 |
+
while time.time() < expiry:
|
507 |
+
pr = self._poll()
|
508 |
+
if pr:
|
509 |
+
return pr
|
510 |
+
time.sleep(period)
|
511 |
+
|
512 |
+
return None
|
513 |
+
|
514 |
+
@abc.abstractmethod
|
515 |
+
def pids(self) -> Dict[int, int]:
|
516 |
+
"""Return pids of processes mapped by their respective local_ranks."""
|
517 |
+
raise NotImplementedError()
|
518 |
+
|
519 |
+
@abc.abstractmethod
|
520 |
+
def _close(self, death_sig: signal.Signals, timeout: int = 30) -> None:
|
521 |
+
r"""
|
522 |
+
Terminates all processes managed by this context and cleans up any
|
523 |
+
meta resources (e.g. redirect, error_file files).
|
524 |
+
"""
|
525 |
+
raise NotImplementedError()
|
526 |
+
|
527 |
+
def close(
|
528 |
+
self, death_sig: Optional[signal.Signals] = None, timeout: int = 30
|
529 |
+
) -> None:
|
530 |
+
r"""
|
531 |
+
Terminates all processes managed by this context and cleans up any
|
532 |
+
meta resources (e.g. redirect, error_file files).
|
533 |
+
|
534 |
+
Args:
|
535 |
+
death_sig: Death signal to terminate processes.
|
536 |
+
timeout: Time to wait for processes to finish, if process is
|
537 |
+
still alive after this time, it will be terminated via SIGKILL.
|
538 |
+
"""
|
539 |
+
if not death_sig:
|
540 |
+
death_sig = _get_default_signal()
|
541 |
+
self._close(death_sig=death_sig, timeout=timeout)
|
542 |
+
if self._stdout_tail:
|
543 |
+
self._stdout_tail.stop()
|
544 |
+
if self._stderr_tail:
|
545 |
+
self._stderr_tail.stop()
|
546 |
+
|
547 |
+
|
548 |
+
def get_std_cm(std_rd: str, redirect_fn):
|
549 |
+
if IS_WINDOWS or IS_MACOS or not std_rd:
|
550 |
+
return nullcontext()
|
551 |
+
else:
|
552 |
+
return redirect_fn(std_rd)
|
553 |
+
|
554 |
+
|
555 |
+
def _wrap(
|
556 |
+
local_rank: int,
|
557 |
+
fn: Callable,
|
558 |
+
args: Dict[int, Tuple],
|
559 |
+
envs: Dict[int, Dict[str, str]],
|
560 |
+
stdout_redirects: Dict[int, str], # redirect file for stdout (to console if None)
|
561 |
+
stderr_redirects: Dict[int, str], # redirect file for stderr (to console if None)
|
562 |
+
ret_vals: Dict[int, mp.SimpleQueue],
|
563 |
+
queue_finished_reading_event: synchronize.Event,
|
564 |
+
) -> None:
|
565 |
+
# get the per-rank params up front so we fail fast if no mapping is found
|
566 |
+
args_ = args[local_rank]
|
567 |
+
env_ = envs[local_rank]
|
568 |
+
ret_val_ = ret_vals[local_rank]
|
569 |
+
|
570 |
+
stdout_rd = stdout_redirects[local_rank]
|
571 |
+
stderr_rd = stderr_redirects[local_rank]
|
572 |
+
|
573 |
+
stdout_cm = get_std_cm(stdout_rd, redirect_stdout)
|
574 |
+
stderr_cm = get_std_cm(stderr_rd, redirect_stderr)
|
575 |
+
|
576 |
+
for k, v in env_.items():
|
577 |
+
os.environ[k] = v
|
578 |
+
|
579 |
+
with stdout_cm, stderr_cm:
|
580 |
+
ret = record(fn)(*args_)
|
581 |
+
ret_val_.put(ret)
|
582 |
+
queue_finished_reading_event.wait()
|
583 |
+
|
584 |
+
|
585 |
+
class MultiprocessContext(PContext):
|
586 |
+
"""``PContext`` holding worker processes invoked as a function."""
|
587 |
+
|
588 |
+
def __init__(
|
589 |
+
self,
|
590 |
+
name: str,
|
591 |
+
entrypoint: Callable,
|
592 |
+
args: Dict[int, Tuple],
|
593 |
+
envs: Dict[int, Dict[str, str]],
|
594 |
+
start_method: str,
|
595 |
+
logs_specs: LogsSpecs,
|
596 |
+
log_line_prefixes: Optional[Dict[int, str]] = None,
|
597 |
+
):
|
598 |
+
super().__init__(
|
599 |
+
name,
|
600 |
+
entrypoint,
|
601 |
+
args,
|
602 |
+
envs,
|
603 |
+
logs_specs,
|
604 |
+
log_line_prefixes,
|
605 |
+
)
|
606 |
+
|
607 |
+
self.start_method = start_method
|
608 |
+
# each ret_val queue will always contain a single element.
|
609 |
+
self._ret_vals = {
|
610 |
+
local_rank: mp.get_context(self.start_method).SimpleQueue()
|
611 |
+
for local_rank in range(self.nprocs)
|
612 |
+
}
|
613 |
+
|
614 |
+
# see comments in ``join()`` for what this is
|
615 |
+
self._return_values: Dict[int, Any] = {}
|
616 |
+
self._pc: Optional[mp.ProcessContext] = None
|
617 |
+
# Note: set method should ONLY be invoked for the use case when all processes finished
|
618 |
+
# successfully. If any process died on event.wait() calling set() method will deadlock.
|
619 |
+
self._worker_finished_event = mp.get_context(self.start_method).Event()
|
620 |
+
|
621 |
+
def _start(self):
|
622 |
+
if self._pc:
|
623 |
+
raise ValueError(
|
624 |
+
"The process context already initialized."
|
625 |
+
" Most likely the start method got called twice."
|
626 |
+
)
|
627 |
+
self._pc = mp.start_processes(
|
628 |
+
fn=_wrap,
|
629 |
+
args=(
|
630 |
+
self.entrypoint,
|
631 |
+
self.args,
|
632 |
+
self.envs,
|
633 |
+
self.stdouts,
|
634 |
+
self.stderrs,
|
635 |
+
self._ret_vals,
|
636 |
+
self._worker_finished_event,
|
637 |
+
),
|
638 |
+
nprocs=self.nprocs,
|
639 |
+
join=False,
|
640 |
+
daemon=False,
|
641 |
+
start_method=self.start_method,
|
642 |
+
)
|
643 |
+
|
644 |
+
def _is_done(self) -> bool:
|
645 |
+
return len(self._return_values) == self.nprocs
|
646 |
+
|
647 |
+
def _poll(self) -> Optional[RunProcsResult]:
|
648 |
+
assert self._pc is not None # assertion for mypy type checker
|
649 |
+
|
650 |
+
try:
|
651 |
+
# torch.mp.ProcessContext Throws an Exception if some/all of
|
652 |
+
# worker processes failed
|
653 |
+
# timeout < 0 checks worker status and return immediately
|
654 |
+
# Join will never return success since we use synchronize.Event to wait
|
655 |
+
# for all processes to finish.
|
656 |
+
self._pc.join(-1)
|
657 |
+
|
658 |
+
# IMPORTANT: we use multiprocessing.Queue to carry worker return values
|
659 |
+
# back to the parent, the worker process will wait before terminating
|
660 |
+
# until all the buffered items are fed by the feeder thread to the underlying
|
661 |
+
# pipe. Hence to prevent deadlocks on large return values,
|
662 |
+
# we opportunistically try queue.get on each join call
|
663 |
+
# See: https://docs.python.org/2/library/multiprocessing.html#all-platforms
|
664 |
+
for local_rank in range(0, self.nprocs):
|
665 |
+
return_queue = self._ret_vals[local_rank]
|
666 |
+
if not return_queue.empty():
|
667 |
+
# save the return values temporarily into a member var
|
668 |
+
self._return_values[local_rank] = return_queue.get()
|
669 |
+
|
670 |
+
if self._is_done():
|
671 |
+
# we should ALWAYS have ALL the return values when all the processes are done
|
672 |
+
self._worker_finished_event.set()
|
673 |
+
# Wait untill all processes are finished. At this point workers finished executing
|
674 |
+
# user function
|
675 |
+
self._pc.join()
|
676 |
+
_validate_full_rank(
|
677 |
+
self._return_values, self.nprocs, "return_value queue"
|
678 |
+
)
|
679 |
+
self.close()
|
680 |
+
return RunProcsResult(
|
681 |
+
return_values=self._return_values,
|
682 |
+
stdouts=self.stdouts,
|
683 |
+
stderrs=self.stderrs,
|
684 |
+
)
|
685 |
+
else:
|
686 |
+
return None
|
687 |
+
except (mp.ProcessRaisedException, mp.ProcessExitedException) as e:
|
688 |
+
failed_local_rank = e.error_index
|
689 |
+
|
690 |
+
# entrypoint for MultiprocessContext will always be a Callable
|
691 |
+
fn_name = self.entrypoint.__qualname__ # type: ignore[union-attr]
|
692 |
+
failed_proc = self._pc.processes[failed_local_rank]
|
693 |
+
error_filepath = self.error_files[failed_local_rank]
|
694 |
+
|
695 |
+
log.exception(
|
696 |
+
"failed (exitcode: %s)"
|
697 |
+
" local_rank: %s (pid: %s)"
|
698 |
+
" of fn: %s (start_method: %s)",
|
699 |
+
failed_proc.exitcode,
|
700 |
+
failed_local_rank, e.pid,
|
701 |
+
fn_name, self.start_method,
|
702 |
+
)
|
703 |
+
|
704 |
+
self.close()
|
705 |
+
return RunProcsResult(
|
706 |
+
failures={
|
707 |
+
failed_local_rank: ProcessFailure(
|
708 |
+
local_rank=failed_local_rank,
|
709 |
+
pid=e.pid,
|
710 |
+
exitcode=failed_proc.exitcode,
|
711 |
+
error_file=error_filepath,
|
712 |
+
)
|
713 |
+
},
|
714 |
+
stdouts=self.stdouts,
|
715 |
+
stderrs=self.stderrs,
|
716 |
+
)
|
717 |
+
|
718 |
+
def pids(self) -> Dict[int, int]:
|
719 |
+
assert self._pc is not None # assertion for mypy type checking
|
720 |
+
return dict(enumerate(self._pc.pids()))
|
721 |
+
|
722 |
+
def _close(self, death_sig: signal.Signals, timeout: int = 30) -> None:
|
723 |
+
if not self._pc:
|
724 |
+
return
|
725 |
+
for proc in self._pc.processes:
|
726 |
+
if proc.is_alive():
|
727 |
+
log.warning("Closing process %s via signal %s", proc.pid, death_sig.name)
|
728 |
+
try:
|
729 |
+
os.kill(proc.pid, death_sig)
|
730 |
+
except ProcessLookupError:
|
731 |
+
# If the process exited because of some reason,
|
732 |
+
# `ProcessLookupError` will be raised, it is safe to ignore it.
|
733 |
+
pass
|
734 |
+
end = time.monotonic() + timeout
|
735 |
+
for proc in self._pc.processes:
|
736 |
+
time_to_wait = end - time.monotonic()
|
737 |
+
if time_to_wait <= 0:
|
738 |
+
break
|
739 |
+
proc.join(time_to_wait)
|
740 |
+
for proc in self._pc.processes:
|
741 |
+
if proc.is_alive():
|
742 |
+
log.warning(
|
743 |
+
"Unable to shutdown process %s via %s, forcefully exiting via %s",
|
744 |
+
proc.pid, death_sig, _get_kill_signal()
|
745 |
+
)
|
746 |
+
try:
|
747 |
+
os.kill(proc.pid, _get_kill_signal())
|
748 |
+
except ProcessLookupError:
|
749 |
+
# If the process exited because of some reason,
|
750 |
+
# `ProcessLookupError` will be raised, it is safe to ignore it.
|
751 |
+
pass
|
752 |
+
proc.join()
|
753 |
+
|
754 |
+
class SubprocessContext(PContext):
|
755 |
+
"""``PContext`` holding worker processes invoked as a binary."""
|
756 |
+
|
757 |
+
def __init__(
|
758 |
+
self,
|
759 |
+
name: str,
|
760 |
+
entrypoint: str,
|
761 |
+
args: Dict[int, Tuple],
|
762 |
+
envs: Dict[int, Dict[str, str]],
|
763 |
+
logs_specs: LogsSpecs,
|
764 |
+
log_line_prefixes: Optional[Dict[int, str]] = None,
|
765 |
+
|
766 |
+
):
|
767 |
+
super().__init__(
|
768 |
+
name,
|
769 |
+
entrypoint,
|
770 |
+
args,
|
771 |
+
envs,
|
772 |
+
logs_specs,
|
773 |
+
log_line_prefixes,
|
774 |
+
)
|
775 |
+
|
776 |
+
# state vector; _vdone[local_rank] -> is local_rank finished or not
|
777 |
+
self._running_local_ranks: Set[int] = set(range(self.nprocs))
|
778 |
+
self._failures: Dict[int, ProcessFailure] = {}
|
779 |
+
self.subprocess_handlers: Dict[int, SubprocessHandler] = {}
|
780 |
+
|
781 |
+
def _start(self):
|
782 |
+
if self.subprocess_handlers:
|
783 |
+
raise ValueError(
|
784 |
+
"The subprocess handlers already initialized. Most likely the start method got called twice."
|
785 |
+
)
|
786 |
+
self.subprocess_handlers = {
|
787 |
+
local_rank: get_subprocess_handler(
|
788 |
+
entrypoint=self.entrypoint, # type: ignore[arg-type] # entrypoint is always a str
|
789 |
+
args=self.args[local_rank],
|
790 |
+
env=self.envs[local_rank],
|
791 |
+
stdout=self.stdouts[local_rank],
|
792 |
+
stderr=self.stderrs[local_rank],
|
793 |
+
local_rank_id=local_rank,
|
794 |
+
)
|
795 |
+
for local_rank in range(self.nprocs)
|
796 |
+
}
|
797 |
+
|
798 |
+
def _poll(self) -> Optional[RunProcsResult]:
|
799 |
+
done_local_ranks = set()
|
800 |
+
for local_rank in self._running_local_ranks:
|
801 |
+
handler = self.subprocess_handlers[local_rank]
|
802 |
+
exitcode = handler.proc.poll()
|
803 |
+
if exitcode is not None:
|
804 |
+
done_local_ranks.add(local_rank)
|
805 |
+
if exitcode != 0: # failed or signaled
|
806 |
+
self._failures[local_rank] = ProcessFailure(
|
807 |
+
local_rank=local_rank,
|
808 |
+
pid=handler.proc.pid,
|
809 |
+
exitcode=exitcode,
|
810 |
+
error_file=self.error_files[local_rank],
|
811 |
+
)
|
812 |
+
# else: --> succeeded; nothing to do
|
813 |
+
|
814 |
+
self._running_local_ranks.difference_update(done_local_ranks)
|
815 |
+
|
816 |
+
# if ALL procs are finished or ANY have failed
|
817 |
+
if not self._running_local_ranks or self._failures:
|
818 |
+
self.close() # terminate all running procs
|
819 |
+
result = RunProcsResult(
|
820 |
+
failures=self._failures,
|
821 |
+
stdouts=self.stdouts,
|
822 |
+
stderrs=self.stderrs,
|
823 |
+
)
|
824 |
+
if result.is_failed():
|
825 |
+
first_failure = min(result.failures.values(), key=lambda f: f.timestamp)
|
826 |
+
log.error(
|
827 |
+
"failed (exitcode: %s)"
|
828 |
+
" local_rank: %s (pid: %s)"
|
829 |
+
" of binary: %s",
|
830 |
+
first_failure.exitcode, first_failure.local_rank, first_failure.pid, self.entrypoint
|
831 |
+
)
|
832 |
+
else:
|
833 |
+
# Populate return with dummy values. This provides consistency with MultiprocessingHandler
|
834 |
+
result.return_values = dict.fromkeys(range(self.nprocs))
|
835 |
+
|
836 |
+
return result
|
837 |
+
else: # there are no failures and procs still running
|
838 |
+
return None
|
839 |
+
|
840 |
+
def pids(self) -> Dict[int, int]:
|
841 |
+
return {
|
842 |
+
local_rank: sh.proc.pid
|
843 |
+
for local_rank, sh in self.subprocess_handlers.items()
|
844 |
+
}
|
845 |
+
|
846 |
+
def _close(self, death_sig: signal.Signals, timeout: int = 30) -> None:
|
847 |
+
if not self.subprocess_handlers:
|
848 |
+
return
|
849 |
+
for handler in self.subprocess_handlers.values():
|
850 |
+
if handler.proc.poll() is None:
|
851 |
+
log.warning(
|
852 |
+
"Sending process %s closing signal %s", handler.proc.pid, death_sig.name
|
853 |
+
)
|
854 |
+
handler.close(death_sig=death_sig)
|
855 |
+
end = time.monotonic() + timeout
|
856 |
+
for handler in self.subprocess_handlers.values():
|
857 |
+
time_to_wait = end - time.monotonic()
|
858 |
+
if time_to_wait <= 0:
|
859 |
+
break
|
860 |
+
try:
|
861 |
+
handler.proc.wait(time_to_wait)
|
862 |
+
except subprocess.TimeoutExpired:
|
863 |
+
# Ignore the timeout expired exception, since
|
864 |
+
# the child process will be forcefully terminated via SIGKILL
|
865 |
+
pass
|
866 |
+
for handler in self.subprocess_handlers.values():
|
867 |
+
if handler.proc.poll() is None:
|
868 |
+
log.warning(
|
869 |
+
"Unable to shutdown process %s via %s, forcefully exiting via %s",
|
870 |
+
handler.proc.pid, death_sig, _get_kill_signal()
|
871 |
+
)
|
872 |
+
handler.close(death_sig=_get_kill_signal())
|
873 |
+
handler.proc.wait()
|
llmeval-env/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/tail_log.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This source code is licensed under the BSD-style license found in the
|
7 |
+
# LICENSE file in the root directory of this source tree.
|
8 |
+
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import time
|
12 |
+
from concurrent.futures._base import Future
|
13 |
+
from concurrent.futures.thread import ThreadPoolExecutor
|
14 |
+
from threading import Event
|
15 |
+
from typing import Dict, List, Optional, TextIO
|
16 |
+
|
17 |
+
__all__ = ["tail_logfile", "TailLog"]
|
18 |
+
|
19 |
+
log = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
def tail_logfile(
|
23 |
+
header: str, file: str, dst: TextIO, finished: Event, interval_sec: float
|
24 |
+
):
|
25 |
+
|
26 |
+
while not os.path.exists(file):
|
27 |
+
if finished.is_set():
|
28 |
+
return
|
29 |
+
time.sleep(interval_sec)
|
30 |
+
|
31 |
+
with open(file, errors="replace") as fp:
|
32 |
+
while True:
|
33 |
+
line = fp.readline()
|
34 |
+
|
35 |
+
if line:
|
36 |
+
dst.write(f"{header}{line}")
|
37 |
+
else: # reached EOF
|
38 |
+
if finished.is_set():
|
39 |
+
# log line producer is finished
|
40 |
+
break
|
41 |
+
else:
|
42 |
+
# log line producer is still going
|
43 |
+
# wait for a bit before looping again
|
44 |
+
time.sleep(interval_sec)
|
45 |
+
|
46 |
+
|
47 |
+
class TailLog:
|
48 |
+
"""
|
49 |
+
Tail the given log files.
|
50 |
+
|
51 |
+
The log files do not have to exist when the ``start()`` method is called. The tail-er will gracefully wait until
|
52 |
+
the log files are created by the producer and will tail the contents of the
|
53 |
+
log files until the ``stop()`` method is called.
|
54 |
+
|
55 |
+
.. warning:: ``TailLog`` will wait indefinitely for the log file to be created!
|
56 |
+
|
57 |
+
Each log file's line will be suffixed with a header of the form: ``[{name}{idx}]:``,
|
58 |
+
where the ``name`` is user-provided and ``idx`` is the index of the log file
|
59 |
+
in the ``log_files`` mapping. ``log_line_prefixes`` can be used to override the
|
60 |
+
header for each log file.
|
61 |
+
|
62 |
+
Usage:
|
63 |
+
|
64 |
+
::
|
65 |
+
|
66 |
+
log_files = {0: "/tmp/0_stdout.log", 1: "/tmp/1_stdout.log"}
|
67 |
+
tailer = TailLog("trainer", log_files, sys.stdout).start()
|
68 |
+
# actually run the trainers to produce 0_stdout.log and 1_stdout.log
|
69 |
+
run_trainers()
|
70 |
+
tailer.stop()
|
71 |
+
|
72 |
+
# once run_trainers() start writing the ##_stdout.log files
|
73 |
+
# the tailer will print to sys.stdout:
|
74 |
+
# >>> [trainer0]:log_line1
|
75 |
+
# >>> [trainer1]:log_line1
|
76 |
+
# >>> [trainer0]:log_line2
|
77 |
+
# >>> [trainer0]:log_line3
|
78 |
+
# >>> [trainer1]:log_line2
|
79 |
+
|
80 |
+
.. note:: Due to buffering log lines between files may not necessarily
|
81 |
+
be printed out in order. You should configure your application's
|
82 |
+
logger to suffix each log line with a proper timestamp.
|
83 |
+
|
84 |
+
"""
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
name: str,
|
89 |
+
log_files: Dict[int, str],
|
90 |
+
dst: TextIO,
|
91 |
+
log_line_prefixes: Optional[Dict[int, str]] = None,
|
92 |
+
interval_sec: float = 0.1,
|
93 |
+
):
|
94 |
+
n = len(log_files)
|
95 |
+
self._threadpool = None
|
96 |
+
if n > 0:
|
97 |
+
self._threadpool = ThreadPoolExecutor(
|
98 |
+
max_workers=n,
|
99 |
+
thread_name_prefix=f"{self.__class__.__qualname__}_{name}",
|
100 |
+
)
|
101 |
+
|
102 |
+
self._name = name
|
103 |
+
self._dst = dst
|
104 |
+
self._log_files = log_files
|
105 |
+
self._log_line_prefixes = log_line_prefixes
|
106 |
+
self._finished_events: Dict[int, Event] = {
|
107 |
+
local_rank: Event() for local_rank in log_files.keys()
|
108 |
+
}
|
109 |
+
self._futs: List[Future] = []
|
110 |
+
self._interval_sec = interval_sec
|
111 |
+
self._stopped = False
|
112 |
+
|
113 |
+
def start(self) -> "TailLog":
|
114 |
+
if not self._threadpool:
|
115 |
+
return self
|
116 |
+
|
117 |
+
for local_rank, file in self._log_files.items():
|
118 |
+
header = f"[{self._name}{local_rank}]:"
|
119 |
+
if self._log_line_prefixes and local_rank in self._log_line_prefixes:
|
120 |
+
header = self._log_line_prefixes[local_rank]
|
121 |
+
self._futs.append(
|
122 |
+
self._threadpool.submit(
|
123 |
+
tail_logfile,
|
124 |
+
header=header,
|
125 |
+
file=file,
|
126 |
+
dst=self._dst,
|
127 |
+
finished=self._finished_events[local_rank],
|
128 |
+
interval_sec=self._interval_sec,
|
129 |
+
)
|
130 |
+
)
|
131 |
+
return self
|
132 |
+
|
133 |
+
def stop(self) -> None:
|
134 |
+
for finished in self._finished_events.values():
|
135 |
+
finished.set()
|
136 |
+
|
137 |
+
for local_rank, f in enumerate(self._futs):
|
138 |
+
try:
|
139 |
+
f.result()
|
140 |
+
except Exception as e:
|
141 |
+
log.error(
|
142 |
+
"error in log tailor for %s%s. %s: %s",
|
143 |
+
self._name, local_rank,
|
144 |
+
e.__class__.__qualname__, e,
|
145 |
+
)
|
146 |
+
|
147 |
+
if self._threadpool:
|
148 |
+
self._threadpool.shutdown(wait=True)
|
149 |
+
|
150 |
+
self._stopped = True
|
151 |
+
|
152 |
+
def stopped(self) -> bool:
|
153 |
+
return self._stopped
|