diff --git a/.gitattributes b/.gitattributes index 48f7fd8a2d43d6f15341d82636f4f70aacad5500..5f472b5414ad7c6be70fc492b6f2213e66818662 100644 --- a/.gitattributes +++ b/.gitattributes @@ -195,3 +195,4 @@ llmeval-env/lib/python3.10/site-packages/pandas/_libs/interval.cpython-310-x86_6 llmeval-env/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text llmeval-env/lib/python3.10/site-packages/pandas/_libs/algos.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text llmeval-env/lib/python3.10/site-packages/pandas/_libs/groupby.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text +llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..0e7d32526e82dd762c978e307af32a1eb4320fea --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2308b178030a6881fbe3c6ada5afd178c04270fabb04a6cd4c58e36bf322e466 +size 1175424 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_array.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_array.py new file mode 100644 index 0000000000000000000000000000000000000000..96263f498935b0d975b12c74b7cd98c6c4853670 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_array.py @@ -0,0 +1,478 @@ +import datetime +import decimal +import re + +import numpy as np +import pytest +import pytz + +import pandas as pd +import pandas._testing as tm +from pandas.api.extensions import register_extension_dtype +from pandas.arrays import ( + BooleanArray, + DatetimeArray, + FloatingArray, + IntegerArray, + IntervalArray, + SparseArray, + TimedeltaArray, +) +from pandas.core.arrays import ( + NumpyExtensionArray, + period_array, +) +from pandas.tests.extension.decimal import ( + DecimalArray, + DecimalDtype, + to_decimal, +) + + +@pytest.mark.parametrize("dtype_unit", ["M8[h]", "M8[m]", "m8[h]", "M8[m]"]) +def test_dt64_array(dtype_unit): + # PR 53817 + dtype_var = np.dtype(dtype_unit) + msg = ( + r"datetime64 and timedelta64 dtype resolutions other than " + r"'s', 'ms', 'us', and 'ns' are deprecated. " + r"In future releases passing unsupported resolutions will " + r"raise an exception." + ) + with tm.assert_produces_warning(FutureWarning, match=re.escape(msg)): + pd.array([], dtype=dtype_var) + + +@pytest.mark.parametrize( + "data, dtype, expected", + [ + # Basic NumPy defaults. + ([], None, FloatingArray._from_sequence([], dtype="Float64")), + ([1, 2], None, IntegerArray._from_sequence([1, 2], dtype="Int64")), + ([1, 2], object, NumpyExtensionArray(np.array([1, 2], dtype=object))), + ( + [1, 2], + np.dtype("float32"), + NumpyExtensionArray(np.array([1.0, 2.0], dtype=np.dtype("float32"))), + ), + ( + np.array([], dtype=object), + None, + NumpyExtensionArray(np.array([], dtype=object)), + ), + ( + np.array([1, 2], dtype="int64"), + None, + IntegerArray._from_sequence([1, 2], dtype="Int64"), + ), + ( + np.array([1.0, 2.0], dtype="float64"), + None, + FloatingArray._from_sequence([1.0, 2.0], dtype="Float64"), + ), + # String alias passes through to NumPy + ([1, 2], "float32", NumpyExtensionArray(np.array([1, 2], dtype="float32"))), + ([1, 2], "int64", NumpyExtensionArray(np.array([1, 2], dtype=np.int64))), + # GH#44715 FloatingArray does not support float16, so fall + # back to NumpyExtensionArray + ( + np.array([1, 2], dtype=np.float16), + None, + NumpyExtensionArray(np.array([1, 2], dtype=np.float16)), + ), + # idempotency with e.g. pd.array(pd.array([1, 2], dtype="int64")) + ( + NumpyExtensionArray(np.array([1, 2], dtype=np.int32)), + None, + NumpyExtensionArray(np.array([1, 2], dtype=np.int32)), + ), + # Period alias + ( + [pd.Period("2000", "D"), pd.Period("2001", "D")], + "Period[D]", + period_array(["2000", "2001"], freq="D"), + ), + # Period dtype + ( + [pd.Period("2000", "D")], + pd.PeriodDtype("D"), + period_array(["2000"], freq="D"), + ), + # Datetime (naive) + ( + [1, 2], + np.dtype("datetime64[ns]"), + DatetimeArray._from_sequence( + np.array([1, 2], dtype="M8[ns]"), dtype="M8[ns]" + ), + ), + ( + [1, 2], + np.dtype("datetime64[s]"), + DatetimeArray._from_sequence( + np.array([1, 2], dtype="M8[s]"), dtype="M8[s]" + ), + ), + ( + np.array([1, 2], dtype="datetime64[ns]"), + None, + DatetimeArray._from_sequence( + np.array([1, 2], dtype="M8[ns]"), dtype="M8[ns]" + ), + ), + ( + pd.DatetimeIndex(["2000", "2001"]), + np.dtype("datetime64[ns]"), + DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"), + ), + ( + pd.DatetimeIndex(["2000", "2001"]), + None, + DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"), + ), + ( + ["2000", "2001"], + np.dtype("datetime64[ns]"), + DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"), + ), + # Datetime (tz-aware) + ( + ["2000", "2001"], + pd.DatetimeTZDtype(tz="CET"), + DatetimeArray._from_sequence( + ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET") + ), + ), + # Timedelta + ( + ["1h", "2h"], + np.dtype("timedelta64[ns]"), + TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"), + ), + ( + pd.TimedeltaIndex(["1h", "2h"]), + np.dtype("timedelta64[ns]"), + TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"), + ), + ( + np.array([1, 2], dtype="m8[s]"), + np.dtype("timedelta64[s]"), + TimedeltaArray._from_sequence( + np.array([1, 2], dtype="m8[s]"), dtype="m8[s]" + ), + ), + ( + pd.TimedeltaIndex(["1h", "2h"]), + None, + TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"), + ), + ( + # preserve non-nano, i.e. don't cast to NumpyExtensionArray + TimedeltaArray._simple_new( + np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]") + ), + None, + TimedeltaArray._simple_new( + np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]") + ), + ), + ( + # preserve non-nano, i.e. don't cast to NumpyExtensionArray + TimedeltaArray._simple_new( + np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]") + ), + np.dtype("m8[s]"), + TimedeltaArray._simple_new( + np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]") + ), + ), + # Category + (["a", "b"], "category", pd.Categorical(["a", "b"])), + ( + ["a", "b"], + pd.CategoricalDtype(None, ordered=True), + pd.Categorical(["a", "b"], ordered=True), + ), + # Interval + ( + [pd.Interval(1, 2), pd.Interval(3, 4)], + "interval", + IntervalArray.from_tuples([(1, 2), (3, 4)]), + ), + # Sparse + ([0, 1], "Sparse[int64]", SparseArray([0, 1], dtype="int64")), + # IntegerNA + ([1, None], "Int16", pd.array([1, None], dtype="Int16")), + ( + pd.Series([1, 2]), + None, + NumpyExtensionArray(np.array([1, 2], dtype=np.int64)), + ), + # String + ( + ["a", None], + "string", + pd.StringDtype() + .construct_array_type() + ._from_sequence(["a", None], dtype=pd.StringDtype()), + ), + ( + ["a", None], + pd.StringDtype(), + pd.StringDtype() + .construct_array_type() + ._from_sequence(["a", None], dtype=pd.StringDtype()), + ), + # Boolean + ( + [True, None], + "boolean", + BooleanArray._from_sequence([True, None], dtype="boolean"), + ), + ( + [True, None], + pd.BooleanDtype(), + BooleanArray._from_sequence([True, None], dtype="boolean"), + ), + # Index + (pd.Index([1, 2]), None, NumpyExtensionArray(np.array([1, 2], dtype=np.int64))), + # Series[EA] returns the EA + ( + pd.Series(pd.Categorical(["a", "b"], categories=["a", "b", "c"])), + None, + pd.Categorical(["a", "b"], categories=["a", "b", "c"]), + ), + # "3rd party" EAs work + ([decimal.Decimal(0), decimal.Decimal(1)], "decimal", to_decimal([0, 1])), + # pass an ExtensionArray, but a different dtype + ( + period_array(["2000", "2001"], freq="D"), + "category", + pd.Categorical([pd.Period("2000", "D"), pd.Period("2001", "D")]), + ), + ], +) +def test_array(data, dtype, expected): + result = pd.array(data, dtype=dtype) + tm.assert_equal(result, expected) + + +def test_array_copy(): + a = np.array([1, 2]) + # default is to copy + b = pd.array(a, dtype=a.dtype) + assert not tm.shares_memory(a, b) + + # copy=True + b = pd.array(a, dtype=a.dtype, copy=True) + assert not tm.shares_memory(a, b) + + # copy=False + b = pd.array(a, dtype=a.dtype, copy=False) + assert tm.shares_memory(a, b) + + +cet = pytz.timezone("CET") + + +@pytest.mark.parametrize( + "data, expected", + [ + # period + ( + [pd.Period("2000", "D"), pd.Period("2001", "D")], + period_array(["2000", "2001"], freq="D"), + ), + # interval + ([pd.Interval(0, 1), pd.Interval(1, 2)], IntervalArray.from_breaks([0, 1, 2])), + # datetime + ( + [pd.Timestamp("2000"), pd.Timestamp("2001")], + DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"), + ), + ( + [datetime.datetime(2000, 1, 1), datetime.datetime(2001, 1, 1)], + DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"), + ), + ( + np.array([1, 2], dtype="M8[ns]"), + DatetimeArray._from_sequence(np.array([1, 2], dtype="M8[ns]")), + ), + ( + np.array([1, 2], dtype="M8[us]"), + DatetimeArray._simple_new( + np.array([1, 2], dtype="M8[us]"), dtype=np.dtype("M8[us]") + ), + ), + # datetimetz + ( + [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2001", tz="CET")], + DatetimeArray._from_sequence( + ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET", unit="ns") + ), + ), + ( + [ + datetime.datetime(2000, 1, 1, tzinfo=cet), + datetime.datetime(2001, 1, 1, tzinfo=cet), + ], + DatetimeArray._from_sequence( + ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz=cet, unit="ns") + ), + ), + # timedelta + ( + [pd.Timedelta("1h"), pd.Timedelta("2h")], + TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"), + ), + ( + np.array([1, 2], dtype="m8[ns]"), + TimedeltaArray._from_sequence(np.array([1, 2], dtype="m8[ns]")), + ), + ( + np.array([1, 2], dtype="m8[us]"), + TimedeltaArray._from_sequence(np.array([1, 2], dtype="m8[us]")), + ), + # integer + ([1, 2], IntegerArray._from_sequence([1, 2], dtype="Int64")), + ([1, None], IntegerArray._from_sequence([1, None], dtype="Int64")), + ([1, pd.NA], IntegerArray._from_sequence([1, pd.NA], dtype="Int64")), + ([1, np.nan], IntegerArray._from_sequence([1, np.nan], dtype="Int64")), + # float + ([0.1, 0.2], FloatingArray._from_sequence([0.1, 0.2], dtype="Float64")), + ([0.1, None], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")), + ([0.1, np.nan], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")), + ([0.1, pd.NA], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")), + # integer-like float + ([1.0, 2.0], FloatingArray._from_sequence([1.0, 2.0], dtype="Float64")), + ([1.0, None], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")), + ([1.0, np.nan], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")), + ([1.0, pd.NA], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")), + # mixed-integer-float + ([1, 2.0], FloatingArray._from_sequence([1.0, 2.0], dtype="Float64")), + ( + [1, np.nan, 2.0], + FloatingArray._from_sequence([1.0, None, 2.0], dtype="Float64"), + ), + # string + ( + ["a", "b"], + pd.StringDtype() + .construct_array_type() + ._from_sequence(["a", "b"], dtype=pd.StringDtype()), + ), + ( + ["a", None], + pd.StringDtype() + .construct_array_type() + ._from_sequence(["a", None], dtype=pd.StringDtype()), + ), + # Boolean + ([True, False], BooleanArray._from_sequence([True, False], dtype="boolean")), + ([True, None], BooleanArray._from_sequence([True, None], dtype="boolean")), + ], +) +def test_array_inference(data, expected): + result = pd.array(data) + tm.assert_equal(result, expected) + + +@pytest.mark.parametrize( + "data", + [ + # mix of frequencies + [pd.Period("2000", "D"), pd.Period("2001", "Y")], + # mix of closed + [pd.Interval(0, 1, closed="left"), pd.Interval(1, 2, closed="right")], + # Mix of timezones + [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000", tz="UTC")], + # Mix of tz-aware and tz-naive + [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000")], + np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]), + ], +) +def test_array_inference_fails(data): + result = pd.array(data) + expected = NumpyExtensionArray(np.array(data, dtype=object)) + tm.assert_extension_array_equal(result, expected) + + +@pytest.mark.parametrize("data", [np.array(0)]) +def test_nd_raises(data): + with pytest.raises(ValueError, match="NumpyExtensionArray must be 1-dimensional"): + pd.array(data, dtype="int64") + + +def test_scalar_raises(): + with pytest.raises(ValueError, match="Cannot pass scalar '1'"): + pd.array(1) + + +def test_dataframe_raises(): + # GH#51167 don't accidentally cast to StringArray by doing inference on columns + df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) + msg = "Cannot pass DataFrame to 'pandas.array'" + with pytest.raises(TypeError, match=msg): + pd.array(df) + + +def test_bounds_check(): + # GH21796 + with pytest.raises( + TypeError, match=r"cannot safely cast non-equivalent int(32|64) to uint16" + ): + pd.array([-1, 2, 3], dtype="UInt16") + + +# --------------------------------------------------------------------------- +# A couple dummy classes to ensure that Series and Indexes are unboxed before +# getting to the EA classes. + + +@register_extension_dtype +class DecimalDtype2(DecimalDtype): + name = "decimal2" + + @classmethod + def construct_array_type(cls): + """ + Return the array type associated with this dtype. + + Returns + ------- + type + """ + return DecimalArray2 + + +class DecimalArray2(DecimalArray): + @classmethod + def _from_sequence(cls, scalars, *, dtype=None, copy=False): + if isinstance(scalars, (pd.Series, pd.Index)): + raise TypeError("scalars should not be of type pd.Series or pd.Index") + + return super()._from_sequence(scalars, dtype=dtype, copy=copy) + + +def test_array_unboxes(index_or_series): + box = index_or_series + + data = box([decimal.Decimal("1"), decimal.Decimal("2")]) + dtype = DecimalDtype2() + # make sure it works + with pytest.raises( + TypeError, match="scalars should not be of type pd.Series or pd.Index" + ): + DecimalArray2._from_sequence(data, dtype=dtype) + + result = pd.array(data, dtype="decimal2") + expected = DecimalArray2._from_sequence(data.values, dtype=dtype) + tm.assert_equal(result, expected) + + +def test_array_to_numpy_na(): + # GH#40638 + arr = pd.array([pd.NA, 1], dtype="string[python]") + result = arr.to_numpy(na_value=True, dtype=bool) + expected = np.array([True, True]) + tm.assert_numpy_array_equal(result, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimes.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimes.py new file mode 100644 index 0000000000000000000000000000000000000000..8f0576cc65a2787edacdb1e377a02287d1caaff1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimes.py @@ -0,0 +1,840 @@ +""" +Tests for DatetimeArray +""" +from __future__ import annotations + +from datetime import timedelta +import operator + +try: + from zoneinfo import ZoneInfo +except ImportError: + # Cannot assign to a type + ZoneInfo = None # type: ignore[misc, assignment] + +import numpy as np +import pytest + +from pandas._libs.tslibs import tz_compare + +from pandas.core.dtypes.dtypes import DatetimeTZDtype + +import pandas as pd +import pandas._testing as tm +from pandas.core.arrays import ( + DatetimeArray, + TimedeltaArray, +) + + +class TestNonNano: + @pytest.fixture(params=["s", "ms", "us"]) + def unit(self, request): + """Fixture returning parametrized time units""" + return request.param + + @pytest.fixture + def dtype(self, unit, tz_naive_fixture): + tz = tz_naive_fixture + if tz is None: + return np.dtype(f"datetime64[{unit}]") + else: + return DatetimeTZDtype(unit=unit, tz=tz) + + @pytest.fixture + def dta_dti(self, unit, dtype): + tz = getattr(dtype, "tz", None) + + dti = pd.date_range("2016-01-01", periods=55, freq="D", tz=tz) + if tz is None: + arr = np.asarray(dti).astype(f"M8[{unit}]") + else: + arr = np.asarray(dti.tz_convert("UTC").tz_localize(None)).astype( + f"M8[{unit}]" + ) + + dta = DatetimeArray._simple_new(arr, dtype=dtype) + return dta, dti + + @pytest.fixture + def dta(self, dta_dti): + dta, dti = dta_dti + return dta + + def test_non_nano(self, unit, dtype): + arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]") + dta = DatetimeArray._simple_new(arr, dtype=dtype) + + assert dta.dtype == dtype + assert dta[0].unit == unit + assert tz_compare(dta.tz, dta[0].tz) + assert (dta[0] == dta[:1]).all() + + @pytest.mark.parametrize( + "field", DatetimeArray._field_ops + DatetimeArray._bool_ops + ) + def test_fields(self, unit, field, dtype, dta_dti): + dta, dti = dta_dti + + assert (dti == dta).all() + + res = getattr(dta, field) + expected = getattr(dti._data, field) + tm.assert_numpy_array_equal(res, expected) + + def test_normalize(self, unit): + dti = pd.date_range("2016-01-01 06:00:00", periods=55, freq="D") + arr = np.asarray(dti).astype(f"M8[{unit}]") + + dta = DatetimeArray._simple_new(arr, dtype=arr.dtype) + + assert not dta.is_normalized + + # TODO: simplify once we can just .astype to other unit + exp = np.asarray(dti.normalize()).astype(f"M8[{unit}]") + expected = DatetimeArray._simple_new(exp, dtype=exp.dtype) + + res = dta.normalize() + tm.assert_extension_array_equal(res, expected) + + def test_simple_new_requires_match(self, unit): + arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]") + dtype = DatetimeTZDtype(unit, "UTC") + + dta = DatetimeArray._simple_new(arr, dtype=dtype) + assert dta.dtype == dtype + + wrong = DatetimeTZDtype("ns", "UTC") + with pytest.raises(AssertionError, match=""): + DatetimeArray._simple_new(arr, dtype=wrong) + + def test_std_non_nano(self, unit): + dti = pd.date_range("2016-01-01", periods=55, freq="D") + arr = np.asarray(dti).astype(f"M8[{unit}]") + + dta = DatetimeArray._simple_new(arr, dtype=arr.dtype) + + # we should match the nano-reso std, but floored to our reso. + res = dta.std() + assert res._creso == dta._creso + assert res == dti.std().floor(unit) + + @pytest.mark.filterwarnings("ignore:Converting to PeriodArray.*:UserWarning") + def test_to_period(self, dta_dti): + dta, dti = dta_dti + result = dta.to_period("D") + expected = dti._data.to_period("D") + + tm.assert_extension_array_equal(result, expected) + + def test_iter(self, dta): + res = next(iter(dta)) + expected = dta[0] + + assert type(res) is pd.Timestamp + assert res._value == expected._value + assert res._creso == expected._creso + assert res == expected + + def test_astype_object(self, dta): + result = dta.astype(object) + assert all(x._creso == dta._creso for x in result) + assert all(x == y for x, y in zip(result, dta)) + + def test_to_pydatetime(self, dta_dti): + dta, dti = dta_dti + + result = dta.to_pydatetime() + expected = dti.to_pydatetime() + tm.assert_numpy_array_equal(result, expected) + + @pytest.mark.parametrize("meth", ["time", "timetz", "date"]) + def test_time_date(self, dta_dti, meth): + dta, dti = dta_dti + + result = getattr(dta, meth) + expected = getattr(dti, meth) + tm.assert_numpy_array_equal(result, expected) + + def test_format_native_types(self, unit, dtype, dta_dti): + # In this case we should get the same formatted values with our nano + # version dti._data as we do with the non-nano dta + dta, dti = dta_dti + + res = dta._format_native_types() + exp = dti._data._format_native_types() + tm.assert_numpy_array_equal(res, exp) + + def test_repr(self, dta_dti, unit): + dta, dti = dta_dti + + assert repr(dta) == repr(dti._data).replace("[ns", f"[{unit}") + + # TODO: tests with td64 + def test_compare_mismatched_resolutions(self, comparison_op): + # comparison that numpy gets wrong bc of silent overflows + op = comparison_op + + iinfo = np.iinfo(np.int64) + vals = np.array([iinfo.min, iinfo.min + 1, iinfo.max], dtype=np.int64) + + # Construct so that arr2[1] < arr[1] < arr[2] < arr2[2] + arr = np.array(vals).view("M8[ns]") + arr2 = arr.view("M8[s]") + + left = DatetimeArray._simple_new(arr, dtype=arr.dtype) + right = DatetimeArray._simple_new(arr2, dtype=arr2.dtype) + + if comparison_op is operator.eq: + expected = np.array([False, False, False]) + elif comparison_op is operator.ne: + expected = np.array([True, True, True]) + elif comparison_op in [operator.lt, operator.le]: + expected = np.array([False, False, True]) + else: + expected = np.array([False, True, False]) + + result = op(left, right) + tm.assert_numpy_array_equal(result, expected) + + result = op(left[1], right) + tm.assert_numpy_array_equal(result, expected) + + if op not in [operator.eq, operator.ne]: + # check that numpy still gets this wrong; if it is fixed we may be + # able to remove compare_mismatched_resolutions + np_res = op(left._ndarray, right._ndarray) + tm.assert_numpy_array_equal(np_res[1:], ~expected[1:]) + + def test_add_mismatched_reso_doesnt_downcast(self): + # https://github.com/pandas-dev/pandas/pull/48748#issuecomment-1260181008 + td = pd.Timedelta(microseconds=1) + dti = pd.date_range("2016-01-01", periods=3) - td + dta = dti._data.as_unit("us") + + res = dta + td.as_unit("us") + # even though the result is an even number of days + # (so we _could_ downcast to unit="s"), we do not. + assert res.unit == "us" + + @pytest.mark.parametrize( + "scalar", + [ + timedelta(hours=2), + pd.Timedelta(hours=2), + np.timedelta64(2, "h"), + np.timedelta64(2 * 3600 * 1000, "ms"), + pd.offsets.Minute(120), + pd.offsets.Hour(2), + ], + ) + def test_add_timedeltalike_scalar_mismatched_reso(self, dta_dti, scalar): + dta, dti = dta_dti + + td = pd.Timedelta(scalar) + exp_unit = tm.get_finest_unit(dta.unit, td.unit) + + expected = (dti + td)._data.as_unit(exp_unit) + result = dta + scalar + tm.assert_extension_array_equal(result, expected) + + result = scalar + dta + tm.assert_extension_array_equal(result, expected) + + expected = (dti - td)._data.as_unit(exp_unit) + result = dta - scalar + tm.assert_extension_array_equal(result, expected) + + def test_sub_datetimelike_scalar_mismatch(self): + dti = pd.date_range("2016-01-01", periods=3) + dta = dti._data.as_unit("us") + + ts = dta[0].as_unit("s") + + result = dta - ts + expected = (dti - dti[0])._data.as_unit("us") + assert result.dtype == "m8[us]" + tm.assert_extension_array_equal(result, expected) + + def test_sub_datetime64_reso_mismatch(self): + dti = pd.date_range("2016-01-01", periods=3) + left = dti._data.as_unit("s") + right = left.as_unit("ms") + + result = left - right + exp_values = np.array([0, 0, 0], dtype="m8[ms]") + expected = TimedeltaArray._simple_new( + exp_values, + dtype=exp_values.dtype, + ) + tm.assert_extension_array_equal(result, expected) + result2 = right - left + tm.assert_extension_array_equal(result2, expected) + + +class TestDatetimeArrayComparisons: + # TODO: merge this into tests/arithmetic/test_datetime64 once it is + # sufficiently robust + + def test_cmp_dt64_arraylike_tznaive(self, comparison_op): + # arbitrary tz-naive DatetimeIndex + op = comparison_op + + dti = pd.date_range("2016-01-1", freq="MS", periods=9, tz=None) + arr = dti._data + assert arr.freq == dti.freq + assert arr.tz == dti.tz + + right = dti + + expected = np.ones(len(arr), dtype=bool) + if comparison_op.__name__ in ["ne", "gt", "lt"]: + # for these the comparisons should be all-False + expected = ~expected + + result = op(arr, arr) + tm.assert_numpy_array_equal(result, expected) + for other in [ + right, + np.array(right), + list(right), + tuple(right), + right.astype(object), + ]: + result = op(arr, other) + tm.assert_numpy_array_equal(result, expected) + + result = op(other, arr) + tm.assert_numpy_array_equal(result, expected) + + +class TestDatetimeArray: + def test_astype_ns_to_ms_near_bounds(self): + # GH#55979 + ts = pd.Timestamp("1677-09-21 00:12:43.145225") + target = ts.as_unit("ms") + + dta = DatetimeArray._from_sequence([ts], dtype="M8[ns]") + assert (dta.view("i8") == ts.as_unit("ns").value).all() + + result = dta.astype("M8[ms]") + assert result[0] == target + + expected = DatetimeArray._from_sequence([ts], dtype="M8[ms]") + assert (expected.view("i8") == target._value).all() + + tm.assert_datetime_array_equal(result, expected) + + def test_astype_non_nano_tznaive(self): + dti = pd.date_range("2016-01-01", periods=3) + + res = dti.astype("M8[s]") + assert res.dtype == "M8[s]" + + dta = dti._data + res = dta.astype("M8[s]") + assert res.dtype == "M8[s]" + assert isinstance(res, pd.core.arrays.DatetimeArray) # used to be ndarray + + def test_astype_non_nano_tzaware(self): + dti = pd.date_range("2016-01-01", periods=3, tz="UTC") + + res = dti.astype("M8[s, US/Pacific]") + assert res.dtype == "M8[s, US/Pacific]" + + dta = dti._data + res = dta.astype("M8[s, US/Pacific]") + assert res.dtype == "M8[s, US/Pacific]" + + # from non-nano to non-nano, preserving reso + res2 = res.astype("M8[s, UTC]") + assert res2.dtype == "M8[s, UTC]" + assert not tm.shares_memory(res2, res) + + res3 = res.astype("M8[s, UTC]", copy=False) + assert res2.dtype == "M8[s, UTC]" + assert tm.shares_memory(res3, res) + + def test_astype_to_same(self): + arr = DatetimeArray._from_sequence( + ["2000"], dtype=DatetimeTZDtype(tz="US/Central") + ) + result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False) + assert result is arr + + @pytest.mark.parametrize("dtype", ["datetime64[ns]", "datetime64[ns, UTC]"]) + @pytest.mark.parametrize( + "other", ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, CET]"] + ) + def test_astype_copies(self, dtype, other): + # https://github.com/pandas-dev/pandas/pull/32490 + ser = pd.Series([1, 2], dtype=dtype) + orig = ser.copy() + + err = False + if (dtype == "datetime64[ns]") ^ (other == "datetime64[ns]"): + # deprecated in favor of tz_localize + err = True + + if err: + if dtype == "datetime64[ns]": + msg = "Use obj.tz_localize instead or series.dt.tz_localize instead" + else: + msg = "from timezone-aware dtype to timezone-naive dtype" + with pytest.raises(TypeError, match=msg): + ser.astype(other) + else: + t = ser.astype(other) + t[:] = pd.NaT + tm.assert_series_equal(ser, orig) + + @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"]) + def test_astype_int(self, dtype): + arr = DatetimeArray._from_sequence( + [pd.Timestamp("2000"), pd.Timestamp("2001")], dtype="M8[ns]" + ) + + if np.dtype(dtype) != np.int64: + with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"): + arr.astype(dtype) + return + + result = arr.astype(dtype) + expected = arr._ndarray.view("i8") + tm.assert_numpy_array_equal(result, expected) + + def test_astype_to_sparse_dt64(self): + # GH#50082 + dti = pd.date_range("2016-01-01", periods=4) + dta = dti._data + result = dta.astype("Sparse[datetime64[ns]]") + + assert result.dtype == "Sparse[datetime64[ns]]" + assert (result == dta).all() + + def test_tz_setter_raises(self): + arr = DatetimeArray._from_sequence( + ["2000"], dtype=DatetimeTZDtype(tz="US/Central") + ) + with pytest.raises(AttributeError, match="tz_localize"): + arr.tz = "UTC" + + def test_setitem_str_impute_tz(self, tz_naive_fixture): + # Like for getitem, if we are passed a naive-like string, we impute + # our own timezone. + tz = tz_naive_fixture + + data = np.array([1, 2, 3], dtype="M8[ns]") + dtype = data.dtype if tz is None else DatetimeTZDtype(tz=tz) + arr = DatetimeArray._from_sequence(data, dtype=dtype) + expected = arr.copy() + + ts = pd.Timestamp("2020-09-08 16:50").tz_localize(tz) + setter = str(ts.tz_localize(None)) + + # Setting a scalar tznaive string + expected[0] = ts + arr[0] = setter + tm.assert_equal(arr, expected) + + # Setting a listlike of tznaive strings + expected[1] = ts + arr[:2] = [setter, setter] + tm.assert_equal(arr, expected) + + def test_setitem_different_tz_raises(self): + # pre-2.0 we required exact tz match, in 2.0 we require only + # tzawareness-match + data = np.array([1, 2, 3], dtype="M8[ns]") + arr = DatetimeArray._from_sequence( + data, copy=False, dtype=DatetimeTZDtype(tz="US/Central") + ) + with pytest.raises(TypeError, match="Cannot compare tz-naive and tz-aware"): + arr[0] = pd.Timestamp("2000") + + ts = pd.Timestamp("2000", tz="US/Eastern") + arr[0] = ts + assert arr[0] == ts.tz_convert("US/Central") + + def test_setitem_clears_freq(self): + a = pd.date_range("2000", periods=2, freq="D", tz="US/Central")._data + a[0] = pd.Timestamp("2000", tz="US/Central") + assert a.freq is None + + @pytest.mark.parametrize( + "obj", + [ + pd.Timestamp("2021-01-01"), + pd.Timestamp("2021-01-01").to_datetime64(), + pd.Timestamp("2021-01-01").to_pydatetime(), + ], + ) + def test_setitem_objects(self, obj): + # make sure we accept datetime64 and datetime in addition to Timestamp + dti = pd.date_range("2000", periods=2, freq="D") + arr = dti._data + + arr[0] = obj + assert arr[0] == obj + + def test_repeat_preserves_tz(self): + dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central") + arr = dti._data + + repeated = arr.repeat([1, 1]) + + # preserves tz and values, but not freq + expected = DatetimeArray._from_sequence(arr.asi8, dtype=arr.dtype) + tm.assert_equal(repeated, expected) + + def test_value_counts_preserves_tz(self): + dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central") + arr = dti._data.repeat([4, 3]) + + result = arr.value_counts() + + # Note: not tm.assert_index_equal, since `freq`s do not match + assert result.index.equals(dti) + + arr[-2] = pd.NaT + result = arr.value_counts(dropna=False) + expected = pd.Series([4, 2, 1], index=[dti[0], dti[1], pd.NaT], name="count") + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("method", ["pad", "backfill"]) + def test_fillna_preserves_tz(self, method): + dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central") + arr = DatetimeArray._from_sequence(dti, copy=True) + arr[2] = pd.NaT + + fill_val = dti[1] if method == "pad" else dti[3] + expected = DatetimeArray._from_sequence( + [dti[0], dti[1], fill_val, dti[3], dti[4]], + dtype=DatetimeTZDtype(tz="US/Central"), + ) + + result = arr._pad_or_backfill(method=method) + tm.assert_extension_array_equal(result, expected) + + # assert that arr and dti were not modified in-place + assert arr[2] is pd.NaT + assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central") + + def test_fillna_2d(self): + dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific") + dta = dti._data.reshape(3, 2).copy() + dta[0, 1] = pd.NaT + dta[1, 0] = pd.NaT + + res1 = dta._pad_or_backfill(method="pad") + expected1 = dta.copy() + expected1[1, 0] = dta[0, 0] + tm.assert_extension_array_equal(res1, expected1) + + res2 = dta._pad_or_backfill(method="backfill") + expected2 = dta.copy() + expected2 = dta.copy() + expected2[1, 0] = dta[2, 0] + expected2[0, 1] = dta[1, 1] + tm.assert_extension_array_equal(res2, expected2) + + # with different ordering for underlying ndarray; behavior should + # be unchanged + dta2 = dta._from_backing_data(dta._ndarray.copy(order="F")) + assert dta2._ndarray.flags["F_CONTIGUOUS"] + assert not dta2._ndarray.flags["C_CONTIGUOUS"] + tm.assert_extension_array_equal(dta, dta2) + + res3 = dta2._pad_or_backfill(method="pad") + tm.assert_extension_array_equal(res3, expected1) + + res4 = dta2._pad_or_backfill(method="backfill") + tm.assert_extension_array_equal(res4, expected2) + + # test the DataFrame method while we're here + df = pd.DataFrame(dta) + res = df.ffill() + expected = pd.DataFrame(expected1) + tm.assert_frame_equal(res, expected) + + res = df.bfill() + expected = pd.DataFrame(expected2) + tm.assert_frame_equal(res, expected) + + def test_array_interface_tz(self): + tz = "US/Central" + data = pd.date_range("2017", periods=2, tz=tz)._data + result = np.asarray(data) + + expected = np.array( + [ + pd.Timestamp("2017-01-01T00:00:00", tz=tz), + pd.Timestamp("2017-01-02T00:00:00", tz=tz), + ], + dtype=object, + ) + tm.assert_numpy_array_equal(result, expected) + + result = np.asarray(data, dtype=object) + tm.assert_numpy_array_equal(result, expected) + + result = np.asarray(data, dtype="M8[ns]") + + expected = np.array( + ["2017-01-01T06:00:00", "2017-01-02T06:00:00"], dtype="M8[ns]" + ) + tm.assert_numpy_array_equal(result, expected) + + def test_array_interface(self): + data = pd.date_range("2017", periods=2)._data + expected = np.array( + ["2017-01-01T00:00:00", "2017-01-02T00:00:00"], dtype="datetime64[ns]" + ) + + result = np.asarray(data) + tm.assert_numpy_array_equal(result, expected) + + result = np.asarray(data, dtype=object) + expected = np.array( + [pd.Timestamp("2017-01-01T00:00:00"), pd.Timestamp("2017-01-02T00:00:00")], + dtype=object, + ) + tm.assert_numpy_array_equal(result, expected) + + @pytest.mark.parametrize("index", [True, False]) + def test_searchsorted_different_tz(self, index): + data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 + arr = pd.DatetimeIndex(data, freq="D")._data.tz_localize("Asia/Tokyo") + if index: + arr = pd.Index(arr) + + expected = arr.searchsorted(arr[2]) + result = arr.searchsorted(arr[2].tz_convert("UTC")) + assert result == expected + + expected = arr.searchsorted(arr[2:6]) + result = arr.searchsorted(arr[2:6].tz_convert("UTC")) + tm.assert_equal(result, expected) + + @pytest.mark.parametrize("index", [True, False]) + def test_searchsorted_tzawareness_compat(self, index): + data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 + arr = pd.DatetimeIndex(data, freq="D")._data + if index: + arr = pd.Index(arr) + + mismatch = arr.tz_localize("Asia/Tokyo") + + msg = "Cannot compare tz-naive and tz-aware datetime-like objects" + with pytest.raises(TypeError, match=msg): + arr.searchsorted(mismatch[0]) + with pytest.raises(TypeError, match=msg): + arr.searchsorted(mismatch) + + with pytest.raises(TypeError, match=msg): + mismatch.searchsorted(arr[0]) + with pytest.raises(TypeError, match=msg): + mismatch.searchsorted(arr) + + @pytest.mark.parametrize( + "other", + [ + 1, + np.int64(1), + 1.0, + np.timedelta64("NaT"), + pd.Timedelta(days=2), + "invalid", + np.arange(10, dtype="i8") * 24 * 3600 * 10**9, + np.arange(10).view("timedelta64[ns]") * 24 * 3600 * 10**9, + pd.Timestamp("2021-01-01").to_period("D"), + ], + ) + @pytest.mark.parametrize("index", [True, False]) + def test_searchsorted_invalid_types(self, other, index): + data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 + arr = pd.DatetimeIndex(data, freq="D")._data + if index: + arr = pd.Index(arr) + + msg = "|".join( + [ + "searchsorted requires compatible dtype or scalar", + "value should be a 'Timestamp', 'NaT', or array of those. Got", + ] + ) + with pytest.raises(TypeError, match=msg): + arr.searchsorted(other) + + def test_shift_fill_value(self): + dti = pd.date_range("2016-01-01", periods=3) + + dta = dti._data + expected = DatetimeArray._from_sequence(np.roll(dta._ndarray, 1)) + + fv = dta[-1] + for fill_value in [fv, fv.to_pydatetime(), fv.to_datetime64()]: + result = dta.shift(1, fill_value=fill_value) + tm.assert_datetime_array_equal(result, expected) + + dta = dta.tz_localize("UTC") + expected = expected.tz_localize("UTC") + fv = dta[-1] + for fill_value in [fv, fv.to_pydatetime()]: + result = dta.shift(1, fill_value=fill_value) + tm.assert_datetime_array_equal(result, expected) + + def test_shift_value_tzawareness_mismatch(self): + dti = pd.date_range("2016-01-01", periods=3) + + dta = dti._data + + fv = dta[-1].tz_localize("UTC") + for invalid in [fv, fv.to_pydatetime()]: + with pytest.raises(TypeError, match="Cannot compare"): + dta.shift(1, fill_value=invalid) + + dta = dta.tz_localize("UTC") + fv = dta[-1].tz_localize(None) + for invalid in [fv, fv.to_pydatetime(), fv.to_datetime64()]: + with pytest.raises(TypeError, match="Cannot compare"): + dta.shift(1, fill_value=invalid) + + def test_shift_requires_tzmatch(self): + # pre-2.0 we required exact tz match, in 2.0 we require just + # matching tzawareness + dti = pd.date_range("2016-01-01", periods=3, tz="UTC") + dta = dti._data + + fill_value = pd.Timestamp("2020-10-18 18:44", tz="US/Pacific") + + result = dta.shift(1, fill_value=fill_value) + expected = dta.shift(1, fill_value=fill_value.tz_convert("UTC")) + tm.assert_equal(result, expected) + + def test_tz_localize_t2d(self): + dti = pd.date_range("1994-05-12", periods=12, tz="US/Pacific") + dta = dti._data.reshape(3, 4) + result = dta.tz_localize(None) + + expected = dta.ravel().tz_localize(None).reshape(dta.shape) + tm.assert_datetime_array_equal(result, expected) + + roundtrip = expected.tz_localize("US/Pacific") + tm.assert_datetime_array_equal(roundtrip, dta) + + easts = ["US/Eastern", "dateutil/US/Eastern"] + if ZoneInfo is not None: + try: + tz = ZoneInfo("US/Eastern") + except KeyError: + # no tzdata + pass + else: + # Argument 1 to "append" of "list" has incompatible type "ZoneInfo"; + # expected "str" + easts.append(tz) # type: ignore[arg-type] + + @pytest.mark.parametrize("tz", easts) + def test_iter_zoneinfo_fold(self, tz): + # GH#49684 + utc_vals = np.array( + [1320552000, 1320555600, 1320559200, 1320562800], dtype=np.int64 + ) + utc_vals *= 1_000_000_000 + + dta = DatetimeArray._from_sequence(utc_vals).tz_localize("UTC").tz_convert(tz) + + left = dta[2] + right = list(dta)[2] + assert str(left) == str(right) + # previously there was a bug where with non-pytz right would be + # Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern') + # while left would be + # Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern') + # The .value's would match (so they would compare as equal), + # but the folds would not + assert left.utcoffset() == right.utcoffset() + + # The same bug in ints_to_pydatetime affected .astype, so we test + # that here. + right2 = dta.astype(object)[2] + assert str(left) == str(right2) + assert left.utcoffset() == right2.utcoffset() + + @pytest.mark.parametrize( + "freq, freq_depr", + [ + ("2ME", "2M"), + ("2SME", "2SM"), + ("2SME", "2sm"), + ("2QE", "2Q"), + ("2QE-SEP", "2Q-SEP"), + ("1YE", "1Y"), + ("2YE-MAR", "2Y-MAR"), + ("1YE", "1A"), + ("2YE-MAR", "2A-MAR"), + ("2ME", "2m"), + ("2QE-SEP", "2q-sep"), + ("2YE-MAR", "2a-mar"), + ("2YE", "2y"), + ], + ) + def test_date_range_frequency_M_Q_Y_A_deprecated(self, freq, freq_depr): + # GH#9586, GH#54275 + depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed " + f"in a future version, please use '{freq[1:]}' instead." + + expected = pd.date_range("1/1/2000", periods=4, freq=freq) + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + result = pd.date_range("1/1/2000", periods=4, freq=freq_depr) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize("freq_depr", ["2H", "2CBH", "2MIN", "2S", "2mS", "2Us"]) + def test_date_range_uppercase_frequency_deprecated(self, freq_depr): + # GH#9586, GH#54939 + depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed in a " + f"future version. Please use '{freq_depr.lower()[1:]}' instead." + + expected = pd.date_range("1/1/2000", periods=4, freq=freq_depr.lower()) + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + result = pd.date_range("1/1/2000", periods=4, freq=freq_depr) + tm.assert_index_equal(result, expected) + + @pytest.mark.parametrize( + "freq_depr", + [ + "2ye-mar", + "2ys", + "2qe", + "2qs-feb", + "2bqs", + "2sms", + "2bms", + "2cbme", + "2me", + "2w", + ], + ) + def test_date_range_lowercase_frequency_deprecated(self, freq_depr): + # GH#9586, GH#54939 + depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed in a " + f"future version, please use '{freq_depr.upper()[1:]}' instead." + + expected = pd.date_range("1/1/2000", periods=4, freq=freq_depr.upper()) + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + result = pd.date_range("1/1/2000", periods=4, freq=freq_depr) + tm.assert_index_equal(result, expected) + + +def test_factorize_sort_without_freq(): + dta = DatetimeArray._from_sequence([0, 2, 1], dtype="M8[ns]") + + msg = r"call pd.factorize\(obj, sort=True\) instead" + with pytest.raises(NotImplementedError, match=msg): + dta.factorize(sort=True) + + # Do TimedeltaArray while we're here + tda = dta - dta[0] + with pytest.raises(NotImplementedError, match=msg): + tda.factorize(sort=True) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_ndarray_backed.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_ndarray_backed.py new file mode 100644 index 0000000000000000000000000000000000000000..1fe7cc9b03e8a6cef04558958ed949a0239a96cc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_ndarray_backed.py @@ -0,0 +1,75 @@ +""" +Tests for subclasses of NDArrayBackedExtensionArray +""" +import numpy as np + +from pandas import ( + CategoricalIndex, + date_range, +) +from pandas.core.arrays import ( + Categorical, + DatetimeArray, + NumpyExtensionArray, + TimedeltaArray, +) + + +class TestEmpty: + def test_empty_categorical(self): + ci = CategoricalIndex(["a", "b", "c"], ordered=True) + dtype = ci.dtype + + # case with int8 codes + shape = (4,) + result = Categorical._empty(shape, dtype=dtype) + assert isinstance(result, Categorical) + assert result.shape == shape + assert result._ndarray.dtype == np.int8 + + # case where repr would segfault if we didn't override base implementation + result = Categorical._empty((4096,), dtype=dtype) + assert isinstance(result, Categorical) + assert result.shape == (4096,) + assert result._ndarray.dtype == np.int8 + repr(result) + + # case with int16 codes + ci = CategoricalIndex(list(range(512)) * 4, ordered=False) + dtype = ci.dtype + result = Categorical._empty(shape, dtype=dtype) + assert isinstance(result, Categorical) + assert result.shape == shape + assert result._ndarray.dtype == np.int16 + + def test_empty_dt64tz(self): + dti = date_range("2016-01-01", periods=2, tz="Asia/Tokyo") + dtype = dti.dtype + + shape = (0,) + result = DatetimeArray._empty(shape, dtype=dtype) + assert result.dtype == dtype + assert isinstance(result, DatetimeArray) + assert result.shape == shape + + def test_empty_dt64(self): + shape = (3, 9) + result = DatetimeArray._empty(shape, dtype="datetime64[ns]") + assert isinstance(result, DatetimeArray) + assert result.shape == shape + + def test_empty_td64(self): + shape = (3, 9) + result = TimedeltaArray._empty(shape, dtype="m8[ns]") + assert isinstance(result, TimedeltaArray) + assert result.shape == shape + + def test_empty_pandas_array(self): + arr = NumpyExtensionArray(np.array([1, 2])) + dtype = arr.dtype + + shape = (3, 9) + result = NumpyExtensionArray._empty(shape, dtype=dtype) + assert isinstance(result, NumpyExtensionArray) + assert result.dtype == dtype + assert result.shape == shape diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_period.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_period.py new file mode 100644 index 0000000000000000000000000000000000000000..48453ba19e9a1f6971a2e56872ec42f1856d1dd0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_period.py @@ -0,0 +1,184 @@ +import numpy as np +import pytest + +from pandas._libs.tslibs import iNaT +from pandas._libs.tslibs.period import IncompatibleFrequency + +from pandas.core.dtypes.base import _registry as registry +from pandas.core.dtypes.dtypes import PeriodDtype + +import pandas as pd +import pandas._testing as tm +from pandas.core.arrays import PeriodArray + +# ---------------------------------------------------------------------------- +# Dtype + + +def test_registered(): + assert PeriodDtype in registry.dtypes + result = registry.find("Period[D]") + expected = PeriodDtype("D") + assert result == expected + + +# ---------------------------------------------------------------------------- +# period_array + + +def test_asi8(): + result = PeriodArray._from_sequence(["2000", "2001", None], dtype="period[D]").asi8 + expected = np.array([10957, 11323, iNaT]) + tm.assert_numpy_array_equal(result, expected) + + +def test_take_raises(): + arr = PeriodArray._from_sequence(["2000", "2001"], dtype="period[D]") + with pytest.raises(IncompatibleFrequency, match="freq"): + arr.take([0, -1], allow_fill=True, fill_value=pd.Period("2000", freq="W")) + + msg = "value should be a 'Period' or 'NaT'. Got 'str' instead" + with pytest.raises(TypeError, match=msg): + arr.take([0, -1], allow_fill=True, fill_value="foo") + + +def test_fillna_raises(): + arr = PeriodArray._from_sequence(["2000", "2001", "2002"], dtype="period[D]") + with pytest.raises(ValueError, match="Length"): + arr.fillna(arr[:2]) + + +def test_fillna_copies(): + arr = PeriodArray._from_sequence(["2000", "2001", "2002"], dtype="period[D]") + result = arr.fillna(pd.Period("2000", "D")) + assert result is not arr + + +# ---------------------------------------------------------------------------- +# setitem + + +@pytest.mark.parametrize( + "key, value, expected", + [ + ([0], pd.Period("2000", "D"), [10957, 1, 2]), + ([0], None, [iNaT, 1, 2]), + ([0], np.nan, [iNaT, 1, 2]), + ([0, 1, 2], pd.Period("2000", "D"), [10957] * 3), + ( + [0, 1, 2], + [pd.Period("2000", "D"), pd.Period("2001", "D"), pd.Period("2002", "D")], + [10957, 11323, 11688], + ), + ], +) +def test_setitem(key, value, expected): + arr = PeriodArray(np.arange(3), dtype="period[D]") + expected = PeriodArray(expected, dtype="period[D]") + arr[key] = value + tm.assert_period_array_equal(arr, expected) + + +def test_setitem_raises_incompatible_freq(): + arr = PeriodArray(np.arange(3), dtype="period[D]") + with pytest.raises(IncompatibleFrequency, match="freq"): + arr[0] = pd.Period("2000", freq="Y") + + other = PeriodArray._from_sequence(["2000", "2001"], dtype="period[Y]") + with pytest.raises(IncompatibleFrequency, match="freq"): + arr[[0, 1]] = other + + +def test_setitem_raises_length(): + arr = PeriodArray(np.arange(3), dtype="period[D]") + with pytest.raises(ValueError, match="length"): + arr[[0, 1]] = [pd.Period("2000", freq="D")] + + +def test_setitem_raises_type(): + arr = PeriodArray(np.arange(3), dtype="period[D]") + with pytest.raises(TypeError, match="int"): + arr[0] = 1 + + +# ---------------------------------------------------------------------------- +# Ops + + +def test_sub_period(): + arr = PeriodArray._from_sequence(["2000", "2001"], dtype="period[D]") + other = pd.Period("2000", freq="M") + with pytest.raises(IncompatibleFrequency, match="freq"): + arr - other + + +def test_sub_period_overflow(): + # GH#47538 + dti = pd.date_range("1677-09-22", periods=2, freq="D") + pi = dti.to_period("ns") + + per = pd.Period._from_ordinal(10**14, pi.freq) + + with pytest.raises(OverflowError, match="Overflow in int64 addition"): + pi - per + + with pytest.raises(OverflowError, match="Overflow in int64 addition"): + per - pi + + +# ---------------------------------------------------------------------------- +# Methods + + +@pytest.mark.parametrize( + "other", + [ + pd.Period("2000", freq="h"), + PeriodArray._from_sequence(["2000", "2001", "2000"], dtype="period[h]"), + ], +) +def test_where_different_freq_raises(other): + # GH#45768 The PeriodArray method raises, the Series method coerces + ser = pd.Series( + PeriodArray._from_sequence(["2000", "2001", "2002"], dtype="period[D]") + ) + cond = np.array([True, False, True]) + + with pytest.raises(IncompatibleFrequency, match="freq"): + ser.array._where(cond, other) + + res = ser.where(cond, other) + expected = ser.astype(object).where(cond, other) + tm.assert_series_equal(res, expected) + + +# ---------------------------------------------------------------------------- +# Printing + + +def test_repr_small(): + arr = PeriodArray._from_sequence(["2000", "2001"], dtype="period[D]") + result = str(arr) + expected = ( + "\n['2000-01-01', '2001-01-01']\nLength: 2, dtype: period[D]" + ) + assert result == expected + + +def test_repr_large(): + arr = PeriodArray._from_sequence(["2000", "2001"] * 500, dtype="period[D]") + result = str(arr) + expected = ( + "\n" + "['2000-01-01', '2001-01-01', '2000-01-01', '2001-01-01', " + "'2000-01-01',\n" + " '2001-01-01', '2000-01-01', '2001-01-01', '2000-01-01', " + "'2001-01-01',\n" + " ...\n" + " '2000-01-01', '2001-01-01', '2000-01-01', '2001-01-01', " + "'2000-01-01',\n" + " '2001-01-01', '2000-01-01', '2001-01-01', '2000-01-01', " + "'2001-01-01']\n" + "Length: 1000, dtype: period[D]" + ) + assert result == expected diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_timedeltas.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_timedeltas.py new file mode 100644 index 0000000000000000000000000000000000000000..a3f15467feb144ee21883a0a2a777e3b5e0cdf42 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_timedeltas.py @@ -0,0 +1,313 @@ +from datetime import timedelta + +import numpy as np +import pytest + +import pandas as pd +from pandas import Timedelta +import pandas._testing as tm +from pandas.core.arrays import ( + DatetimeArray, + TimedeltaArray, +) + + +class TestNonNano: + @pytest.fixture(params=["s", "ms", "us"]) + def unit(self, request): + return request.param + + @pytest.fixture + def tda(self, unit): + arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]") + return TimedeltaArray._simple_new(arr, dtype=arr.dtype) + + def test_non_nano(self, unit): + arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]") + tda = TimedeltaArray._simple_new(arr, dtype=arr.dtype) + + assert tda.dtype == arr.dtype + assert tda[0].unit == unit + + def test_as_unit_raises(self, tda): + # GH#50616 + with pytest.raises(ValueError, match="Supported units"): + tda.as_unit("D") + + tdi = pd.Index(tda) + with pytest.raises(ValueError, match="Supported units"): + tdi.as_unit("D") + + @pytest.mark.parametrize("field", TimedeltaArray._field_ops) + def test_fields(self, tda, field): + as_nano = tda._ndarray.astype("m8[ns]") + tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype) + + result = getattr(tda, field) + expected = getattr(tda_nano, field) + tm.assert_numpy_array_equal(result, expected) + + def test_to_pytimedelta(self, tda): + as_nano = tda._ndarray.astype("m8[ns]") + tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype) + + result = tda.to_pytimedelta() + expected = tda_nano.to_pytimedelta() + tm.assert_numpy_array_equal(result, expected) + + def test_total_seconds(self, unit, tda): + as_nano = tda._ndarray.astype("m8[ns]") + tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype) + + result = tda.total_seconds() + expected = tda_nano.total_seconds() + tm.assert_numpy_array_equal(result, expected) + + def test_timedelta_array_total_seconds(self): + # GH34290 + expected = Timedelta("2 min").total_seconds() + + result = pd.array([Timedelta("2 min")]).total_seconds()[0] + assert result == expected + + def test_total_seconds_nanoseconds(self): + # issue #48521 + start_time = pd.Series(["2145-11-02 06:00:00"]).astype("datetime64[ns]") + end_time = pd.Series(["2145-11-02 07:06:00"]).astype("datetime64[ns]") + expected = (end_time - start_time).values / np.timedelta64(1, "s") + result = (end_time - start_time).dt.total_seconds().values + assert result == expected + + @pytest.mark.parametrize( + "nat", [np.datetime64("NaT", "ns"), np.datetime64("NaT", "us")] + ) + def test_add_nat_datetimelike_scalar(self, nat, tda): + result = tda + nat + assert isinstance(result, DatetimeArray) + assert result._creso == tda._creso + assert result.isna().all() + + result = nat + tda + assert isinstance(result, DatetimeArray) + assert result._creso == tda._creso + assert result.isna().all() + + def test_add_pdnat(self, tda): + result = tda + pd.NaT + assert isinstance(result, TimedeltaArray) + assert result._creso == tda._creso + assert result.isna().all() + + result = pd.NaT + tda + assert isinstance(result, TimedeltaArray) + assert result._creso == tda._creso + assert result.isna().all() + + # TODO: 2022-07-11 this is the only test that gets to DTA.tz_convert + # or tz_localize with non-nano; implement tests specific to that. + def test_add_datetimelike_scalar(self, tda, tz_naive_fixture): + ts = pd.Timestamp("2016-01-01", tz=tz_naive_fixture).as_unit("ns") + + expected = tda.as_unit("ns") + ts + res = tda + ts + tm.assert_extension_array_equal(res, expected) + res = ts + tda + tm.assert_extension_array_equal(res, expected) + + ts += Timedelta(1) # case where we can't cast losslessly + + exp_values = tda._ndarray + ts.asm8 + expected = ( + DatetimeArray._simple_new(exp_values, dtype=exp_values.dtype) + .tz_localize("UTC") + .tz_convert(ts.tz) + ) + + result = tda + ts + tm.assert_extension_array_equal(result, expected) + + result = ts + tda + tm.assert_extension_array_equal(result, expected) + + def test_mul_scalar(self, tda): + other = 2 + result = tda * other + expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype) + tm.assert_extension_array_equal(result, expected) + assert result._creso == tda._creso + + def test_mul_listlike(self, tda): + other = np.arange(len(tda)) + result = tda * other + expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype) + tm.assert_extension_array_equal(result, expected) + assert result._creso == tda._creso + + def test_mul_listlike_object(self, tda): + other = np.arange(len(tda)) + result = tda * other.astype(object) + expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype) + tm.assert_extension_array_equal(result, expected) + assert result._creso == tda._creso + + def test_div_numeric_scalar(self, tda): + other = 2 + result = tda / other + expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype) + tm.assert_extension_array_equal(result, expected) + assert result._creso == tda._creso + + def test_div_td_scalar(self, tda): + other = timedelta(seconds=1) + result = tda / other + expected = tda._ndarray / np.timedelta64(1, "s") + tm.assert_numpy_array_equal(result, expected) + + def test_div_numeric_array(self, tda): + other = np.arange(len(tda)) + result = tda / other + expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype) + tm.assert_extension_array_equal(result, expected) + assert result._creso == tda._creso + + def test_div_td_array(self, tda): + other = tda._ndarray + tda._ndarray[-1] + result = tda / other + expected = tda._ndarray / other + tm.assert_numpy_array_equal(result, expected) + + def test_add_timedeltaarraylike(self, tda): + tda_nano = tda.astype("m8[ns]") + + expected = tda_nano * 2 + res = tda_nano + tda + tm.assert_extension_array_equal(res, expected) + res = tda + tda_nano + tm.assert_extension_array_equal(res, expected) + + expected = tda_nano * 0 + res = tda - tda_nano + tm.assert_extension_array_equal(res, expected) + + res = tda_nano - tda + tm.assert_extension_array_equal(res, expected) + + +class TestTimedeltaArray: + @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"]) + def test_astype_int(self, dtype): + arr = TimedeltaArray._from_sequence( + [Timedelta("1h"), Timedelta("2h")], dtype="m8[ns]" + ) + + if np.dtype(dtype) != np.int64: + with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"): + arr.astype(dtype) + return + + result = arr.astype(dtype) + expected = arr._ndarray.view("i8") + tm.assert_numpy_array_equal(result, expected) + + def test_setitem_clears_freq(self): + a = pd.timedelta_range("1h", periods=2, freq="h")._data + a[0] = Timedelta("1h") + assert a.freq is None + + @pytest.mark.parametrize( + "obj", + [ + Timedelta(seconds=1), + Timedelta(seconds=1).to_timedelta64(), + Timedelta(seconds=1).to_pytimedelta(), + ], + ) + def test_setitem_objects(self, obj): + # make sure we accept timedelta64 and timedelta in addition to Timedelta + tdi = pd.timedelta_range("2 Days", periods=4, freq="h") + arr = tdi._data + + arr[0] = obj + assert arr[0] == Timedelta(seconds=1) + + @pytest.mark.parametrize( + "other", + [ + 1, + np.int64(1), + 1.0, + np.datetime64("NaT"), + pd.Timestamp("2021-01-01"), + "invalid", + np.arange(10, dtype="i8") * 24 * 3600 * 10**9, + (np.arange(10) * 24 * 3600 * 10**9).view("datetime64[ns]"), + pd.Timestamp("2021-01-01").to_period("D"), + ], + ) + @pytest.mark.parametrize("index", [True, False]) + def test_searchsorted_invalid_types(self, other, index): + data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 + arr = pd.TimedeltaIndex(data, freq="D")._data + if index: + arr = pd.Index(arr) + + msg = "|".join( + [ + "searchsorted requires compatible dtype or scalar", + "value should be a 'Timedelta', 'NaT', or array of those. Got", + ] + ) + with pytest.raises(TypeError, match=msg): + arr.searchsorted(other) + + +class TestUnaryOps: + def test_abs(self): + vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]") + arr = TimedeltaArray._from_sequence(vals) + + evals = np.array([3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]") + expected = TimedeltaArray._from_sequence(evals) + + result = abs(arr) + tm.assert_timedelta_array_equal(result, expected) + + result2 = np.abs(arr) + tm.assert_timedelta_array_equal(result2, expected) + + def test_pos(self): + vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]") + arr = TimedeltaArray._from_sequence(vals) + + result = +arr + tm.assert_timedelta_array_equal(result, arr) + assert not tm.shares_memory(result, arr) + + result2 = np.positive(arr) + tm.assert_timedelta_array_equal(result2, arr) + assert not tm.shares_memory(result2, arr) + + def test_neg(self): + vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]") + arr = TimedeltaArray._from_sequence(vals) + + evals = np.array([3600 * 10**9, "NaT", -7200 * 10**9], dtype="m8[ns]") + expected = TimedeltaArray._from_sequence(evals) + + result = -arr + tm.assert_timedelta_array_equal(result, expected) + + result2 = np.negative(arr) + tm.assert_timedelta_array_equal(result2, expected) + + def test_neg_freq(self): + tdi = pd.timedelta_range("2 Days", periods=4, freq="h") + arr = tdi._data + + expected = -tdi._data + + result = -arr + tm.assert_timedelta_array_equal(result, expected) + + result2 = np.negative(arr) + tm.assert_timedelta_array_equal(result2, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..03a918f43f50af6f1bbd34df6d51ceb19b24514f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..68b90d8a1a626ba5b9c2337d96f57c55dfec9b3a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_getitem.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_getitem.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..da83d9862c8677a1221a6a578fc9bda84b249e2d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_getitem.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_mask.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_mask.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..648967b8d4a52e0433ff6acbb7080d24ad8408a5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_mask.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_set_value.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_set_value.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4d8c024b1c3cb648de8359c9a1d418a5f2f57c4c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_set_value.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_setitem.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_setitem.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..989d22402c07c1bc7b5c753adb818ab0125e96f1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_setitem.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py new file mode 100644 index 0000000000000000000000000000000000000000..fc1c80eb4dec6e1b81114e8de181fc8f6b77d489 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py @@ -0,0 +1,499 @@ +""" +Also test support for datetime64[ns] in Series / DataFrame +""" +from datetime import ( + datetime, + timedelta, +) +import re + +from dateutil.tz import ( + gettz, + tzutc, +) +import numpy as np +import pytest +import pytz + +from pandas._libs import index as libindex + +import pandas as pd +from pandas import ( + DataFrame, + Series, + Timestamp, + date_range, + period_range, +) +import pandas._testing as tm + + +def test_fancy_getitem(): + dti = date_range( + freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1) + ) + + s = Series(np.arange(len(dti)), index=dti) + + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + assert s[48] == 48 + assert s["1/2/2009"] == 48 + assert s["2009-1-2"] == 48 + assert s[datetime(2009, 1, 2)] == 48 + assert s[Timestamp(datetime(2009, 1, 2))] == 48 + with pytest.raises(KeyError, match=r"^'2009-1-3'$"): + s["2009-1-3"] + tm.assert_series_equal( + s["3/6/2009":"2009-06-05"], s[datetime(2009, 3, 6) : datetime(2009, 6, 5)] + ) + + +def test_fancy_setitem(): + dti = date_range( + freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1) + ) + + s = Series(np.arange(len(dti)), index=dti) + + msg = "Series.__setitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + s[48] = -1 + assert s.iloc[48] == -1 + s["1/2/2009"] = -2 + assert s.iloc[48] == -2 + s["1/2/2009":"2009-06-05"] = -3 + assert (s[48:54] == -3).all() + + +@pytest.mark.parametrize("tz_source", ["pytz", "dateutil"]) +def test_getitem_setitem_datetime_tz(tz_source): + if tz_source == "pytz": + tzget = pytz.timezone + else: + # handle special case for utc in dateutil + tzget = lambda x: tzutc() if x == "UTC" else gettz(x) + + N = 50 + # testing with timezone, GH #2785 + rng = date_range("1/1/1990", periods=N, freq="h", tz=tzget("US/Eastern")) + ts = Series(np.random.default_rng(2).standard_normal(N), index=rng) + + # also test Timestamp tz handling, GH #2789 + result = ts.copy() + result["1990-01-01 09:00:00+00:00"] = 0 + result["1990-01-01 09:00:00+00:00"] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + result = ts.copy() + result["1990-01-01 03:00:00-06:00"] = 0 + result["1990-01-01 03:00:00-06:00"] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + # repeat with datetimes + result = ts.copy() + result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = 0 + result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + result = ts.copy() + dt = Timestamp(1990, 1, 1, 3).tz_localize(tzget("US/Central")) + dt = dt.to_pydatetime() + result[dt] = 0 + result[dt] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + +def test_getitem_setitem_datetimeindex(): + N = 50 + # testing with timezone, GH #2785 + rng = date_range("1/1/1990", periods=N, freq="h", tz="US/Eastern") + ts = Series(np.random.default_rng(2).standard_normal(N), index=rng) + + result = ts["1990-01-01 04:00:00"] + expected = ts.iloc[4] + assert result == expected + + result = ts.copy() + result["1990-01-01 04:00:00"] = 0 + result["1990-01-01 04:00:00"] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + result = ts.copy() + result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0 + result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8] + tm.assert_series_equal(result, ts) + + lb = "1990-01-01 04:00:00" + rb = "1990-01-01 07:00:00" + # GH#18435 strings get a pass from tzawareness compat + result = ts[(ts.index >= lb) & (ts.index <= rb)] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + lb = "1990-01-01 04:00:00-0500" + rb = "1990-01-01 07:00:00-0500" + result = ts[(ts.index >= lb) & (ts.index <= rb)] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + # But we do not give datetimes a pass on tzawareness compat + msg = "Cannot compare tz-naive and tz-aware datetime-like objects" + naive = datetime(1990, 1, 1, 4) + for key in [naive, Timestamp(naive), np.datetime64(naive, "ns")]: + with pytest.raises(KeyError, match=re.escape(repr(key))): + # GH#36148 as of 2.0 we require tzawareness-compat + ts[key] + + result = ts.copy() + # GH#36148 as of 2.0 we do not ignore tzawareness mismatch in indexing, + # so setting it as a new key casts to object rather than matching + # rng[4] + result[naive] = ts.iloc[4] + assert result.index.dtype == object + tm.assert_index_equal(result.index[:-1], rng.astype(object)) + assert result.index[-1] == naive + + msg = "Cannot compare tz-naive and tz-aware datetime-like objects" + with pytest.raises(TypeError, match=msg): + # GH#36148 require tzawareness compat as of 2.0 + ts[naive : datetime(1990, 1, 1, 7)] + + result = ts.copy() + with pytest.raises(TypeError, match=msg): + # GH#36148 require tzawareness compat as of 2.0 + result[naive : datetime(1990, 1, 1, 7)] = 0 + with pytest.raises(TypeError, match=msg): + # GH#36148 require tzawareness compat as of 2.0 + result[naive : datetime(1990, 1, 1, 7)] = 99 + # the __setitems__ here failed, so result should still match ts + tm.assert_series_equal(result, ts) + + lb = naive + rb = datetime(1990, 1, 1, 7) + msg = r"Invalid comparison between dtype=datetime64\[ns, US/Eastern\] and datetime" + with pytest.raises(TypeError, match=msg): + # tznaive vs tzaware comparison is invalid + # see GH#18376, GH#18162 + ts[(ts.index >= lb) & (ts.index <= rb)] + + lb = Timestamp(naive).tz_localize(rng.tzinfo) + rb = Timestamp(datetime(1990, 1, 1, 7)).tz_localize(rng.tzinfo) + result = ts[(ts.index >= lb) & (ts.index <= rb)] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + result = ts[ts.index[4]] + expected = ts.iloc[4] + assert result == expected + + result = ts[ts.index[4:8]] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + result = ts.copy() + result[ts.index[4:8]] = 0 + result.iloc[4:8] = ts.iloc[4:8] + tm.assert_series_equal(result, ts) + + # also test partial date slicing + result = ts["1990-01-02"] + expected = ts[24:48] + tm.assert_series_equal(result, expected) + + result = ts.copy() + result["1990-01-02"] = 0 + result["1990-01-02"] = ts[24:48] + tm.assert_series_equal(result, ts) + + +def test_getitem_setitem_periodindex(): + N = 50 + rng = period_range("1/1/1990", periods=N, freq="h") + ts = Series(np.random.default_rng(2).standard_normal(N), index=rng) + + result = ts["1990-01-01 04"] + expected = ts.iloc[4] + assert result == expected + + result = ts.copy() + result["1990-01-01 04"] = 0 + result["1990-01-01 04"] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + result = ts["1990-01-01 04":"1990-01-01 07"] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + result = ts.copy() + result["1990-01-01 04":"1990-01-01 07"] = 0 + result["1990-01-01 04":"1990-01-01 07"] = ts[4:8] + tm.assert_series_equal(result, ts) + + lb = "1990-01-01 04" + rb = "1990-01-01 07" + result = ts[(ts.index >= lb) & (ts.index <= rb)] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + # GH 2782 + result = ts[ts.index[4]] + expected = ts.iloc[4] + assert result == expected + + result = ts[ts.index[4:8]] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + result = ts.copy() + result[ts.index[4:8]] = 0 + result.iloc[4:8] = ts.iloc[4:8] + tm.assert_series_equal(result, ts) + + +def test_datetime_indexing(): + index = date_range("1/1/2000", "1/7/2000") + index = index.repeat(3) + + s = Series(len(index), index=index) + stamp = Timestamp("1/8/2000") + + with pytest.raises(KeyError, match=re.escape(repr(stamp))): + s[stamp] + s[stamp] = 0 + assert s[stamp] == 0 + + # not monotonic + s = Series(len(index), index=index) + s = s[::-1] + + with pytest.raises(KeyError, match=re.escape(repr(stamp))): + s[stamp] + s[stamp] = 0 + assert s[stamp] == 0 + + +# test duplicates in time series + + +def test_indexing_with_duplicate_datetimeindex( + rand_series_with_duplicate_datetimeindex, +): + ts = rand_series_with_duplicate_datetimeindex + + uniques = ts.index.unique() + for date in uniques: + result = ts[date] + + mask = ts.index == date + total = (ts.index == date).sum() + expected = ts[mask] + if total > 1: + tm.assert_series_equal(result, expected) + else: + tm.assert_almost_equal(result, expected.iloc[0]) + + cp = ts.copy() + cp[date] = 0 + expected = Series(np.where(mask, 0, ts), index=ts.index) + tm.assert_series_equal(cp, expected) + + key = datetime(2000, 1, 6) + with pytest.raises(KeyError, match=re.escape(repr(key))): + ts[key] + + # new index + ts[datetime(2000, 1, 6)] = 0 + assert ts[datetime(2000, 1, 6)] == 0 + + +def test_loc_getitem_over_size_cutoff(monkeypatch): + # #1821 + + monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000) + + # create large list of non periodic datetime + dates = [] + sec = timedelta(seconds=1) + half_sec = timedelta(microseconds=500000) + d = datetime(2011, 12, 5, 20, 30) + n = 1100 + for i in range(n): + dates.append(d) + dates.append(d + sec) + dates.append(d + sec + half_sec) + dates.append(d + sec + sec + half_sec) + d += 3 * sec + + # duplicate some values in the list + duplicate_positions = np.random.default_rng(2).integers(0, len(dates) - 1, 20) + for p in duplicate_positions: + dates[p + 1] = dates[p] + + df = DataFrame( + np.random.default_rng(2).standard_normal((len(dates), 4)), + index=dates, + columns=list("ABCD"), + ) + + pos = n * 3 + timestamp = df.index[pos] + assert timestamp in df.index + + # it works! + df.loc[timestamp] + assert len(df.loc[[timestamp]]) > 0 + + +def test_indexing_over_size_cutoff_period_index(monkeypatch): + # GH 27136 + + monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000) + + n = 1100 + idx = period_range("1/1/2000", freq="min", periods=n) + assert idx._engine.over_size_threshold + + s = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx) + + pos = n - 1 + timestamp = idx[pos] + assert timestamp in s.index + + # it works! + s[timestamp] + assert len(s.loc[[timestamp]]) > 0 + + +def test_indexing_unordered(): + # GH 2437 + rng = date_range(start="2011-01-01", end="2011-01-15") + ts = Series(np.random.default_rng(2).random(len(rng)), index=rng) + ts2 = pd.concat([ts[0:4], ts[-4:], ts[4:-4]]) + + for t in ts.index: + expected = ts[t] + result = ts2[t] + assert expected == result + + # GH 3448 (ranges) + def compare(slobj): + result = ts2[slobj].copy() + result = result.sort_index() + expected = ts[slobj] + expected.index = expected.index._with_freq(None) + tm.assert_series_equal(result, expected) + + for key in [ + slice("2011-01-01", "2011-01-15"), + slice("2010-12-30", "2011-01-15"), + slice("2011-01-01", "2011-01-16"), + # partial ranges + slice("2011-01-01", "2011-01-6"), + slice("2011-01-06", "2011-01-8"), + slice("2011-01-06", "2011-01-12"), + ]: + with pytest.raises( + KeyError, match="Value based partial slicing on non-monotonic" + ): + compare(key) + + # single values + result = ts2["2011"].sort_index() + expected = ts["2011"] + expected.index = expected.index._with_freq(None) + tm.assert_series_equal(result, expected) + + +def test_indexing_unordered2(): + # diff freq + rng = date_range(datetime(2005, 1, 1), periods=20, freq="ME") + ts = Series(np.arange(len(rng)), index=rng) + ts = ts.take(np.random.default_rng(2).permutation(20)) + + result = ts["2005"] + for t in result.index: + assert t.year == 2005 + + +def test_indexing(): + idx = date_range("2001-1-1", periods=20, freq="ME") + ts = Series(np.random.default_rng(2).random(len(idx)), index=idx) + + # getting + + # GH 3070, make sure semantics work on Series/Frame + result = ts["2001"] + tm.assert_series_equal(result, ts.iloc[:12]) + + df = DataFrame({"A": ts.copy()}) + + # GH#36179 pre-2.0 df["2001"] operated as slicing on rows. in 2.0 it behaves + # like any other key, so raises + with pytest.raises(KeyError, match="2001"): + df["2001"] + + # setting + ts = Series(np.random.default_rng(2).random(len(idx)), index=idx) + expected = ts.copy() + expected.iloc[:12] = 1 + ts["2001"] = 1 + tm.assert_series_equal(ts, expected) + + expected = df.copy() + expected.iloc[:12, 0] = 1 + df.loc["2001", "A"] = 1 + tm.assert_frame_equal(df, expected) + + +def test_getitem_str_month_with_datetimeindex(): + # GH3546 (not including times on the last day) + idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:00", freq="h") + ts = Series(range(len(idx)), index=idx) + expected = ts["2013-05"] + tm.assert_series_equal(expected, ts) + + idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:59", freq="s") + ts = Series(range(len(idx)), index=idx) + expected = ts["2013-05"] + tm.assert_series_equal(expected, ts) + + +def test_getitem_str_year_with_datetimeindex(): + idx = [ + Timestamp("2013-05-31 00:00"), + Timestamp(datetime(2013, 5, 31, 23, 59, 59, 999999)), + ] + ts = Series(range(len(idx)), index=idx) + expected = ts["2013"] + tm.assert_series_equal(expected, ts) + + +def test_getitem_str_second_with_datetimeindex(): + # GH14826, indexing with a seconds resolution string / datetime object + df = DataFrame( + np.random.default_rng(2).random((5, 5)), + columns=["open", "high", "low", "close", "volume"], + index=date_range("2012-01-02 18:01:00", periods=5, tz="US/Central", freq="s"), + ) + + # this is a single date, so will raise + with pytest.raises(KeyError, match=r"^'2012-01-02 18:01:02'$"): + df["2012-01-02 18:01:02"] + + msg = r"Timestamp\('2012-01-02 18:01:02-0600', tz='US/Central'\)" + with pytest.raises(KeyError, match=msg): + df[df.index[2]] + + +def test_compare_datetime_with_all_none(): + # GH#54870 + ser = Series(["2020-01-01", "2020-01-02"], dtype="datetime64[ns]") + ser2 = Series([None, None]) + result = ser > ser2 + expected = Series([False, False]) + tm.assert_series_equal(result, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py new file mode 100644 index 0000000000000000000000000000000000000000..1f3711ad919036a779c5357e3e6ae921bb795458 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py @@ -0,0 +1,238 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DatetimeIndex, + Index, + Series, + date_range, +) +import pandas._testing as tm + + +def test_get(): + # GH 6383 + s = Series( + np.array( + [ + 43, + 48, + 60, + 48, + 50, + 51, + 50, + 45, + 57, + 48, + 56, + 45, + 51, + 39, + 55, + 43, + 54, + 52, + 51, + 54, + ] + ) + ) + + result = s.get(25, 0) + expected = 0 + assert result == expected + + s = Series( + np.array( + [ + 43, + 48, + 60, + 48, + 50, + 51, + 50, + 45, + 57, + 48, + 56, + 45, + 51, + 39, + 55, + 43, + 54, + 52, + 51, + 54, + ] + ), + index=Index( + [ + 25.0, + 36.0, + 49.0, + 64.0, + 81.0, + 100.0, + 121.0, + 144.0, + 169.0, + 196.0, + 1225.0, + 1296.0, + 1369.0, + 1444.0, + 1521.0, + 1600.0, + 1681.0, + 1764.0, + 1849.0, + 1936.0, + ], + dtype=np.float64, + ), + ) + + result = s.get(25, 0) + expected = 43 + assert result == expected + + # GH 7407 + # with a boolean accessor + df = pd.DataFrame({"i": [0] * 3, "b": [False] * 3}) + vc = df.i.value_counts() + result = vc.get(99, default="Missing") + assert result == "Missing" + + vc = df.b.value_counts() + result = vc.get(False, default="Missing") + assert result == 3 + + result = vc.get(True, default="Missing") + assert result == "Missing" + + +def test_get_nan(float_numpy_dtype): + # GH 8569 + s = Index(range(10), dtype=float_numpy_dtype).to_series() + assert s.get(np.nan) is None + assert s.get(np.nan, default="Missing") == "Missing" + + +def test_get_nan_multiple(float_numpy_dtype): + # GH 8569 + # ensure that fixing "test_get_nan" above hasn't broken get + # with multiple elements + s = Index(range(10), dtype=float_numpy_dtype).to_series() + + idx = [2, 30] + assert s.get(idx) is None + + idx = [2, np.nan] + assert s.get(idx) is None + + # GH 17295 - all missing keys + idx = [20, 30] + assert s.get(idx) is None + + idx = [np.nan, np.nan] + assert s.get(idx) is None + + +def test_get_with_default(): + # GH#7725 + d0 = ["a", "b", "c", "d"] + d1 = np.arange(4, dtype="int64") + + for data, index in ((d0, d1), (d1, d0)): + s = Series(data, index=index) + for i, d in zip(index, data): + assert s.get(i) == d + assert s.get(i, d) == d + assert s.get(i, "z") == d + + assert s.get("e", "z") == "z" + assert s.get("e", "e") == "e" + + msg = "Series.__getitem__ treating keys as positions is deprecated" + warn = None + if index is d0: + warn = FutureWarning + with tm.assert_produces_warning(warn, match=msg): + assert s.get(10, "z") == "z" + assert s.get(10, 10) == 10 + + +@pytest.mark.parametrize( + "arr", + [ + np.random.default_rng(2).standard_normal(10), + DatetimeIndex(date_range("2020-01-01", periods=10), name="a").tz_localize( + tz="US/Eastern" + ), + ], +) +def test_get_with_ea(arr): + # GH#21260 + ser = Series(arr, index=[2 * i for i in range(len(arr))]) + assert ser.get(4) == ser.iloc[2] + + result = ser.get([4, 6]) + expected = ser.iloc[[2, 3]] + tm.assert_series_equal(result, expected) + + result = ser.get(slice(2)) + expected = ser.iloc[[0, 1]] + tm.assert_series_equal(result, expected) + + assert ser.get(-1) is None + assert ser.get(ser.index.max() + 1) is None + + ser = Series(arr[:6], index=list("abcdef")) + assert ser.get("c") == ser.iloc[2] + + result = ser.get(slice("b", "d")) + expected = ser.iloc[[1, 2, 3]] + tm.assert_series_equal(result, expected) + + result = ser.get("Z") + assert result is None + + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + assert ser.get(4) == ser.iloc[4] + with tm.assert_produces_warning(FutureWarning, match=msg): + assert ser.get(-1) == ser.iloc[-1] + with tm.assert_produces_warning(FutureWarning, match=msg): + assert ser.get(len(ser)) is None + + # GH#21257 + ser = Series(arr) + ser2 = ser[::2] + assert ser2.get(1) is None + + +def test_getitem_get(string_series, object_series): + msg = "Series.__getitem__ treating keys as positions is deprecated" + + for obj in [string_series, object_series]: + idx = obj.index[5] + + assert obj[idx] == obj.get(idx) + assert obj[idx] == obj.iloc[5] + + with tm.assert_produces_warning(FutureWarning, match=msg): + assert string_series.get(-1) == string_series.get(string_series.index[-1]) + assert string_series.iloc[5] == string_series.get(string_series.index[5]) + + +def test_get_none(): + # GH#5652 + s1 = Series(dtype=object) + s2 = Series(dtype=object, index=list("abc")) + for s in [s1, s2]: + result = s.get(None) + assert result is None diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py new file mode 100644 index 0000000000000000000000000000000000000000..596a225c288b890461d4ea5d03bef6f6eb1bc04b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py @@ -0,0 +1,735 @@ +""" +Series.__getitem__ test classes are organized by the type of key passed. +""" +from datetime import ( + date, + datetime, + time, +) + +import numpy as np +import pytest + +from pandas._libs.tslibs import ( + conversion, + timezones, +) + +from pandas.core.dtypes.common import is_scalar + +import pandas as pd +from pandas import ( + Categorical, + DataFrame, + DatetimeIndex, + Index, + Series, + Timestamp, + date_range, + period_range, + timedelta_range, +) +import pandas._testing as tm +from pandas.core.indexing import IndexingError + +from pandas.tseries.offsets import BDay + + +class TestSeriesGetitemScalars: + def test_getitem_object_index_float_string(self): + # GH#17286 + ser = Series([1] * 4, index=Index(["a", "b", "c", 1.0])) + assert ser["a"] == 1 + assert ser[1.0] == 1 + + def test_getitem_float_keys_tuple_values(self): + # see GH#13509 + + # unique Index + ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.1, 0.2], name="foo") + result = ser[0.0] + assert result == (1, 1) + + # non-unique Index + expected = Series([(1, 1), (2, 2)], index=[0.0, 0.0], name="foo") + ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.0, 0.2], name="foo") + + result = ser[0.0] + tm.assert_series_equal(result, expected) + + def test_getitem_unrecognized_scalar(self): + # GH#32684 a scalar key that is not recognized by lib.is_scalar + + # a series that might be produced via `frame.dtypes` + ser = Series([1, 2], index=[np.dtype("O"), np.dtype("i8")]) + + key = ser.index[1] + + result = ser[key] + assert result == 2 + + def test_getitem_negative_out_of_bounds(self): + ser = Series(["a"] * 10, index=["a"] * 10) + + msg = "index -11 is out of bounds for axis 0 with size 10|index out of bounds" + warn_msg = "Series.__getitem__ treating keys as positions is deprecated" + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + ser[-11] + + def test_getitem_out_of_bounds_indexerror(self, datetime_series): + # don't segfault, GH#495 + msg = r"index \d+ is out of bounds for axis 0 with size \d+" + warn_msg = "Series.__getitem__ treating keys as positions is deprecated" + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + datetime_series[len(datetime_series)] + + def test_getitem_out_of_bounds_empty_rangeindex_keyerror(self): + # GH#917 + # With a RangeIndex, an int key gives a KeyError + ser = Series([], dtype=object) + with pytest.raises(KeyError, match="-1"): + ser[-1] + + def test_getitem_keyerror_with_integer_index(self, any_int_numpy_dtype): + dtype = any_int_numpy_dtype + ser = Series( + np.random.default_rng(2).standard_normal(6), + index=Index([0, 0, 1, 1, 2, 2], dtype=dtype), + ) + + with pytest.raises(KeyError, match=r"^5$"): + ser[5] + + with pytest.raises(KeyError, match=r"^'c'$"): + ser["c"] + + # not monotonic + ser = Series( + np.random.default_rng(2).standard_normal(6), index=[2, 2, 0, 0, 1, 1] + ) + + with pytest.raises(KeyError, match=r"^5$"): + ser[5] + + with pytest.raises(KeyError, match=r"^'c'$"): + ser["c"] + + def test_getitem_int64(self, datetime_series): + idx = np.int64(5) + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = datetime_series[idx] + assert res == datetime_series.iloc[5] + + def test_getitem_full_range(self): + # github.com/pandas-dev/pandas/commit/4f433773141d2eb384325714a2776bcc5b2e20f7 + ser = Series(range(5), index=list(range(5))) + result = ser[list(range(5))] + tm.assert_series_equal(result, ser) + + # ------------------------------------------------------------------ + # Series with DatetimeIndex + + @pytest.mark.parametrize("tzstr", ["Europe/Berlin", "dateutil/Europe/Berlin"]) + def test_getitem_pydatetime_tz(self, tzstr): + tz = timezones.maybe_get_tz(tzstr) + + index = date_range( + start="2012-12-24 16:00", end="2012-12-24 18:00", freq="h", tz=tzstr + ) + ts = Series(index=index, data=index.hour) + time_pandas = Timestamp("2012-12-24 17:00", tz=tzstr) + + dt = datetime(2012, 12, 24, 17, 0) + time_datetime = conversion.localize_pydatetime(dt, tz) + assert ts[time_pandas] == ts[time_datetime] + + @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"]) + def test_string_index_alias_tz_aware(self, tz): + rng = date_range("1/1/2000", periods=10, tz=tz) + ser = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) + + result = ser["1/3/2000"] + tm.assert_almost_equal(result, ser.iloc[2]) + + def test_getitem_time_object(self): + rng = date_range("1/1/2000", "1/5/2000", freq="5min") + ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) + + mask = (rng.hour == 9) & (rng.minute == 30) + result = ts[time(9, 30)] + expected = ts[mask] + result.index = result.index._with_freq(None) + tm.assert_series_equal(result, expected) + + # ------------------------------------------------------------------ + # Series with CategoricalIndex + + def test_getitem_scalar_categorical_index(self): + cats = Categorical([Timestamp("12-31-1999"), Timestamp("12-31-2000")]) + + ser = Series([1, 2], index=cats) + + expected = ser.iloc[0] + result = ser[cats[0]] + assert result == expected + + def test_getitem_numeric_categorical_listlike_matches_scalar(self): + # GH#15470 + ser = Series(["a", "b", "c"], index=pd.CategoricalIndex([2, 1, 0])) + + # 0 is treated as a label + assert ser[0] == "c" + + # the listlike analogue should also be treated as labels + res = ser[[0]] + expected = ser.iloc[-1:] + tm.assert_series_equal(res, expected) + + res2 = ser[[0, 1, 2]] + tm.assert_series_equal(res2, ser.iloc[::-1]) + + def test_getitem_integer_categorical_not_positional(self): + # GH#14865 + ser = Series(["a", "b", "c"], index=Index([1, 2, 3], dtype="category")) + assert ser.get(3) == "c" + assert ser[3] == "c" + + def test_getitem_str_with_timedeltaindex(self): + rng = timedelta_range("1 day 10:11:12", freq="h", periods=500) + ser = Series(np.arange(len(rng)), index=rng) + + key = "6 days, 23:11:12" + indexer = rng.get_loc(key) + assert indexer == 133 + + result = ser[key] + assert result == ser.iloc[133] + + msg = r"^Timedelta\('50 days 00:00:00'\)$" + with pytest.raises(KeyError, match=msg): + rng.get_loc("50 days") + with pytest.raises(KeyError, match=msg): + ser["50 days"] + + def test_getitem_bool_index_positional(self): + # GH#48653 + ser = Series({True: 1, False: 0}) + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser[0] + assert result == 1 + + +class TestSeriesGetitemSlices: + def test_getitem_partial_str_slice_with_datetimeindex(self): + # GH#34860 + arr = date_range("1/1/2008", "1/1/2009") + ser = arr.to_series() + result = ser["2008"] + + rng = date_range(start="2008-01-01", end="2008-12-31") + expected = Series(rng, index=rng) + + tm.assert_series_equal(result, expected) + + def test_getitem_slice_strings_with_datetimeindex(self): + idx = DatetimeIndex( + ["1/1/2000", "1/2/2000", "1/2/2000", "1/3/2000", "1/4/2000"] + ) + + ts = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx) + + result = ts["1/2/2000":] + expected = ts[1:] + tm.assert_series_equal(result, expected) + + result = ts["1/2/2000":"1/3/2000"] + expected = ts[1:4] + tm.assert_series_equal(result, expected) + + def test_getitem_partial_str_slice_with_timedeltaindex(self): + rng = timedelta_range("1 day 10:11:12", freq="h", periods=500) + ser = Series(np.arange(len(rng)), index=rng) + + result = ser["5 day":"6 day"] + expected = ser.iloc[86:134] + tm.assert_series_equal(result, expected) + + result = ser["5 day":] + expected = ser.iloc[86:] + tm.assert_series_equal(result, expected) + + result = ser[:"6 day"] + expected = ser.iloc[:134] + tm.assert_series_equal(result, expected) + + def test_getitem_partial_str_slice_high_reso_with_timedeltaindex(self): + # higher reso + rng = timedelta_range("1 day 10:11:12", freq="us", periods=2000) + ser = Series(np.arange(len(rng)), index=rng) + + result = ser["1 day 10:11:12":] + expected = ser.iloc[0:] + tm.assert_series_equal(result, expected) + + result = ser["1 day 10:11:12.001":] + expected = ser.iloc[1000:] + tm.assert_series_equal(result, expected) + + result = ser["1 days, 10:11:12.001001"] + assert result == ser.iloc[1001] + + def test_getitem_slice_2d(self, datetime_series): + # GH#30588 multi-dimensional indexing deprecated + with pytest.raises(ValueError, match="Multi-dimensional indexing"): + datetime_series[:, np.newaxis] + + def test_getitem_median_slice_bug(self): + index = date_range("20090415", "20090519", freq="2B") + ser = Series(np.random.default_rng(2).standard_normal(13), index=index) + + indexer = [slice(6, 7, None)] + msg = "Indexing with a single-item list" + with pytest.raises(ValueError, match=msg): + # GH#31299 + ser[indexer] + # but we're OK with a single-element tuple + result = ser[(indexer[0],)] + expected = ser[indexer[0]] + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "slc, positions", + [ + [slice(date(2018, 1, 1), None), [0, 1, 2]], + [slice(date(2019, 1, 2), None), [2]], + [slice(date(2020, 1, 1), None), []], + [slice(None, date(2020, 1, 1)), [0, 1, 2]], + [slice(None, date(2019, 1, 1)), [0]], + ], + ) + def test_getitem_slice_date(self, slc, positions): + # https://github.com/pandas-dev/pandas/issues/31501 + ser = Series( + [0, 1, 2], + DatetimeIndex(["2019-01-01", "2019-01-01T06:00:00", "2019-01-02"]), + ) + result = ser[slc] + expected = ser.take(positions) + tm.assert_series_equal(result, expected) + + def test_getitem_slice_float_raises(self, datetime_series): + msg = ( + "cannot do slice indexing on DatetimeIndex with these indexers " + r"\[{key}\] of type float" + ) + with pytest.raises(TypeError, match=msg.format(key=r"4\.0")): + datetime_series[4.0:10.0] + + with pytest.raises(TypeError, match=msg.format(key=r"4\.5")): + datetime_series[4.5:10.0] + + def test_getitem_slice_bug(self): + ser = Series(range(10), index=list(range(10))) + result = ser[-12:] + tm.assert_series_equal(result, ser) + + result = ser[-7:] + tm.assert_series_equal(result, ser[3:]) + + result = ser[:-12] + tm.assert_series_equal(result, ser[:0]) + + def test_getitem_slice_integers(self): + ser = Series( + np.random.default_rng(2).standard_normal(8), + index=[2, 4, 6, 8, 10, 12, 14, 16], + ) + + result = ser[:4] + expected = Series(ser.values[:4], index=[2, 4, 6, 8]) + tm.assert_series_equal(result, expected) + + +class TestSeriesGetitemListLike: + @pytest.mark.parametrize("box", [list, np.array, Index, Series]) + def test_getitem_no_matches(self, box): + # GH#33462 we expect the same behavior for list/ndarray/Index/Series + ser = Series(["A", "B"]) + + key = Series(["C"], dtype=object) + key = box(key) + + msg = ( + r"None of \[Index\(\['C'\], dtype='object|string'\)\] are in the \[index\]" + ) + with pytest.raises(KeyError, match=msg): + ser[key] + + def test_getitem_intlist_intindex_periodvalues(self): + ser = Series(period_range("2000-01-01", periods=10, freq="D")) + + result = ser[[2, 4]] + exp = Series( + [pd.Period("2000-01-03", freq="D"), pd.Period("2000-01-05", freq="D")], + index=[2, 4], + dtype="Period[D]", + ) + tm.assert_series_equal(result, exp) + assert result.dtype == "Period[D]" + + @pytest.mark.parametrize("box", [list, np.array, Index]) + def test_getitem_intlist_intervalindex_non_int(self, box): + # GH#33404 fall back to positional since ints are unambiguous + dti = date_range("2000-01-03", periods=3)._with_freq(None) + ii = pd.IntervalIndex.from_breaks(dti) + ser = Series(range(len(ii)), index=ii) + + expected = ser.iloc[:1] + key = box([0]) + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser[key] + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("box", [list, np.array, Index]) + @pytest.mark.parametrize("dtype", [np.int64, np.float64, np.uint64]) + def test_getitem_intlist_multiindex_numeric_level(self, dtype, box): + # GH#33404 do _not_ fall back to positional since ints are ambiguous + idx = Index(range(4)).astype(dtype) + dti = date_range("2000-01-03", periods=3) + mi = pd.MultiIndex.from_product([idx, dti]) + ser = Series(range(len(mi))[::-1], index=mi) + + key = box([5]) + with pytest.raises(KeyError, match="5"): + ser[key] + + def test_getitem_uint_array_key(self, any_unsigned_int_numpy_dtype): + # GH #37218 + ser = Series([1, 2, 3]) + key = np.array([4], dtype=any_unsigned_int_numpy_dtype) + + with pytest.raises(KeyError, match="4"): + ser[key] + with pytest.raises(KeyError, match="4"): + ser.loc[key] + + +class TestGetitemBooleanMask: + def test_getitem_boolean(self, string_series): + ser = string_series + mask = ser > ser.median() + + # passing list is OK + result = ser[list(mask)] + expected = ser[mask] + tm.assert_series_equal(result, expected) + tm.assert_index_equal(result.index, ser.index[mask]) + + def test_getitem_boolean_empty(self): + ser = Series([], dtype=np.int64) + ser.index.name = "index_name" + ser = ser[ser.isna()] + assert ser.index.name == "index_name" + assert ser.dtype == np.int64 + + # GH#5877 + # indexing with empty series + ser = Series(["A", "B"], dtype=object) + expected = Series(dtype=object, index=Index([], dtype="int64")) + result = ser[Series([], dtype=object)] + tm.assert_series_equal(result, expected) + + # invalid because of the boolean indexer + # that's empty or not-aligned + msg = ( + r"Unalignable boolean Series provided as indexer \(index of " + r"the boolean Series and of the indexed object do not match" + ) + with pytest.raises(IndexingError, match=msg): + ser[Series([], dtype=bool)] + + with pytest.raises(IndexingError, match=msg): + ser[Series([True], dtype=bool)] + + def test_getitem_boolean_object(self, string_series): + # using column from DataFrame + + ser = string_series + mask = ser > ser.median() + omask = mask.astype(object) + + # getitem + result = ser[omask] + expected = ser[mask] + tm.assert_series_equal(result, expected) + + # setitem + s2 = ser.copy() + cop = ser.copy() + cop[omask] = 5 + s2[mask] = 5 + tm.assert_series_equal(cop, s2) + + # nans raise exception + omask[5:10] = np.nan + msg = "Cannot mask with non-boolean array containing NA / NaN values" + with pytest.raises(ValueError, match=msg): + ser[omask] + with pytest.raises(ValueError, match=msg): + ser[omask] = 5 + + def test_getitem_boolean_dt64_copies(self): + # GH#36210 + dti = date_range("2016-01-01", periods=4, tz="US/Pacific") + key = np.array([True, True, False, False]) + + ser = Series(dti._data) + + res = ser[key] + assert res._values._ndarray.base is None + + # compare with numeric case for reference + ser2 = Series(range(4)) + res2 = ser2[key] + assert res2._values.base is None + + def test_getitem_boolean_corner(self, datetime_series): + ts = datetime_series + mask_shifted = ts.shift(1, freq=BDay()) > ts.median() + + msg = ( + r"Unalignable boolean Series provided as indexer \(index of " + r"the boolean Series and of the indexed object do not match" + ) + with pytest.raises(IndexingError, match=msg): + ts[mask_shifted] + + with pytest.raises(IndexingError, match=msg): + ts.loc[mask_shifted] + + def test_getitem_boolean_different_order(self, string_series): + ordered = string_series.sort_values() + + sel = string_series[ordered > 0] + exp = string_series[string_series > 0] + tm.assert_series_equal(sel, exp) + + def test_getitem_boolean_contiguous_preserve_freq(self): + rng = date_range("1/1/2000", "3/1/2000", freq="B") + + mask = np.zeros(len(rng), dtype=bool) + mask[10:20] = True + + masked = rng[mask] + expected = rng[10:20] + assert expected.freq == rng.freq + tm.assert_index_equal(masked, expected) + + mask[22] = True + masked = rng[mask] + assert masked.freq is None + + +class TestGetitemCallable: + def test_getitem_callable(self): + # GH#12533 + ser = Series(4, index=list("ABCD")) + result = ser[lambda x: "A"] + assert result == ser.loc["A"] + + result = ser[lambda x: ["A", "B"]] + expected = ser.loc[["A", "B"]] + tm.assert_series_equal(result, expected) + + result = ser[lambda x: [True, False, True, True]] + expected = ser.iloc[[0, 2, 3]] + tm.assert_series_equal(result, expected) + + +def test_getitem_generator(string_series): + gen = (x > 0 for x in string_series) + result = string_series[gen] + result2 = string_series[iter(string_series > 0)] + expected = string_series[string_series > 0] + tm.assert_series_equal(result, expected) + tm.assert_series_equal(result2, expected) + + +@pytest.mark.parametrize( + "series", + [ + Series([0, 1]), + Series(date_range("2012-01-01", periods=2)), + Series(date_range("2012-01-01", periods=2, tz="CET")), + ], +) +def test_getitem_ndim_deprecated(series): + with pytest.raises(ValueError, match="Multi-dimensional indexing"): + series[:, None] + + +def test_getitem_multilevel_scalar_slice_not_implemented( + multiindex_year_month_day_dataframe_random_data, +): + # not implementing this for now + df = multiindex_year_month_day_dataframe_random_data + ser = df["A"] + + msg = r"\(2000, slice\(3, 4, None\)\)" + with pytest.raises(TypeError, match=msg): + ser[2000, 3:4] + + +def test_getitem_dataframe_raises(): + rng = list(range(10)) + ser = Series(10, index=rng) + df = DataFrame(rng, index=rng) + msg = ( + "Indexing a Series with DataFrame is not supported, " + "use the appropriate DataFrame column" + ) + with pytest.raises(TypeError, match=msg): + ser[df > 5] + + +def test_getitem_assignment_series_alignment(): + # https://github.com/pandas-dev/pandas/issues/37427 + # with getitem, when assigning with a Series, it is not first aligned + ser = Series(range(10)) + idx = np.array([2, 4, 9]) + ser[idx] = Series([10, 11, 12]) + expected = Series([0, 1, 10, 3, 11, 5, 6, 7, 8, 12]) + tm.assert_series_equal(ser, expected) + + +def test_getitem_duplicate_index_mistyped_key_raises_keyerror(): + # GH#29189 float_index.get_loc(None) should raise KeyError, not TypeError + ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0]) + with pytest.raises(KeyError, match="None"): + ser[None] + + with pytest.raises(KeyError, match="None"): + ser.index.get_loc(None) + + with pytest.raises(KeyError, match="None"): + ser.index._engine.get_loc(None) + + +def test_getitem_1tuple_slice_without_multiindex(): + ser = Series(range(5)) + key = (slice(3),) + + result = ser[key] + expected = ser[key[0]] + tm.assert_series_equal(result, expected) + + +def test_getitem_preserve_name(datetime_series): + result = datetime_series[datetime_series > 0] + assert result.name == datetime_series.name + + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = datetime_series[[0, 2, 4]] + assert result.name == datetime_series.name + + result = datetime_series[5:10] + assert result.name == datetime_series.name + + +def test_getitem_with_integer_labels(): + # integer indexes, be careful + ser = Series( + np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2)) + ) + inds = [0, 2, 5, 7, 8] + arr_inds = np.array([0, 2, 5, 7, 8]) + with pytest.raises(KeyError, match="not in index"): + ser[inds] + + with pytest.raises(KeyError, match="not in index"): + ser[arr_inds] + + +def test_getitem_missing(datetime_series): + # missing + d = datetime_series.index[0] - BDay() + msg = r"Timestamp\('1999-12-31 00:00:00'\)" + with pytest.raises(KeyError, match=msg): + datetime_series[d] + + +def test_getitem_fancy(string_series, object_series): + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + slice1 = string_series[[1, 2, 3]] + slice2 = object_series[[1, 2, 3]] + assert string_series.index[2] == slice1.index[1] + assert object_series.index[2] == slice2.index[1] + assert string_series.iloc[2] == slice1.iloc[1] + assert object_series.iloc[2] == slice2.iloc[1] + + +def test_getitem_box_float64(datetime_series): + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + value = datetime_series[5] + assert isinstance(value, np.float64) + + +def test_getitem_unordered_dup(): + obj = Series(range(5), index=["c", "a", "a", "b", "b"]) + assert is_scalar(obj["c"]) + assert obj["c"] == 0 + + +def test_getitem_dups(): + ser = Series(range(5), index=["A", "A", "B", "C", "C"], dtype=np.int64) + expected = Series([3, 4], index=["C", "C"], dtype=np.int64) + result = ser["C"] + tm.assert_series_equal(result, expected) + + +def test_getitem_categorical_str(): + # GH#31765 + ser = Series(range(5), index=Categorical(["a", "b", "c", "a", "b"])) + result = ser["a"] + expected = ser.iloc[[0, 3]] + tm.assert_series_equal(result, expected) + + +def test_slice_can_reorder_not_uniquely_indexed(): + ser = Series(1, index=["a", "a", "b", "b", "c"]) + ser[::-1] # it works! + + +@pytest.mark.parametrize("index_vals", ["aabcd", "aadcb"]) +def test_duplicated_index_getitem_positional_indexer(index_vals): + # GH 11747 + s = Series(range(5), index=list(index_vals)) + + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s[3] + assert result == 3 + + +class TestGetitemDeprecatedIndexers: + @pytest.mark.parametrize("key", [{1}, {1: 1}]) + def test_getitem_dict_and_set_deprecated(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2, 3]) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser[key] + + @pytest.mark.parametrize("key", [{1}, {1: 1}]) + def test_setitem_dict_and_set_disallowed(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2, 3]) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser[key] = 1 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_indexing.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_indexing.py new file mode 100644 index 0000000000000000000000000000000000000000..f4992b758af74610286c45a386ccbf469a9a0b9d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_indexing.py @@ -0,0 +1,518 @@ +""" test get/set & misc """ +from datetime import timedelta +import re + +import numpy as np +import pytest + +from pandas.errors import IndexingError + +from pandas import ( + NA, + DataFrame, + Index, + IndexSlice, + MultiIndex, + NaT, + Series, + Timedelta, + Timestamp, + concat, + date_range, + isna, + period_range, + timedelta_range, +) +import pandas._testing as tm + + +def test_basic_indexing(): + s = Series( + np.random.default_rng(2).standard_normal(5), index=["a", "b", "a", "a", "b"] + ) + + warn_msg = "Series.__[sg]etitem__ treating keys as positions is deprecated" + msg = "index 5 is out of bounds for axis 0 with size 5" + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + s[5] + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + s[5] = 0 + + with pytest.raises(KeyError, match=r"^'c'$"): + s["c"] + + s = s.sort_index() + + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + s[5] + msg = r"index 5 is out of bounds for axis (0|1) with size 5|^5$" + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + s[5] = 0 + + +def test_getitem_numeric_should_not_fallback_to_positional(any_numeric_dtype): + # GH51053 + dtype = any_numeric_dtype + idx = Index([1, 0, 1], dtype=dtype) + ser = Series(range(3), index=idx) + result = ser[1] + expected = Series([0, 2], index=Index([1, 1], dtype=dtype)) + tm.assert_series_equal(result, expected, check_exact=True) + + +def test_setitem_numeric_should_not_fallback_to_positional(any_numeric_dtype): + # GH51053 + dtype = any_numeric_dtype + idx = Index([1, 0, 1], dtype=dtype) + ser = Series(range(3), index=idx) + ser[1] = 10 + expected = Series([10, 1, 10], index=idx) + tm.assert_series_equal(ser, expected, check_exact=True) + + +def test_basic_getitem_with_labels(datetime_series): + indices = datetime_series.index[[5, 10, 15]] + + result = datetime_series[indices] + expected = datetime_series.reindex(indices) + tm.assert_series_equal(result, expected) + + result = datetime_series[indices[0] : indices[2]] + expected = datetime_series.loc[indices[0] : indices[2]] + tm.assert_series_equal(result, expected) + + +def test_basic_getitem_dt64tz_values(): + # GH12089 + # with tz for values + ser = Series( + date_range("2011-01-01", periods=3, tz="US/Eastern"), index=["a", "b", "c"] + ) + expected = Timestamp("2011-01-01", tz="US/Eastern") + result = ser.loc["a"] + assert result == expected + result = ser.iloc[0] + assert result == expected + result = ser["a"] + assert result == expected + + +def test_getitem_setitem_ellipsis(using_copy_on_write, warn_copy_on_write): + s = Series(np.random.default_rng(2).standard_normal(10)) + + result = s[...] + tm.assert_series_equal(result, s) + + with tm.assert_cow_warning(warn_copy_on_write): + s[...] = 5 + if not using_copy_on_write: + assert (result == 5).all() + + +@pytest.mark.parametrize( + "result_1, duplicate_item, expected_1", + [ + [ + Series({1: 12, 2: [1, 2, 2, 3]}), + Series({1: 313}), + Series({1: 12}, dtype=object), + ], + [ + Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}), + Series({1: [1, 2, 3]}), + Series({1: [1, 2, 3]}), + ], + ], +) +def test_getitem_with_duplicates_indices(result_1, duplicate_item, expected_1): + # GH 17610 + result = result_1._append(duplicate_item) + expected = expected_1._append(duplicate_item) + tm.assert_series_equal(result[1], expected) + assert result[2] == result_1[2] + + +def test_getitem_setitem_integers(): + # caused bug without test + s = Series([1, 2, 3], ["a", "b", "c"]) + + assert s.iloc[0] == s["a"] + s.iloc[0] = 5 + tm.assert_almost_equal(s["a"], 5) + + +def test_series_box_timestamp(): + rng = date_range("20090415", "20090519", freq="B") + ser = Series(rng) + assert isinstance(ser[0], Timestamp) + assert isinstance(ser.at[1], Timestamp) + assert isinstance(ser.iat[2], Timestamp) + assert isinstance(ser.loc[3], Timestamp) + assert isinstance(ser.iloc[4], Timestamp) + + ser = Series(rng, index=rng) + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + assert isinstance(ser[0], Timestamp) + assert isinstance(ser.at[rng[1]], Timestamp) + assert isinstance(ser.iat[2], Timestamp) + assert isinstance(ser.loc[rng[3]], Timestamp) + assert isinstance(ser.iloc[4], Timestamp) + + +def test_series_box_timedelta(): + rng = timedelta_range("1 day 1 s", periods=5, freq="h") + ser = Series(rng) + assert isinstance(ser[0], Timedelta) + assert isinstance(ser.at[1], Timedelta) + assert isinstance(ser.iat[2], Timedelta) + assert isinstance(ser.loc[3], Timedelta) + assert isinstance(ser.iloc[4], Timedelta) + + +def test_getitem_ambiguous_keyerror(indexer_sl): + ser = Series(range(10), index=list(range(0, 20, 2))) + with pytest.raises(KeyError, match=r"^1$"): + indexer_sl(ser)[1] + + +def test_getitem_dups_with_missing(indexer_sl): + # breaks reindex, so need to use .loc internally + # GH 4246 + ser = Series([1, 2, 3, 4], ["foo", "bar", "foo", "bah"]) + with pytest.raises(KeyError, match=re.escape("['bam'] not in index")): + indexer_sl(ser)[["foo", "bar", "bah", "bam"]] + + +def test_setitem_ambiguous_keyerror(indexer_sl): + s = Series(range(10), index=list(range(0, 20, 2))) + + # equivalent of an append + s2 = s.copy() + indexer_sl(s2)[1] = 5 + expected = concat([s, Series([5], index=[1])]) + tm.assert_series_equal(s2, expected) + + +def test_setitem(datetime_series): + datetime_series[datetime_series.index[5]] = np.nan + datetime_series.iloc[[1, 2, 17]] = np.nan + datetime_series.iloc[6] = np.nan + assert np.isnan(datetime_series.iloc[6]) + assert np.isnan(datetime_series.iloc[2]) + datetime_series[np.isnan(datetime_series)] = 5 + assert not np.isnan(datetime_series.iloc[2]) + + +def test_setslice(datetime_series): + sl = datetime_series[5:20] + assert len(sl) == len(sl.index) + assert sl.index.is_unique is True + + +def test_basic_getitem_setitem_corner(datetime_series): + # invalid tuples, e.g. td.ts[:, None] vs. td.ts[:, 2] + msg = "key of type tuple not found and not a MultiIndex" + with pytest.raises(KeyError, match=msg): + datetime_series[:, 2] + with pytest.raises(KeyError, match=msg): + datetime_series[:, 2] = 2 + + # weird lists. [slice(0, 5)] raises but not two slices + msg = "Indexing with a single-item list" + with pytest.raises(ValueError, match=msg): + # GH#31299 + datetime_series[[slice(None, 5)]] + + # but we're OK with a single-element tuple + result = datetime_series[(slice(None, 5),)] + expected = datetime_series[:5] + tm.assert_series_equal(result, expected) + + # OK + msg = r"unhashable type(: 'slice')?" + with pytest.raises(TypeError, match=msg): + datetime_series[[5, [None, None]]] + with pytest.raises(TypeError, match=msg): + datetime_series[[5, [None, None]]] = 2 + + +def test_slice(string_series, object_series, using_copy_on_write, warn_copy_on_write): + original = string_series.copy() + numSlice = string_series[10:20] + numSliceEnd = string_series[-10:] + objSlice = object_series[10:20] + + assert string_series.index[9] not in numSlice.index + assert object_series.index[9] not in objSlice.index + + assert len(numSlice) == len(numSlice.index) + assert string_series[numSlice.index[0]] == numSlice[numSlice.index[0]] + + assert numSlice.index[1] == string_series.index[11] + tm.assert_numpy_array_equal(np.array(numSliceEnd), np.array(string_series)[-10:]) + + # Test return view. + sl = string_series[10:20] + with tm.assert_cow_warning(warn_copy_on_write): + sl[:] = 0 + + if using_copy_on_write: + # Doesn't modify parent (CoW) + tm.assert_series_equal(string_series, original) + else: + assert (string_series[10:20] == 0).all() + + +def test_timedelta_assignment(): + # GH 8209 + s = Series([], dtype=object) + s.loc["B"] = timedelta(1) + tm.assert_series_equal(s, Series(Timedelta("1 days"), index=["B"])) + + s = s.reindex(s.index.insert(0, "A")) + tm.assert_series_equal(s, Series([np.nan, Timedelta("1 days")], index=["A", "B"])) + + s.loc["A"] = timedelta(1) + expected = Series(Timedelta("1 days"), index=["A", "B"]) + tm.assert_series_equal(s, expected) + + +def test_underlying_data_conversion(using_copy_on_write): + # GH 4080 + df = DataFrame({c: [1, 2, 3] for c in ["a", "b", "c"]}) + return_value = df.set_index(["a", "b", "c"], inplace=True) + assert return_value is None + s = Series([1], index=[(2, 2, 2)]) + df["val"] = 0 + df_original = df.copy() + df + + if using_copy_on_write: + with tm.raises_chained_assignment_error(): + df["val"].update(s) + expected = df_original + else: + with tm.assert_produces_warning(FutureWarning, match="inplace method"): + df["val"].update(s) + expected = DataFrame( + {"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3], "val": [0, 1, 0]} + ) + return_value = expected.set_index(["a", "b", "c"], inplace=True) + assert return_value is None + tm.assert_frame_equal(df, expected) + + +def test_preserve_refs(datetime_series): + seq = datetime_series.iloc[[5, 10, 15]] + seq.iloc[1] = np.nan + assert not np.isnan(datetime_series.iloc[10]) + + +def test_multilevel_preserve_name(lexsorted_two_level_string_multiindex, indexer_sl): + index = lexsorted_two_level_string_multiindex + ser = Series( + np.random.default_rng(2).standard_normal(len(index)), index=index, name="sth" + ) + + result = indexer_sl(ser)["foo"] + assert result.name == ser.name + + +# miscellaneous methods + + +@pytest.mark.parametrize( + "index", + [ + date_range("2014-01-01", periods=20, freq="MS"), + period_range("2014-01", periods=20, freq="M"), + timedelta_range("0", periods=20, freq="h"), + ], +) +def test_slice_with_negative_step(index): + keystr1 = str(index[9]) + keystr2 = str(index[13]) + + ser = Series(np.arange(20), index) + SLC = IndexSlice + + for key in [keystr1, index[9]]: + tm.assert_indexing_slices_equivalent(ser, SLC[key::-1], SLC[9::-1]) + tm.assert_indexing_slices_equivalent(ser, SLC[:key:-1], SLC[:8:-1]) + + for key2 in [keystr2, index[13]]: + tm.assert_indexing_slices_equivalent(ser, SLC[key2:key:-1], SLC[13:8:-1]) + tm.assert_indexing_slices_equivalent(ser, SLC[key:key2:-1], SLC[0:0:-1]) + + +def test_tuple_index(): + # GH 35534 - Selecting values when a Series has an Index of tuples + s = Series([1, 2], index=[("a",), ("b",)]) + assert s[("a",)] == 1 + assert s[("b",)] == 2 + s[("b",)] = 3 + assert s[("b",)] == 3 + + +def test_frozenset_index(): + # GH35747 - Selecting values when a Series has an Index of frozenset + idx0, idx1 = frozenset("a"), frozenset("b") + s = Series([1, 2], index=[idx0, idx1]) + assert s[idx0] == 1 + assert s[idx1] == 2 + s[idx1] = 3 + assert s[idx1] == 3 + + +def test_loc_setitem_all_false_indexer(): + # GH#45778 + ser = Series([1, 2], index=["a", "b"]) + expected = ser.copy() + rhs = Series([6, 7], index=["a", "b"]) + ser.loc[ser > 100] = rhs + tm.assert_series_equal(ser, expected) + + +def test_loc_boolean_indexer_non_matching_index(): + # GH#46551 + ser = Series([1]) + result = ser.loc[Series([NA, False], dtype="boolean")] + expected = Series([], dtype="int64") + tm.assert_series_equal(result, expected) + + +def test_loc_boolean_indexer_miss_matching_index(): + # GH#46551 + ser = Series([1]) + indexer = Series([NA, False], dtype="boolean", index=[1, 2]) + with pytest.raises(IndexingError, match="Unalignable"): + ser.loc[indexer] + + +def test_loc_setitem_nested_data_enlargement(): + # GH#48614 + df = DataFrame({"a": [1]}) + ser = Series({"label": df}) + ser.loc["new_label"] = df + expected = Series({"label": df, "new_label": df}) + tm.assert_series_equal(ser, expected) + + +def test_loc_ea_numeric_index_oob_slice_end(): + # GH#50161 + ser = Series(1, index=Index([0, 1, 2], dtype="Int64")) + result = ser.loc[2:3] + expected = Series(1, index=Index([2], dtype="Int64")) + tm.assert_series_equal(result, expected) + + +def test_getitem_bool_int_key(): + # GH#48653 + ser = Series({True: 1, False: 0}) + with pytest.raises(KeyError, match="0"): + ser.loc[0] + + +@pytest.mark.parametrize("val", [{}, {"b": "x"}]) +@pytest.mark.parametrize("indexer", [[], [False, False], slice(0, -1), np.array([])]) +def test_setitem_empty_indexer(indexer, val): + # GH#45981 + df = DataFrame({"a": [1, 2], **val}) + expected = df.copy() + df.loc[indexer] = 1.5 + tm.assert_frame_equal(df, expected) + + +class TestDeprecatedIndexers: + @pytest.mark.parametrize("key", [{1}, {1: 1}]) + def test_getitem_dict_and_set_deprecated(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2]) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser.loc[key] + + @pytest.mark.parametrize("key", [{1}, {1: 1}, ({1}, 2), ({1: 1}, 2)]) + def test_getitem_dict_and_set_deprecated_multiindex(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2], index=MultiIndex.from_tuples([(1, 2), (3, 4)])) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser.loc[key] + + @pytest.mark.parametrize("key", [{1}, {1: 1}]) + def test_setitem_dict_and_set_disallowed(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2]) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser.loc[key] = 1 + + @pytest.mark.parametrize("key", [{1}, {1: 1}, ({1}, 2), ({1: 1}, 2)]) + def test_setitem_dict_and_set_disallowed_multiindex(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2], index=MultiIndex.from_tuples([(1, 2), (3, 4)])) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser.loc[key] = 1 + + +class TestSetitemValidation: + # This is adapted from pandas/tests/arrays/masked/test_indexing.py + # but checks for warnings instead of errors. + def _check_setitem_invalid(self, ser, invalid, indexer, warn): + msg = "Setting an item of incompatible dtype is deprecated" + msg = re.escape(msg) + + orig_ser = ser.copy() + + with tm.assert_produces_warning(warn, match=msg): + ser[indexer] = invalid + ser = orig_ser.copy() + + with tm.assert_produces_warning(warn, match=msg): + ser.iloc[indexer] = invalid + ser = orig_ser.copy() + + with tm.assert_produces_warning(warn, match=msg): + ser.loc[indexer] = invalid + ser = orig_ser.copy() + + with tm.assert_produces_warning(warn, match=msg): + ser[:] = invalid + + _invalid_scalars = [ + 1 + 2j, + "True", + "1", + "1.0", + NaT, + np.datetime64("NaT"), + np.timedelta64("NaT"), + ] + _indexers = [0, [0], slice(0, 1), [True, False, False], slice(None, None, None)] + + @pytest.mark.parametrize( + "invalid", _invalid_scalars + [1, 1.0, np.int64(1), np.float64(1)] + ) + @pytest.mark.parametrize("indexer", _indexers) + def test_setitem_validation_scalar_bool(self, invalid, indexer): + ser = Series([True, False, False], dtype="bool") + self._check_setitem_invalid(ser, invalid, indexer, FutureWarning) + + @pytest.mark.parametrize("invalid", _invalid_scalars + [True, 1.5, np.float64(1.5)]) + @pytest.mark.parametrize("indexer", _indexers) + def test_setitem_validation_scalar_int(self, invalid, any_int_numpy_dtype, indexer): + ser = Series([1, 2, 3], dtype=any_int_numpy_dtype) + if isna(invalid) and invalid is not NaT and not np.isnat(invalid): + warn = None + else: + warn = FutureWarning + self._check_setitem_invalid(ser, invalid, indexer, warn) + + @pytest.mark.parametrize("invalid", _invalid_scalars + [True]) + @pytest.mark.parametrize("indexer", _indexers) + def test_setitem_validation_scalar_float(self, invalid, float_numpy_dtype, indexer): + ser = Series([1, 2, None], dtype=float_numpy_dtype) + self._check_setitem_invalid(ser, invalid, indexer, FutureWarning) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_setitem.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_setitem.py new file mode 100644 index 0000000000000000000000000000000000000000..23137f0975fb18425d137e84e7d04bf39950c8f1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_setitem.py @@ -0,0 +1,1847 @@ +from datetime import ( + date, + datetime, +) +from decimal import Decimal + +import numpy as np +import pytest + +from pandas.compat.numpy import np_version_gte1p24 +from pandas.errors import IndexingError + +from pandas.core.dtypes.common import is_list_like + +from pandas import ( + NA, + Categorical, + DataFrame, + DatetimeIndex, + Index, + Interval, + IntervalIndex, + MultiIndex, + NaT, + Period, + Series, + Timedelta, + Timestamp, + array, + concat, + date_range, + interval_range, + period_range, + timedelta_range, +) +import pandas._testing as tm + +from pandas.tseries.offsets import BDay + + +class TestSetitemDT64Values: + def test_setitem_none_nan(self): + series = Series(date_range("1/1/2000", periods=10)) + series[3] = None + assert series[3] is NaT + + series[3:5] = None + assert series[4] is NaT + + series[5] = np.nan + assert series[5] is NaT + + series[5:7] = np.nan + assert series[6] is NaT + + def test_setitem_multiindex_empty_slice(self): + # https://github.com/pandas-dev/pandas/issues/35878 + idx = MultiIndex.from_tuples([("a", 1), ("b", 2)]) + result = Series([1, 2], index=idx) + expected = result.copy() + result.loc[[]] = 0 + tm.assert_series_equal(result, expected) + + def test_setitem_with_string_index(self): + # GH#23451 + # Set object dtype to avoid upcast when setting date.today() + ser = Series([1, 2, 3], index=["Date", "b", "other"], dtype=object) + ser["Date"] = date.today() + assert ser.Date == date.today() + assert ser["Date"] == date.today() + + def test_setitem_tuple_with_datetimetz_values(self): + # GH#20441 + arr = date_range("2017", periods=4, tz="US/Eastern") + index = [(0, 1), (0, 2), (0, 3), (0, 4)] + result = Series(arr, index=index) + expected = result.copy() + result[(0, 1)] = np.nan + expected.iloc[0] = np.nan + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("tz", ["US/Eastern", "UTC", "Asia/Tokyo"]) + def test_setitem_with_tz(self, tz, indexer_sli): + orig = Series(date_range("2016-01-01", freq="h", periods=3, tz=tz)) + assert orig.dtype == f"datetime64[ns, {tz}]" + + exp = Series( + [ + Timestamp("2016-01-01 00:00", tz=tz), + Timestamp("2011-01-01 00:00", tz=tz), + Timestamp("2016-01-01 02:00", tz=tz), + ], + dtype=orig.dtype, + ) + + # scalar + ser = orig.copy() + indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz) + tm.assert_series_equal(ser, exp) + + # vector + vals = Series( + [Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)], + index=[1, 2], + dtype=orig.dtype, + ) + assert vals.dtype == f"datetime64[ns, {tz}]" + + exp = Series( + [ + Timestamp("2016-01-01 00:00", tz=tz), + Timestamp("2011-01-01 00:00", tz=tz), + Timestamp("2012-01-01 00:00", tz=tz), + ], + dtype=orig.dtype, + ) + + ser = orig.copy() + indexer_sli(ser)[[1, 2]] = vals + tm.assert_series_equal(ser, exp) + + def test_setitem_with_tz_dst(self, indexer_sli): + # GH#14146 trouble setting values near DST boundary + tz = "US/Eastern" + orig = Series(date_range("2016-11-06", freq="h", periods=3, tz=tz)) + assert orig.dtype == f"datetime64[ns, {tz}]" + + exp = Series( + [ + Timestamp("2016-11-06 00:00-04:00", tz=tz), + Timestamp("2011-01-01 00:00-05:00", tz=tz), + Timestamp("2016-11-06 01:00-05:00", tz=tz), + ], + dtype=orig.dtype, + ) + + # scalar + ser = orig.copy() + indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz) + tm.assert_series_equal(ser, exp) + + # vector + vals = Series( + [Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)], + index=[1, 2], + dtype=orig.dtype, + ) + assert vals.dtype == f"datetime64[ns, {tz}]" + + exp = Series( + [ + Timestamp("2016-11-06 00:00", tz=tz), + Timestamp("2011-01-01 00:00", tz=tz), + Timestamp("2012-01-01 00:00", tz=tz), + ], + dtype=orig.dtype, + ) + + ser = orig.copy() + indexer_sli(ser)[[1, 2]] = vals + tm.assert_series_equal(ser, exp) + + def test_object_series_setitem_dt64array_exact_match(self): + # make sure the dt64 isn't cast by numpy to integers + # https://github.com/numpy/numpy/issues/12550 + + ser = Series({"X": np.nan}, dtype=object) + + indexer = [True] + + # "exact_match" -> size of array being set matches size of ser + value = np.array([4], dtype="M8[ns]") + + ser.iloc[indexer] = value + + expected = Series([value[0]], index=["X"], dtype=object) + assert all(isinstance(x, np.datetime64) for x in expected.values) + + tm.assert_series_equal(ser, expected) + + +class TestSetitemScalarIndexer: + def test_setitem_negative_out_of_bounds(self): + ser = Series(["a"] * 10, index=["a"] * 10) + + # string index falls back to positional + msg = "index -11|-1 is out of bounds for axis 0 with size 10" + warn_msg = "Series.__setitem__ treating keys as positions is deprecated" + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + ser[-11] = "foo" + + @pytest.mark.parametrize("indexer", [tm.loc, tm.at]) + @pytest.mark.parametrize("ser_index", [0, 1]) + def test_setitem_series_object_dtype(self, indexer, ser_index): + # GH#38303 + ser = Series([0, 0], dtype="object") + idxr = indexer(ser) + idxr[0] = Series([42], index=[ser_index]) + expected = Series([Series([42], index=[ser_index]), 0], dtype="object") + tm.assert_series_equal(ser, expected) + + @pytest.mark.parametrize("index, exp_value", [(0, 42), (1, np.nan)]) + def test_setitem_series(self, index, exp_value): + # GH#38303 + ser = Series([0, 0]) + ser.loc[0] = Series([42], index=[index]) + expected = Series([exp_value, 0]) + tm.assert_series_equal(ser, expected) + + +class TestSetitemSlices: + def test_setitem_slice_float_raises(self, datetime_series): + msg = ( + "cannot do slice indexing on DatetimeIndex with these indexers " + r"\[{key}\] of type float" + ) + with pytest.raises(TypeError, match=msg.format(key=r"4\.0")): + datetime_series[4.0:10.0] = 0 + + with pytest.raises(TypeError, match=msg.format(key=r"4\.5")): + datetime_series[4.5:10.0] = 0 + + def test_setitem_slice(self): + ser = Series(range(10), index=list(range(10))) + ser[-12:] = 0 + assert (ser == 0).all() + + ser[:-12] = 5 + assert (ser == 0).all() + + def test_setitem_slice_integers(self): + ser = Series( + np.random.default_rng(2).standard_normal(8), + index=[2, 4, 6, 8, 10, 12, 14, 16], + ) + + ser[:4] = 0 + assert (ser[:4] == 0).all() + assert not (ser[4:] == 0).any() + + def test_setitem_slicestep(self): + # caught this bug when writing tests + series = Series( + np.arange(20, dtype=np.float64), index=np.arange(20, dtype=np.int64) + ) + + series[::2] = 0 + assert (series[::2] == 0).all() + + def test_setitem_multiindex_slice(self, indexer_sli): + # GH 8856 + mi = MultiIndex.from_product(([0, 1], list("abcde"))) + result = Series(np.arange(10, dtype=np.int64), mi) + indexer_sli(result)[::4] = 100 + expected = Series([100, 1, 2, 3, 100, 5, 6, 7, 100, 9], mi) + tm.assert_series_equal(result, expected) + + +class TestSetitemBooleanMask: + def test_setitem_mask_cast(self): + # GH#2746 + # need to upcast + ser = Series([1, 2], index=[1, 2], dtype="int64") + ser[[True, False]] = Series([0], index=[1], dtype="int64") + expected = Series([0, 2], index=[1, 2], dtype="int64") + + tm.assert_series_equal(ser, expected) + + def test_setitem_mask_align_and_promote(self): + # GH#8387: test that changing types does not break alignment + ts = Series( + np.random.default_rng(2).standard_normal(100), index=np.arange(100, 0, -1) + ).round(5) + mask = ts > 0 + left = ts.copy() + right = ts[mask].copy().map(str) + with tm.assert_produces_warning( + FutureWarning, match="item of incompatible dtype" + ): + left[mask] = right + expected = ts.map(lambda t: str(t) if t > 0 else t) + tm.assert_series_equal(left, expected) + + def test_setitem_mask_promote_strs(self): + ser = Series([0, 1, 2, 0]) + mask = ser > 0 + ser2 = ser[mask].map(str) + with tm.assert_produces_warning( + FutureWarning, match="item of incompatible dtype" + ): + ser[mask] = ser2 + + expected = Series([0, "1", "2", 0]) + tm.assert_series_equal(ser, expected) + + def test_setitem_mask_promote(self): + ser = Series([0, "foo", "bar", 0]) + mask = Series([False, True, True, False]) + ser2 = ser[mask] + ser[mask] = ser2 + + expected = Series([0, "foo", "bar", 0]) + tm.assert_series_equal(ser, expected) + + def test_setitem_boolean(self, string_series): + mask = string_series > string_series.median() + + # similar indexed series + result = string_series.copy() + result[mask] = string_series * 2 + expected = string_series * 2 + tm.assert_series_equal(result[mask], expected[mask]) + + # needs alignment + result = string_series.copy() + result[mask] = (string_series * 2)[0:5] + expected = (string_series * 2)[0:5].reindex_like(string_series) + expected[-mask] = string_series[mask] + tm.assert_series_equal(result[mask], expected[mask]) + + def test_setitem_boolean_corner(self, datetime_series): + ts = datetime_series + mask_shifted = ts.shift(1, freq=BDay()) > ts.median() + + msg = ( + r"Unalignable boolean Series provided as indexer \(index of " + r"the boolean Series and of the indexed object do not match" + ) + with pytest.raises(IndexingError, match=msg): + ts[mask_shifted] = 1 + + with pytest.raises(IndexingError, match=msg): + ts.loc[mask_shifted] = 1 + + def test_setitem_boolean_different_order(self, string_series): + ordered = string_series.sort_values() + + copy = string_series.copy() + copy[ordered > 0] = 0 + + expected = string_series.copy() + expected[expected > 0] = 0 + + tm.assert_series_equal(copy, expected) + + @pytest.mark.parametrize("func", [list, np.array, Series]) + def test_setitem_boolean_python_list(self, func): + # GH19406 + ser = Series([None, "b", None]) + mask = func([True, False, True]) + ser[mask] = ["a", "c"] + expected = Series(["a", "b", "c"]) + tm.assert_series_equal(ser, expected) + + def test_setitem_boolean_nullable_int_types(self, any_numeric_ea_dtype): + # GH: 26468 + ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype) + ser[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype) + expected = Series([5, 6, 2, 3], dtype=any_numeric_ea_dtype) + tm.assert_series_equal(ser, expected) + + ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype) + ser.loc[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype) + tm.assert_series_equal(ser, expected) + + ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype) + loc_ser = Series(range(4), dtype=any_numeric_ea_dtype) + ser.loc[ser > 6] = loc_ser.loc[loc_ser > 1] + tm.assert_series_equal(ser, expected) + + def test_setitem_with_bool_mask_and_values_matching_n_trues_in_length(self): + # GH#30567 + ser = Series([None] * 10) + mask = [False] * 3 + [True] * 5 + [False] * 2 + ser[mask] = range(5) + result = ser + expected = Series([None] * 3 + list(range(5)) + [None] * 2, dtype=object) + tm.assert_series_equal(result, expected) + + def test_setitem_nan_with_bool(self): + # GH 13034 + result = Series([True, False, True]) + with tm.assert_produces_warning( + FutureWarning, match="item of incompatible dtype" + ): + result[0] = np.nan + expected = Series([np.nan, False, True], dtype=object) + tm.assert_series_equal(result, expected) + + def test_setitem_mask_smallint_upcast(self): + orig = Series([1, 2, 3], dtype="int8") + alt = np.array([999, 1000, 1001], dtype=np.int64) + + mask = np.array([True, False, True]) + + ser = orig.copy() + with tm.assert_produces_warning( + FutureWarning, match="item of incompatible dtype" + ): + ser[mask] = Series(alt) + expected = Series([999, 2, 1001]) + tm.assert_series_equal(ser, expected) + + ser2 = orig.copy() + with tm.assert_produces_warning( + FutureWarning, match="item of incompatible dtype" + ): + ser2.mask(mask, alt, inplace=True) + tm.assert_series_equal(ser2, expected) + + ser3 = orig.copy() + res = ser3.where(~mask, Series(alt)) + tm.assert_series_equal(res, expected) + + def test_setitem_mask_smallint_no_upcast(self): + # like test_setitem_mask_smallint_upcast, but while we can't hold 'alt', + # we *can* hold alt[mask] without casting + orig = Series([1, 2, 3], dtype="uint8") + alt = Series([245, 1000, 246], dtype=np.int64) + + mask = np.array([True, False, True]) + + ser = orig.copy() + ser[mask] = alt + expected = Series([245, 2, 246], dtype="uint8") + tm.assert_series_equal(ser, expected) + + ser2 = orig.copy() + ser2.mask(mask, alt, inplace=True) + tm.assert_series_equal(ser2, expected) + + # TODO: ser.where(~mask, alt) unnecessarily upcasts to int64 + ser3 = orig.copy() + res = ser3.where(~mask, alt) + tm.assert_series_equal(res, expected, check_dtype=False) + + +class TestSetitemViewCopySemantics: + def test_setitem_invalidates_datetime_index_freq(self, using_copy_on_write): + # GH#24096 altering a datetime64tz Series inplace invalidates the + # `freq` attribute on the underlying DatetimeIndex + + dti = date_range("20130101", periods=3, tz="US/Eastern") + ts = dti[1] + ser = Series(dti) + assert ser._values is not dti + if using_copy_on_write: + assert ser._values._ndarray.base is dti._data._ndarray.base + else: + assert ser._values._ndarray.base is not dti._data._ndarray.base + assert dti.freq == "D" + ser.iloc[1] = NaT + assert ser._values.freq is None + + # check that the DatetimeIndex was not altered in place + assert ser._values is not dti + assert ser._values._ndarray.base is not dti._data._ndarray.base + assert dti[1] == ts + assert dti.freq == "D" + + def test_dt64tz_setitem_does_not_mutate_dti(self, using_copy_on_write): + # GH#21907, GH#24096 + dti = date_range("2016-01-01", periods=10, tz="US/Pacific") + ts = dti[0] + ser = Series(dti) + assert ser._values is not dti + if using_copy_on_write: + assert ser._values._ndarray.base is dti._data._ndarray.base + assert ser._mgr.arrays[0]._ndarray.base is dti._data._ndarray.base + else: + assert ser._values._ndarray.base is not dti._data._ndarray.base + assert ser._mgr.arrays[0]._ndarray.base is not dti._data._ndarray.base + + assert ser._mgr.arrays[0] is not dti + + ser[::3] = NaT + assert ser[0] is NaT + assert dti[0] == ts + + +class TestSetitemCallable: + def test_setitem_callable_key(self): + # GH#12533 + ser = Series([1, 2, 3, 4], index=list("ABCD")) + ser[lambda x: "A"] = -1 + + expected = Series([-1, 2, 3, 4], index=list("ABCD")) + tm.assert_series_equal(ser, expected) + + def test_setitem_callable_other(self): + # GH#13299 + inc = lambda x: x + 1 + + # set object dtype to avoid upcast when setting inc + ser = Series([1, 2, -1, 4], dtype=object) + ser[ser < 0] = inc + + expected = Series([1, 2, inc, 4]) + tm.assert_series_equal(ser, expected) + + +class TestSetitemWithExpansion: + def test_setitem_empty_series(self): + # GH#10193 + key = Timestamp("2012-01-01") + series = Series(dtype=object) + series[key] = 47 + expected = Series(47, [key]) + tm.assert_series_equal(series, expected) + + def test_setitem_empty_series_datetimeindex_preserves_freq(self): + # GH#33573 our index should retain its freq + dti = DatetimeIndex([], freq="D", dtype="M8[ns]") + series = Series([], index=dti, dtype=object) + key = Timestamp("2012-01-01") + series[key] = 47 + expected = Series(47, DatetimeIndex([key], freq="D").as_unit("ns")) + tm.assert_series_equal(series, expected) + assert series.index.freq == expected.index.freq + + def test_setitem_empty_series_timestamp_preserves_dtype(self): + # GH 21881 + timestamp = Timestamp(1412526600000000000) + series = Series([timestamp], index=["timestamp"], dtype=object) + expected = series["timestamp"] + + series = Series([], dtype=object) + series["anything"] = 300.0 + series["timestamp"] = timestamp + result = series["timestamp"] + assert result == expected + + @pytest.mark.parametrize( + "td", + [ + Timedelta("9 days"), + Timedelta("9 days").to_timedelta64(), + Timedelta("9 days").to_pytimedelta(), + ], + ) + def test_append_timedelta_does_not_cast(self, td, using_infer_string, request): + # GH#22717 inserting a Timedelta should _not_ cast to int64 + if using_infer_string and not isinstance(td, Timedelta): + # TODO: GH#56010 + request.applymarker(pytest.mark.xfail(reason="inferred as string")) + + expected = Series(["x", td], index=[0, "td"], dtype=object) + + ser = Series(["x"]) + ser["td"] = td + tm.assert_series_equal(ser, expected) + assert isinstance(ser["td"], Timedelta) + + ser = Series(["x"]) + ser.loc["td"] = Timedelta("9 days") + tm.assert_series_equal(ser, expected) + assert isinstance(ser["td"], Timedelta) + + def test_setitem_with_expansion_type_promotion(self): + # GH#12599 + ser = Series(dtype=object) + ser["a"] = Timestamp("2016-01-01") + ser["b"] = 3.0 + ser["c"] = "foo" + expected = Series([Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) + tm.assert_series_equal(ser, expected) + + def test_setitem_not_contained(self, string_series): + # set item that's not contained + ser = string_series.copy() + assert "foobar" not in ser.index + ser["foobar"] = 1 + + app = Series([1], index=["foobar"], name="series") + expected = concat([string_series, app]) + tm.assert_series_equal(ser, expected) + + def test_setitem_keep_precision(self, any_numeric_ea_dtype): + # GH#32346 + ser = Series([1, 2], dtype=any_numeric_ea_dtype) + ser[2] = 10 + expected = Series([1, 2, 10], dtype=any_numeric_ea_dtype) + tm.assert_series_equal(ser, expected) + + @pytest.mark.parametrize( + "na, target_na, dtype, target_dtype, indexer, warn", + [ + (NA, NA, "Int64", "Int64", 1, None), + (NA, NA, "Int64", "Int64", 2, None), + (NA, np.nan, "int64", "float64", 1, None), + (NA, np.nan, "int64", "float64", 2, None), + (NaT, NaT, "int64", "object", 1, FutureWarning), + (NaT, NaT, "int64", "object", 2, None), + (np.nan, NA, "Int64", "Int64", 1, None), + (np.nan, NA, "Int64", "Int64", 2, None), + (np.nan, NA, "Float64", "Float64", 1, None), + (np.nan, NA, "Float64", "Float64", 2, None), + (np.nan, np.nan, "int64", "float64", 1, None), + (np.nan, np.nan, "int64", "float64", 2, None), + ], + ) + def test_setitem_enlarge_with_na( + self, na, target_na, dtype, target_dtype, indexer, warn + ): + # GH#32346 + ser = Series([1, 2], dtype=dtype) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + ser[indexer] = na + expected_values = [1, target_na] if indexer == 1 else [1, 2, target_na] + expected = Series(expected_values, dtype=target_dtype) + tm.assert_series_equal(ser, expected) + + def test_setitem_enlargement_object_none(self, nulls_fixture, using_infer_string): + # GH#48665 + ser = Series(["a", "b"]) + ser[3] = nulls_fixture + dtype = ( + "string[pyarrow_numpy]" + if using_infer_string and not isinstance(nulls_fixture, Decimal) + else object + ) + expected = Series(["a", "b", nulls_fixture], index=[0, 1, 3], dtype=dtype) + tm.assert_series_equal(ser, expected) + if using_infer_string: + ser[3] is np.nan + else: + assert ser[3] is nulls_fixture + + +def test_setitem_scalar_into_readonly_backing_data(): + # GH#14359: test that you cannot mutate a read only buffer + + array = np.zeros(5) + array.flags.writeable = False # make the array immutable + series = Series(array, copy=False) + + for n in series.index: + msg = "assignment destination is read-only" + with pytest.raises(ValueError, match=msg): + series[n] = 1 + + assert array[n] == 0 + + +def test_setitem_slice_into_readonly_backing_data(): + # GH#14359: test that you cannot mutate a read only buffer + + array = np.zeros(5) + array.flags.writeable = False # make the array immutable + series = Series(array, copy=False) + + msg = "assignment destination is read-only" + with pytest.raises(ValueError, match=msg): + series[1:3] = 1 + + assert not array.any() + + +def test_setitem_categorical_assigning_ops(): + orig = Series(Categorical(["b", "b"], categories=["a", "b"])) + ser = orig.copy() + ser[:] = "a" + exp = Series(Categorical(["a", "a"], categories=["a", "b"])) + tm.assert_series_equal(ser, exp) + + ser = orig.copy() + ser[1] = "a" + exp = Series(Categorical(["b", "a"], categories=["a", "b"])) + tm.assert_series_equal(ser, exp) + + ser = orig.copy() + ser[ser.index > 0] = "a" + exp = Series(Categorical(["b", "a"], categories=["a", "b"])) + tm.assert_series_equal(ser, exp) + + ser = orig.copy() + ser[[False, True]] = "a" + exp = Series(Categorical(["b", "a"], categories=["a", "b"])) + tm.assert_series_equal(ser, exp) + + ser = orig.copy() + ser.index = ["x", "y"] + ser["y"] = "a" + exp = Series(Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"]) + tm.assert_series_equal(ser, exp) + + +def test_setitem_nan_into_categorical(): + # ensure that one can set something to np.nan + ser = Series(Categorical([1, 2, 3])) + exp = Series(Categorical([1, np.nan, 3], categories=[1, 2, 3])) + ser[1] = np.nan + tm.assert_series_equal(ser, exp) + + +class TestSetitemCasting: + @pytest.mark.parametrize("unique", [True, False]) + @pytest.mark.parametrize("val", [3, 3.0, "3"], ids=type) + def test_setitem_non_bool_into_bool(self, val, indexer_sli, unique): + # dont cast these 3-like values to bool + ser = Series([True, False]) + if not unique: + ser.index = [1, 1] + + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + indexer_sli(ser)[1] = val + assert type(ser.iloc[1]) == type(val) + + expected = Series([True, val], dtype=object, index=ser.index) + if not unique and indexer_sli is not tm.iloc: + expected = Series([val, val], dtype=object, index=[1, 1]) + tm.assert_series_equal(ser, expected) + + def test_setitem_boolean_array_into_npbool(self): + # GH#45462 + ser = Series([True, False, True]) + values = ser._values + arr = array([True, False, None]) + + ser[:2] = arr[:2] # no NAs -> can set inplace + assert ser._values is values + + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[1:] = arr[1:] # has an NA -> cast to boolean dtype + expected = Series(arr) + tm.assert_series_equal(ser, expected) + + +class SetitemCastingEquivalents: + """ + Check each of several methods that _should_ be equivalent to `obj[key] = val` + + We assume that + - obj.index is the default Index(range(len(obj))) + - the setitem does not expand the obj + """ + + @pytest.fixture + def is_inplace(self, obj, expected): + """ + Whether we expect the setting to be in-place or not. + """ + return expected.dtype == obj.dtype + + def check_indexer(self, obj, key, expected, val, indexer, is_inplace): + orig = obj + obj = obj.copy() + arr = obj._values + + indexer(obj)[key] = val + tm.assert_series_equal(obj, expected) + + self._check_inplace(is_inplace, orig, arr, obj) + + def _check_inplace(self, is_inplace, orig, arr, obj): + if is_inplace is None: + # We are not (yet) checking whether setting is inplace or not + pass + elif is_inplace: + if arr.dtype.kind in ["m", "M"]: + # We may not have the same DTA/TDA, but will have the same + # underlying data + assert arr._ndarray is obj._values._ndarray + else: + assert obj._values is arr + else: + # otherwise original array should be unchanged + tm.assert_equal(arr, orig._values) + + def test_int_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace): + if not isinstance(key, int): + pytest.skip("Not relevant for int key") + + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace) + + if indexer_sli is tm.loc: + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, key, expected, val, tm.at, is_inplace) + elif indexer_sli is tm.iloc: + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, key, expected, val, tm.iat, is_inplace) + + rng = range(key, key + 1) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, rng, expected, val, indexer_sli, is_inplace) + + if indexer_sli is not tm.loc: + # Note: no .loc because that handles slice edges differently + slc = slice(key, key + 1) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, slc, expected, val, indexer_sli, is_inplace) + + ilkey = [key] + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace) + + indkey = np.array(ilkey) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace) + + genkey = (x for x in [key]) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace) + + def test_slice_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace): + if not isinstance(key, slice): + pytest.skip("Not relevant for slice key") + + if indexer_sli is not tm.loc: + # Note: no .loc because that handles slice edges differently + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace) + + ilkey = list(range(len(obj)))[key] + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace) + + indkey = np.array(ilkey) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace) + + genkey = (x for x in indkey) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace) + + def test_mask_key(self, obj, key, expected, warn, val, indexer_sli): + # setitem with boolean mask + mask = np.zeros(obj.shape, dtype=bool) + mask[key] = True + + obj = obj.copy() + + if is_list_like(val) and len(val) < mask.sum(): + msg = "boolean index did not match indexed array along dimension" + with pytest.raises(IndexError, match=msg): + indexer_sli(obj)[mask] = val + return + + with tm.assert_produces_warning(warn, match="incompatible dtype"): + indexer_sli(obj)[mask] = val + tm.assert_series_equal(obj, expected) + + def test_series_where(self, obj, key, expected, warn, val, is_inplace): + mask = np.zeros(obj.shape, dtype=bool) + mask[key] = True + + if is_list_like(val) and len(val) < len(obj): + # Series.where is not valid here + msg = "operands could not be broadcast together with shapes" + with pytest.raises(ValueError, match=msg): + obj.where(~mask, val) + return + + orig = obj + obj = obj.copy() + arr = obj._values + + res = obj.where(~mask, val) + + if val is NA and res.dtype == object: + expected = expected.fillna(NA) + elif val is None and res.dtype == object: + assert expected.dtype == object + expected = expected.copy() + expected[expected.isna()] = None + tm.assert_series_equal(res, expected) + + self._check_inplace(is_inplace, orig, arr, obj) + + def test_index_where(self, obj, key, expected, warn, val, using_infer_string): + mask = np.zeros(obj.shape, dtype=bool) + mask[key] = True + + if using_infer_string and obj.dtype == object: + with pytest.raises(TypeError, match="Scalar must"): + Index(obj).where(~mask, val) + else: + res = Index(obj).where(~mask, val) + expected_idx = Index(expected, dtype=expected.dtype) + tm.assert_index_equal(res, expected_idx) + + def test_index_putmask(self, obj, key, expected, warn, val, using_infer_string): + mask = np.zeros(obj.shape, dtype=bool) + mask[key] = True + + if using_infer_string and obj.dtype == object: + with pytest.raises(TypeError, match="Scalar must"): + Index(obj).putmask(mask, val) + else: + res = Index(obj).putmask(mask, val) + tm.assert_index_equal(res, Index(expected, dtype=expected.dtype)) + + +@pytest.mark.parametrize( + "obj,expected,key,warn", + [ + pytest.param( + # GH#45568 setting a valid NA value into IntervalDtype[int] should + # cast to IntervalDtype[float] + Series(interval_range(1, 5)), + Series( + [Interval(1, 2), np.nan, Interval(3, 4), Interval(4, 5)], + dtype="interval[float64]", + ), + 1, + FutureWarning, + id="interval_int_na_value", + ), + pytest.param( + # these induce dtype changes + Series([2, 3, 4, 5, 6, 7, 8, 9, 10]), + Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]), + slice(None, None, 2), + None, + id="int_series_slice_key_step", + ), + pytest.param( + Series([True, True, False, False]), + Series([np.nan, True, np.nan, False], dtype=object), + slice(None, None, 2), + FutureWarning, + id="bool_series_slice_key_step", + ), + pytest.param( + # these induce dtype changes + Series(np.arange(10)), + Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]), + slice(None, 5), + None, + id="int_series_slice_key", + ), + pytest.param( + # changes dtype GH#4463 + Series([1, 2, 3]), + Series([np.nan, 2, 3]), + 0, + None, + id="int_series_int_key", + ), + pytest.param( + # changes dtype GH#4463 + Series([False]), + Series([np.nan], dtype=object), + # TODO: maybe go to float64 since we are changing the _whole_ Series? + 0, + FutureWarning, + id="bool_series_int_key_change_all", + ), + pytest.param( + # changes dtype GH#4463 + Series([False, True]), + Series([np.nan, True], dtype=object), + 0, + FutureWarning, + id="bool_series_int_key", + ), + ], +) +class TestSetitemCastingEquivalents(SetitemCastingEquivalents): + @pytest.fixture(params=[np.nan, np.float64("NaN"), None, NA]) + def val(self, request): + """ + NA values that should generally be valid_na for *all* dtypes. + + Include both python float NaN and np.float64; only np.float64 has a + `dtype` attribute. + """ + return request.param + + +class TestSetitemTimedelta64IntoNumeric(SetitemCastingEquivalents): + # timedelta64 should not be treated as integers when setting into + # numeric Series + + @pytest.fixture + def val(self): + td = np.timedelta64(4, "ns") + return td + # TODO: could also try np.full((1,), td) + + @pytest.fixture(params=[complex, int, float]) + def dtype(self, request): + return request.param + + @pytest.fixture + def obj(self, dtype): + arr = np.arange(5).astype(dtype) + ser = Series(arr) + return ser + + @pytest.fixture + def expected(self, dtype): + arr = np.arange(5).astype(dtype) + ser = Series(arr) + ser = ser.astype(object) + ser.iloc[0] = np.timedelta64(4, "ns") + return ser + + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def warn(self): + return FutureWarning + + +class TestSetitemDT64IntoInt(SetitemCastingEquivalents): + # GH#39619 dont cast dt64 to int when doing this setitem + + @pytest.fixture(params=["M8[ns]", "m8[ns]"]) + def dtype(self, request): + return request.param + + @pytest.fixture + def scalar(self, dtype): + val = np.datetime64("2021-01-18 13:25:00", "ns") + if dtype == "m8[ns]": + val = val - val + return val + + @pytest.fixture + def expected(self, scalar): + expected = Series([scalar, scalar, 3], dtype=object) + assert isinstance(expected[0], type(scalar)) + return expected + + @pytest.fixture + def obj(self): + return Series([1, 2, 3]) + + @pytest.fixture + def key(self): + return slice(None, -1) + + @pytest.fixture(params=[None, list, np.array]) + def val(self, scalar, request): + box = request.param + if box is None: + return scalar + return box([scalar, scalar]) + + @pytest.fixture + def warn(self): + return FutureWarning + + +class TestSetitemNAPeriodDtype(SetitemCastingEquivalents): + # Setting compatible NA values into Series with PeriodDtype + + @pytest.fixture + def expected(self, key): + exp = Series(period_range("2000-01-01", periods=10, freq="D")) + exp._values.view("i8")[key] = NaT._value + assert exp[key] is NaT or all(x is NaT for x in exp[key]) + return exp + + @pytest.fixture + def obj(self): + return Series(period_range("2000-01-01", periods=10, freq="D")) + + @pytest.fixture(params=[3, slice(3, 5)]) + def key(self, request): + return request.param + + @pytest.fixture(params=[None, np.nan]) + def val(self, request): + return request.param + + @pytest.fixture + def warn(self): + return None + + +class TestSetitemNADatetimeLikeDtype(SetitemCastingEquivalents): + # some nat-like values should be cast to datetime64/timedelta64 when + # inserting into a datetime64/timedelta64 series. Others should coerce + # to object and retain their dtypes. + # GH#18586 for td64 and boolean mask case + + @pytest.fixture( + params=["m8[ns]", "M8[ns]", "datetime64[ns, UTC]", "datetime64[ns, US/Central]"] + ) + def dtype(self, request): + return request.param + + @pytest.fixture + def obj(self, dtype): + i8vals = date_range("2016-01-01", periods=3).asi8 + idx = Index(i8vals, dtype=dtype) + assert idx.dtype == dtype + return Series(idx) + + @pytest.fixture( + params=[ + None, + np.nan, + NaT, + np.timedelta64("NaT", "ns"), + np.datetime64("NaT", "ns"), + ] + ) + def val(self, request): + return request.param + + @pytest.fixture + def is_inplace(self, val, obj): + # td64 -> cast to object iff val is datetime64("NaT") + # dt64 -> cast to object iff val is timedelta64("NaT") + # dt64tz -> cast to object with anything _but_ NaT + return val is NaT or val is None or val is np.nan or obj.dtype == val.dtype + + @pytest.fixture + def expected(self, obj, val, is_inplace): + dtype = obj.dtype if is_inplace else object + expected = Series([val] + list(obj[1:]), dtype=dtype) + return expected + + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def warn(self, is_inplace): + return None if is_inplace else FutureWarning + + +class TestSetitemMismatchedTZCastsToObject(SetitemCastingEquivalents): + # GH#24024 + @pytest.fixture + def obj(self): + return Series(date_range("2000", periods=2, tz="US/Central")) + + @pytest.fixture + def val(self): + return Timestamp("2000", tz="US/Eastern") + + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def expected(self, obj, val): + # pre-2.0 this would cast to object, in 2.0 we cast the val to + # the target tz + expected = Series( + [ + val.tz_convert("US/Central"), + Timestamp("2000-01-02 00:00:00-06:00", tz="US/Central"), + ], + dtype=obj.dtype, + ) + return expected + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "obj,expected,warn", + [ + # For numeric series, we should coerce to NaN. + (Series([1, 2, 3]), Series([np.nan, 2, 3]), None), + (Series([1.0, 2.0, 3.0]), Series([np.nan, 2.0, 3.0]), None), + # For datetime series, we should coerce to NaT. + ( + Series([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]), + Series([NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)]), + None, + ), + # For objects, we should preserve the None value. + (Series(["foo", "bar", "baz"]), Series([None, "bar", "baz"]), None), + ], +) +class TestSeriesNoneCoercion(SetitemCastingEquivalents): + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def val(self): + return None + + +class TestSetitemFloatIntervalWithIntIntervalValues(SetitemCastingEquivalents): + # GH#44201 Cast to shared IntervalDtype rather than object + + def test_setitem_example(self): + # Just a case here to make obvious what this test class is aimed at + idx = IntervalIndex.from_breaks(range(4)) + obj = Series(idx) + val = Interval(0.5, 1.5) + + with tm.assert_produces_warning( + FutureWarning, match="Setting an item of incompatible dtype" + ): + obj[0] = val + assert obj.dtype == "Interval[float64, right]" + + @pytest.fixture + def obj(self): + idx = IntervalIndex.from_breaks(range(4)) + return Series(idx) + + @pytest.fixture + def val(self): + return Interval(0.5, 1.5) + + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def expected(self, obj, val): + data = [val] + list(obj[1:]) + idx = IntervalIndex(data, dtype="Interval[float64]") + return Series(idx) + + @pytest.fixture + def warn(self): + return FutureWarning + + +class TestSetitemRangeIntoIntegerSeries(SetitemCastingEquivalents): + # GH#44261 Setting a range with sufficiently-small integers into + # small-itemsize integer dtypes should not need to upcast + + @pytest.fixture + def obj(self, any_int_numpy_dtype): + dtype = np.dtype(any_int_numpy_dtype) + ser = Series(range(5), dtype=dtype) + return ser + + @pytest.fixture + def val(self): + return range(2, 4) + + @pytest.fixture + def key(self): + return slice(0, 2) + + @pytest.fixture + def expected(self, any_int_numpy_dtype): + dtype = np.dtype(any_int_numpy_dtype) + exp = Series([2, 3, 2, 3, 4], dtype=dtype) + return exp + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "val, warn", + [ + (np.array([2.0, 3.0]), None), + (np.array([2.5, 3.5]), FutureWarning), + ( + np.array([2**65, 2**65 + 1], dtype=np.float64), + FutureWarning, + ), # all ints, but can't cast + ], +) +class TestSetitemFloatNDarrayIntoIntegerSeries(SetitemCastingEquivalents): + @pytest.fixture + def obj(self): + return Series(range(5), dtype=np.int64) + + @pytest.fixture + def key(self): + return slice(0, 2) + + @pytest.fixture + def expected(self, val): + if val[0] == 2: + # NB: this condition is based on currently-hardcoded "val" cases + dtype = np.int64 + else: + dtype = np.float64 + res_values = np.array(range(5), dtype=dtype) + res_values[:2] = val + return Series(res_values) + + +@pytest.mark.parametrize("val", [512, np.int16(512)]) +class TestSetitemIntoIntegerSeriesNeedsUpcast(SetitemCastingEquivalents): + @pytest.fixture + def obj(self): + return Series([1, 2, 3], dtype=np.int8) + + @pytest.fixture + def key(self): + return 1 + + @pytest.fixture + def expected(self): + return Series([1, 512, 3], dtype=np.int16) + + @pytest.fixture + def warn(self): + return FutureWarning + + +@pytest.mark.parametrize("val", [2**33 + 1.0, 2**33 + 1.1, 2**62]) +class TestSmallIntegerSetitemUpcast(SetitemCastingEquivalents): + # https://github.com/pandas-dev/pandas/issues/39584#issuecomment-941212124 + @pytest.fixture + def obj(self): + return Series([1, 2, 3], dtype="i4") + + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def expected(self, val): + if val % 1 != 0: + dtype = "f8" + else: + dtype = "i8" + return Series([val, 2, 3], dtype=dtype) + + @pytest.fixture + def warn(self): + return FutureWarning + + +class CoercionTest(SetitemCastingEquivalents): + # Tests ported from tests.indexing.test_coercion + + @pytest.fixture + def key(self): + return 1 + + @pytest.fixture + def expected(self, obj, key, val, exp_dtype): + vals = list(obj) + vals[key] = val + return Series(vals, dtype=exp_dtype) + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [(np.int32(1), np.int8, None), (np.int16(2**9), np.int16, FutureWarning)], +) +class TestCoercionInt8(CoercionTest): + # previously test_setitem_series_int8 in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series([1, 2, 3, 4], dtype=np.int8) + + +@pytest.mark.parametrize("val", [1, 1.1, 1 + 1j, True]) +@pytest.mark.parametrize("exp_dtype", [object]) +class TestCoercionObject(CoercionTest): + # previously test_setitem_series_object in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series(["a", "b", "c", "d"], dtype=object) + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (1, np.complex128, None), + (1.1, np.complex128, None), + (1 + 1j, np.complex128, None), + (True, object, FutureWarning), + ], +) +class TestCoercionComplex(CoercionTest): + # previously test_setitem_series_complex128 in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (1, object, FutureWarning), + ("3", object, FutureWarning), + (3, object, FutureWarning), + (1.1, object, FutureWarning), + (1 + 1j, object, FutureWarning), + (True, bool, None), + ], +) +class TestCoercionBool(CoercionTest): + # previously test_setitem_series_bool in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series([True, False, True, False], dtype=bool) + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (1, np.int64, None), + (1.1, np.float64, FutureWarning), + (1 + 1j, np.complex128, FutureWarning), + (True, object, FutureWarning), + ], +) +class TestCoercionInt64(CoercionTest): + # previously test_setitem_series_int64 in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series([1, 2, 3, 4]) + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (1, np.float64, None), + (1.1, np.float64, None), + (1 + 1j, np.complex128, FutureWarning), + (True, object, FutureWarning), + ], +) +class TestCoercionFloat64(CoercionTest): + # previously test_setitem_series_float64 in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series([1.1, 2.2, 3.3, 4.4]) + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (1, np.float32, None), + pytest.param( + 1.1, + np.float32, + None, + marks=pytest.mark.xfail( + ( + not np_version_gte1p24 + or (np_version_gte1p24 and np._get_promotion_state() != "weak") + ), + reason="np.float32(1.1) ends up as 1.100000023841858, so " + "np_can_hold_element raises and we cast to float64", + ), + ), + (1 + 1j, np.complex128, FutureWarning), + (True, object, FutureWarning), + (np.uint8(2), np.float32, None), + (np.uint32(2), np.float32, None), + # float32 cannot hold np.iinfo(np.uint32).max exactly + # (closest it can hold is 4294967300.0 which off by 5.0), so + # we cast to float64 + (np.uint32(np.iinfo(np.uint32).max), np.float64, FutureWarning), + (np.uint64(2), np.float32, None), + (np.int64(2), np.float32, None), + ], +) +class TestCoercionFloat32(CoercionTest): + @pytest.fixture + def obj(self): + return Series([1.1, 2.2, 3.3, 4.4], dtype=np.float32) + + def test_slice_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace): + super().test_slice_key(obj, key, expected, warn, val, indexer_sli, is_inplace) + + if isinstance(val, float): + # the xfail would xpass bc test_slice_key short-circuits + raise AssertionError("xfail not relevant for this test.") + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (Timestamp("2012-01-01"), "datetime64[ns]", None), + (1, object, FutureWarning), + ("x", object, FutureWarning), + ], +) +class TestCoercionDatetime64(CoercionTest): + # previously test_setitem_series_datetime64 in tests.indexing.test_coercion + + @pytest.fixture + def obj(self): + return Series(date_range("2011-01-01", freq="D", periods=4)) + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (Timestamp("2012-01-01", tz="US/Eastern"), "datetime64[ns, US/Eastern]", None), + # pre-2.0, a mis-matched tz would end up casting to object + (Timestamp("2012-01-01", tz="US/Pacific"), "datetime64[ns, US/Eastern]", None), + (Timestamp("2012-01-01"), object, FutureWarning), + (1, object, FutureWarning), + ], +) +class TestCoercionDatetime64TZ(CoercionTest): + # previously test_setitem_series_datetime64tz in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + tz = "US/Eastern" + return Series(date_range("2011-01-01", freq="D", periods=4, tz=tz)) + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (Timedelta("12 day"), "timedelta64[ns]", None), + (1, object, FutureWarning), + ("x", object, FutureWarning), + ], +) +class TestCoercionTimedelta64(CoercionTest): + # previously test_setitem_series_timedelta64 in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series(timedelta_range("1 day", periods=4)) + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "val", ["foo", Period("2016", freq="Y"), Interval(1, 2, closed="both")] +) +@pytest.mark.parametrize("exp_dtype", [object]) +class TestPeriodIntervalCoercion(CoercionTest): + # GH#45768 + @pytest.fixture( + params=[ + period_range("2016-01-01", periods=3, freq="D"), + interval_range(1, 5), + ] + ) + def obj(self, request): + return Series(request.param) + + @pytest.fixture + def warn(self): + return FutureWarning + + +def test_20643(): + # closed by GH#45121 + orig = Series([0, 1, 2], index=["a", "b", "c"]) + + expected = Series([0, 2.7, 2], index=["a", "b", "c"]) + + ser = orig.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.at["b"] = 2.7 + tm.assert_series_equal(ser, expected) + + ser = orig.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.loc["b"] = 2.7 + tm.assert_series_equal(ser, expected) + + ser = orig.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser["b"] = 2.7 + tm.assert_series_equal(ser, expected) + + ser = orig.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.iat[1] = 2.7 + tm.assert_series_equal(ser, expected) + + ser = orig.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.iloc[1] = 2.7 + tm.assert_series_equal(ser, expected) + + orig_df = orig.to_frame("A") + expected_df = expected.to_frame("A") + + df = orig_df.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + df.at["b", "A"] = 2.7 + tm.assert_frame_equal(df, expected_df) + + df = orig_df.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + df.loc["b", "A"] = 2.7 + tm.assert_frame_equal(df, expected_df) + + df = orig_df.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + df.iloc[1, 0] = 2.7 + tm.assert_frame_equal(df, expected_df) + + df = orig_df.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + df.iat[1, 0] = 2.7 + tm.assert_frame_equal(df, expected_df) + + +def test_20643_comment(): + # https://github.com/pandas-dev/pandas/issues/20643#issuecomment-431244590 + # fixed sometime prior to GH#45121 + orig = Series([0, 1, 2], index=["a", "b", "c"]) + expected = Series([np.nan, 1, 2], index=["a", "b", "c"]) + + ser = orig.copy() + ser.iat[0] = None + tm.assert_series_equal(ser, expected) + + ser = orig.copy() + ser.iloc[0] = None + tm.assert_series_equal(ser, expected) + + +def test_15413(): + # fixed by GH#45121 + ser = Series([1, 2, 3]) + + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[ser == 2] += 0.5 + expected = Series([1, 2.5, 3]) + tm.assert_series_equal(ser, expected) + + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[1] += 0.5 + tm.assert_series_equal(ser, expected) + + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.loc[1] += 0.5 + tm.assert_series_equal(ser, expected) + + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.iloc[1] += 0.5 + tm.assert_series_equal(ser, expected) + + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.iat[1] += 0.5 + tm.assert_series_equal(ser, expected) + + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.at[1] += 0.5 + tm.assert_series_equal(ser, expected) + + +def test_32878_int_itemsize(): + # Fixed by GH#45121 + arr = np.arange(5).astype("i4") + ser = Series(arr) + val = np.int64(np.iinfo(np.int64).max) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[0] = val + expected = Series([val, 1, 2, 3, 4], dtype=np.int64) + tm.assert_series_equal(ser, expected) + + +def test_32878_complex_itemsize(): + arr = np.arange(5).astype("c8") + ser = Series(arr) + val = np.finfo(np.float64).max + val = val.astype("c16") + + # GH#32878 used to coerce val to inf+0.000000e+00j + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[0] = val + assert ser[0] == val + expected = Series([val, 1, 2, 3, 4], dtype="c16") + tm.assert_series_equal(ser, expected) + + +def test_37692(indexer_al): + # GH#37692 + ser = Series([1, 2, 3], index=["a", "b", "c"]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + indexer_al(ser)["b"] = "test" + expected = Series([1, "test", 3], index=["a", "b", "c"], dtype=object) + tm.assert_series_equal(ser, expected) + + +def test_setitem_bool_int_float_consistency(indexer_sli): + # GH#21513 + # bool-with-int and bool-with-float both upcast to object + # int-with-float and float-with-int are both non-casting so long + # as the setitem can be done losslessly + for dtype in [np.float64, np.int64]: + ser = Series(0, index=range(3), dtype=dtype) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + indexer_sli(ser)[0] = True + assert ser.dtype == object + + ser = Series(0, index=range(3), dtype=bool) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[0] = dtype(1) + assert ser.dtype == object + + # 1.0 can be held losslessly, so no casting + ser = Series(0, index=range(3), dtype=np.int64) + indexer_sli(ser)[0] = np.float64(1.0) + assert ser.dtype == np.int64 + + # 1 can be held losslessly, so no casting + ser = Series(0, index=range(3), dtype=np.float64) + indexer_sli(ser)[0] = np.int64(1) + + +def test_setitem_positional_with_casting(): + # GH#45070 case where in __setitem__ we get a KeyError, then when + # we fallback we *also* get a ValueError if we try to set inplace. + ser = Series([1, 2, 3], index=["a", "b", "c"]) + + warn_msg = "Series.__setitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + ser[0] = "X" + expected = Series(["X", 2, 3], index=["a", "b", "c"], dtype=object) + tm.assert_series_equal(ser, expected) + + +def test_setitem_positional_float_into_int_coerces(): + # Case where we hit a KeyError and then trying to set in-place incorrectly + # casts a float to an int + ser = Series([1, 2, 3], index=["a", "b", "c"]) + + warn_msg = "Series.__setitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + ser[0] = 1.5 + expected = Series([1.5, 2, 3], index=["a", "b", "c"]) + tm.assert_series_equal(ser, expected) + + +def test_setitem_int_not_positional(): + # GH#42215 deprecated falling back to positional on __setitem__ with an + # int not contained in the index; enforced in 2.0 + ser = Series([1, 2, 3, 4], index=[1.1, 2.1, 3.0, 4.1]) + assert not ser.index._should_fallback_to_positional + # assert not ser.index.astype(object)._should_fallback_to_positional + + # 3.0 is in our index, so post-enforcement behavior is unchanged + ser[3] = 10 + expected = Series([1, 2, 10, 4], index=ser.index) + tm.assert_series_equal(ser, expected) + + # pre-enforcement `ser[5] = 5` raised IndexError + ser[5] = 5 + expected = Series([1, 2, 10, 4, 5], index=[1.1, 2.1, 3.0, 4.1, 5.0]) + tm.assert_series_equal(ser, expected) + + ii = IntervalIndex.from_breaks(range(10))[::2] + ser2 = Series(range(len(ii)), index=ii) + exp_index = ii.astype(object).append(Index([4])) + expected2 = Series([0, 1, 2, 3, 4, 9], index=exp_index) + # pre-enforcement `ser2[4] = 9` interpreted 4 as positional + ser2[4] = 9 + tm.assert_series_equal(ser2, expected2) + + mi = MultiIndex.from_product([ser.index, ["A", "B"]]) + ser3 = Series(range(len(mi)), index=mi) + expected3 = ser3.copy() + expected3.loc[4] = 99 + # pre-enforcement `ser3[4] = 99` interpreted 4 as positional + ser3[4] = 99 + tm.assert_series_equal(ser3, expected3) + + +def test_setitem_with_bool_indexer(): + # GH#42530 + + df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) + result = df.pop("b").copy() + result[[True, False, False]] = 9 + expected = Series(data=[9, 5, 6], name="b") + tm.assert_series_equal(result, expected) + + df.loc[[True, False, False], "a"] = 10 + expected = DataFrame({"a": [10, 2, 3]}) + tm.assert_frame_equal(df, expected) + + +@pytest.mark.parametrize("size", range(2, 6)) +@pytest.mark.parametrize( + "mask", [[True, False, False, False, False], [True, False], [False]] +) +@pytest.mark.parametrize( + "item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min] +) +# Test numpy arrays, lists and tuples as the input to be +# broadcast +@pytest.mark.parametrize( + "box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)] +) +def test_setitem_bool_indexer_dont_broadcast_length1_values(size, mask, item, box): + # GH#44265 + # see also tests.series.indexing.test_where.test_broadcast + + selection = np.resize(mask, size) + + data = np.arange(size, dtype=float) + + ser = Series(data) + + if selection.sum() != 1: + msg = ( + "cannot set using a list-like indexer with a different " + "length than the value" + ) + with pytest.raises(ValueError, match=msg): + # GH#44265 + ser[selection] = box(item) + else: + # In this corner case setting is equivalent to setting with the unboxed + # item + ser[selection] = box(item) + + expected = Series(np.arange(size, dtype=float)) + expected[selection] = item + tm.assert_series_equal(ser, expected) + + +def test_setitem_empty_mask_dont_upcast_dt64(): + dti = date_range("2016-01-01", periods=3) + ser = Series(dti) + orig = ser.copy() + mask = np.zeros(3, dtype=bool) + + ser[mask] = "foo" + assert ser.dtype == dti.dtype # no-op -> dont upcast + tm.assert_series_equal(ser, orig) + + ser.mask(mask, "foo", inplace=True) + assert ser.dtype == dti.dtype # no-op -> dont upcast + tm.assert_series_equal(ser, orig) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py new file mode 100644 index 0000000000000000000000000000000000000000..43fbae89089665fb2bf589d35db1b3f3041dd018 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py @@ -0,0 +1,50 @@ +import pytest + +import pandas as pd +from pandas import Series +import pandas._testing as tm + + +def test_take_validate_axis(): + # GH#51022 + ser = Series([-1, 5, 6, 2, 4]) + + msg = "No axis named foo for object type Series" + with pytest.raises(ValueError, match=msg): + ser.take([1, 2], axis="foo") + + +def test_take(): + ser = Series([-1, 5, 6, 2, 4]) + + actual = ser.take([1, 3, 4]) + expected = Series([5, 2, 4], index=[1, 3, 4]) + tm.assert_series_equal(actual, expected) + + actual = ser.take([-1, 3, 4]) + expected = Series([4, 2, 4], index=[4, 3, 4]) + tm.assert_series_equal(actual, expected) + + msg = "indices are out-of-bounds" + with pytest.raises(IndexError, match=msg): + ser.take([1, 10]) + with pytest.raises(IndexError, match=msg): + ser.take([2, 5]) + + +def test_take_categorical(): + # https://github.com/pandas-dev/pandas/issues/20664 + ser = Series(pd.Categorical(["a", "b", "c"])) + result = ser.take([-2, -2, 0]) + expected = Series( + pd.Categorical(["b", "b", "a"], categories=["a", "b", "c"]), index=[1, 1, 0] + ) + tm.assert_series_equal(result, expected) + + +def test_take_slice_raises(): + ser = Series([-1, 5, 6, 2, 4]) + + msg = "Series.take requires a sequence of integers, not slice" + with pytest.raises(TypeError, match=msg): + ser.take(slice(0, 3, 1)) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_where.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_where.py new file mode 100644 index 0000000000000000000000000000000000000000..c978481ca99886bb12d3d8b2d54eeed46de73532 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_where.py @@ -0,0 +1,481 @@ +import numpy as np +import pytest + +from pandas._config import using_pyarrow_string_dtype + +from pandas.core.dtypes.common import is_integer + +import pandas as pd +from pandas import ( + Series, + Timestamp, + date_range, + isna, +) +import pandas._testing as tm + + +def test_where_unsafe_int(any_signed_int_numpy_dtype): + s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype) + mask = s < 5 + + s[mask] = range(2, 7) + expected = Series( + list(range(2, 7)) + list(range(5, 10)), + dtype=any_signed_int_numpy_dtype, + ) + + tm.assert_series_equal(s, expected) + + +def test_where_unsafe_float(float_numpy_dtype): + s = Series(np.arange(10), dtype=float_numpy_dtype) + mask = s < 5 + + s[mask] = range(2, 7) + data = list(range(2, 7)) + list(range(5, 10)) + expected = Series(data, dtype=float_numpy_dtype) + + tm.assert_series_equal(s, expected) + + +@pytest.mark.parametrize( + "dtype,expected_dtype", + [ + (np.int8, np.float64), + (np.int16, np.float64), + (np.int32, np.float64), + (np.int64, np.float64), + (np.float32, np.float32), + (np.float64, np.float64), + ], +) +def test_where_unsafe_upcast(dtype, expected_dtype): + # see gh-9743 + s = Series(np.arange(10), dtype=dtype) + values = [2.5, 3.5, 4.5, 5.5, 6.5] + mask = s < 5 + expected = Series(values + list(range(5, 10)), dtype=expected_dtype) + warn = ( + None + if np.dtype(dtype).kind == np.dtype(expected_dtype).kind == "f" + else FutureWarning + ) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + s[mask] = values + tm.assert_series_equal(s, expected) + + +def test_where_unsafe(): + # see gh-9731 + s = Series(np.arange(10), dtype="int64") + values = [2.5, 3.5, 4.5, 5.5] + + mask = s > 5 + expected = Series(list(range(6)) + values, dtype="float64") + + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + s[mask] = values + tm.assert_series_equal(s, expected) + + # see gh-3235 + s = Series(np.arange(10), dtype="int64") + mask = s < 5 + s[mask] = range(2, 7) + expected = Series(list(range(2, 7)) + list(range(5, 10)), dtype="int64") + tm.assert_series_equal(s, expected) + assert s.dtype == expected.dtype + + s = Series(np.arange(10), dtype="int64") + mask = s > 5 + s[mask] = [0] * 4 + expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype="int64") + tm.assert_series_equal(s, expected) + + s = Series(np.arange(10)) + mask = s > 5 + + msg = "cannot set using a list-like indexer with a different length than the value" + with pytest.raises(ValueError, match=msg): + s[mask] = [5, 4, 3, 2, 1] + + with pytest.raises(ValueError, match=msg): + s[mask] = [0] * 5 + + # dtype changes + s = Series([1, 2, 3, 4]) + result = s.where(s > 2, np.nan) + expected = Series([np.nan, np.nan, 3, 4]) + tm.assert_series_equal(result, expected) + + # GH 4667 + # setting with None changes dtype + s = Series(range(10)).astype(float) + s[8] = None + result = s[8] + assert isna(result) + + s = Series(range(10)).astype(float) + s[s > 8] = None + result = s[isna(s)] + expected = Series(np.nan, index=[9]) + tm.assert_series_equal(result, expected) + + +def test_where(): + s = Series(np.random.default_rng(2).standard_normal(5)) + cond = s > 0 + + rs = s.where(cond).dropna() + rs2 = s[cond] + tm.assert_series_equal(rs, rs2) + + rs = s.where(cond, -s) + tm.assert_series_equal(rs, s.abs()) + + rs = s.where(cond) + assert s.shape == rs.shape + assert rs is not s + + # test alignment + cond = Series([True, False, False, True, False], index=s.index) + s2 = -(s.abs()) + + expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) + rs = s2.where(cond[:3]) + tm.assert_series_equal(rs, expected) + + expected = s2.abs() + expected.iloc[0] = s2[0] + rs = s2.where(cond[:3], -s2) + tm.assert_series_equal(rs, expected) + + +def test_where_error(): + s = Series(np.random.default_rng(2).standard_normal(5)) + cond = s > 0 + + msg = "Array conditional must be same shape as self" + with pytest.raises(ValueError, match=msg): + s.where(1) + with pytest.raises(ValueError, match=msg): + s.where(cond[:3].values, -s) + + # GH 2745 + s = Series([1, 2]) + s[[True, False]] = [0, 1] + expected = Series([0, 2]) + tm.assert_series_equal(s, expected) + + # failures + msg = "cannot set using a list-like indexer with a different length than the value" + with pytest.raises(ValueError, match=msg): + s[[True, False]] = [0, 2, 3] + + with pytest.raises(ValueError, match=msg): + s[[True, False]] = [] + + +@pytest.mark.parametrize("klass", [list, tuple, np.array, Series]) +def test_where_array_like(klass): + # see gh-15414 + s = Series([1, 2, 3]) + cond = [False, True, True] + expected = Series([np.nan, 2, 3]) + + result = s.where(klass(cond)) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "cond", + [ + [1, 0, 1], + Series([2, 5, 7]), + ["True", "False", "True"], + [Timestamp("2017-01-01"), pd.NaT, Timestamp("2017-01-02")], + ], +) +def test_where_invalid_input(cond): + # see gh-15414: only boolean arrays accepted + s = Series([1, 2, 3]) + msg = "Boolean array expected for the condition" + + with pytest.raises(ValueError, match=msg): + s.where(cond) + + msg = "Array conditional must be same shape as self" + with pytest.raises(ValueError, match=msg): + s.where([True]) + + +def test_where_ndframe_align(): + msg = "Array conditional must be same shape as self" + s = Series([1, 2, 3]) + + cond = [True] + with pytest.raises(ValueError, match=msg): + s.where(cond) + + expected = Series([1, np.nan, np.nan]) + + out = s.where(Series(cond)) + tm.assert_series_equal(out, expected) + + cond = np.array([False, True, False, True]) + with pytest.raises(ValueError, match=msg): + s.where(cond) + + expected = Series([np.nan, 2, np.nan]) + + out = s.where(Series(cond)) + tm.assert_series_equal(out, expected) + + +@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't set ints into string") +def test_where_setitem_invalid(): + # GH 2702 + # make sure correct exceptions are raised on invalid list assignment + + msg = ( + lambda x: f"cannot set using a {x} indexer with a " + "different length than the value" + ) + # slice + s = Series(list("abc")) + + with pytest.raises(ValueError, match=msg("slice")): + s[0:3] = list(range(27)) + + s[0:3] = list(range(3)) + expected = Series([0, 1, 2]) + tm.assert_series_equal(s.astype(np.int64), expected) + + # slice with step + s = Series(list("abcdef")) + + with pytest.raises(ValueError, match=msg("slice")): + s[0:4:2] = list(range(27)) + + s = Series(list("abcdef")) + s[0:4:2] = list(range(2)) + expected = Series([0, "b", 1, "d", "e", "f"]) + tm.assert_series_equal(s, expected) + + # neg slices + s = Series(list("abcdef")) + + with pytest.raises(ValueError, match=msg("slice")): + s[:-1] = list(range(27)) + + s[-3:-1] = list(range(2)) + expected = Series(["a", "b", "c", 0, 1, "f"]) + tm.assert_series_equal(s, expected) + + # list + s = Series(list("abc")) + + with pytest.raises(ValueError, match=msg("list-like")): + s[[0, 1, 2]] = list(range(27)) + + s = Series(list("abc")) + + with pytest.raises(ValueError, match=msg("list-like")): + s[[0, 1, 2]] = list(range(2)) + + # scalar + s = Series(list("abc")) + s[0] = list(range(10)) + expected = Series([list(range(10)), "b", "c"]) + tm.assert_series_equal(s, expected) + + +@pytest.mark.parametrize("size", range(2, 6)) +@pytest.mark.parametrize( + "mask", [[True, False, False, False, False], [True, False], [False]] +) +@pytest.mark.parametrize( + "item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min] +) +# Test numpy arrays, lists and tuples as the input to be +# broadcast +@pytest.mark.parametrize( + "box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)] +) +def test_broadcast(size, mask, item, box): + # GH#8801, GH#4195 + selection = np.resize(mask, size) + + data = np.arange(size, dtype=float) + + # Construct the expected series by taking the source + # data or item based on the selection + expected = Series( + [item if use_item else data[i] for i, use_item in enumerate(selection)] + ) + + s = Series(data) + + s[selection] = item + tm.assert_series_equal(s, expected) + + s = Series(data) + result = s.where(~selection, box(item)) + tm.assert_series_equal(result, expected) + + s = Series(data) + result = s.mask(selection, box(item)) + tm.assert_series_equal(result, expected) + + +def test_where_inplace(): + s = Series(np.random.default_rng(2).standard_normal(5)) + cond = s > 0 + + rs = s.copy() + + rs.where(cond, inplace=True) + tm.assert_series_equal(rs.dropna(), s[cond]) + tm.assert_series_equal(rs, s.where(cond)) + + rs = s.copy() + rs.where(cond, -s, inplace=True) + tm.assert_series_equal(rs, s.where(cond, -s)) + + +def test_where_dups(): + # GH 4550 + # where crashes with dups in index + s1 = Series(list(range(3))) + s2 = Series(list(range(3))) + comb = pd.concat([s1, s2]) + result = comb.where(comb < 2) + expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) + tm.assert_series_equal(result, expected) + + # GH 4548 + # inplace updating not working with dups + comb[comb < 1] = 5 + expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) + tm.assert_series_equal(comb, expected) + + comb[comb < 2] += 10 + expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) + tm.assert_series_equal(comb, expected) + + +def test_where_numeric_with_string(): + # GH 9280 + s = Series([1, 2, 3]) + w = s.where(s > 1, "X") + + assert not is_integer(w[0]) + assert is_integer(w[1]) + assert is_integer(w[2]) + assert isinstance(w[0], str) + assert w.dtype == "object" + + w = s.where(s > 1, ["X", "Y", "Z"]) + assert not is_integer(w[0]) + assert is_integer(w[1]) + assert is_integer(w[2]) + assert isinstance(w[0], str) + assert w.dtype == "object" + + w = s.where(s > 1, np.array(["X", "Y", "Z"])) + assert not is_integer(w[0]) + assert is_integer(w[1]) + assert is_integer(w[2]) + assert isinstance(w[0], str) + assert w.dtype == "object" + + +@pytest.mark.parametrize("dtype", ["timedelta64[ns]", "datetime64[ns]"]) +def test_where_datetimelike_coerce(dtype): + ser = Series([1, 2], dtype=dtype) + expected = Series([10, 10]) + mask = np.array([False, False]) + + msg = "Downcasting behavior in Series and DataFrame methods 'where'" + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.where(mask, [10, 10]) + tm.assert_series_equal(rs, expected) + + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.where(mask, 10) + tm.assert_series_equal(rs, expected) + + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.where(mask, 10.0) + tm.assert_series_equal(rs, expected) + + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.where(mask, [10.0, 10.0]) + tm.assert_series_equal(rs, expected) + + rs = ser.where(mask, [10.0, np.nan]) + expected = Series([10, np.nan], dtype="object") + tm.assert_series_equal(rs, expected) + + +def test_where_datetimetz(): + # GH 15701 + timestamps = ["2016-12-31 12:00:04+00:00", "2016-12-31 12:00:04.010000+00:00"] + ser = Series([Timestamp(t) for t in timestamps], dtype="datetime64[ns, UTC]") + rs = ser.where(Series([False, True])) + expected = Series([pd.NaT, ser[1]], dtype="datetime64[ns, UTC]") + tm.assert_series_equal(rs, expected) + + +def test_where_sparse(): + # GH#17198 make sure we dont get an AttributeError for sp_index + ser = Series(pd.arrays.SparseArray([1, 2])) + result = ser.where(ser >= 2, 0) + expected = Series(pd.arrays.SparseArray([0, 2])) + tm.assert_series_equal(result, expected) + + +def test_where_empty_series_and_empty_cond_having_non_bool_dtypes(): + # https://github.com/pandas-dev/pandas/issues/34592 + ser = Series([], dtype=float) + result = ser.where([]) + tm.assert_series_equal(result, ser) + + +def test_where_categorical(frame_or_series): + # https://github.com/pandas-dev/pandas/issues/18888 + exp = frame_or_series( + pd.Categorical(["A", "A", "B", "B", np.nan], categories=["A", "B", "C"]), + dtype="category", + ) + df = frame_or_series(["A", "A", "B", "B", "C"], dtype="category") + res = df.where(df != "C") + tm.assert_equal(exp, res) + + +def test_where_datetimelike_categorical(tz_naive_fixture): + # GH#37682 + tz = tz_naive_fixture + + dr = date_range("2001-01-01", periods=3, tz=tz)._with_freq(None) + lvals = pd.DatetimeIndex([dr[0], dr[1], pd.NaT]) + rvals = pd.Categorical([dr[0], pd.NaT, dr[2]]) + + mask = np.array([True, True, False]) + + # DatetimeIndex.where + res = lvals.where(mask, rvals) + tm.assert_index_equal(res, dr) + + # DatetimeArray.where + res = lvals._data._where(mask, rvals) + tm.assert_datetime_array_equal(res, dr._data) + + # Series.where + res = Series(lvals).where(mask, rvals) + tm.assert_series_equal(res, Series(dr)) + + # DataFrame.where + res = pd.DataFrame(lvals).where(mask[:, None], pd.DataFrame(rvals)) + + tm.assert_frame_equal(res, pd.DataFrame(dr)) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py new file mode 100644 index 0000000000000000000000000000000000000000..a67f3ec708f24a97dab544bb5cf859dc54659215 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py @@ -0,0 +1,82 @@ +import numpy as np +import pytest + +from pandas import ( + MultiIndex, + Series, + date_range, +) +import pandas._testing as tm + + +def test_xs_datetimelike_wrapping(): + # GH#31630 a case where we shouldn't wrap datetime64 in Timestamp + arr = date_range("2016-01-01", periods=3)._data._ndarray + + ser = Series(arr, dtype=object) + for i in range(len(ser)): + ser.iloc[i] = arr[i] + assert ser.dtype == object + assert isinstance(ser[0], np.datetime64) + + result = ser.xs(0) + assert isinstance(result, np.datetime64) + + +class TestXSWithMultiIndex: + def test_xs_level_series(self, multiindex_dataframe_random_data): + df = multiindex_dataframe_random_data + ser = df["A"] + expected = ser[:, "two"] + result = df.xs("two", level=1)["A"] + tm.assert_series_equal(result, expected) + + def test_series_getitem_multiindex_xs_by_label(self): + # GH#5684 + idx = MultiIndex.from_tuples( + [("a", "one"), ("a", "two"), ("b", "one"), ("b", "two")] + ) + ser = Series([1, 2, 3, 4], index=idx) + return_value = ser.index.set_names(["L1", "L2"], inplace=True) + assert return_value is None + expected = Series([1, 3], index=["a", "b"]) + return_value = expected.index.set_names(["L1"], inplace=True) + assert return_value is None + + result = ser.xs("one", level="L2") + tm.assert_series_equal(result, expected) + + def test_series_getitem_multiindex_xs(self): + # GH#6258 + dt = list(date_range("20130903", periods=3)) + idx = MultiIndex.from_product([list("AB"), dt]) + ser = Series([1, 3, 4, 1, 3, 4], index=idx) + expected = Series([1, 1], index=list("AB")) + + result = ser.xs("20130903", level=1) + tm.assert_series_equal(result, expected) + + def test_series_xs_droplevel_false(self): + # GH: 19056 + mi = MultiIndex.from_tuples( + [("a", "x"), ("a", "y"), ("b", "x")], names=["level1", "level2"] + ) + ser = Series([1, 1, 1], index=mi) + result = ser.xs("a", axis=0, drop_level=False) + expected = Series( + [1, 1], + index=MultiIndex.from_tuples( + [("a", "x"), ("a", "y")], names=["level1", "level2"] + ), + ) + tm.assert_series_equal(result, expected) + + def test_xs_key_as_list(self): + # GH#41760 + mi = MultiIndex.from_tuples([("a", "x")], names=["level1", "level2"]) + ser = Series([1], index=mi) + with pytest.raises(TypeError, match="list keys are not supported"): + ser.xs(["a", "x"], axis=0, drop_level=False) + + with pytest.raises(TypeError, match="list keys are not supported"): + ser.xs(["a"], axis=0, drop_level=False) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6fbe564d561b2a6a7059adedfc829ee6a6f1d976 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9635ca4aac8e29e5cb5d7ad7007c477fe3fb7828 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_freq_code.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_freq_code.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..20f43447920adbd911d5c14f9704e5f6f60ac21c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_freq_code.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_frequencies.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_frequencies.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ac224f2dc164288a60e9f50555e4094fa43691e7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_frequencies.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_inference.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_inference.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ce1a2c7a01b0d9753d618c378fc136847ebe8e2e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_inference.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_freq_code.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_freq_code.py new file mode 100644 index 0000000000000000000000000000000000000000..16b7190753ee2c5beaa1179b8318732f546f9bf6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_freq_code.py @@ -0,0 +1,69 @@ +import numpy as np +import pytest + +from pandas._libs.tslibs import ( + Period, + to_offset, +) + + +@pytest.mark.parametrize( + "freqstr,exp_freqstr", + [("D", "D"), ("W", "D"), ("ME", "D"), ("s", "s"), ("min", "s"), ("h", "s")], +) +def test_get_to_timestamp_base(freqstr, exp_freqstr): + off = to_offset(freqstr) + per = Period._from_ordinal(1, off) + exp_code = to_offset(exp_freqstr)._period_dtype_code + + result_code = per._dtype._get_to_timestamp_base() + assert result_code == exp_code + + +@pytest.mark.parametrize( + "args,expected", + [ + ((1.5, "min"), (90, "s")), + ((62.4, "min"), (3744, "s")), + ((1.04, "h"), (3744, "s")), + ((1, "D"), (1, "D")), + ((0.342931, "h"), (1234551600, "us")), + ((1.2345, "D"), (106660800, "ms")), + ], +) +def test_resolution_bumping(args, expected): + # see gh-14378 + off = to_offset(str(args[0]) + args[1]) + assert off.n == expected[0] + assert off._prefix == expected[1] + + +@pytest.mark.parametrize( + "args", + [ + (0.5, "ns"), + # Too much precision in the input can prevent. + (0.3429324798798269273987982, "h"), + ], +) +def test_cat(args): + msg = "Invalid frequency" + + with pytest.raises(ValueError, match=msg): + to_offset(str(args[0]) + args[1]) + + +@pytest.mark.parametrize( + "freqstr,expected", + [ + ("1h", "2021-01-01T09:00:00"), + ("1D", "2021-01-02T08:00:00"), + ("1W", "2021-01-03T08:00:00"), + ("1ME", "2021-01-31T08:00:00"), + ("1YE", "2021-12-31T08:00:00"), + ], +) +def test_compatibility(freqstr, expected): + ts_np = np.datetime64("2021-01-01T08:00:00.00") + do = to_offset(freqstr) + assert ts_np + do == np.datetime64(expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_frequencies.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_frequencies.py new file mode 100644 index 0000000000000000000000000000000000000000..f0af290b2fb69d57b448898e9a9d8635e529e7bc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_frequencies.py @@ -0,0 +1,29 @@ +import pytest + +from pandas._libs.tslibs import offsets + +from pandas.tseries.frequencies import ( + is_subperiod, + is_superperiod, +) + + +@pytest.mark.parametrize( + "p1,p2,expected", + [ + # Input validation. + (offsets.MonthEnd(), None, False), + (offsets.YearEnd(), None, False), + (None, offsets.YearEnd(), False), + (None, offsets.MonthEnd(), False), + (None, None, False), + (offsets.YearEnd(), offsets.MonthEnd(), True), + (offsets.Hour(), offsets.Minute(), True), + (offsets.Second(), offsets.Milli(), True), + (offsets.Milli(), offsets.Micro(), True), + (offsets.Micro(), offsets.Nano(), True), + ], +) +def test_super_sub_symmetry(p1, p2, expected): + assert is_superperiod(p1, p2) is expected + assert is_subperiod(p2, p1) is expected diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_inference.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_inference.py new file mode 100644 index 0000000000000000000000000000000000000000..99a504f4188c16718587b70634736dce08bfd444 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_inference.py @@ -0,0 +1,558 @@ +from datetime import ( + datetime, + timedelta, +) + +import numpy as np +import pytest + +from pandas._libs.tslibs.ccalendar import ( + DAYS, + MONTHS, +) +from pandas._libs.tslibs.offsets import _get_offset +from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG +from pandas.compat import is_platform_windows + +from pandas import ( + DatetimeIndex, + Index, + RangeIndex, + Series, + Timestamp, + date_range, + period_range, +) +import pandas._testing as tm +from pandas.core.arrays import ( + DatetimeArray, + TimedeltaArray, +) +from pandas.core.tools.datetimes import to_datetime + +from pandas.tseries import ( + frequencies, + offsets, +) + + +@pytest.fixture( + params=[ + (timedelta(1), "D"), + (timedelta(hours=1), "h"), + (timedelta(minutes=1), "min"), + (timedelta(seconds=1), "s"), + (np.timedelta64(1, "ns"), "ns"), + (timedelta(microseconds=1), "us"), + (timedelta(microseconds=1000), "ms"), + ] +) +def base_delta_code_pair(request): + return request.param + + +freqs = ( + [f"QE-{month}" for month in MONTHS] + + [f"{annual}-{month}" for annual in ["YE", "BYE"] for month in MONTHS] + + ["ME", "BME", "BMS"] + + [f"WOM-{count}{day}" for count in range(1, 5) for day in DAYS] + + [f"W-{day}" for day in DAYS] +) + + +@pytest.mark.parametrize("freq", freqs) +@pytest.mark.parametrize("periods", [5, 7]) +def test_infer_freq_range(periods, freq): + freq = freq.upper() + + gen = date_range("1/1/2000", periods=periods, freq=freq) + index = DatetimeIndex(gen.values) + + if not freq.startswith("QE-"): + assert frequencies.infer_freq(index) == gen.freqstr + else: + inf_freq = frequencies.infer_freq(index) + is_dec_range = inf_freq == "QE-DEC" and gen.freqstr in ( + "QE", + "QE-DEC", + "QE-SEP", + "QE-JUN", + "QE-MAR", + ) + is_nov_range = inf_freq == "QE-NOV" and gen.freqstr in ( + "QE-NOV", + "QE-AUG", + "QE-MAY", + "QE-FEB", + ) + is_oct_range = inf_freq == "QE-OCT" and gen.freqstr in ( + "QE-OCT", + "QE-JUL", + "QE-APR", + "QE-JAN", + ) + assert is_dec_range or is_nov_range or is_oct_range + + +def test_raise_if_period_index(): + index = period_range(start="1/1/1990", periods=20, freq="M") + msg = "Check the `freq` attribute instead of using infer_freq" + + with pytest.raises(TypeError, match=msg): + frequencies.infer_freq(index) + + +def test_raise_if_too_few(): + index = DatetimeIndex(["12/31/1998", "1/3/1999"]) + msg = "Need at least 3 dates to infer frequency" + + with pytest.raises(ValueError, match=msg): + frequencies.infer_freq(index) + + +def test_business_daily(): + index = DatetimeIndex(["01/01/1999", "1/4/1999", "1/5/1999"]) + assert frequencies.infer_freq(index) == "B" + + +def test_business_daily_look_alike(): + # see gh-16624 + # + # Do not infer "B when "weekend" (2-day gap) in wrong place. + index = DatetimeIndex(["12/31/1998", "1/3/1999", "1/4/1999"]) + assert frequencies.infer_freq(index) is None + + +def test_day_corner(): + index = DatetimeIndex(["1/1/2000", "1/2/2000", "1/3/2000"]) + assert frequencies.infer_freq(index) == "D" + + +def test_non_datetime_index(): + dates = to_datetime(["1/1/2000", "1/2/2000", "1/3/2000"]) + assert frequencies.infer_freq(dates) == "D" + + +def test_fifth_week_of_month_infer(): + # see gh-9425 + # + # Only attempt to infer up to WOM-4. + index = DatetimeIndex(["2014-03-31", "2014-06-30", "2015-03-30"]) + assert frequencies.infer_freq(index) is None + + +def test_week_of_month_fake(): + # All of these dates are on same day + # of week and are 4 or 5 weeks apart. + index = DatetimeIndex(["2013-08-27", "2013-10-01", "2013-10-29", "2013-11-26"]) + assert frequencies.infer_freq(index) != "WOM-4TUE" + + +def test_fifth_week_of_month(): + # see gh-9425 + # + # Only supports freq up to WOM-4. + msg = ( + "Of the four parameters: start, end, periods, " + "and freq, exactly three must be specified" + ) + + with pytest.raises(ValueError, match=msg): + date_range("2014-01-01", freq="WOM-5MON") + + +def test_monthly_ambiguous(): + rng = DatetimeIndex(["1/31/2000", "2/29/2000", "3/31/2000"]) + assert rng.inferred_freq == "ME" + + +def test_annual_ambiguous(): + rng = DatetimeIndex(["1/31/2000", "1/31/2001", "1/31/2002"]) + assert rng.inferred_freq == "YE-JAN" + + +@pytest.mark.parametrize("count", range(1, 5)) +def test_infer_freq_delta(base_delta_code_pair, count): + b = Timestamp(datetime.now()) + base_delta, code = base_delta_code_pair + + inc = base_delta * count + index = DatetimeIndex([b + inc * j for j in range(3)]) + + exp_freq = f"{count:d}{code}" if count > 1 else code + assert frequencies.infer_freq(index) == exp_freq + + +@pytest.mark.parametrize( + "constructor", + [ + lambda now, delta: DatetimeIndex( + [now + delta * 7] + [now + delta * j for j in range(3)] + ), + lambda now, delta: DatetimeIndex( + [now + delta * j for j in range(3)] + [now + delta * 7] + ), + ], +) +def test_infer_freq_custom(base_delta_code_pair, constructor): + b = Timestamp(datetime.now()) + base_delta, _ = base_delta_code_pair + + index = constructor(b, base_delta) + assert frequencies.infer_freq(index) is None + + +@pytest.mark.parametrize( + "freq,expected", [("Q", "QE-DEC"), ("Q-NOV", "QE-NOV"), ("Q-OCT", "QE-OCT")] +) +def test_infer_freq_index(freq, expected): + rng = period_range("1959Q2", "2009Q3", freq=freq) + with tm.assert_produces_warning(FutureWarning, match="Dtype inference"): + rng = Index(rng.to_timestamp("D", how="e").astype(object)) + + assert rng.inferred_freq == expected + + +@pytest.mark.parametrize( + "expected,dates", + list( + { + "YS-JAN": ["2009-01-01", "2010-01-01", "2011-01-01", "2012-01-01"], + "QE-OCT": ["2009-01-31", "2009-04-30", "2009-07-31", "2009-10-31"], + "ME": ["2010-11-30", "2010-12-31", "2011-01-31", "2011-02-28"], + "W-SAT": ["2010-12-25", "2011-01-01", "2011-01-08", "2011-01-15"], + "D": ["2011-01-01", "2011-01-02", "2011-01-03", "2011-01-04"], + "h": [ + "2011-12-31 22:00", + "2011-12-31 23:00", + "2012-01-01 00:00", + "2012-01-01 01:00", + ], + }.items() + ), +) +@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) +def test_infer_freq_tz(tz_naive_fixture, expected, dates, unit): + # see gh-7310, GH#55609 + tz = tz_naive_fixture + idx = DatetimeIndex(dates, tz=tz).as_unit(unit) + assert idx.inferred_freq == expected + + +def test_infer_freq_tz_series(tz_naive_fixture): + # infer_freq should work with both tz-naive and tz-aware series. See gh-52456 + tz = tz_naive_fixture + idx = date_range("2021-01-01", "2021-01-04", tz=tz) + series = idx.to_series().reset_index(drop=True) + inferred_freq = frequencies.infer_freq(series) + assert inferred_freq == "D" + + +@pytest.mark.parametrize( + "date_pair", + [ + ["2013-11-02", "2013-11-5"], # Fall DST + ["2014-03-08", "2014-03-11"], # Spring DST + ["2014-01-01", "2014-01-03"], # Regular Time + ], +) +@pytest.mark.parametrize( + "freq", + ["h", "3h", "10min", "3601s", "3600001ms", "3600000001us", "3600000000001ns"], +) +def test_infer_freq_tz_transition(tz_naive_fixture, date_pair, freq): + # see gh-8772 + tz = tz_naive_fixture + idx = date_range(date_pair[0], date_pair[1], freq=freq, tz=tz) + assert idx.inferred_freq == freq + + +def test_infer_freq_tz_transition_custom(): + index = date_range("2013-11-03", periods=5, freq="3h").tz_localize( + "America/Chicago" + ) + assert index.inferred_freq is None + + +@pytest.mark.parametrize( + "data,expected", + [ + # Hourly freq in a day must result in "h" + ( + [ + "2014-07-01 09:00", + "2014-07-01 10:00", + "2014-07-01 11:00", + "2014-07-01 12:00", + "2014-07-01 13:00", + "2014-07-01 14:00", + ], + "h", + ), + ( + [ + "2014-07-01 09:00", + "2014-07-01 10:00", + "2014-07-01 11:00", + "2014-07-01 12:00", + "2014-07-01 13:00", + "2014-07-01 14:00", + "2014-07-01 15:00", + "2014-07-01 16:00", + "2014-07-02 09:00", + "2014-07-02 10:00", + "2014-07-02 11:00", + ], + "bh", + ), + ( + [ + "2014-07-04 09:00", + "2014-07-04 10:00", + "2014-07-04 11:00", + "2014-07-04 12:00", + "2014-07-04 13:00", + "2014-07-04 14:00", + "2014-07-04 15:00", + "2014-07-04 16:00", + "2014-07-07 09:00", + "2014-07-07 10:00", + "2014-07-07 11:00", + ], + "bh", + ), + ( + [ + "2014-07-04 09:00", + "2014-07-04 10:00", + "2014-07-04 11:00", + "2014-07-04 12:00", + "2014-07-04 13:00", + "2014-07-04 14:00", + "2014-07-04 15:00", + "2014-07-04 16:00", + "2014-07-07 09:00", + "2014-07-07 10:00", + "2014-07-07 11:00", + "2014-07-07 12:00", + "2014-07-07 13:00", + "2014-07-07 14:00", + "2014-07-07 15:00", + "2014-07-07 16:00", + "2014-07-08 09:00", + "2014-07-08 10:00", + "2014-07-08 11:00", + "2014-07-08 12:00", + "2014-07-08 13:00", + "2014-07-08 14:00", + "2014-07-08 15:00", + "2014-07-08 16:00", + ], + "bh", + ), + ], +) +def test_infer_freq_business_hour(data, expected): + # see gh-7905 + idx = DatetimeIndex(data) + assert idx.inferred_freq == expected + + +def test_not_monotonic(): + rng = DatetimeIndex(["1/31/2000", "1/31/2001", "1/31/2002"]) + rng = rng[::-1] + + assert rng.inferred_freq == "-1YE-JAN" + + +def test_non_datetime_index2(): + rng = DatetimeIndex(["1/31/2000", "1/31/2001", "1/31/2002"]) + vals = rng.to_pydatetime() + + result = frequencies.infer_freq(vals) + assert result == rng.inferred_freq + + +@pytest.mark.parametrize( + "idx", + [ + Index(np.arange(5), dtype=np.int64), + Index(np.arange(5), dtype=np.float64), + period_range("2020-01-01", periods=5), + RangeIndex(5), + ], +) +def test_invalid_index_types(idx): + # see gh-48439 + msg = "|".join( + [ + "cannot infer freq from a non-convertible", + "Check the `freq` attribute instead of using infer_freq", + ] + ) + + with pytest.raises(TypeError, match=msg): + frequencies.infer_freq(idx) + + +@pytest.mark.skipif(is_platform_windows(), reason="see gh-10822: Windows issue") +def test_invalid_index_types_unicode(): + # see gh-10822 + # + # Odd error message on conversions to datetime for unicode. + msg = "Unknown datetime string format" + + with pytest.raises(ValueError, match=msg): + frequencies.infer_freq(Index(["ZqgszYBfuL"])) + + +def test_string_datetime_like_compat(): + # see gh-6463 + data = ["2004-01", "2004-02", "2004-03", "2004-04"] + + expected = frequencies.infer_freq(data) + result = frequencies.infer_freq(Index(data)) + + assert result == expected + + +def test_series(): + # see gh-6407 + s = Series(date_range("20130101", "20130110")) + inferred = frequencies.infer_freq(s) + assert inferred == "D" + + +@pytest.mark.parametrize("end", [10, 10.0]) +def test_series_invalid_type(end): + # see gh-6407 + msg = "cannot infer freq from a non-convertible dtype on a Series" + s = Series(np.arange(end)) + + with pytest.raises(TypeError, match=msg): + frequencies.infer_freq(s) + + +def test_series_inconvertible_string(using_infer_string): + # see gh-6407 + if using_infer_string: + msg = "cannot infer freq from" + + with pytest.raises(TypeError, match=msg): + frequencies.infer_freq(Series(["foo", "bar"])) + else: + msg = "Unknown datetime string format" + + with pytest.raises(ValueError, match=msg): + frequencies.infer_freq(Series(["foo", "bar"])) + + +@pytest.mark.parametrize("freq", [None, "ms"]) +def test_series_period_index(freq): + # see gh-6407 + # + # Cannot infer on PeriodIndex + msg = "cannot infer freq from a non-convertible dtype on a Series" + s = Series(period_range("2013", periods=10, freq=freq)) + + with pytest.raises(TypeError, match=msg): + frequencies.infer_freq(s) + + +@pytest.mark.parametrize("freq", ["ME", "ms", "s"]) +def test_series_datetime_index(freq): + s = Series(date_range("20130101", periods=10, freq=freq)) + inferred = frequencies.infer_freq(s) + assert inferred == freq + + +@pytest.mark.parametrize( + "offset_func", + [ + _get_offset, + lambda freq: date_range("2011-01-01", periods=5, freq=freq), + ], +) +@pytest.mark.parametrize( + "freq", + [ + "WEEKDAY", + "EOM", + "W@MON", + "W@TUE", + "W@WED", + "W@THU", + "W@FRI", + "W@SAT", + "W@SUN", + "QE@JAN", + "QE@FEB", + "QE@MAR", + "YE@JAN", + "YE@FEB", + "YE@MAR", + "YE@APR", + "YE@MAY", + "YE@JUN", + "YE@JUL", + "YE@AUG", + "YE@SEP", + "YE@OCT", + "YE@NOV", + "YE@DEC", + "YE@JAN", + "WOM@1MON", + "WOM@2MON", + "WOM@3MON", + "WOM@4MON", + "WOM@1TUE", + "WOM@2TUE", + "WOM@3TUE", + "WOM@4TUE", + "WOM@1WED", + "WOM@2WED", + "WOM@3WED", + "WOM@4WED", + "WOM@1THU", + "WOM@2THU", + "WOM@3THU", + "WOM@4THU", + "WOM@1FRI", + "WOM@2FRI", + "WOM@3FRI", + "WOM@4FRI", + ], +) +def test_legacy_offset_warnings(offset_func, freq): + with pytest.raises(ValueError, match=INVALID_FREQ_ERR_MSG): + offset_func(freq) + + +def test_ms_vs_capital_ms(): + left = _get_offset("ms") + right = _get_offset("MS") + + assert left == offsets.Milli() + assert right == offsets.MonthBegin() + + +def test_infer_freq_non_nano(): + arr = np.arange(10).astype(np.int64).view("M8[s]") + dta = DatetimeArray._simple_new(arr, dtype=arr.dtype) + res = frequencies.infer_freq(dta) + assert res == "s" + + arr2 = arr.view("m8[ms]") + tda = TimedeltaArray._simple_new(arr2, dtype=arr2.dtype) + res2 = frequencies.infer_freq(tda) + assert res2 == "ms" + + +def test_infer_freq_non_nano_tzaware(tz_aware_fixture): + tz = tz_aware_fixture + + dti = date_range("2016-01-01", periods=365, freq="B", tz=tz) + dta = dti._data.as_unit("s") + + res = frequencies.infer_freq(dta) + assert res == "B" diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..93ebd230fceed72cd6f78eb0a19cb10812b84a71 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_calendar.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_calendar.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..772b415ddf2ee8880fd9b0c158b379da79670831 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_calendar.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_federal.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_federal.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..548ce2be40e39d53845c34e1aeca657835e2654f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_federal.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_holiday.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_holiday.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b9465cf681c6eacae625238a80991b5c9f8b5080 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_holiday.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_observance.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_observance.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ddd1743c298de49c3d4ba9cb16c66ee31005cf3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_observance.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_calendar.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_calendar.py new file mode 100644 index 0000000000000000000000000000000000000000..99829857e68363ec845dd9dff3d90917c31adaa0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_calendar.py @@ -0,0 +1,119 @@ +from datetime import datetime + +import pytest + +from pandas import ( + DatetimeIndex, + offsets, + to_datetime, +) +import pandas._testing as tm + +from pandas.tseries.holiday import ( + AbstractHolidayCalendar, + Holiday, + Timestamp, + USFederalHolidayCalendar, + USLaborDay, + USThanksgivingDay, + get_calendar, +) + + +@pytest.mark.parametrize( + "transform", [lambda x: x, lambda x: x.strftime("%Y-%m-%d"), lambda x: Timestamp(x)] +) +def test_calendar(transform): + start_date = datetime(2012, 1, 1) + end_date = datetime(2012, 12, 31) + + calendar = USFederalHolidayCalendar() + holidays = calendar.holidays(transform(start_date), transform(end_date)) + + expected = [ + datetime(2012, 1, 2), + datetime(2012, 1, 16), + datetime(2012, 2, 20), + datetime(2012, 5, 28), + datetime(2012, 7, 4), + datetime(2012, 9, 3), + datetime(2012, 10, 8), + datetime(2012, 11, 12), + datetime(2012, 11, 22), + datetime(2012, 12, 25), + ] + + assert list(holidays.to_pydatetime()) == expected + + +def test_calendar_caching(): + # see gh-9552. + + class TestCalendar(AbstractHolidayCalendar): + def __init__(self, name=None, rules=None) -> None: + super().__init__(name=name, rules=rules) + + jan1 = TestCalendar(rules=[Holiday("jan1", year=2015, month=1, day=1)]) + jan2 = TestCalendar(rules=[Holiday("jan2", year=2015, month=1, day=2)]) + + # Getting holidays for Jan 1 should not alter results for Jan 2. + expected = DatetimeIndex(["01-Jan-2015"]).as_unit("ns") + tm.assert_index_equal(jan1.holidays(), expected) + + expected2 = DatetimeIndex(["02-Jan-2015"]).as_unit("ns") + tm.assert_index_equal(jan2.holidays(), expected2) + + +def test_calendar_observance_dates(): + # see gh-11477 + us_fed_cal = get_calendar("USFederalHolidayCalendar") + holidays0 = us_fed_cal.holidays( + datetime(2015, 7, 3), datetime(2015, 7, 3) + ) # <-- same start and end dates + holidays1 = us_fed_cal.holidays( + datetime(2015, 7, 3), datetime(2015, 7, 6) + ) # <-- different start and end dates + holidays2 = us_fed_cal.holidays( + datetime(2015, 7, 3), datetime(2015, 7, 3) + ) # <-- same start and end dates + + # These should all produce the same result. + # + # In addition, calling with different start and end + # dates should not alter the output if we call the + # function again with the same start and end date. + tm.assert_index_equal(holidays0, holidays1) + tm.assert_index_equal(holidays0, holidays2) + + +def test_rule_from_name(): + us_fed_cal = get_calendar("USFederalHolidayCalendar") + assert us_fed_cal.rule_from_name("Thanksgiving Day") == USThanksgivingDay + + +def test_calendar_2031(): + # See gh-27790 + # + # Labor Day 2031 is on September 1. Saturday before is August 30. + # Next working day after August 30 ought to be Tuesday, September 2. + + class testCalendar(AbstractHolidayCalendar): + rules = [USLaborDay] + + cal = testCalendar() + workDay = offsets.CustomBusinessDay(calendar=cal) + Sat_before_Labor_Day_2031 = to_datetime("2031-08-30") + next_working_day = Sat_before_Labor_Day_2031 + 0 * workDay + assert next_working_day == to_datetime("2031-09-02") + + +def test_no_holidays_calendar(): + # Test for issue #31415 + + class NoHolidaysCalendar(AbstractHolidayCalendar): + pass + + cal = NoHolidaysCalendar() + holidays = cal.holidays(Timestamp("01-Jan-2020"), Timestamp("01-Jan-2021")) + empty_index = DatetimeIndex([]) # Type is DatetimeIndex since return_name=False + tm.assert_index_equal(holidays, empty_index) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_federal.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_federal.py new file mode 100644 index 0000000000000000000000000000000000000000..2565877f8a2a44071f96cef0f670c23842a364b6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_federal.py @@ -0,0 +1,58 @@ +from datetime import datetime + +from pandas import DatetimeIndex +import pandas._testing as tm + +from pandas.tseries.holiday import ( + AbstractHolidayCalendar, + USFederalHolidayCalendar, + USMartinLutherKingJr, + USMemorialDay, +) + + +def test_no_mlk_before_1986(): + # see gh-10278 + class MLKCalendar(AbstractHolidayCalendar): + rules = [USMartinLutherKingJr] + + holidays = MLKCalendar().holidays(start="1984", end="1988").to_pydatetime().tolist() + + # Testing to make sure holiday is not incorrectly observed before 1986. + assert holidays == [datetime(1986, 1, 20, 0, 0), datetime(1987, 1, 19, 0, 0)] + + +def test_memorial_day(): + class MemorialDay(AbstractHolidayCalendar): + rules = [USMemorialDay] + + holidays = MemorialDay().holidays(start="1971", end="1980").to_pydatetime().tolist() + + # Fixes 5/31 error and checked manually against Wikipedia. + assert holidays == [ + datetime(1971, 5, 31, 0, 0), + datetime(1972, 5, 29, 0, 0), + datetime(1973, 5, 28, 0, 0), + datetime(1974, 5, 27, 0, 0), + datetime(1975, 5, 26, 0, 0), + datetime(1976, 5, 31, 0, 0), + datetime(1977, 5, 30, 0, 0), + datetime(1978, 5, 29, 0, 0), + datetime(1979, 5, 28, 0, 0), + ] + + +def test_federal_holiday_inconsistent_returntype(): + # GH 49075 test case + # Instantiate two calendars to rule out _cache + cal1 = USFederalHolidayCalendar() + cal2 = USFederalHolidayCalendar() + + results_2018 = cal1.holidays(start=datetime(2018, 8, 1), end=datetime(2018, 8, 31)) + results_2019 = cal2.holidays(start=datetime(2019, 8, 1), end=datetime(2019, 8, 31)) + expected_results = DatetimeIndex([], dtype="datetime64[ns]", freq=None) + + # Check against expected results to ensure both date + # ranges generate expected results as per GH49075 submission + tm.assert_index_equal(results_2018, expected_results) + tm.assert_index_equal(results_2019, expected_results) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_holiday.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_holiday.py new file mode 100644 index 0000000000000000000000000000000000000000..b2eefd04ef93b159140ae72ae3d96d8adf071719 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_holiday.py @@ -0,0 +1,332 @@ +from datetime import datetime + +import pytest +from pytz import utc + +from pandas import ( + DatetimeIndex, + Series, +) +import pandas._testing as tm + +from pandas.tseries.holiday import ( + MO, + SA, + AbstractHolidayCalendar, + DateOffset, + EasterMonday, + GoodFriday, + Holiday, + HolidayCalendarFactory, + Timestamp, + USColumbusDay, + USFederalHolidayCalendar, + USLaborDay, + USMartinLutherKingJr, + USMemorialDay, + USPresidentsDay, + USThanksgivingDay, + get_calendar, + next_monday, +) + + +@pytest.mark.parametrize( + "holiday,start_date,end_date,expected", + [ + ( + USMemorialDay, + datetime(2011, 1, 1), + datetime(2020, 12, 31), + [ + datetime(2011, 5, 30), + datetime(2012, 5, 28), + datetime(2013, 5, 27), + datetime(2014, 5, 26), + datetime(2015, 5, 25), + datetime(2016, 5, 30), + datetime(2017, 5, 29), + datetime(2018, 5, 28), + datetime(2019, 5, 27), + datetime(2020, 5, 25), + ], + ), + ( + Holiday("July 4th Eve", month=7, day=3), + "2001-01-01", + "2003-03-03", + [Timestamp("2001-07-03 00:00:00"), Timestamp("2002-07-03 00:00:00")], + ), + ( + Holiday("July 4th Eve", month=7, day=3, days_of_week=(0, 1, 2, 3)), + "2001-01-01", + "2008-03-03", + [ + Timestamp("2001-07-03 00:00:00"), + Timestamp("2002-07-03 00:00:00"), + Timestamp("2003-07-03 00:00:00"), + Timestamp("2006-07-03 00:00:00"), + Timestamp("2007-07-03 00:00:00"), + ], + ), + ( + EasterMonday, + datetime(2011, 1, 1), + datetime(2020, 12, 31), + [ + Timestamp("2011-04-25 00:00:00"), + Timestamp("2012-04-09 00:00:00"), + Timestamp("2013-04-01 00:00:00"), + Timestamp("2014-04-21 00:00:00"), + Timestamp("2015-04-06 00:00:00"), + Timestamp("2016-03-28 00:00:00"), + Timestamp("2017-04-17 00:00:00"), + Timestamp("2018-04-02 00:00:00"), + Timestamp("2019-04-22 00:00:00"), + Timestamp("2020-04-13 00:00:00"), + ], + ), + ( + GoodFriday, + datetime(2011, 1, 1), + datetime(2020, 12, 31), + [ + Timestamp("2011-04-22 00:00:00"), + Timestamp("2012-04-06 00:00:00"), + Timestamp("2013-03-29 00:00:00"), + Timestamp("2014-04-18 00:00:00"), + Timestamp("2015-04-03 00:00:00"), + Timestamp("2016-03-25 00:00:00"), + Timestamp("2017-04-14 00:00:00"), + Timestamp("2018-03-30 00:00:00"), + Timestamp("2019-04-19 00:00:00"), + Timestamp("2020-04-10 00:00:00"), + ], + ), + ( + USThanksgivingDay, + datetime(2011, 1, 1), + datetime(2020, 12, 31), + [ + datetime(2011, 11, 24), + datetime(2012, 11, 22), + datetime(2013, 11, 28), + datetime(2014, 11, 27), + datetime(2015, 11, 26), + datetime(2016, 11, 24), + datetime(2017, 11, 23), + datetime(2018, 11, 22), + datetime(2019, 11, 28), + datetime(2020, 11, 26), + ], + ), + ], +) +def test_holiday_dates(holiday, start_date, end_date, expected): + assert list(holiday.dates(start_date, end_date)) == expected + + # Verify that timezone info is preserved. + assert list( + holiday.dates( + utc.localize(Timestamp(start_date)), utc.localize(Timestamp(end_date)) + ) + ) == [utc.localize(dt) for dt in expected] + + +@pytest.mark.parametrize( + "holiday,start,expected", + [ + (USMemorialDay, datetime(2015, 7, 1), []), + (USMemorialDay, "2015-05-25", [Timestamp("2015-05-25")]), + (USLaborDay, datetime(2015, 7, 1), []), + (USLaborDay, "2015-09-07", [Timestamp("2015-09-07")]), + (USColumbusDay, datetime(2015, 7, 1), []), + (USColumbusDay, "2015-10-12", [Timestamp("2015-10-12")]), + (USThanksgivingDay, datetime(2015, 7, 1), []), + (USThanksgivingDay, "2015-11-26", [Timestamp("2015-11-26")]), + (USMartinLutherKingJr, datetime(2015, 7, 1), []), + (USMartinLutherKingJr, "2015-01-19", [Timestamp("2015-01-19")]), + (USPresidentsDay, datetime(2015, 7, 1), []), + (USPresidentsDay, "2015-02-16", [Timestamp("2015-02-16")]), + (GoodFriday, datetime(2015, 7, 1), []), + (GoodFriday, "2015-04-03", [Timestamp("2015-04-03")]), + (EasterMonday, "2015-04-06", [Timestamp("2015-04-06")]), + (EasterMonday, datetime(2015, 7, 1), []), + (EasterMonday, "2015-04-05", []), + ("New Year's Day", "2015-01-01", [Timestamp("2015-01-01")]), + ("New Year's Day", "2010-12-31", [Timestamp("2010-12-31")]), + ("New Year's Day", datetime(2015, 7, 1), []), + ("New Year's Day", "2011-01-01", []), + ("Independence Day", "2015-07-03", [Timestamp("2015-07-03")]), + ("Independence Day", datetime(2015, 7, 1), []), + ("Independence Day", "2015-07-04", []), + ("Veterans Day", "2012-11-12", [Timestamp("2012-11-12")]), + ("Veterans Day", datetime(2015, 7, 1), []), + ("Veterans Day", "2012-11-11", []), + ("Christmas Day", "2011-12-26", [Timestamp("2011-12-26")]), + ("Christmas Day", datetime(2015, 7, 1), []), + ("Christmas Day", "2011-12-25", []), + ("Juneteenth National Independence Day", "2020-06-19", []), + ( + "Juneteenth National Independence Day", + "2021-06-18", + [Timestamp("2021-06-18")], + ), + ("Juneteenth National Independence Day", "2022-06-19", []), + ( + "Juneteenth National Independence Day", + "2022-06-20", + [Timestamp("2022-06-20")], + ), + ], +) +def test_holidays_within_dates(holiday, start, expected): + # see gh-11477 + # + # Fix holiday behavior where holiday.dates returned dates outside + # start/end date, or observed rules could not be applied because the + # holiday was not in the original date range (e.g., 7/4/2015 -> 7/3/2015). + if isinstance(holiday, str): + calendar = get_calendar("USFederalHolidayCalendar") + holiday = calendar.rule_from_name(holiday) + + assert list(holiday.dates(start, start)) == expected + + # Verify that timezone info is preserved. + assert list( + holiday.dates(utc.localize(Timestamp(start)), utc.localize(Timestamp(start))) + ) == [utc.localize(dt) for dt in expected] + + +@pytest.mark.parametrize( + "transform", [lambda x: x.strftime("%Y-%m-%d"), lambda x: Timestamp(x)] +) +def test_argument_types(transform): + start_date = datetime(2011, 1, 1) + end_date = datetime(2020, 12, 31) + + holidays = USThanksgivingDay.dates(start_date, end_date) + holidays2 = USThanksgivingDay.dates(transform(start_date), transform(end_date)) + tm.assert_index_equal(holidays, holidays2) + + +@pytest.mark.parametrize( + "name,kwargs", + [ + ("One-Time", {"year": 2012, "month": 5, "day": 28}), + ( + "Range", + { + "month": 5, + "day": 28, + "start_date": datetime(2012, 1, 1), + "end_date": datetime(2012, 12, 31), + "offset": DateOffset(weekday=MO(1)), + }, + ), + ], +) +def test_special_holidays(name, kwargs): + base_date = [datetime(2012, 5, 28)] + holiday = Holiday(name, **kwargs) + + start_date = datetime(2011, 1, 1) + end_date = datetime(2020, 12, 31) + + assert base_date == holiday.dates(start_date, end_date) + + +def test_get_calendar(): + class TestCalendar(AbstractHolidayCalendar): + rules = [] + + calendar = get_calendar("TestCalendar") + assert TestCalendar == type(calendar) + + +def test_factory(): + class_1 = HolidayCalendarFactory( + "MemorialDay", AbstractHolidayCalendar, USMemorialDay + ) + class_2 = HolidayCalendarFactory( + "Thanksgiving", AbstractHolidayCalendar, USThanksgivingDay + ) + class_3 = HolidayCalendarFactory("Combined", class_1, class_2) + + assert len(class_1.rules) == 1 + assert len(class_2.rules) == 1 + assert len(class_3.rules) == 2 + + +def test_both_offset_observance_raises(): + # see gh-10217 + msg = "Cannot use both offset and observance" + with pytest.raises(NotImplementedError, match=msg): + Holiday( + "Cyber Monday", + month=11, + day=1, + offset=[DateOffset(weekday=SA(4))], + observance=next_monday, + ) + + +def test_half_open_interval_with_observance(): + # Prompted by GH 49075 + # Check for holidays that have a half-open date interval where + # they have either a start_date or end_date defined along + # with a defined observance pattern to make sure that the return type + # for Holiday.dates() remains consistent before & after the year that + # marks the 'edge' of the half-open date interval. + + holiday_1 = Holiday( + "Arbitrary Holiday - start 2022-03-14", + start_date=datetime(2022, 3, 14), + month=3, + day=14, + observance=next_monday, + ) + holiday_2 = Holiday( + "Arbitrary Holiday 2 - end 2022-03-20", + end_date=datetime(2022, 3, 20), + month=3, + day=20, + observance=next_monday, + ) + + class TestHolidayCalendar(AbstractHolidayCalendar): + rules = [ + USMartinLutherKingJr, + holiday_1, + holiday_2, + USLaborDay, + ] + + start = Timestamp("2022-08-01") + end = Timestamp("2022-08-31") + year_offset = DateOffset(years=5) + expected_results = DatetimeIndex([], dtype="datetime64[ns]", freq=None) + test_cal = TestHolidayCalendar() + + date_interval_low = test_cal.holidays(start - year_offset, end - year_offset) + date_window_edge = test_cal.holidays(start, end) + date_interval_high = test_cal.holidays(start + year_offset, end + year_offset) + + tm.assert_index_equal(date_interval_low, expected_results) + tm.assert_index_equal(date_window_edge, expected_results) + tm.assert_index_equal(date_interval_high, expected_results) + + +def test_holidays_with_timezone_specified_but_no_occurences(): + # GH 54580 + # _apply_rule() in holiday.py was silently dropping timezones if you passed it + # an empty list of holiday dates that had timezone information + start_date = Timestamp("2018-01-01", tz="America/Chicago") + end_date = Timestamp("2018-01-11", tz="America/Chicago") + test_case = USFederalHolidayCalendar().holidays( + start_date, end_date, return_name=True + ) + expected_results = Series("New Year's Day", index=[start_date]) + expected_results.index = expected_results.index.as_unit("ns") + + tm.assert_equal(test_case, expected_results) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_observance.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_observance.py new file mode 100644 index 0000000000000000000000000000000000000000..83038ad254b77daee6667bd269a8775016649d39 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_observance.py @@ -0,0 +1,105 @@ +from datetime import datetime + +import pytest + +from pandas.tseries.holiday import ( + after_nearest_workday, + before_nearest_workday, + nearest_workday, + next_monday, + next_monday_or_tuesday, + next_workday, + previous_friday, + previous_workday, + sunday_to_monday, + weekend_to_monday, +) + +_WEDNESDAY = datetime(2014, 4, 9) +_THURSDAY = datetime(2014, 4, 10) +_FRIDAY = datetime(2014, 4, 11) +_SATURDAY = datetime(2014, 4, 12) +_SUNDAY = datetime(2014, 4, 13) +_MONDAY = datetime(2014, 4, 14) +_TUESDAY = datetime(2014, 4, 15) +_NEXT_WEDNESDAY = datetime(2014, 4, 16) + + +@pytest.mark.parametrize("day", [_SATURDAY, _SUNDAY]) +def test_next_monday(day): + assert next_monday(day) == _MONDAY + + +@pytest.mark.parametrize( + "day,expected", [(_SATURDAY, _MONDAY), (_SUNDAY, _TUESDAY), (_MONDAY, _TUESDAY)] +) +def test_next_monday_or_tuesday(day, expected): + assert next_monday_or_tuesday(day) == expected + + +@pytest.mark.parametrize("day", [_SATURDAY, _SUNDAY]) +def test_previous_friday(day): + assert previous_friday(day) == _FRIDAY + + +def test_sunday_to_monday(): + assert sunday_to_monday(_SUNDAY) == _MONDAY + + +@pytest.mark.parametrize( + "day,expected", [(_SATURDAY, _FRIDAY), (_SUNDAY, _MONDAY), (_MONDAY, _MONDAY)] +) +def test_nearest_workday(day, expected): + assert nearest_workday(day) == expected + + +@pytest.mark.parametrize( + "day,expected", [(_SATURDAY, _MONDAY), (_SUNDAY, _MONDAY), (_MONDAY, _MONDAY)] +) +def test_weekend_to_monday(day, expected): + assert weekend_to_monday(day) == expected + + +@pytest.mark.parametrize( + "day,expected", + [ + (_WEDNESDAY, _THURSDAY), + (_THURSDAY, _FRIDAY), + (_SATURDAY, _MONDAY), + (_SUNDAY, _MONDAY), + (_MONDAY, _TUESDAY), + (_TUESDAY, _NEXT_WEDNESDAY), # WED is same week as TUE + ], +) +def test_next_workday(day, expected): + assert next_workday(day) == expected + + +@pytest.mark.parametrize( + "day,expected", [(_SATURDAY, _FRIDAY), (_SUNDAY, _FRIDAY), (_TUESDAY, _MONDAY)] +) +def test_previous_workday(day, expected): + assert previous_workday(day) == expected + + +@pytest.mark.parametrize( + "day,expected", + [ + (_THURSDAY, _WEDNESDAY), + (_FRIDAY, _THURSDAY), + (_SATURDAY, _THURSDAY), + (_SUNDAY, _FRIDAY), + (_MONDAY, _FRIDAY), # last week Friday + (_TUESDAY, _MONDAY), + (_NEXT_WEDNESDAY, _TUESDAY), # WED is same week as TUE + ], +) +def test_before_nearest_workday(day, expected): + assert before_nearest_workday(day) == expected + + +@pytest.mark.parametrize( + "day,expected", [(_SATURDAY, _MONDAY), (_SUNDAY, _TUESDAY), (_FRIDAY, _MONDAY)] +) +def test_after_nearest_workday(day, expected): + assert after_nearest_workday(day) == expected diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b100a7725db5bde895b89da42ea47fd9dc0c53c9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/common.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/common.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9a6a24e57ef037b72a1ee7418e5051c6efa4c211 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/common.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_hour.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_hour.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ac83d247774067c61596e8372866f5a3ebf82f2 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_hour.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_month.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_month.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d9f9050d8a90922c338265506f767568aa9ef461 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_month.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_year.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_year.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..699343dba16662abf7823fff36c65f24f860d784 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_year.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_common.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_common.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2939ff465b26bd0389528d3b4eeadd39e37127de Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_common.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_custom_business_day.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_custom_business_day.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..12fd39d922034715e67bc082f915d7b56b31c9cc Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_custom_business_day.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_custom_business_month.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_custom_business_month.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3317e7b7eab3aaf088791e15620dc3f77d1fdb78 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_custom_business_month.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_dst.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_dst.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50d4a2c7421892233fcf2c7450fe6eb732bb3f54 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_dst.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_index.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_index.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c25e444d92af895ad76502452f2b0313d6031cbc Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_index.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_month.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_month.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..30586e5ae3f9b484557181a957f52ae7ad23ac88 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_month.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_offsets.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_offsets.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..db079a5a8b957685d40ae691250f06bbeb6f0d60 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_offsets.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_quarter.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_quarter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..287332aa7ecf34bc6803aeb0154cbe720a76a0db Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_quarter.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_year.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_year.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..590281991b7e21b20a2c21dbe90db2d391832e95 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_year.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/common.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/common.py new file mode 100644 index 0000000000000000000000000000000000000000..efb010addad225cda407d55c47dc804645cf3999 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/common.py @@ -0,0 +1,37 @@ +""" +Assertion helpers and base class for offsets tests +""" +from __future__ import annotations + + +def assert_offset_equal(offset, base, expected): + actual = offset + base + actual_swapped = base + offset + actual_apply = offset._apply(base) + try: + assert actual == expected + assert actual_swapped == expected + assert actual_apply == expected + except AssertionError as err: + raise AssertionError( + f"\nExpected: {expected}\nActual: {actual}\nFor Offset: {offset})" + f"\nAt Date: {base}" + ) from err + + +def assert_is_on_offset(offset, date, expected): + actual = offset.is_on_offset(date) + assert actual == expected, ( + f"\nExpected: {expected}\nActual: {actual}\nFor Offset: {offset})" + f"\nAt Date: {date}" + ) + + +class WeekDay: + MON = 0 + TUE = 1 + WED = 2 + THU = 3 + FRI = 4 + SAT = 5 + SUN = 6 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_day.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_day.py new file mode 100644 index 0000000000000000000000000000000000000000..7db1921369023eaf05c65bf537c259de3f2a81cb --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_day.py @@ -0,0 +1,236 @@ +""" +Tests for offsets.BDay +""" +from __future__ import annotations + +from datetime import ( + date, + datetime, + timedelta, +) + +import numpy as np +import pytest + +from pandas._libs.tslibs.offsets import ( + ApplyTypeError, + BDay, + BMonthEnd, +) + +from pandas import ( + DatetimeIndex, + Timedelta, + _testing as tm, +) +from pandas.tests.tseries.offsets.common import ( + assert_is_on_offset, + assert_offset_equal, +) + +from pandas.tseries import offsets + + +@pytest.fixture +def dt(): + return datetime(2008, 1, 1) + + +@pytest.fixture +def _offset(): + return BDay + + +@pytest.fixture +def offset(_offset): + return _offset() + + +@pytest.fixture +def offset2(_offset): + return _offset(2) + + +class TestBusinessDay: + def test_different_normalize_equals(self, _offset, offset2): + # GH#21404 changed __eq__ to return False when `normalize` does not match + offset = _offset() + offset2 = _offset(normalize=True) + assert offset != offset2 + + def test_repr(self, offset, offset2): + assert repr(offset) == "" + assert repr(offset2) == "<2 * BusinessDays>" + + expected = "" + assert repr(offset + timedelta(1)) == expected + + def test_with_offset(self, dt, offset): + offset = offset + timedelta(hours=2) + + assert (dt + offset) == datetime(2008, 1, 2, 2) + + @pytest.mark.parametrize( + "td", + [ + Timedelta(hours=2), + Timedelta(hours=2).to_pytimedelta(), + Timedelta(hours=2).to_timedelta64(), + ], + ids=lambda x: type(x), + ) + def test_with_offset_index(self, td, dt, offset): + dti = DatetimeIndex([dt]) + expected = DatetimeIndex([datetime(2008, 1, 2, 2)]) + + result = dti + (td + offset) + tm.assert_index_equal(result, expected) + + result = dti + (offset + td) + tm.assert_index_equal(result, expected) + + def test_eq(self, offset2): + assert offset2 == offset2 + + def test_hash(self, offset2): + assert hash(offset2) == hash(offset2) + + def test_add_datetime(self, dt, offset2): + assert offset2 + dt == datetime(2008, 1, 3) + assert offset2 + np.datetime64("2008-01-01 00:00:00") == datetime(2008, 1, 3) + + def testRollback1(self, dt, _offset): + assert _offset(10).rollback(dt) == dt + + def testRollback2(self, _offset): + assert _offset(10).rollback(datetime(2008, 1, 5)) == datetime(2008, 1, 4) + + def testRollforward1(self, dt, _offset): + assert _offset(10).rollforward(dt) == dt + + def testRollforward2(self, _offset): + assert _offset(10).rollforward(datetime(2008, 1, 5)) == datetime(2008, 1, 7) + + def test_roll_date_object(self, offset): + dt = date(2012, 9, 15) + + result = offset.rollback(dt) + assert result == datetime(2012, 9, 14) + + result = offset.rollforward(dt) + assert result == datetime(2012, 9, 17) + + offset = offsets.Day() + result = offset.rollback(dt) + assert result == datetime(2012, 9, 15) + + result = offset.rollforward(dt) + assert result == datetime(2012, 9, 15) + + @pytest.mark.parametrize( + "dt, expected", + [ + (datetime(2008, 1, 1), True), + (datetime(2008, 1, 5), False), + ], + ) + def test_is_on_offset(self, offset, dt, expected): + assert_is_on_offset(offset, dt, expected) + + apply_cases: list[tuple[int, dict[datetime, datetime]]] = [ + ( + 1, + { + datetime(2008, 1, 1): datetime(2008, 1, 2), + datetime(2008, 1, 4): datetime(2008, 1, 7), + datetime(2008, 1, 5): datetime(2008, 1, 7), + datetime(2008, 1, 6): datetime(2008, 1, 7), + datetime(2008, 1, 7): datetime(2008, 1, 8), + }, + ), + ( + 2, + { + datetime(2008, 1, 1): datetime(2008, 1, 3), + datetime(2008, 1, 4): datetime(2008, 1, 8), + datetime(2008, 1, 5): datetime(2008, 1, 8), + datetime(2008, 1, 6): datetime(2008, 1, 8), + datetime(2008, 1, 7): datetime(2008, 1, 9), + }, + ), + ( + -1, + { + datetime(2008, 1, 1): datetime(2007, 12, 31), + datetime(2008, 1, 4): datetime(2008, 1, 3), + datetime(2008, 1, 5): datetime(2008, 1, 4), + datetime(2008, 1, 6): datetime(2008, 1, 4), + datetime(2008, 1, 7): datetime(2008, 1, 4), + datetime(2008, 1, 8): datetime(2008, 1, 7), + }, + ), + ( + -2, + { + datetime(2008, 1, 1): datetime(2007, 12, 28), + datetime(2008, 1, 4): datetime(2008, 1, 2), + datetime(2008, 1, 5): datetime(2008, 1, 3), + datetime(2008, 1, 6): datetime(2008, 1, 3), + datetime(2008, 1, 7): datetime(2008, 1, 3), + datetime(2008, 1, 8): datetime(2008, 1, 4), + datetime(2008, 1, 9): datetime(2008, 1, 7), + }, + ), + ( + 0, + { + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2008, 1, 4): datetime(2008, 1, 4), + datetime(2008, 1, 5): datetime(2008, 1, 7), + datetime(2008, 1, 6): datetime(2008, 1, 7), + datetime(2008, 1, 7): datetime(2008, 1, 7), + }, + ), + ] + + @pytest.mark.parametrize("case", apply_cases) + def test_apply(self, case, _offset): + n, cases = case + offset = _offset(n) + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + def test_apply_large_n(self, _offset): + dt = datetime(2012, 10, 23) + + result = dt + _offset(10) + assert result == datetime(2012, 11, 6) + + result = dt + _offset(100) - _offset(100) + assert result == dt + + off = _offset() * 6 + rs = datetime(2012, 1, 1) - off + xp = datetime(2011, 12, 23) + assert rs == xp + + st = datetime(2011, 12, 18) + rs = st + off + xp = datetime(2011, 12, 26) + assert rs == xp + + off = _offset() * 10 + rs = datetime(2014, 1, 5) + off # see #5890 + xp = datetime(2014, 1, 17) + assert rs == xp + + def test_apply_corner(self, _offset): + if _offset is BDay: + msg = "Only know how to combine business day with datetime or timedelta" + else: + msg = ( + "Only know how to combine trading day " + "with datetime, datetime64 or timedelta" + ) + with pytest.raises(ApplyTypeError, match=msg): + _offset()._apply(BMonthEnd()) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_hour.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_hour.py new file mode 100644 index 0000000000000000000000000000000000000000..2779100f5355cf7475b10d3de6bf7ceebc92af96 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_hour.py @@ -0,0 +1,1445 @@ +""" +Tests for offsets.BusinessHour +""" +from __future__ import annotations + +from datetime import ( + datetime, + time as dt_time, +) + +import pytest + +from pandas._libs.tslibs import ( + Timedelta, + Timestamp, +) +from pandas._libs.tslibs.offsets import ( + BDay, + BusinessHour, + Nano, +) + +from pandas import ( + DatetimeIndex, + _testing as tm, + date_range, +) +from pandas.tests.tseries.offsets.common import assert_offset_equal + + +@pytest.fixture +def dt(): + return datetime(2014, 7, 1, 10, 00) + + +@pytest.fixture +def _offset(): + return BusinessHour + + +@pytest.fixture +def offset1(): + return BusinessHour() + + +@pytest.fixture +def offset2(): + return BusinessHour(n=3) + + +@pytest.fixture +def offset3(): + return BusinessHour(n=-1) + + +@pytest.fixture +def offset4(): + return BusinessHour(n=-4) + + +@pytest.fixture +def offset5(): + return BusinessHour(start=dt_time(11, 0), end=dt_time(14, 30)) + + +@pytest.fixture +def offset6(): + return BusinessHour(start="20:00", end="05:00") + + +@pytest.fixture +def offset7(): + return BusinessHour(n=-2, start=dt_time(21, 30), end=dt_time(6, 30)) + + +@pytest.fixture +def offset8(): + return BusinessHour(start=["09:00", "13:00"], end=["12:00", "17:00"]) + + +@pytest.fixture +def offset9(): + return BusinessHour(n=3, start=["09:00", "22:00"], end=["13:00", "03:00"]) + + +@pytest.fixture +def offset10(): + return BusinessHour(n=-1, start=["23:00", "13:00"], end=["02:00", "17:00"]) + + +class TestBusinessHour: + @pytest.mark.parametrize( + "start,end,match", + [ + ( + dt_time(11, 0, 5), + "17:00", + "time data must be specified only with hour and minute", + ), + ("AAA", "17:00", "time data must match '%H:%M' format"), + ("14:00:05", "17:00", "time data must match '%H:%M' format"), + ([], "17:00", "Must include at least 1 start time"), + ("09:00", [], "Must include at least 1 end time"), + ( + ["09:00", "11:00"], + "17:00", + "number of starting time and ending time must be the same", + ), + ( + ["09:00", "11:00"], + ["10:00"], + "number of starting time and ending time must be the same", + ), + ( + ["09:00", "11:00"], + ["12:00", "20:00"], + r"invalid starting and ending time\(s\): opening hours should not " + "touch or overlap with one another", + ), + ( + ["12:00", "20:00"], + ["09:00", "11:00"], + r"invalid starting and ending time\(s\): opening hours should not " + "touch or overlap with one another", + ), + ], + ) + def test_constructor_errors(self, start, end, match): + with pytest.raises(ValueError, match=match): + BusinessHour(start=start, end=end) + + def test_different_normalize_equals(self, _offset): + # GH#21404 changed __eq__ to return False when `normalize` does not match + offset = _offset() + offset2 = _offset(normalize=True) + assert offset != offset2 + + def test_repr( + self, + offset1, + offset2, + offset3, + offset4, + offset5, + offset6, + offset7, + offset8, + offset9, + offset10, + ): + assert repr(offset1) == "" + assert repr(offset2) == "<3 * BusinessHours: bh=09:00-17:00>" + assert repr(offset3) == "<-1 * BusinessHour: bh=09:00-17:00>" + assert repr(offset4) == "<-4 * BusinessHours: bh=09:00-17:00>" + + assert repr(offset5) == "" + assert repr(offset6) == "" + assert repr(offset7) == "<-2 * BusinessHours: bh=21:30-06:30>" + assert repr(offset8) == "" + assert repr(offset9) == "<3 * BusinessHours: bh=09:00-13:00,22:00-03:00>" + assert repr(offset10) == "<-1 * BusinessHour: bh=13:00-17:00,23:00-02:00>" + + def test_with_offset(self, dt): + expected = Timestamp("2014-07-01 13:00") + + assert dt + BusinessHour() * 3 == expected + assert dt + BusinessHour(n=3) == expected + + @pytest.mark.parametrize( + "offset_name", + ["offset1", "offset2", "offset3", "offset4", "offset8", "offset9", "offset10"], + ) + def test_eq_attribute(self, offset_name, request): + offset = request.getfixturevalue(offset_name) + assert offset == offset + + @pytest.mark.parametrize( + "offset1,offset2", + [ + (BusinessHour(start="09:00"), BusinessHour()), + ( + BusinessHour(start=["23:00", "13:00"], end=["12:00", "17:00"]), + BusinessHour(start=["13:00", "23:00"], end=["17:00", "12:00"]), + ), + ], + ) + def test_eq(self, offset1, offset2): + assert offset1 == offset2 + + @pytest.mark.parametrize( + "offset1,offset2", + [ + (BusinessHour(), BusinessHour(-1)), + (BusinessHour(start="09:00"), BusinessHour(start="09:01")), + ( + BusinessHour(start="09:00", end="17:00"), + BusinessHour(start="17:00", end="09:01"), + ), + ( + BusinessHour(start=["13:00", "23:00"], end=["18:00", "07:00"]), + BusinessHour(start=["13:00", "23:00"], end=["17:00", "12:00"]), + ), + ], + ) + def test_neq(self, offset1, offset2): + assert offset1 != offset2 + + @pytest.mark.parametrize( + "offset_name", + ["offset1", "offset2", "offset3", "offset4", "offset8", "offset9", "offset10"], + ) + def test_hash(self, offset_name, request): + offset = request.getfixturevalue(offset_name) + assert offset == offset + + def test_add_datetime( + self, + dt, + offset1, + offset2, + offset3, + offset4, + offset8, + offset9, + offset10, + ): + assert offset1 + dt == datetime(2014, 7, 1, 11) + assert offset2 + dt == datetime(2014, 7, 1, 13) + assert offset3 + dt == datetime(2014, 6, 30, 17) + assert offset4 + dt == datetime(2014, 6, 30, 14) + assert offset8 + dt == datetime(2014, 7, 1, 11) + assert offset9 + dt == datetime(2014, 7, 1, 22) + assert offset10 + dt == datetime(2014, 7, 1, 1) + + def test_sub(self, dt, offset2, _offset): + off = offset2 + msg = "Cannot subtract datetime from offset" + with pytest.raises(TypeError, match=msg): + off - dt + assert 2 * off - off == off + + assert dt - offset2 == dt + _offset(-3) + + def test_multiply_by_zero(self, dt, offset1, offset2): + assert dt - 0 * offset1 == dt + assert dt + 0 * offset1 == dt + assert dt - 0 * offset2 == dt + assert dt + 0 * offset2 == dt + + def testRollback1( + self, + dt, + _offset, + offset1, + offset2, + offset3, + offset4, + offset5, + offset6, + offset7, + offset8, + offset9, + offset10, + ): + assert offset1.rollback(dt) == dt + assert offset2.rollback(dt) == dt + assert offset3.rollback(dt) == dt + assert offset4.rollback(dt) == dt + assert offset5.rollback(dt) == datetime(2014, 6, 30, 14, 30) + assert offset6.rollback(dt) == datetime(2014, 7, 1, 5, 0) + assert offset7.rollback(dt) == datetime(2014, 7, 1, 6, 30) + assert offset8.rollback(dt) == dt + assert offset9.rollback(dt) == dt + assert offset10.rollback(dt) == datetime(2014, 7, 1, 2) + + datet = datetime(2014, 7, 1, 0) + assert offset1.rollback(datet) == datetime(2014, 6, 30, 17) + assert offset2.rollback(datet) == datetime(2014, 6, 30, 17) + assert offset3.rollback(datet) == datetime(2014, 6, 30, 17) + assert offset4.rollback(datet) == datetime(2014, 6, 30, 17) + assert offset5.rollback(datet) == datetime(2014, 6, 30, 14, 30) + assert offset6.rollback(datet) == datet + assert offset7.rollback(datet) == datet + assert offset8.rollback(datet) == datetime(2014, 6, 30, 17) + assert offset9.rollback(datet) == datet + assert offset10.rollback(datet) == datet + + assert _offset(5).rollback(dt) == dt + + def testRollback2(self, _offset): + assert _offset(-3).rollback(datetime(2014, 7, 5, 15, 0)) == datetime( + 2014, 7, 4, 17, 0 + ) + + def testRollforward1( + self, + dt, + _offset, + offset1, + offset2, + offset3, + offset4, + offset5, + offset6, + offset7, + offset8, + offset9, + offset10, + ): + assert offset1.rollforward(dt) == dt + assert offset2.rollforward(dt) == dt + assert offset3.rollforward(dt) == dt + assert offset4.rollforward(dt) == dt + assert offset5.rollforward(dt) == datetime(2014, 7, 1, 11, 0) + assert offset6.rollforward(dt) == datetime(2014, 7, 1, 20, 0) + assert offset7.rollforward(dt) == datetime(2014, 7, 1, 21, 30) + assert offset8.rollforward(dt) == dt + assert offset9.rollforward(dt) == dt + assert offset10.rollforward(dt) == datetime(2014, 7, 1, 13) + + datet = datetime(2014, 7, 1, 0) + assert offset1.rollforward(datet) == datetime(2014, 7, 1, 9) + assert offset2.rollforward(datet) == datetime(2014, 7, 1, 9) + assert offset3.rollforward(datet) == datetime(2014, 7, 1, 9) + assert offset4.rollforward(datet) == datetime(2014, 7, 1, 9) + assert offset5.rollforward(datet) == datetime(2014, 7, 1, 11) + assert offset6.rollforward(datet) == datet + assert offset7.rollforward(datet) == datet + assert offset8.rollforward(datet) == datetime(2014, 7, 1, 9) + assert offset9.rollforward(datet) == datet + assert offset10.rollforward(datet) == datet + + assert _offset(5).rollforward(dt) == dt + + def testRollforward2(self, _offset): + assert _offset(-3).rollforward(datetime(2014, 7, 5, 16, 0)) == datetime( + 2014, 7, 7, 9 + ) + + def test_roll_date_object(self): + offset = BusinessHour() + + dt = datetime(2014, 7, 6, 15, 0) + + result = offset.rollback(dt) + assert result == datetime(2014, 7, 4, 17) + + result = offset.rollforward(dt) + assert result == datetime(2014, 7, 7, 9) + + normalize_cases = [] + normalize_cases.append( + ( + BusinessHour(normalize=True), + { + datetime(2014, 7, 1, 8): datetime(2014, 7, 1), + datetime(2014, 7, 1, 17): datetime(2014, 7, 2), + datetime(2014, 7, 1, 16): datetime(2014, 7, 2), + datetime(2014, 7, 1, 23): datetime(2014, 7, 2), + datetime(2014, 7, 1, 0): datetime(2014, 7, 1), + datetime(2014, 7, 4, 15): datetime(2014, 7, 4), + datetime(2014, 7, 4, 15, 59): datetime(2014, 7, 4), + datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7), + datetime(2014, 7, 5, 23): datetime(2014, 7, 7), + datetime(2014, 7, 6, 10): datetime(2014, 7, 7), + }, + ) + ) + + normalize_cases.append( + ( + BusinessHour(-1, normalize=True), + { + datetime(2014, 7, 1, 8): datetime(2014, 6, 30), + datetime(2014, 7, 1, 17): datetime(2014, 7, 1), + datetime(2014, 7, 1, 16): datetime(2014, 7, 1), + datetime(2014, 7, 1, 10): datetime(2014, 6, 30), + datetime(2014, 7, 1, 0): datetime(2014, 6, 30), + datetime(2014, 7, 7, 10): datetime(2014, 7, 4), + datetime(2014, 7, 7, 10, 1): datetime(2014, 7, 7), + datetime(2014, 7, 5, 23): datetime(2014, 7, 4), + datetime(2014, 7, 6, 10): datetime(2014, 7, 4), + }, + ) + ) + + normalize_cases.append( + ( + BusinessHour(1, normalize=True, start="17:00", end="04:00"), + { + datetime(2014, 7, 1, 8): datetime(2014, 7, 1), + datetime(2014, 7, 1, 17): datetime(2014, 7, 1), + datetime(2014, 7, 1, 23): datetime(2014, 7, 2), + datetime(2014, 7, 2, 2): datetime(2014, 7, 2), + datetime(2014, 7, 2, 3): datetime(2014, 7, 2), + datetime(2014, 7, 4, 23): datetime(2014, 7, 5), + datetime(2014, 7, 5, 2): datetime(2014, 7, 5), + datetime(2014, 7, 7, 2): datetime(2014, 7, 7), + datetime(2014, 7, 7, 17): datetime(2014, 7, 7), + }, + ) + ) + + @pytest.mark.parametrize("case", normalize_cases) + def test_normalize(self, case): + offset, cases = case + for dt, expected in cases.items(): + assert offset._apply(dt) == expected + + on_offset_cases = [] + on_offset_cases.append( + ( + BusinessHour(), + { + datetime(2014, 7, 1, 9): True, + datetime(2014, 7, 1, 8, 59): False, + datetime(2014, 7, 1, 8): False, + datetime(2014, 7, 1, 17): True, + datetime(2014, 7, 1, 17, 1): False, + datetime(2014, 7, 1, 18): False, + datetime(2014, 7, 5, 9): False, + datetime(2014, 7, 6, 12): False, + }, + ) + ) + + on_offset_cases.append( + ( + BusinessHour(start="10:00", end="15:00"), + { + datetime(2014, 7, 1, 9): False, + datetime(2014, 7, 1, 10): True, + datetime(2014, 7, 1, 15): True, + datetime(2014, 7, 1, 15, 1): False, + datetime(2014, 7, 5, 12): False, + datetime(2014, 7, 6, 12): False, + }, + ) + ) + + on_offset_cases.append( + ( + BusinessHour(start="19:00", end="05:00"), + { + datetime(2014, 7, 1, 9, 0): False, + datetime(2014, 7, 1, 10, 0): False, + datetime(2014, 7, 1, 15): False, + datetime(2014, 7, 1, 15, 1): False, + datetime(2014, 7, 5, 12, 0): False, + datetime(2014, 7, 6, 12, 0): False, + datetime(2014, 7, 1, 19, 0): True, + datetime(2014, 7, 2, 0, 0): True, + datetime(2014, 7, 4, 23): True, + datetime(2014, 7, 5, 1): True, + datetime(2014, 7, 5, 5, 0): True, + datetime(2014, 7, 6, 23, 0): False, + datetime(2014, 7, 7, 3, 0): False, + }, + ) + ) + + on_offset_cases.append( + ( + BusinessHour(start=["09:00", "13:00"], end=["12:00", "17:00"]), + { + datetime(2014, 7, 1, 9): True, + datetime(2014, 7, 1, 8, 59): False, + datetime(2014, 7, 1, 8): False, + datetime(2014, 7, 1, 17): True, + datetime(2014, 7, 1, 17, 1): False, + datetime(2014, 7, 1, 18): False, + datetime(2014, 7, 5, 9): False, + datetime(2014, 7, 6, 12): False, + datetime(2014, 7, 1, 12, 30): False, + }, + ) + ) + + on_offset_cases.append( + ( + BusinessHour(start=["19:00", "23:00"], end=["21:00", "05:00"]), + { + datetime(2014, 7, 1, 9, 0): False, + datetime(2014, 7, 1, 10, 0): False, + datetime(2014, 7, 1, 15): False, + datetime(2014, 7, 1, 15, 1): False, + datetime(2014, 7, 5, 12, 0): False, + datetime(2014, 7, 6, 12, 0): False, + datetime(2014, 7, 1, 19, 0): True, + datetime(2014, 7, 2, 0, 0): True, + datetime(2014, 7, 4, 23): True, + datetime(2014, 7, 5, 1): True, + datetime(2014, 7, 5, 5, 0): True, + datetime(2014, 7, 6, 23, 0): False, + datetime(2014, 7, 7, 3, 0): False, + datetime(2014, 7, 4, 22): False, + }, + ) + ) + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, cases = case + for dt, expected in cases.items(): + assert offset.is_on_offset(dt) == expected + + apply_cases = [ + ( + BusinessHour(), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 12), + datetime(2014, 7, 1, 13): datetime(2014, 7, 1, 14), + datetime(2014, 7, 1, 15): datetime(2014, 7, 1, 16), + datetime(2014, 7, 1, 19): datetime(2014, 7, 2, 10), + datetime(2014, 7, 1, 16): datetime(2014, 7, 2, 9), + datetime(2014, 7, 1, 16, 30, 15): datetime(2014, 7, 2, 9, 30, 15), + datetime(2014, 7, 1, 17): datetime(2014, 7, 2, 10), + datetime(2014, 7, 2, 11): datetime(2014, 7, 2, 12), + # out of business hours + datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 10), + datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 10), + datetime(2014, 7, 2, 23): datetime(2014, 7, 3, 10), + datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 10), + # saturday + datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 10), + datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 10), + datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7, 9, 30), + datetime(2014, 7, 4, 16, 30, 30): datetime(2014, 7, 7, 9, 30, 30), + }, + ), + ( + BusinessHour(4), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 15), + datetime(2014, 7, 1, 13): datetime(2014, 7, 2, 9), + datetime(2014, 7, 1, 15): datetime(2014, 7, 2, 11), + datetime(2014, 7, 1, 16): datetime(2014, 7, 2, 12), + datetime(2014, 7, 1, 17): datetime(2014, 7, 2, 13), + datetime(2014, 7, 2, 11): datetime(2014, 7, 2, 15), + datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 13), + datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 13), + datetime(2014, 7, 2, 23): datetime(2014, 7, 3, 13), + datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 13), + datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 13), + datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 13), + datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7, 12, 30), + datetime(2014, 7, 4, 16, 30, 30): datetime(2014, 7, 7, 12, 30, 30), + }, + ), + ( + BusinessHour(-1), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 10), + datetime(2014, 7, 1, 13): datetime(2014, 7, 1, 12), + datetime(2014, 7, 1, 15): datetime(2014, 7, 1, 14), + datetime(2014, 7, 1, 16): datetime(2014, 7, 1, 15), + datetime(2014, 7, 1, 10): datetime(2014, 6, 30, 17), + datetime(2014, 7, 1, 16, 30, 15): datetime(2014, 7, 1, 15, 30, 15), + datetime(2014, 7, 1, 9, 30, 15): datetime(2014, 6, 30, 16, 30, 15), + datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 16), + datetime(2014, 7, 1, 5): datetime(2014, 6, 30, 16), + datetime(2014, 7, 2, 11): datetime(2014, 7, 2, 10), + # out of business hours + datetime(2014, 7, 2, 8): datetime(2014, 7, 1, 16), + datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 16), + datetime(2014, 7, 2, 23): datetime(2014, 7, 2, 16), + datetime(2014, 7, 3, 0): datetime(2014, 7, 2, 16), + # saturday + datetime(2014, 7, 5, 15): datetime(2014, 7, 4, 16), + datetime(2014, 7, 7, 9): datetime(2014, 7, 4, 16), + datetime(2014, 7, 7, 9, 30): datetime(2014, 7, 4, 16, 30), + datetime(2014, 7, 7, 9, 30, 30): datetime(2014, 7, 4, 16, 30, 30), + }, + ), + ( + BusinessHour(-4), + { + datetime(2014, 7, 1, 11): datetime(2014, 6, 30, 15), + datetime(2014, 7, 1, 13): datetime(2014, 6, 30, 17), + datetime(2014, 7, 1, 15): datetime(2014, 7, 1, 11), + datetime(2014, 7, 1, 16): datetime(2014, 7, 1, 12), + datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 13), + datetime(2014, 7, 2, 11): datetime(2014, 7, 1, 15), + datetime(2014, 7, 2, 8): datetime(2014, 7, 1, 13), + datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 13), + datetime(2014, 7, 2, 23): datetime(2014, 7, 2, 13), + datetime(2014, 7, 3, 0): datetime(2014, 7, 2, 13), + datetime(2014, 7, 5, 15): datetime(2014, 7, 4, 13), + datetime(2014, 7, 4, 18): datetime(2014, 7, 4, 13), + datetime(2014, 7, 7, 9, 30): datetime(2014, 7, 4, 13, 30), + datetime(2014, 7, 7, 9, 30, 30): datetime(2014, 7, 4, 13, 30, 30), + }, + ), + ( + BusinessHour(start="13:00", end="16:00"), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 14), + datetime(2014, 7, 1, 13): datetime(2014, 7, 1, 14), + datetime(2014, 7, 1, 15): datetime(2014, 7, 2, 13), + datetime(2014, 7, 1, 19): datetime(2014, 7, 2, 14), + datetime(2014, 7, 1, 16): datetime(2014, 7, 2, 14), + datetime(2014, 7, 1, 15, 30, 15): datetime(2014, 7, 2, 13, 30, 15), + datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 14), + datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 14), + }, + ), + ( + BusinessHour(n=2, start="13:00", end="16:00"), + { + datetime(2014, 7, 1, 17): datetime(2014, 7, 2, 15), + datetime(2014, 7, 2, 14): datetime(2014, 7, 3, 13), + datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 15), + datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 15), + datetime(2014, 7, 2, 14, 30): datetime(2014, 7, 3, 13, 30), + datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 15), + datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 15), + datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 15), + datetime(2014, 7, 4, 14, 30): datetime(2014, 7, 7, 13, 30), + datetime(2014, 7, 4, 14, 30, 30): datetime(2014, 7, 7, 13, 30, 30), + }, + ), + ( + BusinessHour(n=-1, start="13:00", end="16:00"), + { + datetime(2014, 7, 2, 11): datetime(2014, 7, 1, 15), + datetime(2014, 7, 2, 13): datetime(2014, 7, 1, 15), + datetime(2014, 7, 2, 14): datetime(2014, 7, 1, 16), + datetime(2014, 7, 2, 15): datetime(2014, 7, 2, 14), + datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 15), + datetime(2014, 7, 2, 16): datetime(2014, 7, 2, 15), + datetime(2014, 7, 2, 13, 30, 15): datetime(2014, 7, 1, 15, 30, 15), + datetime(2014, 7, 5, 15): datetime(2014, 7, 4, 15), + datetime(2014, 7, 7, 11): datetime(2014, 7, 4, 15), + }, + ), + ( + BusinessHour(n=-3, start="10:00", end="16:00"), + { + datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 13), + datetime(2014, 7, 2, 14): datetime(2014, 7, 2, 11), + datetime(2014, 7, 2, 8): datetime(2014, 7, 1, 13), + datetime(2014, 7, 2, 13): datetime(2014, 7, 1, 16), + datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 13), + datetime(2014, 7, 2, 11, 30): datetime(2014, 7, 1, 14, 30), + datetime(2014, 7, 3, 0): datetime(2014, 7, 2, 13), + datetime(2014, 7, 4, 10): datetime(2014, 7, 3, 13), + datetime(2014, 7, 5, 15): datetime(2014, 7, 4, 13), + datetime(2014, 7, 4, 16): datetime(2014, 7, 4, 13), + datetime(2014, 7, 4, 12, 30): datetime(2014, 7, 3, 15, 30), + datetime(2014, 7, 4, 12, 30, 30): datetime(2014, 7, 3, 15, 30, 30), + }, + ), + ( + BusinessHour(start="19:00", end="05:00"), + { + datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 20), + datetime(2014, 7, 2, 14): datetime(2014, 7, 2, 20), + datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 20), + datetime(2014, 7, 2, 13): datetime(2014, 7, 2, 20), + datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 20), + datetime(2014, 7, 2, 4, 30): datetime(2014, 7, 2, 19, 30), + datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 1), + datetime(2014, 7, 4, 10): datetime(2014, 7, 4, 20), + datetime(2014, 7, 4, 23): datetime(2014, 7, 5, 0), + datetime(2014, 7, 5, 0): datetime(2014, 7, 5, 1), + datetime(2014, 7, 5, 4): datetime(2014, 7, 7, 19), + datetime(2014, 7, 5, 4, 30): datetime(2014, 7, 7, 19, 30), + datetime(2014, 7, 5, 4, 30, 30): datetime(2014, 7, 7, 19, 30, 30), + }, + ), + ( + BusinessHour(n=-1, start="19:00", end="05:00"), + { + datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 4), + datetime(2014, 7, 2, 14): datetime(2014, 7, 2, 4), + datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 4), + datetime(2014, 7, 2, 13): datetime(2014, 7, 2, 4), + datetime(2014, 7, 2, 20): datetime(2014, 7, 2, 5), + datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 4), + datetime(2014, 7, 2, 19, 30): datetime(2014, 7, 2, 4, 30), + datetime(2014, 7, 3, 0): datetime(2014, 7, 2, 23), + datetime(2014, 7, 3, 6): datetime(2014, 7, 3, 4), + datetime(2014, 7, 4, 23): datetime(2014, 7, 4, 22), + datetime(2014, 7, 5, 0): datetime(2014, 7, 4, 23), + datetime(2014, 7, 5, 4): datetime(2014, 7, 5, 3), + datetime(2014, 7, 7, 19, 30): datetime(2014, 7, 5, 4, 30), + datetime(2014, 7, 7, 19, 30, 30): datetime(2014, 7, 5, 4, 30, 30), + }, + ), + ( + BusinessHour(n=4, start="00:00", end="23:00"), + { + datetime(2014, 7, 3, 22): datetime(2014, 7, 4, 3), + datetime(2014, 7, 4, 22): datetime(2014, 7, 7, 3), + datetime(2014, 7, 3, 22, 30): datetime(2014, 7, 4, 3, 30), + datetime(2014, 7, 3, 22, 20): datetime(2014, 7, 4, 3, 20), + datetime(2014, 7, 4, 22, 30, 30): datetime(2014, 7, 7, 3, 30, 30), + datetime(2014, 7, 4, 22, 30, 20): datetime(2014, 7, 7, 3, 30, 20), + }, + ), + ( + BusinessHour(n=-4, start="00:00", end="23:00"), + { + datetime(2014, 7, 4, 3): datetime(2014, 7, 3, 22), + datetime(2014, 7, 7, 3): datetime(2014, 7, 4, 22), + datetime(2014, 7, 4, 3, 30): datetime(2014, 7, 3, 22, 30), + datetime(2014, 7, 4, 3, 20): datetime(2014, 7, 3, 22, 20), + datetime(2014, 7, 7, 3, 30, 30): datetime(2014, 7, 4, 22, 30, 30), + datetime(2014, 7, 7, 3, 30, 20): datetime(2014, 7, 4, 22, 30, 20), + }, + ), + ( + BusinessHour(start=["09:00", "14:00"], end=["12:00", "18:00"]), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 14), + datetime(2014, 7, 1, 15): datetime(2014, 7, 1, 16), + datetime(2014, 7, 1, 19): datetime(2014, 7, 2, 10), + datetime(2014, 7, 1, 16): datetime(2014, 7, 1, 17), + datetime(2014, 7, 1, 16, 30, 15): datetime(2014, 7, 1, 17, 30, 15), + datetime(2014, 7, 1, 17): datetime(2014, 7, 2, 9), + datetime(2014, 7, 2, 11): datetime(2014, 7, 2, 14), + # out of business hours + datetime(2014, 7, 1, 13): datetime(2014, 7, 1, 15), + datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 10), + datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 10), + datetime(2014, 7, 2, 23): datetime(2014, 7, 3, 10), + datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 10), + # saturday + datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 10), + datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 9), + datetime(2014, 7, 4, 17, 30): datetime(2014, 7, 7, 9, 30), + datetime(2014, 7, 4, 17, 30, 30): datetime(2014, 7, 7, 9, 30, 30), + }, + ), + ( + BusinessHour(n=4, start=["09:00", "14:00"], end=["12:00", "18:00"]), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 17), + datetime(2014, 7, 1, 13): datetime(2014, 7, 2, 9), + datetime(2014, 7, 1, 15): datetime(2014, 7, 2, 10), + datetime(2014, 7, 1, 16): datetime(2014, 7, 2, 11), + datetime(2014, 7, 1, 17): datetime(2014, 7, 2, 14), + datetime(2014, 7, 2, 11): datetime(2014, 7, 2, 17), + datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 15), + datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 15), + datetime(2014, 7, 2, 23): datetime(2014, 7, 3, 15), + datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 15), + datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 15), + datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 14), + datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7, 11, 30), + datetime(2014, 7, 4, 16, 30, 30): datetime(2014, 7, 7, 11, 30, 30), + }, + ), + ( + BusinessHour(n=-4, start=["09:00", "14:00"], end=["12:00", "18:00"]), + { + datetime(2014, 7, 1, 11): datetime(2014, 6, 30, 16), + datetime(2014, 7, 1, 13): datetime(2014, 6, 30, 17), + datetime(2014, 7, 1, 15): datetime(2014, 6, 30, 18), + datetime(2014, 7, 1, 16): datetime(2014, 7, 1, 10), + datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 11), + datetime(2014, 7, 2, 11): datetime(2014, 7, 1, 16), + datetime(2014, 7, 2, 8): datetime(2014, 7, 1, 12), + datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 12), + datetime(2014, 7, 2, 23): datetime(2014, 7, 2, 12), + datetime(2014, 7, 3, 0): datetime(2014, 7, 2, 12), + datetime(2014, 7, 5, 15): datetime(2014, 7, 4, 12), + datetime(2014, 7, 4, 18): datetime(2014, 7, 4, 12), + datetime(2014, 7, 7, 9, 30): datetime(2014, 7, 4, 14, 30), + datetime(2014, 7, 7, 9, 30, 30): datetime(2014, 7, 4, 14, 30, 30), + }, + ), + ( + BusinessHour(n=-1, start=["19:00", "03:00"], end=["01:00", "05:00"]), + { + datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 4), + datetime(2014, 7, 2, 14): datetime(2014, 7, 2, 4), + datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 4), + datetime(2014, 7, 2, 13): datetime(2014, 7, 2, 4), + datetime(2014, 7, 2, 20): datetime(2014, 7, 2, 5), + datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 4), + datetime(2014, 7, 2, 4): datetime(2014, 7, 2, 1), + datetime(2014, 7, 2, 19, 30): datetime(2014, 7, 2, 4, 30), + datetime(2014, 7, 3, 0): datetime(2014, 7, 2, 23), + datetime(2014, 7, 3, 6): datetime(2014, 7, 3, 4), + datetime(2014, 7, 4, 23): datetime(2014, 7, 4, 22), + datetime(2014, 7, 5, 0): datetime(2014, 7, 4, 23), + datetime(2014, 7, 5, 4): datetime(2014, 7, 5, 0), + datetime(2014, 7, 7, 3, 30): datetime(2014, 7, 5, 0, 30), + datetime(2014, 7, 7, 19, 30): datetime(2014, 7, 7, 4, 30), + datetime(2014, 7, 7, 19, 30, 30): datetime(2014, 7, 7, 4, 30, 30), + }, + ), + ] + + # long business hours (see gh-26381) + + # multiple business hours + + @pytest.mark.parametrize("case", apply_cases) + def test_apply(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + apply_large_n_cases = [ + ( + # A week later + BusinessHour(40), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 8, 11), + datetime(2014, 7, 1, 13): datetime(2014, 7, 8, 13), + datetime(2014, 7, 1, 15): datetime(2014, 7, 8, 15), + datetime(2014, 7, 1, 16): datetime(2014, 7, 8, 16), + datetime(2014, 7, 1, 17): datetime(2014, 7, 9, 9), + datetime(2014, 7, 2, 11): datetime(2014, 7, 9, 11), + datetime(2014, 7, 2, 8): datetime(2014, 7, 9, 9), + datetime(2014, 7, 2, 19): datetime(2014, 7, 10, 9), + datetime(2014, 7, 2, 23): datetime(2014, 7, 10, 9), + datetime(2014, 7, 3, 0): datetime(2014, 7, 10, 9), + datetime(2014, 7, 5, 15): datetime(2014, 7, 14, 9), + datetime(2014, 7, 4, 18): datetime(2014, 7, 14, 9), + datetime(2014, 7, 7, 9, 30): datetime(2014, 7, 14, 9, 30), + datetime(2014, 7, 7, 9, 30, 30): datetime(2014, 7, 14, 9, 30, 30), + }, + ), + ( + # 3 days and 1 hour before + BusinessHour(-25), + { + datetime(2014, 7, 1, 11): datetime(2014, 6, 26, 10), + datetime(2014, 7, 1, 13): datetime(2014, 6, 26, 12), + datetime(2014, 7, 1, 9): datetime(2014, 6, 25, 16), + datetime(2014, 7, 1, 10): datetime(2014, 6, 25, 17), + datetime(2014, 7, 3, 11): datetime(2014, 6, 30, 10), + datetime(2014, 7, 3, 8): datetime(2014, 6, 27, 16), + datetime(2014, 7, 3, 19): datetime(2014, 6, 30, 16), + datetime(2014, 7, 3, 23): datetime(2014, 6, 30, 16), + datetime(2014, 7, 4, 9): datetime(2014, 6, 30, 16), + datetime(2014, 7, 5, 15): datetime(2014, 7, 1, 16), + datetime(2014, 7, 6, 18): datetime(2014, 7, 1, 16), + datetime(2014, 7, 7, 9, 30): datetime(2014, 7, 1, 16, 30), + datetime(2014, 7, 7, 10, 30, 30): datetime(2014, 7, 2, 9, 30, 30), + }, + ), + ( + # 5 days and 3 hours later + BusinessHour(28, start="21:00", end="02:00"), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 9, 0), + datetime(2014, 7, 1, 22): datetime(2014, 7, 9, 1), + datetime(2014, 7, 1, 23): datetime(2014, 7, 9, 21), + datetime(2014, 7, 2, 2): datetime(2014, 7, 10, 0), + datetime(2014, 7, 3, 21): datetime(2014, 7, 11, 0), + datetime(2014, 7, 4, 1): datetime(2014, 7, 11, 23), + datetime(2014, 7, 4, 2): datetime(2014, 7, 12, 0), + datetime(2014, 7, 4, 3): datetime(2014, 7, 12, 0), + datetime(2014, 7, 5, 1): datetime(2014, 7, 14, 23), + datetime(2014, 7, 5, 15): datetime(2014, 7, 15, 0), + datetime(2014, 7, 6, 18): datetime(2014, 7, 15, 0), + datetime(2014, 7, 7, 1): datetime(2014, 7, 15, 0), + datetime(2014, 7, 7, 23, 30): datetime(2014, 7, 15, 21, 30), + }, + ), + ( + # large n for multiple opening hours (3 days and 1 hour before) + BusinessHour(n=-25, start=["09:00", "14:00"], end=["12:00", "19:00"]), + { + datetime(2014, 7, 1, 11): datetime(2014, 6, 26, 10), + datetime(2014, 7, 1, 13): datetime(2014, 6, 26, 11), + datetime(2014, 7, 1, 9): datetime(2014, 6, 25, 18), + datetime(2014, 7, 1, 10): datetime(2014, 6, 25, 19), + datetime(2014, 7, 3, 11): datetime(2014, 6, 30, 10), + datetime(2014, 7, 3, 8): datetime(2014, 6, 27, 18), + datetime(2014, 7, 3, 19): datetime(2014, 6, 30, 18), + datetime(2014, 7, 3, 23): datetime(2014, 6, 30, 18), + datetime(2014, 7, 4, 9): datetime(2014, 6, 30, 18), + datetime(2014, 7, 5, 15): datetime(2014, 7, 1, 18), + datetime(2014, 7, 6, 18): datetime(2014, 7, 1, 18), + datetime(2014, 7, 7, 9, 30): datetime(2014, 7, 1, 18, 30), + datetime(2014, 7, 7, 10, 30, 30): datetime(2014, 7, 2, 9, 30, 30), + }, + ), + ( + # 5 days and 3 hours later + BusinessHour(28, start=["21:00", "03:00"], end=["01:00", "04:00"]), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 9, 0), + datetime(2014, 7, 1, 22): datetime(2014, 7, 9, 3), + datetime(2014, 7, 1, 23): datetime(2014, 7, 9, 21), + datetime(2014, 7, 2, 2): datetime(2014, 7, 9, 23), + datetime(2014, 7, 3, 21): datetime(2014, 7, 11, 0), + datetime(2014, 7, 4, 1): datetime(2014, 7, 11, 23), + datetime(2014, 7, 4, 2): datetime(2014, 7, 11, 23), + datetime(2014, 7, 4, 3): datetime(2014, 7, 11, 23), + datetime(2014, 7, 4, 21): datetime(2014, 7, 12, 0), + datetime(2014, 7, 5, 0): datetime(2014, 7, 14, 22), + datetime(2014, 7, 5, 1): datetime(2014, 7, 14, 23), + datetime(2014, 7, 5, 15): datetime(2014, 7, 14, 23), + datetime(2014, 7, 6, 18): datetime(2014, 7, 14, 23), + datetime(2014, 7, 7, 1): datetime(2014, 7, 14, 23), + datetime(2014, 7, 7, 23, 30): datetime(2014, 7, 15, 21, 30), + }, + ), + ] + + @pytest.mark.parametrize("case", apply_large_n_cases) + def test_apply_large_n(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + def test_apply_nanoseconds(self): + tests = [ + ( + BusinessHour(), + { + Timestamp("2014-07-04 15:00") + + Nano(5): Timestamp("2014-07-04 16:00") + + Nano(5), + Timestamp("2014-07-04 16:00") + + Nano(5): Timestamp("2014-07-07 09:00") + + Nano(5), + Timestamp("2014-07-04 16:00") + - Nano(5): Timestamp("2014-07-04 17:00") + - Nano(5), + }, + ), + ( + BusinessHour(-1), + { + Timestamp("2014-07-04 15:00") + + Nano(5): Timestamp("2014-07-04 14:00") + + Nano(5), + Timestamp("2014-07-04 10:00") + + Nano(5): Timestamp("2014-07-04 09:00") + + Nano(5), + Timestamp("2014-07-04 10:00") + - Nano(5): Timestamp("2014-07-03 17:00") + - Nano(5), + }, + ), + ] + + for offset, cases in tests: + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + @pytest.mark.parametrize("td_unit", ["s", "ms", "us", "ns"]) + @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) + def test_bday_ignores_timedeltas(self, unit, td_unit): + # GH#55608 + idx = date_range("2010/02/01", "2010/02/10", freq="12h", unit=unit) + td = Timedelta(3, unit="h").as_unit(td_unit) + off = BDay(offset=td) + t1 = idx + off + + exp_unit = tm.get_finest_unit(td.unit, idx.unit) + + expected = DatetimeIndex( + [ + "2010-02-02 03:00:00", + "2010-02-02 15:00:00", + "2010-02-03 03:00:00", + "2010-02-03 15:00:00", + "2010-02-04 03:00:00", + "2010-02-04 15:00:00", + "2010-02-05 03:00:00", + "2010-02-05 15:00:00", + "2010-02-08 03:00:00", + "2010-02-08 15:00:00", + "2010-02-08 03:00:00", + "2010-02-08 15:00:00", + "2010-02-08 03:00:00", + "2010-02-08 15:00:00", + "2010-02-09 03:00:00", + "2010-02-09 15:00:00", + "2010-02-10 03:00:00", + "2010-02-10 15:00:00", + "2010-02-11 03:00:00", + ], + freq=None, + ).as_unit(exp_unit) + tm.assert_index_equal(t1, expected) + + # TODO(GH#55564): as_unit will be unnecessary + pointwise = DatetimeIndex([x + off for x in idx]).as_unit(exp_unit) + tm.assert_index_equal(pointwise, expected) + + def test_add_bday_offset_nanos(self): + # GH#55608 + idx = date_range("2010/02/01", "2010/02/10", freq="12h", unit="ns") + off = BDay(offset=Timedelta(3, unit="ns")) + + result = idx + off + expected = DatetimeIndex([x + off for x in idx]) + tm.assert_index_equal(result, expected) + + +class TestOpeningTimes: + # opening time should be affected by sign of n, not by n's value and end + opening_time_cases = [ + ( + [ + BusinessHour(), + BusinessHour(n=2), + BusinessHour(n=4), + BusinessHour(end="10:00"), + BusinessHour(n=2, end="4:00"), + BusinessHour(n=4, end="15:00"), + ], + { + datetime(2014, 7, 1, 11): ( + datetime(2014, 7, 2, 9), + datetime(2014, 7, 1, 9), + ), + datetime(2014, 7, 1, 18): ( + datetime(2014, 7, 2, 9), + datetime(2014, 7, 1, 9), + ), + datetime(2014, 7, 1, 23): ( + datetime(2014, 7, 2, 9), + datetime(2014, 7, 1, 9), + ), + datetime(2014, 7, 2, 8): ( + datetime(2014, 7, 2, 9), + datetime(2014, 7, 1, 9), + ), + # if timestamp is on opening time, next opening time is + # as it is + datetime(2014, 7, 2, 9): ( + datetime(2014, 7, 2, 9), + datetime(2014, 7, 2, 9), + ), + datetime(2014, 7, 2, 10): ( + datetime(2014, 7, 3, 9), + datetime(2014, 7, 2, 9), + ), + # 2014-07-05 is saturday + datetime(2014, 7, 5, 10): ( + datetime(2014, 7, 7, 9), + datetime(2014, 7, 4, 9), + ), + datetime(2014, 7, 4, 10): ( + datetime(2014, 7, 7, 9), + datetime(2014, 7, 4, 9), + ), + datetime(2014, 7, 4, 23): ( + datetime(2014, 7, 7, 9), + datetime(2014, 7, 4, 9), + ), + datetime(2014, 7, 6, 10): ( + datetime(2014, 7, 7, 9), + datetime(2014, 7, 4, 9), + ), + datetime(2014, 7, 7, 5): ( + datetime(2014, 7, 7, 9), + datetime(2014, 7, 4, 9), + ), + datetime(2014, 7, 7, 9, 1): ( + datetime(2014, 7, 8, 9), + datetime(2014, 7, 7, 9), + ), + }, + ), + ( + [ + BusinessHour(start="11:15"), + BusinessHour(n=2, start="11:15"), + BusinessHour(n=3, start="11:15"), + BusinessHour(start="11:15", end="10:00"), + BusinessHour(n=2, start="11:15", end="4:00"), + BusinessHour(n=3, start="11:15", end="15:00"), + ], + { + datetime(2014, 7, 1, 11): ( + datetime(2014, 7, 1, 11, 15), + datetime(2014, 6, 30, 11, 15), + ), + datetime(2014, 7, 1, 18): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 1, 11, 15), + ), + datetime(2014, 7, 1, 23): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 1, 11, 15), + ), + datetime(2014, 7, 2, 8): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 1, 11, 15), + ), + datetime(2014, 7, 2, 9): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 1, 11, 15), + ), + datetime(2014, 7, 2, 10): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 1, 11, 15), + ), + datetime(2014, 7, 2, 11, 15): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 2, 11, 15), + ), + datetime(2014, 7, 2, 11, 15, 1): ( + datetime(2014, 7, 3, 11, 15), + datetime(2014, 7, 2, 11, 15), + ), + datetime(2014, 7, 5, 10): ( + datetime(2014, 7, 7, 11, 15), + datetime(2014, 7, 4, 11, 15), + ), + datetime(2014, 7, 4, 10): ( + datetime(2014, 7, 4, 11, 15), + datetime(2014, 7, 3, 11, 15), + ), + datetime(2014, 7, 4, 23): ( + datetime(2014, 7, 7, 11, 15), + datetime(2014, 7, 4, 11, 15), + ), + datetime(2014, 7, 6, 10): ( + datetime(2014, 7, 7, 11, 15), + datetime(2014, 7, 4, 11, 15), + ), + datetime(2014, 7, 7, 5): ( + datetime(2014, 7, 7, 11, 15), + datetime(2014, 7, 4, 11, 15), + ), + datetime(2014, 7, 7, 9, 1): ( + datetime(2014, 7, 7, 11, 15), + datetime(2014, 7, 4, 11, 15), + ), + }, + ), + ( + [ + BusinessHour(-1), + BusinessHour(n=-2), + BusinessHour(n=-4), + BusinessHour(n=-1, end="10:00"), + BusinessHour(n=-2, end="4:00"), + BusinessHour(n=-4, end="15:00"), + ], + { + datetime(2014, 7, 1, 11): ( + datetime(2014, 7, 1, 9), + datetime(2014, 7, 2, 9), + ), + datetime(2014, 7, 1, 18): ( + datetime(2014, 7, 1, 9), + datetime(2014, 7, 2, 9), + ), + datetime(2014, 7, 1, 23): ( + datetime(2014, 7, 1, 9), + datetime(2014, 7, 2, 9), + ), + datetime(2014, 7, 2, 8): ( + datetime(2014, 7, 1, 9), + datetime(2014, 7, 2, 9), + ), + datetime(2014, 7, 2, 9): ( + datetime(2014, 7, 2, 9), + datetime(2014, 7, 2, 9), + ), + datetime(2014, 7, 2, 10): ( + datetime(2014, 7, 2, 9), + datetime(2014, 7, 3, 9), + ), + datetime(2014, 7, 5, 10): ( + datetime(2014, 7, 4, 9), + datetime(2014, 7, 7, 9), + ), + datetime(2014, 7, 4, 10): ( + datetime(2014, 7, 4, 9), + datetime(2014, 7, 7, 9), + ), + datetime(2014, 7, 4, 23): ( + datetime(2014, 7, 4, 9), + datetime(2014, 7, 7, 9), + ), + datetime(2014, 7, 6, 10): ( + datetime(2014, 7, 4, 9), + datetime(2014, 7, 7, 9), + ), + datetime(2014, 7, 7, 5): ( + datetime(2014, 7, 4, 9), + datetime(2014, 7, 7, 9), + ), + datetime(2014, 7, 7, 9): ( + datetime(2014, 7, 7, 9), + datetime(2014, 7, 7, 9), + ), + datetime(2014, 7, 7, 9, 1): ( + datetime(2014, 7, 7, 9), + datetime(2014, 7, 8, 9), + ), + }, + ), + ( + [ + BusinessHour(start="17:00", end="05:00"), + BusinessHour(n=3, start="17:00", end="03:00"), + ], + { + datetime(2014, 7, 1, 11): ( + datetime(2014, 7, 1, 17), + datetime(2014, 6, 30, 17), + ), + datetime(2014, 7, 1, 18): ( + datetime(2014, 7, 2, 17), + datetime(2014, 7, 1, 17), + ), + datetime(2014, 7, 1, 23): ( + datetime(2014, 7, 2, 17), + datetime(2014, 7, 1, 17), + ), + datetime(2014, 7, 2, 8): ( + datetime(2014, 7, 2, 17), + datetime(2014, 7, 1, 17), + ), + datetime(2014, 7, 2, 9): ( + datetime(2014, 7, 2, 17), + datetime(2014, 7, 1, 17), + ), + datetime(2014, 7, 4, 17): ( + datetime(2014, 7, 4, 17), + datetime(2014, 7, 4, 17), + ), + datetime(2014, 7, 5, 10): ( + datetime(2014, 7, 7, 17), + datetime(2014, 7, 4, 17), + ), + datetime(2014, 7, 4, 10): ( + datetime(2014, 7, 4, 17), + datetime(2014, 7, 3, 17), + ), + datetime(2014, 7, 4, 23): ( + datetime(2014, 7, 7, 17), + datetime(2014, 7, 4, 17), + ), + datetime(2014, 7, 6, 10): ( + datetime(2014, 7, 7, 17), + datetime(2014, 7, 4, 17), + ), + datetime(2014, 7, 7, 5): ( + datetime(2014, 7, 7, 17), + datetime(2014, 7, 4, 17), + ), + datetime(2014, 7, 7, 17, 1): ( + datetime(2014, 7, 8, 17), + datetime(2014, 7, 7, 17), + ), + }, + ), + ( + [ + BusinessHour(-1, start="17:00", end="05:00"), + BusinessHour(n=-2, start="17:00", end="03:00"), + ], + { + datetime(2014, 7, 1, 11): ( + datetime(2014, 6, 30, 17), + datetime(2014, 7, 1, 17), + ), + datetime(2014, 7, 1, 18): ( + datetime(2014, 7, 1, 17), + datetime(2014, 7, 2, 17), + ), + datetime(2014, 7, 1, 23): ( + datetime(2014, 7, 1, 17), + datetime(2014, 7, 2, 17), + ), + datetime(2014, 7, 2, 8): ( + datetime(2014, 7, 1, 17), + datetime(2014, 7, 2, 17), + ), + datetime(2014, 7, 2, 9): ( + datetime(2014, 7, 1, 17), + datetime(2014, 7, 2, 17), + ), + datetime(2014, 7, 2, 16, 59): ( + datetime(2014, 7, 1, 17), + datetime(2014, 7, 2, 17), + ), + datetime(2014, 7, 5, 10): ( + datetime(2014, 7, 4, 17), + datetime(2014, 7, 7, 17), + ), + datetime(2014, 7, 4, 10): ( + datetime(2014, 7, 3, 17), + datetime(2014, 7, 4, 17), + ), + datetime(2014, 7, 4, 23): ( + datetime(2014, 7, 4, 17), + datetime(2014, 7, 7, 17), + ), + datetime(2014, 7, 6, 10): ( + datetime(2014, 7, 4, 17), + datetime(2014, 7, 7, 17), + ), + datetime(2014, 7, 7, 5): ( + datetime(2014, 7, 4, 17), + datetime(2014, 7, 7, 17), + ), + datetime(2014, 7, 7, 18): ( + datetime(2014, 7, 7, 17), + datetime(2014, 7, 8, 17), + ), + }, + ), + ( + [ + BusinessHour(start=["11:15", "15:00"], end=["13:00", "20:00"]), + BusinessHour(n=3, start=["11:15", "15:00"], end=["12:00", "20:00"]), + BusinessHour(start=["11:15", "15:00"], end=["13:00", "17:00"]), + BusinessHour(n=2, start=["11:15", "15:00"], end=["12:00", "03:00"]), + BusinessHour(n=3, start=["11:15", "15:00"], end=["13:00", "16:00"]), + ], + { + datetime(2014, 7, 1, 11): ( + datetime(2014, 7, 1, 11, 15), + datetime(2014, 6, 30, 15), + ), + datetime(2014, 7, 1, 18): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 1, 15), + ), + datetime(2014, 7, 1, 23): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 1, 15), + ), + datetime(2014, 7, 2, 8): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 1, 15), + ), + datetime(2014, 7, 2, 9): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 1, 15), + ), + datetime(2014, 7, 2, 10): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 1, 15), + ), + datetime(2014, 7, 2, 11, 15): ( + datetime(2014, 7, 2, 11, 15), + datetime(2014, 7, 2, 11, 15), + ), + datetime(2014, 7, 2, 11, 15, 1): ( + datetime(2014, 7, 2, 15), + datetime(2014, 7, 2, 11, 15), + ), + datetime(2014, 7, 5, 10): ( + datetime(2014, 7, 7, 11, 15), + datetime(2014, 7, 4, 15), + ), + datetime(2014, 7, 4, 10): ( + datetime(2014, 7, 4, 11, 15), + datetime(2014, 7, 3, 15), + ), + datetime(2014, 7, 4, 23): ( + datetime(2014, 7, 7, 11, 15), + datetime(2014, 7, 4, 15), + ), + datetime(2014, 7, 6, 10): ( + datetime(2014, 7, 7, 11, 15), + datetime(2014, 7, 4, 15), + ), + datetime(2014, 7, 7, 5): ( + datetime(2014, 7, 7, 11, 15), + datetime(2014, 7, 4, 15), + ), + datetime(2014, 7, 7, 9, 1): ( + datetime(2014, 7, 7, 11, 15), + datetime(2014, 7, 4, 15), + ), + datetime(2014, 7, 7, 12): ( + datetime(2014, 7, 7, 15), + datetime(2014, 7, 7, 11, 15), + ), + }, + ), + ( + [ + BusinessHour(n=-1, start=["17:00", "08:00"], end=["05:00", "10:00"]), + BusinessHour(n=-2, start=["08:00", "17:00"], end=["10:00", "03:00"]), + ], + { + datetime(2014, 7, 1, 11): ( + datetime(2014, 7, 1, 8), + datetime(2014, 7, 1, 17), + ), + datetime(2014, 7, 1, 18): ( + datetime(2014, 7, 1, 17), + datetime(2014, 7, 2, 8), + ), + datetime(2014, 7, 1, 23): ( + datetime(2014, 7, 1, 17), + datetime(2014, 7, 2, 8), + ), + datetime(2014, 7, 2, 8): ( + datetime(2014, 7, 2, 8), + datetime(2014, 7, 2, 8), + ), + datetime(2014, 7, 2, 9): ( + datetime(2014, 7, 2, 8), + datetime(2014, 7, 2, 17), + ), + datetime(2014, 7, 2, 16, 59): ( + datetime(2014, 7, 2, 8), + datetime(2014, 7, 2, 17), + ), + datetime(2014, 7, 5, 10): ( + datetime(2014, 7, 4, 17), + datetime(2014, 7, 7, 8), + ), + datetime(2014, 7, 4, 10): ( + datetime(2014, 7, 4, 8), + datetime(2014, 7, 4, 17), + ), + datetime(2014, 7, 4, 23): ( + datetime(2014, 7, 4, 17), + datetime(2014, 7, 7, 8), + ), + datetime(2014, 7, 6, 10): ( + datetime(2014, 7, 4, 17), + datetime(2014, 7, 7, 8), + ), + datetime(2014, 7, 7, 5): ( + datetime(2014, 7, 4, 17), + datetime(2014, 7, 7, 8), + ), + datetime(2014, 7, 7, 18): ( + datetime(2014, 7, 7, 17), + datetime(2014, 7, 8, 8), + ), + }, + ), + ] + + @pytest.mark.parametrize("case", opening_time_cases) + def test_opening_time(self, case): + _offsets, cases = case + for offset in _offsets: + for dt, (exp_next, exp_prev) in cases.items(): + assert offset._next_opening_time(dt) == exp_next + assert offset._prev_opening_time(dt) == exp_prev diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_month.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_month.py new file mode 100644 index 0000000000000000000000000000000000000000..a14451e60aa89f3a74f52add62a53759027edd21 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_month.py @@ -0,0 +1,217 @@ +""" +Tests for the following offsets: +- BMonthBegin +- BMonthEnd +""" +from __future__ import annotations + +from datetime import datetime + +import pytest + +import pandas as pd +from pandas.tests.tseries.offsets.common import ( + assert_is_on_offset, + assert_offset_equal, +) + +from pandas.tseries.offsets import ( + BMonthBegin, + BMonthEnd, +) + + +@pytest.mark.parametrize("n", [-2, 1]) +@pytest.mark.parametrize( + "cls", + [ + BMonthBegin, + BMonthEnd, + ], +) +def test_apply_index(cls, n): + offset = cls(n=n) + rng = pd.date_range(start="1/1/2000", periods=100000, freq="min") + ser = pd.Series(rng) + + res = rng + offset + assert res.freq is None # not retained + assert res[0] == rng[0] + offset + assert res[-1] == rng[-1] + offset + res2 = ser + offset + # apply_index is only for indexes, not series, so no res2_v2 + assert res2.iloc[0] == ser.iloc[0] + offset + assert res2.iloc[-1] == ser.iloc[-1] + offset + + +class TestBMonthBegin: + def test_offsets_compare_equal(self): + # root cause of #456 + offset1 = BMonthBegin() + offset2 = BMonthBegin() + assert not offset1 != offset2 + + offset_cases = [] + offset_cases.append( + ( + BMonthBegin(), + { + datetime(2008, 1, 1): datetime(2008, 2, 1), + datetime(2008, 1, 31): datetime(2008, 2, 1), + datetime(2006, 12, 29): datetime(2007, 1, 1), + datetime(2006, 12, 31): datetime(2007, 1, 1), + datetime(2006, 9, 1): datetime(2006, 10, 2), + datetime(2007, 1, 1): datetime(2007, 2, 1), + datetime(2006, 12, 1): datetime(2007, 1, 1), + }, + ) + ) + + offset_cases.append( + ( + BMonthBegin(0), + { + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2006, 10, 2): datetime(2006, 10, 2), + datetime(2008, 1, 31): datetime(2008, 2, 1), + datetime(2006, 12, 29): datetime(2007, 1, 1), + datetime(2006, 12, 31): datetime(2007, 1, 1), + datetime(2006, 9, 15): datetime(2006, 10, 2), + }, + ) + ) + + offset_cases.append( + ( + BMonthBegin(2), + { + datetime(2008, 1, 1): datetime(2008, 3, 3), + datetime(2008, 1, 15): datetime(2008, 3, 3), + datetime(2006, 12, 29): datetime(2007, 2, 1), + datetime(2006, 12, 31): datetime(2007, 2, 1), + datetime(2007, 1, 1): datetime(2007, 3, 1), + datetime(2006, 11, 1): datetime(2007, 1, 1), + }, + ) + ) + + offset_cases.append( + ( + BMonthBegin(-1), + { + datetime(2007, 1, 1): datetime(2006, 12, 1), + datetime(2008, 6, 30): datetime(2008, 6, 2), + datetime(2008, 6, 1): datetime(2008, 5, 1), + datetime(2008, 3, 10): datetime(2008, 3, 3), + datetime(2008, 12, 31): datetime(2008, 12, 1), + datetime(2006, 12, 29): datetime(2006, 12, 1), + datetime(2006, 12, 30): datetime(2006, 12, 1), + datetime(2007, 1, 1): datetime(2006, 12, 1), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + on_offset_cases = [ + (BMonthBegin(), datetime(2007, 12, 31), False), + (BMonthBegin(), datetime(2008, 1, 1), True), + (BMonthBegin(), datetime(2001, 4, 2), True), + (BMonthBegin(), datetime(2008, 3, 3), True), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + +class TestBMonthEnd: + def test_normalize(self): + dt = datetime(2007, 1, 1, 3) + + result = dt + BMonthEnd(normalize=True) + expected = dt.replace(hour=0) + BMonthEnd() + assert result == expected + + def test_offsets_compare_equal(self): + # root cause of #456 + offset1 = BMonthEnd() + offset2 = BMonthEnd() + assert not offset1 != offset2 + + offset_cases = [] + offset_cases.append( + ( + BMonthEnd(), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 2, 29), + datetime(2006, 12, 29): datetime(2007, 1, 31), + datetime(2006, 12, 31): datetime(2007, 1, 31), + datetime(2007, 1, 1): datetime(2007, 1, 31), + datetime(2006, 12, 1): datetime(2006, 12, 29), + }, + ) + ) + + offset_cases.append( + ( + BMonthEnd(0), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 1, 31), + datetime(2006, 12, 29): datetime(2006, 12, 29), + datetime(2006, 12, 31): datetime(2007, 1, 31), + datetime(2007, 1, 1): datetime(2007, 1, 31), + }, + ) + ) + + offset_cases.append( + ( + BMonthEnd(2), + { + datetime(2008, 1, 1): datetime(2008, 2, 29), + datetime(2008, 1, 31): datetime(2008, 3, 31), + datetime(2006, 12, 29): datetime(2007, 2, 28), + datetime(2006, 12, 31): datetime(2007, 2, 28), + datetime(2007, 1, 1): datetime(2007, 2, 28), + datetime(2006, 11, 1): datetime(2006, 12, 29), + }, + ) + ) + + offset_cases.append( + ( + BMonthEnd(-1), + { + datetime(2007, 1, 1): datetime(2006, 12, 29), + datetime(2008, 6, 30): datetime(2008, 5, 30), + datetime(2008, 12, 31): datetime(2008, 11, 28), + datetime(2006, 12, 29): datetime(2006, 11, 30), + datetime(2006, 12, 30): datetime(2006, 12, 29), + datetime(2007, 1, 1): datetime(2006, 12, 29), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + on_offset_cases = [ + (BMonthEnd(), datetime(2007, 12, 31), True), + (BMonthEnd(), datetime(2008, 1, 1), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_quarter.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_quarter.py new file mode 100644 index 0000000000000000000000000000000000000000..6d7a115054b7f20e3ab024eb31f266c18920f2c5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_quarter.py @@ -0,0 +1,315 @@ +""" +Tests for the following offsets: +- BQuarterBegin +- BQuarterEnd +""" +from __future__ import annotations + +from datetime import datetime + +import pytest + +import pandas._testing as tm +from pandas.tests.tseries.offsets.common import ( + assert_is_on_offset, + assert_offset_equal, +) + +from pandas.tseries.offsets import ( + BQuarterBegin, + BQuarterEnd, +) + + +def test_quarterly_dont_normalize(): + date = datetime(2012, 3, 31, 5, 30) + + offsets = (BQuarterEnd, BQuarterBegin) + + for klass in offsets: + result = date + klass() + assert result.time() == date.time() + + +@pytest.mark.parametrize("offset", [BQuarterBegin(), BQuarterEnd()]) +def test_on_offset(offset): + dates = [ + datetime(2016, m, d) + for m in [10, 11, 12] + for d in [1, 2, 3, 28, 29, 30, 31] + if not (m == 11 and d == 31) + ] + for date in dates: + res = offset.is_on_offset(date) + slow_version = date == (date + offset) - offset + assert res == slow_version + + +class TestBQuarterBegin: + def test_repr(self): + expected = "" + assert repr(BQuarterBegin()) == expected + expected = "" + assert repr(BQuarterBegin(startingMonth=3)) == expected + expected = "" + assert repr(BQuarterBegin(startingMonth=1)) == expected + + def test_is_anchored(self): + msg = "BQuarterBegin.is_anchored is deprecated " + + with tm.assert_produces_warning(FutureWarning, match=msg): + assert BQuarterBegin(startingMonth=1).is_anchored() + assert BQuarterBegin().is_anchored() + assert not BQuarterBegin(2, startingMonth=1).is_anchored() + + def test_offset_corner_case(self): + # corner + offset = BQuarterBegin(n=-1, startingMonth=1) + assert datetime(2007, 4, 3) + offset == datetime(2007, 4, 2) + + offset_cases = [] + offset_cases.append( + ( + BQuarterBegin(startingMonth=1), + { + datetime(2008, 1, 1): datetime(2008, 4, 1), + datetime(2008, 1, 31): datetime(2008, 4, 1), + datetime(2008, 2, 15): datetime(2008, 4, 1), + datetime(2008, 2, 29): datetime(2008, 4, 1), + datetime(2008, 3, 15): datetime(2008, 4, 1), + datetime(2008, 3, 31): datetime(2008, 4, 1), + datetime(2008, 4, 15): datetime(2008, 7, 1), + datetime(2007, 3, 15): datetime(2007, 4, 2), + datetime(2007, 2, 28): datetime(2007, 4, 2), + datetime(2007, 1, 1): datetime(2007, 4, 2), + datetime(2007, 4, 15): datetime(2007, 7, 2), + datetime(2007, 7, 1): datetime(2007, 7, 2), + datetime(2007, 4, 1): datetime(2007, 4, 2), + datetime(2007, 4, 2): datetime(2007, 7, 2), + datetime(2008, 4, 30): datetime(2008, 7, 1), + }, + ) + ) + + offset_cases.append( + ( + BQuarterBegin(startingMonth=2), + { + datetime(2008, 1, 1): datetime(2008, 2, 1), + datetime(2008, 1, 31): datetime(2008, 2, 1), + datetime(2008, 1, 15): datetime(2008, 2, 1), + datetime(2008, 2, 29): datetime(2008, 5, 1), + datetime(2008, 3, 15): datetime(2008, 5, 1), + datetime(2008, 3, 31): datetime(2008, 5, 1), + datetime(2008, 4, 15): datetime(2008, 5, 1), + datetime(2008, 8, 15): datetime(2008, 11, 3), + datetime(2008, 9, 15): datetime(2008, 11, 3), + datetime(2008, 11, 1): datetime(2008, 11, 3), + datetime(2008, 4, 30): datetime(2008, 5, 1), + }, + ) + ) + + offset_cases.append( + ( + BQuarterBegin(startingMonth=1, n=0), + { + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2007, 12, 31): datetime(2008, 1, 1), + datetime(2008, 2, 15): datetime(2008, 4, 1), + datetime(2008, 2, 29): datetime(2008, 4, 1), + datetime(2008, 1, 15): datetime(2008, 4, 1), + datetime(2008, 2, 27): datetime(2008, 4, 1), + datetime(2008, 3, 15): datetime(2008, 4, 1), + datetime(2007, 4, 1): datetime(2007, 4, 2), + datetime(2007, 4, 2): datetime(2007, 4, 2), + datetime(2007, 7, 1): datetime(2007, 7, 2), + datetime(2007, 4, 15): datetime(2007, 7, 2), + datetime(2007, 7, 2): datetime(2007, 7, 2), + }, + ) + ) + + offset_cases.append( + ( + BQuarterBegin(startingMonth=1, n=-1), + { + datetime(2008, 1, 1): datetime(2007, 10, 1), + datetime(2008, 1, 31): datetime(2008, 1, 1), + datetime(2008, 2, 15): datetime(2008, 1, 1), + datetime(2008, 2, 29): datetime(2008, 1, 1), + datetime(2008, 3, 15): datetime(2008, 1, 1), + datetime(2008, 3, 31): datetime(2008, 1, 1), + datetime(2008, 4, 15): datetime(2008, 4, 1), + datetime(2007, 7, 3): datetime(2007, 7, 2), + datetime(2007, 4, 3): datetime(2007, 4, 2), + datetime(2007, 7, 2): datetime(2007, 4, 2), + datetime(2008, 4, 1): datetime(2008, 1, 1), + }, + ) + ) + + offset_cases.append( + ( + BQuarterBegin(startingMonth=1, n=2), + { + datetime(2008, 1, 1): datetime(2008, 7, 1), + datetime(2008, 1, 15): datetime(2008, 7, 1), + datetime(2008, 2, 29): datetime(2008, 7, 1), + datetime(2008, 3, 15): datetime(2008, 7, 1), + datetime(2007, 3, 31): datetime(2007, 7, 2), + datetime(2007, 4, 15): datetime(2007, 10, 1), + datetime(2008, 4, 30): datetime(2008, 10, 1), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + +class TestBQuarterEnd: + def test_repr(self): + expected = "" + assert repr(BQuarterEnd()) == expected + expected = "" + assert repr(BQuarterEnd(startingMonth=3)) == expected + expected = "" + assert repr(BQuarterEnd(startingMonth=1)) == expected + + def test_is_anchored(self): + msg = "BQuarterEnd.is_anchored is deprecated " + + with tm.assert_produces_warning(FutureWarning, match=msg): + assert BQuarterEnd(startingMonth=1).is_anchored() + assert BQuarterEnd().is_anchored() + assert not BQuarterEnd(2, startingMonth=1).is_anchored() + + def test_offset_corner_case(self): + # corner + offset = BQuarterEnd(n=-1, startingMonth=1) + assert datetime(2010, 1, 31) + offset == datetime(2010, 1, 29) + + offset_cases = [] + offset_cases.append( + ( + BQuarterEnd(startingMonth=1), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 4, 30), + datetime(2008, 2, 15): datetime(2008, 4, 30), + datetime(2008, 2, 29): datetime(2008, 4, 30), + datetime(2008, 3, 15): datetime(2008, 4, 30), + datetime(2008, 3, 31): datetime(2008, 4, 30), + datetime(2008, 4, 15): datetime(2008, 4, 30), + datetime(2008, 4, 30): datetime(2008, 7, 31), + }, + ) + ) + + offset_cases.append( + ( + BQuarterEnd(startingMonth=2), + { + datetime(2008, 1, 1): datetime(2008, 2, 29), + datetime(2008, 1, 31): datetime(2008, 2, 29), + datetime(2008, 2, 15): datetime(2008, 2, 29), + datetime(2008, 2, 29): datetime(2008, 5, 30), + datetime(2008, 3, 15): datetime(2008, 5, 30), + datetime(2008, 3, 31): datetime(2008, 5, 30), + datetime(2008, 4, 15): datetime(2008, 5, 30), + datetime(2008, 4, 30): datetime(2008, 5, 30), + }, + ) + ) + + offset_cases.append( + ( + BQuarterEnd(startingMonth=1, n=0), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 1, 31), + datetime(2008, 2, 15): datetime(2008, 4, 30), + datetime(2008, 2, 29): datetime(2008, 4, 30), + datetime(2008, 3, 15): datetime(2008, 4, 30), + datetime(2008, 3, 31): datetime(2008, 4, 30), + datetime(2008, 4, 15): datetime(2008, 4, 30), + datetime(2008, 4, 30): datetime(2008, 4, 30), + }, + ) + ) + + offset_cases.append( + ( + BQuarterEnd(startingMonth=1, n=-1), + { + datetime(2008, 1, 1): datetime(2007, 10, 31), + datetime(2008, 1, 31): datetime(2007, 10, 31), + datetime(2008, 2, 15): datetime(2008, 1, 31), + datetime(2008, 2, 29): datetime(2008, 1, 31), + datetime(2008, 3, 15): datetime(2008, 1, 31), + datetime(2008, 3, 31): datetime(2008, 1, 31), + datetime(2008, 4, 15): datetime(2008, 1, 31), + datetime(2008, 4, 30): datetime(2008, 1, 31), + }, + ) + ) + + offset_cases.append( + ( + BQuarterEnd(startingMonth=1, n=2), + { + datetime(2008, 1, 31): datetime(2008, 7, 31), + datetime(2008, 2, 15): datetime(2008, 7, 31), + datetime(2008, 2, 29): datetime(2008, 7, 31), + datetime(2008, 3, 15): datetime(2008, 7, 31), + datetime(2008, 3, 31): datetime(2008, 7, 31), + datetime(2008, 4, 15): datetime(2008, 7, 31), + datetime(2008, 4, 30): datetime(2008, 10, 31), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + on_offset_cases = [ + (BQuarterEnd(1, startingMonth=1), datetime(2008, 1, 31), True), + (BQuarterEnd(1, startingMonth=1), datetime(2007, 12, 31), False), + (BQuarterEnd(1, startingMonth=1), datetime(2008, 2, 29), False), + (BQuarterEnd(1, startingMonth=1), datetime(2007, 3, 30), False), + (BQuarterEnd(1, startingMonth=1), datetime(2007, 3, 31), False), + (BQuarterEnd(1, startingMonth=1), datetime(2008, 4, 30), True), + (BQuarterEnd(1, startingMonth=1), datetime(2008, 5, 30), False), + (BQuarterEnd(1, startingMonth=1), datetime(2007, 6, 29), False), + (BQuarterEnd(1, startingMonth=1), datetime(2007, 6, 30), False), + (BQuarterEnd(1, startingMonth=2), datetime(2008, 1, 31), False), + (BQuarterEnd(1, startingMonth=2), datetime(2007, 12, 31), False), + (BQuarterEnd(1, startingMonth=2), datetime(2008, 2, 29), True), + (BQuarterEnd(1, startingMonth=2), datetime(2007, 3, 30), False), + (BQuarterEnd(1, startingMonth=2), datetime(2007, 3, 31), False), + (BQuarterEnd(1, startingMonth=2), datetime(2008, 4, 30), False), + (BQuarterEnd(1, startingMonth=2), datetime(2008, 5, 30), True), + (BQuarterEnd(1, startingMonth=2), datetime(2007, 6, 29), False), + (BQuarterEnd(1, startingMonth=2), datetime(2007, 6, 30), False), + (BQuarterEnd(1, startingMonth=3), datetime(2008, 1, 31), False), + (BQuarterEnd(1, startingMonth=3), datetime(2007, 12, 31), True), + (BQuarterEnd(1, startingMonth=3), datetime(2008, 2, 29), False), + (BQuarterEnd(1, startingMonth=3), datetime(2007, 3, 30), True), + (BQuarterEnd(1, startingMonth=3), datetime(2007, 3, 31), False), + (BQuarterEnd(1, startingMonth=3), datetime(2008, 4, 30), False), + (BQuarterEnd(1, startingMonth=3), datetime(2008, 5, 30), False), + (BQuarterEnd(1, startingMonth=3), datetime(2007, 6, 29), True), + (BQuarterEnd(1, startingMonth=3), datetime(2007, 6, 30), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_year.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_year.py new file mode 100644 index 0000000000000000000000000000000000000000..3b7a1025cc19c9c1c966b9448ceffdb12dcd8159 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_business_year.py @@ -0,0 +1,215 @@ +""" +Tests for the following offsets: +- BYearBegin +- BYearEnd +""" +from __future__ import annotations + +from datetime import datetime + +import pytest + +from pandas.tests.tseries.offsets.common import ( + assert_is_on_offset, + assert_offset_equal, +) + +from pandas.tseries.offsets import ( + BYearBegin, + BYearEnd, +) + + +class TestBYearBegin: + def test_misspecified(self): + msg = "Month must go from 1 to 12" + with pytest.raises(ValueError, match=msg): + BYearBegin(month=13) + with pytest.raises(ValueError, match=msg): + BYearEnd(month=13) + + offset_cases = [] + offset_cases.append( + ( + BYearBegin(), + { + datetime(2008, 1, 1): datetime(2009, 1, 1), + datetime(2008, 6, 30): datetime(2009, 1, 1), + datetime(2008, 12, 31): datetime(2009, 1, 1), + datetime(2011, 1, 1): datetime(2011, 1, 3), + datetime(2011, 1, 3): datetime(2012, 1, 2), + datetime(2005, 12, 30): datetime(2006, 1, 2), + datetime(2005, 12, 31): datetime(2006, 1, 2), + }, + ) + ) + + offset_cases.append( + ( + BYearBegin(0), + { + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2008, 6, 30): datetime(2009, 1, 1), + datetime(2008, 12, 31): datetime(2009, 1, 1), + datetime(2005, 12, 30): datetime(2006, 1, 2), + datetime(2005, 12, 31): datetime(2006, 1, 2), + }, + ) + ) + + offset_cases.append( + ( + BYearBegin(-1), + { + datetime(2007, 1, 1): datetime(2006, 1, 2), + datetime(2009, 1, 4): datetime(2009, 1, 1), + datetime(2009, 1, 1): datetime(2008, 1, 1), + datetime(2008, 6, 30): datetime(2008, 1, 1), + datetime(2008, 12, 31): datetime(2008, 1, 1), + datetime(2006, 12, 29): datetime(2006, 1, 2), + datetime(2006, 12, 30): datetime(2006, 1, 2), + datetime(2006, 1, 1): datetime(2005, 1, 3), + }, + ) + ) + + offset_cases.append( + ( + BYearBegin(-2), + { + datetime(2007, 1, 1): datetime(2005, 1, 3), + datetime(2007, 6, 30): datetime(2006, 1, 2), + datetime(2008, 12, 31): datetime(2007, 1, 1), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + +class TestBYearEnd: + offset_cases = [] + offset_cases.append( + ( + BYearEnd(), + { + datetime(2008, 1, 1): datetime(2008, 12, 31), + datetime(2008, 6, 30): datetime(2008, 12, 31), + datetime(2008, 12, 31): datetime(2009, 12, 31), + datetime(2005, 12, 30): datetime(2006, 12, 29), + datetime(2005, 12, 31): datetime(2006, 12, 29), + }, + ) + ) + + offset_cases.append( + ( + BYearEnd(0), + { + datetime(2008, 1, 1): datetime(2008, 12, 31), + datetime(2008, 6, 30): datetime(2008, 12, 31), + datetime(2008, 12, 31): datetime(2008, 12, 31), + datetime(2005, 12, 31): datetime(2006, 12, 29), + }, + ) + ) + + offset_cases.append( + ( + BYearEnd(-1), + { + datetime(2007, 1, 1): datetime(2006, 12, 29), + datetime(2008, 6, 30): datetime(2007, 12, 31), + datetime(2008, 12, 31): datetime(2007, 12, 31), + datetime(2006, 12, 29): datetime(2005, 12, 30), + datetime(2006, 12, 30): datetime(2006, 12, 29), + datetime(2007, 1, 1): datetime(2006, 12, 29), + }, + ) + ) + + offset_cases.append( + ( + BYearEnd(-2), + { + datetime(2007, 1, 1): datetime(2005, 12, 30), + datetime(2008, 6, 30): datetime(2006, 12, 29), + datetime(2008, 12, 31): datetime(2006, 12, 29), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + on_offset_cases = [ + (BYearEnd(), datetime(2007, 12, 31), True), + (BYearEnd(), datetime(2008, 1, 1), False), + (BYearEnd(), datetime(2006, 12, 31), False), + (BYearEnd(), datetime(2006, 12, 29), True), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + +class TestBYearEndLagged: + def test_bad_month_fail(self): + msg = "Month must go from 1 to 12" + with pytest.raises(ValueError, match=msg): + BYearEnd(month=13) + with pytest.raises(ValueError, match=msg): + BYearEnd(month=0) + + offset_cases = [] + offset_cases.append( + ( + BYearEnd(month=6), + { + datetime(2008, 1, 1): datetime(2008, 6, 30), + datetime(2007, 6, 30): datetime(2008, 6, 30), + }, + ) + ) + + offset_cases.append( + ( + BYearEnd(n=-1, month=6), + { + datetime(2008, 1, 1): datetime(2007, 6, 29), + datetime(2007, 6, 30): datetime(2007, 6, 29), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + def test_roll(self): + offset = BYearEnd(month=6) + date = datetime(2009, 11, 30) + + assert offset.rollforward(date) == datetime(2010, 6, 30) + assert offset.rollback(date) == datetime(2009, 6, 30) + + on_offset_cases = [ + (BYearEnd(month=2), datetime(2007, 2, 28), True), + (BYearEnd(month=6), datetime(2007, 6, 30), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_common.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_common.py new file mode 100644 index 0000000000000000000000000000000000000000..aa4e22f71ad66147d5b9893ead4dc250d1de0ed3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_common.py @@ -0,0 +1,268 @@ +from datetime import datetime + +from dateutil.tz.tz import tzlocal +import pytest + +from pandas._libs.tslibs import ( + OutOfBoundsDatetime, + Timestamp, +) +from pandas.compat import ( + IS64, + is_platform_windows, +) + +from pandas.tseries.offsets import ( + FY5253, + BDay, + BMonthBegin, + BMonthEnd, + BQuarterBegin, + BQuarterEnd, + BusinessHour, + BYearBegin, + BYearEnd, + CBMonthBegin, + CBMonthEnd, + CDay, + CustomBusinessHour, + DateOffset, + FY5253Quarter, + LastWeekOfMonth, + MonthBegin, + MonthEnd, + QuarterEnd, + SemiMonthBegin, + SemiMonthEnd, + Week, + WeekOfMonth, + YearBegin, + YearEnd, +) + + +def _get_offset(klass, value=1, normalize=False): + # create instance from offset class + if klass is FY5253: + klass = klass( + n=value, + startingMonth=1, + weekday=1, + variation="last", + normalize=normalize, + ) + elif klass is FY5253Quarter: + klass = klass( + n=value, + startingMonth=1, + weekday=1, + qtr_with_extra_week=1, + variation="last", + normalize=normalize, + ) + elif klass is LastWeekOfMonth: + klass = klass(n=value, weekday=5, normalize=normalize) + elif klass is WeekOfMonth: + klass = klass(n=value, week=1, weekday=5, normalize=normalize) + elif klass is Week: + klass = klass(n=value, weekday=5, normalize=normalize) + elif klass is DateOffset: + klass = klass(days=value, normalize=normalize) + else: + klass = klass(value, normalize=normalize) + return klass + + +@pytest.fixture( + params=[ + BDay, + BusinessHour, + BMonthEnd, + BMonthBegin, + BQuarterEnd, + BQuarterBegin, + BYearEnd, + BYearBegin, + CDay, + CustomBusinessHour, + CBMonthEnd, + CBMonthBegin, + MonthEnd, + MonthBegin, + SemiMonthBegin, + SemiMonthEnd, + QuarterEnd, + LastWeekOfMonth, + WeekOfMonth, + Week, + YearBegin, + YearEnd, + FY5253, + FY5253Quarter, + DateOffset, + ] +) +def _offset(request): + return request.param + + +@pytest.fixture +def dt(_offset): + if _offset in (CBMonthBegin, CBMonthEnd, BDay): + return Timestamp(2008, 1, 1) + elif _offset is (CustomBusinessHour, BusinessHour): + return Timestamp(2014, 7, 1, 10, 00) + return Timestamp(2008, 1, 2) + + +def test_apply_out_of_range(request, tz_naive_fixture, _offset): + tz = tz_naive_fixture + + # try to create an out-of-bounds result timestamp; if we can't create + # the offset skip + try: + if _offset in (BusinessHour, CustomBusinessHour): + # Using 10000 in BusinessHour fails in tz check because of DST + # difference + offset = _get_offset(_offset, value=100000) + else: + offset = _get_offset(_offset, value=10000) + + result = Timestamp("20080101") + offset + assert isinstance(result, datetime) + assert result.tzinfo is None + + # Check tz is preserved + t = Timestamp("20080101", tz=tz) + result = t + offset + assert isinstance(result, datetime) + if tz is not None: + assert t.tzinfo is not None + + if isinstance(tz, tzlocal) and not IS64 and _offset is not DateOffset: + # If we hit OutOfBoundsDatetime on non-64 bit machines + # we'll drop out of the try clause before the next test + request.applymarker( + pytest.mark.xfail(reason="OverflowError inside tzlocal past 2038") + ) + elif ( + isinstance(tz, tzlocal) + and is_platform_windows() + and _offset in (QuarterEnd, BQuarterBegin, BQuarterEnd) + ): + request.applymarker( + pytest.mark.xfail(reason="After GH#49737 t.tzinfo is None on CI") + ) + assert str(t.tzinfo) == str(result.tzinfo) + + except OutOfBoundsDatetime: + pass + except (ValueError, KeyError): + # we are creating an invalid offset + # so ignore + pass + + +def test_offsets_compare_equal(_offset): + # root cause of GH#456: __ne__ was not implemented + offset1 = _offset() + offset2 = _offset() + assert not offset1 != offset2 + assert offset1 == offset2 + + +@pytest.mark.parametrize( + "date, offset2", + [ + [Timestamp(2008, 1, 1), BDay(2)], + [Timestamp(2014, 7, 1, 10, 00), BusinessHour(n=3)], + [ + Timestamp(2014, 7, 1, 10), + CustomBusinessHour( + holidays=["2014-06-27", Timestamp(2014, 6, 30), Timestamp("2014-07-02")] + ), + ], + [Timestamp(2008, 1, 2), SemiMonthEnd(2)], + [Timestamp(2008, 1, 2), SemiMonthBegin(2)], + [Timestamp(2008, 1, 2), Week(2)], + [Timestamp(2008, 1, 2), WeekOfMonth(2)], + [Timestamp(2008, 1, 2), LastWeekOfMonth(2)], + ], +) +def test_rsub(date, offset2): + assert date - offset2 == (-offset2)._apply(date) + + +@pytest.mark.parametrize( + "date, offset2", + [ + [Timestamp(2008, 1, 1), BDay(2)], + [Timestamp(2014, 7, 1, 10, 00), BusinessHour(n=3)], + [ + Timestamp(2014, 7, 1, 10), + CustomBusinessHour( + holidays=["2014-06-27", Timestamp(2014, 6, 30), Timestamp("2014-07-02")] + ), + ], + [Timestamp(2008, 1, 2), SemiMonthEnd(2)], + [Timestamp(2008, 1, 2), SemiMonthBegin(2)], + [Timestamp(2008, 1, 2), Week(2)], + [Timestamp(2008, 1, 2), WeekOfMonth(2)], + [Timestamp(2008, 1, 2), LastWeekOfMonth(2)], + ], +) +def test_radd(date, offset2): + assert date + offset2 == offset2 + date + + +@pytest.mark.parametrize( + "date, offset_box, offset2", + [ + [Timestamp(2008, 1, 1), BDay, BDay(2)], + [Timestamp(2008, 1, 2), SemiMonthEnd, SemiMonthEnd(2)], + [Timestamp(2008, 1, 2), SemiMonthBegin, SemiMonthBegin(2)], + [Timestamp(2008, 1, 2), Week, Week(2)], + [Timestamp(2008, 1, 2), WeekOfMonth, WeekOfMonth(2)], + [Timestamp(2008, 1, 2), LastWeekOfMonth, LastWeekOfMonth(2)], + ], +) +def test_sub(date, offset_box, offset2): + off = offset2 + msg = "Cannot subtract datetime from offset" + with pytest.raises(TypeError, match=msg): + off - date + + assert 2 * off - off == off + assert date - offset2 == date + offset_box(-2) + assert date - offset2 == date - (2 * off - off) + + +@pytest.mark.parametrize( + "offset_box, offset1", + [ + [BDay, BDay()], + [LastWeekOfMonth, LastWeekOfMonth()], + [WeekOfMonth, WeekOfMonth()], + [Week, Week()], + [SemiMonthBegin, SemiMonthBegin()], + [SemiMonthEnd, SemiMonthEnd()], + [CustomBusinessHour, CustomBusinessHour(weekmask="Tue Wed Thu Fri")], + [BusinessHour, BusinessHour()], + ], +) +def test_Mult1(offset_box, offset1): + dt = Timestamp(2008, 1, 2) + assert dt + 10 * offset1 == dt + offset_box(10) + assert dt + 5 * offset1 == dt + offset_box(5) + + +def test_compare_str(_offset): + # GH#23524 + # comparing to strings that cannot be cast to DateOffsets should + # not raise for __eq__ or __ne__ + off = _get_offset(_offset) + + assert not off == "infer" + assert off != "foo" + # Note: inequalities are only implemented for Tick subclasses; + # tests for this are in test_ticks diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_custom_business_day.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_custom_business_day.py new file mode 100644 index 0000000000000000000000000000000000000000..519fb712d041534b6e96e41539fb7660e6c14114 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_custom_business_day.py @@ -0,0 +1,98 @@ +""" +Tests for offsets.CustomBusinessDay / CDay +""" +from datetime import ( + datetime, + timedelta, +) + +import numpy as np +import pytest + +from pandas._libs.tslibs.offsets import CDay + +from pandas import ( + _testing as tm, + read_pickle, +) +from pandas.tests.tseries.offsets.common import assert_offset_equal + +from pandas.tseries.holiday import USFederalHolidayCalendar + + +@pytest.fixture +def offset(): + return CDay() + + +@pytest.fixture +def offset2(): + return CDay(2) + + +class TestCustomBusinessDay: + def test_repr(self, offset, offset2): + assert repr(offset) == "" + assert repr(offset2) == "<2 * CustomBusinessDays>" + + expected = "" + assert repr(offset + timedelta(1)) == expected + + def test_holidays(self): + # Define a TradingDay offset + holidays = ["2012-05-01", datetime(2013, 5, 1), np.datetime64("2014-05-01")] + tday = CDay(holidays=holidays) + for year in range(2012, 2015): + dt = datetime(year, 4, 30) + xp = datetime(year, 5, 2) + rs = dt + tday + assert rs == xp + + def test_weekmask(self): + weekmask_saudi = "Sat Sun Mon Tue Wed" # Thu-Fri Weekend + weekmask_uae = "1111001" # Fri-Sat Weekend + weekmask_egypt = [1, 1, 1, 1, 0, 0, 1] # Fri-Sat Weekend + bday_saudi = CDay(weekmask=weekmask_saudi) + bday_uae = CDay(weekmask=weekmask_uae) + bday_egypt = CDay(weekmask=weekmask_egypt) + dt = datetime(2013, 5, 1) + xp_saudi = datetime(2013, 5, 4) + xp_uae = datetime(2013, 5, 2) + xp_egypt = datetime(2013, 5, 2) + assert xp_saudi == dt + bday_saudi + assert xp_uae == dt + bday_uae + assert xp_egypt == dt + bday_egypt + xp2 = datetime(2013, 5, 5) + assert xp2 == dt + 2 * bday_saudi + assert xp2 == dt + 2 * bday_uae + assert xp2 == dt + 2 * bday_egypt + + def test_weekmask_and_holidays(self): + weekmask_egypt = "Sun Mon Tue Wed Thu" # Fri-Sat Weekend + holidays = ["2012-05-01", datetime(2013, 5, 1), np.datetime64("2014-05-01")] + bday_egypt = CDay(holidays=holidays, weekmask=weekmask_egypt) + dt = datetime(2013, 4, 30) + xp_egypt = datetime(2013, 5, 5) + assert xp_egypt == dt + 2 * bday_egypt + + @pytest.mark.filterwarnings("ignore:Non:pandas.errors.PerformanceWarning") + def test_calendar(self): + calendar = USFederalHolidayCalendar() + dt = datetime(2014, 1, 17) + assert_offset_equal(CDay(calendar=calendar), dt, datetime(2014, 1, 21)) + + def test_roundtrip_pickle(self, offset, offset2): + def _check_roundtrip(obj): + unpickled = tm.round_trip_pickle(obj) + assert unpickled == obj + + _check_roundtrip(offset) + _check_roundtrip(offset2) + _check_roundtrip(offset * 2) + + def test_pickle_compat_0_14_1(self, datapath): + hdays = [datetime(2013, 1, 1) for ele in range(4)] + pth = datapath("tseries", "offsets", "data", "cday-0.14.1.pickle") + cday0_14_1 = read_pickle(pth) + cday = CDay(holidays=hdays) + assert cday == cday0_14_1 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_custom_business_hour.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_custom_business_hour.py new file mode 100644 index 0000000000000000000000000000000000000000..55a184f95c2d8681fca77d74827dd248a20587f1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_custom_business_hour.py @@ -0,0 +1,329 @@ +""" +Tests for offsets.CustomBusinessHour +""" +from __future__ import annotations + +from datetime import ( + datetime, + time as dt_time, +) + +import numpy as np +import pytest + +from pandas._libs.tslibs import Timestamp +from pandas._libs.tslibs.offsets import ( + BusinessHour, + CustomBusinessHour, + Nano, +) + +from pandas.tests.tseries.offsets.common import assert_offset_equal + +from pandas.tseries.holiday import USFederalHolidayCalendar + +holidays = ["2014-06-27", datetime(2014, 6, 30), np.datetime64("2014-07-02")] + + +@pytest.fixture +def dt(): + return datetime(2014, 7, 1, 10, 00) + + +@pytest.fixture +def _offset(): + return CustomBusinessHour + + +# 2014 Calendar to check custom holidays +# Sun Mon Tue Wed Thu Fri Sat +# 6/22 23 24 25 26 27 28 +# 29 30 7/1 2 3 4 5 +# 6 7 8 9 10 11 12 +@pytest.fixture +def offset1(): + return CustomBusinessHour(weekmask="Tue Wed Thu Fri") + + +@pytest.fixture +def offset2(): + return CustomBusinessHour(holidays=holidays) + + +class TestCustomBusinessHour: + def test_constructor_errors(self): + msg = "time data must be specified only with hour and minute" + with pytest.raises(ValueError, match=msg): + CustomBusinessHour(start=dt_time(11, 0, 5)) + msg = "time data must match '%H:%M' format" + with pytest.raises(ValueError, match=msg): + CustomBusinessHour(start="AAA") + msg = "time data must match '%H:%M' format" + with pytest.raises(ValueError, match=msg): + CustomBusinessHour(start="14:00:05") + + def test_different_normalize_equals(self, _offset): + # GH#21404 changed __eq__ to return False when `normalize` does not match + offset = _offset() + offset2 = _offset(normalize=True) + assert offset != offset2 + + def test_repr(self, offset1, offset2): + assert repr(offset1) == "" + assert repr(offset2) == "" + + def test_with_offset(self, dt): + expected = Timestamp("2014-07-01 13:00") + + assert dt + CustomBusinessHour() * 3 == expected + assert dt + CustomBusinessHour(n=3) == expected + + def test_eq(self, offset1, offset2): + for offset in [offset1, offset2]: + assert offset == offset + + assert CustomBusinessHour() != CustomBusinessHour(-1) + assert CustomBusinessHour(start="09:00") == CustomBusinessHour() + assert CustomBusinessHour(start="09:00") != CustomBusinessHour(start="09:01") + assert CustomBusinessHour(start="09:00", end="17:00") != CustomBusinessHour( + start="17:00", end="09:01" + ) + + assert CustomBusinessHour(weekmask="Tue Wed Thu Fri") != CustomBusinessHour( + weekmask="Mon Tue Wed Thu Fri" + ) + assert CustomBusinessHour(holidays=["2014-06-27"]) != CustomBusinessHour( + holidays=["2014-06-28"] + ) + + def test_hash(self, offset1, offset2): + assert hash(offset1) == hash(offset1) + assert hash(offset2) == hash(offset2) + + def test_add_dateime(self, dt, offset1, offset2): + assert offset1 + dt == datetime(2014, 7, 1, 11) + assert offset2 + dt == datetime(2014, 7, 1, 11) + + def testRollback1(self, dt, offset1, offset2): + assert offset1.rollback(dt) == dt + assert offset2.rollback(dt) == dt + + d = datetime(2014, 7, 1, 0) + + # 2014/07/01 is Tuesday, 06/30 is Monday(holiday) + assert offset1.rollback(d) == datetime(2014, 6, 27, 17) + + # 2014/6/30 and 2014/6/27 are holidays + assert offset2.rollback(d) == datetime(2014, 6, 26, 17) + + def testRollback2(self, _offset): + assert _offset(-3).rollback(datetime(2014, 7, 5, 15, 0)) == datetime( + 2014, 7, 4, 17, 0 + ) + + def testRollforward1(self, dt, offset1, offset2): + assert offset1.rollforward(dt) == dt + assert offset2.rollforward(dt) == dt + + d = datetime(2014, 7, 1, 0) + assert offset1.rollforward(d) == datetime(2014, 7, 1, 9) + assert offset2.rollforward(d) == datetime(2014, 7, 1, 9) + + def testRollforward2(self, _offset): + assert _offset(-3).rollforward(datetime(2014, 7, 5, 16, 0)) == datetime( + 2014, 7, 7, 9 + ) + + def test_roll_date_object(self): + offset = BusinessHour() + + dt = datetime(2014, 7, 6, 15, 0) + + result = offset.rollback(dt) + assert result == datetime(2014, 7, 4, 17) + + result = offset.rollforward(dt) + assert result == datetime(2014, 7, 7, 9) + + normalize_cases = [ + ( + CustomBusinessHour(normalize=True, holidays=holidays), + { + datetime(2014, 7, 1, 8): datetime(2014, 7, 1), + datetime(2014, 7, 1, 17): datetime(2014, 7, 3), + datetime(2014, 7, 1, 16): datetime(2014, 7, 3), + datetime(2014, 7, 1, 23): datetime(2014, 7, 3), + datetime(2014, 7, 1, 0): datetime(2014, 7, 1), + datetime(2014, 7, 4, 15): datetime(2014, 7, 4), + datetime(2014, 7, 4, 15, 59): datetime(2014, 7, 4), + datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7), + datetime(2014, 7, 5, 23): datetime(2014, 7, 7), + datetime(2014, 7, 6, 10): datetime(2014, 7, 7), + }, + ), + ( + CustomBusinessHour(-1, normalize=True, holidays=holidays), + { + datetime(2014, 7, 1, 8): datetime(2014, 6, 26), + datetime(2014, 7, 1, 17): datetime(2014, 7, 1), + datetime(2014, 7, 1, 16): datetime(2014, 7, 1), + datetime(2014, 7, 1, 10): datetime(2014, 6, 26), + datetime(2014, 7, 1, 0): datetime(2014, 6, 26), + datetime(2014, 7, 7, 10): datetime(2014, 7, 4), + datetime(2014, 7, 7, 10, 1): datetime(2014, 7, 7), + datetime(2014, 7, 5, 23): datetime(2014, 7, 4), + datetime(2014, 7, 6, 10): datetime(2014, 7, 4), + }, + ), + ( + CustomBusinessHour( + 1, normalize=True, start="17:00", end="04:00", holidays=holidays + ), + { + datetime(2014, 7, 1, 8): datetime(2014, 7, 1), + datetime(2014, 7, 1, 17): datetime(2014, 7, 1), + datetime(2014, 7, 1, 23): datetime(2014, 7, 2), + datetime(2014, 7, 2, 2): datetime(2014, 7, 2), + datetime(2014, 7, 2, 3): datetime(2014, 7, 3), + datetime(2014, 7, 4, 23): datetime(2014, 7, 5), + datetime(2014, 7, 5, 2): datetime(2014, 7, 5), + datetime(2014, 7, 7, 2): datetime(2014, 7, 7), + datetime(2014, 7, 7, 17): datetime(2014, 7, 7), + }, + ), + ] + + @pytest.mark.parametrize("norm_cases", normalize_cases) + def test_normalize(self, norm_cases): + offset, cases = norm_cases + for dt, expected in cases.items(): + assert offset._apply(dt) == expected + + @pytest.mark.parametrize( + "dt, expected", + [ + [datetime(2014, 7, 1, 9), False], + [datetime(2014, 7, 1, 10), True], + [datetime(2014, 7, 1, 15), True], + [datetime(2014, 7, 1, 15, 1), False], + [datetime(2014, 7, 5, 12), False], + [datetime(2014, 7, 6, 12), False], + ], + ) + def test_is_on_offset(self, dt, expected): + offset = CustomBusinessHour(start="10:00", end="15:00", holidays=holidays) + assert offset.is_on_offset(dt) == expected + + apply_cases = [ + ( + CustomBusinessHour(holidays=holidays), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 12), + datetime(2014, 7, 1, 13): datetime(2014, 7, 1, 14), + datetime(2014, 7, 1, 15): datetime(2014, 7, 1, 16), + datetime(2014, 7, 1, 19): datetime(2014, 7, 3, 10), + datetime(2014, 7, 1, 16): datetime(2014, 7, 3, 9), + datetime(2014, 7, 1, 16, 30, 15): datetime(2014, 7, 3, 9, 30, 15), + datetime(2014, 7, 1, 17): datetime(2014, 7, 3, 10), + datetime(2014, 7, 2, 11): datetime(2014, 7, 3, 10), + # out of business hours + datetime(2014, 7, 2, 8): datetime(2014, 7, 3, 10), + datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 10), + datetime(2014, 7, 2, 23): datetime(2014, 7, 3, 10), + datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 10), + # saturday + datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 10), + datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 10), + datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7, 9, 30), + datetime(2014, 7, 4, 16, 30, 30): datetime(2014, 7, 7, 9, 30, 30), + }, + ), + ( + CustomBusinessHour(4, holidays=holidays), + { + datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 15), + datetime(2014, 7, 1, 13): datetime(2014, 7, 3, 9), + datetime(2014, 7, 1, 15): datetime(2014, 7, 3, 11), + datetime(2014, 7, 1, 16): datetime(2014, 7, 3, 12), + datetime(2014, 7, 1, 17): datetime(2014, 7, 3, 13), + datetime(2014, 7, 2, 11): datetime(2014, 7, 3, 13), + datetime(2014, 7, 2, 8): datetime(2014, 7, 3, 13), + datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 13), + datetime(2014, 7, 2, 23): datetime(2014, 7, 3, 13), + datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 13), + datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 13), + datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 13), + datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7, 12, 30), + datetime(2014, 7, 4, 16, 30, 30): datetime(2014, 7, 7, 12, 30, 30), + }, + ), + ] + + @pytest.mark.parametrize("apply_case", apply_cases) + def test_apply(self, apply_case): + offset, cases = apply_case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + nano_cases = [ + ( + CustomBusinessHour(holidays=holidays), + { + Timestamp("2014-07-01 15:00") + + Nano(5): Timestamp("2014-07-01 16:00") + + Nano(5), + Timestamp("2014-07-01 16:00") + + Nano(5): Timestamp("2014-07-03 09:00") + + Nano(5), + Timestamp("2014-07-01 16:00") + - Nano(5): Timestamp("2014-07-01 17:00") + - Nano(5), + }, + ), + ( + CustomBusinessHour(-1, holidays=holidays), + { + Timestamp("2014-07-01 15:00") + + Nano(5): Timestamp("2014-07-01 14:00") + + Nano(5), + Timestamp("2014-07-01 10:00") + + Nano(5): Timestamp("2014-07-01 09:00") + + Nano(5), + Timestamp("2014-07-01 10:00") + - Nano(5): Timestamp("2014-06-26 17:00") + - Nano(5), + }, + ), + ] + + @pytest.mark.parametrize("nano_case", nano_cases) + def test_apply_nanoseconds(self, nano_case): + offset, cases = nano_case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + def test_us_federal_holiday_with_datetime(self): + # GH 16867 + bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar()) + t0 = datetime(2014, 1, 17, 15) + result = t0 + bhour_us * 8 + expected = Timestamp("2014-01-21 15:00:00") + assert result == expected + + +@pytest.mark.parametrize( + "weekmask, expected_time, mult", + [ + ["Mon Tue Wed Thu Fri Sat", "2018-11-10 09:00:00", 10], + ["Tue Wed Thu Fri Sat", "2018-11-13 08:00:00", 18], + ], +) +def test_custom_businesshour_weekmask_and_holidays(weekmask, expected_time, mult): + # GH 23542 + holidays = ["2018-11-09"] + bh = CustomBusinessHour( + start="08:00", end="17:00", weekmask=weekmask, holidays=holidays + ) + result = Timestamp("2018-11-08 08:00") + mult * bh + expected = Timestamp(expected_time) + assert result == expected diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_custom_business_month.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_custom_business_month.py new file mode 100644 index 0000000000000000000000000000000000000000..d226302e042d325d78a953a651b24f85ad4f0468 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_custom_business_month.py @@ -0,0 +1,437 @@ +""" +Tests for the following offsets: +- CustomBusinessMonthBase +- CustomBusinessMonthBegin +- CustomBusinessMonthEnd +""" +from __future__ import annotations + +from datetime import ( + date, + datetime, + timedelta, +) + +import numpy as np +import pytest + +from pandas._libs.tslibs.offsets import ( + CBMonthBegin, + CBMonthEnd, + CDay, +) + +import pandas._testing as tm +from pandas.tests.tseries.offsets.common import ( + assert_is_on_offset, + assert_offset_equal, +) + +from pandas.tseries import offsets + + +@pytest.fixture +def dt(): + return datetime(2008, 1, 1) + + +class TestCommonCBM: + @pytest.mark.parametrize("offset2", [CBMonthBegin(2), CBMonthEnd(2)]) + def test_eq(self, offset2): + assert offset2 == offset2 + + @pytest.mark.parametrize("offset2", [CBMonthBegin(2), CBMonthEnd(2)]) + def test_hash(self, offset2): + assert hash(offset2) == hash(offset2) + + @pytest.mark.parametrize("_offset", [CBMonthBegin, CBMonthEnd]) + def test_roundtrip_pickle(self, _offset): + def _check_roundtrip(obj): + unpickled = tm.round_trip_pickle(obj) + assert unpickled == obj + + _check_roundtrip(_offset()) + _check_roundtrip(_offset(2)) + _check_roundtrip(_offset() * 2) + + @pytest.mark.parametrize("_offset", [CBMonthBegin, CBMonthEnd]) + def test_copy(self, _offset): + # GH 17452 + off = _offset(weekmask="Mon Wed Fri") + assert off == off.copy() + + +class TestCustomBusinessMonthBegin: + @pytest.fixture + def _offset(self): + return CBMonthBegin + + @pytest.fixture + def offset(self): + return CBMonthBegin() + + @pytest.fixture + def offset2(self): + return CBMonthBegin(2) + + def test_different_normalize_equals(self, _offset): + # GH#21404 changed __eq__ to return False when `normalize` does not match + offset = _offset() + offset2 = _offset(normalize=True) + assert offset != offset2 + + def test_repr(self, offset, offset2): + assert repr(offset) == "" + assert repr(offset2) == "<2 * CustomBusinessMonthBegins>" + + def test_add_datetime(self, dt, offset2): + assert offset2 + dt == datetime(2008, 3, 3) + + def testRollback1(self): + assert CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31) + + def testRollback2(self, dt): + assert CBMonthBegin(10).rollback(dt) == datetime(2008, 1, 1) + + def testRollforward1(self, dt): + assert CBMonthBegin(10).rollforward(dt) == datetime(2008, 1, 1) + + def test_roll_date_object(self): + offset = CBMonthBegin() + + dt = date(2012, 9, 15) + + result = offset.rollback(dt) + assert result == datetime(2012, 9, 3) + + result = offset.rollforward(dt) + assert result == datetime(2012, 10, 1) + + offset = offsets.Day() + result = offset.rollback(dt) + assert result == datetime(2012, 9, 15) + + result = offset.rollforward(dt) + assert result == datetime(2012, 9, 15) + + on_offset_cases = [ + (CBMonthBegin(), datetime(2008, 1, 1), True), + (CBMonthBegin(), datetime(2008, 1, 31), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + apply_cases = [ + ( + CBMonthBegin(), + { + datetime(2008, 1, 1): datetime(2008, 2, 1), + datetime(2008, 2, 7): datetime(2008, 3, 3), + }, + ), + ( + 2 * CBMonthBegin(), + { + datetime(2008, 1, 1): datetime(2008, 3, 3), + datetime(2008, 2, 7): datetime(2008, 4, 1), + }, + ), + ( + -CBMonthBegin(), + { + datetime(2008, 1, 1): datetime(2007, 12, 3), + datetime(2008, 2, 8): datetime(2008, 2, 1), + }, + ), + ( + -2 * CBMonthBegin(), + { + datetime(2008, 1, 1): datetime(2007, 11, 1), + datetime(2008, 2, 9): datetime(2008, 1, 1), + }, + ), + ( + CBMonthBegin(0), + { + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2008, 1, 7): datetime(2008, 2, 1), + }, + ), + ] + + @pytest.mark.parametrize("case", apply_cases) + def test_apply(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + def test_apply_large_n(self): + dt = datetime(2012, 10, 23) + + result = dt + CBMonthBegin(10) + assert result == datetime(2013, 8, 1) + + result = dt + CDay(100) - CDay(100) + assert result == dt + + off = CBMonthBegin() * 6 + rs = datetime(2012, 1, 1) - off + xp = datetime(2011, 7, 1) + assert rs == xp + + st = datetime(2011, 12, 18) + rs = st + off + + xp = datetime(2012, 6, 1) + assert rs == xp + + def test_holidays(self): + # Define a TradingDay offset + holidays = ["2012-02-01", datetime(2012, 2, 2), np.datetime64("2012-03-01")] + bm_offset = CBMonthBegin(holidays=holidays) + dt = datetime(2012, 1, 1) + + assert dt + bm_offset == datetime(2012, 1, 2) + assert dt + 2 * bm_offset == datetime(2012, 2, 3) + + @pytest.mark.parametrize( + "case", + [ + ( + CBMonthBegin(n=1, offset=timedelta(days=5)), + { + datetime(2021, 3, 1): datetime(2021, 4, 1) + timedelta(days=5), + datetime(2021, 4, 17): datetime(2021, 5, 3) + timedelta(days=5), + }, + ), + ( + CBMonthBegin(n=2, offset=timedelta(days=40)), + { + datetime(2021, 3, 10): datetime(2021, 5, 3) + timedelta(days=40), + datetime(2021, 4, 30): datetime(2021, 6, 1) + timedelta(days=40), + }, + ), + ( + CBMonthBegin(n=1, offset=timedelta(days=-5)), + { + datetime(2021, 3, 1): datetime(2021, 4, 1) - timedelta(days=5), + datetime(2021, 4, 11): datetime(2021, 5, 3) - timedelta(days=5), + }, + ), + ( + -2 * CBMonthBegin(n=1, offset=timedelta(days=10)), + { + datetime(2021, 3, 1): datetime(2021, 1, 1) + timedelta(days=10), + datetime(2021, 4, 3): datetime(2021, 3, 1) + timedelta(days=10), + }, + ), + ( + CBMonthBegin(n=0, offset=timedelta(days=1)), + { + datetime(2021, 3, 2): datetime(2021, 4, 1) + timedelta(days=1), + datetime(2021, 4, 1): datetime(2021, 4, 1) + timedelta(days=1), + }, + ), + ( + CBMonthBegin( + n=1, holidays=["2021-04-01", "2021-04-02"], offset=timedelta(days=1) + ), + { + datetime(2021, 3, 2): datetime(2021, 4, 5) + timedelta(days=1), + }, + ), + ], + ) + def test_apply_with_extra_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + +class TestCustomBusinessMonthEnd: + @pytest.fixture + def _offset(self): + return CBMonthEnd + + @pytest.fixture + def offset(self): + return CBMonthEnd() + + @pytest.fixture + def offset2(self): + return CBMonthEnd(2) + + def test_different_normalize_equals(self, _offset): + # GH#21404 changed __eq__ to return False when `normalize` does not match + offset = _offset() + offset2 = _offset(normalize=True) + assert offset != offset2 + + def test_repr(self, offset, offset2): + assert repr(offset) == "" + assert repr(offset2) == "<2 * CustomBusinessMonthEnds>" + + def test_add_datetime(self, dt, offset2): + assert offset2 + dt == datetime(2008, 2, 29) + + def testRollback1(self): + assert CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31) + + def testRollback2(self, dt): + assert CBMonthEnd(10).rollback(dt) == datetime(2007, 12, 31) + + def testRollforward1(self, dt): + assert CBMonthEnd(10).rollforward(dt) == datetime(2008, 1, 31) + + def test_roll_date_object(self): + offset = CBMonthEnd() + + dt = date(2012, 9, 15) + + result = offset.rollback(dt) + assert result == datetime(2012, 8, 31) + + result = offset.rollforward(dt) + assert result == datetime(2012, 9, 28) + + offset = offsets.Day() + result = offset.rollback(dt) + assert result == datetime(2012, 9, 15) + + result = offset.rollforward(dt) + assert result == datetime(2012, 9, 15) + + on_offset_cases = [ + (CBMonthEnd(), datetime(2008, 1, 31), True), + (CBMonthEnd(), datetime(2008, 1, 1), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + apply_cases = [ + ( + CBMonthEnd(), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 2, 7): datetime(2008, 2, 29), + }, + ), + ( + 2 * CBMonthEnd(), + { + datetime(2008, 1, 1): datetime(2008, 2, 29), + datetime(2008, 2, 7): datetime(2008, 3, 31), + }, + ), + ( + -CBMonthEnd(), + { + datetime(2008, 1, 1): datetime(2007, 12, 31), + datetime(2008, 2, 8): datetime(2008, 1, 31), + }, + ), + ( + -2 * CBMonthEnd(), + { + datetime(2008, 1, 1): datetime(2007, 11, 30), + datetime(2008, 2, 9): datetime(2007, 12, 31), + }, + ), + ( + CBMonthEnd(0), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 2, 7): datetime(2008, 2, 29), + }, + ), + ] + + @pytest.mark.parametrize("case", apply_cases) + def test_apply(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + def test_apply_large_n(self): + dt = datetime(2012, 10, 23) + + result = dt + CBMonthEnd(10) + assert result == datetime(2013, 7, 31) + + result = dt + CDay(100) - CDay(100) + assert result == dt + + off = CBMonthEnd() * 6 + rs = datetime(2012, 1, 1) - off + xp = datetime(2011, 7, 29) + assert rs == xp + + st = datetime(2011, 12, 18) + rs = st + off + xp = datetime(2012, 5, 31) + assert rs == xp + + def test_holidays(self): + # Define a TradingDay offset + holidays = ["2012-01-31", datetime(2012, 2, 28), np.datetime64("2012-02-29")] + bm_offset = CBMonthEnd(holidays=holidays) + dt = datetime(2012, 1, 1) + assert dt + bm_offset == datetime(2012, 1, 30) + assert dt + 2 * bm_offset == datetime(2012, 2, 27) + + @pytest.mark.parametrize( + "case", + [ + ( + CBMonthEnd(n=1, offset=timedelta(days=5)), + { + datetime(2021, 3, 1): datetime(2021, 3, 31) + timedelta(days=5), + datetime(2021, 4, 17): datetime(2021, 4, 30) + timedelta(days=5), + }, + ), + ( + CBMonthEnd(n=2, offset=timedelta(days=40)), + { + datetime(2021, 3, 10): datetime(2021, 4, 30) + timedelta(days=40), + datetime(2021, 4, 30): datetime(2021, 6, 30) + timedelta(days=40), + }, + ), + ( + CBMonthEnd(n=1, offset=timedelta(days=-5)), + { + datetime(2021, 3, 1): datetime(2021, 3, 31) - timedelta(days=5), + datetime(2021, 4, 11): datetime(2021, 4, 30) - timedelta(days=5), + }, + ), + ( + -2 * CBMonthEnd(n=1, offset=timedelta(days=10)), + { + datetime(2021, 3, 1): datetime(2021, 1, 29) + timedelta(days=10), + datetime(2021, 4, 3): datetime(2021, 2, 26) + timedelta(days=10), + }, + ), + ( + CBMonthEnd(n=0, offset=timedelta(days=1)), + { + datetime(2021, 3, 2): datetime(2021, 3, 31) + timedelta(days=1), + datetime(2021, 4, 1): datetime(2021, 4, 30) + timedelta(days=1), + }, + ), + ( + CBMonthEnd(n=1, holidays=["2021-03-31"], offset=timedelta(days=1)), + { + datetime(2021, 3, 2): datetime(2021, 3, 30) + timedelta(days=1), + }, + ), + ], + ) + def test_apply_with_extra_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_dst.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_dst.py new file mode 100644 index 0000000000000000000000000000000000000000..b22dc0b33081794cef587f0bbcf3271d35fd687b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_dst.py @@ -0,0 +1,260 @@ +""" +Tests for DateOffset additions over Daylight Savings Time +""" +from datetime import timedelta + +import pytest +import pytz + +from pandas._libs.tslibs import Timestamp +from pandas._libs.tslibs.offsets import ( + BMonthBegin, + BMonthEnd, + BQuarterBegin, + BQuarterEnd, + BYearBegin, + BYearEnd, + CBMonthBegin, + CBMonthEnd, + CustomBusinessDay, + DateOffset, + Day, + MonthBegin, + MonthEnd, + QuarterBegin, + QuarterEnd, + SemiMonthBegin, + SemiMonthEnd, + Week, + YearBegin, + YearEnd, +) +from pandas.errors import PerformanceWarning + +from pandas import DatetimeIndex +import pandas._testing as tm +from pandas.util.version import Version + +# error: Module has no attribute "__version__" +pytz_version = Version(pytz.__version__) # type: ignore[attr-defined] + + +def get_utc_offset_hours(ts): + # take a Timestamp and compute total hours of utc offset + o = ts.utcoffset() + return (o.days * 24 * 3600 + o.seconds) / 3600.0 + + +class TestDST: + # one microsecond before the DST transition + ts_pre_fallback = "2013-11-03 01:59:59.999999" + ts_pre_springfwd = "2013-03-10 01:59:59.999999" + + # test both basic names and dateutil timezones + timezone_utc_offsets = { + "US/Eastern": {"utc_offset_daylight": -4, "utc_offset_standard": -5}, + "dateutil/US/Pacific": {"utc_offset_daylight": -7, "utc_offset_standard": -8}, + } + valid_date_offsets_singular = [ + "weekday", + "day", + "hour", + "minute", + "second", + "microsecond", + ] + valid_date_offsets_plural = [ + "weeks", + "days", + "hours", + "minutes", + "seconds", + "milliseconds", + "microseconds", + ] + + def _test_all_offsets(self, n, **kwds): + valid_offsets = ( + self.valid_date_offsets_plural + if n > 1 + else self.valid_date_offsets_singular + ) + + for name in valid_offsets: + self._test_offset(offset_name=name, offset_n=n, **kwds) + + def _test_offset(self, offset_name, offset_n, tstart, expected_utc_offset): + offset = DateOffset(**{offset_name: offset_n}) + + if ( + offset_name in ["hour", "minute", "second", "microsecond"] + and offset_n == 1 + and tstart == Timestamp("2013-11-03 01:59:59.999999-0500", tz="US/Eastern") + ): + # This addition results in an ambiguous wall time + err_msg = { + "hour": "2013-11-03 01:59:59.999999", + "minute": "2013-11-03 01:01:59.999999", + "second": "2013-11-03 01:59:01.999999", + "microsecond": "2013-11-03 01:59:59.000001", + }[offset_name] + with pytest.raises(pytz.AmbiguousTimeError, match=err_msg): + tstart + offset + # While we're here, let's check that we get the same behavior in a + # vectorized path + dti = DatetimeIndex([tstart]) + warn_msg = "Non-vectorized DateOffset" + with pytest.raises(pytz.AmbiguousTimeError, match=err_msg): + with tm.assert_produces_warning(PerformanceWarning, match=warn_msg): + dti + offset + return + + t = tstart + offset + if expected_utc_offset is not None: + assert get_utc_offset_hours(t) == expected_utc_offset + + if offset_name == "weeks": + # dates should match + assert t.date() == timedelta(days=7 * offset.kwds["weeks"]) + tstart.date() + # expect the same day of week, hour of day, minute, second, ... + assert ( + t.dayofweek == tstart.dayofweek + and t.hour == tstart.hour + and t.minute == tstart.minute + and t.second == tstart.second + ) + elif offset_name == "days": + # dates should match + assert timedelta(offset.kwds["days"]) + tstart.date() == t.date() + # expect the same hour of day, minute, second, ... + assert ( + t.hour == tstart.hour + and t.minute == tstart.minute + and t.second == tstart.second + ) + elif offset_name in self.valid_date_offsets_singular: + # expect the singular offset value to match between tstart and t + datepart_offset = getattr( + t, offset_name if offset_name != "weekday" else "dayofweek" + ) + assert datepart_offset == offset.kwds[offset_name] + else: + # the offset should be the same as if it was done in UTC + assert t == (tstart.tz_convert("UTC") + offset).tz_convert("US/Pacific") + + def _make_timestamp(self, string, hrs_offset, tz): + if hrs_offset >= 0: + offset_string = f"{hrs_offset:02d}00" + else: + offset_string = f"-{(hrs_offset * -1):02}00" + return Timestamp(string + offset_string).tz_convert(tz) + + def test_springforward_plural(self): + # test moving from standard to daylight savings + for tz, utc_offsets in self.timezone_utc_offsets.items(): + hrs_pre = utc_offsets["utc_offset_standard"] + hrs_post = utc_offsets["utc_offset_daylight"] + self._test_all_offsets( + n=3, + tstart=self._make_timestamp(self.ts_pre_springfwd, hrs_pre, tz), + expected_utc_offset=hrs_post, + ) + + def test_fallback_singular(self): + # in the case of singular offsets, we don't necessarily know which utc + # offset the new Timestamp will wind up in (the tz for 1 month may be + # different from 1 second) so we don't specify an expected_utc_offset + for tz, utc_offsets in self.timezone_utc_offsets.items(): + hrs_pre = utc_offsets["utc_offset_standard"] + self._test_all_offsets( + n=1, + tstart=self._make_timestamp(self.ts_pre_fallback, hrs_pre, tz), + expected_utc_offset=None, + ) + + def test_springforward_singular(self): + for tz, utc_offsets in self.timezone_utc_offsets.items(): + hrs_pre = utc_offsets["utc_offset_standard"] + self._test_all_offsets( + n=1, + tstart=self._make_timestamp(self.ts_pre_springfwd, hrs_pre, tz), + expected_utc_offset=None, + ) + + offset_classes = { + MonthBegin: ["11/2/2012", "12/1/2012"], + MonthEnd: ["11/2/2012", "11/30/2012"], + BMonthBegin: ["11/2/2012", "12/3/2012"], + BMonthEnd: ["11/2/2012", "11/30/2012"], + CBMonthBegin: ["11/2/2012", "12/3/2012"], + CBMonthEnd: ["11/2/2012", "11/30/2012"], + SemiMonthBegin: ["11/2/2012", "11/15/2012"], + SemiMonthEnd: ["11/2/2012", "11/15/2012"], + Week: ["11/2/2012", "11/9/2012"], + YearBegin: ["11/2/2012", "1/1/2013"], + YearEnd: ["11/2/2012", "12/31/2012"], + BYearBegin: ["11/2/2012", "1/1/2013"], + BYearEnd: ["11/2/2012", "12/31/2012"], + QuarterBegin: ["11/2/2012", "12/1/2012"], + QuarterEnd: ["11/2/2012", "12/31/2012"], + BQuarterBegin: ["11/2/2012", "12/3/2012"], + BQuarterEnd: ["11/2/2012", "12/31/2012"], + Day: ["11/4/2012", "11/4/2012 23:00"], + }.items() + + @pytest.mark.parametrize("tup", offset_classes) + def test_all_offset_classes(self, tup): + offset, test_values = tup + + first = Timestamp(test_values[0], tz="US/Eastern") + offset() + second = Timestamp(test_values[1], tz="US/Eastern") + assert first == second + + +@pytest.mark.parametrize( + "original_dt, target_dt, offset, tz", + [ + pytest.param( + Timestamp("1900-01-01"), + Timestamp("1905-07-01"), + MonthBegin(66), + "Africa/Lagos", + marks=pytest.mark.xfail( + pytz_version < Version("2020.5") or pytz_version == Version("2022.2"), + reason="GH#41906: pytz utc transition dates changed", + ), + ), + ( + Timestamp("2021-10-01 01:15"), + Timestamp("2021-10-31 01:15"), + MonthEnd(1), + "Europe/London", + ), + ( + Timestamp("2010-12-05 02:59"), + Timestamp("2010-10-31 02:59"), + SemiMonthEnd(-3), + "Europe/Paris", + ), + ( + Timestamp("2021-10-31 01:20"), + Timestamp("2021-11-07 01:20"), + CustomBusinessDay(2, weekmask="Sun Mon"), + "US/Eastern", + ), + ( + Timestamp("2020-04-03 01:30"), + Timestamp("2020-11-01 01:30"), + YearBegin(1, month=11), + "America/Chicago", + ), + ], +) +def test_nontick_offset_with_ambiguous_time_error(original_dt, target_dt, offset, tz): + # .apply for non-Tick offsets throws AmbiguousTimeError when the target dt + # is dst-ambiguous + localized_dt = original_dt.tz_localize(tz) + + msg = f"Cannot infer dst time from {target_dt}, try using the 'ambiguous' argument" + with pytest.raises(pytz.AmbiguousTimeError, match=msg): + localized_dt + offset diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_easter.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_easter.py new file mode 100644 index 0000000000000000000000000000000000000000..d11a72cc1b9d54387a37d8e4102249c415c4b46e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_easter.py @@ -0,0 +1,33 @@ +""" +Tests for the following offsets: +- Easter +""" +from __future__ import annotations + +from datetime import datetime + +import pytest + +from pandas.tests.tseries.offsets.common import assert_offset_equal + +from pandas.tseries.offsets import Easter + + +class TestEaster: + @pytest.mark.parametrize( + "offset,date,expected", + [ + (Easter(), datetime(2010, 1, 1), datetime(2010, 4, 4)), + (Easter(), datetime(2010, 4, 5), datetime(2011, 4, 24)), + (Easter(2), datetime(2010, 1, 1), datetime(2011, 4, 24)), + (Easter(), datetime(2010, 4, 4), datetime(2011, 4, 24)), + (Easter(2), datetime(2010, 4, 4), datetime(2012, 4, 8)), + (-Easter(), datetime(2011, 1, 1), datetime(2010, 4, 4)), + (-Easter(), datetime(2010, 4, 5), datetime(2010, 4, 4)), + (-Easter(2), datetime(2011, 1, 1), datetime(2009, 4, 12)), + (-Easter(), datetime(2010, 4, 4), datetime(2009, 4, 12)), + (-Easter(2), datetime(2010, 4, 4), datetime(2008, 3, 23)), + ], + ) + def test_offset(self, offset, date, expected): + assert_offset_equal(offset, date, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_fiscal.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_fiscal.py new file mode 100644 index 0000000000000000000000000000000000000000..824e66a1ddef1b31708e53075949a9bba0114190 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_fiscal.py @@ -0,0 +1,656 @@ +""" +Tests for Fiscal Year and Fiscal Quarter offset classes +""" +from datetime import datetime + +from dateutil.relativedelta import relativedelta +import pytest + +from pandas import Timestamp +import pandas._testing as tm +from pandas.tests.tseries.offsets.common import ( + WeekDay, + assert_is_on_offset, + assert_offset_equal, +) + +from pandas.tseries.offsets import ( + FY5253, + FY5253Quarter, +) + + +def makeFY5253LastOfMonthQuarter(*args, **kwds): + return FY5253Quarter(*args, variation="last", **kwds) + + +def makeFY5253NearestEndMonthQuarter(*args, **kwds): + return FY5253Quarter(*args, variation="nearest", **kwds) + + +def makeFY5253NearestEndMonth(*args, **kwds): + return FY5253(*args, variation="nearest", **kwds) + + +def makeFY5253LastOfMonth(*args, **kwds): + return FY5253(*args, variation="last", **kwds) + + +def test_get_offset_name(): + assert ( + makeFY5253LastOfMonthQuarter( + weekday=1, startingMonth=3, qtr_with_extra_week=4 + ).freqstr + == "REQ-L-MAR-TUE-4" + ) + assert ( + makeFY5253NearestEndMonthQuarter( + weekday=1, startingMonth=3, qtr_with_extra_week=3 + ).freqstr + == "REQ-N-MAR-TUE-3" + ) + + +class TestFY5253LastOfMonth: + offset_lom_sat_aug = makeFY5253LastOfMonth(1, startingMonth=8, weekday=WeekDay.SAT) + offset_lom_sat_sep = makeFY5253LastOfMonth(1, startingMonth=9, weekday=WeekDay.SAT) + + on_offset_cases = [ + # From Wikipedia (see: + # https://en.wikipedia.org/wiki/4%E2%80%934%E2%80%935_calendar#Last_Saturday_of_the_month_at_fiscal_year_end) + (offset_lom_sat_aug, datetime(2006, 8, 26), True), + (offset_lom_sat_aug, datetime(2007, 8, 25), True), + (offset_lom_sat_aug, datetime(2008, 8, 30), True), + (offset_lom_sat_aug, datetime(2009, 8, 29), True), + (offset_lom_sat_aug, datetime(2010, 8, 28), True), + (offset_lom_sat_aug, datetime(2011, 8, 27), True), + (offset_lom_sat_aug, datetime(2012, 8, 25), True), + (offset_lom_sat_aug, datetime(2013, 8, 31), True), + (offset_lom_sat_aug, datetime(2014, 8, 30), True), + (offset_lom_sat_aug, datetime(2015, 8, 29), True), + (offset_lom_sat_aug, datetime(2016, 8, 27), True), + (offset_lom_sat_aug, datetime(2017, 8, 26), True), + (offset_lom_sat_aug, datetime(2018, 8, 25), True), + (offset_lom_sat_aug, datetime(2019, 8, 31), True), + (offset_lom_sat_aug, datetime(2006, 8, 27), False), + (offset_lom_sat_aug, datetime(2007, 8, 28), False), + (offset_lom_sat_aug, datetime(2008, 8, 31), False), + (offset_lom_sat_aug, datetime(2009, 8, 30), False), + (offset_lom_sat_aug, datetime(2010, 8, 29), False), + (offset_lom_sat_aug, datetime(2011, 8, 28), False), + (offset_lom_sat_aug, datetime(2006, 8, 25), False), + (offset_lom_sat_aug, datetime(2007, 8, 24), False), + (offset_lom_sat_aug, datetime(2008, 8, 29), False), + (offset_lom_sat_aug, datetime(2009, 8, 28), False), + (offset_lom_sat_aug, datetime(2010, 8, 27), False), + (offset_lom_sat_aug, datetime(2011, 8, 26), False), + (offset_lom_sat_aug, datetime(2019, 8, 30), False), + # From GMCR (see for example: + # http://yahoo.brand.edgar-online.com/Default.aspx? + # companyid=3184&formtypeID=7) + (offset_lom_sat_sep, datetime(2010, 9, 25), True), + (offset_lom_sat_sep, datetime(2011, 9, 24), True), + (offset_lom_sat_sep, datetime(2012, 9, 29), True), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + def test_apply(self): + offset_lom_aug_sat = makeFY5253LastOfMonth(startingMonth=8, weekday=WeekDay.SAT) + offset_lom_aug_sat_1 = makeFY5253LastOfMonth( + n=1, startingMonth=8, weekday=WeekDay.SAT + ) + + date_seq_lom_aug_sat = [ + datetime(2006, 8, 26), + datetime(2007, 8, 25), + datetime(2008, 8, 30), + datetime(2009, 8, 29), + datetime(2010, 8, 28), + datetime(2011, 8, 27), + datetime(2012, 8, 25), + datetime(2013, 8, 31), + datetime(2014, 8, 30), + datetime(2015, 8, 29), + datetime(2016, 8, 27), + ] + + tests = [ + (offset_lom_aug_sat, date_seq_lom_aug_sat), + (offset_lom_aug_sat_1, date_seq_lom_aug_sat), + (offset_lom_aug_sat, [datetime(2006, 8, 25)] + date_seq_lom_aug_sat), + (offset_lom_aug_sat_1, [datetime(2006, 8, 27)] + date_seq_lom_aug_sat[1:]), + ( + makeFY5253LastOfMonth(n=-1, startingMonth=8, weekday=WeekDay.SAT), + list(reversed(date_seq_lom_aug_sat)), + ), + ] + for test in tests: + offset, data = test + current = data[0] + for datum in data[1:]: + current = current + offset + assert current == datum + + +class TestFY5253NearestEndMonth: + def test_get_year_end(self): + assert makeFY5253NearestEndMonth( + startingMonth=8, weekday=WeekDay.SAT + ).get_year_end(datetime(2013, 1, 1)) == datetime(2013, 8, 31) + assert makeFY5253NearestEndMonth( + startingMonth=8, weekday=WeekDay.SUN + ).get_year_end(datetime(2013, 1, 1)) == datetime(2013, 9, 1) + assert makeFY5253NearestEndMonth( + startingMonth=8, weekday=WeekDay.FRI + ).get_year_end(datetime(2013, 1, 1)) == datetime(2013, 8, 30) + + offset_n = FY5253(weekday=WeekDay.TUE, startingMonth=12, variation="nearest") + assert offset_n.get_year_end(datetime(2012, 1, 1)) == datetime(2013, 1, 1) + assert offset_n.get_year_end(datetime(2012, 1, 10)) == datetime(2013, 1, 1) + + assert offset_n.get_year_end(datetime(2013, 1, 1)) == datetime(2013, 12, 31) + assert offset_n.get_year_end(datetime(2013, 1, 2)) == datetime(2013, 12, 31) + assert offset_n.get_year_end(datetime(2013, 1, 3)) == datetime(2013, 12, 31) + assert offset_n.get_year_end(datetime(2013, 1, 10)) == datetime(2013, 12, 31) + + JNJ = FY5253(n=1, startingMonth=12, weekday=6, variation="nearest") + assert JNJ.get_year_end(datetime(2006, 1, 1)) == datetime(2006, 12, 31) + + offset_lom_aug_sat = makeFY5253NearestEndMonth( + 1, startingMonth=8, weekday=WeekDay.SAT + ) + offset_lom_aug_thu = makeFY5253NearestEndMonth( + 1, startingMonth=8, weekday=WeekDay.THU + ) + offset_n = FY5253(weekday=WeekDay.TUE, startingMonth=12, variation="nearest") + + on_offset_cases = [ + # From Wikipedia (see: + # https://en.wikipedia.org/wiki/4%E2%80%934%E2%80%935_calendar + # #Saturday_nearest_the_end_of_month) + # 2006-09-02 2006 September 2 + # 2007-09-01 2007 September 1 + # 2008-08-30 2008 August 30 (leap year) + # 2009-08-29 2009 August 29 + # 2010-08-28 2010 August 28 + # 2011-09-03 2011 September 3 + # 2012-09-01 2012 September 1 (leap year) + # 2013-08-31 2013 August 31 + # 2014-08-30 2014 August 30 + # 2015-08-29 2015 August 29 + # 2016-09-03 2016 September 3 (leap year) + # 2017-09-02 2017 September 2 + # 2018-09-01 2018 September 1 + # 2019-08-31 2019 August 31 + (offset_lom_aug_sat, datetime(2006, 9, 2), True), + (offset_lom_aug_sat, datetime(2007, 9, 1), True), + (offset_lom_aug_sat, datetime(2008, 8, 30), True), + (offset_lom_aug_sat, datetime(2009, 8, 29), True), + (offset_lom_aug_sat, datetime(2010, 8, 28), True), + (offset_lom_aug_sat, datetime(2011, 9, 3), True), + (offset_lom_aug_sat, datetime(2016, 9, 3), True), + (offset_lom_aug_sat, datetime(2017, 9, 2), True), + (offset_lom_aug_sat, datetime(2018, 9, 1), True), + (offset_lom_aug_sat, datetime(2019, 8, 31), True), + (offset_lom_aug_sat, datetime(2006, 8, 27), False), + (offset_lom_aug_sat, datetime(2007, 8, 28), False), + (offset_lom_aug_sat, datetime(2008, 8, 31), False), + (offset_lom_aug_sat, datetime(2009, 8, 30), False), + (offset_lom_aug_sat, datetime(2010, 8, 29), False), + (offset_lom_aug_sat, datetime(2011, 8, 28), False), + (offset_lom_aug_sat, datetime(2006, 8, 25), False), + (offset_lom_aug_sat, datetime(2007, 8, 24), False), + (offset_lom_aug_sat, datetime(2008, 8, 29), False), + (offset_lom_aug_sat, datetime(2009, 8, 28), False), + (offset_lom_aug_sat, datetime(2010, 8, 27), False), + (offset_lom_aug_sat, datetime(2011, 8, 26), False), + (offset_lom_aug_sat, datetime(2019, 8, 30), False), + # From Micron, see: + # http://google.brand.edgar-online.com/?sym=MU&formtypeID=7 + (offset_lom_aug_thu, datetime(2012, 8, 30), True), + (offset_lom_aug_thu, datetime(2011, 9, 1), True), + (offset_n, datetime(2012, 12, 31), False), + (offset_n, datetime(2013, 1, 1), True), + (offset_n, datetime(2013, 1, 2), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + def test_apply(self): + date_seq_nem_8_sat = [ + datetime(2006, 9, 2), + datetime(2007, 9, 1), + datetime(2008, 8, 30), + datetime(2009, 8, 29), + datetime(2010, 8, 28), + datetime(2011, 9, 3), + ] + + JNJ = [ + datetime(2005, 1, 2), + datetime(2006, 1, 1), + datetime(2006, 12, 31), + datetime(2007, 12, 30), + datetime(2008, 12, 28), + datetime(2010, 1, 3), + datetime(2011, 1, 2), + datetime(2012, 1, 1), + datetime(2012, 12, 30), + ] + + DEC_SAT = FY5253(n=-1, startingMonth=12, weekday=5, variation="nearest") + + tests = [ + ( + makeFY5253NearestEndMonth(startingMonth=8, weekday=WeekDay.SAT), + date_seq_nem_8_sat, + ), + ( + makeFY5253NearestEndMonth(n=1, startingMonth=8, weekday=WeekDay.SAT), + date_seq_nem_8_sat, + ), + ( + makeFY5253NearestEndMonth(startingMonth=8, weekday=WeekDay.SAT), + [datetime(2006, 9, 1)] + date_seq_nem_8_sat, + ), + ( + makeFY5253NearestEndMonth(n=1, startingMonth=8, weekday=WeekDay.SAT), + [datetime(2006, 9, 3)] + date_seq_nem_8_sat[1:], + ), + ( + makeFY5253NearestEndMonth(n=-1, startingMonth=8, weekday=WeekDay.SAT), + list(reversed(date_seq_nem_8_sat)), + ), + ( + makeFY5253NearestEndMonth(n=1, startingMonth=12, weekday=WeekDay.SUN), + JNJ, + ), + ( + makeFY5253NearestEndMonth(n=-1, startingMonth=12, weekday=WeekDay.SUN), + list(reversed(JNJ)), + ), + ( + makeFY5253NearestEndMonth(n=1, startingMonth=12, weekday=WeekDay.SUN), + [datetime(2005, 1, 2), datetime(2006, 1, 1)], + ), + ( + makeFY5253NearestEndMonth(n=1, startingMonth=12, weekday=WeekDay.SUN), + [datetime(2006, 1, 2), datetime(2006, 12, 31)], + ), + (DEC_SAT, [datetime(2013, 1, 15), datetime(2012, 12, 29)]), + ] + for test in tests: + offset, data = test + current = data[0] + for datum in data[1:]: + current = current + offset + assert current == datum + + +class TestFY5253LastOfMonthQuarter: + def test_is_anchored(self): + msg = "FY5253Quarter.is_anchored is deprecated " + + with tm.assert_produces_warning(FutureWarning, match=msg): + assert makeFY5253LastOfMonthQuarter( + startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ).is_anchored() + assert makeFY5253LastOfMonthQuarter( + weekday=WeekDay.SAT, startingMonth=3, qtr_with_extra_week=4 + ).is_anchored() + assert not makeFY5253LastOfMonthQuarter( + 2, startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ).is_anchored() + + def test_equality(self): + assert makeFY5253LastOfMonthQuarter( + startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) == makeFY5253LastOfMonthQuarter( + startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + assert makeFY5253LastOfMonthQuarter( + startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) != makeFY5253LastOfMonthQuarter( + startingMonth=1, weekday=WeekDay.SUN, qtr_with_extra_week=4 + ) + assert makeFY5253LastOfMonthQuarter( + startingMonth=1, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) != makeFY5253LastOfMonthQuarter( + startingMonth=2, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + + def test_offset(self): + offset = makeFY5253LastOfMonthQuarter( + 1, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + offset2 = makeFY5253LastOfMonthQuarter( + 2, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + offset4 = makeFY5253LastOfMonthQuarter( + 4, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + + offset_neg1 = makeFY5253LastOfMonthQuarter( + -1, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + offset_neg2 = makeFY5253LastOfMonthQuarter( + -2, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + + GMCR = [ + datetime(2010, 3, 27), + datetime(2010, 6, 26), + datetime(2010, 9, 25), + datetime(2010, 12, 25), + datetime(2011, 3, 26), + datetime(2011, 6, 25), + datetime(2011, 9, 24), + datetime(2011, 12, 24), + datetime(2012, 3, 24), + datetime(2012, 6, 23), + datetime(2012, 9, 29), + datetime(2012, 12, 29), + datetime(2013, 3, 30), + datetime(2013, 6, 29), + ] + + assert_offset_equal(offset, base=GMCR[0], expected=GMCR[1]) + assert_offset_equal( + offset, base=GMCR[0] + relativedelta(days=-1), expected=GMCR[0] + ) + assert_offset_equal(offset, base=GMCR[1], expected=GMCR[2]) + + assert_offset_equal(offset2, base=GMCR[0], expected=GMCR[2]) + assert_offset_equal(offset4, base=GMCR[0], expected=GMCR[4]) + + assert_offset_equal(offset_neg1, base=GMCR[-1], expected=GMCR[-2]) + assert_offset_equal( + offset_neg1, base=GMCR[-1] + relativedelta(days=+1), expected=GMCR[-1] + ) + assert_offset_equal(offset_neg2, base=GMCR[-1], expected=GMCR[-3]) + + date = GMCR[0] + relativedelta(days=-1) + for expected in GMCR: + assert_offset_equal(offset, date, expected) + date = date + offset + + date = GMCR[-1] + relativedelta(days=+1) + for expected in reversed(GMCR): + assert_offset_equal(offset_neg1, date, expected) + date = date + offset_neg1 + + lomq_aug_sat_4 = makeFY5253LastOfMonthQuarter( + 1, startingMonth=8, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + lomq_sep_sat_4 = makeFY5253LastOfMonthQuarter( + 1, startingMonth=9, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + + on_offset_cases = [ + # From Wikipedia + (lomq_aug_sat_4, datetime(2006, 8, 26), True), + (lomq_aug_sat_4, datetime(2007, 8, 25), True), + (lomq_aug_sat_4, datetime(2008, 8, 30), True), + (lomq_aug_sat_4, datetime(2009, 8, 29), True), + (lomq_aug_sat_4, datetime(2010, 8, 28), True), + (lomq_aug_sat_4, datetime(2011, 8, 27), True), + (lomq_aug_sat_4, datetime(2019, 8, 31), True), + (lomq_aug_sat_4, datetime(2006, 8, 27), False), + (lomq_aug_sat_4, datetime(2007, 8, 28), False), + (lomq_aug_sat_4, datetime(2008, 8, 31), False), + (lomq_aug_sat_4, datetime(2009, 8, 30), False), + (lomq_aug_sat_4, datetime(2010, 8, 29), False), + (lomq_aug_sat_4, datetime(2011, 8, 28), False), + (lomq_aug_sat_4, datetime(2006, 8, 25), False), + (lomq_aug_sat_4, datetime(2007, 8, 24), False), + (lomq_aug_sat_4, datetime(2008, 8, 29), False), + (lomq_aug_sat_4, datetime(2009, 8, 28), False), + (lomq_aug_sat_4, datetime(2010, 8, 27), False), + (lomq_aug_sat_4, datetime(2011, 8, 26), False), + (lomq_aug_sat_4, datetime(2019, 8, 30), False), + # From GMCR + (lomq_sep_sat_4, datetime(2010, 9, 25), True), + (lomq_sep_sat_4, datetime(2011, 9, 24), True), + (lomq_sep_sat_4, datetime(2012, 9, 29), True), + (lomq_sep_sat_4, datetime(2013, 6, 29), True), + (lomq_sep_sat_4, datetime(2012, 6, 23), True), + (lomq_sep_sat_4, datetime(2012, 6, 30), False), + (lomq_sep_sat_4, datetime(2013, 3, 30), True), + (lomq_sep_sat_4, datetime(2012, 3, 24), True), + (lomq_sep_sat_4, datetime(2012, 12, 29), True), + (lomq_sep_sat_4, datetime(2011, 12, 24), True), + # INTC (extra week in Q1) + # See: http://www.intc.com/releasedetail.cfm?ReleaseID=542844 + ( + makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ), + datetime(2011, 4, 2), + True, + ), + # see: http://google.brand.edgar-online.com/?sym=INTC&formtypeID=7 + ( + makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ), + datetime(2012, 12, 29), + True, + ), + ( + makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ), + datetime(2011, 12, 31), + True, + ), + ( + makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ), + datetime(2010, 12, 25), + True, + ), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + def test_year_has_extra_week(self): + # End of long Q1 + assert makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ).year_has_extra_week(datetime(2011, 4, 2)) + + # Start of long Q1 + assert makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ).year_has_extra_week(datetime(2010, 12, 26)) + + # End of year before year with long Q1 + assert not makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ).year_has_extra_week(datetime(2010, 12, 25)) + + for year in [ + x for x in range(1994, 2011 + 1) if x not in [2011, 2005, 2000, 1994] + ]: + assert not makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ).year_has_extra_week(datetime(year, 4, 2)) + + # Other long years + assert makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ).year_has_extra_week(datetime(2005, 4, 2)) + + assert makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ).year_has_extra_week(datetime(2000, 4, 2)) + + assert makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ).year_has_extra_week(datetime(1994, 4, 2)) + + def test_get_weeks(self): + sat_dec_1 = makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=1 + ) + sat_dec_4 = makeFY5253LastOfMonthQuarter( + 1, startingMonth=12, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + + assert sat_dec_1.get_weeks(datetime(2011, 4, 2)) == [14, 13, 13, 13] + assert sat_dec_4.get_weeks(datetime(2011, 4, 2)) == [13, 13, 13, 14] + assert sat_dec_1.get_weeks(datetime(2010, 12, 25)) == [13, 13, 13, 13] + + +class TestFY5253NearestEndMonthQuarter: + offset_nem_sat_aug_4 = makeFY5253NearestEndMonthQuarter( + 1, startingMonth=8, weekday=WeekDay.SAT, qtr_with_extra_week=4 + ) + offset_nem_thu_aug_4 = makeFY5253NearestEndMonthQuarter( + 1, startingMonth=8, weekday=WeekDay.THU, qtr_with_extra_week=4 + ) + offset_n = FY5253(weekday=WeekDay.TUE, startingMonth=12, variation="nearest") + + on_offset_cases = [ + # From Wikipedia + (offset_nem_sat_aug_4, datetime(2006, 9, 2), True), + (offset_nem_sat_aug_4, datetime(2007, 9, 1), True), + (offset_nem_sat_aug_4, datetime(2008, 8, 30), True), + (offset_nem_sat_aug_4, datetime(2009, 8, 29), True), + (offset_nem_sat_aug_4, datetime(2010, 8, 28), True), + (offset_nem_sat_aug_4, datetime(2011, 9, 3), True), + (offset_nem_sat_aug_4, datetime(2016, 9, 3), True), + (offset_nem_sat_aug_4, datetime(2017, 9, 2), True), + (offset_nem_sat_aug_4, datetime(2018, 9, 1), True), + (offset_nem_sat_aug_4, datetime(2019, 8, 31), True), + (offset_nem_sat_aug_4, datetime(2006, 8, 27), False), + (offset_nem_sat_aug_4, datetime(2007, 8, 28), False), + (offset_nem_sat_aug_4, datetime(2008, 8, 31), False), + (offset_nem_sat_aug_4, datetime(2009, 8, 30), False), + (offset_nem_sat_aug_4, datetime(2010, 8, 29), False), + (offset_nem_sat_aug_4, datetime(2011, 8, 28), False), + (offset_nem_sat_aug_4, datetime(2006, 8, 25), False), + (offset_nem_sat_aug_4, datetime(2007, 8, 24), False), + (offset_nem_sat_aug_4, datetime(2008, 8, 29), False), + (offset_nem_sat_aug_4, datetime(2009, 8, 28), False), + (offset_nem_sat_aug_4, datetime(2010, 8, 27), False), + (offset_nem_sat_aug_4, datetime(2011, 8, 26), False), + (offset_nem_sat_aug_4, datetime(2019, 8, 30), False), + # From Micron, see: + # http://google.brand.edgar-online.com/?sym=MU&formtypeID=7 + (offset_nem_thu_aug_4, datetime(2012, 8, 30), True), + (offset_nem_thu_aug_4, datetime(2011, 9, 1), True), + # See: http://google.brand.edgar-online.com/?sym=MU&formtypeID=13 + (offset_nem_thu_aug_4, datetime(2013, 5, 30), True), + (offset_nem_thu_aug_4, datetime(2013, 2, 28), True), + (offset_nem_thu_aug_4, datetime(2012, 11, 29), True), + (offset_nem_thu_aug_4, datetime(2012, 5, 31), True), + (offset_nem_thu_aug_4, datetime(2007, 3, 1), True), + (offset_nem_thu_aug_4, datetime(1994, 3, 3), True), + (offset_n, datetime(2012, 12, 31), False), + (offset_n, datetime(2013, 1, 1), True), + (offset_n, datetime(2013, 1, 2), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + def test_offset(self): + offset = makeFY5253NearestEndMonthQuarter( + 1, startingMonth=8, weekday=WeekDay.THU, qtr_with_extra_week=4 + ) + + MU = [ + datetime(2012, 5, 31), + datetime(2012, 8, 30), + datetime(2012, 11, 29), + datetime(2013, 2, 28), + datetime(2013, 5, 30), + ] + + date = MU[0] + relativedelta(days=-1) + for expected in MU: + assert_offset_equal(offset, date, expected) + date = date + offset + + assert_offset_equal(offset, datetime(2012, 5, 31), datetime(2012, 8, 30)) + assert_offset_equal(offset, datetime(2012, 5, 30), datetime(2012, 5, 31)) + + offset2 = FY5253Quarter( + weekday=5, startingMonth=12, variation="last", qtr_with_extra_week=4 + ) + + assert_offset_equal(offset2, datetime(2013, 1, 15), datetime(2013, 3, 30)) + + +def test_bunched_yearends(): + # GH#14774 cases with two fiscal year-ends in the same calendar-year + fy = FY5253(n=1, weekday=5, startingMonth=12, variation="nearest") + dt = Timestamp("2004-01-01") + assert fy.rollback(dt) == Timestamp("2002-12-28") + assert (-fy)._apply(dt) == Timestamp("2002-12-28") + assert dt - fy == Timestamp("2002-12-28") + + assert fy.rollforward(dt) == Timestamp("2004-01-03") + assert fy._apply(dt) == Timestamp("2004-01-03") + assert fy + dt == Timestamp("2004-01-03") + assert dt + fy == Timestamp("2004-01-03") + + # Same thing, but starting from a Timestamp in the previous year. + dt = Timestamp("2003-12-31") + assert fy.rollback(dt) == Timestamp("2002-12-28") + assert (-fy)._apply(dt) == Timestamp("2002-12-28") + assert dt - fy == Timestamp("2002-12-28") + + +def test_fy5253_last_onoffset(): + # GH#18877 dates on the year-end but not normalized to midnight + offset = FY5253(n=-5, startingMonth=5, variation="last", weekday=0) + ts = Timestamp("1984-05-28 06:29:43.955911354+0200", tz="Europe/San_Marino") + fast = offset.is_on_offset(ts) + slow = (ts + offset) - offset == ts + assert fast == slow + + +def test_fy5253_nearest_onoffset(): + # GH#18877 dates on the year-end but not normalized to midnight + offset = FY5253(n=3, startingMonth=7, variation="nearest", weekday=2) + ts = Timestamp("2032-07-28 00:12:59.035729419+0000", tz="Africa/Dakar") + fast = offset.is_on_offset(ts) + slow = (ts + offset) - offset == ts + assert fast == slow + + +def test_fy5253qtr_onoffset_nearest(): + # GH#19036 + ts = Timestamp("1985-09-02 23:57:46.232550356-0300", tz="Atlantic/Bermuda") + offset = FY5253Quarter( + n=3, qtr_with_extra_week=1, startingMonth=2, variation="nearest", weekday=0 + ) + fast = offset.is_on_offset(ts) + slow = (ts + offset) - offset == ts + assert fast == slow + + +def test_fy5253qtr_onoffset_last(): + # GH#19036 + offset = FY5253Quarter( + n=-2, qtr_with_extra_week=1, startingMonth=7, variation="last", weekday=2 + ) + ts = Timestamp("2011-01-26 19:03:40.331096129+0200", tz="Africa/Windhoek") + slow = (ts + offset) - offset == ts + fast = offset.is_on_offset(ts) + assert fast == slow diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_index.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_index.py new file mode 100644 index 0000000000000000000000000000000000000000..7a62944556d11b536f7a64e49d4a9ff11e90ec0e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_index.py @@ -0,0 +1,57 @@ +""" +Tests for offset behavior with indices. +""" +import pytest + +from pandas import ( + Series, + date_range, +) + +from pandas.tseries.offsets import ( + BMonthBegin, + BMonthEnd, + BQuarterBegin, + BQuarterEnd, + BYearBegin, + BYearEnd, + MonthBegin, + MonthEnd, + QuarterBegin, + QuarterEnd, + YearBegin, + YearEnd, +) + + +@pytest.mark.parametrize("n", [-2, 1]) +@pytest.mark.parametrize( + "cls", + [ + MonthBegin, + MonthEnd, + BMonthBegin, + BMonthEnd, + QuarterBegin, + QuarterEnd, + BQuarterBegin, + BQuarterEnd, + YearBegin, + YearEnd, + BYearBegin, + BYearEnd, + ], +) +def test_apply_index(cls, n): + offset = cls(n=n) + rng = date_range(start="1/1/2000", periods=100000, freq="min") + ser = Series(rng) + + res = rng + offset + assert res.freq is None # not retained + assert res[0] == rng[0] + offset + assert res[-1] == rng[-1] + offset + res2 = ser + offset + # apply_index is only for indexes, not series, so no res2_v2 + assert res2.iloc[0] == ser.iloc[0] + offset + assert res2.iloc[-1] == ser.iloc[-1] + offset diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_month.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_month.py new file mode 100644 index 0000000000000000000000000000000000000000..2b643999c3ad34057156f4dc9f382dd3950e35c5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_month.py @@ -0,0 +1,666 @@ +""" +Tests for the following offsets: +- SemiMonthBegin +- SemiMonthEnd +- MonthBegin +- MonthEnd +""" +from __future__ import annotations + +from datetime import datetime + +import pytest + +from pandas._libs.tslibs import Timestamp +from pandas._libs.tslibs.offsets import ( + MonthBegin, + MonthEnd, + SemiMonthBegin, + SemiMonthEnd, +) + +from pandas import ( + DatetimeIndex, + Series, + _testing as tm, +) +from pandas.tests.tseries.offsets.common import ( + assert_is_on_offset, + assert_offset_equal, +) + + +class TestSemiMonthEnd: + def test_offset_whole_year(self): + dates = ( + datetime(2007, 12, 31), + datetime(2008, 1, 15), + datetime(2008, 1, 31), + datetime(2008, 2, 15), + datetime(2008, 2, 29), + datetime(2008, 3, 15), + datetime(2008, 3, 31), + datetime(2008, 4, 15), + datetime(2008, 4, 30), + datetime(2008, 5, 15), + datetime(2008, 5, 31), + datetime(2008, 6, 15), + datetime(2008, 6, 30), + datetime(2008, 7, 15), + datetime(2008, 7, 31), + datetime(2008, 8, 15), + datetime(2008, 8, 31), + datetime(2008, 9, 15), + datetime(2008, 9, 30), + datetime(2008, 10, 15), + datetime(2008, 10, 31), + datetime(2008, 11, 15), + datetime(2008, 11, 30), + datetime(2008, 12, 15), + datetime(2008, 12, 31), + ) + + for base, exp_date in zip(dates[:-1], dates[1:]): + assert_offset_equal(SemiMonthEnd(), base, exp_date) + + # ensure .apply_index works as expected + shift = DatetimeIndex(dates[:-1]) + with tm.assert_produces_warning(None): + # GH#22535 check that we don't get a FutureWarning from adding + # an integer array to PeriodIndex + result = SemiMonthEnd() + shift + + exp = DatetimeIndex(dates[1:]) + tm.assert_index_equal(result, exp) + + offset_cases = [] + offset_cases.append( + ( + SemiMonthEnd(), + { + datetime(2008, 1, 1): datetime(2008, 1, 15), + datetime(2008, 1, 15): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 2, 15), + datetime(2006, 12, 14): datetime(2006, 12, 15), + datetime(2006, 12, 29): datetime(2006, 12, 31), + datetime(2006, 12, 31): datetime(2007, 1, 15), + datetime(2007, 1, 1): datetime(2007, 1, 15), + datetime(2006, 12, 1): datetime(2006, 12, 15), + datetime(2006, 12, 15): datetime(2006, 12, 31), + }, + ) + ) + + offset_cases.append( + ( + SemiMonthEnd(day_of_month=20), + { + datetime(2008, 1, 1): datetime(2008, 1, 20), + datetime(2008, 1, 15): datetime(2008, 1, 20), + datetime(2008, 1, 21): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 2, 20), + datetime(2006, 12, 14): datetime(2006, 12, 20), + datetime(2006, 12, 29): datetime(2006, 12, 31), + datetime(2006, 12, 31): datetime(2007, 1, 20), + datetime(2007, 1, 1): datetime(2007, 1, 20), + datetime(2006, 12, 1): datetime(2006, 12, 20), + datetime(2006, 12, 15): datetime(2006, 12, 20), + }, + ) + ) + + offset_cases.append( + ( + SemiMonthEnd(0), + { + datetime(2008, 1, 1): datetime(2008, 1, 15), + datetime(2008, 1, 16): datetime(2008, 1, 31), + datetime(2008, 1, 15): datetime(2008, 1, 15), + datetime(2008, 1, 31): datetime(2008, 1, 31), + datetime(2006, 12, 29): datetime(2006, 12, 31), + datetime(2006, 12, 31): datetime(2006, 12, 31), + datetime(2007, 1, 1): datetime(2007, 1, 15), + }, + ) + ) + + offset_cases.append( + ( + SemiMonthEnd(0, day_of_month=16), + { + datetime(2008, 1, 1): datetime(2008, 1, 16), + datetime(2008, 1, 16): datetime(2008, 1, 16), + datetime(2008, 1, 15): datetime(2008, 1, 16), + datetime(2008, 1, 31): datetime(2008, 1, 31), + datetime(2006, 12, 29): datetime(2006, 12, 31), + datetime(2006, 12, 31): datetime(2006, 12, 31), + datetime(2007, 1, 1): datetime(2007, 1, 16), + }, + ) + ) + + offset_cases.append( + ( + SemiMonthEnd(2), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 2, 29), + datetime(2006, 12, 29): datetime(2007, 1, 15), + datetime(2006, 12, 31): datetime(2007, 1, 31), + datetime(2007, 1, 1): datetime(2007, 1, 31), + datetime(2007, 1, 16): datetime(2007, 2, 15), + datetime(2006, 11, 1): datetime(2006, 11, 30), + }, + ) + ) + + offset_cases.append( + ( + SemiMonthEnd(-1), + { + datetime(2007, 1, 1): datetime(2006, 12, 31), + datetime(2008, 6, 30): datetime(2008, 6, 15), + datetime(2008, 12, 31): datetime(2008, 12, 15), + datetime(2006, 12, 29): datetime(2006, 12, 15), + datetime(2006, 12, 30): datetime(2006, 12, 15), + datetime(2007, 1, 1): datetime(2006, 12, 31), + }, + ) + ) + + offset_cases.append( + ( + SemiMonthEnd(-1, day_of_month=4), + { + datetime(2007, 1, 1): datetime(2006, 12, 31), + datetime(2007, 1, 4): datetime(2006, 12, 31), + datetime(2008, 6, 30): datetime(2008, 6, 4), + datetime(2008, 12, 31): datetime(2008, 12, 4), + datetime(2006, 12, 5): datetime(2006, 12, 4), + datetime(2006, 12, 30): datetime(2006, 12, 4), + datetime(2007, 1, 1): datetime(2006, 12, 31), + }, + ) + ) + + offset_cases.append( + ( + SemiMonthEnd(-2), + { + datetime(2007, 1, 1): datetime(2006, 12, 15), + datetime(2008, 6, 30): datetime(2008, 5, 31), + datetime(2008, 3, 15): datetime(2008, 2, 15), + datetime(2008, 12, 31): datetime(2008, 11, 30), + datetime(2006, 12, 29): datetime(2006, 11, 30), + datetime(2006, 12, 14): datetime(2006, 11, 15), + datetime(2007, 1, 1): datetime(2006, 12, 15), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + @pytest.mark.parametrize("case", offset_cases) + def test_apply_index(self, case): + # https://github.com/pandas-dev/pandas/issues/34580 + offset, cases = case + shift = DatetimeIndex(cases.keys()) + exp = DatetimeIndex(cases.values()) + + with tm.assert_produces_warning(None): + # GH#22535 check that we don't get a FutureWarning from adding + # an integer array to PeriodIndex + result = offset + shift + tm.assert_index_equal(result, exp) + + on_offset_cases = [ + (datetime(2007, 12, 31), True), + (datetime(2007, 12, 15), True), + (datetime(2007, 12, 14), False), + (datetime(2007, 12, 1), False), + (datetime(2008, 2, 29), True), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + dt, expected = case + assert_is_on_offset(SemiMonthEnd(), dt, expected) + + @pytest.mark.parametrize("klass", [Series, DatetimeIndex]) + def test_vectorized_offset_addition(self, klass): + shift = klass( + [ + Timestamp("2000-01-15 00:15:00", tz="US/Central"), + Timestamp("2000-02-15", tz="US/Central"), + ], + name="a", + ) + + with tm.assert_produces_warning(None): + # GH#22535 check that we don't get a FutureWarning from adding + # an integer array to PeriodIndex + result = shift + SemiMonthEnd() + result2 = SemiMonthEnd() + shift + + exp = klass( + [ + Timestamp("2000-01-31 00:15:00", tz="US/Central"), + Timestamp("2000-02-29", tz="US/Central"), + ], + name="a", + ) + tm.assert_equal(result, exp) + tm.assert_equal(result2, exp) + + shift = klass( + [ + Timestamp("2000-01-01 00:15:00", tz="US/Central"), + Timestamp("2000-02-01", tz="US/Central"), + ], + name="a", + ) + + with tm.assert_produces_warning(None): + # GH#22535 check that we don't get a FutureWarning from adding + # an integer array to PeriodIndex + result = shift + SemiMonthEnd() + result2 = SemiMonthEnd() + shift + + exp = klass( + [ + Timestamp("2000-01-15 00:15:00", tz="US/Central"), + Timestamp("2000-02-15", tz="US/Central"), + ], + name="a", + ) + tm.assert_equal(result, exp) + tm.assert_equal(result2, exp) + + +class TestSemiMonthBegin: + def test_offset_whole_year(self): + dates = ( + datetime(2007, 12, 15), + datetime(2008, 1, 1), + datetime(2008, 1, 15), + datetime(2008, 2, 1), + datetime(2008, 2, 15), + datetime(2008, 3, 1), + datetime(2008, 3, 15), + datetime(2008, 4, 1), + datetime(2008, 4, 15), + datetime(2008, 5, 1), + datetime(2008, 5, 15), + datetime(2008, 6, 1), + datetime(2008, 6, 15), + datetime(2008, 7, 1), + datetime(2008, 7, 15), + datetime(2008, 8, 1), + datetime(2008, 8, 15), + datetime(2008, 9, 1), + datetime(2008, 9, 15), + datetime(2008, 10, 1), + datetime(2008, 10, 15), + datetime(2008, 11, 1), + datetime(2008, 11, 15), + datetime(2008, 12, 1), + datetime(2008, 12, 15), + ) + + for base, exp_date in zip(dates[:-1], dates[1:]): + assert_offset_equal(SemiMonthBegin(), base, exp_date) + + # ensure .apply_index works as expected + shift = DatetimeIndex(dates[:-1]) + with tm.assert_produces_warning(None): + # GH#22535 check that we don't get a FutureWarning from adding + # an integer array to PeriodIndex + result = SemiMonthBegin() + shift + + exp = DatetimeIndex(dates[1:]) + tm.assert_index_equal(result, exp) + + offset_cases = [ + ( + SemiMonthBegin(), + { + datetime(2008, 1, 1): datetime(2008, 1, 15), + datetime(2008, 1, 15): datetime(2008, 2, 1), + datetime(2008, 1, 31): datetime(2008, 2, 1), + datetime(2006, 12, 14): datetime(2006, 12, 15), + datetime(2006, 12, 29): datetime(2007, 1, 1), + datetime(2006, 12, 31): datetime(2007, 1, 1), + datetime(2007, 1, 1): datetime(2007, 1, 15), + datetime(2006, 12, 1): datetime(2006, 12, 15), + datetime(2006, 12, 15): datetime(2007, 1, 1), + }, + ), + ( + SemiMonthBegin(day_of_month=20), + { + datetime(2008, 1, 1): datetime(2008, 1, 20), + datetime(2008, 1, 15): datetime(2008, 1, 20), + datetime(2008, 1, 21): datetime(2008, 2, 1), + datetime(2008, 1, 31): datetime(2008, 2, 1), + datetime(2006, 12, 14): datetime(2006, 12, 20), + datetime(2006, 12, 29): datetime(2007, 1, 1), + datetime(2006, 12, 31): datetime(2007, 1, 1), + datetime(2007, 1, 1): datetime(2007, 1, 20), + datetime(2006, 12, 1): datetime(2006, 12, 20), + datetime(2006, 12, 15): datetime(2006, 12, 20), + }, + ), + ( + SemiMonthBegin(0), + { + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2008, 1, 16): datetime(2008, 2, 1), + datetime(2008, 1, 15): datetime(2008, 1, 15), + datetime(2008, 1, 31): datetime(2008, 2, 1), + datetime(2006, 12, 29): datetime(2007, 1, 1), + datetime(2006, 12, 2): datetime(2006, 12, 15), + datetime(2007, 1, 1): datetime(2007, 1, 1), + }, + ), + ( + SemiMonthBegin(0, day_of_month=16), + { + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2008, 1, 16): datetime(2008, 1, 16), + datetime(2008, 1, 15): datetime(2008, 1, 16), + datetime(2008, 1, 31): datetime(2008, 2, 1), + datetime(2006, 12, 29): datetime(2007, 1, 1), + datetime(2006, 12, 31): datetime(2007, 1, 1), + datetime(2007, 1, 5): datetime(2007, 1, 16), + datetime(2007, 1, 1): datetime(2007, 1, 1), + }, + ), + ( + SemiMonthBegin(2), + { + datetime(2008, 1, 1): datetime(2008, 2, 1), + datetime(2008, 1, 31): datetime(2008, 2, 15), + datetime(2006, 12, 1): datetime(2007, 1, 1), + datetime(2006, 12, 29): datetime(2007, 1, 15), + datetime(2006, 12, 15): datetime(2007, 1, 15), + datetime(2007, 1, 1): datetime(2007, 2, 1), + datetime(2007, 1, 16): datetime(2007, 2, 15), + datetime(2006, 11, 1): datetime(2006, 12, 1), + }, + ), + ( + SemiMonthBegin(-1), + { + datetime(2007, 1, 1): datetime(2006, 12, 15), + datetime(2008, 6, 30): datetime(2008, 6, 15), + datetime(2008, 6, 14): datetime(2008, 6, 1), + datetime(2008, 12, 31): datetime(2008, 12, 15), + datetime(2006, 12, 29): datetime(2006, 12, 15), + datetime(2006, 12, 15): datetime(2006, 12, 1), + datetime(2007, 1, 1): datetime(2006, 12, 15), + }, + ), + ( + SemiMonthBegin(-1, day_of_month=4), + { + datetime(2007, 1, 1): datetime(2006, 12, 4), + datetime(2007, 1, 4): datetime(2007, 1, 1), + datetime(2008, 6, 30): datetime(2008, 6, 4), + datetime(2008, 12, 31): datetime(2008, 12, 4), + datetime(2006, 12, 5): datetime(2006, 12, 4), + datetime(2006, 12, 30): datetime(2006, 12, 4), + datetime(2006, 12, 2): datetime(2006, 12, 1), + datetime(2007, 1, 1): datetime(2006, 12, 4), + }, + ), + ( + SemiMonthBegin(-2), + { + datetime(2007, 1, 1): datetime(2006, 12, 1), + datetime(2008, 6, 30): datetime(2008, 6, 1), + datetime(2008, 6, 14): datetime(2008, 5, 15), + datetime(2008, 12, 31): datetime(2008, 12, 1), + datetime(2006, 12, 29): datetime(2006, 12, 1), + datetime(2006, 12, 15): datetime(2006, 11, 15), + datetime(2007, 1, 1): datetime(2006, 12, 1), + }, + ), + ] + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + @pytest.mark.parametrize("case", offset_cases) + def test_apply_index(self, case): + offset, cases = case + shift = DatetimeIndex(cases.keys()) + + with tm.assert_produces_warning(None): + # GH#22535 check that we don't get a FutureWarning from adding + # an integer array to PeriodIndex + result = offset + shift + + exp = DatetimeIndex(cases.values()) + tm.assert_index_equal(result, exp) + + on_offset_cases = [ + (datetime(2007, 12, 1), True), + (datetime(2007, 12, 15), True), + (datetime(2007, 12, 14), False), + (datetime(2007, 12, 31), False), + (datetime(2008, 2, 15), True), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + dt, expected = case + assert_is_on_offset(SemiMonthBegin(), dt, expected) + + @pytest.mark.parametrize("klass", [Series, DatetimeIndex]) + def test_vectorized_offset_addition(self, klass): + shift = klass( + [ + Timestamp("2000-01-15 00:15:00", tz="US/Central"), + Timestamp("2000-02-15", tz="US/Central"), + ], + name="a", + ) + with tm.assert_produces_warning(None): + # GH#22535 check that we don't get a FutureWarning from adding + # an integer array to PeriodIndex + result = shift + SemiMonthBegin() + result2 = SemiMonthBegin() + shift + + exp = klass( + [ + Timestamp("2000-02-01 00:15:00", tz="US/Central"), + Timestamp("2000-03-01", tz="US/Central"), + ], + name="a", + ) + tm.assert_equal(result, exp) + tm.assert_equal(result2, exp) + + shift = klass( + [ + Timestamp("2000-01-01 00:15:00", tz="US/Central"), + Timestamp("2000-02-01", tz="US/Central"), + ], + name="a", + ) + with tm.assert_produces_warning(None): + # GH#22535 check that we don't get a FutureWarning from adding + # an integer array to PeriodIndex + result = shift + SemiMonthBegin() + result2 = SemiMonthBegin() + shift + + exp = klass( + [ + Timestamp("2000-01-15 00:15:00", tz="US/Central"), + Timestamp("2000-02-15", tz="US/Central"), + ], + name="a", + ) + tm.assert_equal(result, exp) + tm.assert_equal(result2, exp) + + +class TestMonthBegin: + offset_cases = [] + # NOTE: I'm not entirely happy with the logic here for Begin -ss + # see thread 'offset conventions' on the ML + offset_cases.append( + ( + MonthBegin(), + { + datetime(2008, 1, 31): datetime(2008, 2, 1), + datetime(2008, 2, 1): datetime(2008, 3, 1), + datetime(2006, 12, 31): datetime(2007, 1, 1), + datetime(2006, 12, 1): datetime(2007, 1, 1), + datetime(2007, 1, 31): datetime(2007, 2, 1), + }, + ) + ) + + offset_cases.append( + ( + MonthBegin(0), + { + datetime(2008, 1, 31): datetime(2008, 2, 1), + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2006, 12, 3): datetime(2007, 1, 1), + datetime(2007, 1, 31): datetime(2007, 2, 1), + }, + ) + ) + + offset_cases.append( + ( + MonthBegin(2), + { + datetime(2008, 2, 29): datetime(2008, 4, 1), + datetime(2008, 1, 31): datetime(2008, 3, 1), + datetime(2006, 12, 31): datetime(2007, 2, 1), + datetime(2007, 12, 28): datetime(2008, 2, 1), + datetime(2007, 1, 1): datetime(2007, 3, 1), + datetime(2006, 11, 1): datetime(2007, 1, 1), + }, + ) + ) + + offset_cases.append( + ( + MonthBegin(-1), + { + datetime(2007, 1, 1): datetime(2006, 12, 1), + datetime(2008, 5, 31): datetime(2008, 5, 1), + datetime(2008, 12, 31): datetime(2008, 12, 1), + datetime(2006, 12, 29): datetime(2006, 12, 1), + datetime(2006, 1, 2): datetime(2006, 1, 1), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + +class TestMonthEnd: + def test_day_of_month(self): + dt = datetime(2007, 1, 1) + offset = MonthEnd() + + result = dt + offset + assert result == Timestamp(2007, 1, 31) + + result = result + offset + assert result == Timestamp(2007, 2, 28) + + def test_normalize(self): + dt = datetime(2007, 1, 1, 3) + + result = dt + MonthEnd(normalize=True) + expected = dt.replace(hour=0) + MonthEnd() + assert result == expected + + offset_cases = [] + offset_cases.append( + ( + MonthEnd(), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 2, 29), + datetime(2006, 12, 29): datetime(2006, 12, 31), + datetime(2006, 12, 31): datetime(2007, 1, 31), + datetime(2007, 1, 1): datetime(2007, 1, 31), + datetime(2006, 12, 1): datetime(2006, 12, 31), + }, + ) + ) + + offset_cases.append( + ( + MonthEnd(0), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 1, 31), + datetime(2006, 12, 29): datetime(2006, 12, 31), + datetime(2006, 12, 31): datetime(2006, 12, 31), + datetime(2007, 1, 1): datetime(2007, 1, 31), + }, + ) + ) + + offset_cases.append( + ( + MonthEnd(2), + { + datetime(2008, 1, 1): datetime(2008, 2, 29), + datetime(2008, 1, 31): datetime(2008, 3, 31), + datetime(2006, 12, 29): datetime(2007, 1, 31), + datetime(2006, 12, 31): datetime(2007, 2, 28), + datetime(2007, 1, 1): datetime(2007, 2, 28), + datetime(2006, 11, 1): datetime(2006, 12, 31), + }, + ) + ) + + offset_cases.append( + ( + MonthEnd(-1), + { + datetime(2007, 1, 1): datetime(2006, 12, 31), + datetime(2008, 6, 30): datetime(2008, 5, 31), + datetime(2008, 12, 31): datetime(2008, 11, 30), + datetime(2006, 12, 29): datetime(2006, 11, 30), + datetime(2006, 12, 30): datetime(2006, 11, 30), + datetime(2007, 1, 1): datetime(2006, 12, 31), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + on_offset_cases = [ + (MonthEnd(), datetime(2007, 12, 31), True), + (MonthEnd(), datetime(2008, 1, 1), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_offsets.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_offsets.py new file mode 100644 index 0000000000000000000000000000000000000000..62afb8b83d576a7a16565840b6c3f61cfd26e9e1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_offsets.py @@ -0,0 +1,1185 @@ +""" +Tests of pandas.tseries.offsets +""" +from __future__ import annotations + +from datetime import ( + datetime, + timedelta, +) + +import numpy as np +import pytest + +from pandas._libs.tslibs import ( + NaT, + Timedelta, + Timestamp, + conversion, + timezones, +) +import pandas._libs.tslibs.offsets as liboffsets +from pandas._libs.tslibs.offsets import ( + _get_offset, + _offset_map, + to_offset, +) +from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG +from pandas.errors import PerformanceWarning + +from pandas import ( + DataFrame, + DatetimeIndex, + Series, + date_range, +) +import pandas._testing as tm +from pandas.tests.tseries.offsets.common import WeekDay + +from pandas.tseries import offsets +from pandas.tseries.offsets import ( + FY5253, + BDay, + BMonthEnd, + BusinessHour, + CustomBusinessDay, + CustomBusinessHour, + CustomBusinessMonthBegin, + CustomBusinessMonthEnd, + DateOffset, + Easter, + FY5253Quarter, + LastWeekOfMonth, + MonthBegin, + Nano, + Tick, + Week, + WeekOfMonth, +) + +_ARITHMETIC_DATE_OFFSET = [ + "years", + "months", + "weeks", + "days", + "hours", + "minutes", + "seconds", + "milliseconds", + "microseconds", +] + + +def _create_offset(klass, value=1, normalize=False): + # create instance from offset class + if klass is FY5253: + klass = klass( + n=value, + startingMonth=1, + weekday=1, + variation="last", + normalize=normalize, + ) + elif klass is FY5253Quarter: + klass = klass( + n=value, + startingMonth=1, + weekday=1, + qtr_with_extra_week=1, + variation="last", + normalize=normalize, + ) + elif klass is LastWeekOfMonth: + klass = klass(n=value, weekday=5, normalize=normalize) + elif klass is WeekOfMonth: + klass = klass(n=value, week=1, weekday=5, normalize=normalize) + elif klass is Week: + klass = klass(n=value, weekday=5, normalize=normalize) + elif klass is DateOffset: + klass = klass(days=value, normalize=normalize) + else: + klass = klass(value, normalize=normalize) + return klass + + +@pytest.fixture( + params=[ + getattr(offsets, o) + for o in offsets.__all__ + if issubclass(getattr(offsets, o), liboffsets.MonthOffset) + and o != "MonthOffset" + ] +) +def month_classes(request): + """ + Fixture for month based datetime offsets available for a time series. + """ + return request.param + + +@pytest.fixture( + params=[ + getattr(offsets, o) for o in offsets.__all__ if o not in ("Tick", "BaseOffset") + ] +) +def offset_types(request): + """ + Fixture for all the datetime offsets available for a time series. + """ + return request.param + + +@pytest.fixture +def dt(): + return Timestamp(datetime(2008, 1, 2)) + + +@pytest.fixture +def expecteds(): + # executed value created by _create_offset + # are applied to 2011/01/01 09:00 (Saturday) + # used for .apply and .rollforward + return { + "Day": Timestamp("2011-01-02 09:00:00"), + "DateOffset": Timestamp("2011-01-02 09:00:00"), + "BusinessDay": Timestamp("2011-01-03 09:00:00"), + "CustomBusinessDay": Timestamp("2011-01-03 09:00:00"), + "CustomBusinessMonthEnd": Timestamp("2011-01-31 09:00:00"), + "CustomBusinessMonthBegin": Timestamp("2011-01-03 09:00:00"), + "MonthBegin": Timestamp("2011-02-01 09:00:00"), + "BusinessMonthBegin": Timestamp("2011-01-03 09:00:00"), + "MonthEnd": Timestamp("2011-01-31 09:00:00"), + "SemiMonthEnd": Timestamp("2011-01-15 09:00:00"), + "SemiMonthBegin": Timestamp("2011-01-15 09:00:00"), + "BusinessMonthEnd": Timestamp("2011-01-31 09:00:00"), + "YearBegin": Timestamp("2012-01-01 09:00:00"), + "BYearBegin": Timestamp("2011-01-03 09:00:00"), + "YearEnd": Timestamp("2011-12-31 09:00:00"), + "BYearEnd": Timestamp("2011-12-30 09:00:00"), + "QuarterBegin": Timestamp("2011-03-01 09:00:00"), + "BQuarterBegin": Timestamp("2011-03-01 09:00:00"), + "QuarterEnd": Timestamp("2011-03-31 09:00:00"), + "BQuarterEnd": Timestamp("2011-03-31 09:00:00"), + "BusinessHour": Timestamp("2011-01-03 10:00:00"), + "CustomBusinessHour": Timestamp("2011-01-03 10:00:00"), + "WeekOfMonth": Timestamp("2011-01-08 09:00:00"), + "LastWeekOfMonth": Timestamp("2011-01-29 09:00:00"), + "FY5253Quarter": Timestamp("2011-01-25 09:00:00"), + "FY5253": Timestamp("2011-01-25 09:00:00"), + "Week": Timestamp("2011-01-08 09:00:00"), + "Easter": Timestamp("2011-04-24 09:00:00"), + "Hour": Timestamp("2011-01-01 10:00:00"), + "Minute": Timestamp("2011-01-01 09:01:00"), + "Second": Timestamp("2011-01-01 09:00:01"), + "Milli": Timestamp("2011-01-01 09:00:00.001000"), + "Micro": Timestamp("2011-01-01 09:00:00.000001"), + "Nano": Timestamp("2011-01-01T09:00:00.000000001"), + } + + +class TestCommon: + def test_immutable(self, offset_types): + # GH#21341 check that __setattr__ raises + offset = _create_offset(offset_types) + msg = "objects is not writable|DateOffset objects are immutable" + with pytest.raises(AttributeError, match=msg): + offset.normalize = True + with pytest.raises(AttributeError, match=msg): + offset.n = 91 + + def test_return_type(self, offset_types): + offset = _create_offset(offset_types) + + # make sure that we are returning a Timestamp + result = Timestamp("20080101") + offset + assert isinstance(result, Timestamp) + + # make sure that we are returning NaT + assert NaT + offset is NaT + assert offset + NaT is NaT + + assert NaT - offset is NaT + assert (-offset)._apply(NaT) is NaT + + def test_offset_n(self, offset_types): + offset = _create_offset(offset_types) + assert offset.n == 1 + + neg_offset = offset * -1 + assert neg_offset.n == -1 + + mul_offset = offset * 3 + assert mul_offset.n == 3 + + def test_offset_timedelta64_arg(self, offset_types): + # check that offset._validate_n raises TypeError on a timedelt64 + # object + off = _create_offset(offset_types) + + td64 = np.timedelta64(4567, "s") + with pytest.raises(TypeError, match="argument must be an integer"): + type(off)(n=td64, **off.kwds) + + def test_offset_mul_ndarray(self, offset_types): + off = _create_offset(offset_types) + + expected = np.array([[off, off * 2], [off * 3, off * 4]]) + + result = np.array([[1, 2], [3, 4]]) * off + tm.assert_numpy_array_equal(result, expected) + + result = off * np.array([[1, 2], [3, 4]]) + tm.assert_numpy_array_equal(result, expected) + + def test_offset_freqstr(self, offset_types): + offset = _create_offset(offset_types) + + freqstr = offset.freqstr + if freqstr not in ("", "", "LWOM-SAT"): + code = _get_offset(freqstr) + assert offset.rule_code == code + + def _check_offsetfunc_works(self, offset, funcname, dt, expected, normalize=False): + if normalize and issubclass(offset, Tick): + # normalize=True disallowed for Tick subclasses GH#21427 + return + + offset_s = _create_offset(offset, normalize=normalize) + func = getattr(offset_s, funcname) + + result = func(dt) + assert isinstance(result, Timestamp) + assert result == expected + + result = func(Timestamp(dt)) + assert isinstance(result, Timestamp) + assert result == expected + + # see gh-14101 + ts = Timestamp(dt) + Nano(5) + # test nanosecond is preserved + with tm.assert_produces_warning(None): + result = func(ts) + + assert isinstance(result, Timestamp) + if normalize is False: + assert result == expected + Nano(5) + else: + assert result == expected + + if isinstance(dt, np.datetime64): + # test tz when input is datetime or Timestamp + return + + for tz in [ + None, + "UTC", + "Asia/Tokyo", + "US/Eastern", + "dateutil/Asia/Tokyo", + "dateutil/US/Pacific", + ]: + expected_localize = expected.tz_localize(tz) + tz_obj = timezones.maybe_get_tz(tz) + dt_tz = conversion.localize_pydatetime(dt, tz_obj) + + result = func(dt_tz) + assert isinstance(result, Timestamp) + assert result == expected_localize + + result = func(Timestamp(dt, tz=tz)) + assert isinstance(result, Timestamp) + assert result == expected_localize + + # see gh-14101 + ts = Timestamp(dt, tz=tz) + Nano(5) + # test nanosecond is preserved + with tm.assert_produces_warning(None): + result = func(ts) + assert isinstance(result, Timestamp) + if normalize is False: + assert result == expected_localize + Nano(5) + else: + assert result == expected_localize + + def test_apply(self, offset_types, expecteds): + sdt = datetime(2011, 1, 1, 9, 0) + ndt = np.datetime64("2011-01-01 09:00") + + expected = expecteds[offset_types.__name__] + expected_norm = Timestamp(expected.date()) + + for dt in [sdt, ndt]: + self._check_offsetfunc_works(offset_types, "_apply", dt, expected) + + self._check_offsetfunc_works( + offset_types, "_apply", dt, expected_norm, normalize=True + ) + + def test_rollforward(self, offset_types, expecteds): + expecteds = expecteds.copy() + + # result will not be changed if the target is on the offset + no_changes = [ + "Day", + "MonthBegin", + "SemiMonthBegin", + "YearBegin", + "Week", + "Hour", + "Minute", + "Second", + "Milli", + "Micro", + "Nano", + "DateOffset", + ] + for n in no_changes: + expecteds[n] = Timestamp("2011/01/01 09:00") + + expecteds["BusinessHour"] = Timestamp("2011-01-03 09:00:00") + expecteds["CustomBusinessHour"] = Timestamp("2011-01-03 09:00:00") + + # but be changed when normalize=True + norm_expected = expecteds.copy() + for k in norm_expected: + norm_expected[k] = Timestamp(norm_expected[k].date()) + + normalized = { + "Day": Timestamp("2011-01-02 00:00:00"), + "DateOffset": Timestamp("2011-01-02 00:00:00"), + "MonthBegin": Timestamp("2011-02-01 00:00:00"), + "SemiMonthBegin": Timestamp("2011-01-15 00:00:00"), + "YearBegin": Timestamp("2012-01-01 00:00:00"), + "Week": Timestamp("2011-01-08 00:00:00"), + "Hour": Timestamp("2011-01-01 00:00:00"), + "Minute": Timestamp("2011-01-01 00:00:00"), + "Second": Timestamp("2011-01-01 00:00:00"), + "Milli": Timestamp("2011-01-01 00:00:00"), + "Micro": Timestamp("2011-01-01 00:00:00"), + } + norm_expected.update(normalized) + + sdt = datetime(2011, 1, 1, 9, 0) + ndt = np.datetime64("2011-01-01 09:00") + + for dt in [sdt, ndt]: + expected = expecteds[offset_types.__name__] + self._check_offsetfunc_works(offset_types, "rollforward", dt, expected) + expected = norm_expected[offset_types.__name__] + self._check_offsetfunc_works( + offset_types, "rollforward", dt, expected, normalize=True + ) + + def test_rollback(self, offset_types): + expecteds = { + "BusinessDay": Timestamp("2010-12-31 09:00:00"), + "CustomBusinessDay": Timestamp("2010-12-31 09:00:00"), + "CustomBusinessMonthEnd": Timestamp("2010-12-31 09:00:00"), + "CustomBusinessMonthBegin": Timestamp("2010-12-01 09:00:00"), + "BusinessMonthBegin": Timestamp("2010-12-01 09:00:00"), + "MonthEnd": Timestamp("2010-12-31 09:00:00"), + "SemiMonthEnd": Timestamp("2010-12-31 09:00:00"), + "BusinessMonthEnd": Timestamp("2010-12-31 09:00:00"), + "BYearBegin": Timestamp("2010-01-01 09:00:00"), + "YearEnd": Timestamp("2010-12-31 09:00:00"), + "BYearEnd": Timestamp("2010-12-31 09:00:00"), + "QuarterBegin": Timestamp("2010-12-01 09:00:00"), + "BQuarterBegin": Timestamp("2010-12-01 09:00:00"), + "QuarterEnd": Timestamp("2010-12-31 09:00:00"), + "BQuarterEnd": Timestamp("2010-12-31 09:00:00"), + "BusinessHour": Timestamp("2010-12-31 17:00:00"), + "CustomBusinessHour": Timestamp("2010-12-31 17:00:00"), + "WeekOfMonth": Timestamp("2010-12-11 09:00:00"), + "LastWeekOfMonth": Timestamp("2010-12-25 09:00:00"), + "FY5253Quarter": Timestamp("2010-10-26 09:00:00"), + "FY5253": Timestamp("2010-01-26 09:00:00"), + "Easter": Timestamp("2010-04-04 09:00:00"), + } + + # result will not be changed if the target is on the offset + for n in [ + "Day", + "MonthBegin", + "SemiMonthBegin", + "YearBegin", + "Week", + "Hour", + "Minute", + "Second", + "Milli", + "Micro", + "Nano", + "DateOffset", + ]: + expecteds[n] = Timestamp("2011/01/01 09:00") + + # but be changed when normalize=True + norm_expected = expecteds.copy() + for k in norm_expected: + norm_expected[k] = Timestamp(norm_expected[k].date()) + + normalized = { + "Day": Timestamp("2010-12-31 00:00:00"), + "DateOffset": Timestamp("2010-12-31 00:00:00"), + "MonthBegin": Timestamp("2010-12-01 00:00:00"), + "SemiMonthBegin": Timestamp("2010-12-15 00:00:00"), + "YearBegin": Timestamp("2010-01-01 00:00:00"), + "Week": Timestamp("2010-12-25 00:00:00"), + "Hour": Timestamp("2011-01-01 00:00:00"), + "Minute": Timestamp("2011-01-01 00:00:00"), + "Second": Timestamp("2011-01-01 00:00:00"), + "Milli": Timestamp("2011-01-01 00:00:00"), + "Micro": Timestamp("2011-01-01 00:00:00"), + } + norm_expected.update(normalized) + + sdt = datetime(2011, 1, 1, 9, 0) + ndt = np.datetime64("2011-01-01 09:00") + + for dt in [sdt, ndt]: + expected = expecteds[offset_types.__name__] + self._check_offsetfunc_works(offset_types, "rollback", dt, expected) + + expected = norm_expected[offset_types.__name__] + self._check_offsetfunc_works( + offset_types, "rollback", dt, expected, normalize=True + ) + + def test_is_on_offset(self, offset_types, expecteds): + dt = expecteds[offset_types.__name__] + offset_s = _create_offset(offset_types) + assert offset_s.is_on_offset(dt) + + # when normalize=True, is_on_offset checks time is 00:00:00 + if issubclass(offset_types, Tick): + # normalize=True disallowed for Tick subclasses GH#21427 + return + offset_n = _create_offset(offset_types, normalize=True) + assert not offset_n.is_on_offset(dt) + + if offset_types in (BusinessHour, CustomBusinessHour): + # In default BusinessHour (9:00-17:00), normalized time + # cannot be in business hour range + return + date = datetime(dt.year, dt.month, dt.day) + assert offset_n.is_on_offset(date) + + def test_add(self, offset_types, tz_naive_fixture, expecteds): + tz = tz_naive_fixture + dt = datetime(2011, 1, 1, 9, 0) + + offset_s = _create_offset(offset_types) + expected = expecteds[offset_types.__name__] + + result_dt = dt + offset_s + result_ts = Timestamp(dt) + offset_s + for result in [result_dt, result_ts]: + assert isinstance(result, Timestamp) + assert result == expected + + expected_localize = expected.tz_localize(tz) + result = Timestamp(dt, tz=tz) + offset_s + assert isinstance(result, Timestamp) + assert result == expected_localize + + # normalize=True, disallowed for Tick subclasses GH#21427 + if issubclass(offset_types, Tick): + return + offset_s = _create_offset(offset_types, normalize=True) + expected = Timestamp(expected.date()) + + result_dt = dt + offset_s + result_ts = Timestamp(dt) + offset_s + for result in [result_dt, result_ts]: + assert isinstance(result, Timestamp) + assert result == expected + + expected_localize = expected.tz_localize(tz) + result = Timestamp(dt, tz=tz) + offset_s + assert isinstance(result, Timestamp) + assert result == expected_localize + + def test_add_empty_datetimeindex(self, offset_types, tz_naive_fixture): + # GH#12724, GH#30336 + offset_s = _create_offset(offset_types) + + dti = DatetimeIndex([], tz=tz_naive_fixture).as_unit("ns") + + warn = None + if isinstance( + offset_s, + ( + Easter, + WeekOfMonth, + LastWeekOfMonth, + CustomBusinessDay, + BusinessHour, + CustomBusinessHour, + CustomBusinessMonthBegin, + CustomBusinessMonthEnd, + FY5253, + FY5253Quarter, + ), + ): + # We don't have an optimized apply_index + warn = PerformanceWarning + + # stacklevel checking is slow, and we have ~800 of variants of this + # test, so let's only check the stacklevel in a subset of them + check_stacklevel = tz_naive_fixture is None + with tm.assert_produces_warning(warn, check_stacklevel=check_stacklevel): + result = dti + offset_s + tm.assert_index_equal(result, dti) + with tm.assert_produces_warning(warn, check_stacklevel=check_stacklevel): + result = offset_s + dti + tm.assert_index_equal(result, dti) + + dta = dti._data + with tm.assert_produces_warning(warn, check_stacklevel=check_stacklevel): + result = dta + offset_s + tm.assert_equal(result, dta) + with tm.assert_produces_warning(warn, check_stacklevel=check_stacklevel): + result = offset_s + dta + tm.assert_equal(result, dta) + + def test_pickle_roundtrip(self, offset_types): + off = _create_offset(offset_types) + res = tm.round_trip_pickle(off) + assert off == res + if type(off) is not DateOffset: + for attr in off._attributes: + if attr == "calendar": + # np.busdaycalendar __eq__ will return False; + # we check holidays and weekmask attrs so are OK + continue + # Make sure nothings got lost from _params (which __eq__) is based on + assert getattr(off, attr) == getattr(res, attr) + + def test_pickle_dateoffset_odd_inputs(self): + # GH#34511 + off = DateOffset(months=12) + res = tm.round_trip_pickle(off) + assert off == res + + base_dt = datetime(2020, 1, 1) + assert base_dt + off == base_dt + res + + def test_offsets_hashable(self, offset_types): + # GH: 37267 + off = _create_offset(offset_types) + assert hash(off) is not None + + # TODO: belongs in arithmetic tests? + @pytest.mark.filterwarnings( + "ignore:Non-vectorized DateOffset being applied to Series or DatetimeIndex" + ) + @pytest.mark.parametrize("unit", ["s", "ms", "us"]) + def test_add_dt64_ndarray_non_nano(self, offset_types, unit): + # check that the result with non-nano matches nano + off = _create_offset(offset_types) + + dti = date_range("2016-01-01", periods=35, freq="D", unit=unit) + + result = (dti + off)._with_freq(None) + + exp_unit = unit + if isinstance(off, Tick) and off._creso > dti._data._creso: + # cast to higher reso like we would with Timedelta scalar + exp_unit = Timedelta(off).unit + # TODO(GH#55564): as_unit will be unnecessary + expected = DatetimeIndex([x + off for x in dti]).as_unit(exp_unit) + + tm.assert_index_equal(result, expected) + + +class TestDateOffset: + def setup_method(self): + _offset_map.clear() + + def test_repr(self): + repr(DateOffset()) + repr(DateOffset(2)) + repr(2 * DateOffset()) + repr(2 * DateOffset(months=2)) + + def test_mul(self): + assert DateOffset(2) == 2 * DateOffset(1) + assert DateOffset(2) == DateOffset(1) * 2 + + @pytest.mark.parametrize("kwd", sorted(liboffsets._relativedelta_kwds)) + def test_constructor(self, kwd, request): + if kwd == "millisecond": + request.applymarker( + pytest.mark.xfail( + raises=NotImplementedError, + reason="Constructing DateOffset object with `millisecond` is not " + "yet supported.", + ) + ) + offset = DateOffset(**{kwd: 2}) + assert offset.kwds == {kwd: 2} + assert getattr(offset, kwd) == 2 + + def test_default_constructor(self, dt): + assert (dt + DateOffset(2)) == datetime(2008, 1, 4) + + def test_is_anchored(self): + msg = "DateOffset.is_anchored is deprecated " + + with tm.assert_produces_warning(FutureWarning, match=msg): + assert not DateOffset(2).is_anchored() + assert DateOffset(1).is_anchored() + + def test_copy(self): + assert DateOffset(months=2).copy() == DateOffset(months=2) + assert DateOffset(milliseconds=1).copy() == DateOffset(milliseconds=1) + + @pytest.mark.parametrize( + "arithmatic_offset_type, expected", + zip( + _ARITHMETIC_DATE_OFFSET, + [ + "2009-01-02", + "2008-02-02", + "2008-01-09", + "2008-01-03", + "2008-01-02 01:00:00", + "2008-01-02 00:01:00", + "2008-01-02 00:00:01", + "2008-01-02 00:00:00.001000000", + "2008-01-02 00:00:00.000001000", + ], + ), + ) + def test_add(self, arithmatic_offset_type, expected, dt): + assert DateOffset(**{arithmatic_offset_type: 1}) + dt == Timestamp(expected) + assert dt + DateOffset(**{arithmatic_offset_type: 1}) == Timestamp(expected) + + @pytest.mark.parametrize( + "arithmatic_offset_type, expected", + zip( + _ARITHMETIC_DATE_OFFSET, + [ + "2007-01-02", + "2007-12-02", + "2007-12-26", + "2008-01-01", + "2008-01-01 23:00:00", + "2008-01-01 23:59:00", + "2008-01-01 23:59:59", + "2008-01-01 23:59:59.999000000", + "2008-01-01 23:59:59.999999000", + ], + ), + ) + def test_sub(self, arithmatic_offset_type, expected, dt): + assert dt - DateOffset(**{arithmatic_offset_type: 1}) == Timestamp(expected) + with pytest.raises(TypeError, match="Cannot subtract datetime from offset"): + DateOffset(**{arithmatic_offset_type: 1}) - dt + + @pytest.mark.parametrize( + "arithmatic_offset_type, n, expected", + zip( + _ARITHMETIC_DATE_OFFSET, + range(1, 10), + [ + "2009-01-02", + "2008-03-02", + "2008-01-23", + "2008-01-06", + "2008-01-02 05:00:00", + "2008-01-02 00:06:00", + "2008-01-02 00:00:07", + "2008-01-02 00:00:00.008000000", + "2008-01-02 00:00:00.000009000", + ], + ), + ) + def test_mul_add(self, arithmatic_offset_type, n, expected, dt): + assert DateOffset(**{arithmatic_offset_type: 1}) * n + dt == Timestamp(expected) + assert n * DateOffset(**{arithmatic_offset_type: 1}) + dt == Timestamp(expected) + assert dt + DateOffset(**{arithmatic_offset_type: 1}) * n == Timestamp(expected) + assert dt + n * DateOffset(**{arithmatic_offset_type: 1}) == Timestamp(expected) + + @pytest.mark.parametrize( + "arithmatic_offset_type, n, expected", + zip( + _ARITHMETIC_DATE_OFFSET, + range(1, 10), + [ + "2007-01-02", + "2007-11-02", + "2007-12-12", + "2007-12-29", + "2008-01-01 19:00:00", + "2008-01-01 23:54:00", + "2008-01-01 23:59:53", + "2008-01-01 23:59:59.992000000", + "2008-01-01 23:59:59.999991000", + ], + ), + ) + def test_mul_sub(self, arithmatic_offset_type, n, expected, dt): + assert dt - DateOffset(**{arithmatic_offset_type: 1}) * n == Timestamp(expected) + assert dt - n * DateOffset(**{arithmatic_offset_type: 1}) == Timestamp(expected) + + def test_leap_year(self): + d = datetime(2008, 1, 31) + assert (d + DateOffset(months=1)) == datetime(2008, 2, 29) + + def test_eq(self): + offset1 = DateOffset(days=1) + offset2 = DateOffset(days=365) + + assert offset1 != offset2 + + assert DateOffset(milliseconds=3) != DateOffset(milliseconds=7) + + @pytest.mark.parametrize( + "offset_kwargs, expected_arg", + [ + ({"microseconds": 1, "milliseconds": 1}, "2022-01-01 00:00:00.001001"), + ({"seconds": 1, "milliseconds": 1}, "2022-01-01 00:00:01.001"), + ({"minutes": 1, "milliseconds": 1}, "2022-01-01 00:01:00.001"), + ({"hours": 1, "milliseconds": 1}, "2022-01-01 01:00:00.001"), + ({"days": 1, "milliseconds": 1}, "2022-01-02 00:00:00.001"), + ({"weeks": 1, "milliseconds": 1}, "2022-01-08 00:00:00.001"), + ({"months": 1, "milliseconds": 1}, "2022-02-01 00:00:00.001"), + ({"years": 1, "milliseconds": 1}, "2023-01-01 00:00:00.001"), + ], + ) + def test_milliseconds_combination(self, offset_kwargs, expected_arg): + # GH 49897 + offset = DateOffset(**offset_kwargs) + ts = Timestamp("2022-01-01") + result = ts + offset + expected = Timestamp(expected_arg) + + assert result == expected + + def test_offset_invalid_arguments(self): + msg = "^Invalid argument/s or bad combination of arguments" + with pytest.raises(ValueError, match=msg): + DateOffset(picoseconds=1) + + +class TestOffsetNames: + def test_get_offset_name(self): + assert BDay().freqstr == "B" + assert BDay(2).freqstr == "2B" + assert BMonthEnd().freqstr == "BME" + assert Week(weekday=0).freqstr == "W-MON" + assert Week(weekday=1).freqstr == "W-TUE" + assert Week(weekday=2).freqstr == "W-WED" + assert Week(weekday=3).freqstr == "W-THU" + assert Week(weekday=4).freqstr == "W-FRI" + + assert LastWeekOfMonth(weekday=WeekDay.SUN).freqstr == "LWOM-SUN" + + +def test_get_offset(): + with pytest.raises(ValueError, match=INVALID_FREQ_ERR_MSG): + _get_offset("gibberish") + with pytest.raises(ValueError, match=INVALID_FREQ_ERR_MSG): + _get_offset("QS-JAN-B") + + pairs = [ + ("B", BDay()), + ("b", BDay()), + ("bme", BMonthEnd()), + ("Bme", BMonthEnd()), + ("W-MON", Week(weekday=0)), + ("W-TUE", Week(weekday=1)), + ("W-WED", Week(weekday=2)), + ("W-THU", Week(weekday=3)), + ("W-FRI", Week(weekday=4)), + ] + + for name, expected in pairs: + offset = _get_offset(name) + assert offset == expected, ( + f"Expected {repr(name)} to yield {repr(expected)} " + f"(actual: {repr(offset)})" + ) + + +def test_get_offset_legacy(): + pairs = [("w@Sat", Week(weekday=5))] + for name, expected in pairs: + with pytest.raises(ValueError, match=INVALID_FREQ_ERR_MSG): + _get_offset(name) + + +class TestOffsetAliases: + def setup_method(self): + _offset_map.clear() + + def test_alias_equality(self): + for k, v in _offset_map.items(): + if v is None: + continue + assert k == v.copy() + + def test_rule_code(self): + lst = ["ME", "MS", "BME", "BMS", "D", "B", "h", "min", "s", "ms", "us"] + for k in lst: + assert k == _get_offset(k).rule_code + # should be cached - this is kind of an internals test... + assert k in _offset_map + assert k == (_get_offset(k) * 3).rule_code + + suffix_lst = ["MON", "TUE", "WED", "THU", "FRI", "SAT", "SUN"] + base = "W" + for v in suffix_lst: + alias = "-".join([base, v]) + assert alias == _get_offset(alias).rule_code + assert alias == (_get_offset(alias) * 5).rule_code + + suffix_lst = [ + "JAN", + "FEB", + "MAR", + "APR", + "MAY", + "JUN", + "JUL", + "AUG", + "SEP", + "OCT", + "NOV", + "DEC", + ] + base_lst = ["YE", "YS", "BYE", "BYS", "QE", "QS", "BQE", "BQS"] + for base in base_lst: + for v in suffix_lst: + alias = "-".join([base, v]) + assert alias == _get_offset(alias).rule_code + assert alias == (_get_offset(alias) * 5).rule_code + + +def test_freq_offsets(): + off = BDay(1, offset=timedelta(0, 1800)) + assert off.freqstr == "B+30Min" + + off = BDay(1, offset=timedelta(0, -1800)) + assert off.freqstr == "B-30Min" + + +class TestReprNames: + def test_str_for_named_is_name(self): + # look at all the amazing combinations! + month_prefixes = ["YE", "YS", "BYE", "BYS", "QE", "BQE", "BQS", "QS"] + names = [ + prefix + "-" + month + for prefix in month_prefixes + for month in [ + "JAN", + "FEB", + "MAR", + "APR", + "MAY", + "JUN", + "JUL", + "AUG", + "SEP", + "OCT", + "NOV", + "DEC", + ] + ] + days = ["MON", "TUE", "WED", "THU", "FRI", "SAT", "SUN"] + names += ["W-" + day for day in days] + names += ["WOM-" + week + day for week in ("1", "2", "3", "4") for day in days] + _offset_map.clear() + for name in names: + offset = _get_offset(name) + assert offset.freqstr == name + + +# --------------------------------------------------------------------- + + +def test_valid_default_arguments(offset_types): + # GH#19142 check that the calling the constructors without passing + # any keyword arguments produce valid offsets + cls = offset_types + cls() + + +@pytest.mark.parametrize("kwd", sorted(liboffsets._relativedelta_kwds)) +def test_valid_month_attributes(kwd, month_classes): + # GH#18226 + cls = month_classes + # check that we cannot create e.g. MonthEnd(weeks=3) + msg = rf"__init__\(\) got an unexpected keyword argument '{kwd}'" + with pytest.raises(TypeError, match=msg): + cls(**{kwd: 3}) + + +def test_month_offset_name(month_classes): + # GH#33757 off.name with n != 1 should not raise AttributeError + obj = month_classes(1) + obj2 = month_classes(2) + assert obj2.name == obj.name + + +@pytest.mark.parametrize("kwd", sorted(liboffsets._relativedelta_kwds)) +def test_valid_relativedelta_kwargs(kwd, request): + if kwd == "millisecond": + request.applymarker( + pytest.mark.xfail( + raises=NotImplementedError, + reason="Constructing DateOffset object with `millisecond` is not " + "yet supported.", + ) + ) + # Check that all the arguments specified in liboffsets._relativedelta_kwds + # are in fact valid relativedelta keyword args + DateOffset(**{kwd: 1}) + + +@pytest.mark.parametrize("kwd", sorted(liboffsets._relativedelta_kwds)) +def test_valid_tick_attributes(kwd, tick_classes): + # GH#18226 + cls = tick_classes + # check that we cannot create e.g. Hour(weeks=3) + msg = rf"__init__\(\) got an unexpected keyword argument '{kwd}'" + with pytest.raises(TypeError, match=msg): + cls(**{kwd: 3}) + + +def test_validate_n_error(): + with pytest.raises(TypeError, match="argument must be an integer"): + DateOffset(n="Doh!") + + with pytest.raises(TypeError, match="argument must be an integer"): + MonthBegin(n=timedelta(1)) + + with pytest.raises(TypeError, match="argument must be an integer"): + BDay(n=np.array([1, 2], dtype=np.int64)) + + +def test_require_integers(offset_types): + cls = offset_types + with pytest.raises(ValueError, match="argument must be an integer"): + cls(n=1.5) + + +def test_tick_normalize_raises(tick_classes): + # check that trying to create a Tick object with normalize=True raises + # GH#21427 + cls = tick_classes + msg = "Tick offset with `normalize=True` are not allowed." + with pytest.raises(ValueError, match=msg): + cls(n=3, normalize=True) + + +@pytest.mark.parametrize( + "offset_kwargs, expected_arg", + [ + ({"nanoseconds": 1}, "1970-01-01 00:00:00.000000001"), + ({"nanoseconds": 5}, "1970-01-01 00:00:00.000000005"), + ({"nanoseconds": -1}, "1969-12-31 23:59:59.999999999"), + ({"microseconds": 1}, "1970-01-01 00:00:00.000001"), + ({"microseconds": -1}, "1969-12-31 23:59:59.999999"), + ({"seconds": 1}, "1970-01-01 00:00:01"), + ({"seconds": -1}, "1969-12-31 23:59:59"), + ({"minutes": 1}, "1970-01-01 00:01:00"), + ({"minutes": -1}, "1969-12-31 23:59:00"), + ({"hours": 1}, "1970-01-01 01:00:00"), + ({"hours": -1}, "1969-12-31 23:00:00"), + ({"days": 1}, "1970-01-02 00:00:00"), + ({"days": -1}, "1969-12-31 00:00:00"), + ({"weeks": 1}, "1970-01-08 00:00:00"), + ({"weeks": -1}, "1969-12-25 00:00:00"), + ({"months": 1}, "1970-02-01 00:00:00"), + ({"months": -1}, "1969-12-01 00:00:00"), + ({"years": 1}, "1971-01-01 00:00:00"), + ({"years": -1}, "1969-01-01 00:00:00"), + ], +) +def test_dateoffset_add_sub(offset_kwargs, expected_arg): + offset = DateOffset(**offset_kwargs) + ts = Timestamp(0) + result = ts + offset + expected = Timestamp(expected_arg) + assert result == expected + result -= offset + assert result == ts + result = offset + ts + assert result == expected + + +def test_dateoffset_add_sub_timestamp_with_nano(): + offset = DateOffset(minutes=2, nanoseconds=9) + ts = Timestamp(4) + result = ts + offset + expected = Timestamp("1970-01-01 00:02:00.000000013") + assert result == expected + result -= offset + assert result == ts + result = offset + ts + assert result == expected + + offset2 = DateOffset(minutes=2, nanoseconds=9, hour=1) + assert offset2._use_relativedelta + with tm.assert_produces_warning(None): + # no warning about Discarding nonzero nanoseconds + result2 = ts + offset2 + expected2 = Timestamp("1970-01-01 01:02:00.000000013") + assert result2 == expected2 + + +@pytest.mark.parametrize( + "attribute", + [ + "hours", + "days", + "weeks", + "months", + "years", + ], +) +def test_dateoffset_immutable(attribute): + offset = DateOffset(**{attribute: 0}) + msg = "DateOffset objects are immutable" + with pytest.raises(AttributeError, match=msg): + setattr(offset, attribute, 5) + + +def test_dateoffset_misc(): + oset = offsets.DateOffset(months=2, days=4) + # it works + oset.freqstr + + assert not offsets.DateOffset(months=2) == 2 + + +@pytest.mark.parametrize("n", [-1, 1, 3]) +def test_construct_int_arg_no_kwargs_assumed_days(n): + # GH 45890, 45643 + offset = DateOffset(n) + assert offset._offset == timedelta(1) + result = Timestamp(2022, 1, 2) + offset + expected = Timestamp(2022, 1, 2 + n) + assert result == expected + + +@pytest.mark.parametrize( + "offset, expected", + [ + ( + DateOffset(minutes=7, nanoseconds=18), + Timestamp("2022-01-01 00:07:00.000000018"), + ), + (DateOffset(nanoseconds=3), Timestamp("2022-01-01 00:00:00.000000003")), + ], +) +def test_dateoffset_add_sub_timestamp_series_with_nano(offset, expected): + # GH 47856 + start_time = Timestamp("2022-01-01") + teststamp = start_time + testseries = Series([start_time]) + testseries = testseries + offset + assert testseries[0] == expected + testseries -= offset + assert testseries[0] == teststamp + testseries = offset + testseries + assert testseries[0] == expected + + +@pytest.mark.parametrize( + "n_months, scaling_factor, start_timestamp, expected_timestamp", + [ + (1, 2, "2020-01-30", "2020-03-30"), + (2, 1, "2020-01-30", "2020-03-30"), + (1, 0, "2020-01-30", "2020-01-30"), + (2, 0, "2020-01-30", "2020-01-30"), + (1, -1, "2020-01-30", "2019-12-30"), + (2, -1, "2020-01-30", "2019-11-30"), + ], +) +def test_offset_multiplication( + n_months, scaling_factor, start_timestamp, expected_timestamp +): + # GH 47953 + mo1 = DateOffset(months=n_months) + + startscalar = Timestamp(start_timestamp) + startarray = Series([startscalar]) + + resultscalar = startscalar + (mo1 * scaling_factor) + resultarray = startarray + (mo1 * scaling_factor) + + expectedscalar = Timestamp(expected_timestamp) + expectedarray = Series([expectedscalar]) + assert resultscalar == expectedscalar + + tm.assert_series_equal(resultarray, expectedarray) + + +def test_dateoffset_operations_on_dataframes(): + # GH 47953 + df = DataFrame({"T": [Timestamp("2019-04-30")], "D": [DateOffset(months=1)]}) + frameresult1 = df["T"] + 26 * df["D"] + df2 = DataFrame( + { + "T": [Timestamp("2019-04-30"), Timestamp("2019-04-30")], + "D": [DateOffset(months=1), DateOffset(months=1)], + } + ) + expecteddate = Timestamp("2021-06-30") + with tm.assert_produces_warning(PerformanceWarning): + frameresult2 = df2["T"] + 26 * df2["D"] + + assert frameresult1[0] == expecteddate + assert frameresult2[0] == expecteddate + + +def test_is_yqm_start_end(): + freq_m = to_offset("ME") + bm = to_offset("BME") + qfeb = to_offset("QE-FEB") + qsfeb = to_offset("QS-FEB") + bq = to_offset("BQE") + bqs_apr = to_offset("BQS-APR") + as_nov = to_offset("YS-NOV") + + tests = [ + (freq_m.is_month_start(Timestamp("2013-06-01")), 1), + (bm.is_month_start(Timestamp("2013-06-01")), 0), + (freq_m.is_month_start(Timestamp("2013-06-03")), 0), + (bm.is_month_start(Timestamp("2013-06-03")), 1), + (qfeb.is_month_end(Timestamp("2013-02-28")), 1), + (qfeb.is_quarter_end(Timestamp("2013-02-28")), 1), + (qfeb.is_year_end(Timestamp("2013-02-28")), 1), + (qfeb.is_month_start(Timestamp("2013-03-01")), 1), + (qfeb.is_quarter_start(Timestamp("2013-03-01")), 1), + (qfeb.is_year_start(Timestamp("2013-03-01")), 1), + (qsfeb.is_month_end(Timestamp("2013-03-31")), 1), + (qsfeb.is_quarter_end(Timestamp("2013-03-31")), 0), + (qsfeb.is_year_end(Timestamp("2013-03-31")), 0), + (qsfeb.is_month_start(Timestamp("2013-02-01")), 1), + (qsfeb.is_quarter_start(Timestamp("2013-02-01")), 1), + (qsfeb.is_year_start(Timestamp("2013-02-01")), 1), + (bq.is_month_end(Timestamp("2013-06-30")), 0), + (bq.is_quarter_end(Timestamp("2013-06-30")), 0), + (bq.is_year_end(Timestamp("2013-06-30")), 0), + (bq.is_month_end(Timestamp("2013-06-28")), 1), + (bq.is_quarter_end(Timestamp("2013-06-28")), 1), + (bq.is_year_end(Timestamp("2013-06-28")), 0), + (bqs_apr.is_month_end(Timestamp("2013-06-30")), 0), + (bqs_apr.is_quarter_end(Timestamp("2013-06-30")), 0), + (bqs_apr.is_year_end(Timestamp("2013-06-30")), 0), + (bqs_apr.is_month_end(Timestamp("2013-06-28")), 1), + (bqs_apr.is_quarter_end(Timestamp("2013-06-28")), 1), + (bqs_apr.is_year_end(Timestamp("2013-03-29")), 1), + (as_nov.is_year_start(Timestamp("2013-11-01")), 1), + (as_nov.is_year_end(Timestamp("2013-10-31")), 1), + (Timestamp("2012-02-01").days_in_month, 29), + (Timestamp("2013-02-01").days_in_month, 28), + ] + + for ts, value in tests: + assert ts == value diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_offsets_properties.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_offsets_properties.py new file mode 100644 index 0000000000000000000000000000000000000000..1b4fa9292c4031c8c2acec0e1f34fd871bcb50bd --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_offsets_properties.py @@ -0,0 +1,60 @@ +""" +Behavioral based tests for offsets and date_range. + +This file is adapted from https://github.com/pandas-dev/pandas/pull/18761 - +which was more ambitious but less idiomatic in its use of Hypothesis. + +You may wish to consult the previous version for inspiration on further +tests, or when trying to pin down the bugs exposed by the tests below. +""" +from hypothesis import ( + assume, + given, +) +import pytest +import pytz + +import pandas as pd +from pandas._testing._hypothesis import ( + DATETIME_JAN_1_1900_OPTIONAL_TZ, + YQM_OFFSET, +) + +# ---------------------------------------------------------------- +# Offset-specific behaviour tests + + +@pytest.mark.arm_slow +@given(DATETIME_JAN_1_1900_OPTIONAL_TZ, YQM_OFFSET) +def test_on_offset_implementations(dt, offset): + assume(not offset.normalize) + # check that the class-specific implementations of is_on_offset match + # the general case definition: + # (dt + offset) - offset == dt + try: + compare = (dt + offset) - offset + except (pytz.NonExistentTimeError, pytz.AmbiguousTimeError): + # When dt + offset does not exist or is DST-ambiguous, assume(False) to + # indicate to hypothesis that this is not a valid test case + # DST-ambiguous example (GH41906): + # dt = datetime.datetime(1900, 1, 1, tzinfo=pytz.timezone('Africa/Kinshasa')) + # offset = MonthBegin(66) + assume(False) + + assert offset.is_on_offset(dt) == (compare == dt) + + +@given(YQM_OFFSET) +def test_shift_across_dst(offset): + # GH#18319 check that 1) timezone is correctly normalized and + # 2) that hour is not incorrectly changed by this normalization + assume(not offset.normalize) + + # Note that dti includes a transition across DST boundary + dti = pd.date_range( + start="2017-10-30 12:00:00", end="2017-11-06", freq="D", tz="US/Eastern" + ) + assert (dti.hour == 12).all() # we haven't screwed up yet + + res = dti + offset + assert (res.hour == 12).all() diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_quarter.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_quarter.py new file mode 100644 index 0000000000000000000000000000000000000000..5fd3ba0a5fb87996a4e07fd25569e7161cb08930 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_quarter.py @@ -0,0 +1,303 @@ +""" +Tests for the following offsets: +- QuarterBegin +- QuarterEnd +""" +from __future__ import annotations + +from datetime import datetime + +import pytest + +import pandas._testing as tm +from pandas.tests.tseries.offsets.common import ( + assert_is_on_offset, + assert_offset_equal, +) + +from pandas.tseries.offsets import ( + QuarterBegin, + QuarterEnd, +) + + +@pytest.mark.parametrize("klass", (QuarterBegin, QuarterEnd)) +def test_quarterly_dont_normalize(klass): + date = datetime(2012, 3, 31, 5, 30) + result = date + klass() + assert result.time() == date.time() + + +@pytest.mark.parametrize("offset", [QuarterBegin(), QuarterEnd()]) +@pytest.mark.parametrize( + "date", + [ + datetime(2016, m, d) + for m in [10, 11, 12] + for d in [1, 2, 3, 28, 29, 30, 31] + if not (m == 11 and d == 31) + ], +) +def test_on_offset(offset, date): + res = offset.is_on_offset(date) + slow_version = date == (date + offset) - offset + assert res == slow_version + + +class TestQuarterBegin: + def test_repr(self): + expected = "" + assert repr(QuarterBegin()) == expected + expected = "" + assert repr(QuarterBegin(startingMonth=3)) == expected + expected = "" + assert repr(QuarterBegin(startingMonth=1)) == expected + + def test_is_anchored(self): + msg = "QuarterBegin.is_anchored is deprecated " + + with tm.assert_produces_warning(FutureWarning, match=msg): + assert QuarterBegin(startingMonth=1).is_anchored() + assert QuarterBegin().is_anchored() + assert not QuarterBegin(2, startingMonth=1).is_anchored() + + def test_offset_corner_case(self): + # corner + offset = QuarterBegin(n=-1, startingMonth=1) + assert datetime(2010, 2, 1) + offset == datetime(2010, 1, 1) + + offset_cases = [] + offset_cases.append( + ( + QuarterBegin(startingMonth=1), + { + datetime(2007, 12, 1): datetime(2008, 1, 1), + datetime(2008, 1, 1): datetime(2008, 4, 1), + datetime(2008, 2, 15): datetime(2008, 4, 1), + datetime(2008, 2, 29): datetime(2008, 4, 1), + datetime(2008, 3, 15): datetime(2008, 4, 1), + datetime(2008, 3, 31): datetime(2008, 4, 1), + datetime(2008, 4, 15): datetime(2008, 7, 1), + datetime(2008, 4, 1): datetime(2008, 7, 1), + }, + ) + ) + + offset_cases.append( + ( + QuarterBegin(startingMonth=2), + { + datetime(2008, 1, 1): datetime(2008, 2, 1), + datetime(2008, 1, 31): datetime(2008, 2, 1), + datetime(2008, 1, 15): datetime(2008, 2, 1), + datetime(2008, 2, 29): datetime(2008, 5, 1), + datetime(2008, 3, 15): datetime(2008, 5, 1), + datetime(2008, 3, 31): datetime(2008, 5, 1), + datetime(2008, 4, 15): datetime(2008, 5, 1), + datetime(2008, 4, 30): datetime(2008, 5, 1), + }, + ) + ) + + offset_cases.append( + ( + QuarterBegin(startingMonth=1, n=0), + { + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2008, 12, 1): datetime(2009, 1, 1), + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2008, 2, 15): datetime(2008, 4, 1), + datetime(2008, 2, 29): datetime(2008, 4, 1), + datetime(2008, 3, 15): datetime(2008, 4, 1), + datetime(2008, 3, 31): datetime(2008, 4, 1), + datetime(2008, 4, 15): datetime(2008, 7, 1), + datetime(2008, 4, 30): datetime(2008, 7, 1), + }, + ) + ) + + offset_cases.append( + ( + QuarterBegin(startingMonth=1, n=-1), + { + datetime(2008, 1, 1): datetime(2007, 10, 1), + datetime(2008, 1, 31): datetime(2008, 1, 1), + datetime(2008, 2, 15): datetime(2008, 1, 1), + datetime(2008, 2, 29): datetime(2008, 1, 1), + datetime(2008, 3, 15): datetime(2008, 1, 1), + datetime(2008, 3, 31): datetime(2008, 1, 1), + datetime(2008, 4, 15): datetime(2008, 4, 1), + datetime(2008, 4, 30): datetime(2008, 4, 1), + datetime(2008, 7, 1): datetime(2008, 4, 1), + }, + ) + ) + + offset_cases.append( + ( + QuarterBegin(startingMonth=1, n=2), + { + datetime(2008, 1, 1): datetime(2008, 7, 1), + datetime(2008, 2, 15): datetime(2008, 7, 1), + datetime(2008, 2, 29): datetime(2008, 7, 1), + datetime(2008, 3, 15): datetime(2008, 7, 1), + datetime(2008, 3, 31): datetime(2008, 7, 1), + datetime(2008, 4, 15): datetime(2008, 10, 1), + datetime(2008, 4, 1): datetime(2008, 10, 1), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + +class TestQuarterEnd: + def test_repr(self): + expected = "" + assert repr(QuarterEnd()) == expected + expected = "" + assert repr(QuarterEnd(startingMonth=3)) == expected + expected = "" + assert repr(QuarterEnd(startingMonth=1)) == expected + + def test_is_anchored(self): + msg = "QuarterEnd.is_anchored is deprecated " + + with tm.assert_produces_warning(FutureWarning, match=msg): + assert QuarterEnd(startingMonth=1).is_anchored() + assert QuarterEnd().is_anchored() + assert not QuarterEnd(2, startingMonth=1).is_anchored() + + def test_offset_corner_case(self): + # corner + offset = QuarterEnd(n=-1, startingMonth=1) + assert datetime(2010, 2, 1) + offset == datetime(2010, 1, 31) + + offset_cases = [] + offset_cases.append( + ( + QuarterEnd(startingMonth=1), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 4, 30), + datetime(2008, 2, 15): datetime(2008, 4, 30), + datetime(2008, 2, 29): datetime(2008, 4, 30), + datetime(2008, 3, 15): datetime(2008, 4, 30), + datetime(2008, 3, 31): datetime(2008, 4, 30), + datetime(2008, 4, 15): datetime(2008, 4, 30), + datetime(2008, 4, 30): datetime(2008, 7, 31), + }, + ) + ) + + offset_cases.append( + ( + QuarterEnd(startingMonth=2), + { + datetime(2008, 1, 1): datetime(2008, 2, 29), + datetime(2008, 1, 31): datetime(2008, 2, 29), + datetime(2008, 2, 15): datetime(2008, 2, 29), + datetime(2008, 2, 29): datetime(2008, 5, 31), + datetime(2008, 3, 15): datetime(2008, 5, 31), + datetime(2008, 3, 31): datetime(2008, 5, 31), + datetime(2008, 4, 15): datetime(2008, 5, 31), + datetime(2008, 4, 30): datetime(2008, 5, 31), + }, + ) + ) + + offset_cases.append( + ( + QuarterEnd(startingMonth=1, n=0), + { + datetime(2008, 1, 1): datetime(2008, 1, 31), + datetime(2008, 1, 31): datetime(2008, 1, 31), + datetime(2008, 2, 15): datetime(2008, 4, 30), + datetime(2008, 2, 29): datetime(2008, 4, 30), + datetime(2008, 3, 15): datetime(2008, 4, 30), + datetime(2008, 3, 31): datetime(2008, 4, 30), + datetime(2008, 4, 15): datetime(2008, 4, 30), + datetime(2008, 4, 30): datetime(2008, 4, 30), + }, + ) + ) + + offset_cases.append( + ( + QuarterEnd(startingMonth=1, n=-1), + { + datetime(2008, 1, 1): datetime(2007, 10, 31), + datetime(2008, 1, 31): datetime(2007, 10, 31), + datetime(2008, 2, 15): datetime(2008, 1, 31), + datetime(2008, 2, 29): datetime(2008, 1, 31), + datetime(2008, 3, 15): datetime(2008, 1, 31), + datetime(2008, 3, 31): datetime(2008, 1, 31), + datetime(2008, 4, 15): datetime(2008, 1, 31), + datetime(2008, 4, 30): datetime(2008, 1, 31), + datetime(2008, 7, 1): datetime(2008, 4, 30), + }, + ) + ) + + offset_cases.append( + ( + QuarterEnd(startingMonth=1, n=2), + { + datetime(2008, 1, 31): datetime(2008, 7, 31), + datetime(2008, 2, 15): datetime(2008, 7, 31), + datetime(2008, 2, 29): datetime(2008, 7, 31), + datetime(2008, 3, 15): datetime(2008, 7, 31), + datetime(2008, 3, 31): datetime(2008, 7, 31), + datetime(2008, 4, 15): datetime(2008, 7, 31), + datetime(2008, 4, 30): datetime(2008, 10, 31), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + on_offset_cases = [ + (QuarterEnd(1, startingMonth=1), datetime(2008, 1, 31), True), + (QuarterEnd(1, startingMonth=1), datetime(2007, 12, 31), False), + (QuarterEnd(1, startingMonth=1), datetime(2008, 2, 29), False), + (QuarterEnd(1, startingMonth=1), datetime(2007, 3, 30), False), + (QuarterEnd(1, startingMonth=1), datetime(2007, 3, 31), False), + (QuarterEnd(1, startingMonth=1), datetime(2008, 4, 30), True), + (QuarterEnd(1, startingMonth=1), datetime(2008, 5, 30), False), + (QuarterEnd(1, startingMonth=1), datetime(2008, 5, 31), False), + (QuarterEnd(1, startingMonth=1), datetime(2007, 6, 29), False), + (QuarterEnd(1, startingMonth=1), datetime(2007, 6, 30), False), + (QuarterEnd(1, startingMonth=2), datetime(2008, 1, 31), False), + (QuarterEnd(1, startingMonth=2), datetime(2007, 12, 31), False), + (QuarterEnd(1, startingMonth=2), datetime(2008, 2, 29), True), + (QuarterEnd(1, startingMonth=2), datetime(2007, 3, 30), False), + (QuarterEnd(1, startingMonth=2), datetime(2007, 3, 31), False), + (QuarterEnd(1, startingMonth=2), datetime(2008, 4, 30), False), + (QuarterEnd(1, startingMonth=2), datetime(2008, 5, 30), False), + (QuarterEnd(1, startingMonth=2), datetime(2008, 5, 31), True), + (QuarterEnd(1, startingMonth=2), datetime(2007, 6, 29), False), + (QuarterEnd(1, startingMonth=2), datetime(2007, 6, 30), False), + (QuarterEnd(1, startingMonth=3), datetime(2008, 1, 31), False), + (QuarterEnd(1, startingMonth=3), datetime(2007, 12, 31), True), + (QuarterEnd(1, startingMonth=3), datetime(2008, 2, 29), False), + (QuarterEnd(1, startingMonth=3), datetime(2007, 3, 30), False), + (QuarterEnd(1, startingMonth=3), datetime(2007, 3, 31), True), + (QuarterEnd(1, startingMonth=3), datetime(2008, 4, 30), False), + (QuarterEnd(1, startingMonth=3), datetime(2008, 5, 30), False), + (QuarterEnd(1, startingMonth=3), datetime(2008, 5, 31), False), + (QuarterEnd(1, startingMonth=3), datetime(2007, 6, 29), False), + (QuarterEnd(1, startingMonth=3), datetime(2007, 6, 30), True), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_week.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_week.py new file mode 100644 index 0000000000000000000000000000000000000000..0cd6f769769ae3c3ae39f6b4a8f10641cd297715 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_week.py @@ -0,0 +1,351 @@ +""" +Tests for the following offsets: +- Week +- WeekOfMonth +- LastWeekOfMonth +""" +from __future__ import annotations + +from datetime import ( + datetime, + timedelta, +) + +import pytest + +from pandas._libs.tslibs import Timestamp +from pandas._libs.tslibs.offsets import ( + Day, + LastWeekOfMonth, + Week, + WeekOfMonth, +) + +import pandas._testing as tm +from pandas.tests.tseries.offsets.common import ( + WeekDay, + assert_is_on_offset, + assert_offset_equal, +) + + +class TestWeek: + def test_repr(self): + assert repr(Week(weekday=0)) == "" + assert repr(Week(n=-1, weekday=0)) == "<-1 * Week: weekday=0>" + assert repr(Week(n=-2, weekday=0)) == "<-2 * Weeks: weekday=0>" + + def test_corner(self): + with pytest.raises(ValueError, match="Day must be"): + Week(weekday=7) + + with pytest.raises(ValueError, match="Day must be"): + Week(weekday=-1) + + def test_is_anchored(self): + msg = "Week.is_anchored is deprecated " + + with tm.assert_produces_warning(FutureWarning, match=msg): + assert Week(weekday=0).is_anchored() + assert not Week().is_anchored() + assert not Week(2, weekday=2).is_anchored() + assert not Week(2).is_anchored() + + offset_cases = [] + # not business week + offset_cases.append( + ( + Week(), + { + datetime(2008, 1, 1): datetime(2008, 1, 8), + datetime(2008, 1, 4): datetime(2008, 1, 11), + datetime(2008, 1, 5): datetime(2008, 1, 12), + datetime(2008, 1, 6): datetime(2008, 1, 13), + datetime(2008, 1, 7): datetime(2008, 1, 14), + }, + ) + ) + + # Mon + offset_cases.append( + ( + Week(weekday=0), + { + datetime(2007, 12, 31): datetime(2008, 1, 7), + datetime(2008, 1, 4): datetime(2008, 1, 7), + datetime(2008, 1, 5): datetime(2008, 1, 7), + datetime(2008, 1, 6): datetime(2008, 1, 7), + datetime(2008, 1, 7): datetime(2008, 1, 14), + }, + ) + ) + + # n=0 -> roll forward. Mon + offset_cases.append( + ( + Week(0, weekday=0), + { + datetime(2007, 12, 31): datetime(2007, 12, 31), + datetime(2008, 1, 4): datetime(2008, 1, 7), + datetime(2008, 1, 5): datetime(2008, 1, 7), + datetime(2008, 1, 6): datetime(2008, 1, 7), + datetime(2008, 1, 7): datetime(2008, 1, 7), + }, + ) + ) + + # n=0 -> roll forward. Mon + offset_cases.append( + ( + Week(-2, weekday=1), + { + datetime(2010, 4, 6): datetime(2010, 3, 23), + datetime(2010, 4, 8): datetime(2010, 3, 30), + datetime(2010, 4, 5): datetime(2010, 3, 23), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + @pytest.mark.parametrize("weekday", range(7)) + def test_is_on_offset(self, weekday): + offset = Week(weekday=weekday) + + for day in range(1, 8): + date = datetime(2008, 1, day) + expected = day % 7 == weekday + assert_is_on_offset(offset, date, expected) + + @pytest.mark.parametrize( + "n,date", + [ + (2, "1862-01-13 09:03:34.873477378+0210"), + (-2, "1856-10-24 16:18:36.556360110-0717"), + ], + ) + def test_is_on_offset_weekday_none(self, n, date): + # GH 18510 Week with weekday = None, normalize = False + # should always be is_on_offset + offset = Week(n=n, weekday=None) + ts = Timestamp(date, tz="Africa/Lusaka") + fast = offset.is_on_offset(ts) + slow = (ts + offset) - offset == ts + assert fast == slow + + def test_week_add_invalid(self): + # Week with weekday should raise TypeError and _not_ AttributeError + # when adding invalid offset + offset = Week(weekday=1) + other = Day() + with pytest.raises(TypeError, match="Cannot add"): + offset + other + + +class TestWeekOfMonth: + def test_constructor(self): + with pytest.raises(ValueError, match="^Week"): + WeekOfMonth(n=1, week=4, weekday=0) + + with pytest.raises(ValueError, match="^Week"): + WeekOfMonth(n=1, week=-1, weekday=0) + + with pytest.raises(ValueError, match="^Day"): + WeekOfMonth(n=1, week=0, weekday=-1) + + with pytest.raises(ValueError, match="^Day"): + WeekOfMonth(n=1, week=0, weekday=-7) + + def test_repr(self): + assert ( + repr(WeekOfMonth(weekday=1, week=2)) == "" + ) + + def test_offset(self): + date1 = datetime(2011, 1, 4) # 1st Tuesday of Month + date2 = datetime(2011, 1, 11) # 2nd Tuesday of Month + date3 = datetime(2011, 1, 18) # 3rd Tuesday of Month + date4 = datetime(2011, 1, 25) # 4th Tuesday of Month + + # see for loop for structure + test_cases = [ + (-2, 2, 1, date1, datetime(2010, 11, 16)), + (-2, 2, 1, date2, datetime(2010, 11, 16)), + (-2, 2, 1, date3, datetime(2010, 11, 16)), + (-2, 2, 1, date4, datetime(2010, 12, 21)), + (-1, 2, 1, date1, datetime(2010, 12, 21)), + (-1, 2, 1, date2, datetime(2010, 12, 21)), + (-1, 2, 1, date3, datetime(2010, 12, 21)), + (-1, 2, 1, date4, datetime(2011, 1, 18)), + (0, 0, 1, date1, datetime(2011, 1, 4)), + (0, 0, 1, date2, datetime(2011, 2, 1)), + (0, 0, 1, date3, datetime(2011, 2, 1)), + (0, 0, 1, date4, datetime(2011, 2, 1)), + (0, 1, 1, date1, datetime(2011, 1, 11)), + (0, 1, 1, date2, datetime(2011, 1, 11)), + (0, 1, 1, date3, datetime(2011, 2, 8)), + (0, 1, 1, date4, datetime(2011, 2, 8)), + (0, 0, 1, date1, datetime(2011, 1, 4)), + (0, 1, 1, date2, datetime(2011, 1, 11)), + (0, 2, 1, date3, datetime(2011, 1, 18)), + (0, 3, 1, date4, datetime(2011, 1, 25)), + (1, 0, 0, date1, datetime(2011, 2, 7)), + (1, 0, 0, date2, datetime(2011, 2, 7)), + (1, 0, 0, date3, datetime(2011, 2, 7)), + (1, 0, 0, date4, datetime(2011, 2, 7)), + (1, 0, 1, date1, datetime(2011, 2, 1)), + (1, 0, 1, date2, datetime(2011, 2, 1)), + (1, 0, 1, date3, datetime(2011, 2, 1)), + (1, 0, 1, date4, datetime(2011, 2, 1)), + (1, 0, 2, date1, datetime(2011, 1, 5)), + (1, 0, 2, date2, datetime(2011, 2, 2)), + (1, 0, 2, date3, datetime(2011, 2, 2)), + (1, 0, 2, date4, datetime(2011, 2, 2)), + (1, 2, 1, date1, datetime(2011, 1, 18)), + (1, 2, 1, date2, datetime(2011, 1, 18)), + (1, 2, 1, date3, datetime(2011, 2, 15)), + (1, 2, 1, date4, datetime(2011, 2, 15)), + (2, 2, 1, date1, datetime(2011, 2, 15)), + (2, 2, 1, date2, datetime(2011, 2, 15)), + (2, 2, 1, date3, datetime(2011, 3, 15)), + (2, 2, 1, date4, datetime(2011, 3, 15)), + ] + + for n, week, weekday, dt, expected in test_cases: + offset = WeekOfMonth(n, week=week, weekday=weekday) + assert_offset_equal(offset, dt, expected) + + # try subtracting + result = datetime(2011, 2, 1) - WeekOfMonth(week=1, weekday=2) + assert result == datetime(2011, 1, 12) + + result = datetime(2011, 2, 3) - WeekOfMonth(week=0, weekday=2) + assert result == datetime(2011, 2, 2) + + on_offset_cases = [ + (0, 0, datetime(2011, 2, 7), True), + (0, 0, datetime(2011, 2, 6), False), + (0, 0, datetime(2011, 2, 14), False), + (1, 0, datetime(2011, 2, 14), True), + (0, 1, datetime(2011, 2, 1), True), + (0, 1, datetime(2011, 2, 8), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + week, weekday, dt, expected = case + offset = WeekOfMonth(week=week, weekday=weekday) + assert offset.is_on_offset(dt) == expected + + @pytest.mark.parametrize( + "n,week,date,tz", + [ + (2, 2, "1916-05-15 01:14:49.583410462+0422", "Asia/Qyzylorda"), + (-3, 1, "1980-12-08 03:38:52.878321185+0500", "Asia/Oral"), + ], + ) + def test_is_on_offset_nanoseconds(self, n, week, date, tz): + # GH 18864 + # Make sure that nanoseconds don't trip up is_on_offset (and with it apply) + offset = WeekOfMonth(n=n, week=week, weekday=0) + ts = Timestamp(date, tz=tz) + fast = offset.is_on_offset(ts) + slow = (ts + offset) - offset == ts + assert fast == slow + + +class TestLastWeekOfMonth: + def test_constructor(self): + with pytest.raises(ValueError, match="^N cannot be 0"): + LastWeekOfMonth(n=0, weekday=1) + + with pytest.raises(ValueError, match="^Day"): + LastWeekOfMonth(n=1, weekday=-1) + + with pytest.raises(ValueError, match="^Day"): + LastWeekOfMonth(n=1, weekday=7) + + def test_offset(self): + # Saturday + last_sat = datetime(2013, 8, 31) + next_sat = datetime(2013, 9, 28) + offset_sat = LastWeekOfMonth(n=1, weekday=5) + + one_day_before = last_sat + timedelta(days=-1) + assert one_day_before + offset_sat == last_sat + + one_day_after = last_sat + timedelta(days=+1) + assert one_day_after + offset_sat == next_sat + + # Test On that day + assert last_sat + offset_sat == next_sat + + # Thursday + + offset_thur = LastWeekOfMonth(n=1, weekday=3) + last_thurs = datetime(2013, 1, 31) + next_thurs = datetime(2013, 2, 28) + + one_day_before = last_thurs + timedelta(days=-1) + assert one_day_before + offset_thur == last_thurs + + one_day_after = last_thurs + timedelta(days=+1) + assert one_day_after + offset_thur == next_thurs + + # Test on that day + assert last_thurs + offset_thur == next_thurs + + three_before = last_thurs + timedelta(days=-3) + assert three_before + offset_thur == last_thurs + + two_after = last_thurs + timedelta(days=+2) + assert two_after + offset_thur == next_thurs + + offset_sunday = LastWeekOfMonth(n=1, weekday=WeekDay.SUN) + assert datetime(2013, 7, 31) + offset_sunday == datetime(2013, 8, 25) + + on_offset_cases = [ + (WeekDay.SUN, datetime(2013, 1, 27), True), + (WeekDay.SAT, datetime(2013, 3, 30), True), + (WeekDay.MON, datetime(2013, 2, 18), False), # Not the last Mon + (WeekDay.SUN, datetime(2013, 2, 25), False), # Not a SUN + (WeekDay.MON, datetime(2013, 2, 25), True), + (WeekDay.SAT, datetime(2013, 11, 30), True), + (WeekDay.SAT, datetime(2006, 8, 26), True), + (WeekDay.SAT, datetime(2007, 8, 25), True), + (WeekDay.SAT, datetime(2008, 8, 30), True), + (WeekDay.SAT, datetime(2009, 8, 29), True), + (WeekDay.SAT, datetime(2010, 8, 28), True), + (WeekDay.SAT, datetime(2011, 8, 27), True), + (WeekDay.SAT, datetime(2019, 8, 31), True), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + weekday, dt, expected = case + offset = LastWeekOfMonth(weekday=weekday) + assert offset.is_on_offset(dt) == expected + + @pytest.mark.parametrize( + "n,weekday,date,tz", + [ + (4, 6, "1917-05-27 20:55:27.084284178+0200", "Europe/Warsaw"), + (-4, 5, "2005-08-27 05:01:42.799392561-0500", "America/Rainy_River"), + ], + ) + def test_last_week_of_month_on_offset(self, n, weekday, date, tz): + # GH 19036, GH 18977 _adjust_dst was incorrect for LastWeekOfMonth + offset = LastWeekOfMonth(n=n, weekday=weekday) + ts = Timestamp(date, tz=tz) + slow = (ts + offset) - offset == ts + fast = offset.is_on_offset(ts) + assert fast == slow + + def test_repr(self): + assert ( + repr(LastWeekOfMonth(n=2, weekday=1)) == "<2 * LastWeekOfMonths: weekday=1>" + ) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_year.py b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_year.py new file mode 100644 index 0000000000000000000000000000000000000000..28cbdcf6abeccbbc02827d63c76aaa2f22b3c945 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/test_year.py @@ -0,0 +1,339 @@ +""" +Tests for the following offsets: +- YearBegin +- YearEnd +""" +from __future__ import annotations + +from datetime import datetime + +import numpy as np +import pytest + +from pandas import Timestamp +from pandas.tests.tseries.offsets.common import ( + assert_is_on_offset, + assert_offset_equal, +) + +from pandas.tseries.offsets import ( + YearBegin, + YearEnd, +) + + +class TestYearBegin: + def test_misspecified(self): + with pytest.raises(ValueError, match="Month must go from 1 to 12"): + YearBegin(month=13) + + offset_cases = [] + offset_cases.append( + ( + YearBegin(), + { + datetime(2008, 1, 1): datetime(2009, 1, 1), + datetime(2008, 6, 30): datetime(2009, 1, 1), + datetime(2008, 12, 31): datetime(2009, 1, 1), + datetime(2005, 12, 30): datetime(2006, 1, 1), + datetime(2005, 12, 31): datetime(2006, 1, 1), + }, + ) + ) + + offset_cases.append( + ( + YearBegin(0), + { + datetime(2008, 1, 1): datetime(2008, 1, 1), + datetime(2008, 6, 30): datetime(2009, 1, 1), + datetime(2008, 12, 31): datetime(2009, 1, 1), + datetime(2005, 12, 30): datetime(2006, 1, 1), + datetime(2005, 12, 31): datetime(2006, 1, 1), + }, + ) + ) + + offset_cases.append( + ( + YearBegin(3), + { + datetime(2008, 1, 1): datetime(2011, 1, 1), + datetime(2008, 6, 30): datetime(2011, 1, 1), + datetime(2008, 12, 31): datetime(2011, 1, 1), + datetime(2005, 12, 30): datetime(2008, 1, 1), + datetime(2005, 12, 31): datetime(2008, 1, 1), + }, + ) + ) + + offset_cases.append( + ( + YearBegin(-1), + { + datetime(2007, 1, 1): datetime(2006, 1, 1), + datetime(2007, 1, 15): datetime(2007, 1, 1), + datetime(2008, 6, 30): datetime(2008, 1, 1), + datetime(2008, 12, 31): datetime(2008, 1, 1), + datetime(2006, 12, 29): datetime(2006, 1, 1), + datetime(2006, 12, 30): datetime(2006, 1, 1), + datetime(2007, 1, 1): datetime(2006, 1, 1), + }, + ) + ) + + offset_cases.append( + ( + YearBegin(-2), + { + datetime(2007, 1, 1): datetime(2005, 1, 1), + datetime(2008, 6, 30): datetime(2007, 1, 1), + datetime(2008, 12, 31): datetime(2007, 1, 1), + }, + ) + ) + + offset_cases.append( + ( + YearBegin(month=4), + { + datetime(2007, 4, 1): datetime(2008, 4, 1), + datetime(2007, 4, 15): datetime(2008, 4, 1), + datetime(2007, 3, 1): datetime(2007, 4, 1), + datetime(2007, 12, 15): datetime(2008, 4, 1), + datetime(2012, 1, 31): datetime(2012, 4, 1), + }, + ) + ) + + offset_cases.append( + ( + YearBegin(0, month=4), + { + datetime(2007, 4, 1): datetime(2007, 4, 1), + datetime(2007, 3, 1): datetime(2007, 4, 1), + datetime(2007, 12, 15): datetime(2008, 4, 1), + datetime(2012, 1, 31): datetime(2012, 4, 1), + }, + ) + ) + + offset_cases.append( + ( + YearBegin(4, month=4), + { + datetime(2007, 4, 1): datetime(2011, 4, 1), + datetime(2007, 4, 15): datetime(2011, 4, 1), + datetime(2007, 3, 1): datetime(2010, 4, 1), + datetime(2007, 12, 15): datetime(2011, 4, 1), + datetime(2012, 1, 31): datetime(2015, 4, 1), + }, + ) + ) + + offset_cases.append( + ( + YearBegin(-1, month=4), + { + datetime(2007, 4, 1): datetime(2006, 4, 1), + datetime(2007, 3, 1): datetime(2006, 4, 1), + datetime(2007, 12, 15): datetime(2007, 4, 1), + datetime(2012, 1, 31): datetime(2011, 4, 1), + }, + ) + ) + + offset_cases.append( + ( + YearBegin(-3, month=4), + { + datetime(2007, 4, 1): datetime(2004, 4, 1), + datetime(2007, 3, 1): datetime(2004, 4, 1), + datetime(2007, 12, 15): datetime(2005, 4, 1), + datetime(2012, 1, 31): datetime(2009, 4, 1), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + on_offset_cases = [ + (YearBegin(), datetime(2007, 1, 3), False), + (YearBegin(), datetime(2008, 1, 1), True), + (YearBegin(), datetime(2006, 12, 31), False), + (YearBegin(), datetime(2006, 1, 2), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + +class TestYearEnd: + def test_misspecified(self): + with pytest.raises(ValueError, match="Month must go from 1 to 12"): + YearEnd(month=13) + + offset_cases = [] + offset_cases.append( + ( + YearEnd(), + { + datetime(2008, 1, 1): datetime(2008, 12, 31), + datetime(2008, 6, 30): datetime(2008, 12, 31), + datetime(2008, 12, 31): datetime(2009, 12, 31), + datetime(2005, 12, 30): datetime(2005, 12, 31), + datetime(2005, 12, 31): datetime(2006, 12, 31), + }, + ) + ) + + offset_cases.append( + ( + YearEnd(0), + { + datetime(2008, 1, 1): datetime(2008, 12, 31), + datetime(2008, 6, 30): datetime(2008, 12, 31), + datetime(2008, 12, 31): datetime(2008, 12, 31), + datetime(2005, 12, 30): datetime(2005, 12, 31), + }, + ) + ) + + offset_cases.append( + ( + YearEnd(-1), + { + datetime(2007, 1, 1): datetime(2006, 12, 31), + datetime(2008, 6, 30): datetime(2007, 12, 31), + datetime(2008, 12, 31): datetime(2007, 12, 31), + datetime(2006, 12, 29): datetime(2005, 12, 31), + datetime(2006, 12, 30): datetime(2005, 12, 31), + datetime(2007, 1, 1): datetime(2006, 12, 31), + }, + ) + ) + + offset_cases.append( + ( + YearEnd(-2), + { + datetime(2007, 1, 1): datetime(2005, 12, 31), + datetime(2008, 6, 30): datetime(2006, 12, 31), + datetime(2008, 12, 31): datetime(2006, 12, 31), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + on_offset_cases = [ + (YearEnd(), datetime(2007, 12, 31), True), + (YearEnd(), datetime(2008, 1, 1), False), + (YearEnd(), datetime(2006, 12, 31), True), + (YearEnd(), datetime(2006, 12, 29), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + +class TestYearEndDiffMonth: + offset_cases = [] + offset_cases.append( + ( + YearEnd(month=3), + { + datetime(2008, 1, 1): datetime(2008, 3, 31), + datetime(2008, 2, 15): datetime(2008, 3, 31), + datetime(2008, 3, 31): datetime(2009, 3, 31), + datetime(2008, 3, 30): datetime(2008, 3, 31), + datetime(2005, 3, 31): datetime(2006, 3, 31), + datetime(2006, 7, 30): datetime(2007, 3, 31), + }, + ) + ) + + offset_cases.append( + ( + YearEnd(0, month=3), + { + datetime(2008, 1, 1): datetime(2008, 3, 31), + datetime(2008, 2, 28): datetime(2008, 3, 31), + datetime(2008, 3, 31): datetime(2008, 3, 31), + datetime(2005, 3, 30): datetime(2005, 3, 31), + }, + ) + ) + + offset_cases.append( + ( + YearEnd(-1, month=3), + { + datetime(2007, 1, 1): datetime(2006, 3, 31), + datetime(2008, 2, 28): datetime(2007, 3, 31), + datetime(2008, 3, 31): datetime(2007, 3, 31), + datetime(2006, 3, 29): datetime(2005, 3, 31), + datetime(2006, 3, 30): datetime(2005, 3, 31), + datetime(2007, 3, 1): datetime(2006, 3, 31), + }, + ) + ) + + offset_cases.append( + ( + YearEnd(-2, month=3), + { + datetime(2007, 1, 1): datetime(2005, 3, 31), + datetime(2008, 6, 30): datetime(2007, 3, 31), + datetime(2008, 3, 31): datetime(2006, 3, 31), + }, + ) + ) + + @pytest.mark.parametrize("case", offset_cases) + def test_offset(self, case): + offset, cases = case + for base, expected in cases.items(): + assert_offset_equal(offset, base, expected) + + on_offset_cases = [ + (YearEnd(month=3), datetime(2007, 3, 31), True), + (YearEnd(month=3), datetime(2008, 1, 1), False), + (YearEnd(month=3), datetime(2006, 3, 31), True), + (YearEnd(month=3), datetime(2006, 3, 29), False), + ] + + @pytest.mark.parametrize("case", on_offset_cases) + def test_is_on_offset(self, case): + offset, dt, expected = case + assert_is_on_offset(offset, dt, expected) + + +def test_add_out_of_pydatetime_range(): + # GH#50348 don't raise in Timestamp.replace + ts = Timestamp(np.datetime64("-20000-12-31")) + off = YearEnd() + + result = ts + off + # TODO(cython3): "arg: datetime" annotation will impose + # datetime limitations on Timestamp. The fused type below works in cy3 + # ctypedef fused datetimelike: + # _Timestamp + # datetime + # expected = Timestamp(np.datetime64("-19999-12-31")) + # assert result == expected + assert result.year in (-19999, 1973) + assert result.month == 12 + assert result.day == 31