diff --git "a/env-llmeval/lib/python3.10/site-packages/torch/_meta_registrations.py" "b/env-llmeval/lib/python3.10/site-packages/torch/_meta_registrations.py" new file mode 100644--- /dev/null +++ "b/env-llmeval/lib/python3.10/site-packages/torch/_meta_registrations.py" @@ -0,0 +1,6242 @@ +import math +from enum import Enum +from functools import partial +from typing import List, Optional, Sequence, Tuple, Union + +import torch +import torch._prims_common as utils +from torch import SymBool, SymFloat, Tensor +from torch._decomp import ( + _add_op_to_registry, + _convert_out_params, + global_decomposition_table, + meta_table, +) +from torch._ops import OpOverload +from torch._prims import _prim_elementwise_meta, ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND +from torch._prims_common import ( + corresponding_complex_dtype, + corresponding_real_dtype, + elementwise_dtypes, + ELEMENTWISE_TYPE_PROMOTION_KIND, + IntLike, + make_contiguous_strides_for, + TensorLike, +) + +from torch._prims_common.wrappers import ( + _maybe_convert_to_dtype, + _maybe_resize_out, + _resize_output_check, + _safe_copy_out, + out_wrapper, +) +from torch._refs import _broadcast_shapes, _maybe_broadcast +from torch.utils import _pytree as pytree + + +aten = torch.ops.aten + +_meta_lib_dont_use_me_use_register_meta = torch.library.Library("aten", "IMPL", "Meta") + + +def register_meta(op): + def wrapper(fn): + fn = _convert_out_params(fn) + + def register(op): + _add_op_to_registry(meta_table, op, fn) + + pytree.tree_map_(register, op) + return fn + + return wrapper + + +def elementwise_meta( + *args, + type_promotion: ELEMENTWISE_TYPE_PROMOTION_KIND, +): + # Perform type promotion, as this is expected from prim_metafunction + _, result_dtype = utils.elementwise_dtypes( + *args, + type_promotion_kind=type_promotion, + ) + args = [_maybe_convert_to_dtype(x, result_dtype) for x in args] + + # Broadcast + args = _maybe_broadcast(*args) + + # Perform prim checks + return _prim_elementwise_meta( + *args, type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT + ) + + +def toRealValueType(dtype): + from_complex = { + torch.complex32: torch.half, + torch.cfloat: torch.float, + torch.cdouble: torch.double, + } + return from_complex.get(dtype, dtype) + + +def check_inplace_broadcast(self_shape, *args_shape): + broadcasted_shape = tuple(_broadcast_shapes(self_shape, *args_shape)) + torch._check( + broadcasted_shape == self_shape, + lambda: f"output with shape {self_shape} doesn't match the broadcast shape {broadcasted_shape}", + ) + + +@register_meta([aten.linspace, aten.logspace]) +@out_wrapper() +def meta_linspace_logspace( + start, + end, + steps, + base=None, + dtype=None, + device=None, + layout=torch.strided, + pin_memory=False, + requires_grad=False, +): + if isinstance(start, torch.Tensor): + torch._check( + start.dim() == 0, + lambda: "linspace only supports 0-dimensional start and end tensors", + ) + if isinstance(end, torch.Tensor): + torch._check( + end.dim() == 0, + lambda: "linspace only supports 0-dimensional start and end tensors", + ) + + if any(isinstance(arg, complex) for arg in (start, end, steps)): + default_complex_dtype = utils.corresponding_complex_dtype( + torch.get_default_dtype() + ) + if dtype is None: + dtype = default_complex_dtype + else: + torch._check( + utils.is_complex_dtype(dtype), + lambda: f"linspace(): inferred dtype {default_complex_dtype} can't be safely cast to passed dtype {dtype}", + ) + else: + dtype = dtype or torch.get_default_dtype() + assert isinstance(dtype, torch.dtype) + + # steps does not participate in the computation of the dtype + torch._check_type( + isinstance(steps, IntLike), + lambda: f"received an invalid combination of arguments - got \ +({type(start).__name__}, {type(end).__name__}, {type(steps).__name__})", + ) + assert isinstance(steps, IntLike) # for mypy + torch._check(steps >= 0, lambda: "number of steps must be non-negative") + + return torch.empty( + (steps,), # type: ignore[arg-type] + dtype=dtype, + layout=layout, + device="meta", + pin_memory=pin_memory, + requires_grad=requires_grad, + ) + + +@register_meta([aten.take.default, aten.take.out]) +@out_wrapper() +def meta_take(self, index): + # Type and device checks + torch._check( + index.dtype == torch.long, + lambda: f"take(): Expected a long tensor for index, but got {index.dtype}", + ) + # Index checks + torch._check_index( + not (self.numel() == 0 and index.numel() != 0), + lambda: "take(): tried to take from an empty tensor", + ) + return self.new_empty(index.shape) + + +@register_meta([aten.linalg_cross.default, aten.linalg_cross.out]) +@out_wrapper() +def linalg_cross(self, other, *, dim=-1): + x_d = self.ndim + y_d = other.ndim + torch._check( + x_d == y_d, + lambda: "linalg.cross: inputs must have the same number of dimensions.", + ) + torch._check( + self.size(dim) == 3 and other.size(dim) == 3, + lambda: ( + f"linalg.cross: inputs dimension {dim} must have length 3. " + f"Got {self.size(dim)} and {other.size(dim)}" + ), + ) + out_shape = _broadcast_shapes(self.shape, other.shape) + return self.new_empty(out_shape) + + +@register_meta(aten.linalg_matrix_exp) +@out_wrapper() +def linalg_matrix_exp(self): + squareCheckInputs(self, "linalg.matrix_exp") + checkFloatingOrComplex(self, "linalg.matrix_exp") + return torch.empty_like(self, memory_format=torch.contiguous_format) + + +@register_meta( + [aten.cummax.default, aten.cummax.out, aten.cummin.default, aten.cummin.out] +) +@out_wrapper("values", "indices") +def cummaxmin(self, dim): + values = torch.empty(self.shape, device=self.device, dtype=self.dtype) + indices = torch.empty(self.shape, device=self.device, dtype=torch.int64) + if self.numel() != 0 and self.ndim != 0: + # Checks that dim is within bounds + maybe_wrap_dim(dim, self.ndim) + return values, indices + + +@register_meta([aten.logcumsumexp.default, aten.logcumsumexp.out]) +@out_wrapper() +def logcumsumexp(self, dim): + # Checks that dim is within bounds + maybe_wrap_dim(dim, self.ndim) + return torch.empty_like(self).contiguous() + + +# Stride-related code from _exec_fft in aten/src/ATen/native/cuda/SpectralOps.cpp +def _exec_fft(out, self, out_sizes, dim, forward): + ndim = self.ndim + signal_ndim = len(dim) + batch_dims = ndim - signal_ndim + + # Permute dimensions so batch dimensions come first, and in stride order + dim_permute = list(range(ndim)) + + is_transformed_dim = [False for _ in range(ndim)] + for d in dim: + is_transformed_dim[d] = True + + # std::partition + left, right = [], [] + for d in dim_permute: + if not is_transformed_dim[d]: + left.append(d) + else: + right.append(d) + dim_permute = left + right + batch_end = len(left) + + self_strides = self.stride() + tmp = dim_permute[:batch_end] + tmp.sort(key=lambda x: self_strides[x], reverse=True) + dim_permute = tmp + dim_permute[batch_end:] + input = self.permute(dim_permute) + + # Collapse batch dimensions into a single dimension + batched_sizes = [-1] + list(input.shape[batch_dims:]) + input = input.reshape(batched_sizes) + + batch_size = input.size(0) + batched_sizes[0] = batch_size + batched_out_sizes = batched_sizes + for i in range(len(dim)): + batched_out_sizes[i + 1] = out_sizes[dim[i]] + out = out.reshape(batched_out_sizes) + + # Reshaping to original batch shape and inverting the dimension permutation + out_strides = [0 for _ in range(ndim)] + batch_numel = 1 + i = batch_dims - 1 + while i >= 0: + out_strides[dim_permute[i]] = batch_numel * out.stride(0) + batch_numel *= out_sizes[dim_permute[i]] + i -= 1 + for i in range(batch_dims, ndim): + out_strides[dim_permute[i]] = out.stride(1 + (i - batch_dims)) + return out.as_strided(out_sizes, out_strides, out.storage_offset()) + + +# See _fft_c2c_cufft in aten/src/ATen/native/cuda/SpectralOps.cpp +# and _fft_c2c_mkl in aten/src/ATen/native/mkl/SpectralOps.cpp +@register_meta([aten._fft_c2c.default, aten._fft_c2c.out]) +@out_wrapper() +def meta_fft_c2c(self, dim, normalization, forward): + assert self.dtype.is_complex + + out_sizes = self.shape + output = self.new_empty(out_sizes) + + if not dim: + return output + + sorted_dims = dim[:] + self_strides = self.stride() + sorted_dims.sort(key=lambda x: self_strides[x], reverse=True) + output = _exec_fft(output, self, out_sizes, sorted_dims, forward) + + return output + + +@register_meta([aten._fft_r2c.default, aten._fft_r2c.out]) +@out_wrapper() +def meta_fft_r2c(self, dim, normalization, onesided): + assert self.dtype.is_floating_point + output_sizes = list(self.size()) + + if onesided: + last_dim = dim[-1] + last_dim_halfsize = (output_sizes[last_dim] // 2) + 1 + output_sizes[last_dim] = last_dim_halfsize + + return self.new_empty( + output_sizes, dtype=utils.corresponding_complex_dtype(self.dtype) + ) + + +@register_meta(aten.randperm.generator_out) +def meta_randperm(n, *, generator=None, out): + return _maybe_resize_out(out, torch.Size([n])) + + +@register_meta(aten.randperm.default) +def meta_randperm_default( + n, *, dtype=torch.long, layout=None, device=None, pin_memory=None +): + return torch.empty( + n, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory + ) + + +@register_meta(aten.randint.default) +def meta_randint( + high, size, *, dtype=torch.long, layout=None, device=None, pin_memory=None +): + return torch.empty( + size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory + ) + + +@register_meta(aten.randint.low) +def meta_randint_low( + low, + high, + size, + *, + dtype=torch.long, + layout=None, + device=None, + pin_memory=None, +): + return torch.empty( + size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory + ) + + +@register_meta(aten.rand.default) +def meta_rand_default(size, *, dtype=None, layout=None, device=None, pin_memory=None): + return torch.empty( + size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory + ) + + +@register_meta([aten._fft_c2r.default, aten._fft_c2r.out]) +@out_wrapper() +def meta_fft_c2r(self, dim, normalization, lastdim): + assert self.dtype.is_complex + output_sizes = list(self.size()) + output_sizes[dim[-1]] = lastdim + return self.new_empty(output_sizes, dtype=toRealValueType(self.dtype)) + + +@register_meta(aten.copy_.default) +def meta_copy_(self, src, non_blocking=False): + # This code simulates the original decomp from inductor, + # which runs most of the meta checks that we care about. + # In theory, we should make this more robust by carefully + # auditing our C++ copy_() kernel and copying the checks here. + + if torch._debug_has_internal_overlap(self) == 1: # 1 == MemOverlap::Yes + raise RuntimeError( + "more than one element of the written-to tensor refers to a single memory location" + ) + + if isinstance(src, Tensor): + intermediate = src.to(self, non_blocking) + if self.size() != intermediate.size(): + aten.expand_copy.default(intermediate, self.size()) + return self + + +def inferUnsqueezeGeometry(tensor, dim): + result_sizes = list(tensor.size()) + result_strides = list(tensor.stride()) + new_stride = 1 if dim >= tensor.dim() else result_sizes[dim] * result_strides[dim] + result_sizes.insert(dim, 1) + result_strides.insert(dim, new_stride) + return result_sizes, result_strides + + +@register_meta(aten.unsqueeze_.default) +def meta_unsqueeze_(self, dim): + dim = maybe_wrap_dim(dim, self.dim() + 1) + g_sizes, g_strides = inferUnsqueezeGeometry(self, dim) + self.as_strided_(g_sizes, g_strides) + return self + + +@register_meta(aten._sparse_semi_structured_linear) +def meta_sparse_structured_linear( + input: Tensor, + weight: Tensor, + _meta: Tensor, + bias: Optional[Tensor] = None, + _activation_opt: Optional[str] = None, +): + output_sizes = list(input.shape) + if bias is not None: + assert weight.size(0) == bias.size(0), "output size mismatch" + assert weight.size(1) == input.size(-1) / 2 + output_sizes[-1] = weight.size(0) + + # see: https://github.com/pytorch/pytorch/pull/114477#issuecomment-1830121375 + # We assume that we have already squashed the inputs into a 2-D tensor + # Then, as the output is transposed, we need to propagate the transposed + # stride information to the output tensor + assert len(input.shape) == 2, "we can only handle the squashed input case" + transposed_strides = (1, input.size(0)) + + output = input.new_empty( + output_sizes, + dtype=input.dtype if input.dtype != torch.int8 else torch.int32, + ).as_strided(output_sizes, transposed_strides) + + return output + + +@register_meta(aten._cslt_sparse_mm) +def meta__cslt_sparse_mm( + compressed_A: torch.Tensor, + dense_B: torch.Tensor, + bias: Optional[Tensor] = None, + alpha: Optional[Tensor] = None, + out_dtype: Optional[torch.dtype] = None, + transpose_result: bool = False, +): + assert dense_B.dtype in { + torch.float16, + torch.bfloat16, + torch.int8, + }, "_cslt_sparse_mm only supports fp16, bf16, and int8" + assert compressed_A.dtype == dense_B.dtype, "inputs must have the same dtype" + assert len(dense_B.shape) == 2, "_cslt_sparse_mm only supports 2d inputs" + + is_int8_input_type = compressed_A.dtype == torch.int8 + compression_factor = 10 if is_int8_input_type else 9 + k = dense_B.size(0) + n = dense_B.size(1) + m = (compressed_A.numel() * 16) // (compression_factor * k) + if bias is not None: + assert m == bias.size(0) + + if out_dtype is not None: + assert ( + is_int8_input_type and out_dtype == torch.float16 + ), "out_dtype is only supported for i8i8->fp16 matmul" + output_shape = (n, m) if transpose_result else (m, n) + result = dense_B.new_empty(output_shape, dtype=out_dtype) + return result + + +@register_meta(aten.index_reduce.default) +def meta_index_reduce( + self: Tensor, + dim: int, + index: Tensor, + source: torch.Tensor, + reduce: str, + *, + include_self: bool = True, +) -> Tensor: + return torch.empty_like(self, memory_format=torch.contiguous_format) + + +@register_meta(aten.index_reduce_.default) +def meta_index_reduce_( + self: Tensor, + dim: int, + index: Tensor, + source: torch.Tensor, + reduce: str, + *, + include_self: bool = True, +) -> Tensor: + return self + + +# Implementations below are taken from https://github.com/albanD/subclass_zoo/blob/main/python_meta_tensor.py +@out_wrapper() +@register_meta(aten.index_select.default) +def meta_index_select(self, dim, index): + result_size = list(self.size()) + if self.dim() > 0: + result_size[dim] = index.numel() + return self.new_empty(result_size) + + +@register_meta(aten.segment_reduce.default) +def meta_segment_reduce( + data: Tensor, + reduce: str, + *, + lengths: Optional[Tensor] = None, + indices: Optional[Tensor] = None, + offsets: Optional[Tensor] = None, + axis: int = 0, + unsafe: bool = False, + initial=None, +) -> Tensor: + if indices is not None: + raise NotImplementedError( + "segment_reduce(): indices based reduction is not supported yet." + ) + + def segment_reduce_lengths_tensor(lengths_shape): + return torch.empty( + lengths_shape + data.shape[axis + 1 :], + dtype=data.dtype, + device="meta", + memory_format=torch.contiguous_format, + ) + + if lengths is not None: + return segment_reduce_lengths_tensor(lengths.shape) + # FIXME should probably check that lengths and offset aren't both set, but + # the ATen implementation neglects this too + if offsets is not None: + # lengths == torch.diff(offsets) + lengths_shape = offsets.shape[:-1] + (offsets.shape[-1] - 1,) + return segment_reduce_lengths_tensor(lengths_shape) + raise RuntimeError("segment_reduce(): Either lengths or offsets must be defined.") + + +@register_meta([aten.max.default, aten.max.unary_out]) +@out_wrapper() +def meta_max(self): + return self.new_empty(()) + + +@register_meta(aten.max.dim) +def meta_max_dim(self, dim, keepdim=False): + dim = utils.reduction_dims(self.shape, (dim,)) + output_shape = _compute_reduction_shape(self, dim, keepdim) + return ( + self.new_empty(output_shape), + self.new_empty(output_shape, dtype=torch.long), + ) + + +@register_meta([aten.min.default, aten.min.unary_out]) +@out_wrapper() +def meta_min(self): + return self.new_empty(()) + + +@register_meta(aten.min.dim) +def meta_min_dim(self, dim, keepdim=False): + dim = utils.reduction_dims(self.shape, (dim,)) + output_shape = _compute_reduction_shape(self, dim, keepdim) + return ( + self.new_empty(output_shape), + self.new_empty(output_shape, dtype=torch.long), + ) + + +@register_meta(aten.angle.default) +def meta_angle(self): + if self.is_complex(): + result_dtype = corresponding_real_dtype(self.dtype) + else: + _, result_dtype = elementwise_dtypes( + self, + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, + ) + return torch.empty_like(self, dtype=result_dtype) + + +@register_meta(aten.angle.out) +def meta_angle_out(self, out): + torch._resize_output_(out, self.size(), self.device) + return out.copy_(torch.angle(self)) + + +@register_meta(aten._assert_async.default) +def assert_async(val): + return + + +@register_meta(aten._assert_async.msg) +def assert_async_meta(val, assert_msg): + return + + +@register_meta(aten._make_dep_token.default) +def make_dep_token( + *, + dtype=None, + layout=None, + device=None, + pin_memory=None, + memory_format=None, +): + return torch.empty([], device="meta") + + +@register_meta(aten.sym_constrain_range.default) +def sym_constrain_range(size, min=None, max=None): + # Avoid importing sympy at a module level + from torch.fx.experimental.symbolic_shapes import constrain_range + + if isinstance(size, (SymFloat, SymBool)): + raise ValueError("Constraining SymFloat or Symbool is nyi") + constrain_range(size, min=min, max=max) + + +@register_meta(aten._functional_sym_constrain_range.default) +def functional_sym_constrain_range(size, min=None, max=None, dep_token=None): + aten.sym_constrain_range(size, min=min, max=max) + return dep_token + + +@register_meta(aten.sym_constrain_range_for_size.default) +def sym_constrain_range_for_size(size, min=None, max=None): + # Avoid importing sympy at a module level + from torch.fx.experimental.symbolic_shapes import _constrain_range_for_size + + if isinstance(size, (SymFloat, SymBool)): + raise ValueError("Constraining SymFloat or Symbool is nyi") + _constrain_range_for_size(size, min=min, max=max) + + +@register_meta(aten._functional_sym_constrain_range_for_size.default) +def functional_sym_constrain_range_for_size(size, min, max, dep_token): + aten.sym_constrain_range_for_size(size, min=min, max=max) + return dep_token + + +@register_meta(aten._functional_assert_async.msg) +def functional_assert_async_meta(val, assert_msg, dep_token): + return dep_token + + +# From aten/src/ATen/native/LinearAlgebraUtils.h +def squareCheckInputs(self: Tensor, f_name: str): + assert ( + self.dim() >= 2 + ), f"{f_name}: The input tensor must have at least 2 dimensions." + assert self.size(-1) == self.size( + -2 + ), f"{f_name}: A must be batches of square matrices, but they are {self.size(-2)} by {self.size(-1)} matrices" + + +# Validates input shapes and devices +# for linear solve methods (solve, cholesky_solve, lu_solve, triangular_solve) +# From aten/src/ATen/native/LinearAlgebraUtils.h +def linearSolveCheckInputs( + self: Tensor, + A: Tensor, + name: str, +): + torch._check( + self.device == A.device, + lambda: ( + f"Expected b and A to be on the same device, but found b on " + f"{self.device} and A on {A.device} instead." + ), + ) + + torch._check( + self.dtype == A.dtype, + lambda: ( + f"Expected b and A to have the same dtype, but found b of type " + f"{self.dtype} and A of type {A.dtype} instead." + ), + ) + + torch._check( + A.size(-1) == A.size(-2), + lambda: ( + f"A must be batches of square matrices, " + f"but they are {A.size(-2)} by {A.size(-1)} matrices" + ), + ) + + torch._check( + A.size(-1) == self.size(-2), + lambda: ( + f"Incompatible matrix sizes for {name}: each A " + f"matrix is {A.size(-1)} by {A.size(-1)}" + f" but each b matrix is {self.size(-2)} by {self.size(-1)}" + ), + ) + + +# From aten/src/ATen/native/LinearAlgebraUtils.h +def checkFloatingOrComplex( + t: Tensor, f_name: str, allow_low_precision_dtypes: bool = True +): + dtype = t.dtype + torch._check( + t.is_floating_point() or t.is_complex(), + lambda: f"{f_name}: Expected a floating point or complex tensor as input. Got {dtype}", + ) + if not allow_low_precision_dtypes: + torch._check( + dtype in (torch.float, torch.double, torch.cfloat, torch.cdouble), + lambda: f"{f_name}: Low precision dtypes not supported. Got {dtype}", + ) + + +# From aten/src/ATen/native/LinearAlgebraUtils.h +def checkIsMatrix(A: Tensor, f_name: str, arg_name: str = "A"): + torch._check( + A.dim() >= 2, + lambda: f"{f_name}: The input tensor {arg_name} must have at least 2 dimensions.", + ) + + +def checkInputsSolver( + A: Tensor, + B: Tensor, + left: bool, + f_name: str, +): + squareCheckInputs(A, f_name) + checkIsMatrix(B, f_name) + torch._check( + A.size(-2) == B.size(-2) if left else A.size(-1) == B.size(-1), + lambda: ( + f"{f_name}: Incompatible shapes of A and B for the equation " + f"{'AX = B' if left else 'XA = B'}" + f" ({A.size(-2)}x{A.size(-1)} and {B.size(-2)}x{B.size(-1)})" + ), + ) + + +def checkSameDevice( + fn_name: str, result: Tensor, input: Tensor, result_name: str = "result" +): + torch._check( + result.device == input.device, + lambda: ( + f"{fn_name}: Expected {result_name} and input tensors to be on the same device, but got " + f"{result_name} on {result.device} and input on {input.device}" + ), + ) + + +def checkUplo(UPLO: str): + UPLO_uppercase = UPLO.upper() + torch._check( + len(UPLO) == 1 and (UPLO_uppercase == "U" or UPLO_uppercase == "L"), + lambda: f"Expected UPLO argument to be 'L' or 'U', but got {UPLO}", + ) + + +@register_meta([aten._linalg_eigh.default, aten._linalg_eigh.eigenvalues]) +@out_wrapper("eigenvalues", "eigenvectors") +def meta__linalg_eigh( + A: Tensor, + UPLO: str = "L", + compute_v: bool = True, +): + squareCheckInputs(A, "linalg.eigh") + checkUplo(UPLO) + + shape = list(A.shape) + if compute_v: + vecs = A.new_empty(shape) + vecs.as_strided_(shape, make_contiguous_strides_for(shape, row_major=False)) + else: + vecs = A.new_empty([0]) + + shape.pop() + vals = A.new_empty(shape, dtype=toRealValueType(A.dtype)) + + return vals, vecs + + +def cloneBatchedColumnMajor(src: Tensor) -> Tensor: + return src.mT.clone(memory_format=torch.contiguous_format).transpose(-2, -1) + + +@register_meta(aten._cholesky_solve_helper) +@out_wrapper() +def _cholesky_solve_helper(self: Tensor, A: Tensor, upper: bool) -> Tensor: + return cloneBatchedColumnMajor(self) + + +@register_meta(aten.cholesky_solve) +@out_wrapper() +def cholesky_solve(self: Tensor, A: Tensor, upper: bool = False) -> Tensor: + torch._check( + self.ndim >= 2, + lambda: f"b should have at least 2 dimensions, but has {self.ndim} dimensions instead", + ) + torch._check( + A.ndim >= 2, + lambda: f"u should have at least 2 dimensions, but has {A.ndim} dimensions instead", + ) + self_broadcasted, A_broadcasted = _linalg_broadcast_batch_dims_name( + self, A, "cholesky_solve" + ) + return _cholesky_solve_helper(self_broadcasted, A_broadcasted, upper) + + +@register_meta(aten.cholesky) +@out_wrapper() +def cholesky(self: Tensor, upper: bool = False) -> Tensor: + if self.numel() == 0: + return torch.empty_like(self, memory_format=torch.legacy_contiguous_format) + squareCheckInputs(self, "cholesky") + return cloneBatchedColumnMajor(self) + + +@register_meta(aten.cholesky_inverse) +@out_wrapper() +def cholesky_inverse(self: Tensor, upper: bool = False) -> Tensor: + squareCheckInputs(self, "cholesky_inverse") + return cloneBatchedColumnMajor(self) + + +# From aten/src/ATen/native/BatchLinearAlgebra.cpp +@register_meta(aten.linalg_cholesky_ex.default) +def linalg_cholesky_ex(A: Tensor, upper: bool = False, check_errors: bool = False): + squareCheckInputs(A, "linalg.cholesky") + checkFloatingOrComplex(A, "linalg.cholesky") + + A_shape = A.shape + ndim = len(A_shape) + + # L + L_strides = make_contiguous_strides_for(A_shape, False) + L = A.new_empty(A_shape) + L.as_strided_(A_shape, L_strides) + + # infos + infos = A.new_empty(A_shape[0 : ndim - 2], dtype=torch.int32) + return L, infos + + +@register_meta( + [aten.linalg_householder_product.default, aten.linalg_householder_product.out] +) +@out_wrapper() +def linalg_householder_product(input: Tensor, tau: Tensor) -> Tensor: + torch._check( + input.ndim >= 2, + lambda: "torch.linalg.householder_product: input must have at least 2 dimensions.", + ) + torch._check( + input.size(-2) >= input.size(-1), + lambda: "torch.linalg.householder_product: input.shape[-2] must be greater than or equal to input.shape[-1]", + ) + torch._check( + input.size(-1) >= tau.size(-1), + lambda: "torch.linalg.householder_product: input.shape[-1] must be greater than or equal to tau.shape[-1]", + ) + + torch._check( + input.ndim - tau.ndim == 1, + lambda: ( + f"torch.linalg.householder_product: Expected tau to have one dimension less than input, " + f"but got tau.ndim equal to {tau.ndim} and input.ndim is equal to {input.ndim}" + ), + ) + if input.ndim > 2: + expected_batch_tau_shape = input.shape[:-2] + actual_batch_tau_shape = tau.shape[:-1] + torch._check( + actual_batch_tau_shape == expected_batch_tau_shape, + lambda: ( + f"torch.linalg.householder_product: Expected batch dimensions of tau to be " + f"equal to input.shape[:-2], but got {actual_batch_tau_shape}" + ), + ) + + torch._check( + tau.dtype == input.dtype, + lambda: ( + f"torch.linalg.householder_product: tau dtype {tau.dtype}" + f" does not match input dtype {input.dtype}" + ), + ) + checkSameDevice("torch.linalg.householder_product", tau, input, "tau") + + return torch.empty_strided( + size=input.shape, + stride=make_contiguous_strides_for(input.shape, row_major=False), + dtype=input.dtype, + device=input.device, + ) + + +# From aten/src/ATen/native/BatchLinearAlgebra.cpp +@register_meta(aten.linalg_inv_ex.default) +def linalg_inv_ex_meta(A: Tensor, check_errors: bool = False): + squareCheckInputs(A, "linalg.inv_ex") + checkFloatingOrComplex(A, "linalg.inv_ex", allow_low_precision_dtypes=False) + + L = A.new_empty(A.shape) + L.as_strided_(A.shape, make_contiguous_strides_for(A.shape, row_major=False)) + + infos = A.new_empty(A.shape[:-2], dtype=torch.int32) + return L, infos + + +@register_meta([aten.linalg_ldl_factor_ex.default, aten.linalg_ldl_factor_ex.out]) +@out_wrapper("LD", "pivots", "info") +def linalg_ldl_factor_ex_meta( + self: Tensor, + *, + hermitian: bool = False, + check_errors: bool = False, +) -> Tuple[Tensor, Tensor, Tensor]: + squareCheckInputs(self, "torch.linalg.ldl_factor_ex") + checkFloatingOrComplex(self, "torch.linalg.ldl_factor_ex") + LD = torch.empty_strided( + size=self.shape, + stride=make_contiguous_strides_for(self.shape, row_major=False), + dtype=self.dtype, + device=self.device, + ) + pivots = self.new_empty(self.shape[:-1], dtype=torch.int) + info = self.new_empty(self.shape[:-2], dtype=torch.int) + return LD, pivots, info + + +@register_meta([aten.linalg_ldl_solve.default, aten.linalg_ldl_solve.out]) +@out_wrapper() +def linalg_ldl_solve_meta( + LD: Tensor, pivots: Tensor, B: Tensor, *, hermitian: bool = False +) -> Tensor: + squareCheckInputs(LD, "torch.linalg.ldl_solve") + checkFloatingOrComplex(LD, "torch.linalg.ldl_solve") + linearSolveCheckInputs(B, LD, "torch.linalg.ldl_solve") + torch._check( + B.ndim >= 2, + lambda: ( + f"torch.linalg.ldl_solve: Expected B to have at least 2 dimensions, " + f"but it has {B.ndim} dimensions instead" + ), + ) + expected_pivots_shape = LD.shape[:-1] + torch._check( + expected_pivots_shape == pivots.shape, + lambda: ( + f"torch.linalg.ldl_solve: Expected LD.shape[:-1] and pivots.shape to be the same, " + f"but got pivots with shape {pivots.shape} instead" + ), + ) + torch._check( + utils.is_integer_dtype(pivots.dtype), + lambda: f"torch.linalg.ldl_solve: Expected pivots to be integers. Got {pivots.dtype}", + ) + torch._check( + LD.dtype == B.dtype, + lambda: f"torch.linalg.ldl_solve: LD dtype {LD.dtype} does not match b dtype {B.dtype}", + ) + B_broadcast_size, _ = _linalg_broadcast_batch_dims(B, LD) + return torch.empty_strided( + size=B_broadcast_size, + stride=make_contiguous_strides_for(B_broadcast_size, row_major=False), + dtype=B.dtype, + device=B.device, + ) + + +@register_meta([aten.linalg_lu.default, aten.linalg_lu.out]) +@out_wrapper("P", "L", "U") +def linalg_lu_meta(A: Tensor, *, pivot: bool = True) -> Tuple[Tensor, Tensor, Tensor]: + torch._check( + A.ndim >= 2, + lambda: f"linalg.lu: Expected tensor with 2 or more dimensions. Got size: {A.shape} instead", + ) + + sizes = list(A.shape) + m = sizes[-2] + n = sizes[-1] + k = min(m, n) + + sizes[-1] = m + if pivot: + P = A.new_empty(sizes) + else: + P = A.new_empty([0]) + + sizes[-1] = k + L = A.new_empty(sizes) + + sizes[-2] = k + sizes[-1] = n + U = A.new_empty(sizes) + return P, L, U + + +@register_meta([aten.linalg_lu_factor_ex.default, aten.linalg_lu_factor_ex.out]) +@out_wrapper("LU", "pivots", "info") +def linalg_lu_factor_ex_meta( + A: Tensor, *, pivot: bool = True, check_errors: bool = False +) -> Tuple[Tensor, Tensor, Tensor]: + torch._check( + A.ndim >= 2, + lambda: f"torch.lu_factor: Expected tensor with 2 or more dimensions. Got size: {A.shape} instead", + ) + + sizes = list(A.shape) + m = sizes[-2] + n = sizes[-1] + + LU = torch.empty_strided( + size=sizes, + stride=make_contiguous_strides_for(sizes, row_major=False), + dtype=A.dtype, + device=A.device, + ) + + # Sets sizes to the size of pivots + sizes.pop() + sizes[-1] = min(m, n) + pivots = A.new_empty(sizes, dtype=torch.int) + + # Sets sizes to the size of info + sizes.pop() + info = A.new_empty(sizes, dtype=torch.int) + + return LU, pivots, info + + +@register_meta([aten.linalg_lu_solve.default, aten.linalg_lu_solve.out]) +@out_wrapper() +def linalg_lu_solve_meta( + LU: Tensor, + pivots: Tensor, + B: Tensor, + *, + left: bool = True, + adjoint: bool = False, +) -> Tensor: + # dtype + checkFloatingOrComplex(LU, "torch.linalg.lu_solve") + torch._check( + LU.dtype == B.dtype, + lambda: ( + f"linalg.lu_solve: Expected LU and B to have the same dtype, " + f"but found LU of type {LU.dtype} and B of type {B.dtype} instead" + ), + ) + torch._check( + pivots.dtype == torch.int, + lambda: "linalg.lu_solve: pivots should be a Tensor of scalar type torch.int32", + ) + + # matrix shapes + squareCheckInputs(LU, "torch.linalg.lu_solve") + checkInputsSolver(LU, B, left, "linalg.lu_solve") + torch._check( + LU.size(-1) == pivots.size(-1), + lambda: "linalg.lu_solve: Number of pivots per batch should be same as the dimension of the matrix", + ) + + # batches + torch._check( + LU.shape[:-1] == pivots.shape, + lambda: ( + f"linalg.lu_solve: Expected LU.shape[:-1] and pivots.shape to be the same, " + f"but got pivots with shape {pivots.shape} instead" + ), + ) + + B_broadcast_size, _ = _linalg_broadcast_batch_dims(B, LU) + + result = torch.empty_strided( + size=B_broadcast_size, + stride=make_contiguous_strides_for(B_broadcast_size, row_major=not left), + dtype=B.dtype, + device=B.device, + ) + + if result.numel() != 0 and not left: + if result.is_complex(): + result = result.conj() + + return result + + +@register_meta(aten.lu_unpack) +@out_wrapper("P", "L", "U") +def lu_unpack_meta( + LU: Tensor, + pivots: Tensor, + unpack_data: bool = True, + unpack_pivots: bool = True, +) -> Tuple[Tensor, Tensor, Tensor]: + torch._check( + LU.ndim >= 2, + lambda: f"torch.lu_unpack: Expected tensor with 2 or more dimensions. Got size: {LU.shape} instead", + ) + if unpack_pivots: + torch._check( + pivots.dtype == torch.int32, + lambda: ( + "torch.lu_unpack: LU_pivots is expected to be a contiguous tensor of torch.int32 dtype.\n" + "Note: this function is intended to be used with the output produced by torch.linalg.lu_factor" + ), + ) + sizes = list(LU.shape) + m = sizes[-2] + n = sizes[-1] + k = min(m, n) + sizes[-1] = m + if unpack_pivots: + P = LU.new_empty(sizes) + else: + P = LU.new_empty([0]) + if unpack_data: + sizes[-1] = k + L = LU.new_empty(sizes) + sizes[-2] = k + sizes[-1] = n + U = LU.new_empty(sizes) + else: + L = LU.new_empty([0]) + U = LU.new_empty([0]) + return P, L, U + + +# parse the "mode" param in linalg_qr: return a tuple of bools (compute_q, reduced) +def _parse_qr_mode(mode: str) -> Tuple[bool, bool]: + if mode == "reduced": + compute_q = True + reduced = True + elif mode == "complete": + compute_q = True + reduced = False + elif mode == "r": + compute_q = False + reduced = True # this is actually irrelevant in this mode + else: + torch._check( + False, + lambda: ( + f"qr received unrecognized mode '{mode}' " + f"but expected one of 'reduced' (default), 'r', or 'complete'" + ), + ) + return compute_q, reduced + + +@register_meta([aten.linalg_qr.default, aten.linalg_qr.out]) +@out_wrapper("Q", "R") +def linalg_qr_meta( + A: Tensor, + mode: str = "reduced", +) -> Tuple[Tensor, Tensor]: + checkIsMatrix(A, "linalg.qr") + checkFloatingOrComplex(A, "linalg.qr") + + compute_q, reduced_mode = _parse_qr_mode(mode) + + m = A.shape[-2] + n = A.shape[-1] + k = min(m, n) + + if compute_q: + Q_shape = list(A.shape) + Q_shape[-1] = k if reduced_mode else m + Q = A.new_empty(Q_shape) + Q.as_strided_(Q_shape, make_contiguous_strides_for(Q_shape, row_major=False)) + else: + Q = A.new_empty([0]) + + # For readability + R_shape = list(A.shape) + R_shape[-2] = k if reduced_mode or not compute_q else m + R = A.new_empty(R_shape) + R.as_strided_(R_shape, make_contiguous_strides_for(R_shape, row_major=False)) + return Q, R + + +@register_meta([aten._linalg_slogdet.default, aten._linalg_slogdet.sign]) +@out_wrapper("sign", "logabsdet", "LU", "pivots") +def _linalg_slogdet(A: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]: + squareCheckInputs(A, "linalg.slogdet") + checkFloatingOrComplex(A, "linalg.slogdet", False) + shape = A.shape + sign = A.new_empty(shape[:-2]) + logabsdet = A.new_empty(shape[:-2], dtype=toRealValueType(A.dtype)) + LU = torch.empty_strided( + size=shape, + stride=make_contiguous_strides_for(shape, False), + dtype=A.dtype, + device=A.device, + ) + pivots = A.new_empty(shape[:-1], dtype=torch.int32) + return sign, logabsdet, LU, pivots + + +# From aten/src/ATen/native/BatchLinearAlgebra.cpp +# NOTE: matching defaults in aten/src/ATen/native/native_functions.yaml +@register_meta(aten._linalg_svd.default) +def _linalg_svd_meta( + A: Tensor, + full_matrices: bool = False, + compute_uv: bool = True, + driver: Optional[str] = None, +): + checkIsMatrix(A, "linalg.svd") + checkFloatingOrComplex(A, "linalg.svd") + + batch_dims = list(A.shape[:-2]) + m = A.shape[-2] + n = A.shape[-1] + k = min(m, n) + + if compute_uv: + U_shape = batch_dims + [m, m if full_matrices else k] + U = A.new_empty(U_shape) + U.as_strided_(U_shape, make_contiguous_strides_for(U_shape, row_major=False)) + + V_shape = batch_dims + [n if full_matrices else k, n] + V = A.new_empty(V_shape) + # NB: This checks for CUDA since there is no way to check for cuSolver. + # Also, this might not work correctly on CPU when fake_device is not + # available as device_hint just defaults to CUDA in that case. See + # _linalg_svd meta in core. + is_cuda = device_hint(A) == "cuda" + V.as_strided_(V_shape, make_contiguous_strides_for(V_shape, row_major=is_cuda)) + else: + # doesn't matter + U = A.new_empty([0]) + V = A.new_empty([0]) + + # S is always real, even when A is complex. + S = A.new_empty(batch_dims + [k], dtype=toRealValueType(A.dtype)) + return U, S, V + + +def _linalg_broadcast_batch_dims( + arg1: Tensor, arg2: Tensor +) -> Tuple[List[int], List[int]]: + # broadcast the batch dimensions of arg1 and arg2. + arg1_batch_sizes = arg1.shape[:-2] + arg2_batch_sizes = arg2.shape[:-2] + expand_batch_portion = _broadcast_shapes(arg1_batch_sizes, arg2_batch_sizes) + + arg1_expand_size = list(expand_batch_portion) + arg1_expand_size += [arg1.size(-2), arg1.size(-1)] + + arg2_expand_size = list(expand_batch_portion) + arg2_expand_size += [arg2.size(-2), arg2.size(-1)] + return arg1_expand_size, arg2_expand_size + + +def _linalg_broadcast_batch_dims_name( + arg1: Tensor, arg2: Tensor, name: Optional[str] +) -> Tuple[Tensor, Tensor]: + # If there's no name we assume we don't want to check the errors + if name: + linearSolveCheckInputs(arg1, arg2, name) + + arg1_expand_size, arg2_expand_size = _linalg_broadcast_batch_dims(arg1, arg2) + + arg1_broadcasted = ( + arg1 if arg1_expand_size == arg1.shape else arg1.expand(arg1_expand_size) + ) + arg2_broadcasted = ( + arg2 if arg2_expand_size == arg2.shape else arg2.expand(arg2_expand_size) + ) + return arg1_broadcasted, arg2_broadcasted + + +def linalg_solve_is_vector_rhs(input: Tensor, other: Tensor) -> bool: + expected_batched_rhs_shape = input.shape[:-1] + vector_case = other.ndim == 1 or ( + input.ndim - 1 == other.ndim and other.shape == expected_batched_rhs_shape + ) + return vector_case + + +@register_meta(aten._linalg_solve_ex) +def _linalg_solve_ex( + A: Tensor, + B: Tensor, + *, + left: bool = True, + check_errors: bool = False, + result: Optional[Tensor] = None, + LU: Optional[Tensor] = None, + pivots: Optional[Tensor] = None, + info: Optional[Tensor] = None, +) -> Tuple[Tensor, Tensor, Tensor, Tensor]: + checkFloatingOrComplex(A, "linalg.solve") + torch._check( + A.dtype == B.dtype, + lambda: ( + f"linalg.solve: Expected A and B to have the same dtype, but found A of type " + f"{A.dtype} and B of type {B.dtype} instead" + ), + ) + vector_case = linalg_solve_is_vector_rhs(A, B) + B_ = B.unsqueeze(-1) if vector_case else B + checkInputsSolver(A, B_, left, "linalg.solve") + B_broad_shape, _ = _linalg_broadcast_batch_dims(B_, A) + torch._check( + left or not vector_case, + lambda: ( + "linalg.solve: Vector broadcasting of the left hand side is not supported for left=False. " + "In this case linalg.solve is equivalent to B / A.squeeze(-1)" + ), + ) + result_shape = B_broad_shape[:-1] if vector_case else B_broad_shape + result_ = torch.empty_strided( + size=result_shape, + stride=make_contiguous_strides_for(result_shape, not left), + dtype=B.dtype, + device=B.device, + ) + shape = A.shape + ndim = A.ndim + LU_ = torch.empty_strided( + size=shape, + stride=make_contiguous_strides_for(shape, False), + dtype=A.dtype, + device=A.device, + ) + pivots_ = A.new_empty(shape[:-1], dtype=torch.int32) + info_ = A.new_empty(shape[:-2], dtype=torch.int32) + out = (result, LU, pivots, info) + res = (result_, LU_, pivots_, info_) + if all(x is not None for x in out): + for r, o in zip(res, out): + # resize and copy operations are done in-place + _maybe_resize_out(o, r.shape) # type: ignore[arg-type] + # strides are not copied in out_wrapper + o.as_strided_(r.shape, r.stride()) # type: ignore[union-attr] + _safe_copy_out(copy_from=r, copy_to=o, exact_dtype=False) # type: ignore[arg-type] + return res + + +@register_meta([aten.linalg_solve_triangular.default, aten.linalg_solve_triangular.out]) +def linalg_solve_triangular_meta( + A: Tensor, + B: Tensor, + *, + upper: bool, + left: bool = True, + unitriangular: bool = False, + out: Optional[Tensor] = None, +) -> Tensor: + if out is None: + out = A.new_empty([0]) + assert isinstance(out, TensorLike) + checkInputsSolver(A, B, left, "linalg.solve_triangular") + B_, A_ = _linalg_broadcast_batch_dims_name(B, A, None) + avoid_copy_A = A_.transpose(-2, -1).is_contiguous() and A_.is_conj() + if avoid_copy_A: + out = _maybe_resize_out(out, B_.shape) + else: + # reimplementation of resize_output with result F-contig + if _resize_output_check(out, B_.shape): + out.resize_(B_.transpose(-2, -1).shape) + out.transpose_(-2, -1) + return out # type: ignore[return-value] + + +@register_meta(aten.triangular_solve) +@out_wrapper("solution", "cloned_coefficient") +def triangular_solve_meta( + self: Tensor, + A: Tensor, + upper: bool = True, + transpose: bool = False, + unitriangular: bool = False, +) -> Tuple[Tensor, Tensor]: + torch._check( + self.ndim >= 2, + lambda: ( + f"torch.triangular_solve: Expected b to have at least 2 dimensions, " + f"but it has {self.ndim} dimensions instead" + ), + ) + torch._check( + A.ndim >= 2, + lambda: ( + f"torch.triangular_solve: Expected A to have at least 2 dimensions, " + f"but it has {A.ndim} dimensions instead" + ), + ) + + linearSolveCheckInputs(self, A, "triangular_solve") + + if A.layout == torch.strided: + self_broadcast_size, A_broadcast_size = _linalg_broadcast_batch_dims(self, A) + solution = torch.empty_strided( + size=self_broadcast_size, + stride=make_contiguous_strides_for(self_broadcast_size, row_major=False), + dtype=self.dtype, + device=self.device, + ) + cloned_coefficient = torch.empty_strided( + size=A_broadcast_size, + stride=make_contiguous_strides_for(A_broadcast_size, row_major=False), + dtype=A.dtype, + device=A.device, + ) + elif A.layout == torch.sparse_csr or A.layout == torch.sparse_bsr: + solution = torch.empty_like(self) + cloned_coefficient = self.new_empty([0]) + else: + torch._check(False, lambda: "triangular_solve: Got an unexpected layout.") + return solution, cloned_coefficient + + +# From aten/src/ATen/native/LinearAlgebra.cpp +@register_meta(aten._linalg_det.default) +def _linalg_det_meta(A): + squareCheckInputs(A, "linalg.det") + checkFloatingOrComplex(A, "linalg.det") + + det = A.new_empty(A.shape[:-2]) + + LU = A.new_empty(A.shape) + LU.as_strided_(A.shape, make_contiguous_strides_for(A.shape, row_major=False)) + + pivots = A.new_empty(A.shape[:-1], dtype=torch.int32) + return det, LU, pivots + + +@register_meta(aten.ormqr) +@out_wrapper() +def ormqr( + input: Tensor, + tau: Tensor, + other: Tensor, + left: bool = True, + transpose: bool = False, +) -> Tensor: + torch._check( + input.ndim >= 2, lambda: "torch.ormqr: input must have at least 2 dimensions." + ) + torch._check( + other.ndim >= 2, lambda: "torch.ormqr: other must have at least 2 dimensions." + ) + + left_size_condition = -2 if left else -1 + torch._check( + other.shape[left_size_condition] >= tau.shape[-1], + lambda: f"torch.ormqr: other.shape[{left_size_condition}] must be greater than or equal to tau.shape[-1]", + ) + torch._check( + other.shape[left_size_condition] == input.shape[-2], + lambda: f"torch.ormqr: other.shape[{left_size_condition}] must be equal to input.shape[-2]", + ) + + torch._check( + tau.shape[-1] <= input.shape[-1], + lambda: "torch.ormqr: tau.shape[-1] must be less than or equal to input.shape[-1]", + ) + + torch._check( + input.ndim - tau.ndim == 1, + lambda: ( + f"torch.ormqr: Expected tau to have one dimension less than input, " + f"but got tau.ndim equal to {tau.ndim} and input.ndim is equal to {input.ndim}" + ), + ) + torch._check( + input.ndim == other.ndim, + lambda: ( + f"torch.ormqr: Expected other to have the same number of dimensions as input, " + f"but got other.ndim equal to {other.ndim} and input.ndim is equal to {input.ndim}" + ), + ) + + if input.ndim > 2: + expected_batch_shape = input.shape[:-2] + actual_batch_tau_shape = tau.shape[:-1] + torch._check( + actual_batch_tau_shape == expected_batch_shape, + lambda: ( + f"torch.ormqr: Expected batch dimensions of tau to be " + f"equal to input.shape[:-2], but got {actual_batch_tau_shape}" + ), + ) + + actual_batch_other_shape = other.shape[:-2] + torch._check( + actual_batch_other_shape == expected_batch_shape, + lambda: ( + f"torch.ormqr: Expected batch dimensions of other to be " + f"equal to input.shape[:-2], but got {actual_batch_other_shape}" + ), + ) + + torch._check( + tau.dtype == input.dtype, + lambda: ( + f"torch.ormqr: Expected input and tau to have the same dtype, " + f"but input has dtype {input.dtype} and tau has dtype {tau.dtype}" + ), + ) + torch._check( + other.dtype == input.dtype, + lambda: ( + f"torch.ormqr: Expected input and other to have the same dtype, " + f"but input has dtype {input.dtype} and other has dtype {other.dtype}" + ), + ) + + checkSameDevice("torch.ormqr", tau, input, "tau") + checkSameDevice("torch.ormqr", other, input, "other") + + return torch.empty_strided( + size=other.shape, + stride=make_contiguous_strides_for(other.shape, row_major=False), + dtype=other.dtype, + device=other.device, + ) + + +def _padding_check_valid_input(input, padding, *, dim): + torch._check( + len(padding) == 2 * dim, + lambda: f"padding size is expected to be {2 * dim}, but got: {len(padding)}", + ) + + input_dim = input.ndim + + is_batch_mode = input_dim == (dim + 2) + + valid_batch_mode = is_batch_mode + valid_non_batch_mode = not is_batch_mode + + if is_batch_mode: + # allow batch size of 0-dim. + for d in range(1, input_dim): + valid_batch_mode = valid_batch_mode and input.size(d) != 0 + else: + for d in range(0, input_dim): + valid_non_batch_mode = valid_non_batch_mode and input.size(d) != 0 + + # allow empty batch size but not other dimensions. + torch._check( + valid_batch_mode or valid_non_batch_mode, + lambda: ( + f"Expected {dim + 1}D or {dim + 2}D (batch mode) tensor with possibly 0 batch size " + f"and other non-zero dimensions for input, but got: {input.shape}" + ), + ) + + +def _pad1d_common(input, padding, *, is_reflection): + dim_plane = 0 + dim_w = 1 + nbatch = 1 + + if input.ndim == 3: + nbatch = input.size(0) + dim_w += 1 + dim_plane += 1 + + _padding_check_valid_input(input, padding, dim=1) + + pad_l, pad_r = padding + + nplane = input.size(dim_plane) + input_w = input.size(dim_w) + output_w = input_w + pad_l + pad_r + + if is_reflection: + torch._check( + pad_l < input_w and pad_r < input_w, + lambda: ( + f"Argument #4: Padding size should be less than the corresponding input dimension, " + f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}" + ), + ) + + torch._check( + output_w >= 1, + lambda: f"input (W: {input_w}) is too small. Calculated output W: {output_w}", + ) + + if input.ndim == 2: + return input.new_empty((nplane, output_w)) + else: + return input.new_empty((nbatch, nplane, output_w)) + + +@register_meta(aten.reflection_pad1d) +@out_wrapper() +def meta_reflection_pad1d(input, padding): + return _pad1d_common(input, padding, is_reflection=True) + + +@register_meta(aten.replication_pad1d) +@out_wrapper() +def meta_replication_pad1d(input, padding): + return _pad1d_common(input, padding, is_reflection=False) + + +def _pad1d_backward_common(grad_output, input, padding, *, is_reflection): + dim_w = 1 + if not is_reflection: + torch._check(len(padding) == 2, lambda: "padding size is expected to be 2") + + if input.ndim == 3: + dim_w += 1 + + pad_l, pad_r = padding + + input_w = input.size(dim_w) + output_w = input_w + pad_l + pad_r + + if is_reflection: + torch._check( + pad_l < input_w and pad_r < input_w, + lambda: ( + f"Argument #4: Padding size should be less than the corresponding input dimension, " + f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}" + ), + ) + + torch._check( + output_w == grad_output.size(dim_w), + lambda: f"grad_output width unexpected. Expected: {output_w}, Got: {grad_output.size(dim_w)}", + ) + + return input.new_empty(input.shape) + + +@register_meta(aten.reflection_pad1d_backward) +@out_wrapper("grad_input") +def meta_reflection_pad1d_backward(grad_output, input, padding): + return _pad1d_backward_common(grad_output, input, padding, is_reflection=True) + + +@register_meta(aten.replication_pad1d_backward) +@out_wrapper("grad_input") +def meta_replication_pad1d_backward(grad_output, input, padding): + return _pad1d_backward_common(grad_output, input, padding, is_reflection=False) + + +def _pad2d_common(input, padding, *, is_reflection): + dim_w = 2 + dim_h = 1 + dim_slices = 0 + nbatch = 1 + + _padding_check_valid_input(input, padding, dim=2) + + ndim = input.ndim + if ndim == 4: + nbatch = input.size(0) + dim_w += 1 + dim_h += 1 + dim_slices += 1 + + pad_l, pad_r, pad_t, pad_b = padding + + nplane = input.size(dim_slices) + input_h = input.size(dim_h) + input_w = input.size(dim_w) + output_h = input_h + pad_t + pad_b + output_w = input_w + pad_l + pad_r + + if is_reflection: + torch._check( + pad_l < input_w and pad_r < input_w, + lambda: ( + f"Argument #4: Padding size should be less than the corresponding input dimension, " + f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}" + ), + ) + torch._check( + pad_t < input_h and pad_b < input_h, + lambda: ( + f"Argument #6: Padding size should be less than the corresponding input dimension, " + f"but got: padding ({pad_t}, {pad_b}) at dimension {dim_h} of input {input.shape}" + ), + ) + + torch._check( + output_w >= 1 or output_h >= 1, + lambda: ( + f"input (H: {input_h} W: {input_w}) is too small. " + f"Calculated output H: {output_h} W: {output_w}" + ), + ) + + if input.ndim == 3: + return input.new_empty((nplane, output_h, output_w)) + else: + return input.new_empty((nbatch, nplane, output_h, output_w)) + + +@register_meta(aten.reflection_pad2d) +@out_wrapper() +def meta_reflection_pad2d(input, padding): + return _pad2d_common(input, padding, is_reflection=True) + + +@register_meta(aten.replication_pad2d) +@out_wrapper() +def meta_replication_pad2d(input, padding): + return _pad2d_common(input, padding, is_reflection=False) + + +@register_meta( + [ + aten.reflection_pad2d_backward.default, + aten.reflection_pad2d_backward.grad_input, + aten.replication_pad2d_backward.default, + aten.replication_pad2d_backward.grad_input, + ] +) +@out_wrapper("grad_input") +def meta_pad2d_backward(grad_output, self, padding): + dim_w = 2 + dim_h = 1 + dim_plane = 0 + nbatch = 1 + + self_shape = self.shape + if self.dim() == 4: + nbatch = self_shape[0] + dim_w += 1 + dim_h += 1 + dim_plane += 1 + + pad_l, pad_r, pad_t, pad_b = padding + + nplane = self_shape[dim_plane] + input_h = self_shape[dim_h] + input_w = self_shape[dim_w] + output_h = input_h + pad_t + pad_b + output_w = input_w + pad_l + pad_r + + torch._check( + output_w == grad_output.size(dim_w), + lambda: f"grad_output width unexpected. Expected: {output_w}, Got: {grad_output.size(dim_w)}", + ) + torch._check( + output_h == grad_output.size(dim_h), + lambda: f"grad_output height unexpected. Expected: {output_h}, Got: {grad_output.size(dim_h)}", + ) + return self.new_empty(self.shape) + + +def _pad3d_common(input, padding, *, is_reflection): + dim_w = 3 + dim_h = 2 + dim_d = 1 + dim_plane = 0 + + _padding_check_valid_input(input, padding, dim=3) + + batch_mode = input.ndim == 5 + if batch_mode: + nbatch = input.size(0) + dim_w += 1 + dim_h += 1 + dim_d += 1 + dim_plane += 1 + + pad_l, pad_r, pad_t, pad_b, pad_f, pad_bk = padding + + nplane = input.size(dim_plane) + input_d = input.size(dim_d) + input_h = input.size(dim_h) + input_w = input.size(dim_w) + output_d = input_d + pad_f + pad_bk + output_h = input_h + pad_t + pad_b + output_w = input_w + pad_l + pad_r + + if is_reflection: + torch._check( + pad_l < input_w and pad_r < input_w, + lambda: ( + f"Argument #4: Padding size should be less than the corresponding input dimension, " + f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}" + ), + ) + torch._check( + pad_t < input_h and pad_b < input_h, + lambda: ( + f"Argument #6: Padding size should be less than the corresponding input dimension, " + f"but got: padding ({pad_t}, {pad_b}) at dimension {dim_h} of input {input.shape}" + ), + ) + torch._check( + pad_f < input_d and pad_bk < input_d, + lambda: ( + f"Argument #8: Padding size should be less than the corresponding input dimension, " + f"but got: padding ({pad_f}, {pad_bk}) at dimension {dim_d} of input {input.shape}" + ), + ) + + torch._check( + output_w >= 1 or output_h >= 1 or output_d >= 1, + lambda: ( + f"input (D: {input_d} H: {input_h} W: {input_w}) is too small. " + f"Calculated output D: {output_d} H: {output_h} W: {output_w}" + ), + ) + + if batch_mode: + return input.new_empty((nbatch, nplane, output_d, output_h, output_w)) + else: + return input.new_empty((nplane, output_d, output_h, output_w)) + + +@register_meta(aten.reflection_pad3d) +@out_wrapper() +def meta_reflection_pad3d(input, padding): + return _pad3d_common(input, padding, is_reflection=True) + + +@register_meta(aten.replication_pad3d) +@out_wrapper() +def meta_replication_pad3d(input, padding): + return _pad3d_common(input, padding, is_reflection=False) + + +@register_meta( + [ + aten.reflection_pad3d_backward.default, + aten.reflection_pad3d_backward.grad_input, + aten.replication_pad3d_backward.default, + aten.replication_pad3d_backward.grad_input, + ] +) +@out_wrapper("grad_input") +def meta_pad3d_backward(grad_output, input, padding): + torch._check(len(padding) == 6, lambda: "padding size is expected to be 6") + assert input.ndim > 3 + assert grad_output.ndim == input.ndim + + dim_w = 3 + dim_h = 2 + dim_d = 1 + + if input.ndim == 5: + dim_w += 1 + dim_h += 1 + dim_d += 1 + + pad_l, pad_r, pad_t, pad_b, pad_f, pad_bk = padding + + input_d = input.size(dim_d) + input_h = input.size(dim_h) + input_w = input.size(dim_w) + output_d = input_d + pad_f + pad_bk + output_h = input_h + pad_t + pad_b + output_w = input_w + pad_l + pad_r + + torch._check( + output_w == grad_output.size(dim_w), + lambda: f"grad_output width unexpected. Expected: {output_w}, Got: {grad_output.size(dim_w)}", + ) + torch._check( + output_h == grad_output.size(dim_h), + lambda: f"grad_output height unexpected. Expected: {output_h}, Got: {grad_output.size(dim_h)}", + ) + torch._check( + output_d == grad_output.size(dim_d), + lambda: f"grad_output depth unexpected. Expected: {output_d}, Got: {grad_output.size(dim_d)}", + ) + + return input.new_empty(input.shape) + + +@register_meta(aten._pdist_forward) +@out_wrapper() +def meta__pdist_forward(self: Tensor, p: float = 2) -> Tensor: + torch._check( + self.is_contiguous(), lambda: "_pdist_forward requires contiguous input" + ) + n = self.size(0) + if n <= 1: + return self.new_empty([0]).to(memory_format=torch.legacy_contiguous_format) # type: ignore[call-overload] + else: + return self.new_empty((n * (n - 1) // 2,)).to( + memory_format=torch.legacy_contiguous_format + ) # type: ignore[call-overload] + + +@register_meta(aten._pdist_backward) +@out_wrapper() +def meta__pdist_backward(grad: Tensor, self: Tensor, p: float, pdist: Tensor) -> Tensor: + torch._check( + self.is_contiguous(), lambda: "_pdist_backward requires self to be contiguous" + ) + torch._check( + pdist.is_contiguous(), lambda: "_pdist_backward requires pdist to be contiguous" + ) + return torch.empty_like(self, memory_format=torch.legacy_contiguous_format) + + +@register_meta([aten.baddbmm.default, aten.baddbmm.out]) +@out_wrapper() +def meta_baddbmm(self, batch1, batch2, *, beta=1, alpha=1): + dim1 = batch1.size(0) + dim2 = batch1.size(1) + dim3 = batch2.size(2) + self = self.expand((dim1, dim2, dim3)) + torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") + torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") + torch._check( + self.dtype == batch1.dtype == batch2.dtype, + lambda: f"Input dtypes must be the same, got: input: {self.dtype}, batch1: {batch1.dtype}, batch2: {batch2.dtype}", + ) + batch1_sizes = batch1.shape + batch2_sizes = batch2.shape + bs = batch1_sizes[0] + contraction_size = batch1_sizes[2] + torch._check( + batch2_sizes[0] == bs and batch2_sizes[1] == contraction_size, + lambda: ( + f"Expected size for first two dimensions of batch2 tensor to be: " + f"[{bs}, {contraction_size}] but got: [{batch2_sizes[0]}, {batch2_sizes[1]}]." + ), + ) + return self.new_empty(self.size()) + + +@register_meta([aten.bernoulli.default, aten.bernoulli.out]) +@out_wrapper() +def meta_bernoulli(self, *, generator=None): + # https://github.com/pytorch/pytorch/issues/88612 + return torch.empty_like(self).contiguous() + + +@register_meta(aten.bernoulli_.float) +def meta_bernoulli_(self, p=0.5, generator=None): + return self + + +@register_meta(aten.bernoulli.p) +def meta_bernoulli_p(self, p=0.5, generator=None): + # https://github.com/pytorch/pytorch/issues/88612 + return torch.empty_like(self).contiguous() + + +@register_meta(aten._fused_moving_avg_obs_fq_helper.default) +def meta__fused_moving_avg_obs_fq_helper( + self, + observer_on, + fake_quant_on, + running_min, + running_max, + scale, + zero_point, + averaging_const, + quant_min, + quant_max, + ch_axis, + per_row_fake_quant=False, + symmetric_quant=False, +): + torch._check( + ch_axis < self.dim(), + lambda: "Error in fused_moving_avg_obs_fake_quant_cpu: ch_axis must be < self.dim()", + ) + mask = torch.empty_like(self, dtype=torch.bool) + return (torch.empty_like(self), mask) + + +@register_meta(aten.mm) +@out_wrapper() +def meta_mm(a, b): + torch._check(a.dim() == 2, lambda: "a must be 2D") + torch._check(b.dim() == 2, lambda: "b must be 2D") + N, M1 = a.shape + M2, P = b.shape + torch._check( + M1 == M2, + lambda: f"a and b must have same reduction dim, but got [{N}, {M1}] X [{M2}, {P}].", + ) + return a.new_empty(N, P) + + +def _compute_reduction_shape(self, dims, keepdim): + if keepdim: + return tuple(self.shape[i] if i not in dims else 1 for i in range(self.ndim)) + + return utils.compute_reduction_output_shape(self.shape, dims) + + +# FakeTensors (meta tensors with a device) will report device as meta +# when running meta kernels. Here, access the "fake device" of FakeTensor if it +# exists so meta kernels which have diverge per device will be more +# accurate when run with FakeTensors +def device_hint(tensor) -> "str": + if isinstance(tensor, torch._subclasses.FakeTensor): + return tensor.fake_device.type + else: + return "cuda" # default to cuda + + +def calc_conv_nd_return_shape( + input_tensor: torch.Tensor, + weight: torch.Tensor, + stride: Union[List[int], int], + padding: Union[List[int], int], + dilation: Union[List[int], int], + is_transposed: bool, + groups: int, + output_padding: Optional[Union[List[int], int]] = None, +): + def _formula(ln: int, p: int, d: int, k: int, s: int) -> int: + """ + Formula to apply to calculate the length of some dimension of the output + + See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html + + Args: + ln: length of the dimension + p: padding in that dim + d: dilation in that dim + k: kernel size in that dim + s: stride in that dim + Returns: + The output length + """ + return (ln + 2 * p - d * (k - 1) - 1) // s + 1 + + def _formula_transposed(ln: int, p: int, d: int, k: int, s: int, op: int) -> int: + """ + Formula to apply to calculate the length of some dimension of the output + if transposed convolution is used. + See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html + + Args: + ln: length of the dimension + p: padding in that dim + d: dilation in that dim + k: kernel size in that dim + s: stride in that dim + op: output padding in that dim + + Returns: + The output length + """ + return (ln - 1) * s - 2 * p + d * (k - 1) + op + 1 + + kernel_size = weight.shape[2:] + dims = input_tensor.shape[2:] + if is_transposed: + out_channels = groups * weight.shape[1] + else: + out_channels = weight.shape[0] + if weight.shape[1] * groups != input_tensor.shape[1]: + raise RuntimeError("Invalid channel dimensions") + + ret_shape = [input_tensor.shape[0], out_channels] + if isinstance(stride, IntLike): + stride = [stride] * len(dims) + elif len(stride) == 1: + stride = [stride[0]] * len(dims) + + if isinstance(padding, IntLike): + padding = [padding] * len(dims) + elif len(padding) == 1: + padding = [padding[0]] * len(dims) + + if isinstance(dilation, IntLike): + dilation = [dilation] * len(dims) + elif len(dilation) == 1: + dilation = [dilation[0]] * len(dims) + + output_padding_list: Optional[List[int]] = None + if output_padding: + if isinstance(output_padding, IntLike): + output_padding_list = [output_padding] * len(dims) + elif len(output_padding) == 1: + output_padding_list = [output_padding[0]] * len(dims) + else: + output_padding_list = output_padding + + for i in range(len(dims)): + # If output_padding is present, we are dealing with a transposed convolution + if output_padding_list: + ret_shape.append( + _formula_transposed( + dims[i], + padding[i], + dilation[i], + kernel_size[i], + stride[i], + output_padding_list[i], + ) + ) + else: + ret_shape.append( + _formula(dims[i], padding[i], dilation[i], kernel_size[i], stride[i]) + ) + + return ret_shape + + +def is_channels_last(ten): + return torch._prims_common.suggest_memory_format(ten) == torch.channels_last + + +@register_meta(aten.convolution.default) +def meta_conv( + input_tensor: torch.Tensor, + weight: torch.Tensor, + bias: torch.Tensor, + stride: List[int], + padding: List[int], + dilation: List[int], + is_transposed: bool, + output_padding: List[int], + groups: int, +): + def pick_memory_format(): + if device_hint(input_tensor) == "cuda": + if is_channels_last(input_tensor) or is_channels_last(weight): + return torch.channels_last + else: + if is_channels_last(input_tensor): + return torch.channels_last + if input_tensor.is_contiguous(memory_format=torch.contiguous_format): + return torch.contiguous_format + elif input_tensor.is_contiguous(memory_format=torch.preserve_format): + return torch.preserve_format + + shape_out = calc_conv_nd_return_shape( + input_tensor, + weight, + stride, + padding, + dilation, + is_transposed, + groups, + output_padding if is_transposed else None, + ) + + out = input_tensor.new_empty(shape_out) + out = out.to(memory_format=pick_memory_format()) # type: ignore[call-overload] + return out + + +if torch._C._has_mkldnn: + _meta_lib_dont_use_me_use_register_meta_for_mkldnn = torch.library.Library( + "mkldnn", "IMPL", "Meta" + ) + + @register_meta(torch.ops.mkldnn._convolution_pointwise.default) + def meta_mkldnn_convolution_default( + input_tensor, + weight, + bias, + padding, + stride, + dilation, + groups, + attr, + scalars, + algorithm, + ): + shape_out = calc_conv_nd_return_shape( + input_tensor, weight, stride, padding, dilation, False, groups, [] + ) + out = input_tensor.new_empty(shape_out) + out_memory_format = torch.channels_last + out = out.to(memory_format=out_memory_format) # type: ignore[call-overload] + return out + + @register_meta(torch.ops.mkldnn._linear_pointwise.default) + def meta_linear_pointwise_default( + input_tensor, weight, bias, attr, scalars, algorithm + ): + return input_tensor.new_empty((*input_tensor.shape[:-1], weight.shape[0])) + + if torch._C.has_mkl: + _meta_lib_dont_use_me_use_register_meta_for_mkl = torch.library.Library( + "mkl", "IMPL", "Meta" + ) + + @register_meta(torch.ops.mkl._mkl_linear) + def meta_mkl_linear( + input_tensor, + packed_weight, + orig_weight, + bias, + batch_size, + ): + return input_tensor.new_empty( + (*input_tensor.shape[:-1], orig_weight.shape[0]) + ) + + _meta_lib_dont_use_me_use_register_meta_for_onednn = torch.library.Library( + "onednn", "IMPL", "Meta" + ) + + @register_meta(torch.ops.onednn.qconv2d_pointwise.default) + def meta_qconv2d_pointwise( + x, + x_scale, + x_zp, + w, # prepacked_weight + w_scale, + w_zp, + bias, + stride, + padding, + dilation, + groups, + output_scale, + output_zero_point, + output_dtype, + attr, + scalars, + algorithm, + ): + shape_out = calc_conv_nd_return_shape( + x, + w, + stride, + padding, + dilation, + False, + groups, + None, + ) + assert output_dtype in [torch.float32, torch.bfloat16] + out = x.new_empty(shape_out, dtype=output_dtype) + out = out.to(memory_format=torch.channels_last) + return out + + @register_meta(torch.ops.onednn.qlinear_pointwise.default) + def meta_qlinear_pointwise( + x, + x_scale, + x_zp, + w, + w_scale, + w_zp, + bias, + output_scale, + output_zero_point, + output_dtype, + post_op_name, + post_op_args, + post_op_algorithm, + ): + output_shape = list(x.shape) + # The weight has been transposed during the qlinear weight prepack process. + output_shape[-1] = w.shape[1] + assert output_dtype in [torch.float32, torch.bfloat16] + out = x.new_empty(output_shape, dtype=output_dtype) + return out + + _meta_lib_dont_use_me_use_register_meta_for_quantized = torch.library.Library( + "quantized", "IMPL", "Meta" + ) + + @register_meta(torch.ops.quantized.max_pool2d) + def meta_quantized_max_pool2d( + input, + kernel_size, + stride=(), + padding=(0,), + dilation=(1,), + ceil_mode=False, + ): + ( + nInputPlane, + outputHeight, + outputWidth, + ) = max_pool2d_checks_and_compute_shape( + input, kernel_size, stride, padding, dilation, ceil_mode + ) + nbatch = input.size(-4) if input.dim() == 4 else 1 + memory_format = torch.channels_last + if input.dim() == 3: + size = [nInputPlane, outputHeight, outputWidth] + else: + size = [nbatch, nInputPlane, outputHeight, outputWidth] + return torch.empty( + size, + dtype=input.dtype, + device=input.device, + memory_format=memory_format, + ) + + +# from check_dim_size() in aten/src/ATen/TensorUtils.cpp. +def check_dim_size(tensor, dim, dim_size, size): + torch._check( + tensor.dim() == dim and tensor.shape[dim_size] == size, + lambda: f"Expected a tensor of dimension {dim} and tensor.size[{dim_size}] == {size}, " + + f"but got : dimension {tensor.dim()} and tensor.size[{dim_size}] = {tensor.shape[dim_size]}", + ) + + +@register_meta(aten.avg_pool2d.default) +def meta_avg_pool2d( + input, + kernel_size, + stride=(), + padding=(0,), + ceil_mode=False, + count_include_pad=True, + divisor_override=None, +): + def unpack(name, val): + torch._check( + len(val) in [1, 2], + lambda: f"avg_pool2d: {name} must either be a single int, or a tuple of two ints", + ) + H = val[0] + W = H if len(val) == 1 else val[1] + return H, W + + kH, kW = unpack("kernel_size", kernel_size) + torch._check( + len(stride) in [0, 1, 2], + lambda: "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints", + ) + if len(stride) == 0: + dH, dW = kH, kW + elif len(stride) == 1: + dH, dW = stride[0], stride[0] + else: + dH, dW = unpack("stride", stride) + + padH, padW = unpack("padding", padding) + + torch._check( + divisor_override is None or divisor_override != 0, + lambda: "divisor must be not zero", + ) + + nbatch = input.size(-4) if input.dim() == 4 else 1 + nInputPlane = input.size(-3) + inputHeight = input.size(-2) + inputWidth = input.size(-1) + + outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode) + outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode) + + memory_format = utils.suggest_memory_format(input) + pool2d_shape_check( + input, + kH, + kW, + dH, + dW, + padH, + padW, + 1, + 1, + nInputPlane, + inputHeight, + inputWidth, + outputHeight, + outputWidth, + memory_format, + ) + + if input.dim() == 3: + size = [nInputPlane, outputHeight, outputWidth] + else: + size = [nbatch, nInputPlane, outputHeight, outputWidth] + return torch.empty( + size, + dtype=input.dtype, + device=input.device, + memory_format=memory_format, + ) + + +# from avg_pool2d_backward_shape_check() in aten/src/ATen/native/Pool.h. +def avg_pool2d_backward_shape_check( + input, + gradOutput, + nbatch, + kH, + kW, + dH, + dW, + padH, + padW, + nInputPlane, + inputHeight, + inputWidth, + outputHeight, + outputWidth, + mem_format, +): + pool2d_shape_check( + input, + kH, + kW, + dH, + dW, + padH, + padW, + 1, + 1, + nInputPlane, + inputHeight, + inputWidth, + outputHeight, + outputWidth, + mem_format, + ) + + ndim = input.dim() + nOutputPlane = nInputPlane + + check_dim_size(gradOutput, ndim, ndim - 3, nOutputPlane) + check_dim_size(gradOutput, ndim, ndim - 2, outputHeight) + check_dim_size(gradOutput, ndim, ndim - 1, outputWidth) + + +# Don't override the C++ registration. +@register_meta(aten.avg_pool2d_backward.default) +def meta_avg_pool2d_backward( + gradOutput_, + input, + kernel_size, + stride, + padding, + ceil_mode, + count_include_pad, + divisor_override, +): + # From aten/src/ATen/native/AveragePool2d.cpp structured kernel meta func. + torch._check( + len(kernel_size) == 1 or len(kernel_size) == 2, + lambda: "avg_pool2d: kernel_size must either be a single int, or a tuple of two ints", + ) + kH = kernel_size[0] + kW = kH if len(kernel_size) == 1 else kernel_size[1] + torch._check( + len(stride) == 0 or len(stride) == 1 or len(stride) == 2, + lambda: "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints", + ) + dH = kH if len(stride) == 0 else stride[0] + dW = kW if len(stride) == 0 else dH if len(stride) == 1 else stride[1] + torch._check( + len(padding) == 1 or len(padding) == 2, + lambda: "avg_pool2d: padding must either be a single int, or a tuple of two ints", + ) + padH = padding[0] + padW = padH if len(padding) == 1 else padding[1] + + torch._check( + divisor_override is None or divisor_override != 0, + lambda: "divisor must be not zero", + ) + + input_size = input.shape + nbatch = input_size[-4] if input.dim() == 4 else 1 + nInputPlane = input_size[-3] + inputHeight = input_size[-2] + inputWidth = input_size[-1] + + outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode) + outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode) + + mem_format = utils.suggest_memory_format(input) + + avg_pool2d_backward_shape_check( + input, + gradOutput_, + nbatch, + kH, + kW, + dH, + dW, + padH, + padW, + nInputPlane, + inputHeight, + inputWidth, + outputHeight, + outputWidth, + mem_format, + ) + + return torch.empty( + input_size, + dtype=input.dtype, + device=input.device, + memory_format=mem_format, + ) + + +@register_meta(aten.avg_pool3d) +@out_wrapper() +def meta_avg_pool3d( + input, + kernel_size, + stride=(), + padding=(0,), + ceil_mode=False, + count_include_pad=True, + divisor_override=None, +): + torch._check( + len(kernel_size) in (1, 3), + lambda: "avg_pool3d: kernel_size must be a single int, or a tuple of three ints", + ) + kT = kernel_size[0] + kH = kT if len(kernel_size) == 1 else kernel_size[1] + kW = kT if len(kernel_size) == 1 else kernel_size[2] + + torch._check( + not stride or len(stride) in (1, 3), + lambda: "avg_pool3d: stride must be omitted, a single int, or a tuple of three ints", + ) + dT = kT if not stride else stride[0] + dH = kH if not stride else (dT if len(stride) == 1 else stride[1]) + dW = kW if not stride else (dT if len(stride) == 1 else stride[2]) + + torch._check( + len(padding) in (1, 3), + lambda: "avg_pool3d: padding must be a single int, or a tuple of three ints", + ) + padT = padding[0] + padH = padT if len(padding) == 1 else padding[1] + padW = padT if len(padding) == 1 else padding[2] + + torch._check( + input.ndim in (4, 5), + lambda: "non-empty 4D or 5D (batch mode) tensor expected for input", + ) + + torch._check( + not divisor_override or divisor_override != 0, + lambda: "divisor must be not zero", + ) + + nbatch = input.size(0) + nslices = input.size(-4) + itime = input.size(-3) + iheight = input.size(-2) + iwidth = input.size(-1) + + otime = pooling_output_shape(itime, kT, padT, dT, 1, ceil_mode) + oheight = pooling_output_shape(iheight, kH, padH, dH, 1, ceil_mode) + owidth = pooling_output_shape(iwidth, kW, padW, dW, 1, ceil_mode) + + pool3d_shape_check( + input, + nslices, + kT, + kH, + kW, + dT, + dH, + dW, + padT, + padH, + padW, + 1, + 1, + 1, + itime, + iheight, + iwidth, + otime, + oheight, + owidth, + "avg_pool3d()", + check_input_size=True, + ) + + if input.ndim == 4: + return input.new_empty((nslices, otime, oheight, owidth)) + else: + return input.new_empty((nbatch, nslices, otime, oheight, owidth)) + + +@register_meta(aten.avg_pool3d_backward) +@out_wrapper("grad_input") +def meta_avg_pool3d_backward( + grad_output, + input, + kernel_size, + stride, + padding, + ceil_mode, + count_include_pad, + divisor_override, +): + torch._check( + len(kernel_size) in (1, 3), + lambda: "avg_pool3d: kernel_size must be a single int, or a tuple of three ints", + ) + kT = kernel_size[0] + kH = kT if len(kernel_size) == 1 else kernel_size[1] + kW = kT if len(kernel_size) == 1 else kernel_size[2] + + torch._check( + not stride or len(stride) in (1, 3), + lambda: "avg_pool3d: stride must be omitted, a single int, or a tuple of three ints", + ) + dT = kT if not stride else stride[0] + dH = kH if not stride else (dT if len(stride) == 1 else stride[1]) + dW = kW if not stride else (dT if len(stride) == 1 else stride[2]) + + torch._check( + len(padding) in (1, 3), + lambda: "avg_pool3d: padding must be a single int, or a tuple of three ints", + ) + padT = padding[0] + padH = padT if len(padding) == 1 else padding[1] + padW = padT if len(padding) == 1 else padding[2] + + torch._check( + input.ndim in (4, 5), + lambda: "non-empty 4D or 5D (batch mode) tensor expected for input", + ) + + torch._check( + not divisor_override or divisor_override != 0, + lambda: "divisor must be not zero", + ) + + nslices = input.size(-4) + itime = input.size(-3) + iheight = input.size(-2) + iwidth = input.size(-1) + + otime_for_shape_check = pooling_output_shape(itime, kT, padT, dT, 1, ceil_mode) + oheight_for_shape_check = pooling_output_shape(iheight, kH, padH, dH, 1, ceil_mode) + owidth_for_shape_check = pooling_output_shape(iwidth, kW, padW, dW, 1, ceil_mode) + + avg_pool3d_backward_shape_check( + input, + grad_output, + nslices, + kT, + kH, + kW, + dT, + dH, + dW, + padT, + padH, + padW, + itime, + iheight, + iwidth, + otime_for_shape_check, + oheight_for_shape_check, + owidth_for_shape_check, + "avg_pool3d_backward()", + ) + + return input.new_empty(input.shape) + + +@register_meta(aten._adaptive_avg_pool2d.default) +def meta_adaptive_avg_pool2d(self, output_size): + torch._check( + self.ndim == 3 or self.ndim == 4, + lambda: f"Expected 3D or 4D tensor, but got {self.shape}", + ) + output_shape = self.shape[:-2] + tuple(output_size) + memory_format = utils.suggest_memory_format(self) + # need to set memory_format to preserve the memory format of the input + # channel last input should have channel last output + return torch.empty( + output_shape, + dtype=self.dtype, + device=self.device, + memory_format=memory_format, + ) + + +@register_meta(aten._adaptive_avg_pool3d.default) +def meta_adaptive_avg_pool3d(self, output_size): + torch._check( + self.ndim == 4 or self.ndim == 5, + lambda: f"Expected 4D or 5D tensor, but got {self.shape}", + ) + return self.new_empty(self.shape[:-3] + tuple(output_size)) + + +@register_meta(aten._adaptive_avg_pool2d_backward.default) +def meta__adaptive_avg_pool2d_backward(grad_out, self): + ndim = grad_out.ndim + for i in range(1, ndim): + torch._check( + grad_out.size(i) > 0, + lambda: f"adaptive_avg_pool2d_backward(): Expected grad_output to have non-zero \ + size for non-batch dimensions, {grad_out.shape} with dimension {i} being empty", + ) + torch._check( + ndim == 3 or ndim == 4, + lambda: f"adaptive_avg_pool2d_backward(): Expected 3D or 4D tensor, but got {self.shape}", + ) + torch._check( + self.dtype == grad_out.dtype, + lambda: f"expected dtype {self.dtype} for `grad_output` but got dtype {grad_out.dtype}", + ) + memory_format = torch.contiguous_format + if is_channels_last(self): + memory_format = torch.channels_last + return self.new_empty(self.shape).to(memory_format=memory_format) + + +@register_meta(aten._adaptive_avg_pool3d_backward) +@out_wrapper("grad_input") +def meta__adaptive_avg_pool3d_backward(grad_output, self): + _adaptive_pool_empty_output_check(grad_output, "adaptive_avg_pool3d_backward") + return torch.empty_like(self, memory_format=torch.legacy_contiguous_format) + + +def _adaptive_pool_empty_output_check(grad_output: Tensor, arg_name: str): + ndim = grad_output.ndim + for i in range(1, ndim): + torch._check( + grad_output.size(i) > 0, + lambda: ( + f"{arg_name}(): Expected grad_output to have non-zero size for non-batch dimensions, " + f"but grad_output has sizes {grad_output.shape} with dimension {i} being empty" + ), + ) + + +@register_meta(aten.adaptive_max_pool2d) +@out_wrapper("out", "indices") +def meta_adaptive_max_pool2d(input, output_size): + ndim = input.ndim + torch._check( + ndim in (3, 4), + lambda: f"adaptive_max_pool2d(): Expected 3D or 4D tensor, but got: {input.shape}", + ) + for i in range(1, ndim): + torch._check( + input.size(i) > 0, + lambda: ( + f"adaptive_max_pool2d(): Expected input to have non-zero size for non-batch dimensions, " + f"but input has sizes {input.shape} with dimension {i} being empty" + ), + ) + + torch._check( + len(output_size) == 2, + lambda: "adaptive_max_pool2d(): internal error: output_size.size() must be 2", + ) + + dimH = 1 + sizeB = 1 + sizeD = 0 + + if input.ndim == 4: + sizeB = input.size(0) + dimH += 1 + + sizeD = input.size(dimH - 1) + osizeH, osizeW = output_size + + if input.ndim == 3: + out_shape = (sizeD, osizeH, osizeW) + out = input.new_empty(out_shape) + indices = input.new_empty(out_shape, dtype=torch.int64) + return out, indices + else: + out_shape = (sizeB, sizeD, osizeH, osizeW) # type: ignore[assignment] + memory_format = utils.suggest_memory_format(input) + out = input.new_empty(out_shape).to(memory_format=memory_format) + indices = input.new_empty(out_shape, dtype=torch.int64).to( + memory_format=memory_format + ) + return out, indices + + +@register_meta(aten.adaptive_max_pool2d_backward) +@out_wrapper("grad_input") +def meta_adaptive_max_pool2d_backward(grad_output, input, indices): + ndim = grad_output.ndim + torch._check( + ndim in (3, 4), + lambda: f"adaptive_max_pooling2d_backward(): Expected 3D or 4D grad_output, but got: {grad_output.shape}", + ) + + _adaptive_pool_empty_output_check(grad_output, "adaptive_max_pool2d_backward") + + torch._check( + input.dtype == grad_output.dtype, + lambda: f"expected dtype {input.dtype} for `grad_output` but got dtype {grad_output.dtype}", + ) + + memory_format = utils.suggest_memory_format(input) + return input.new_empty(input.shape).to(memory_format=memory_format) + + +@register_meta(aten.adaptive_max_pool3d) +@out_wrapper("out", "indices") +def meta_adaptive_max_pool3d(input, output_size): + ndim = input.ndim + torch._check( + ndim in (4, 5), + lambda: f"adaptive_max_pool3d(): Expected 4D or 5D tensor, but got: {input.shape}", + ) + for i in range(1, ndim): + torch._check( + input.size(i) > 0, + lambda: ( + f"adaptive_max_pool3d(): Expected input to have non-zero size for non-batch dimensions, " + f"but input has sizes {input.shape} with dimension {i} being empty" + ), + ) + + torch._check( + len(output_size) == 3, + lambda: "adaptive_max_pool3d(): internal error: output_size.size() must be 3", + ) + + dimD = 0 + sizeB = 1 + sizeD = 0 + + if ndim == 5: + sizeB = input.size(0) + dimD += 1 + + sizeD = input.size(dimD) + osizeT, osizeH, osizeW = output_size + + if ndim == 4: + out_shape = (sizeD, osizeT, osizeH, osizeW) + else: + out_shape = (sizeB, sizeD, osizeT, osizeH, osizeW) # type: ignore[assignment] + + out = input.new_empty(out_shape) + indices = input.new_empty(out_shape, dtype=torch.int64) + + return out, indices + + +@register_meta(aten.adaptive_max_pool3d_backward) +@out_wrapper("grad_input") +def meta_adaptive_max_pool3d_backward(grad_output, input, indices): + _adaptive_pool_empty_output_check(grad_output, "adaptive_max_pool3d_backward") + return input.new_empty(input.shape) + + +@register_meta(aten.repeat_interleave.Tensor) +def meta_repeat_interleave_Tensor(repeats, output_size=None): + if output_size is None: + raise RuntimeError("cannot repeat_interleave a meta tensor without output_size") + return repeats.new_empty(output_size) + + +@register_meta([aten.complex.default, aten.complex.out]) +@out_wrapper() +def meta_complex(real, imag): + assert real.dtype.is_floating_point + assert imag.dtype.is_floating_point + out_shape = _broadcast_shapes(real.shape, imag.shape) + return real.new_empty(out_shape, dtype=corresponding_complex_dtype(real.dtype)) + + +@register_meta([aten.nonzero_static.default, aten.nonzero_static.out]) +@out_wrapper() +def nonzero_static(self, *, size: int, fill_value: int = -1): + return self.new_empty((size, self.dim()), dtype=torch.long) + + +@register_meta([aten.index.Tensor, aten._unsafe_index.Tensor]) +def meta_index_Tensor(self, indices): + torch._check(bool(indices), lambda: "at least one index must be provided") + # aten::index is the internal advanced indexing implementation + # checkIndexTensorTypes and expandTensors + result: List[Optional[Tensor]] = [] + for i, index in enumerate(indices): + if index is not None: + torch._check( + index.dtype in [torch.long, torch.int, torch.int8, torch.bool], + lambda: "tensors used as indices must be long, int, byte or bool tensors", + ) + if index.dtype in [torch.int8, torch.bool]: + nonzero = index.nonzero() + k = len(result) + torch._check_index( + k + index.ndim <= self.ndim, + lambda: f"too many indices for tensor of dimension {self.ndim}", + ) + for j in range(index.ndim): + torch._check_index( + index.shape[j] == self.shape[k + j], + lambda: f"The shape of the mask {index.shape} at index {i} " + f"does not match the shape of the indexed tensor {self.shape} at index {k + j}", + ) + result.append(nonzero.select(1, j)) + else: + result.append(index) + else: + result.append(index) + indices = result + torch._check( + len(indices) <= self.ndim, + lambda: f"too many indices for tensor of dimension {self.ndim} (got {len(indices)})", + ) + # expand_outplace + import torch._refs as refs # avoid import cycle in mypy + + indices = list(refs._maybe_broadcast(*indices)) + # add missing null tensors + while len(indices) < self.ndim: + indices.append(None) + + # hasContiguousSubspace + # true if all non-null tensors are adjacent + # See: + # https://numpy.org/doc/stable/user/basics.indexing.html#combining-advanced-and-basic-indexing + # https://stackoverflow.com/questions/53841497/why-does-numpy-mixed-basic-advanced-indexing-depend-on-slice-adjacency + state = 0 + has_contiguous_subspace = False + for index in indices: + if state == 0: + if index is not None: + state = 1 + elif state == 1: + if index is None: + state = 2 + else: + if index is not None: + break + else: + has_contiguous_subspace = True + + # transposeToFront + # This is the logic that causes the newly inserted dimensions to show up + # at the beginning of the tensor, if they're not contiguous + if not has_contiguous_subspace: + dims = [] + transposed_indices = [] + for i, index in enumerate(indices): + if index is not None: + dims.append(i) + transposed_indices.append(index) + for i, index in enumerate(indices): + if index is None: + dims.append(i) + transposed_indices.append(index) + self = self.permute(dims) + indices = transposed_indices + + # AdvancedIndex::AdvancedIndex + # Now we can assume the indices have contiguous subspace + # This is simplified from AdvancedIndex which goes to more effort + # to put the input and indices in a form so that TensorIterator can + # take them. If we write a ref for this, probably that logic should + # get implemented + before_shape: List[int] = [] + after_shape: List[int] = [] + replacement_shape: List[int] = [] + for dim, index in enumerate(indices): + if index is None: + if replacement_shape: + after_shape.append(self.shape[dim]) + else: + before_shape.append(self.shape[dim]) + else: + replacement_shape = list(index.shape) + return self.new_empty(before_shape + replacement_shape + after_shape) + + +@register_meta([aten.convolution_backward.default]) +def meta_convolution_backward( + grad_output_, + input_, + weight_, + bias_sizes_opt, + stride, + padding, + dilation, + transposed, + output_padding, + groups, + output_mask, +): + # High level logic taken from slow_conv3d_backward_cpu which should + # be representative of all convolution_backward impls + backend_grad_input = None + backend_grad_weight = None + backend_grad_bias = None + + if output_mask[0]: + backend_grad_input = grad_output_.new_empty(input_.size()) + if output_mask[1]: + backend_grad_weight = grad_output_.new_empty(weight_.size()) + if output_mask[2]: + backend_grad_bias = grad_output_.new_empty(bias_sizes_opt) + + return (backend_grad_input, backend_grad_weight, backend_grad_bias) + + +@register_meta([aten.addbmm.default, aten.addbmm.out]) +@out_wrapper() +def meta_addbmm(self, batch1, batch2, *, beta=1, alpha=1): + dim1 = batch1.size(1) + dim2 = batch2.size(2) + self = self.expand((dim1, dim2)) + torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") + torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") + torch._check( + batch1.size(0) == batch2.size(0), + lambda: f"batch1 and batch2 must have same number of batches, got {batch1.size(0)} and {batch2.size(0)}", + ) + torch._check( + batch1.size(2) == batch2.size(1), + lambda: ( + f"Incompatible matrix sizes for bmm ({batch1.size(1)}x{batch1.size(2)} " + f"and {batch2.size(1)}x{batch2.size(2)})" + ), + ) + torch._check( + self.size(0) == dim1 and self.size(1) == dim2, + lambda: "self tensor does not match matmul output shape", + ) + return self.new_empty(self.size()) + + +def register_meta_foreach(ops): + def wrapper(fn): + def register(op): + op_name = str(op).split(".")[1] + scalar_op = getattr(aten, op_name.replace("_foreach_", "")) + + _add_op_to_registry( + meta_table, + op, + partial( + fn, + _scalar_op=scalar_op, + ), + ) + + pytree.tree_map_(register, ops) + return fn + + return wrapper + + +@register_meta_foreach( + [ + aten._foreach_abs, + aten._foreach_acos, + aten._foreach_asin, + aten._foreach_atan, + aten._foreach_ceil, + aten._foreach_cos, + aten._foreach_cosh, + aten._foreach_erf, + aten._foreach_erfc, + aten._foreach_exp, + aten._foreach_expm1, + aten._foreach_frac, + aten._foreach_floor, + aten._foreach_lgamma, + aten._foreach_log, + aten._foreach_log10, + aten._foreach_log1p, + aten._foreach_log2, + aten._foreach_neg, + aten._foreach_reciprocal, + aten._foreach_round, + aten._foreach_sigmoid, + aten._foreach_sign, + aten._foreach_sin, + aten._foreach_sinh, + aten._foreach_sqrt, + aten._foreach_tan, + aten._foreach_tanh, + aten._foreach_trunc, + aten._foreach_zero, + aten._foreach_add, + aten._foreach_sub, + aten._foreach_mul, + aten._foreach_div, + aten._foreach_clamp_min, + aten._foreach_clamp_max, + aten._foreach_lerp, + ], +) +def _meta_foreach_out_of_place(*args, _scalar_op=None, **kwargs): + torch._check( + isinstance(args[0], list), + lambda: (f"The first argument must be List[Tensor], but got {type(args[0])}."), + ) + + nelem = len(args[0]) + torch._check( + nelem > 0, + lambda: ("Tensor list must have at least one tensor."), + ) + + nlists = 1 + for iarg, arg in enumerate(args[1:]): + if isinstance(arg, list): + nlists += 1 + torch._check( + len(arg) == nelem, + lambda: ( + f"self and argument-{iarg+2} must match in length, " + f"but got {nelem} and {len(arg)}." + ), + ) + elif isinstance(arg, Tensor): + torch._check( + arg.dim() == 0 and arg.numel() == 1, + lambda: ( + "scalar tensor expected to be 0 dim but it has " + f"{arg.dim()} dimensions and {arg.numel()} elements." + ), + ) + else: + break + + result = [] + for elem in range(nelem): + each_args = [args[i][elem] for i in range(nlists)] + result.append(_scalar_op(*each_args, *args[nlists:], **kwargs)) + + return result + + +@register_meta_foreach( + [ + aten._foreach_abs_, + aten._foreach_acos_, + aten._foreach_asin_, + aten._foreach_atan_, + aten._foreach_ceil_, + aten._foreach_cos_, + aten._foreach_cosh_, + aten._foreach_erf_, + aten._foreach_erfc_, + aten._foreach_exp_, + aten._foreach_expm1_, + aten._foreach_frac_, + aten._foreach_floor_, + aten._foreach_lgamma_, + aten._foreach_log_, + aten._foreach_log10_, + aten._foreach_log1p_, + aten._foreach_log2_, + aten._foreach_neg_, + aten._foreach_reciprocal_, + aten._foreach_round_, + aten._foreach_sigmoid_, + aten._foreach_sign_, + aten._foreach_sin_, + aten._foreach_sinh_, + aten._foreach_sqrt_, + aten._foreach_tan_, + aten._foreach_tanh_, + aten._foreach_trunc_, + aten._foreach_zero_, + aten._foreach_add_, + aten._foreach_sub_, + aten._foreach_mul_, + aten._foreach_div_, + aten._foreach_clamp_min_, + aten._foreach_clamp_max_, + aten._foreach_lerp_, + aten._foreach_copy_, + ] +) +def _meta_foreach_inplace(*args, _scalar_op=None, **kwargs): + _meta_foreach_out_of_place(*args, _scalar_op=_scalar_op, **kwargs) + return + + +@register_meta([aten._foreach_pow.ScalarAndTensor]) +def meta__foreach_pow_scalar_and_tensor(self, exponent): + # Only foreach_pow has a ScalarAndTensor method and needs special + # handling because it does not work with _meta_foreach_out_of_place. + torch._check( + isinstance(exponent, List), + lambda: f"exponent must be a tensor list but got {type(exponent)}", + ) + return [torch.empty_like(e) for e in exponent] + + +def _check_foreach_binop_tensor_lists(self, other): + torch._check( + isinstance(self, List) and isinstance(other, List), + lambda: ( + "The first two arguments of must be List[Tensor], " + f"but got {type(self)} and {type(other)}." + ), + ) + torch._check( + len(self) > 0 and len(self) == len(other), + lambda: ( + "self and other must be non-empty and match in length, " + f"but got {len(self)} and {len(other)}." + ), + ) + + +@register_meta( + [ + aten._foreach_maximum, + aten._foreach_minimum, + ] +) +def meta__foreach_binop_scalar(*args): + # aten.maximum(Tensor, Scalar) does not exist. + return _meta_foreach_out_of_place(*args, _scalar_op=aten.clamp_min) + + +@register_meta( + [ + aten._foreach_maximum_, + aten._foreach_minimum_, + ] +) +def meta__foreach_binop__scalar(*args): + # aten.maximum(Tensor, Scalar) does not exist + _meta_foreach_inplace(*args, _scalar_op=aten.clamp_min_) + return + + +@register_meta( + [ + aten._foreach_addcdiv.Scalar, + aten._foreach_addcmul.Scalar, + ] +) +def meta__foreach_addcop_scalar(self, tensor1, tensor2, scalar=1): + # forach_addcdiv and addcdiv have different signatures and + # cannot use _meta_foreach_out_of_place. + torch._check( + all(isinstance(l, List) for l in [self, tensor1, tensor2]), + lambda: ( + "All arguments must be List[Tensor], " + f"but got {type(self)}, {type(tensor1)}, and {type(tensor2)}" + ), + ) + torch._check(len(self) > 0, lambda: "input tensor list must not be empty.") + torch._check( + len(self) == len(tensor1) and len(self) == len(tensor2), + lambda: "All input tensor lists must have the same length", + ) + + return [torch.empty_like(s) for s in self] + + +@register_meta([aten._foreach_addcdiv_.Tensor, aten._foreach_addcmul_.Tensor]) +def meta__foreach_addcop_tensor(self, tensor1, tensor2, scalars): + torch._check( + all(isinstance(l, List) for l in [self, tensor1, tensor2]) + and isinstance(scalars, torch.Tensor), + lambda: ( + "_foreach_addc*_ op expects arguments of type: List[Tensor], List[Tensor], List[Tensor], tensor, " + f"but got: {type(self)}, {type(tensor1)}, {type(tensor2)}, and {type(scalars)}" + ), + ) + torch._check(len(self) > 0, lambda: "input tensor list must not be empty.") + torch._check( + len(self) == len(tensor1) and len(self) == len(tensor2), + lambda: "All input tensor lists must have the same length", + ) + + +@register_meta( + [ + aten._foreach_addcdiv_.Scalar, + aten._foreach_addcmul_.Scalar, + ] +) +def meta__foreach_addcop__scalar(self, tensor1, tensor2, scalar=1): + torch._check( + all(isinstance(l, List) for l in [self, tensor1, tensor2]), + lambda: ( + "All arguments of _foreach_addc*_ must be List[Tensor], " + f"but got {type(self)}, {type(tensor1)}, and {type(tensor2)}" + ), + ) + torch._check(len(self) > 0, lambda: "input tensor list must not be empty.") + torch._check( + len(self) == len(tensor1) and len(self) == len(tensor2), + lambda: "All input tensor lists must have the same length", + ) + + +@register_meta([aten._fused_adam_.default]) +def meta__fused_adam_( + self, + grads, + exp_avgs, + exp_avg_sqs, + max_exp_avg_sqs, + state_steps, + *, + lr, + beta1, + beta2, + weight_decay, + eps, + amsgrad, + maximize, + grad_scale=None, + found_inf=None, +): + for l in [self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps]: + torch._check( + isinstance(l, List), + lambda: f"exponent must be a tensor list but got {type(l)}", + ) + + +@register_meta([aten._fused_adam.default]) +def meta__fused_adam( + self, + grads, + exp_avgs, + exp_avg_sqs, + max_exp_avg_sqs, + state_steps, + *, + lr, + beta1, + beta2, + weight_decay, + eps, + amsgrad, + maximize, + grad_scale=None, + found_inf=None, +): + for l in [self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps]: + torch._check( + isinstance(l, List), + lambda: f"exponent must be a tensor list but got {type(l)}", + ) + + def empty_like_list(tensor_list): + return [torch.empty_like(t) for t in tensor_list] + + return ( + empty_like_list(self), + empty_like_list(grads), + empty_like_list(exp_avgs), + empty_like_list(exp_avg_sqs), + empty_like_list(max_exp_avg_sqs), + ) + + +@register_meta([aten._int_mm]) +@out_wrapper() +def meta__int_mm(a, b): + torch._check(a.dim() == 2, lambda: "a must be a 2D tensor") + torch._check(b.dim() == 2, lambda: "b must be a 2D tensor") + torch._check( + a.dtype is torch.int8, + lambda: f"expected self to be int8, got {a.dtype}", + ) + torch._check( + b.dtype is torch.int8, + lambda: f"expected mat2 to be int8, got {b.dtype}", + ) + torch._check( + a.size(1) == b.size(0), + lambda: ( + f"Incompatible matrix sizes for _int_mm ({a.size(0)}x{a.size(1)} " + f"and {b.size(0)}x{b.size(1)})" + ), + ) + return a.new_empty((a.size(0), b.size(1)), dtype=torch.int32) + + +@register_meta([aten._convert_weight_to_int4pack]) +def meta__convert_weight_to_int4pack(w, inner_k_tiles): + torch._check(w.dim() == 2, lambda: "w must be a 2D tensor") + torch._check( + w.dtype is torch.int32, + lambda: f"expected w to be int32, got {w.dtype}", + ) + n = w.size(0) + k = w.size(1) + return w.new_empty( + ( + n // 8, + k // (inner_k_tiles * 16), + 32, + inner_k_tiles // 2, + ), + dtype=torch.int32, + ) + + +@register_meta([aten._weight_int4pack_mm]) +def meta__weight_int4pack_mm(x, w, q_group_size, q_scale_and_zeros): + torch._check(x.dim() == 2, lambda: "x must be a 2D tensor") + torch._check(w.dim() == 4, lambda: "w must be a 4D tensor") + torch._check( + x.dtype is torch.bfloat16, + lambda: f"expected x to be bf16, got {x.dtype}", + ) + torch._check( + w.dtype is torch.int32, + lambda: f"expected w to be int32, got {w.dtype}", + ) + return x.new_empty(x.size(0), w.size(0) * 8, dtype=x.dtype) + + +@register_meta(aten._cdist_forward.default) +def meta_cdist_forward(x1, x2, p, compute_mode): + torch._check( + x1.dim() >= 2, + lambda: f"cdist only supports at least 2D tensors, X1 got: {x1.dim()}D", + ) + torch._check( + x2.dim() >= 2, + lambda: f"cdist only supports at least 2D tensors, X2 got: {x2.dim()}D", + ) + torch._check( + x1.size(-1) == x2.size(-1), + lambda: f"X1 and X2 must have the same number of columns. X1: {x1.size(-1)} X2: {x2.size(-1)}", + ) + torch._check( + utils.is_float_dtype(x1.dtype), + lambda: "cdist only supports floating-point dtypes, X1 got: {x1.dtype}", + ) + torch._check( + utils.is_float_dtype(x2.dtype), + lambda: "cdist only supports floating-point dtypes, X2 got: {x2.dtype}", + ) + torch._check(p >= 0, lambda: "cdist only supports non-negative p values") + torch._check( + compute_mode in (None, 1, 2), + lambda: f"possible modes: None, 1, 2, but was: {compute_mode}", + ) + r1 = x1.size(-2) + r2 = x2.size(-2) + batch_tensor1 = x1.shape[:-2] + batch_tensor2 = x2.shape[:-2] + output_shape = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2)) + output_shape.extend([r1, r2]) + return x1.new_empty(output_shape) + + +@register_meta(aten._cdist_backward) +@out_wrapper() +def meta_cdist_backward(grad, x1, x2, p, cdist): + c1 = x1.shape[-1] + r1 = x1.shape[-2] + r2 = x2.shape[-2] + batch_tensor1 = x1.shape[:-2] + batch_tensor2 = x2.shape[:-2] + expand_batch_portion = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2)) + tensor1_expand_size = expand_batch_portion.copy() + tensor1_expand_size.extend([r1, c1]) + batch_product = math.prod(expand_batch_portion) + if r1 == 0 or r2 == 0 or c1 == 0 or batch_product == 0: + return torch.zeros_like(x1) + if tensor1_expand_size != list(x1.shape): + x1 = x1.expand(tensor1_expand_size) + return torch.empty_like(x1, memory_format=torch.contiguous_format) + + +# NB: This meta function accepts non-meta arguments! When this behavior +# was originally introduced this was accidental, but it is now load bearing +# as people are using this so that they can conveniently test code involving +# embeddings (feeding CPU tensor inputs with meta device EmbeddingBag module) +@register_meta(aten._embedding_bag.default) +def meta_embedding_bag( + weight, + indices, + offsets, + scale_grad_by_freq=False, + mode=0, + sparse=False, + per_sample_weights=None, + include_last_offset=False, + padding_idx=-1, +): + torch._check( + indices.dtype in (torch.long, torch.int), + lambda: f"expected indices to be long or int, got {indices.dtype}", + ) + torch._check( + offsets.dtype in (torch.long, torch.int), + lambda: f"expected offsets to be long or int, got {offsets.dtype}", + ) + torch._check( + utils.is_float_dtype(weight.dtype), + lambda: f"expected weight to be floating point type, got {weight.dtype}", + ) + + num_bags = offsets.size(0) + if include_last_offset: + torch._check( + num_bags >= 1, + lambda: "include_last_offset: numBags should be at least 1", + ) + num_bags -= 1 + + output = weight.new_empty(num_bags, weight.size(1)) + MODE_SUM, MODE_MEAN, MODE_MAX = range(3) + + if per_sample_weights is not None: + torch._check( + mode == MODE_SUM, + lambda: "embedding_bag: per_sample_weights only supported with mode='sum'", + ) + torch._check( + per_sample_weights.dtype == weight.dtype, + lambda: f"expected weight ({weight.dtype}) and per_sample_weights ({per_sample_weights.dtype}) to have same dtype", + ) + torch._check( + per_sample_weights.ndim == 1, + lambda: f"expected per_sample_weights to be 1D tensor, got {per_sample_weights.ndim}D", + ) + torch._check( + per_sample_weights.numel() == indices.numel(), + lambda: ( + f"expected per_sample_weights.numel() ({per_sample_weights.numel()} " + f"to be the same as indices.numel() ({indices.numel()})" + ), + ) + + def is_fast_path_index_select_scale(src, scale, output, padding_idx): + return ( + is_fast_path_index_select(src, output, padding_idx) and scale.stride(0) == 1 + ) + + def is_fast_path_index_select(src, output, padding_idx): + return ( + (src.dtype == torch.float or src.dtype == torch.half) + and src.stride(1) == 1 + and output.stride(1) == 1 + and padding_idx < 0 + ) + + def is_fast_path(src, scale, output, padding_idx): + if scale is not None: + return is_fast_path_index_select_scale(src, scale, output, padding_idx) + else: + return is_fast_path_index_select(src, output, padding_idx) + + if device_hint(offsets) != "cpu": + offset2bag = indices.new_empty(indices.size(0)) + bag_size = indices.new_empty(offsets.size()) + if mode == MODE_MAX: + max_indices = indices.new_empty(num_bags, weight.size(1)) + else: + max_indices = indices.new_empty(0) + else: + fast_path_sum = is_fast_path(weight, per_sample_weights, output, padding_idx) + if mode in (MODE_MEAN, MODE_MAX) or not fast_path_sum: + offset2bag = offsets.new_empty(indices.size(0)) + else: + offset2bag = offsets.new_empty(0) + bag_size = offsets.new_empty(num_bags) + # This part of the logic comes from make_max_indices_out in EmbeddingBag.cpp + numBags = offsets.shape[0] + if mode == MODE_MAX: + if include_last_offset: + torch._check( + numBags >= 1, + lambda: "include_last_offset: numBags should be at least 1", + ) + numBags -= 1 + max_indices = offsets.new_empty(numBags, weight.shape[1]) + else: + max_indices = offsets.new_empty(bag_size.size()) + return output, offset2bag, bag_size, max_indices + + +@register_meta(aten._embedding_bag_forward_only.default) +def meta_embedding_bag_forward_only(weight, indices, offsets, *args): + output, offset2bag, bag_size, max_indices = meta_embedding_bag( + weight, indices, offsets, *args + ) + if device_hint(offsets) == "cpu": + bag_size = offsets.new_empty(offsets.size()) + return output, offset2bag, bag_size, max_indices + + +def _get_reduction_dtype(input, dtype, promote_int_to_long=True): + # if specified, dtype takes precedence + if dtype: + return dtype + + if input.dtype.is_floating_point or input.dtype.is_complex: + return input.dtype + elif promote_int_to_long: + return torch.long + + return input.dtype + + +@register_meta([aten.nansum.default, aten.nansum.out]) +@out_wrapper() +def meta_nansum(input, dims=None, keepdim=False, *, dtype=None): + output_dtype = _get_reduction_dtype(input, dtype, promote_int_to_long=True) + dims = utils.reduction_dims(input.shape, dims) + output_shape = _compute_reduction_shape(input, dims, keepdim) + return input.new_empty(output_shape, dtype=output_dtype) + + +@register_meta([aten.median.default, aten.nanmedian.default]) +def meta_median(input): + output_shape = utils.compute_reduction_output_shape( + input.shape, tuple(range(input.dim())) + ) + return input.new_empty(output_shape) + + +@register_meta( + [ + aten.median.dim, + aten.median.dim_values, + aten.nanmedian.dim, + aten.nanmedian.dim_values, + aten.mode.default, + aten.mode.values, + ] +) +@out_wrapper("values", "indices") +def meta_median_mode_dim(input, dim=-1, keepdim=False): + if device_hint(input) == "cuda": + utils.alert_not_deterministic("median CUDA with indices output") + dim = utils.reduction_dims(input.shape, (dim,)) + output_shape = _compute_reduction_shape(input, dim, keepdim) + return ( + input.new_empty(output_shape), + input.new_empty(output_shape, dtype=torch.long), + ) + + +@register_meta(aten.logical_not_.default) +def meta_logical_not_(self): + return self + + +@register_meta(aten.repeat.default) +def meta_repeat(self, repeats): + torch._check( + len(repeats) >= self.dim(), + lambda: "Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor", + ) + # Add new leading dimensions to the tensor if the + # number of target dimensions is larger than the + # number of source dimensions. + num_new_dimensions = len(repeats) - self.dim() + padded_size = (1,) * num_new_dimensions + tuple(self.shape) + target_size = [padded_size[i] * repeats[i] for i in range(len(repeats))] + return self.new_empty(target_size) + + +@register_meta(aten.zero_.default) +def meta_zero_(self): + return self + + +@register_meta( + [ + aten.mul_.Scalar, + aten.div_.Scalar, + aten.mul_.Tensor, + aten.div_.Tensor, + aten.logical_and_.default, + aten.logical_or_.default, + aten.logical_xor_.default, + ], +) +def meta_binop_inplace(self, other): + if isinstance(other, torch.Tensor): + check_inplace_broadcast(self.shape, other.shape) + return self + + +@register_meta( + [ + aten.add_.Scalar, + aten.sub_.Scalar, + aten.add_.Tensor, + aten.sub_.Tensor, + ], +) +def meta_binop_inplace_alpha(self, other, alpha=1): + if isinstance(other, torch.Tensor): + check_inplace_broadcast(self.shape, other.shape) + return self + + +@register_meta([aten.round.default, aten.round.decimals]) +def meta_round(self, **kwargs): + return elementwise_meta( + self, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT + ) + + +def shift_dtype_check(fn_name, self, val): + torch._check( + utils.is_integer_dtype(self.dtype), + lambda: f"{fn_name}: Expected input tensor to have an integral dtype. Got {self.dtype}", + ) + if isinstance(val, torch.Tensor): + torch._check( + utils.is_integer_dtype(val.dtype), + lambda: f"{fn_name}: Expected shift value to have an integral dtype. Got {val.dtype}", + ) + else: + torch._check( + isinstance(val, IntLike), + lambda: f"{fn_name}: Expected shift value to be an int. Got {val}", + ) + + +@register_meta([aten.__rshift__.Tensor, aten.__rshift__.Scalar]) +def meta_rshifts(self, other): + shift_dtype_check("rshift", self, other) + return elementwise_meta( + self, other, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT + ) + + +@register_meta([aten.__lshift__.Tensor, aten.__lshift__.Scalar]) +def meta_lshifts(self, other): + shift_dtype_check("lshift", self, other) + return elementwise_meta( + self, other, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT + ) + + +@register_meta(aten.zero.default) +def meta_zero(self): + return self.new_empty(self.shape) + + +@register_meta([aten.fill_.Tensor, aten.fill_.Scalar]) +def meta_fill_(self, val): + return self + + +@register_meta([aten.fill.Tensor, aten.fill.Scalar]) +def meta_fill(self, val): + return torch.empty_like(self) + + +@register_meta(aten.relu_.default) +def meta_relu_(self): + return self + + +@register_meta([aten.index_put.default, aten._unsafe_index_put.default]) +def meta_index_put(self, indices, values, accumulate=False): + return torch.empty_like(self) + + +@register_meta(aten.masked_fill_.Scalar) +def meta_masked_fill_(self, mask, value): + check_inplace_broadcast(self.shape, mask.shape) + return self + + +@register_meta(aten.masked_scatter_) +def meta_masked_scatter_(self, mask, source): + torch._check( + mask.dtype in (torch.bool, torch.uint8), lambda: "Mask must be bool or uint8" + ) + torch._check( + self.dtype == source.dtype, + lambda: "masked_scatter: expected self and source to have same " + "dtypes but got {self.dtype} and {source.dtype}", + ) + return self + + +@register_meta(aten.masked_scatter) +@out_wrapper() +def meta_masked_scatter(self, mask, source): + self, mask = _maybe_broadcast(self, mask) + output = torch.empty_like(self, memory_format=torch.contiguous_format) + return meta_masked_scatter_(output, mask, source) + + +@register_meta(aten.masked_scatter_backward) +def meta_masked_scatter_backward(self, mask, sizes): + return self.new_empty(sizes) + + +@register_meta(aten.index_put_.default) +def meta_index_put_(self, indices, values, accumulate=False): + return self + + +@register_meta(aten.alias.default) +def meta_alias(self): + return self.view(self.shape) + + +def common_meta_baddbmm_bmm(batch1, batch2, is_bmm, self_baddbmm=None): + torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") + torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") + + batch1_sizes = batch1.size() + batch2_sizes = batch2.size() + + bs = batch1_sizes[0] + contraction_size = batch1_sizes[2] + res_rows = batch1_sizes[1] + res_cols = batch2_sizes[2] + output_size = (bs, res_rows, res_cols) + + torch._check( + batch2_sizes[0] == bs and batch2_sizes[1] == contraction_size, + lambda: f"Expected size for first two dimensions of batch2 tensor to be: [{bs}" + f", {contraction_size}] but got: [{batch2_sizes[0]}, {batch2_sizes[1]}].", + ) + + # TODO: handle out + + output = batch2.new_empty(output_size) + + if not is_bmm and self_baddbmm is not None: + torch._check(self_baddbmm.dim() == 3, lambda: "self must be a 3D tensor") + torch._check( + self_baddbmm.size() == output_size, + lambda: f"Expected an input tensor shape with shape {output_size} but got shape: {self_baddbmm.size()}", + ) + + return output + + +@register_meta(aten.bmm.default) +def meta_bmm(self, mat2): + return common_meta_baddbmm_bmm(self, mat2, True) + + +def div_rtn(x, y): + q = x // y + r = x % y + # WARNING: explicit bool conversion here is necessary; + # would be fixed by SymBool + if r != 0 and (bool(r < 0) != bool(y < 0)): + q -= 1 + return q + + +def pooling_output_shape_pad_lr( + inputSize, kernelSize, pad_l, pad_r, stride, dilation, ceil_mode +): + outputSize = ( + div_rtn( + inputSize + + pad_l + + pad_r + - dilation * (kernelSize - 1) + - 1 + + (stride - 1 if ceil_mode else 0), + stride, + ) + + 1 + ) + if ceil_mode: + if (outputSize - 1) * stride >= inputSize + pad_l: + outputSize -= 1 + return outputSize + + +def pooling_output_shape(inputSize, kernelSize, pad, stride, dilation, ceil_mode): + torch._check(stride != 0, lambda: "stride should not be zero") + torch._check(pad >= 0, lambda: f"pad must be non-negative, but got pad: {pad}") + torch._check( + pad <= kernelSize // 2, + lambda: f"pad should be at most half of kernel size, but got pad={pad} and kernel_size={kernelSize}", + ) + return pooling_output_shape_pad_lr( + inputSize, kernelSize, pad, pad, stride, dilation, ceil_mode + ) + + +def pool2d_shape_check( + input, + kH, + kW, + dH, + dW, + padH, + padW, + dilationH, + dilationW, + nInputPlane, + inputHeight, + inputWidth, + outputHeight, + outputWidth, + memory_format, +): + ndim = input.dim() + nOutputPlane = nInputPlane + + torch._check( + kW > 0 and kH > 0, + lambda: "kernel size should be greater than zero, but got kH: {kH}, kW: {kW}", + ) + torch._check( + dW > 0 and dH > 0, + lambda: "stride should be greater than zero, but got dH: {dH}, dW: {dW}", + ) + torch._check( + dilationH > 0 and dilationW > 0, + lambda: "dilation should be greater than zero, but got dilationH: {dilationH}, dilationW: {dilationW}", + ) + + valid_dims = input.size(1) != 0 and input.size(2) != 0 + + if memory_format == torch.channels_last: + torch._check( + ndim == 4 and valid_dims and input.size(3) != 0, + lambda: "Expected 4D (batch mode) tensor expected for input with channels_last layout" + " with optional 0 dim batch size for input, but got: {input.size()}", + ) + else: + torch._check( + (ndim == 3 and input.size(0) != 0 and valid_dims) + or (ndim == 4 and valid_dims and input.size(3) != 0), + lambda: f"Expected 3D or 4D (batch mode) tensor with optional 0 dim batch size for input, but got: {input.size()}", + ) + + torch._check( + kW // 2 >= padW and kH // 2 >= padH, + lambda: "pad should be smaller than or equal to half of kernel size, but got " + f"padW = {padW}, padH = {padH}, kW = {kW}, kH = {kH}", + ) + + torch._check( + outputWidth >= 1 and outputHeight >= 1, + lambda: f"Given input size: ({nInputPlane}x{inputHeight}x{inputWidth}). " + f"Calculated output size: ({nOutputPlane}x{outputHeight}x{outputWidth}). " + "Output size is too small", + ) + + +def pool3d_shape_check( + input: Tensor, + nslices: int, + kT: int, + kH: int, + kW: int, + dT: int, + dH: int, + dW: int, + pT: int, + pH: int, + pW: int, + dilationT: int, + dilationH: int, + dilationW: int, + itime: int, + iheight: int, + iwidth: int, + otime: int, + oheight: int, + owidth: int, + fn_name: str, + check_input_size: bool = False, +): + ndim = input.ndim + + torch._check( + kT > 0 and kW > 0 and kH > 0, + lambda: ( + f"kernel size should be greater than zero, but got " + f"kT: {kT}, kH: {kH}, kW: {kW}" + ), + ) + torch._check( + dT > 0 and dW > 0 and dH > 0, + lambda: ( + f"stride should be greater than zero, but got " + f"dT: {dT}, dH: {dH}, dW: {dW}" + ), + ) + torch._check( + dilationT > 0 and dilationW > 0 and dilationH > 0, + lambda: ( + f"dilation should be greater than zero, but got " + f"dilationT: {dilationT}, dilationH: {dilationH}, dilationW: {dilationW}" + ), + ) + + torch._check( + ndim in (4, 5), + lambda: f"{fn_name}: Expected 4D or 5D tensor for input, but got: {input.shape}", + ) + + for i in range(ndim): + if ndim == 5 and i == 0: + # size of batch-dim can be 0. + continue + torch._check( + input.size(i) > 0, + lambda: ( + f"{fn_name}: Expected input's non-batch dimensions to have positive length," + f" but input has a shape of {input.shape}" + f" and non-batch dimension {input.size(i)} has length zero!" + ), + ) + + if check_input_size: # AveragePool3d + torch._check( + itime >= kT and iheight >= kH and iwidth >= kW, + lambda: ( + f"input image (T: {itime} H: {iheight} W: {iwidth}) smaller than " + f"kernel size (kT: {kT} kH: {kH} kW: {kW})" + ), + ) + + torch._check( + kT / 2 >= pT and kW / 2 >= pW and kH / 2 >= pH, + lambda: ( + f"pad should be smaller than or equal to half of kernel size, but got " + f"kT: {kT} kW: {kW} kH: {kH} padT: {pT} padW: {pW} padH: {pH}" + ), + ) + + torch._check( + otime >= 1 and owidth >= 1 and oheight >= 1, + lambda: ( + f"Given input size: ({nslices}x{itime}x{iheight}x{iwidth}). " + f"Calculated output size: ({nslices}x{otime}x{oheight}x{owidth}). " + f"Output size is too small" + ), + ) + + +def max_pool3d_backward_shape_check( + input, + grad_output, + indices, + nslices, + kT, + kH, + kW, + dT, + dH, + dW, + pT, + pH, + pW, + dilationT, + dilationH, + dilationW, + itime, + iheight, + iwidth, + otime, + oheight, + owidth, + fn_name, +): + ndim = input.ndim + + pool3d_shape_check( + input, + nslices, + kT, + kH, + kW, + dT, + dH, + dW, + pT, + pH, + pW, + dilationT, + dilationH, + dilationW, + itime, + iheight, + iwidth, + otime, + oheight, + owidth, + fn_name, + ) + + check_dim_size(grad_output, ndim, ndim - 4, nslices) + check_dim_size(grad_output, ndim, ndim - 3, otime) + check_dim_size(grad_output, ndim, ndim - 2, oheight) + check_dim_size(grad_output, ndim, ndim - 1, owidth) + + check_dim_size(indices, ndim, ndim - 4, nslices) + check_dim_size(indices, ndim, ndim - 3, otime) + check_dim_size(indices, ndim, ndim - 2, oheight) + check_dim_size(indices, ndim, ndim - 1, owidth) + + +def avg_pool3d_backward_shape_check( + input: Tensor, + grad_output: Tensor, + nslices: int, + kT: int, + kH: int, + kW: int, + dT: int, + dH: int, + dW: int, + pT: int, + pH: int, + pW: int, + itime: int, + iheight: int, + iwidth: int, + otime: int, + oheight: int, + owidth: int, + fn_name: str, +): + ndim = input.ndim + + pool3d_shape_check( + input, + nslices, + kT, + kH, + kW, + dT, + dH, + dW, + pT, + pH, + pW, + 1, + 1, + 1, + itime, + iheight, + iwidth, + otime, + oheight, + owidth, + fn_name, + True, + ) + + check_dim_size(grad_output, ndim, ndim - 4, nslices) + check_dim_size(grad_output, ndim, ndim - 3, otime) + check_dim_size(grad_output, ndim, ndim - 2, oheight) + check_dim_size(grad_output, ndim, ndim - 1, owidth) + + +def max_pool2d_checks_and_compute_shape( + input, kernel_size, stride, padding, dilation, ceil_mode +): + # Reference: aten/src/ATen/native/DilatedMaxPool2d.cpp + def unpack(name, val): + torch._check( + len(val) in [1, 2], + lambda: f"max_pool2d: {name} must either be a single int, or a tuple of two ints", + ) + H = val[0] + W = H if len(val) == 1 else val[1] + return H, W + + kH, kW = unpack("kernel_size", kernel_size) + + torch._check( + len(stride) in [0, 1, 2], + lambda: "max_pool2d: stride must either be omitted, a single int, or a tuple of two ints", + ) + if len(stride) == 0: + dH, dW = kH, kW + else: + dH, dW = unpack("stride", stride) + + padH, padW = unpack("padding", padding) + dilationH, dilationW = unpack("dilation", dilation) + nInputPlane = input.size(-3) + inputHeight = input.size(-2) + inputWidth = input.size(-1) + + memory_format = utils.suggest_memory_format(input) + if memory_format == torch.channels_last: + torch._check( + input.dim() == 4, + lambda: "non-empty 4D (batch mode) tensor expected for input with channels_last layout", + ) + elif memory_format == torch.contiguous_format: + torch._check( + input.dim() in [3, 4], + lambda: "non-empty 3D or 4D (batch mode) tensor expected for input", + ) + else: + torch._check( + False, + lambda: "Unsupport memory format. Supports only ChannelsLast, Contiguous", + ) + + outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, dilationH, ceil_mode) + outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, dilationW, ceil_mode) + + pool2d_shape_check( + input, + kH, + kW, + dH, + dW, + padH, + padW, + dilationH, + dilationW, + nInputPlane, + inputHeight, + inputWidth, + outputHeight, + outputWidth, + memory_format, + ) + + return nInputPlane, outputHeight, outputWidth + + +@register_meta(aten.max_pool2d_with_indices_backward.default) +def meta_max_pool2d_with_indices_backward( + grad_output, + self, + kernel_size, + stride, + padding, + dilation, + ceil_mode, + indices, +): + ( + nInputPlane, + outputHeight, + outputWidth, + ) = max_pool2d_checks_and_compute_shape( + self, kernel_size, stride, padding, dilation, ceil_mode + ) + + torch._check( + self.dtype == grad_output.dtype, + lambda: f"Expected dtype {self.dtype} for `gradOutput` but got dtype {grad_output.dtype}", + ) + + nOutputPlane = nInputPlane + ndim = self.ndim + + def _check_dim_size(t): + check_dim_size(t, ndim, ndim - 3, nOutputPlane) + check_dim_size(t, ndim, ndim - 2, outputHeight) + check_dim_size(t, ndim, ndim - 1, outputWidth) + + _check_dim_size(grad_output) + _check_dim_size(indices) + + memory_format = utils.suggest_memory_format(self) + return torch.empty( + self.shape, + dtype=self.dtype, + device=self.device, + memory_format=memory_format, + ) + + +@register_meta(aten.max_pool2d_with_indices.default) +def meta_max_pool2d_with_indices( + input, kernel_size, stride=(), padding=(0,), dilation=(1,), ceil_mode=False +): + ( + nInputPlane, + outputHeight, + outputWidth, + ) = max_pool2d_checks_and_compute_shape( + input, kernel_size, stride, padding, dilation, ceil_mode + ) + + nbatch = input.size(-4) if input.dim() == 4 else 1 + memory_format = utils.suggest_memory_format(input) + if input.dim() == 3: + size = [nInputPlane, outputHeight, outputWidth] + else: + size = [nbatch, nInputPlane, outputHeight, outputWidth] + return ( + torch.empty( + size, + dtype=input.dtype, + device=input.device, + memory_format=memory_format, + ), + torch.empty( + size, + dtype=torch.int64, + device=input.device, + memory_format=memory_format, + ), + ) + + +@register_meta(aten.max_unpool2d) +@out_wrapper() +def meta_max_unpool2d(self_, indices, output_size): + utils.alert_not_deterministic("max_unpooling2d_forward_out") + + torch._check( + indices.dtype == torch.int64, + lambda: f"elements in indices should be type int64 but got: {indices.dtype}", + ) + torch._check( + len(output_size) == 2, + lambda: ( + f"There should be exactly two elements (height, width) in output_size, " + f"but got {len(output_size)} elements." + ), + ) + + oheight, owidth = output_size + + torch._check( + self_.ndim in (3, 4), + lambda: ( + f"Input to max_unpooling2d should be a 3d or 4d Tensor, " + f"but got a tensor with {self_.ndim} dimensions." + ), + ) + torch._check( + self_.shape == indices.shape, + lambda: ( + f"Expected shape of indices to be same as that of the input tensor ({self_.shape}) " + f"but got indices tensor with shape: {indices.shape}" + ), + ) + + for i in range(1, self_.ndim): + torch._check( + self_.size(i) > 0, + lambda: ( + f"max_unpooling2d(): " + f"Expected input to have non-zero size for non-batch dimensions, " + f"but got {self_.shape} with dimension {i} being empty." + ), + ) + + self = self_.contiguous() + + if self_.ndim == 3: + nchannels = self.size(0) + result = self.new_empty((nchannels, oheight, owidth)) + else: + nbatch = self.size(0) + nchannels = self.size(1) + result = self.new_empty((nbatch, nchannels, oheight, owidth)) + + return result + + +def _max_unpooling3d_shape_check(input, indices, output_size, stride, padding, fn_name): + torch._check( + indices.dtype == torch.int64, lambda: "elements in indices should be type int64" + ) + torch._check( + input.ndim in (4, 5), + lambda: f"Input to max_unpooling3d should be a 4d or 5d Tensor, but got a tensor with {input.ndim} dimensions.", + ) + torch._check( + len(output_size) == 3, + lambda: ( + f"There should be exactly three elements (depth, height, width) in output_size, " + f"but got {len(output_size)} elements." + ), + ) + torch._check( + len(stride) == 3, + lambda: f"There should be exactly three elements (depth, height, width) in stride, but got: {len(stride)} elements.", + ) + torch._check( + len(padding) == 3, + lambda: f"There should be exactly three elements (depth, height, width) in padding, but got: {len(padding)} elements.", + ) + torch._check( + input.shape == indices.shape, + lambda: ( + f"Expected shape of indices to be same as that of the input tensor ({input.shape}) " + f"but got indices tensor with shape: {indices.shape}" + ), + ) + + for i in range(1, input.ndim): + torch._check( + input.size(i) > 0, + lambda: ( + f"{fn_name}: " + f"Expected input to have non-zero size for non-batch dimensions, " + f"but got {input.shape} with dimension {i} being empty." + ), + ) + + torch._check( + stride[0] > 0 and stride[1] > 0 and stride[2] > 0, + lambda: f"strides should be greater than zero, but got stride: {stride}", + ) + + +@register_meta(aten.max_unpool3d) +@out_wrapper() +def meta_max_unpool3d(self_, indices, output_size, stride, padding): + utils.alert_not_deterministic("max_unpooling3d_forward_out") + + _max_unpooling3d_shape_check( + self_, indices, output_size, stride, padding, "max_unpooling3d()" + ) + + self = self_.contiguous() + + odepth, oheight, owidth = output_size + + if self_.ndim == 4: + nchannels = self.size(0) + result = self.new_empty((nchannels, odepth, oheight, owidth)) + else: + nbatch = self.size(0) + nchannels = self.size(1) + result = self.new_empty((nbatch, nchannels, odepth, oheight, owidth)) + + return result + + +@register_meta(aten.max_pool3d_with_indices) +@out_wrapper("out", "indices") +def meta_max_pool3d_with_indices( + input, + kernel_size, + stride=(), + padding=(0,), + dilation=(1,), + ceil_mode=False, +): + torch._check( + len(kernel_size) in (1, 3), + lambda: "max_pool3d: kernel_size must either be a single int, or a tuple of three ints", + ) + kT = kernel_size[0] + kH = kT if len(kernel_size) == 1 else kernel_size[1] + kW = kT if len(kernel_size) == 1 else kernel_size[2] + + torch._check( + not stride or len(stride) in (1, 3), + lambda: "max_pool3d: stride must either be omitted, a single int, or a tuple of three ints", + ) + dT = kT if not stride else stride[0] + dH = kH if not stride else (dT if len(stride) == 1 else stride[1]) + dW = kW if not stride else (dT if len(stride) == 1 else stride[2]) + + torch._check( + len(padding) in (1, 3), + lambda: "max_pool3d: padding must either be a single int, or a tuple of three ints", + ) + pT = padding[0] + pH = pT if len(padding) == 1 else padding[1] + pW = pT if len(padding) == 1 else padding[2] + + torch._check( + len(dilation) in (1, 3), + lambda: "max_pool3d: dilation must be either a single int, or a tuple of three ints", + ) + dilationT = dilation[0] + dilationH = dilationT if len(dilation) == 1 else dilation[1] + dilationW = dilationT if len(dilation) == 1 else dilation[2] + + torch._check( + input.ndim in (4, 5), + lambda: "non-empty 4D or 5D (batch mode) tensor expected for input", + ) + + nbatch = input.size(-5) if input.ndim == 5 else 1 + nslices = input.size(-4) + itime = input.size(-3) + iheight = input.size(-2) + iwidth = input.size(-1) + + otime = pooling_output_shape(itime, kT, pT, dT, dilationT, ceil_mode) + oheight = pooling_output_shape(iheight, kH, pH, dH, dilationH, ceil_mode) + owidth = pooling_output_shape(iwidth, kW, pW, dW, dilationW, ceil_mode) + + pool3d_shape_check( + input, + nslices, + kT, + kH, + kW, + dT, + dH, + dW, + pT, + pH, + pW, + dilationT, + dilationH, + dilationW, + itime, + iheight, + iwidth, + otime, + oheight, + owidth, + "max_pool3d_with_indices()", + ) + + channels_last = ( + input.ndim == 5 and utils.suggest_memory_format(input) == torch.channels_last_3d + ) + if input.ndim == 4: + input_channels_last_check = input.unsqueeze(0) + channels_last = ( + not input_channels_last_check.is_contiguous() + ) and input_channels_last_check.is_contiguous( + memory_format=torch.channels_last_3d + ) + out_shape = (nslices, otime, oheight, owidth) + else: + out_shape = (nbatch, nslices, otime, oheight, owidth) # type: ignore[assignment] + + out = input.new_empty(out_shape) + indices = input.new_empty(out_shape, dtype=torch.int64) + + if channels_last: + out = out.to(memory_format=torch.channels_last_3d) + indices = indices.to(memory_format=torch.channels_last_3d) + + return out, indices + + +@register_meta(aten.max_pool3d_with_indices_backward) +@out_wrapper("grad_input") +def meta_max_pool3d_with_indices_backward( + grad_output, + input, + kernel_size, + stride, + padding, + dilation, + ceil_mode, + indices, +): + torch._check( + len(kernel_size) in (1, 3), + lambda: "max_pool3d: kernel_size must either be a single int, or a tuple of three ints", + ) + kT = kernel_size[0] + kH = kT if len(kernel_size) == 1 else kernel_size[1] + kW = kT if len(kernel_size) == 1 else kernel_size[2] + + torch._check( + not stride or len(stride) in (1, 3), + lambda: "max_pool3d: stride must either be omitted, a single int, or a tuple of three ints", + ) + dT = kT if not stride else stride[0] + dH = kH if not stride else (dT if len(stride) == 1 else stride[1]) + dW = kW if not stride else (dT if len(stride) == 1 else stride[2]) + + torch._check( + len(padding) in (1, 3), + lambda: "max_pool3d: padding must either be a single int, or a tuple of three ints", + ) + pT = padding[0] + pH = pT if len(padding) == 1 else padding[1] + pW = pT if len(padding) == 1 else padding[2] + + torch._check( + len(dilation) in (1, 3), + lambda: "max_pool3d: dilation must be either a single int, or a tuple of three ints", + ) + dilationT = dilation[0] + dilationH = dilationT if len(dilation) == 1 else dilation[1] + dilationW = dilationT if len(dilation) == 1 else dilation[2] + + torch._check( + input.ndim in (4, 5), + lambda: "non-empty 4D or 5D (batch mode) tensor expected for input", + ) + + nslices = input.size(-4) + itime = input.size(-3) + iheight = input.size(-2) + iwidth = input.size(-1) + + otime = grad_output.size(-3) + oheight = grad_output.size(-2) + owidth = grad_output.size(-1) + + max_pool3d_backward_shape_check( + input, + grad_output, + indices, + nslices, + kT, + kH, + kW, + dT, + dH, + dW, + pT, + pH, + pW, + dilationT, + dilationH, + dilationW, + itime, + iheight, + iwidth, + otime, + oheight, + owidth, + "max_pool3d_with_indices_backward()", + ) + + channels_last = ( + input.ndim == 5 and utils.suggest_memory_format(input) == torch.channels_last_3d + ) + if input.ndim == 4: + input_channels_last_check = input.unsqueeze(0) + channels_last = ( + not input_channels_last_check.is_contiguous() + ) and input_channels_last_check.is_contiguous( + memory_format=torch.channels_last_3d + ) + + grad_input = input.new_empty(input.shape) + + if channels_last: + grad_input = grad_input.to(memory_format=torch.channels_last_3d) + + return grad_input + + +def check_grid_sampler_common(input: Tensor, grid: Tensor): + torch._check( + input.device == grid.device, + lambda: ( + f"grid_sampler(): expected input and grid to be on same device, but input " + f"is on {input.device} and grid is on {grid.device}" + ), + ) + torch._check( + input.layout == torch.strided and grid.layout == torch.strided, + lambda: ( + f"grid_sampler(): expected input and grid to have torch.strided layout, but " + f"input has {input.layout} and grid has {grid.layout}" + ), + ) + torch._check( + input.shape[0] == grid.shape[0], + lambda: ( + f"grid_sampler(): expected grid and input to have same batch size, but got " + f"input with sizes {input.shape} and grid with sizes {grid.shape}" + ), + ) + torch._check( + grid.shape[-1] == input.ndim - 2, + lambda: ( + f"grid_sampler(): expected grid to have size {input.ndim - 2} in last " + f"dimension, but got grid with sizes {grid.shape}" + ), + ) + + for i in range(2, input.ndim): + torch._check( + input.shape[i] > 0, + lambda: ( + f"grid_sampler(): expected input to have non-empty spatial dimensions, " + f"but input has sizes {input.shape} with dimension {i} being empty" + ), + ) + + +class GridSamplerInterpolation(Enum): + BILINEAR = 0 + NEAREST = 1 + BICUBIC = 2 + + +def check_grid_sampler_3d(input: Tensor, grid: Tensor, interpolation_mode: int): + torch._check( + input.ndim == 5 and input.ndim == grid.ndim, + lambda: ( + f"grid_sampler(): expected 5D input and grid with same number of " + f"dimensions, but got input with sizes {input.shape}" + f" and grid with sizes {grid.shape}" + ), + ) + torch._check( + not ( + input.ndim == 5 + and interpolation_mode == GridSamplerInterpolation.BICUBIC.value + ), + lambda: "grid_sampler(): bicubic interpolation only supports 4D input", + ) + + +@register_meta(aten.grid_sampler_2d_backward.default) +def grid_sampler_2d_backward_meta( + grad_output, + input, + grid, + interpolation_mode, + padding_mode, + align_corners, + output_mask, +): + input_requires_grad = output_mask[0] + if input_requires_grad: + grad_input = torch.zeros_like(input, memory_format=torch.contiguous_format) + else: + grad_input = None + grad_grid = torch.empty_like(grid, memory_format=torch.contiguous_format) + return (grad_input, grad_grid) + + +@register_meta(aten.grid_sampler_3d) +@out_wrapper() +def grid_sampler_3d( + input, + grid, + interpolation_mode, + padding_mode, + align_corners, +): + check_grid_sampler_common(input, grid) + check_grid_sampler_3d(input, grid, interpolation_mode) + N = input.shape[0] + C = input.shape[1] + out_D = grid.shape[1] + out_H = grid.shape[2] + out_W = grid.shape[3] + return input.new_empty((N, C, out_D, out_H, out_W)) + + +@register_meta(aten.grid_sampler_3d_backward) +@out_wrapper("grad_input", "grad_grid") +def grid_sampler_3d_backward( + grad_output, + input, + grid, + interpolation_mode, + padding_mode, + align_corners, + output_mask, +): + check_grid_sampler_common(input, grid) + check_grid_sampler_3d(input, grid, interpolation_mode) + input_requires_grad = output_mask[0] + if input_requires_grad: + grad_input = torch.zeros_like( + input, memory_format=torch.legacy_contiguous_format + ) + else: + grad_input = None + grad_grid = torch.empty_like(grid, memory_format=torch.legacy_contiguous_format) + return grad_input, grad_grid + + +@register_meta([aten.full.default]) +def full(size, fill_value, *args, **kwargs): + dtype = kwargs.get("dtype", None) + if not dtype: + dtype = utils.get_dtype(fill_value) + kwargs["dtype"] = dtype + return torch.empty(size, *args, **kwargs) + + +# zeros_like is special cased to work for sparse +@register_meta(aten.zeros_like.default) +def zeros_like( + self, + dtype=None, + layout=None, + device=None, + pin_memory=None, + memory_format=None, +): + if layout == torch.sparse_coo: + torch._check( + memory_format is None, + lambda: "memory format option is only supported by strided tensors", + ) + + res = torch.empty( + 0, + dtype=self.dtype if dtype is None else dtype, + layout=layout, + device=self.device if device is None else device, + pin_memory=pin_memory, + ) + + if self.is_sparse: + res.sparse_resize_and_clear_( + self.size(), self.sparse_dim(), self.dense_dim() + ) + else: + res.sparse_resize_and_clear_(self.size(), self.dim(), 0) + + res._coalesced_(True) + return res + res = aten.empty_like.default( + self, + dtype=dtype, + layout=layout, + device=device, + pin_memory=pin_memory, + memory_format=memory_format, + ) + # device can be not "meta" + res.fill_(0) + return res + + +@register_meta(aten.select.int) +def meta_select(self, dim, index): + ndim = self.dim() + torch._check_index( + ndim != 0, + lambda: "select() cannot be applied to a 0-dim tensor.", + ) + + dim = dim if dim >= 0 else dim + ndim + size = self.size(dim) + + torch._check_index( + not (-index > size or index >= size), + lambda: f"select(): index {index} out of range for tensor of size " + f"{self.size()} at dimension {dim}", + ) + + index = index if index >= 0 else index + size + + new_size = list(self.size()) + new_stride = list(self.stride()) + + new_storage_offset = self.storage_offset() + index * new_stride[dim] + del new_size[dim] + del new_stride[dim] + + return self.as_strided(new_size, new_stride, new_storage_offset) + + +@register_meta(aten.select_scatter.default) +def meta_select_scatter(self, src, dim, index): + return utils.clone_preserve_strides(self) + + +@register_meta(aten.slice_scatter.default) +def meta_slice_scatter(self, src, dim=0, start=None, end=None, step=1): + return utils.clone_preserve_strides(self) + + +# TODO: Deduplicate this with canonicalize_dim +def maybe_wrap_dim(dim: int, dim_post_expr: int, wrap_scalar: bool = True): + if dim_post_expr <= 0: + assert wrap_scalar + dim_post_expr = 1 + min = -dim_post_expr + max = dim_post_expr - 1 + assert not (dim < min or dim > max), f"dim {dim} out of bounds ({min}, {max})" + if dim < 0: + dim += dim_post_expr + return dim + + +def ensure_nonempty_size(t, dim): + return 1 if t.dim() == 0 else t.shape[dim] + + +# From aten/src/ATen/native/ScatterGatherChecks.h +def gather_shape_check(self, dim, index): + self_dims = max(self.dim(), 1) + index_dims = max(index.dim(), 1) + torch._check( + self_dims == index_dims, + lambda: "Index tensor must have the same number of dimensions as input tensor", + ) + for i in range(self_dims): + if i != dim: + torch._check( + ensure_nonempty_size(index, i) <= ensure_nonempty_size(self, i), + lambda: f"Size does not match at dimension {i} expected index {index.shape}" + + f" to be smaller than self {self.shape} apart from dimension {dim}", + ) + + +@register_meta(aten.gather.default) +def meta_gather(self, dim, index, sparse_grad=False): + wrapped_dim = maybe_wrap_dim(dim, self.dim()) + is_index_empty = index.numel() == 0 + if not is_index_empty: + torch._check( + index.dtype == torch.long, + lambda: f"gather(): Expected dtype int64 for index, but got {index.dtype}", + ) + gather_shape_check(self, wrapped_dim, index) + return self.new_empty(index.shape) + + +# From aten/src/ATen/native/TensorAdvancedIndexing.cpp +def get_operator_enum(reduce_, use_new_options=False): + if use_new_options: + if reduce_ == "sum": + return "REDUCE_ADD" + elif reduce_ == "prod": + return "REDUCE_MULTIPLY" + elif reduce_ == "mean": + return "REDUCE_MEAN" + elif reduce_ == "amax": + return "REDUCE_MAXIMUM" + elif reduce_ == "amin": + return "REDUCE_MINIMUM" + torch._check( + False, + lambda: "reduce argument must be either sum, prod, mean, amax or amin.", + ) + return + else: + if reduce_ == "add": + return "REDUCE_ADD" + elif reduce_ == "multiply": + return "REDUCE_MULTIPLY" + torch._check(False, lambda: "reduce argument must be either add or multiply.") + return + + +# From aten/src/ATen/native/ScatterGatherChecks.h +def scatter_gather_dtype_check(method_name, self, index, src_opt=None): + if index.numel() != 0: + torch._check( + index.dtype == torch.long, + lambda: f"{method_name}(): Expected dtype int64 for index", + ) + + if src_opt is not None: + torch._check( + self.dtype == src_opt.dtype, + lambda: f"{method_name}(): Expected self.dtype to be equal to src.dtype", + ) + + +def ensure_nonempty_dim(dim): + return max(dim, 1) + + +# From aten/src/ATen/native/ScatterGatherChecks.h +def scatter_shape_check(self, dim, index, src_opt=None): + if index.numel() == 0: + return + torch._check( + ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()), + lambda: "Index tensor must have the same number of dimensions as self tensor", + ) + + is_wrong_shape = False + self_dims = ensure_nonempty_dim(self.dim()) + + # Check: index.size(d) <= self.size(d) for all d != dim + for d in range(self_dims): + index_d_size = ensure_nonempty_size(index, d) + if d == dim: + continue + if index_d_size > ensure_nonempty_size(self, d): + is_wrong_shape = True + break + + # Check: index.size(d) <= src.size(d) for all d if src is Tensor + if not is_wrong_shape and src_opt is not None: + for d in range(self_dims): + index_d_size = ensure_nonempty_size(index, d) + if index_d_size > ensure_nonempty_size(src_opt, d): + is_wrong_shape = True + break + + if src_opt is not None: + torch._check( + ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()), + lambda: "Index tensor must have the same number of dimensions as self tensor", + ) + torch._check( + not is_wrong_shape, + lambda: f"Expected index {index.shape} to be smaller than self {self.shape}" + + f" apart from dimension {dim} and to be smaller than src {src_opt.shape}", + ) + else: + torch._check( + not is_wrong_shape, + lambda: f"Expected index {index.shape} to be smaller than self {self.shape}" + + f" apart from dimension {dim}", + ) + + +# From aten/src/ATen/native/TensorAdvancedIndexing.cpp +def scatter_meta_impl(self, dim, index, src=None, reduce_=None, use_new_options=False): + wrapped_dim = maybe_wrap_dim(dim, self.dim()) + scatter_gather_dtype_check("scatter", self, index, src) + scatter_shape_check(self, wrapped_dim, index, src) + if reduce_ is not None: + # Check if we have a valid reduce operator. + get_operator_enum(reduce_, use_new_options) + + +@register_meta(aten.scatter_add.default) +def meta_scatter_add(self, dim, index, src): + scatter_meta_impl(self, dim, index, src, "add") + return self.new_empty(self.shape) + + +@register_meta(aten.scatter_add_) +def meta_scatter_add_(self, dim, index, src): + scatter_meta_impl(self, dim, index, src, "add") + return self + + +@register_meta( + [ + aten.scatter.src, + aten.scatter.value, + aten.scatter.reduce, + aten.scatter.value_reduce, + ] +) +@out_wrapper() +def meta_scatter(self, dim, index, src_or_value, reduce=None): + src = src_or_value if isinstance(src_or_value, torch.Tensor) else None + scatter_meta_impl(self, dim, index, src, reduce) + return self.new_empty(self.shape) + + +@register_meta( + [ + aten.scatter_.src, + aten.scatter_.value, + aten.scatter_.reduce, + aten.scatter_.value_reduce, + ] +) +def meta_scatter_(self, dim, index, src_or_value, reduce=None): + src = src_or_value if isinstance(src_or_value, torch.Tensor) else None + scatter_meta_impl(self, dim, index, src, reduce) + return self + + +@register_meta( + [ + aten._scaled_dot_product_flash_attention, + ] +) +def meta__scaled_dot_product_flash( + query: Tensor, + key: Tensor, + value: Tensor, + dropout_p: float = 0.0, + is_causal: bool = False, + return_debug_mask: bool = False, + scale: Optional[float] = None, +): + batch_size = query.size(0) + num_heads = query.size(1) + max_seqlen_batch_q = query.size(2) + head_dim = query.size(3) + + max_seqlen_batch_k = key.size(2) + + if device_hint(query) == "cpu": + attention = torch.empty( + (batch_size, max_seqlen_batch_q, num_heads, head_dim), + dtype=query.dtype, + device=query.device, + ).transpose(1, 2) + logsumexp = torch.empty( + ( + batch_size, + max_seqlen_batch_q, + num_heads, + ), + dtype=torch.float, + device=query.device, + ).transpose(1, 2) + return ( + attention, + logsumexp, + torch.empty((), dtype=torch.int32, device="meta"), + torch.empty((), dtype=torch.int32, device="meta"), + 0, + 0, + torch.empty((), dtype=torch.long, device="meta"), + torch.empty((), dtype=torch.long, device="meta"), + torch.empty((), dtype=query.dtype, device=query.device), + ) + + # Cuda Path + query_t = query.transpose(1, 2) + attention = torch.empty_like(query_t).transpose(1, 2) + logsumexp = torch.empty( + (batch_size, num_heads, max_seqlen_batch_q), + dtype=torch.float, + device=query.device, + ) + + if return_debug_mask: + blocksize_c = 128 if head_dim > 64 else 256 + max_seqlen_k = math.ceil(max_seqlen_batch_q / blocksize_c) + if max_seqlen_batch_k <= 128: + max_seqlen_k = 128 + elif max_seqlen_batch_k <= 256: + max_seqlen_k = 256 + debug_mask = torch.empty( + (batch_size, num_heads, max_seqlen_batch_q, max_seqlen_k), + dtype=query.dtype, + device=query.device, + ) + else: + debug_mask = torch.empty(0, dtype=query.dtype, device=query.device) + + # Note [Seed and Offset]: device for seed and offset below depends on whether we are + # capturing or not, but at the time of tracing we don't know if we + # are going to use cudagraphs or not, so we return meta tensors here + # it's possible we'll need to have some special handling in inductor for sdpa + + return ( + attention, + logsumexp, + None, + None, + max_seqlen_batch_q, + max_seqlen_batch_k, + torch.empty((), dtype=torch.long, device="meta"), + torch.empty((), dtype=torch.long, device="meta"), + debug_mask, + ) + + +@register_meta( + [ + aten._scaled_dot_product_flash_attention_backward, + ] +) +def meta__scaled_dot_product_flash_backward( + grad_out: Tensor, + query: Tensor, + key: Tensor, + value: Tensor, + out: Tensor, + logsumexp: Tensor, + cum_seq_q: Tensor, + cum_seq_k: Tensor, + max_q: int, + max_k: int, + dropout_p: float, + is_causal: bool, + philox_seed: Tensor, + philox_offset: Tensor, + scale: Optional[float] = None, +): + if device_hint(query) != "cpu": + grad_q = torch.empty_like(query.transpose(1, 2)).transpose(1, 2) + grad_k = torch.empty_like(key.transpose(1, 2)).transpose(1, 2) + grad_v = torch.empty_like(value.transpose(1, 2)).transpose(1, 2) + return grad_q, grad_k, grad_v + + batch_size = query.size(0) + num_heads = query.size(1) + head_dim = query.size(3) + len_q = query.size(2) if device_hint(query) == "cpu" else max_q + len_k = key.size(2) if device_hint(query) == "cpu" else max_k + + grad_q = torch.empty_permuted( + (batch_size, num_heads, len_q, head_dim), + (0, 2, 1, 3), + dtype=query.dtype, + device=query.device, + ) + grad_k = torch.empty_permuted( + (batch_size, num_heads, len_k, head_dim), + (0, 2, 1, 3), + dtype=key.dtype, + device=key.device, + ) + grad_v = torch.empty_permuted( + (batch_size, num_heads, len_k, head_dim), + (0, 2, 1, 3), + dtype=value.dtype, + device=value.device, + ) + + return grad_q, grad_k, grad_v + + +@register_meta( + [ + aten._scaled_dot_product_efficient_attention, + ] +) +def meta__scaled_dot_product_efficient( + query: Tensor, + key: Tensor, + value: Tensor, + attn_bias: Optional[Tensor], + compute_log_sumexp: bool, + dropout_p=0.0, + is_causal: bool = False, + scale: Optional[float] = None, +): + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + + B = query.size(0) + M = query.size(1) + N = key.size(1) + num_heads = query.size(-2) + K = query.size(-1) + Kv = value.size(-1) + + res = torch.empty(B, M, num_heads, Kv, dtype=query.dtype, device=query.device) + + logsumexp_dim = math.ceil(M / 32) * 32 if compute_log_sumexp else 0 + logsum_exp = torch.empty( + (B, num_heads, logsumexp_dim), + dtype=torch.float, + device=query.device, + ) + + res = res.transpose(1, 2) + + # See Note [Seed and Offset]: + seed = torch.empty((), dtype=torch.long, device="meta") + offset = torch.empty((), dtype=torch.long, device="meta") + + return res, logsum_exp, seed, offset + + +@register_meta( + [ + aten._scaled_dot_product_efficient_attention_backward, + ] +) +def meta__scaled_dot_product_efficient_backward( + grad_out: Tensor, + query: Tensor, + key: Tensor, + value: Tensor, + attn_bias: Optional[Tensor], + out: Tensor, + logsumexp: Tensor, + philox_seed: Tensor, + philox_offset: Tensor, + dropout_p: float, + grad_input_mask: List[bool], + is_causal: bool = False, + scale: Optional[float] = None, +): + batch_size = query.size(0) + num_heads = query.size(1) + max_q = query.size(2) + head_dim = query.size(3) + head_dim_v = value.size(3) + + max_k = key.size(2) + + grad_q = torch.empty_permuted( + (batch_size, num_heads, max_q, head_dim), + (0, 2, 1, 3), + dtype=query.dtype, + device=query.device, + ) + grad_k = torch.empty_permuted( + (batch_size, num_heads, max_k, head_dim), + (0, 2, 1, 3), + dtype=key.dtype, + device=key.device, + ) + grad_v = torch.empty_permuted( + (batch_size, num_heads, max_k, head_dim_v), + (0, 2, 1, 3), + dtype=value.dtype, + device=value.device, + ) + grad_bias = None + if attn_bias is not None and grad_input_mask[3]: + lastDim = attn_bias.size(-1) + lastDimAligned = lastDim if lastDim % 16 == 0 else lastDim + 16 - lastDim % 16 + new_sizes = list(attn_bias.size()) + new_sizes[-1] = lastDimAligned + grad_bias = torch.empty( + new_sizes, dtype=attn_bias.dtype, device=attn_bias.device + ) + grad_bias = grad_bias[..., :lastDim] + + return grad_q, grad_k, grad_v, grad_bias + + +@register_meta( + [ + aten._flash_attention_forward, + ] +) +def meta__flash_attention_forward( + query: Tensor, + key: Tensor, + value: Tensor, + cum_seq_q: Optional[Tensor], + cum_seq_k: Optional[Tensor], + max_q: int, + max_k: int, + dropout_p: float, + is_causal: bool, + return_debug_mask: bool, + scale: Optional[float] = None, +): + batch_size = query.size(0) + max_seqlen_batch_q = query.size(1) + num_heads = query.size(2) + head_dim = query.size(3) + + max_seqlen_batch_k = key.size(1) + + # Cuda Path + attention = torch.empty_like(query) + logsumexp = torch.empty( + (batch_size, num_heads, max_seqlen_batch_q), + dtype=torch.float, + device=query.device, + ) + + if return_debug_mask: + blocksize_c = 128 if head_dim > 64 else 256 + max_seqlen_k = math.ceil(max_seqlen_batch_q / blocksize_c) + if max_seqlen_batch_k <= 128: + max_seqlen_k = 128 + elif max_seqlen_batch_k <= 256: + max_seqlen_k = 256 + debug_mask = torch.empty( + (batch_size, num_heads, max_seqlen_batch_q, max_seqlen_k), + dtype=query.dtype, + device=query.device, + ) + else: + debug_mask = torch.empty(0, dtype=query.dtype, device=query.device) + + # See Note [Seed and Offset]: + return ( + attention, + logsumexp, + torch.empty((), dtype=torch.long, device="meta"), + torch.empty((), dtype=torch.long, device="meta"), + debug_mask, + ) + + +@register_meta( + [ + aten._flash_attention_backward, + ] +) +def meta__flash_attention_backward( + grad_out: Tensor, + query: Tensor, + key: Tensor, + value: Tensor, + out: Tensor, + logsumexp: Tensor, + cum_seq_q: Tensor, + cum_seq_k: Tensor, + max_q: int, + max_k: int, + dropout_p: float, + is_causal: bool, + philox_seed: Tensor, + philox_offset: Tensor, + scale: Optional[float] = None, +): + grad_query = torch.empty_like(query) + grad_key = torch.empty_like(key) + grad_value = torch.empty_like(value) + + return grad_query, grad_key, grad_value + + +@register_meta( + [ + aten._efficient_attention_forward, + ] +) +def meta__efficient_attention_forward( + query: Tensor, + key: Tensor, + value: Tensor, + bias: Optional[Tensor], + cu_seqlens_q: Optional[Tensor], + cu_seqlens_k: Optional[Tensor], + max_seqlen_q: Optional[int], + dropout_p: float, + custom_mask_type: int, + compute_log_sumexp: bool = False, + scale: Optional[float] = None, + causal_diagonal: Optional[Tensor] = None, + seqlen_k: Optional[Tensor] = None, +): + B = query.size(0) + M = query.size(1) + N = key.size(1) + num_heads = query.size(-2) + K = query.size(-1) + Kv = value.size(-1) + + res = torch.empty(B, M, num_heads, Kv, dtype=query.dtype, device=query.device) + + logsumexp_dim = math.ceil(M / 32) * 32 if compute_log_sumexp else 0 + logsum_exp = torch.empty( + (B, num_heads, logsumexp_dim), + dtype=torch.float, + device=query.device, + ) + + # See Note [Seed and Offset]: + seed = torch.empty((), dtype=torch.long, device="meta") + offset = torch.empty((), dtype=torch.long, device="meta") + + return res, logsum_exp, seed, offset, M, N + + +@register_meta( + [ + aten._efficient_attention_backward, + ] +) +def meta__efficient_attention_backward( + grad_out: Tensor, + query: Tensor, + key: Tensor, + value: Tensor, + bias: Optional[Tensor], + cu_seqlens_q: Optional[Tensor], + cu_seqlens_k: Optional[Tensor], + max_seqlen_q: int, + max_seqlen_k: int, + logsumexp: Tensor, + dropout_p: float, + philox_seed: Tensor, + philox_offset: Tensor, + custom_mask_type: int, + bias_requires_grad: bool, + scale: Optional[float] = None, + num_splits_key: Optional[int] = None, +): + grad_query = torch.empty_like(query) + grad_key = torch.empty_like(key) + grad_value = torch.empty_like(value) + + if bias is not None: + lastDim = bias.size(-1) + lastDimAligned = lastDim if lastDim % 16 == 0 else lastDim + 16 - lastDim % 16 + new_sizes = list(bias.size()) + new_sizes[-1] = lastDimAligned + grad_bias = torch.empty(new_sizes, dtype=bias.dtype, device=bias.device) + grad_bias = grad_bias[..., :lastDim] + else: + grad_bias = torch.empty((), device=query.device) + + return grad_query, grad_key, grad_value, grad_bias + + +@register_meta([aten._scaled_mm.default]) +def meta_scaled_mm( + self: torch.Tensor, + mat2: torch.Tensor, + bias: Optional[torch.Tensor] = None, + out_dtype: Optional[torch.dtype] = None, + scale_a: Optional[torch.Tensor] = None, + scale_b: Optional[torch.Tensor] = None, + scale_result: Optional[torch.Tensor] = None, + use_fast_accum: bool = False, +): + def is_row_major(stride): + return stride[0] > stride[1] and stride[1] == 1 + + def is_col_major(shape, stride): + return stride[0] == 1 and stride[1] == shape[0] + + def is_fp8_type(dtype): + return dtype in (torch.float8_e4m3fn, torch.float8_e5m2) + + torch._check( + self.dim() == 2 and mat2.dim() == 2, + lambda: f"Inputs must be 2D but got self.dim()={self.dim()} and mat2.dim()={mat2.dim()}", + ) + torch._check( + is_row_major(self.stride()), + lambda: "self must be row_major", + ) + torch._check( + is_col_major(mat2.shape, mat2.stride()), + lambda: "mat2 must be col_major", + ) + torch._check( + self.size(1) % 16 == 0, + lambda: f"Expected self.size(0) to be divisible by 16, but got self.size(1)={self.size(1)}", + ) + torch._check( + mat2.size(0) % 16 == 0 and mat2.size(1) % 16 == 0, + lambda: f"Expected both dimensions of mat2 to be divisble by 16 but got {mat2.shape}", + ) + torch._check( + is_fp8_type(self.dtype) and is_fp8_type(mat2.dtype), + lambda: f"Expected both inputs to be fp8 types but got self.dtype={self.dtype} and mat2.dtype={mat2.dtype}", + ) + _out_dtype = out_dtype if out_dtype is not None else self.dtype + return torch.empty( + self.size(0), mat2.size(1), dtype=_out_dtype, device=self.device + ), torch.empty((), dtype=torch.float32, device=self.device) + + +@register_meta([aten.scatter_reduce.two, aten.scatter_reduce.two_out]) +@out_wrapper() +def meta_scatter_reduce_two(self, dim, index, src, reduce, include_self=True): + scatter_meta_impl(self, dim, index, src, reduce, use_new_options=True) + return self.new_empty(self.shape) + + +@register_meta(aten.scatter_reduce_.two) +def meta_scatter_reduce__two(self, dim, index, src, reduce, include_self=True): + scatter_meta_impl(self, dim, index, src, reduce, use_new_options=True) + return self + + +@register_meta([aten.multinomial.default, aten.multinomial.out]) +@out_wrapper() +def meta_multinomial(input, num_samples, replacement=False, *, generator=None): + torch._check( + 0 < input.dim() <= 2, + lambda: f"The probabilty distributions dimensions must be 1 or 2, but got {input.dim()}", + ) + if input.dim() == 1: + return torch.empty(num_samples, dtype=torch.long, device=input.device) + return torch.empty( + input.size(0), num_samples, dtype=torch.long, device=input.device + ) + + +def multiply_integers(vs): + r = 1 + for v in vs: + r *= v + return r + + +def upsample_common_check(input_size, output_size, num_spatial_dims): + torch._check( + len(output_size) == num_spatial_dims, + lambda: f"It is expected output_size equals to {num_spatial_dims}, but got size {len(output_size)}", + ) + expected_input_dims = num_spatial_dims + 2 # N, C, ... + torch._check( + len(input_size) == expected_input_dims, + lambda: f"It is expected input_size equals to {expected_input_dims}, but got size {len(input_size)}", + ) + + torch._check( + all(s > 0 for s in input_size[2:]) and all(s > 0 for s in output_size), + lambda: f"Input and output sizes should be greater than 0, but got " + f"input size {input_size} and output size {output_size}", + ) + + nbatch, channels = input_size[:2] + return (nbatch, channels, *output_size) + + +@register_meta( + [aten.upsample_nearest1d.default, aten._upsample_nearest_exact1d.default] +) +def upsample_nearest1d(input, output_size, scales=None): + torch._check( + input.numel() != 0 or multiply_integers(input.size()[1:]), + lambda: f"Non-empty 3D data tensor expected but got a tensor with sizes {input.size()}", + ) + full_output_size = upsample_common_check( + input.size(), output_size, num_spatial_dims=1 + ) + return input.new_empty(full_output_size).to( + memory_format=utils.suggest_memory_format(input) + ) + + +@register_meta( + [aten.upsample_nearest2d.default, aten._upsample_nearest_exact2d.default] +) +def upsample_nearest2d(input, output_size, scales_h=None, scales_w=None): + torch._check( + input.numel() != 0 or multiply_integers(input.size()[1:]), + lambda: f"Non-empty 4D data tensor expected but got a tensor with sizes {input.size()}", + ) + full_output_size = upsample_common_check( + input.size(), output_size, num_spatial_dims=2 + ) + output = input.new_empty(full_output_size) + + # convert output to correct memory format, if necessary + memory_format = utils.suggest_memory_format(input) + + # following "heuristic: only use channels_last path when it's faster than the contiguous path" + _, n_channels, _, _ = input.shape + if input.device.type == "cuda" and n_channels < 4: + memory_format = torch.contiguous_format + + output = output.contiguous(memory_format=memory_format) + + return output + + +@register_meta( + [ + aten.upsample_nearest2d_backward.default, + aten._upsample_nearest_exact2d_backward.default, + ] +) +def upsample_nearest2d_backward( + grad_output: Tensor, + output_size: Sequence[Union[int, torch.SymInt]], + input_size: Sequence[Union[int, torch.SymInt]], + scales_h: Optional[float] = None, + scales_w: Optional[float] = None, +): + full_output_size = upsample_common_check( + input_size, output_size, num_spatial_dims=2 + ) + torch._check( + grad_output.ndim == 4, + lambda: f"Expected grad_output to be a tensor of dimension 4 but got: dimension {grad_output.ndim}", + ) + for i in range(4): + torch._check( + grad_output.size(i) == full_output_size[i], + lambda: ( + f"Expected grad_output to have the same shape as output;" + f" output.size({i}) = {full_output_size[i]}" + f" but got grad_output.size({i}) = {grad_output.size(i)}" + ), + ) + + return grad_output.new_empty(input_size).to( + memory_format=utils.suggest_memory_format(grad_output) + ) # type: ignore[call-overload] + + +@register_meta( + [aten.upsample_nearest3d.default, aten._upsample_nearest_exact3d.default] +) +def upsample_nearest3d(input, output_size, scales_d=None, scales_h=None, scales_w=None): + torch._check( + input.numel() != 0 or multiply_integers(input.size()[1:]), + lambda: f"Non-empty 5D data tensor expected but got a tensor with sizes {input.size()}", + ) + full_output_size = upsample_common_check( + input.size(), output_size, num_spatial_dims=3 + ) + return input.new_empty(full_output_size).to( + memory_format=utils.suggest_memory_format(input) + ) + + +@register_meta( + [ + aten.sort.default, + aten.sort.stable, + aten.sort.values, + aten.sort.values_stable, + ] +) +def meta_sort(self, stable=None, dim=-1, descending=False, values=None, indices=None): + v, i = torch.empty_like(self), torch.empty_like(self, dtype=torch.int64) + if values is not None and indices is not None: + assert isinstance(values, TensorLike) + assert isinstance(indices, TensorLike) + # Makes sure values and indices have the same strides. For cases where + # these have different shapes, like (5, 10, 5) and (0) in msort. + out_shape = v.shape + out_stride = v.stride() + values = _maybe_resize_out(values, out_shape) + indices = _maybe_resize_out(indices, out_shape) + values.as_strided_(out_shape, out_stride) + indices.as_strided_(out_shape, out_stride) + _safe_copy_out(copy_from=v, copy_to=values) # type: ignore[arg-type] + _safe_copy_out(copy_from=i, copy_to=indices) # type: ignore[arg-type] + return values, indices + return v, i + + +@register_meta(aten.argsort.stable) +def meta_argsort(self, *, stable, dim=-1, descending=False): + return meta_sort(self, stable=stable, dim=dim, descending=descending)[1] + + +def rnn_cell_checkSizes( + input_gates, hidden_gates, input_bias, hidden_bias, factor, prev_hidden +): + torch._check(input_gates.ndim == 2, lambda: f"{input_gates.ndim} != 2") + torch._check( + input_gates.shape == hidden_gates.shape, + lambda: f"{input_gates.shape} != {hidden_gates.shape}", + ) + gates_size = input_gates.size(1) + if input_bias is not None: + torch._check(input_bias.ndim == 1, lambda: f"{input_bias.ndim} != 1") + torch._check( + input_bias.numel() == gates_size, + lambda: f"{input_bias.numel()} != {gates_size}", + ) + torch._check( + input_bias.shape == hidden_bias.shape, + lambda: f"{input_bias.shape} != {hidden_bias.shape}", + ) + torch._check(prev_hidden.ndim == 2, lambda: f"{prev_hidden.ndim} != 2") + expected_prev_hidden_numel = input_gates.size(0) * gates_size // factor + torch._check( + prev_hidden.numel() == expected_prev_hidden_numel, + lambda: f"{prev_hidden.numel()} != {input_gates.size(0)} * {gates_size} // {factor} (aka {expected_prev_hidden_numel})", + ) + torch._check( + all( + x.device == input_gates.device + for x in [hidden_gates, input_bias, hidden_bias, prev_hidden] + ), + lambda: "expected all inputs to be same device", + ) + + +@register_meta(aten._thnn_fused_lstm_cell.default) +def _thnn_fused_lstm_cell_meta( + input_gates, hidden_gates, cx, input_bias=None, hidden_bias=None +): + rnn_cell_checkSizes(input_gates, hidden_gates, input_bias, hidden_bias, 4, cx) + workspace = torch.empty_like(input_gates, memory_format=torch.contiguous_format) + hy = torch.empty_like(cx, memory_format=torch.contiguous_format) + cy = torch.empty_like(cx, memory_format=torch.contiguous_format) + return (hy, cy, workspace) + + +@register_meta(aten._cudnn_rnn.default) +def _cudnn_rnn( + input, + weight, + weight_stride0, + weight_buf, + hx, + cx, + mode, + hidden_size, + proj_size, + num_layers, + batch_first, + dropout, + train, + bidirectional, + batch_sizes, + dropout_state, +): + is_input_packed = len(batch_sizes) != 0 + if is_input_packed: + seq_length = len(batch_sizes) + mini_batch = batch_sizes[0] + batch_sizes_sum = input.shape[0] + else: + seq_length = input.shape[1] if batch_first else input.shape[0] + mini_batch = input.shape[0] if batch_first else input.shape[1] + batch_sizes_sum = -1 + + num_directions = 2 if bidirectional else 1 + out_size = proj_size if proj_size != 0 else hidden_size + if is_input_packed: + out_shape = [batch_sizes_sum, out_size * num_directions] + else: + out_shape = ( + [mini_batch, seq_length, out_size * num_directions] + if batch_first + else [seq_length, mini_batch, out_size * num_directions] + ) + output = input.new_empty(out_shape) + + cell_shape = [num_layers * num_directions, mini_batch, hidden_size] + if cx is None: + cy = torch.empty(0, device=input.device) + else: + cy = cx.new_empty(cell_shape) + + hy = hx.new_empty([num_layers * num_directions, mini_batch, out_size]) + + # TODO: Query cudnnGetRNNTrainingReserveSize (expose to python) + reserve_shape = 0 if train else 0 + reserve = input.new_empty(reserve_shape, dtype=torch.uint8) + + return output, hy, cy, reserve, weight_buf + + +@register_meta(aten.mkldnn_rnn_layer.default) +def mkldnn_rnn_layer( + input, + w0, + w1, + w2, + w3, + hx_, + cx_, + reverse, + batch_sizes, + mode, + hidden_size, + num_layers, + has_biases, + bidirectional, + batch_first, + train, +): + seq_length = input.shape[1] if batch_first else input.shape[0] + mini_batch = input.shape[0] if batch_first else input.shape[1] + output_chanels = hidden_size + out_shape = ( + [mini_batch, seq_length, output_chanels] + if batch_first + else [seq_length, mini_batch, output_chanels] + ) + output = input.new_empty(out_shape) + if hx_ is None: + hy = torch.empty(0, device=input.device) + else: + hy = hx_.new_empty(hx_.shape) + if cx_ is None: + cy = torch.empty(0, device=input.device) + else: + cy = cx_.new_empty(cx_.shape) + workspace = torch.empty(0, device=input.device, dtype=torch.uint8) + return output, hy, cy, workspace + + +def zero_numel_check_dims(self, dim, fn_name): + if self.ndim == 0: + torch._check_index( + dim == 0 or dim == -1, + lambda: f"{fn_name}: Expected reduction dim -1 or 0 for scalar but got {dim}", + ) + else: + torch._check_index( + self.size(dim) != 0, + lambda: f"{fn_name}: Expected reduction dim {dim} to have non-zero size.", + ) + + +# From aten/src/ATen/native/ReduceOps.cpp +def check_argmax_argmin(name, self, dim): + if dim is not None: + dim = maybe_wrap_dim(dim, self.dim()) + zero_numel_check_dims(self, dim, name) + else: + torch._check( + self.numel() != 0, + lambda: f"{name}: Expected reduction dim to be specified for input.numel() == 0.", + ) + + +@register_meta([aten.argmax.default, aten.argmin.default]) +def argmax_argmin_meta(self, dim=None, keepdim=False): + check_argmax_argmin("argmax", self, dim) + dims = utils.reduction_dims(self.shape, (dim,) if dim is not None else None) + shape = _compute_reduction_shape(self, dims, keepdim) + return self.new_empty(shape, dtype=torch.int64) + + +@register_meta(aten.scalar_tensor.default) +def scalar_tensor(s, dtype=None, layout=None, device=None, pin_memory=None): + return torch.empty( + (), dtype=dtype, layout=layout, device=device, pin_memory=pin_memory + ) + + +@register_meta(aten.topk.default) +def topk_meta(self, k, dim=-1, largest=True, sorted=True): + # From aten/src/ATen/native/Sorting.cpp + dim = maybe_wrap_dim(dim, self.dim(), wrap_scalar=True) + torch._check( + k >= 0 and k <= (self.size(dim) if self.dim() > 0 else 1), + lambda: "selected index k out of range", + ) + sliceSize = 1 if self.dim() == 0 else self.size(dim) + torch._check(k >= 0 and k <= sliceSize, lambda: "k not in range for dimension") + + topKSize = list(self.shape) + if len(topKSize) > 0: + topKSize[dim] = k + return self.new_empty(topKSize), self.new_empty(topKSize, dtype=torch.int64) + + +legacy_contiguous_memory_format = torch.contiguous_format + + +# From aten/src/ATen/native/cuda/RNN.cu +def checkLSTMBackwardSizes(grad_hy, grad_cy, cx, cy, workspace): + defined_grad = grad_hy if grad_hy is not None else grad_cy + torch._check(defined_grad.dim() == 2, lambda: "") + exp_size = defined_grad.size() + if grad_hy is not None: + torch._check(grad_hy.size() == exp_size, lambda: "") + if grad_cy is not None: + torch._check(grad_cy.size() == exp_size, lambda: "") + torch._check(cx.size() == exp_size, lambda: "") + torch._check(cy.size() == exp_size, lambda: "") + torch._check(workspace.dim() == 2, lambda: "") + torch._check(workspace.numel() == exp_size[0] * exp_size[1] * 4, lambda: "") + + +# From aten/src/ATen/native/cuda/RNN.cu +@register_meta(aten._thnn_fused_lstm_cell_backward_impl.default) +def _thnn_fused_lstm_cell_backward_impl(grad_hy, grad_cy, cx, cy, workspace, has_bias): + if grad_hy is None and grad_cy is None: + return None, None, None + checkLSTMBackwardSizes(grad_hy, grad_cy, cx, cy, workspace) + grad_gates = torch.empty_like( + workspace, memory_format=legacy_contiguous_memory_format + ) + grad_cx = torch.empty_like(cx, memory_format=legacy_contiguous_memory_format) + grad_bias = grad_gates.sum(0, keepdim=False) if has_bias else None + return grad_gates, grad_cx, grad_bias + + +# From aten/src/ATen/native/mps/operations/Linear.mm +@register_meta(aten.linear_backward.default) +def linear_backward(input_, grad_output_, weight_, output_mask): + grad_input = None + grad_weight = None + grad_bias = None + if output_mask[0]: + grad_input = grad_output_.new_empty(input_.size()) + if output_mask[1] or output_mask[2]: + grad_weight = grad_output_.new_empty((grad_output_.size(-1), input_.size(-1))) + grad_bias = grad_output_.new_empty(grad_output_.size(-1)) + return (grad_input, grad_weight, grad_bias) + + +@register_meta(aten.pixel_shuffle.default) +def meta_pixel_shuffle(self, upscale_factor): + assert ( + len(self.shape) > 2 and self.shape[-3] % (upscale_factor * upscale_factor) == 0 + ), f"Invalid input shape for pixel_shuffle: {self.shape} with upscale_factor = {upscale_factor}" + + def is_channels_last(ten): + return torch._prims_common.suggest_memory_format(ten) == torch.channels_last + + def pick_memory_format(): + if is_channels_last(self): + if device_hint(self) == "cuda": + return torch.contiguous_format + else: + return torch.channels_last + elif self.is_contiguous(memory_format=torch.contiguous_format): + return torch.contiguous_format + elif self.is_contiguous(memory_format=torch.preserve_format): + return torch.preserve_format + + C = self.shape[-3] // (upscale_factor * upscale_factor) + Hr = self.shape[-2] * upscale_factor + Wr = self.shape[-1] * upscale_factor + out_shape = (*self.shape[:-3], C, Hr, Wr) + + out = self.new_empty(out_shape) + out = out.to(memory_format=pick_memory_format()) # type: ignore[call-overload] + return out + + +@register_meta(aten.mkldnn_rnn_layer_backward.default) +def mkldnn_rnn_layer_backward( + input, + weight0, + weight1, + weight2, + weight3, + hx_, + cx_tmp, + output, + hy_, + cy_, + grad_output_r_opt, + grad_hy_r_opt, + grad_cy_r_opt, + reverse, + mode, + hidden_size, + num_layers, + has_biases, + train, + bidirectional, + batch_sizes, + batch_first, + workspace, +): + diff_x = input.new_empty(input.shape) + diff_hx = hx_.new_empty(hx_.shape) + diff_cx = cx_tmp.new_empty(cx_tmp.shape) + diff_w1 = weight0.new_empty(weight0.shape) + diff_w2 = weight1.new_empty(weight1.shape) + diff_b = weight2.new_empty(weight2.shape) + return diff_x, diff_w1, diff_w2, diff_b, diff_b, diff_hx, diff_cx + + +@register_meta([aten.bucketize.Tensor, aten.bucketize.Tensor_out]) +@out_wrapper() +def meta_bucketize(self, boundaries, *, out_int32=False, right=False): + return torch.empty_like( + self, dtype=torch.int32 if out_int32 else torch.int64 + ).contiguous() + + +@register_meta(aten._upsample_bilinear2d_aa.default) +def meta_upsample_bilinear2d_aa( + input, output_size, align_corners, scales_h=None, scales_w=None +): + full_output_size = upsample_common_check( + input.size(), output_size, num_spatial_dims=2 + ) + torch._check( + input.numel() != 0 or all(size > 0 for size in input.size()[1:]), + lambda: f"Non-empty 4D data tensor expected but got a tensor with sizes {input.size()}", + ) + return input.new_empty(full_output_size).to( + memory_format=utils.suggest_memory_format(input) + ) + + +# From aten/src/ATen/native/cuda/AmpKernels.cu +@register_meta(aten._amp_foreach_non_finite_check_and_unscale_.default) +def _amp_foreach_non_finite_check_and_unscale_(self, found_inf, inv_scale): + torch._check( + found_inf.numel() == 1, lambda: "found_inf must be a 1-element tensor." + ) + torch._check( + inv_scale.numel() == 1, lambda: "inv_scale must be a 1-element tensor." + ) + torch._check( + found_inf.dtype.is_floating_point, + lambda: "found_inf must be a float tensor.", + ) + torch._check( + inv_scale.dtype.is_floating_point, + lambda: "inv_scale must be a float tensor.", + ) + + +# From aten/src/ATen/native/UnaryOps.cpp +@register_meta([aten.nan_to_num.default, aten.nan_to_num.out]) +@out_wrapper() +def nan_to_num(self, nan=None, posinf=None, neginf=None): + result_size = list(self.size()) + return self.new_empty(result_size) + + +@register_meta(torch.ops.aten.transpose_) +def transpose_(self, dim0, dim1): + assert self.layout not in { + torch.sparse_csr, + torch.sparse_csc, + torch.sparse_bsr, + torch.sparse_bsc, + }, f"torch.transpose_: in-place transposition is not supported for {self.layout} layout" + + ndims = self.ndim + + dim0 = maybe_wrap_dim(dim0, ndims) + dim1 = maybe_wrap_dim(dim1, ndims) + + if dim0 == dim1: + return self + + size = list(self.size()) + stride = list(self.stride()) + + stride[dim0], stride[dim1] = stride[dim1], stride[dim0] + size[dim0], size[dim1] = size[dim1], size[dim0] + + self.as_strided_(size, stride) + return self + + +@register_meta(torch.ops.aten.t_) +def t_(self): + ndims = self.ndim + + if self.is_sparse: + sparse_dim = self.sparse_dim() + dense_dim = self.dense_dim() + assert ( + sparse_dim <= 2 and dense_dim == 0 + ), f"t_ expects a tensor with <= 2 sparse and 0 dense dimensions, but got {sparse_dim} sparse and {dense_dim} dense dimensions" # noqa: B950 + else: + assert ( + self.dim() <= 2 + ), f"t_ expects a tensor with <= 2 dimensions, but self is {ndims}D" + + return transpose_(self, 0, 0 if ndims < 2 else 1) + + +@register_meta(aten.searchsorted) +@out_wrapper() +def meta_searchsorted( + sorted_sequence, self, *, out_int32=False, right=False, side=None, sorter=None +): + dtype = torch.int32 if out_int32 else torch.int64 + if isinstance(self, torch.Tensor): + return torch.empty_like(self, dtype=dtype).contiguous() + else: # Scalar + return torch.empty((), dtype=dtype, device=sorted_sequence.device) + + +@register_meta(aten.polygamma) +@out_wrapper() +def meta_polygamma(n: int, self: Tensor) -> Tensor: + torch._check(n >= 0, lambda: "polygamma(n, x) does not support negative n.") + _, result_dtype = elementwise_dtypes( + self, + type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, + ) + return torch.empty_like(self, dtype=result_dtype) + + +def _create_unary_float_meta_func(func): + @register_meta(func) + @out_wrapper() + def _f(x): + return elementwise_meta( + x, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT + ) + + return _f + + +def _create_binary_float_meta_func(func): + @register_meta(func) + @out_wrapper() + def _f(x, y): + return elementwise_meta( + x, y, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT + ) + + return _f + + +_create_unary_float_meta_func(aten.special_airy_ai) +_create_unary_float_meta_func(aten.special_bessel_y0) +_create_unary_float_meta_func(aten.special_bessel_y1) +_create_unary_float_meta_func(aten.special_modified_bessel_i0) +_create_unary_float_meta_func(aten.special_modified_bessel_i1) +_create_unary_float_meta_func(aten.special_modified_bessel_k0) +_create_unary_float_meta_func(aten.special_modified_bessel_k1) +_create_unary_float_meta_func(aten.special_scaled_modified_bessel_k0) +_create_unary_float_meta_func(aten.special_scaled_modified_bessel_k1) + + +_create_binary_float_meta_func(aten.special_chebyshev_polynomial_t) +_create_binary_float_meta_func(aten.special_chebyshev_polynomial_u) +_create_binary_float_meta_func(aten.special_hermite_polynomial_h) +_create_binary_float_meta_func(aten.special_hermite_polynomial_he) +_create_binary_float_meta_func(aten.special_laguerre_polynomial_l) + + +# We must also trigger meta registrations from PrimTorch ref +# decompositions +import torch._refs +import torch._refs.nn.functional +import torch._refs.special + + +def activate_meta(): + activate_meta_table = {} + + # For a given op, we pick the most specific decomp function from + # global_decomp_table in the precedence order of meta > post_autograd > pre_autograd + for type in ["meta", "post_autograd", "pre_autograd"]: + registry = global_decomposition_table[type] + + for opo in registry: + if opo not in activate_meta_table: + activate_meta_table[opo] = registry[opo] + + for op_overload, fn in activate_meta_table.items(): + # Don't register meta for HigherOrderOp's decomp. + # We can reconsider this in the future, but in general, + # the way you do a meta for a HigherOrderOp is different from + # OpOverload. + if isinstance(op_overload, torch._ops.HigherOrderOperator): + continue + assert isinstance(op_overload, OpOverload) + + op_overload.py_impl(torch._C.DispatchKey.Meta)(fn) + + if torch._C._dispatch_has_kernel_for_dispatch_key( + op_overload.name(), "CompositeImplicitAutograd" + ): + # Internally, we shouldn't be registering meta kernels for any operators that + # have CompositeImplicitAutograd kernels. + # Instead, we should be letting those decompositions run, and writing meta kernels + # only for the base operators. + if op_overload in global_decomposition_table["meta"]: + raise RuntimeError( + f"{op_overload} is a CompositeImplicitAutograd op, we shouldn't " + "register meta function for it. Instead, we should let the decomposition run and write " + "meta kernels for the base operators." + ) + pass + elif op_overload.is_view: + # Attempting to register a python meta kernel for a view operator. + # We shouldn't do this, because the output will report as not having aliased storages. + # All view ops have meta kernels in C++ today, so we should use those instead. + pass + elif op_overload.name() in { + "aten::empty_strided", # causing infinite recursion, test_meta.py + "aten::clone", # causing infinite recursion + "aten::_to_copy", # causing infinite recursion, test_serialization.py -k test_tensor_subclass_getstate_overwrite # noqa: B950 + "aten::copy_", # Exception not raised, test_torch.py -k test_storage_meta_errors_cpu_int64 # noqa: B950 + "aten::constant_pad_nd", # requires_grad mismatch, test_ops.py -k test_fake_crossref_backward_amp_istft_cuda_float32 # noqa: B950 + "aten::rot90", # requires_grad mismatch! test_ops.py -k test_fake_crossref_backward_amp_rot90_cuda_float32 # noqa: B950 + "aten::as_strided_scatter", # requires_grad mismatch, test_ops.py -k test_fake_crossref_backward_no_amp_as_strided_scatter_cuda_float32 # noqa: B950 + }: + pass + else: + if "mkldnn::" in op_overload.name(): + _meta_lib_dont_use_me_use_register_meta_for_mkldnn.impl(op_overload, fn) + elif "mkl::" in op_overload.name(): + _meta_lib_dont_use_me_use_register_meta_for_mkl.impl(op_overload, fn) + elif "onednn::" in op_overload.name(): + _meta_lib_dont_use_me_use_register_meta_for_onednn.impl(op_overload, fn) + elif "quantized::" in op_overload.name(): + _meta_lib_dont_use_me_use_register_meta_for_quantized.impl( + op_overload, fn + ) + else: + _meta_lib_dont_use_me_use_register_meta.impl(op_overload, fn) + + +activate_meta()