diff --git "a/env-llmeval/lib/python3.10/site-packages/torch/_tensor_docs.py" "b/env-llmeval/lib/python3.10/site-packages/torch/_tensor_docs.py" new file mode 100644--- /dev/null +++ "b/env-llmeval/lib/python3.10/site-packages/torch/_tensor_docs.py" @@ -0,0 +1,6948 @@ +"""Adds docstrings to Tensor functions""" + +import torch._C +from torch._C import _add_docstr as add_docstr +from ._torch_docs import parse_kwargs, reproducibility_notes + + +def add_docstr_all(method, docstr): + add_docstr(getattr(torch._C.TensorBase, method), docstr) + + +common_args = parse_kwargs( + """ + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. +""" +) + +new_common_args = parse_kwargs( + """ + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. +""" +) + +add_docstr_all( + "new_tensor", + """ +new_tensor(data, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ +pin_memory=False) -> Tensor +""" + + r""" + +Returns a new Tensor with :attr:`data` as the tensor data. +By default, the returned Tensor has the same :class:`torch.dtype` and +:class:`torch.device` as this tensor. + +.. warning:: + + :func:`new_tensor` always copies :attr:`data`. If you have a Tensor + ``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_` + or :func:`torch.Tensor.detach`. + If you have a numpy array and want to avoid a copy, use + :func:`torch.from_numpy`. + +.. warning:: + + When data is a tensor `x`, :func:`new_tensor()` reads out 'the data' from whatever it is passed, + and constructs a leaf variable. Therefore ``tensor.new_tensor(x)`` is equivalent to ``x.clone().detach()`` + and ``tensor.new_tensor(x, requires_grad=True)`` is equivalent to ``x.clone().detach().requires_grad_(True)``. + The equivalents using ``clone()`` and ``detach()`` are recommended. + +Args: + data (array_like): The returned Tensor copies :attr:`data`. + +Keyword args: + {dtype} + {device} + {requires_grad} + {layout} + {pin_memory} + +Example:: + + >>> tensor = torch.ones((2,), dtype=torch.int8) + >>> data = [[0, 1], [2, 3]] + >>> tensor.new_tensor(data) + tensor([[ 0, 1], + [ 2, 3]], dtype=torch.int8) + +""".format( + **new_common_args + ), +) + +add_docstr_all( + "new_full", + """ +new_full(size, fill_value, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ +pin_memory=False) -> Tensor +""" + + r""" + +Returns a Tensor of size :attr:`size` filled with :attr:`fill_value`. +By default, the returned Tensor has the same :class:`torch.dtype` and +:class:`torch.device` as this tensor. + +Args: + fill_value (scalar): the number to fill the output tensor with. + +Keyword args: + {dtype} + {device} + {requires_grad} + {layout} + {pin_memory} + +Example:: + + >>> tensor = torch.ones((2,), dtype=torch.float64) + >>> tensor.new_full((3, 4), 3.141592) + tensor([[ 3.1416, 3.1416, 3.1416, 3.1416], + [ 3.1416, 3.1416, 3.1416, 3.1416], + [ 3.1416, 3.1416, 3.1416, 3.1416]], dtype=torch.float64) + +""".format( + **new_common_args + ), +) + +add_docstr_all( + "new_empty", + """ +new_empty(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ +pin_memory=False) -> Tensor +""" + + r""" + +Returns a Tensor of size :attr:`size` filled with uninitialized data. +By default, the returned Tensor has the same :class:`torch.dtype` and +:class:`torch.device` as this tensor. + +Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + +Keyword args: + {dtype} + {device} + {requires_grad} + {layout} + {pin_memory} + +Example:: + + >>> tensor = torch.ones(()) + >>> tensor.new_empty((2, 3)) + tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], + [ 3.0949e-41, 4.4842e-44, 0.0000e+00]]) + +""".format( + **new_common_args + ), +) + +add_docstr_all( + "new_empty_strided", + """ +new_empty_strided(size, stride, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ +pin_memory=False) -> Tensor +""" + + r""" + +Returns a Tensor of size :attr:`size` and strides :attr:`stride` filled with +uninitialized data. By default, the returned Tensor has the same +:class:`torch.dtype` and :class:`torch.device` as this tensor. + +Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + +Keyword args: + {dtype} + {device} + {requires_grad} + {layout} + {pin_memory} + +Example:: + + >>> tensor = torch.ones(()) + >>> tensor.new_empty_strided((2, 3), (3, 1)) + tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], + [ 3.0949e-41, 4.4842e-44, 0.0000e+00]]) + +""".format( + **new_common_args + ), +) + +add_docstr_all( + "new_ones", + """ +new_ones(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ +pin_memory=False) -> Tensor +""" + + r""" + +Returns a Tensor of size :attr:`size` filled with ``1``. +By default, the returned Tensor has the same :class:`torch.dtype` and +:class:`torch.device` as this tensor. + +Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + +Keyword args: + {dtype} + {device} + {requires_grad} + {layout} + {pin_memory} + +Example:: + + >>> tensor = torch.tensor((), dtype=torch.int32) + >>> tensor.new_ones((2, 3)) + tensor([[ 1, 1, 1], + [ 1, 1, 1]], dtype=torch.int32) + +""".format( + **new_common_args + ), +) + +add_docstr_all( + "new_zeros", + """ +new_zeros(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, \ +pin_memory=False) -> Tensor +""" + + r""" + +Returns a Tensor of size :attr:`size` filled with ``0``. +By default, the returned Tensor has the same :class:`torch.dtype` and +:class:`torch.device` as this tensor. + +Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + +Keyword args: + {dtype} + {device} + {requires_grad} + {layout} + {pin_memory} + +Example:: + + >>> tensor = torch.tensor((), dtype=torch.float64) + >>> tensor.new_zeros((2, 3)) + tensor([[ 0., 0., 0.], + [ 0., 0., 0.]], dtype=torch.float64) + +""".format( + **new_common_args + ), +) + +add_docstr_all( + "abs", + r""" +abs() -> Tensor + +See :func:`torch.abs` +""", +) + +add_docstr_all( + "abs_", + r""" +abs_() -> Tensor + +In-place version of :meth:`~Tensor.abs` +""", +) + +add_docstr_all( + "absolute", + r""" +absolute() -> Tensor + +Alias for :func:`abs` +""", +) + +add_docstr_all( + "absolute_", + r""" +absolute_() -> Tensor + +In-place version of :meth:`~Tensor.absolute` +Alias for :func:`abs_` +""", +) + +add_docstr_all( + "acos", + r""" +acos() -> Tensor + +See :func:`torch.acos` +""", +) + +add_docstr_all( + "acos_", + r""" +acos_() -> Tensor + +In-place version of :meth:`~Tensor.acos` +""", +) + +add_docstr_all( + "arccos", + r""" +arccos() -> Tensor + +See :func:`torch.arccos` +""", +) + +add_docstr_all( + "arccos_", + r""" +arccos_() -> Tensor + +In-place version of :meth:`~Tensor.arccos` +""", +) + +add_docstr_all( + "acosh", + r""" +acosh() -> Tensor + +See :func:`torch.acosh` +""", +) + +add_docstr_all( + "acosh_", + r""" +acosh_() -> Tensor + +In-place version of :meth:`~Tensor.acosh` +""", +) + +add_docstr_all( + "arccosh", + r""" +acosh() -> Tensor + +See :func:`torch.arccosh` +""", +) + +add_docstr_all( + "arccosh_", + r""" +acosh_() -> Tensor + +In-place version of :meth:`~Tensor.arccosh` +""", +) + +add_docstr_all( + "add", + r""" +add(other, *, alpha=1) -> Tensor + +Add a scalar or tensor to :attr:`self` tensor. If both :attr:`alpha` +and :attr:`other` are specified, each element of :attr:`other` is scaled by +:attr:`alpha` before being used. + +When :attr:`other` is a tensor, the shape of :attr:`other` must be +:ref:`broadcastable ` with the shape of the underlying +tensor + +See :func:`torch.add` +""", +) + +add_docstr_all( + "add_", + r""" +add_(other, *, alpha=1) -> Tensor + +In-place version of :meth:`~Tensor.add` +""", +) + +add_docstr_all( + "addbmm", + r""" +addbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor + +See :func:`torch.addbmm` +""", +) + +add_docstr_all( + "addbmm_", + r""" +addbmm_(batch1, batch2, *, beta=1, alpha=1) -> Tensor + +In-place version of :meth:`~Tensor.addbmm` +""", +) + +add_docstr_all( + "addcdiv", + r""" +addcdiv(tensor1, tensor2, *, value=1) -> Tensor + +See :func:`torch.addcdiv` +""", +) + +add_docstr_all( + "addcdiv_", + r""" +addcdiv_(tensor1, tensor2, *, value=1) -> Tensor + +In-place version of :meth:`~Tensor.addcdiv` +""", +) + +add_docstr_all( + "addcmul", + r""" +addcmul(tensor1, tensor2, *, value=1) -> Tensor + +See :func:`torch.addcmul` +""", +) + +add_docstr_all( + "addcmul_", + r""" +addcmul_(tensor1, tensor2, *, value=1) -> Tensor + +In-place version of :meth:`~Tensor.addcmul` +""", +) + +add_docstr_all( + "addmm", + r""" +addmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor + +See :func:`torch.addmm` +""", +) + +add_docstr_all( + "addmm_", + r""" +addmm_(mat1, mat2, *, beta=1, alpha=1) -> Tensor + +In-place version of :meth:`~Tensor.addmm` +""", +) + +add_docstr_all( + "addmv", + r""" +addmv(mat, vec, *, beta=1, alpha=1) -> Tensor + +See :func:`torch.addmv` +""", +) + +add_docstr_all( + "addmv_", + r""" +addmv_(mat, vec, *, beta=1, alpha=1) -> Tensor + +In-place version of :meth:`~Tensor.addmv` +""", +) + +add_docstr_all( + "sspaddmm", + r""" +sspaddmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor + +See :func:`torch.sspaddmm` +""", +) + +add_docstr_all( + "smm", + r""" +smm(mat) -> Tensor + +See :func:`torch.smm` +""", +) + +add_docstr_all( + "addr", + r""" +addr(vec1, vec2, *, beta=1, alpha=1) -> Tensor + +See :func:`torch.addr` +""", +) + +add_docstr_all( + "addr_", + r""" +addr_(vec1, vec2, *, beta=1, alpha=1) -> Tensor + +In-place version of :meth:`~Tensor.addr` +""", +) + +add_docstr_all( + "align_as", + r""" +align_as(other) -> Tensor + +Permutes the dimensions of the :attr:`self` tensor to match the dimension order +in the :attr:`other` tensor, adding size-one dims for any new names. + +This operation is useful for explicit broadcasting by names (see examples). + +All of the dims of :attr:`self` must be named in order to use this method. +The resulting tensor is a view on the original tensor. + +All dimension names of :attr:`self` must be present in ``other.names``. +:attr:`other` may contain named dimensions that are not in ``self.names``; +the output tensor has a size-one dimension for each of those new names. + +To align a tensor to a specific order, use :meth:`~Tensor.align_to`. + +Examples:: + + # Example 1: Applying a mask + >>> mask = torch.randint(2, [127, 128], dtype=torch.bool).refine_names('W', 'H') + >>> imgs = torch.randn(32, 128, 127, 3, names=('N', 'H', 'W', 'C')) + >>> imgs.masked_fill_(mask.align_as(imgs), 0) + + + # Example 2: Applying a per-channel-scale + >>> def scale_channels(input, scale): + >>> scale = scale.refine_names('C') + >>> return input * scale.align_as(input) + + >>> num_channels = 3 + >>> scale = torch.randn(num_channels, names=('C',)) + >>> imgs = torch.rand(32, 128, 128, num_channels, names=('N', 'H', 'W', 'C')) + >>> more_imgs = torch.rand(32, num_channels, 128, 128, names=('N', 'C', 'H', 'W')) + >>> videos = torch.randn(3, num_channels, 128, 128, 128, names=('N', 'C', 'H', 'W', 'D')) + + # scale_channels is agnostic to the dimension order of the input + >>> scale_channels(imgs, scale) + >>> scale_channels(more_imgs, scale) + >>> scale_channels(videos, scale) + +.. warning:: + The named tensor API is experimental and subject to change. + +""", +) + +add_docstr_all( + "all", + r""" +all(dim=None, keepdim=False) -> Tensor + +See :func:`torch.all` +""", +) + +add_docstr_all( + "allclose", + r""" +allclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor + +See :func:`torch.allclose` +""", +) + +add_docstr_all( + "angle", + r""" +angle() -> Tensor + +See :func:`torch.angle` +""", +) + +add_docstr_all( + "any", + r""" +any(dim=None, keepdim=False) -> Tensor + +See :func:`torch.any` +""", +) + +add_docstr_all( + "apply_", + r""" +apply_(callable) -> Tensor + +Applies the function :attr:`callable` to each element in the tensor, replacing +each element with the value returned by :attr:`callable`. + +.. note:: + + This function only works with CPU tensors and should not be used in code + sections that require high performance. +""", +) + +add_docstr_all( + "asin", + r""" +asin() -> Tensor + +See :func:`torch.asin` +""", +) + +add_docstr_all( + "asin_", + r""" +asin_() -> Tensor + +In-place version of :meth:`~Tensor.asin` +""", +) + +add_docstr_all( + "arcsin", + r""" +arcsin() -> Tensor + +See :func:`torch.arcsin` +""", +) + +add_docstr_all( + "arcsin_", + r""" +arcsin_() -> Tensor + +In-place version of :meth:`~Tensor.arcsin` +""", +) + +add_docstr_all( + "asinh", + r""" +asinh() -> Tensor + +See :func:`torch.asinh` +""", +) + +add_docstr_all( + "asinh_", + r""" +asinh_() -> Tensor + +In-place version of :meth:`~Tensor.asinh` +""", +) + +add_docstr_all( + "arcsinh", + r""" +arcsinh() -> Tensor + +See :func:`torch.arcsinh` +""", +) + +add_docstr_all( + "arcsinh_", + r""" +arcsinh_() -> Tensor + +In-place version of :meth:`~Tensor.arcsinh` +""", +) + +add_docstr_all( + "as_strided", + r""" +as_strided(size, stride, storage_offset=None) -> Tensor + +See :func:`torch.as_strided` +""", +) + +add_docstr_all( + "as_strided_", + r""" +as_strided_(size, stride, storage_offset=None) -> Tensor + +In-place version of :meth:`~Tensor.as_strided` +""", +) + +add_docstr_all( + "atan", + r""" +atan() -> Tensor + +See :func:`torch.atan` +""", +) + +add_docstr_all( + "atan_", + r""" +atan_() -> Tensor + +In-place version of :meth:`~Tensor.atan` +""", +) + +add_docstr_all( + "arctan", + r""" +arctan() -> Tensor + +See :func:`torch.arctan` +""", +) + +add_docstr_all( + "arctan_", + r""" +arctan_() -> Tensor + +In-place version of :meth:`~Tensor.arctan` +""", +) + +add_docstr_all( + "atan2", + r""" +atan2(other) -> Tensor + +See :func:`torch.atan2` +""", +) + +add_docstr_all( + "atan2_", + r""" +atan2_(other) -> Tensor + +In-place version of :meth:`~Tensor.atan2` +""", +) + +add_docstr_all( + "arctan2", + r""" +arctan2(other) -> Tensor + +See :func:`torch.arctan2` +""", +) + +add_docstr_all( + "arctan2_", + r""" +atan2_(other) -> Tensor + +In-place version of :meth:`~Tensor.arctan2` +""", +) + +add_docstr_all( + "atanh", + r""" +atanh() -> Tensor + +See :func:`torch.atanh` +""", +) + +add_docstr_all( + "atanh_", + r""" +atanh_(other) -> Tensor + +In-place version of :meth:`~Tensor.atanh` +""", +) + +add_docstr_all( + "arctanh", + r""" +arctanh() -> Tensor + +See :func:`torch.arctanh` +""", +) + +add_docstr_all( + "arctanh_", + r""" +arctanh_(other) -> Tensor + +In-place version of :meth:`~Tensor.arctanh` +""", +) + +add_docstr_all( + "baddbmm", + r""" +baddbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor + +See :func:`torch.baddbmm` +""", +) + +add_docstr_all( + "baddbmm_", + r""" +baddbmm_(batch1, batch2, *, beta=1, alpha=1) -> Tensor + +In-place version of :meth:`~Tensor.baddbmm` +""", +) + +add_docstr_all( + "bernoulli", + r""" +bernoulli(*, generator=None) -> Tensor + +Returns a result tensor where each :math:`\texttt{result[i]}` is independently +sampled from :math:`\text{Bernoulli}(\texttt{self[i]})`. :attr:`self` must have +floating point ``dtype``, and the result will have the same ``dtype``. + +See :func:`torch.bernoulli` +""", +) + +add_docstr_all( + "bernoulli_", + r""" +bernoulli_(p=0.5, *, generator=None) -> Tensor + +Fills each location of :attr:`self` with an independent sample from +:math:`\text{Bernoulli}(\texttt{p})`. :attr:`self` can have integral +``dtype``. + +:attr:`p` should either be a scalar or tensor containing probabilities to be +used for drawing the binary random number. + +If it is a tensor, the :math:`\text{i}^{th}` element of :attr:`self` tensor +will be set to a value sampled from +:math:`\text{Bernoulli}(\texttt{p\_tensor[i]})`. In this case `p` must have +floating point ``dtype``. + +See also :meth:`~Tensor.bernoulli` and :func:`torch.bernoulli` +""", +) + +add_docstr_all( + "bincount", + r""" +bincount(weights=None, minlength=0) -> Tensor + +See :func:`torch.bincount` +""", +) + +add_docstr_all( + "bitwise_not", + r""" +bitwise_not() -> Tensor + +See :func:`torch.bitwise_not` +""", +) + +add_docstr_all( + "bitwise_not_", + r""" +bitwise_not_() -> Tensor + +In-place version of :meth:`~Tensor.bitwise_not` +""", +) + +add_docstr_all( + "bitwise_and", + r""" +bitwise_and() -> Tensor + +See :func:`torch.bitwise_and` +""", +) + +add_docstr_all( + "bitwise_and_", + r""" +bitwise_and_() -> Tensor + +In-place version of :meth:`~Tensor.bitwise_and` +""", +) + +add_docstr_all( + "bitwise_or", + r""" +bitwise_or() -> Tensor + +See :func:`torch.bitwise_or` +""", +) + +add_docstr_all( + "bitwise_or_", + r""" +bitwise_or_() -> Tensor + +In-place version of :meth:`~Tensor.bitwise_or` +""", +) + +add_docstr_all( + "bitwise_xor", + r""" +bitwise_xor() -> Tensor + +See :func:`torch.bitwise_xor` +""", +) + +add_docstr_all( + "bitwise_xor_", + r""" +bitwise_xor_() -> Tensor + +In-place version of :meth:`~Tensor.bitwise_xor` +""", +) + +add_docstr_all( + "bitwise_left_shift", + r""" +bitwise_left_shift(other) -> Tensor + +See :func:`torch.bitwise_left_shift` +""", +) + +add_docstr_all( + "bitwise_left_shift_", + r""" +bitwise_left_shift_(other) -> Tensor + +In-place version of :meth:`~Tensor.bitwise_left_shift` +""", +) + +add_docstr_all( + "bitwise_right_shift", + r""" +bitwise_right_shift(other) -> Tensor + +See :func:`torch.bitwise_right_shift` +""", +) + +add_docstr_all( + "bitwise_right_shift_", + r""" +bitwise_right_shift_(other) -> Tensor + +In-place version of :meth:`~Tensor.bitwise_right_shift` +""", +) + +add_docstr_all( + "broadcast_to", + r""" +broadcast_to(shape) -> Tensor + +See :func:`torch.broadcast_to`. +""", +) + +add_docstr_all( + "logical_and", + r""" +logical_and() -> Tensor + +See :func:`torch.logical_and` +""", +) + +add_docstr_all( + "logical_and_", + r""" +logical_and_() -> Tensor + +In-place version of :meth:`~Tensor.logical_and` +""", +) + +add_docstr_all( + "logical_not", + r""" +logical_not() -> Tensor + +See :func:`torch.logical_not` +""", +) + +add_docstr_all( + "logical_not_", + r""" +logical_not_() -> Tensor + +In-place version of :meth:`~Tensor.logical_not` +""", +) + +add_docstr_all( + "logical_or", + r""" +logical_or() -> Tensor + +See :func:`torch.logical_or` +""", +) + +add_docstr_all( + "logical_or_", + r""" +logical_or_() -> Tensor + +In-place version of :meth:`~Tensor.logical_or` +""", +) + +add_docstr_all( + "logical_xor", + r""" +logical_xor() -> Tensor + +See :func:`torch.logical_xor` +""", +) + +add_docstr_all( + "logical_xor_", + r""" +logical_xor_() -> Tensor + +In-place version of :meth:`~Tensor.logical_xor` +""", +) + +add_docstr_all( + "bmm", + r""" +bmm(batch2) -> Tensor + +See :func:`torch.bmm` +""", +) + +add_docstr_all( + "cauchy_", + r""" +cauchy_(median=0, sigma=1, *, generator=None) -> Tensor + +Fills the tensor with numbers drawn from the Cauchy distribution: + +.. math:: + + f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - \text{median})^2 + \sigma^2} + +.. note:: + Sigma (:math:`\sigma`) is used to denote the scale parameter in Cauchy distribution. +""", +) + +add_docstr_all( + "ceil", + r""" +ceil() -> Tensor + +See :func:`torch.ceil` +""", +) + +add_docstr_all( + "ceil_", + r""" +ceil_() -> Tensor + +In-place version of :meth:`~Tensor.ceil` +""", +) + +add_docstr_all( + "cholesky", + r""" +cholesky(upper=False) -> Tensor + +See :func:`torch.cholesky` +""", +) + +add_docstr_all( + "cholesky_solve", + r""" +cholesky_solve(input2, upper=False) -> Tensor + +See :func:`torch.cholesky_solve` +""", +) + +add_docstr_all( + "cholesky_inverse", + r""" +cholesky_inverse(upper=False) -> Tensor + +See :func:`torch.cholesky_inverse` +""", +) + +add_docstr_all( + "clamp", + r""" +clamp(min=None, max=None) -> Tensor + +See :func:`torch.clamp` +""", +) + +add_docstr_all( + "clamp_", + r""" +clamp_(min=None, max=None) -> Tensor + +In-place version of :meth:`~Tensor.clamp` +""", +) + +add_docstr_all( + "clip", + r""" +clip(min=None, max=None) -> Tensor + +Alias for :meth:`~Tensor.clamp`. +""", +) + +add_docstr_all( + "clip_", + r""" +clip_(min=None, max=None) -> Tensor + +Alias for :meth:`~Tensor.clamp_`. +""", +) + +add_docstr_all( + "clone", + r""" +clone(*, memory_format=torch.preserve_format) -> Tensor + +See :func:`torch.clone` +""".format( + **common_args + ), +) + +add_docstr_all( + "coalesce", + r""" +coalesce() -> Tensor + +Returns a coalesced copy of :attr:`self` if :attr:`self` is an +:ref:`uncoalesced tensor `. + +Returns :attr:`self` if :attr:`self` is a coalesced tensor. + +.. warning:: + Throws an error if :attr:`self` is not a sparse COO tensor. +""", +) + +add_docstr_all( + "contiguous", + r""" +contiguous(memory_format=torch.contiguous_format) -> Tensor + +Returns a contiguous in memory tensor containing the same data as :attr:`self` tensor. If +:attr:`self` tensor is already in the specified memory format, this function returns the +:attr:`self` tensor. + +Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.contiguous_format``. +""", +) + +add_docstr_all( + "copy_", + r""" +copy_(src, non_blocking=False) -> Tensor + +Copies the elements from :attr:`src` into :attr:`self` tensor and returns +:attr:`self`. + +The :attr:`src` tensor must be :ref:`broadcastable ` +with the :attr:`self` tensor. It may be of a different data type or reside on a +different device. + +Args: + src (Tensor): the source tensor to copy from + non_blocking (bool): if ``True`` and this copy is between CPU and GPU, + the copy may occur asynchronously with respect to the host. For other + cases, this argument has no effect. +""", +) + +add_docstr_all( + "conj", + r""" +conj() -> Tensor + +See :func:`torch.conj` +""", +) + +add_docstr_all( + "conj_physical", + r""" +conj_physical() -> Tensor + +See :func:`torch.conj_physical` +""", +) + +add_docstr_all( + "conj_physical_", + r""" +conj_physical_() -> Tensor + +In-place version of :meth:`~Tensor.conj_physical` +""", +) + +add_docstr_all( + "resolve_conj", + r""" +resolve_conj() -> Tensor + +See :func:`torch.resolve_conj` +""", +) + +add_docstr_all( + "resolve_neg", + r""" +resolve_neg() -> Tensor + +See :func:`torch.resolve_neg` +""", +) + +add_docstr_all( + "copysign", + r""" +copysign(other) -> Tensor + +See :func:`torch.copysign` +""", +) + +add_docstr_all( + "copysign_", + r""" +copysign_(other) -> Tensor + +In-place version of :meth:`~Tensor.copysign` +""", +) + +add_docstr_all( + "cos", + r""" +cos() -> Tensor + +See :func:`torch.cos` +""", +) + +add_docstr_all( + "cos_", + r""" +cos_() -> Tensor + +In-place version of :meth:`~Tensor.cos` +""", +) + +add_docstr_all( + "cosh", + r""" +cosh() -> Tensor + +See :func:`torch.cosh` +""", +) + +add_docstr_all( + "cosh_", + r""" +cosh_() -> Tensor + +In-place version of :meth:`~Tensor.cosh` +""", +) + +add_docstr_all( + "cpu", + r""" +cpu(memory_format=torch.preserve_format) -> Tensor + +Returns a copy of this object in CPU memory. + +If this object is already in CPU memory and on the correct device, +then no copy is performed and the original object is returned. + +Args: + {memory_format} + +""".format( + **common_args + ), +) + +add_docstr_all( + "count_nonzero", + r""" +count_nonzero(dim=None) -> Tensor + +See :func:`torch.count_nonzero` +""", +) + +add_docstr_all( + "cov", + r""" +cov(*, correction=1, fweights=None, aweights=None) -> Tensor + +See :func:`torch.cov` +""", +) + +add_docstr_all( + "corrcoef", + r""" +corrcoef() -> Tensor + +See :func:`torch.corrcoef` +""", +) + +add_docstr_all( + "cross", + r""" +cross(other, dim=None) -> Tensor + +See :func:`torch.cross` +""", +) + +add_docstr_all( + "cuda", + r""" +cuda(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor + +Returns a copy of this object in CUDA memory. + +If this object is already in CUDA memory and on the correct device, +then no copy is performed and the original object is returned. + +Args: + device (:class:`torch.device`): The destination GPU device. + Defaults to the current CUDA device. + non_blocking (bool): If ``True`` and the source is in pinned memory, + the copy will be asynchronous with respect to the host. + Otherwise, the argument has no effect. Default: ``False``. + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "ipu", + r""" +ipu(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor + +Returns a copy of this object in IPU memory. + +If this object is already in IPU memory and on the correct device, +then no copy is performed and the original object is returned. + +Args: + device (:class:`torch.device`): The destination IPU device. + Defaults to the current IPU device. + non_blocking (bool): If ``True`` and the source is in pinned memory, + the copy will be asynchronous with respect to the host. + Otherwise, the argument has no effect. Default: ``False``. + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "xpu", + r""" +xpu(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor + +Returns a copy of this object in XPU memory. + +If this object is already in XPU memory and on the correct device, +then no copy is performed and the original object is returned. + +Args: + device (:class:`torch.device`): The destination XPU device. + Defaults to the current XPU device. + non_blocking (bool): If ``True`` and the source is in pinned memory, + the copy will be asynchronous with respect to the host. + Otherwise, the argument has no effect. Default: ``False``. + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "logcumsumexp", + r""" +logcumsumexp(dim) -> Tensor + +See :func:`torch.logcumsumexp` +""", +) + +add_docstr_all( + "cummax", + r""" +cummax(dim) -> (Tensor, Tensor) + +See :func:`torch.cummax` +""", +) + +add_docstr_all( + "cummin", + r""" +cummin(dim) -> (Tensor, Tensor) + +See :func:`torch.cummin` +""", +) + +add_docstr_all( + "cumprod", + r""" +cumprod(dim, dtype=None) -> Tensor + +See :func:`torch.cumprod` +""", +) + +add_docstr_all( + "cumprod_", + r""" +cumprod_(dim, dtype=None) -> Tensor + +In-place version of :meth:`~Tensor.cumprod` +""", +) + +add_docstr_all( + "cumsum", + r""" +cumsum(dim, dtype=None) -> Tensor + +See :func:`torch.cumsum` +""", +) + +add_docstr_all( + "cumsum_", + r""" +cumsum_(dim, dtype=None) -> Tensor + +In-place version of :meth:`~Tensor.cumsum` +""", +) + +add_docstr_all( + "data_ptr", + r""" +data_ptr() -> int + +Returns the address of the first element of :attr:`self` tensor. +""", +) + +add_docstr_all( + "dequantize", + r""" +dequantize() -> Tensor + +Given a quantized Tensor, dequantize it and return the dequantized float Tensor. +""", +) + +add_docstr_all( + "dense_dim", + r""" +dense_dim() -> int + +Return the number of dense dimensions in a :ref:`sparse tensor ` :attr:`self`. + +.. note:: + Returns ``len(self.shape)`` if :attr:`self` is not a sparse tensor. + +See also :meth:`Tensor.sparse_dim` and :ref:`hybrid tensors `. +""", +) + +add_docstr_all( + "diag", + r""" +diag(diagonal=0) -> Tensor + +See :func:`torch.diag` +""", +) + +add_docstr_all( + "diag_embed", + r""" +diag_embed(offset=0, dim1=-2, dim2=-1) -> Tensor + +See :func:`torch.diag_embed` +""", +) + +add_docstr_all( + "diagflat", + r""" +diagflat(offset=0) -> Tensor + +See :func:`torch.diagflat` +""", +) + +add_docstr_all( + "diagonal", + r""" +diagonal(offset=0, dim1=0, dim2=1) -> Tensor + +See :func:`torch.diagonal` +""", +) + +add_docstr_all( + "diagonal_scatter", + r""" +diagonal_scatter(src, offset=0, dim1=0, dim2=1) -> Tensor + +See :func:`torch.diagonal_scatter` +""", +) + +add_docstr_all( + "as_strided_scatter", + r""" +as_strided_scatter(src, size, stride, storage_offset=None) -> Tensor + +See :func:`torch.as_strided_scatter` +""", +) + +add_docstr_all( + "fill_diagonal_", + r""" +fill_diagonal_(fill_value, wrap=False) -> Tensor + +Fill the main diagonal of a tensor that has at least 2-dimensions. +When dims>2, all dimensions of input must be of equal length. +This function modifies the input tensor in-place, and returns the input tensor. + +Arguments: + fill_value (Scalar): the fill value + wrap (bool): the diagonal 'wrapped' after N columns for tall matrices. + +Example:: + + >>> a = torch.zeros(3, 3) + >>> a.fill_diagonal_(5) + tensor([[5., 0., 0.], + [0., 5., 0.], + [0., 0., 5.]]) + >>> b = torch.zeros(7, 3) + >>> b.fill_diagonal_(5) + tensor([[5., 0., 0.], + [0., 5., 0.], + [0., 0., 5.], + [0., 0., 0.], + [0., 0., 0.], + [0., 0., 0.], + [0., 0., 0.]]) + >>> c = torch.zeros(7, 3) + >>> c.fill_diagonal_(5, wrap=True) + tensor([[5., 0., 0.], + [0., 5., 0.], + [0., 0., 5.], + [0., 0., 0.], + [5., 0., 0.], + [0., 5., 0.], + [0., 0., 5.]]) + +""", +) + +add_docstr_all( + "floor_divide", + r""" +floor_divide(value) -> Tensor + +See :func:`torch.floor_divide` +""", +) + +add_docstr_all( + "floor_divide_", + r""" +floor_divide_(value) -> Tensor + +In-place version of :meth:`~Tensor.floor_divide` +""", +) + +add_docstr_all( + "diff", + r""" +diff(n=1, dim=-1, prepend=None, append=None) -> Tensor + +See :func:`torch.diff` +""", +) + +add_docstr_all( + "digamma", + r""" +digamma() -> Tensor + +See :func:`torch.digamma` +""", +) + +add_docstr_all( + "digamma_", + r""" +digamma_() -> Tensor + +In-place version of :meth:`~Tensor.digamma` +""", +) + +add_docstr_all( + "dim", + r""" +dim() -> int + +Returns the number of dimensions of :attr:`self` tensor. +""", +) + +add_docstr_all( + "dist", + r""" +dist(other, p=2) -> Tensor + +See :func:`torch.dist` +""", +) + +add_docstr_all( + "div", + r""" +div(value, *, rounding_mode=None) -> Tensor + +See :func:`torch.div` +""", +) + +add_docstr_all( + "div_", + r""" +div_(value, *, rounding_mode=None) -> Tensor + +In-place version of :meth:`~Tensor.div` +""", +) + +add_docstr_all( + "divide", + r""" +divide(value, *, rounding_mode=None) -> Tensor + +See :func:`torch.divide` +""", +) + +add_docstr_all( + "divide_", + r""" +divide_(value, *, rounding_mode=None) -> Tensor + +In-place version of :meth:`~Tensor.divide` +""", +) + +add_docstr_all( + "dot", + r""" +dot(other) -> Tensor + +See :func:`torch.dot` +""", +) + +add_docstr_all( + "element_size", + r""" +element_size() -> int + +Returns the size in bytes of an individual element. + +Example:: + + >>> torch.tensor([]).element_size() + 4 + >>> torch.tensor([], dtype=torch.uint8).element_size() + 1 + +""", +) + +add_docstr_all( + "eq", + r""" +eq(other) -> Tensor + +See :func:`torch.eq` +""", +) + +add_docstr_all( + "eq_", + r""" +eq_(other) -> Tensor + +In-place version of :meth:`~Tensor.eq` +""", +) + +add_docstr_all( + "equal", + r""" +equal(other) -> bool + +See :func:`torch.equal` +""", +) + +add_docstr_all( + "erf", + r""" +erf() -> Tensor + +See :func:`torch.erf` +""", +) + +add_docstr_all( + "erf_", + r""" +erf_() -> Tensor + +In-place version of :meth:`~Tensor.erf` +""", +) + +add_docstr_all( + "erfc", + r""" +erfc() -> Tensor + +See :func:`torch.erfc` +""", +) + +add_docstr_all( + "erfc_", + r""" +erfc_() -> Tensor + +In-place version of :meth:`~Tensor.erfc` +""", +) + +add_docstr_all( + "erfinv", + r""" +erfinv() -> Tensor + +See :func:`torch.erfinv` +""", +) + +add_docstr_all( + "erfinv_", + r""" +erfinv_() -> Tensor + +In-place version of :meth:`~Tensor.erfinv` +""", +) + +add_docstr_all( + "exp", + r""" +exp() -> Tensor + +See :func:`torch.exp` +""", +) + +add_docstr_all( + "exp_", + r""" +exp_() -> Tensor + +In-place version of :meth:`~Tensor.exp` +""", +) + +add_docstr_all( + "exp2", + r""" +exp2() -> Tensor + +See :func:`torch.exp2` +""", +) + +add_docstr_all( + "exp2_", + r""" +exp2_() -> Tensor + +In-place version of :meth:`~Tensor.exp2` +""", +) + +add_docstr_all( + "expm1", + r""" +expm1() -> Tensor + +See :func:`torch.expm1` +""", +) + +add_docstr_all( + "expm1_", + r""" +expm1_() -> Tensor + +In-place version of :meth:`~Tensor.expm1` +""", +) + +add_docstr_all( + "exponential_", + r""" +exponential_(lambd=1, *, generator=None) -> Tensor + +Fills :attr:`self` tensor with elements drawn from the PDF (probability density function): + +.. math:: + + f(x) = \lambda e^{-\lambda x}, x > 0 + +.. note:: + In probability theory, exponential distribution is supported on interval [0, :math:`\inf`) (i.e., :math:`x >= 0`) + implying that zero can be sampled from the exponential distribution. + However, :func:`torch.Tensor.exponential_` does not sample zero, + which means that its actual support is the interval (0, :math:`\inf`). + + Note that :func:`torch.distributions.exponential.Exponential` is supported on the interval [0, :math:`\inf`) and can sample zero. +""", +) + +add_docstr_all( + "fill_", + r""" +fill_(value) -> Tensor + +Fills :attr:`self` tensor with the specified value. +""", +) + +add_docstr_all( + "floor", + r""" +floor() -> Tensor + +See :func:`torch.floor` +""", +) + +add_docstr_all( + "flip", + r""" +flip(dims) -> Tensor + +See :func:`torch.flip` +""", +) + +add_docstr_all( + "fliplr", + r""" +fliplr() -> Tensor + +See :func:`torch.fliplr` +""", +) + +add_docstr_all( + "flipud", + r""" +flipud() -> Tensor + +See :func:`torch.flipud` +""", +) + +add_docstr_all( + "roll", + r""" +roll(shifts, dims) -> Tensor + +See :func:`torch.roll` +""", +) + +add_docstr_all( + "floor_", + r""" +floor_() -> Tensor + +In-place version of :meth:`~Tensor.floor` +""", +) + +add_docstr_all( + "fmod", + r""" +fmod(divisor) -> Tensor + +See :func:`torch.fmod` +""", +) + +add_docstr_all( + "fmod_", + r""" +fmod_(divisor) -> Tensor + +In-place version of :meth:`~Tensor.fmod` +""", +) + +add_docstr_all( + "frac", + r""" +frac() -> Tensor + +See :func:`torch.frac` +""", +) + +add_docstr_all( + "frac_", + r""" +frac_() -> Tensor + +In-place version of :meth:`~Tensor.frac` +""", +) + +add_docstr_all( + "frexp", + r""" +frexp(input) -> (Tensor mantissa, Tensor exponent) + +See :func:`torch.frexp` +""", +) + +add_docstr_all( + "flatten", + r""" +flatten(start_dim=0, end_dim=-1) -> Tensor + +See :func:`torch.flatten` +""", +) + +add_docstr_all( + "gather", + r""" +gather(dim, index) -> Tensor + +See :func:`torch.gather` +""", +) + +add_docstr_all( + "gcd", + r""" +gcd(other) -> Tensor + +See :func:`torch.gcd` +""", +) + +add_docstr_all( + "gcd_", + r""" +gcd_(other) -> Tensor + +In-place version of :meth:`~Tensor.gcd` +""", +) + +add_docstr_all( + "ge", + r""" +ge(other) -> Tensor + +See :func:`torch.ge`. +""", +) + +add_docstr_all( + "ge_", + r""" +ge_(other) -> Tensor + +In-place version of :meth:`~Tensor.ge`. +""", +) + +add_docstr_all( + "greater_equal", + r""" +greater_equal(other) -> Tensor + +See :func:`torch.greater_equal`. +""", +) + +add_docstr_all( + "greater_equal_", + r""" +greater_equal_(other) -> Tensor + +In-place version of :meth:`~Tensor.greater_equal`. +""", +) + +add_docstr_all( + "geometric_", + r""" +geometric_(p, *, generator=None) -> Tensor + +Fills :attr:`self` tensor with elements drawn from the geometric distribution: + +.. math:: + + P(X=k) = (1 - p)^{k - 1} p, k = 1, 2, ... + +.. note:: + :func:`torch.Tensor.geometric_` `k`-th trial is the first success hence draws samples in :math:`\{1, 2, \ldots\}`, whereas + :func:`torch.distributions.geometric.Geometric` :math:`(k+1)`-th trial is the first success + hence draws samples in :math:`\{0, 1, \ldots\}`. +""", +) + +add_docstr_all( + "geqrf", + r""" +geqrf() -> (Tensor, Tensor) + +See :func:`torch.geqrf` +""", +) + +add_docstr_all( + "ger", + r""" +ger(vec2) -> Tensor + +See :func:`torch.ger` +""", +) + +add_docstr_all( + "inner", + r""" +inner(other) -> Tensor + +See :func:`torch.inner`. +""", +) + +add_docstr_all( + "outer", + r""" +outer(vec2) -> Tensor + +See :func:`torch.outer`. +""", +) + +add_docstr_all( + "hypot", + r""" +hypot(other) -> Tensor + +See :func:`torch.hypot` +""", +) + +add_docstr_all( + "hypot_", + r""" +hypot_(other) -> Tensor + +In-place version of :meth:`~Tensor.hypot` +""", +) + +add_docstr_all( + "i0", + r""" +i0() -> Tensor + +See :func:`torch.i0` +""", +) + +add_docstr_all( + "i0_", + r""" +i0_() -> Tensor + +In-place version of :meth:`~Tensor.i0` +""", +) + +add_docstr_all( + "igamma", + r""" +igamma(other) -> Tensor + +See :func:`torch.igamma` +""", +) + +add_docstr_all( + "igamma_", + r""" +igamma_(other) -> Tensor + +In-place version of :meth:`~Tensor.igamma` +""", +) + +add_docstr_all( + "igammac", + r""" +igammac(other) -> Tensor +See :func:`torch.igammac` +""", +) + +add_docstr_all( + "igammac_", + r""" +igammac_(other) -> Tensor +In-place version of :meth:`~Tensor.igammac` +""", +) + +add_docstr_all( + "indices", + r""" +indices() -> Tensor + +Return the indices tensor of a :ref:`sparse COO tensor `. + +.. warning:: + Throws an error if :attr:`self` is not a sparse COO tensor. + +See also :meth:`Tensor.values`. + +.. note:: + This method can only be called on a coalesced sparse tensor. See + :meth:`Tensor.coalesce` for details. +""", +) + +add_docstr_all( + "get_device", + r""" +get_device() -> Device ordinal (Integer) + +For CUDA tensors, this function returns the device ordinal of the GPU on which the tensor resides. +For CPU tensors, this function returns `-1`. + +Example:: + + >>> x = torch.randn(3, 4, 5, device='cuda:0') + >>> x.get_device() + 0 + >>> x.cpu().get_device() + -1 +""", +) + +add_docstr_all( + "values", + r""" +values() -> Tensor + +Return the values tensor of a :ref:`sparse COO tensor `. + +.. warning:: + Throws an error if :attr:`self` is not a sparse COO tensor. + +See also :meth:`Tensor.indices`. + +.. note:: + This method can only be called on a coalesced sparse tensor. See + :meth:`Tensor.coalesce` for details. +""", +) + +add_docstr_all( + "gt", + r""" +gt(other) -> Tensor + +See :func:`torch.gt`. +""", +) + +add_docstr_all( + "gt_", + r""" +gt_(other) -> Tensor + +In-place version of :meth:`~Tensor.gt`. +""", +) + +add_docstr_all( + "greater", + r""" +greater(other) -> Tensor + +See :func:`torch.greater`. +""", +) + +add_docstr_all( + "greater_", + r""" +greater_(other) -> Tensor + +In-place version of :meth:`~Tensor.greater`. +""", +) + +add_docstr_all( + "has_names", + r""" +Is ``True`` if any of this tensor's dimensions are named. Otherwise, is ``False``. +""", +) + +add_docstr_all( + "hardshrink", + r""" +hardshrink(lambd=0.5) -> Tensor + +See :func:`torch.nn.functional.hardshrink` +""", +) + +add_docstr_all( + "heaviside", + r""" +heaviside(values) -> Tensor + +See :func:`torch.heaviside` +""", +) + +add_docstr_all( + "heaviside_", + r""" +heaviside_(values) -> Tensor + +In-place version of :meth:`~Tensor.heaviside` +""", +) + +add_docstr_all( + "histc", + r""" +histc(bins=100, min=0, max=0) -> Tensor + +See :func:`torch.histc` +""", +) + +add_docstr_all( + "histogram", + r""" +histogram(input, bins, *, range=None, weight=None, density=False) -> (Tensor, Tensor) + +See :func:`torch.histogram` +""", +) + +add_docstr_all( + "index_add_", + r""" +index_add_(dim, index, source, *, alpha=1) -> Tensor + +Accumulate the elements of :attr:`alpha` times ``source`` into the :attr:`self` +tensor by adding to the indices in the order given in :attr:`index`. For example, +if ``dim == 0``, ``index[i] == j``, and ``alpha=-1``, then the ``i``\ th row of +``source`` is subtracted from the ``j``\ th row of :attr:`self`. + +The :attr:`dim`\ th dimension of ``source`` must have the same size as the +length of :attr:`index` (which must be a vector), and all other dimensions must +match :attr:`self`, or an error will be raised. + +For a 3-D tensor the output is given as:: + + self[index[i], :, :] += alpha * src[i, :, :] # if dim == 0 + self[:, index[i], :] += alpha * src[:, i, :] # if dim == 1 + self[:, :, index[i]] += alpha * src[:, :, i] # if dim == 2 + +Note: + {forward_reproducibility_note} + +Args: + dim (int): dimension along which to index + index (Tensor): indices of ``source`` to select from, + should have dtype either `torch.int64` or `torch.int32` + source (Tensor): the tensor containing values to add + +Keyword args: + alpha (Number): the scalar multiplier for ``source`` + +Example:: + + >>> x = torch.ones(5, 3) + >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) + >>> index = torch.tensor([0, 4, 2]) + >>> x.index_add_(0, index, t) + tensor([[ 2., 3., 4.], + [ 1., 1., 1.], + [ 8., 9., 10.], + [ 1., 1., 1.], + [ 5., 6., 7.]]) + >>> x.index_add_(0, index, t, alpha=-1) + tensor([[ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.]]) +""".format( + **reproducibility_notes + ), +) + +add_docstr_all( + "index_copy_", + r""" +index_copy_(dim, index, tensor) -> Tensor + +Copies the elements of :attr:`tensor` into the :attr:`self` tensor by selecting +the indices in the order given in :attr:`index`. For example, if ``dim == 0`` +and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is copied to the +``j``\ th row of :attr:`self`. + +The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the +length of :attr:`index` (which must be a vector), and all other dimensions must +match :attr:`self`, or an error will be raised. + +.. note:: + If :attr:`index` contains duplicate entries, multiple elements from + :attr:`tensor` will be copied to the same index of :attr:`self`. The result + is nondeterministic since it depends on which copy occurs last. + +Args: + dim (int): dimension along which to index + index (LongTensor): indices of :attr:`tensor` to select from + tensor (Tensor): the tensor containing values to copy + +Example:: + + >>> x = torch.zeros(5, 3) + >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) + >>> index = torch.tensor([0, 4, 2]) + >>> x.index_copy_(0, index, t) + tensor([[ 1., 2., 3.], + [ 0., 0., 0.], + [ 7., 8., 9.], + [ 0., 0., 0.], + [ 4., 5., 6.]]) +""", +) + +add_docstr_all( + "index_fill_", + r""" +index_fill_(dim, index, value) -> Tensor + +Fills the elements of the :attr:`self` tensor with value :attr:`value` by +selecting the indices in the order given in :attr:`index`. + +Args: + dim (int): dimension along which to index + index (LongTensor): indices of :attr:`self` tensor to fill in + value (float): the value to fill with + +Example:: + >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) + >>> index = torch.tensor([0, 2]) + >>> x.index_fill_(1, index, -1) + tensor([[-1., 2., -1.], + [-1., 5., -1.], + [-1., 8., -1.]]) +""", +) + +add_docstr_all( + "index_put_", + r""" +index_put_(indices, values, accumulate=False) -> Tensor + +Puts values from the tensor :attr:`values` into the tensor :attr:`self` using +the indices specified in :attr:`indices` (which is a tuple of Tensors). The +expression ``tensor.index_put_(indices, values)`` is equivalent to +``tensor[indices] = values``. Returns :attr:`self`. + +If :attr:`accumulate` is ``True``, the elements in :attr:`values` are added to +:attr:`self`. If accumulate is ``False``, the behavior is undefined if indices +contain duplicate elements. + +Args: + indices (tuple of LongTensor): tensors used to index into `self`. + values (Tensor): tensor of same dtype as `self`. + accumulate (bool): whether to accumulate into self +""", +) + +add_docstr_all( + "index_put", + r""" +index_put(indices, values, accumulate=False) -> Tensor + +Out-place version of :meth:`~Tensor.index_put_`. +""", +) + +add_docstr_all( + "index_reduce_", + r""" +index_reduce_(dim, index, source, reduce, *, include_self=True) -> Tensor + +Accumulate the elements of ``source`` into the :attr:`self` +tensor by accumulating to the indices in the order given in :attr:`index` +using the reduction given by the ``reduce`` argument. For example, if ``dim == 0``, +``index[i] == j``, ``reduce == prod`` and ``include_self == True`` then the ``i``\ th +row of ``source`` is multiplied by the ``j``\ th row of :attr:`self`. If +:obj:`include_self="True"`, the values in the :attr:`self` tensor are included +in the reduction, otherwise, rows in the :attr:`self` tensor that are accumulated +to are treated as if they were filled with the reduction identites. + +The :attr:`dim`\ th dimension of ``source`` must have the same size as the +length of :attr:`index` (which must be a vector), and all other dimensions must +match :attr:`self`, or an error will be raised. + +For a 3-D tensor with :obj:`reduce="prod"` and :obj:`include_self=True` the +output is given as:: + + self[index[i], :, :] *= src[i, :, :] # if dim == 0 + self[:, index[i], :] *= src[:, i, :] # if dim == 1 + self[:, :, index[i]] *= src[:, :, i] # if dim == 2 + +Note: + {forward_reproducibility_note} + +.. note:: + + This function only supports floating point tensors. + +.. warning:: + + This function is in beta and may change in the near future. + +Args: + dim (int): dimension along which to index + index (Tensor): indices of ``source`` to select from, + should have dtype either `torch.int64` or `torch.int32` + source (FloatTensor): the tensor containing values to accumulate + reduce (str): the reduction operation to apply + (:obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`) + +Keyword args: + include_self (bool): whether the elements from the ``self`` tensor are + included in the reduction + +Example:: + + >>> x = torch.empty(5, 3).fill_(2) + >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=torch.float) + >>> index = torch.tensor([0, 4, 2, 0]) + >>> x.index_reduce_(0, index, t, 'prod') + tensor([[20., 44., 72.], + [ 2., 2., 2.], + [14., 16., 18.], + [ 2., 2., 2.], + [ 8., 10., 12.]]) + >>> x = torch.empty(5, 3).fill_(2) + >>> x.index_reduce_(0, index, t, 'prod', include_self=False) + tensor([[10., 22., 36.], + [ 2., 2., 2.], + [ 7., 8., 9.], + [ 2., 2., 2.], + [ 4., 5., 6.]]) +""".format( + **reproducibility_notes + ), +) + +add_docstr_all( + "index_select", + r""" +index_select(dim, index) -> Tensor + +See :func:`torch.index_select` +""", +) + +add_docstr_all( + "sparse_mask", + r""" +sparse_mask(mask) -> Tensor + +Returns a new :ref:`sparse tensor ` with values from a +strided tensor :attr:`self` filtered by the indices of the sparse +tensor :attr:`mask`. The values of :attr:`mask` sparse tensor are +ignored. :attr:`self` and :attr:`mask` tensors must have the same +shape. + +.. note:: + + The returned sparse tensor might contain duplicate values if :attr:`mask` + is not coalesced. It is therefore advisable to pass ``mask.coalesce()`` + if such behavior is not desired. + +.. note:: + + The returned sparse tensor has the same indices as the sparse tensor + :attr:`mask`, even when the corresponding values in :attr:`self` are + zeros. + +Args: + mask (Tensor): a sparse tensor whose indices are used as a filter + +Example:: + + >>> nse = 5 + >>> dims = (5, 5, 2, 2) + >>> I = torch.cat([torch.randint(0, dims[0], size=(nse,)), + ... torch.randint(0, dims[1], size=(nse,))], 0).reshape(2, nse) + >>> V = torch.randn(nse, dims[2], dims[3]) + >>> S = torch.sparse_coo_tensor(I, V, dims).coalesce() + >>> D = torch.randn(dims) + >>> D.sparse_mask(S) + tensor(indices=tensor([[0, 0, 0, 2], + [0, 1, 4, 3]]), + values=tensor([[[ 1.6550, 0.2397], + [-0.1611, -0.0779]], + + [[ 0.2326, -1.0558], + [ 1.4711, 1.9678]], + + [[-0.5138, -0.0411], + [ 1.9417, 0.5158]], + + [[ 0.0793, 0.0036], + [-0.2569, -0.1055]]]), + size=(5, 5, 2, 2), nnz=4, layout=torch.sparse_coo) +""", +) + +add_docstr_all( + "inverse", + r""" +inverse() -> Tensor + +See :func:`torch.inverse` +""", +) + +add_docstr_all( + "isnan", + r""" +isnan() -> Tensor + +See :func:`torch.isnan` +""", +) + +add_docstr_all( + "isinf", + r""" +isinf() -> Tensor + +See :func:`torch.isinf` +""", +) + +add_docstr_all( + "isposinf", + r""" +isposinf() -> Tensor + +See :func:`torch.isposinf` +""", +) + +add_docstr_all( + "isneginf", + r""" +isneginf() -> Tensor + +See :func:`torch.isneginf` +""", +) + +add_docstr_all( + "isfinite", + r""" +isfinite() -> Tensor + +See :func:`torch.isfinite` +""", +) + +add_docstr_all( + "isclose", + r""" +isclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor + +See :func:`torch.isclose` +""", +) + +add_docstr_all( + "isreal", + r""" +isreal() -> Tensor + +See :func:`torch.isreal` +""", +) + +add_docstr_all( + "is_coalesced", + r""" +is_coalesced() -> bool + +Returns ``True`` if :attr:`self` is a :ref:`sparse COO tensor +` that is coalesced, ``False`` otherwise. + +.. warning:: + Throws an error if :attr:`self` is not a sparse COO tensor. + +See :meth:`coalesce` and :ref:`uncoalesced tensors `. +""", +) + +add_docstr_all( + "is_contiguous", + r""" +is_contiguous(memory_format=torch.contiguous_format) -> bool + +Returns True if :attr:`self` tensor is contiguous in memory in the order specified +by memory format. + +Args: + memory_format (:class:`torch.memory_format`, optional): Specifies memory allocation + order. Default: ``torch.contiguous_format``. +""", +) + +add_docstr_all( + "is_pinned", + r""" +Returns true if this tensor resides in pinned memory. +""", +) + +add_docstr_all( + "is_floating_point", + r""" +is_floating_point() -> bool + +Returns True if the data type of :attr:`self` is a floating point data type. +""", +) + +add_docstr_all( + "is_complex", + r""" +is_complex() -> bool + +Returns True if the data type of :attr:`self` is a complex data type. +""", +) + +add_docstr_all( + "is_inference", + r""" +is_inference() -> bool + +See :func:`torch.is_inference` +""", +) + +add_docstr_all( + "is_conj", + r""" +is_conj() -> bool + +Returns True if the conjugate bit of :attr:`self` is set to true. +""", +) + +add_docstr_all( + "is_neg", + r""" +is_neg() -> bool + +Returns True if the negative bit of :attr:`self` is set to true. +""", +) + +add_docstr_all( + "is_signed", + r""" +is_signed() -> bool + +Returns True if the data type of :attr:`self` is a signed data type. +""", +) + +add_docstr_all( + "is_set_to", + r""" +is_set_to(tensor) -> bool + +Returns True if both tensors are pointing to the exact same memory (same +storage, offset, size and stride). +""", +) + +add_docstr_all( + "item", + r""" +item() -> number + +Returns the value of this tensor as a standard Python number. This only works +for tensors with one element. For other cases, see :meth:`~Tensor.tolist`. + +This operation is not differentiable. + +Example:: + + >>> x = torch.tensor([1.0]) + >>> x.item() + 1.0 + +""", +) + +add_docstr_all( + "kron", + r""" +kron(other) -> Tensor + +See :func:`torch.kron` +""", +) + +add_docstr_all( + "kthvalue", + r""" +kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor) + +See :func:`torch.kthvalue` +""", +) + +add_docstr_all( + "ldexp", + r""" +ldexp(other) -> Tensor + +See :func:`torch.ldexp` +""", +) + +add_docstr_all( + "ldexp_", + r""" +ldexp_(other) -> Tensor + +In-place version of :meth:`~Tensor.ldexp` +""", +) + +add_docstr_all( + "lcm", + r""" +lcm(other) -> Tensor + +See :func:`torch.lcm` +""", +) + +add_docstr_all( + "lcm_", + r""" +lcm_(other) -> Tensor + +In-place version of :meth:`~Tensor.lcm` +""", +) + +add_docstr_all( + "le", + r""" +le(other) -> Tensor + +See :func:`torch.le`. +""", +) + +add_docstr_all( + "le_", + r""" +le_(other) -> Tensor + +In-place version of :meth:`~Tensor.le`. +""", +) + +add_docstr_all( + "less_equal", + r""" +less_equal(other) -> Tensor + +See :func:`torch.less_equal`. +""", +) + +add_docstr_all( + "less_equal_", + r""" +less_equal_(other) -> Tensor + +In-place version of :meth:`~Tensor.less_equal`. +""", +) + +add_docstr_all( + "lerp", + r""" +lerp(end, weight) -> Tensor + +See :func:`torch.lerp` +""", +) + +add_docstr_all( + "lerp_", + r""" +lerp_(end, weight) -> Tensor + +In-place version of :meth:`~Tensor.lerp` +""", +) + +add_docstr_all( + "lgamma", + r""" +lgamma() -> Tensor + +See :func:`torch.lgamma` +""", +) + +add_docstr_all( + "lgamma_", + r""" +lgamma_() -> Tensor + +In-place version of :meth:`~Tensor.lgamma` +""", +) + +add_docstr_all( + "log", + r""" +log() -> Tensor + +See :func:`torch.log` +""", +) + +add_docstr_all( + "log_", + r""" +log_() -> Tensor + +In-place version of :meth:`~Tensor.log` +""", +) + +add_docstr_all( + "log10", + r""" +log10() -> Tensor + +See :func:`torch.log10` +""", +) + +add_docstr_all( + "log10_", + r""" +log10_() -> Tensor + +In-place version of :meth:`~Tensor.log10` +""", +) + +add_docstr_all( + "log1p", + r""" +log1p() -> Tensor + +See :func:`torch.log1p` +""", +) + +add_docstr_all( + "log1p_", + r""" +log1p_() -> Tensor + +In-place version of :meth:`~Tensor.log1p` +""", +) + +add_docstr_all( + "log2", + r""" +log2() -> Tensor + +See :func:`torch.log2` +""", +) + +add_docstr_all( + "log2_", + r""" +log2_() -> Tensor + +In-place version of :meth:`~Tensor.log2` +""", +) + +add_docstr_all( + "logaddexp", + r""" +logaddexp(other) -> Tensor + +See :func:`torch.logaddexp` +""", +) + +add_docstr_all( + "logaddexp2", + r""" +logaddexp2(other) -> Tensor + +See :func:`torch.logaddexp2` +""", +) + +add_docstr_all( + "log_normal_", + r""" +log_normal_(mean=1, std=2, *, generator=None) + +Fills :attr:`self` tensor with numbers samples from the log-normal distribution +parameterized by the given mean :math:`\mu` and standard deviation +:math:`\sigma`. Note that :attr:`mean` and :attr:`std` are the mean and +standard deviation of the underlying normal distribution, and not of the +returned distribution: + +.. math:: + + f(x) = \dfrac{1}{x \sigma \sqrt{2\pi}}\ e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} +""", +) + +add_docstr_all( + "logsumexp", + r""" +logsumexp(dim, keepdim=False) -> Tensor + +See :func:`torch.logsumexp` +""", +) + +add_docstr_all( + "lt", + r""" +lt(other) -> Tensor + +See :func:`torch.lt`. +""", +) + +add_docstr_all( + "lt_", + r""" +lt_(other) -> Tensor + +In-place version of :meth:`~Tensor.lt`. +""", +) + +add_docstr_all( + "less", + r""" +lt(other) -> Tensor + +See :func:`torch.less`. +""", +) + +add_docstr_all( + "less_", + r""" +less_(other) -> Tensor + +In-place version of :meth:`~Tensor.less`. +""", +) + +add_docstr_all( + "lu_solve", + r""" +lu_solve(LU_data, LU_pivots) -> Tensor + +See :func:`torch.lu_solve` +""", +) + +add_docstr_all( + "map_", + r""" +map_(tensor, callable) + +Applies :attr:`callable` for each element in :attr:`self` tensor and the given +:attr:`tensor` and stores the results in :attr:`self` tensor. :attr:`self` tensor and +the given :attr:`tensor` must be :ref:`broadcastable `. + +The :attr:`callable` should have the signature:: + + def callable(a, b) -> number +""", +) + +add_docstr_all( + "masked_scatter_", + r""" +masked_scatter_(mask, source) + +Copies elements from :attr:`source` into :attr:`self` tensor at positions where +the :attr:`mask` is True. Elements from :attr:`source` are copied into :attr:`self` +starting at position 0 of :attr:`source` and continuing in order one-by-one for each +occurrence of :attr:`mask` being True. +The shape of :attr:`mask` must be :ref:`broadcastable ` +with the shape of the underlying tensor. The :attr:`source` should have at least +as many elements as the number of ones in :attr:`mask`. + +Args: + mask (BoolTensor): the boolean mask + source (Tensor): the tensor to copy from + +.. note:: + + The :attr:`mask` operates on the :attr:`self` tensor, not on the given + :attr:`source` tensor. + +Example: + + >>> self = torch.tensor([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) + >>> mask = torch.tensor([[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]]) + >>> source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) + >>> self.masked_scatter_(mask, source) + tensor([[0, 0, 0, 0, 1], + [2, 3, 0, 4, 5]]) + +""", +) + +add_docstr_all( + "masked_fill_", + r""" +masked_fill_(mask, value) + +Fills elements of :attr:`self` tensor with :attr:`value` where :attr:`mask` is +True. The shape of :attr:`mask` must be +:ref:`broadcastable ` with the shape of the underlying +tensor. + +Args: + mask (BoolTensor): the boolean mask + value (float): the value to fill in with +""", +) + +add_docstr_all( + "masked_select", + r""" +masked_select(mask) -> Tensor + +See :func:`torch.masked_select` +""", +) + +add_docstr_all( + "matrix_power", + r""" +matrix_power(n) -> Tensor + +.. note:: :meth:`~Tensor.matrix_power` is deprecated, use :func:`torch.linalg.matrix_power` instead. + +Alias for :func:`torch.linalg.matrix_power` +""", +) + +add_docstr_all( + "matrix_exp", + r""" +matrix_exp() -> Tensor + +See :func:`torch.matrix_exp` +""", +) + +add_docstr_all( + "max", + r""" +max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) + +See :func:`torch.max` +""", +) + +add_docstr_all( + "amax", + r""" +amax(dim=None, keepdim=False) -> Tensor + +See :func:`torch.amax` +""", +) + +add_docstr_all( + "maximum", + r""" +maximum(other) -> Tensor + +See :func:`torch.maximum` +""", +) + +add_docstr_all( + "fmax", + r""" +fmax(other) -> Tensor + +See :func:`torch.fmax` +""", +) + +add_docstr_all( + "argmax", + r""" +argmax(dim=None, keepdim=False) -> LongTensor + +See :func:`torch.argmax` +""", +) + +add_docstr_all( + "argwhere", + r""" +argwhere() -> Tensor + +See :func:`torch.argwhere` +""", +) + +add_docstr_all( + "mean", + r""" +mean(dim=None, keepdim=False, *, dtype=None) -> Tensor + +See :func:`torch.mean` +""", +) + +add_docstr_all( + "nanmean", + r""" +nanmean(dim=None, keepdim=False, *, dtype=None) -> Tensor + +See :func:`torch.nanmean` +""", +) + +add_docstr_all( + "median", + r""" +median(dim=None, keepdim=False) -> (Tensor, LongTensor) + +See :func:`torch.median` +""", +) + +add_docstr_all( + "nanmedian", + r""" +nanmedian(dim=None, keepdim=False) -> (Tensor, LongTensor) + +See :func:`torch.nanmedian` +""", +) + +add_docstr_all( + "min", + r""" +min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) + +See :func:`torch.min` +""", +) + +add_docstr_all( + "amin", + r""" +amin(dim=None, keepdim=False) -> Tensor + +See :func:`torch.amin` +""", +) + +add_docstr_all( + "minimum", + r""" +minimum(other) -> Tensor + +See :func:`torch.minimum` +""", +) + +add_docstr_all( + "aminmax", + r""" +aminmax(*, dim=None, keepdim=False) -> (Tensor min, Tensor max) + +See :func:`torch.aminmax` +""", +) + +add_docstr_all( + "fmin", + r""" +fmin(other) -> Tensor + +See :func:`torch.fmin` +""", +) + +add_docstr_all( + "argmin", + r""" +argmin(dim=None, keepdim=False) -> LongTensor + +See :func:`torch.argmin` +""", +) + +add_docstr_all( + "mm", + r""" +mm(mat2) -> Tensor + +See :func:`torch.mm` +""", +) + +add_docstr_all( + "mode", + r""" +mode(dim=None, keepdim=False) -> (Tensor, LongTensor) + +See :func:`torch.mode` +""", +) + +add_docstr_all( + "movedim", + r""" +movedim(source, destination) -> Tensor + +See :func:`torch.movedim` +""", +) + +add_docstr_all( + "moveaxis", + r""" +moveaxis(source, destination) -> Tensor + +See :func:`torch.moveaxis` +""", +) + +add_docstr_all( + "mul", + r""" +mul(value) -> Tensor + +See :func:`torch.mul`. +""", +) + +add_docstr_all( + "mul_", + r""" +mul_(value) -> Tensor + +In-place version of :meth:`~Tensor.mul`. +""", +) + +add_docstr_all( + "multiply", + r""" +multiply(value) -> Tensor + +See :func:`torch.multiply`. +""", +) + +add_docstr_all( + "multiply_", + r""" +multiply_(value) -> Tensor + +In-place version of :meth:`~Tensor.multiply`. +""", +) + +add_docstr_all( + "multinomial", + r""" +multinomial(num_samples, replacement=False, *, generator=None) -> Tensor + +See :func:`torch.multinomial` +""", +) + +add_docstr_all( + "mv", + r""" +mv(vec) -> Tensor + +See :func:`torch.mv` +""", +) + +add_docstr_all( + "mvlgamma", + r""" +mvlgamma(p) -> Tensor + +See :func:`torch.mvlgamma` +""", +) + +add_docstr_all( + "mvlgamma_", + r""" +mvlgamma_(p) -> Tensor + +In-place version of :meth:`~Tensor.mvlgamma` +""", +) + +add_docstr_all( + "narrow", + r""" +narrow(dimension, start, length) -> Tensor + +See :func:`torch.narrow`. +""", +) + +add_docstr_all( + "narrow_copy", + r""" +narrow_copy(dimension, start, length) -> Tensor + +See :func:`torch.narrow_copy`. +""", +) + +add_docstr_all( + "ndimension", + r""" +ndimension() -> int + +Alias for :meth:`~Tensor.dim()` +""", +) + +add_docstr_all( + "nan_to_num", + r""" +nan_to_num(nan=0.0, posinf=None, neginf=None) -> Tensor + +See :func:`torch.nan_to_num`. +""", +) + +add_docstr_all( + "nan_to_num_", + r""" +nan_to_num_(nan=0.0, posinf=None, neginf=None) -> Tensor + +In-place version of :meth:`~Tensor.nan_to_num`. +""", +) + +add_docstr_all( + "ne", + r""" +ne(other) -> Tensor + +See :func:`torch.ne`. +""", +) + +add_docstr_all( + "ne_", + r""" +ne_(other) -> Tensor + +In-place version of :meth:`~Tensor.ne`. +""", +) + +add_docstr_all( + "not_equal", + r""" +not_equal(other) -> Tensor + +See :func:`torch.not_equal`. +""", +) + +add_docstr_all( + "not_equal_", + r""" +not_equal_(other) -> Tensor + +In-place version of :meth:`~Tensor.not_equal`. +""", +) + +add_docstr_all( + "neg", + r""" +neg() -> Tensor + +See :func:`torch.neg` +""", +) + +add_docstr_all( + "negative", + r""" +negative() -> Tensor + +See :func:`torch.negative` +""", +) + +add_docstr_all( + "neg_", + r""" +neg_() -> Tensor + +In-place version of :meth:`~Tensor.neg` +""", +) + +add_docstr_all( + "negative_", + r""" +negative_() -> Tensor + +In-place version of :meth:`~Tensor.negative` +""", +) + +add_docstr_all( + "nelement", + r""" +nelement() -> int + +Alias for :meth:`~Tensor.numel` +""", +) + +add_docstr_all( + "nextafter", + r""" +nextafter(other) -> Tensor +See :func:`torch.nextafter` +""", +) + +add_docstr_all( + "nextafter_", + r""" +nextafter_(other) -> Tensor +In-place version of :meth:`~Tensor.nextafter` +""", +) + +add_docstr_all( + "nonzero", + r""" +nonzero() -> LongTensor + +See :func:`torch.nonzero` +""", +) + +add_docstr_all( + "nonzero_static", + r""" +nonzero_static(input, *, size, fill_value=-1) -> Tensor + +Returns a 2-D tensor where each row is the index for a non-zero value. +The returned Tensor has the same `torch.dtype` as `torch.nonzero()`. + +Args: + input (Tensor): the input tensor to count non-zero elements. + +Keyword args: + size (int): the size of non-zero elements expected to be included in the out + tensor. Pad the out tensor with `fill_value` if the `size` is larger + than total number of non-zero elements, truncate out tensor if `size` + is smaller. The size must be a non-negative integer. + fill_value (int): the value to fill the output tensor with when `size` is larger + than the total number of non-zero elements. Default is `-1` to represent + invalid index. + +Example: + + # Example 1: Padding + >>> input_tensor = torch.tensor([[1, 0], [3, 2]]) + >>> static_size = 4 + >>> t = torch.nonzero_static(input_tensor, size = static_size) + tensor([[ 0, 0], + [ 1, 0], + [ 1, 1], + [ -1, -1]], dtype=torch.int64) + + # Example 2: Truncating + >>> input_tensor = torch.tensor([[1, 0], [3, 2]]) + >>> static_size = 2 + >>> t = torch.nonzero_static(input_tensor, size = static_size) + tensor([[ 0, 0], + [ 1, 0]], dtype=torch.int64) + + # Example 3: 0 size + >>> input_tensor = torch.tensor([10]) + >>> static_size = 0 + >>> t = torch.nonzero_static(input_tensor, size = static_size) + tensor([], size=(0, 1), dtype=torch.int64) + + # Example 4: 0 rank input + >>> input_tensor = torch.tensor(10) + >>> static_size = 2 + >>> t = torch.nonzero_static(input_tensor, size = static_size) + tensor([], size=(2, 0), dtype=torch.int64) +""", +) + +add_docstr_all( + "norm", + r""" +norm(p=2, dim=None, keepdim=False) -> Tensor + +See :func:`torch.norm` +""", +) + +add_docstr_all( + "normal_", + r""" +normal_(mean=0, std=1, *, generator=None) -> Tensor + +Fills :attr:`self` tensor with elements samples from the normal distribution +parameterized by :attr:`mean` and :attr:`std`. +""", +) + +add_docstr_all( + "numel", + r""" +numel() -> int + +See :func:`torch.numel` +""", +) + +add_docstr_all( + "numpy", + r""" +numpy(*, force=False) -> numpy.ndarray + +Returns the tensor as a NumPy :class:`ndarray`. + +If :attr:`force` is ``False`` (the default), the conversion +is performed only if the tensor is on the CPU, does not require grad, +does not have its conjugate bit set, and is a dtype and layout that +NumPy supports. The returned ndarray and the tensor will share their +storage, so changes to the tensor will be reflected in the ndarray +and vice versa. + +If :attr:`force` is ``True`` this is equivalent to +calling ``t.detach().cpu().resolve_conj().resolve_neg().numpy()``. +If the tensor isn't on the CPU or the conjugate or negative bit is set, +the tensor won't share its storage with the returned ndarray. +Setting :attr:`force` to ``True`` can be a useful shorthand. + +Args: + force (bool): if ``True``, the ndarray may be a copy of the tensor + instead of always sharing memory, defaults to ``False``. +""", +) + +add_docstr_all( + "orgqr", + r""" +orgqr(input2) -> Tensor + +See :func:`torch.orgqr` +""", +) + +add_docstr_all( + "ormqr", + r""" +ormqr(input2, input3, left=True, transpose=False) -> Tensor + +See :func:`torch.ormqr` +""", +) + +add_docstr_all( + "permute", + r""" +permute(*dims) -> Tensor + +See :func:`torch.permute` +""", +) + +add_docstr_all( + "polygamma", + r""" +polygamma(n) -> Tensor + +See :func:`torch.polygamma` +""", +) + +add_docstr_all( + "polygamma_", + r""" +polygamma_(n) -> Tensor + +In-place version of :meth:`~Tensor.polygamma` +""", +) + +add_docstr_all( + "positive", + r""" +positive() -> Tensor + +See :func:`torch.positive` +""", +) + +add_docstr_all( + "pow", + r""" +pow(exponent) -> Tensor + +See :func:`torch.pow` +""", +) + +add_docstr_all( + "pow_", + r""" +pow_(exponent) -> Tensor + +In-place version of :meth:`~Tensor.pow` +""", +) + +add_docstr_all( + "float_power", + r""" +float_power(exponent) -> Tensor + +See :func:`torch.float_power` +""", +) + +add_docstr_all( + "float_power_", + r""" +float_power_(exponent) -> Tensor + +In-place version of :meth:`~Tensor.float_power` +""", +) + +add_docstr_all( + "prod", + r""" +prod(dim=None, keepdim=False, dtype=None) -> Tensor + +See :func:`torch.prod` +""", +) + +add_docstr_all( + "put_", + r""" +put_(index, source, accumulate=False) -> Tensor + +Copies the elements from :attr:`source` into the positions specified by +:attr:`index`. For the purpose of indexing, the :attr:`self` tensor is treated as if +it were a 1-D tensor. + +:attr:`index` and :attr:`source` need to have the same number of elements, but not necessarily +the same shape. + +If :attr:`accumulate` is ``True``, the elements in :attr:`source` are added to +:attr:`self`. If accumulate is ``False``, the behavior is undefined if :attr:`index` +contain duplicate elements. + +Args: + index (LongTensor): the indices into self + source (Tensor): the tensor containing values to copy from + accumulate (bool): whether to accumulate into self + +Example:: + + >>> src = torch.tensor([[4, 3, 5], + ... [6, 7, 8]]) + >>> src.put_(torch.tensor([1, 3]), torch.tensor([9, 10])) + tensor([[ 4, 9, 5], + [ 10, 7, 8]]) +""", +) + +add_docstr_all( + "put", + r""" +put(input, index, source, accumulate=False) -> Tensor + +Out-of-place version of :meth:`torch.Tensor.put_`. +`input` corresponds to `self` in :meth:`torch.Tensor.put_`. +""", +) + +add_docstr_all( + "qr", + r""" +qr(some=True) -> (Tensor, Tensor) + +See :func:`torch.qr` +""", +) + +add_docstr_all( + "qscheme", + r""" +qscheme() -> torch.qscheme + +Returns the quantization scheme of a given QTensor. +""", +) + +add_docstr_all( + "quantile", + r""" +quantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor + +See :func:`torch.quantile` +""", +) + +add_docstr_all( + "nanquantile", + r""" +nanquantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor + +See :func:`torch.nanquantile` +""", +) + +add_docstr_all( + "q_scale", + r""" +q_scale() -> float + +Given a Tensor quantized by linear(affine) quantization, +returns the scale of the underlying quantizer(). +""", +) + +add_docstr_all( + "q_zero_point", + r""" +q_zero_point() -> int + +Given a Tensor quantized by linear(affine) quantization, +returns the zero_point of the underlying quantizer(). +""", +) + +add_docstr_all( + "q_per_channel_scales", + r""" +q_per_channel_scales() -> Tensor + +Given a Tensor quantized by linear (affine) per-channel quantization, +returns a Tensor of scales of the underlying quantizer. It has the number of +elements that matches the corresponding dimensions (from q_per_channel_axis) of +the tensor. +""", +) + +add_docstr_all( + "q_per_channel_zero_points", + r""" +q_per_channel_zero_points() -> Tensor + +Given a Tensor quantized by linear (affine) per-channel quantization, +returns a tensor of zero_points of the underlying quantizer. It has the number of +elements that matches the corresponding dimensions (from q_per_channel_axis) of +the tensor. +""", +) + +add_docstr_all( + "q_per_channel_axis", + r""" +q_per_channel_axis() -> int + +Given a Tensor quantized by linear (affine) per-channel quantization, +returns the index of dimension on which per-channel quantization is applied. +""", +) + +add_docstr_all( + "random_", + r""" +random_(from=0, to=None, *, generator=None) -> Tensor + +Fills :attr:`self` tensor with numbers sampled from the discrete uniform +distribution over ``[from, to - 1]``. If not specified, the values are usually +only bounded by :attr:`self` tensor's data type. However, for floating point +types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every +value is representable. For example, `torch.tensor(1, dtype=torch.double).random_()` +will be uniform in ``[0, 2^53]``. +""", +) + +add_docstr_all( + "rad2deg", + r""" +rad2deg() -> Tensor + +See :func:`torch.rad2deg` +""", +) + +add_docstr_all( + "rad2deg_", + r""" +rad2deg_() -> Tensor + +In-place version of :meth:`~Tensor.rad2deg` +""", +) + +add_docstr_all( + "deg2rad", + r""" +deg2rad() -> Tensor + +See :func:`torch.deg2rad` +""", +) + +add_docstr_all( + "deg2rad_", + r""" +deg2rad_() -> Tensor + +In-place version of :meth:`~Tensor.deg2rad` +""", +) + +add_docstr_all( + "ravel", + r""" +ravel() -> Tensor + +see :func:`torch.ravel` +""", +) + +add_docstr_all( + "reciprocal", + r""" +reciprocal() -> Tensor + +See :func:`torch.reciprocal` +""", +) + +add_docstr_all( + "reciprocal_", + r""" +reciprocal_() -> Tensor + +In-place version of :meth:`~Tensor.reciprocal` +""", +) + +add_docstr_all( + "record_stream", + r""" +record_stream(stream) + +Marks the tensor as having been used by this stream. When the tensor +is deallocated, ensure the tensor memory is not reused for another tensor +until all work queued on :attr:`stream` at the time of deallocation is +complete. + +.. note:: + + The caching allocator is aware of only the stream where a tensor was + allocated. Due to the awareness, it already correctly manages the life + cycle of tensors on only one stream. But if a tensor is used on a stream + different from the stream of origin, the allocator might reuse the memory + unexpectedly. Calling this method lets the allocator know which streams + have used the tensor. + +.. warning:: + + This method is most suitable for use cases where you are providing a + function that created a tensor on a side stream, and want users to be able + to make use of the tensor without having to think carefully about stream + safety when making use of them. These safety guarantees come at some + performance and predictability cost (analogous to the tradeoff between GC + and manual memory management), so if you are in a situation where + you manage the full lifetime of your tensors, you may consider instead + manually managing CUDA events so that calling this method is not necessary. + In particular, when you call this method, on later allocations the + allocator will poll the recorded stream to see if all operations have + completed yet; you can potentially race with side stream computation and + non-deterministically reuse or fail to reuse memory for an allocation. + + You can safely use tensors allocated on side streams without + :meth:`~Tensor.record_stream`; you must manually ensure that + any non-creation stream uses of a tensor are synced back to the creation + stream before you deallocate the tensor. As the CUDA caching allocator + guarantees that the memory will only be reused with the same creation stream, + this is sufficient to ensure that writes to future reallocations of the + memory will be delayed until non-creation stream uses are done. + (Counterintuitively, you may observe that on the CPU side we have already + reallocated the tensor, even though CUDA kernels on the old tensor are + still in progress. This is fine, because CUDA operations on the new + tensor will appropriately wait for the old operations to complete, as they + are all on the same stream.) + + Concretely, this looks like this:: + + with torch.cuda.stream(s0): + x = torch.zeros(N) + + s1.wait_stream(s0) + with torch.cuda.stream(s1): + y = some_comm_op(x) + + ... some compute on s0 ... + + # synchronize creation stream s0 to side stream s1 + # before deallocating x + s0.wait_stream(s1) + del x + + Note that some discretion is required when deciding when to perform + ``s0.wait_stream(s1)``. In particular, if we were to wait immediately + after ``some_comm_op``, there wouldn't be any point in having the side + stream; it would be equivalent to have run ``some_comm_op`` on ``s0``. + Instead, the synchronization must be placed at some appropriate, later + point in time where you expect the side stream ``s1`` to have finished + work. This location is typically identified via profiling, e.g., using + Chrome traces produced + :meth:`torch.autograd.profiler.profile.export_chrome_trace`. If you + place the wait too early, work on s0 will block until ``s1`` has finished, + preventing further overlapping of communication and computation. If you + place the wait too late, you will use more memory than is strictly + necessary (as you are keeping ``x`` live for longer.) For a concrete + example of how this guidance can be applied in practice, see this post: + `FSDP and CUDACachingAllocator + `_. +""", +) + +add_docstr_all( + "remainder", + r""" +remainder(divisor) -> Tensor + +See :func:`torch.remainder` +""", +) + +add_docstr_all( + "remainder_", + r""" +remainder_(divisor) -> Tensor + +In-place version of :meth:`~Tensor.remainder` +""", +) + +add_docstr_all( + "renorm", + r""" +renorm(p, dim, maxnorm) -> Tensor + +See :func:`torch.renorm` +""", +) + +add_docstr_all( + "renorm_", + r""" +renorm_(p, dim, maxnorm) -> Tensor + +In-place version of :meth:`~Tensor.renorm` +""", +) + +add_docstr_all( + "repeat", + r""" +repeat(*sizes) -> Tensor + +Repeats this tensor along the specified dimensions. + +Unlike :meth:`~Tensor.expand`, this function copies the tensor's data. + +.. warning:: + + :meth:`~Tensor.repeat` behaves differently from + `numpy.repeat `_, + but is more similar to + `numpy.tile `_. + For the operator similar to `numpy.repeat`, see :func:`torch.repeat_interleave`. + +Args: + sizes (torch.Size or int...): The number of times to repeat this tensor along each + dimension + +Example:: + + >>> x = torch.tensor([1, 2, 3]) + >>> x.repeat(4, 2) + tensor([[ 1, 2, 3, 1, 2, 3], + [ 1, 2, 3, 1, 2, 3], + [ 1, 2, 3, 1, 2, 3], + [ 1, 2, 3, 1, 2, 3]]) + >>> x.repeat(4, 2, 1).size() + torch.Size([4, 2, 3]) +""", +) + +add_docstr_all( + "repeat_interleave", + r""" +repeat_interleave(repeats, dim=None, *, output_size=None) -> Tensor + +See :func:`torch.repeat_interleave`. +""", +) + +add_docstr_all( + "requires_grad_", + r""" +requires_grad_(requires_grad=True) -> Tensor + +Change if autograd should record operations on this tensor: sets this tensor's +:attr:`requires_grad` attribute in-place. Returns this tensor. + +:func:`requires_grad_`'s main use case is to tell autograd to begin recording +operations on a Tensor ``tensor``. If ``tensor`` has ``requires_grad=False`` +(because it was obtained through a DataLoader, or required preprocessing or +initialization), ``tensor.requires_grad_()`` makes it so that autograd will +begin to record operations on ``tensor``. + +Args: + requires_grad (bool): If autograd should record operations on this tensor. + Default: ``True``. + +Example:: + + >>> # Let's say we want to preprocess some saved weights and use + >>> # the result as new weights. + >>> saved_weights = [0.1, 0.2, 0.3, 0.25] + >>> loaded_weights = torch.tensor(saved_weights) + >>> weights = preprocess(loaded_weights) # some function + >>> weights + tensor([-0.5503, 0.4926, -2.1158, -0.8303]) + + >>> # Now, start to record operations done to weights + >>> weights.requires_grad_() + >>> out = weights.pow(2).sum() + >>> out.backward() + >>> weights.grad + tensor([-1.1007, 0.9853, -4.2316, -1.6606]) + +""", +) + +add_docstr_all( + "reshape", + r""" +reshape(*shape) -> Tensor + +Returns a tensor with the same data and number of elements as :attr:`self` +but with the specified shape. This method returns a view if :attr:`shape` is +compatible with the current shape. See :meth:`torch.Tensor.view` on when it is +possible to return a view. + +See :func:`torch.reshape` + +Args: + shape (tuple of ints or int...): the desired shape + +""", +) + +add_docstr_all( + "reshape_as", + r""" +reshape_as(other) -> Tensor + +Returns this tensor as the same shape as :attr:`other`. +``self.reshape_as(other)`` is equivalent to ``self.reshape(other.sizes())``. +This method returns a view if ``other.sizes()`` is compatible with the current +shape. See :meth:`torch.Tensor.view` on when it is possible to return a view. + +Please see :meth:`reshape` for more information about ``reshape``. + +Args: + other (:class:`torch.Tensor`): The result tensor has the same shape + as :attr:`other`. +""", +) + +add_docstr_all( + "resize_", + r""" +resize_(*sizes, memory_format=torch.contiguous_format) -> Tensor + +Resizes :attr:`self` tensor to the specified size. If the number of elements is +larger than the current storage size, then the underlying storage is resized +to fit the new number of elements. If the number of elements is smaller, the +underlying storage is not changed. Existing elements are preserved but any new +memory is uninitialized. + +.. warning:: + + This is a low-level method. The storage is reinterpreted as C-contiguous, + ignoring the current strides (unless the target size equals the current + size, in which case the tensor is left unchanged). For most purposes, you + will instead want to use :meth:`~Tensor.view()`, which checks for + contiguity, or :meth:`~Tensor.reshape()`, which copies data if needed. To + change the size in-place with custom strides, see :meth:`~Tensor.set_()`. + +.. note:: + + If :func:`torch.use_deterministic_algorithms()` and + :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to + ``True``, new elements are initialized to prevent nondeterministic behavior + from using the result as an input to an operation. Floating point and + complex values are set to NaN, and integer values are set to the maximum + value. + +Args: + sizes (torch.Size or int...): the desired size + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + Tensor. Default: ``torch.contiguous_format``. Note that memory format of + :attr:`self` is going to be unaffected if ``self.size()`` matches ``sizes``. + +Example:: + + >>> x = torch.tensor([[1, 2], [3, 4], [5, 6]]) + >>> x.resize_(2, 2) + tensor([[ 1, 2], + [ 3, 4]]) +""", +) + +add_docstr_all( + "resize_as_", + r""" +resize_as_(tensor, memory_format=torch.contiguous_format) -> Tensor + +Resizes the :attr:`self` tensor to be the same size as the specified +:attr:`tensor`. This is equivalent to ``self.resize_(tensor.size())``. + +Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + Tensor. Default: ``torch.contiguous_format``. Note that memory format of + :attr:`self` is going to be unaffected if ``self.size()`` matches ``tensor.size()``. + +""", +) + +add_docstr_all( + "rot90", + r""" +rot90(k, dims) -> Tensor + +See :func:`torch.rot90` +""", +) + +add_docstr_all( + "round", + r""" +round(decimals=0) -> Tensor + +See :func:`torch.round` +""", +) + +add_docstr_all( + "round_", + r""" +round_(decimals=0) -> Tensor + +In-place version of :meth:`~Tensor.round` +""", +) + +add_docstr_all( + "rsqrt", + r""" +rsqrt() -> Tensor + +See :func:`torch.rsqrt` +""", +) + +add_docstr_all( + "rsqrt_", + r""" +rsqrt_() -> Tensor + +In-place version of :meth:`~Tensor.rsqrt` +""", +) + +add_docstr_all( + "scatter_", + r""" +scatter_(dim, index, src, reduce=None) -> Tensor + +Writes all values from the tensor :attr:`src` into :attr:`self` at the indices +specified in the :attr:`index` tensor. For each value in :attr:`src`, its output +index is specified by its index in :attr:`src` for ``dimension != dim`` and by +the corresponding value in :attr:`index` for ``dimension = dim``. + +For a 3-D tensor, :attr:`self` is updated as:: + + self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 + +This is the reverse operation of the manner described in :meth:`~Tensor.gather`. + +:attr:`self`, :attr:`index` and :attr:`src` (if it is a Tensor) should all have +the same number of dimensions. It is also required that +``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that +``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. +Note that ``index`` and ``src`` do not broadcast. + +Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be +between ``0`` and ``self.size(dim) - 1`` inclusive. + +.. warning:: + + When indices are not unique, the behavior is non-deterministic (one of the + values from ``src`` will be picked arbitrarily) and the gradient will be + incorrect (it will be propagated to all locations in the source that + correspond to the same index)! + +.. note:: + + The backward pass is implemented only for ``src.shape == index.shape``. + +Additionally accepts an optional :attr:`reduce` argument that allows +specification of an optional reduction operation, which is applied to all +values in the tensor :attr:`src` into :attr:`self` at the indices +specified in the :attr:`index`. For each value in :attr:`src`, the reduction +operation is applied to an index in :attr:`self` which is specified by +its index in :attr:`src` for ``dimension != dim`` and by the corresponding +value in :attr:`index` for ``dimension = dim``. + +Given a 3-D tensor and reduction using the multiplication operation, :attr:`self` +is updated as:: + + self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 + +Reducing with the addition operation is the same as using +:meth:`~torch.Tensor.scatter_add_`. + +.. warning:: + The reduce argument with Tensor ``src`` is deprecated and will be removed in + a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_` + instead for more reduction options. + +Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter, can be either empty + or of the same dimensionality as ``src``. When empty, the operation + returns ``self`` unchanged. + src (Tensor or float): the source element(s) to scatter. + reduce (str, optional): reduction operation to apply, can be either + ``'add'`` or ``'multiply'``. + +Example:: + + >>> src = torch.arange(1, 11).reshape((2, 5)) + >>> src + tensor([[ 1, 2, 3, 4, 5], + [ 6, 7, 8, 9, 10]]) + >>> index = torch.tensor([[0, 1, 2, 0]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) + tensor([[1, 0, 0, 4, 0], + [0, 2, 0, 0, 0], + [0, 0, 3, 0, 0]]) + >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) + tensor([[1, 2, 3, 0, 0], + [6, 7, 0, 0, 8], + [0, 0, 0, 0, 0]]) + + >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), + ... 1.23, reduce='multiply') + tensor([[2.0000, 2.0000, 2.4600, 2.0000], + [2.0000, 2.0000, 2.0000, 2.4600]]) + >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), + ... 1.23, reduce='add') + tensor([[2.0000, 2.0000, 3.2300, 2.0000], + [2.0000, 2.0000, 2.0000, 3.2300]]) + +""", +) + +add_docstr_all( + "scatter_add_", + r""" +scatter_add_(dim, index, src) -> Tensor + +Adds all values from the tensor :attr:`src` into :attr:`self` at the indices +specified in the :attr:`index` tensor in a similar fashion as +:meth:`~torch.Tensor.scatter_`. For each value in :attr:`src`, it is added to +an index in :attr:`self` which is specified by its index in :attr:`src` +for ``dimension != dim`` and by the corresponding value in :attr:`index` for +``dimension = dim``. + +For a 3-D tensor, :attr:`self` is updated as:: + + self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 + +:attr:`self`, :attr:`index` and :attr:`src` should have same number of +dimensions. It is also required that ``index.size(d) <= src.size(d)`` for all +dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions +``d != dim``. Note that ``index`` and ``src`` do not broadcast. + +Note: + {forward_reproducibility_note} + +.. note:: + + The backward pass is implemented only for ``src.shape == index.shape``. + +Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter and add, can be + either empty or of the same dimensionality as ``src``. When empty, the + operation returns ``self`` unchanged. + src (Tensor): the source elements to scatter and add + +Example:: + + >>> src = torch.ones((2, 5)) + >>> index = torch.tensor([[0, 1, 2, 0, 0]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src) + tensor([[1., 0., 0., 1., 1.], + [0., 1., 0., 0., 0.], + [0., 0., 1., 0., 0.]]) + >>> index = torch.tensor([[0, 1, 2, 0, 0], [0, 1, 2, 2, 2]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src) + tensor([[2., 0., 0., 1., 1.], + [0., 2., 0., 0., 0.], + [0., 0., 2., 1., 1.]]) + +""".format( + **reproducibility_notes + ), +) + +add_docstr_all( + "scatter_reduce_", + r""" +scatter_reduce_(dim, index, src, reduce, *, include_self=True) -> Tensor + +Reduces all values from the :attr:`src` tensor to the indices specified in +the :attr:`index` tensor in the :attr:`self` tensor using the applied reduction +defined via the :attr:`reduce` argument (:obj:`"sum"`, :obj:`"prod"`, :obj:`"mean"`, +:obj:`"amax"`, :obj:`"amin"`). For each value in :attr:`src`, it is reduced to an +index in :attr:`self` which is specified by its index in :attr:`src` for +``dimension != dim`` and by the corresponding value in :attr:`index` for +``dimension = dim``. If :obj:`include_self="True"`, the values in the :attr:`self` +tensor are included in the reduction. + +:attr:`self`, :attr:`index` and :attr:`src` should all have +the same number of dimensions. It is also required that +``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that +``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. +Note that ``index`` and ``src`` do not broadcast. + +For a 3-D tensor with :obj:`reduce="sum"` and :obj:`include_self=True` the +output is given as:: + + self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 + +Note: + {forward_reproducibility_note} + +.. note:: + + The backward pass is implemented only for ``src.shape == index.shape``. + +.. warning:: + + This function is in beta and may change in the near future. + +Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter and reduce. + src (Tensor): the source elements to scatter and reduce + reduce (str): the reduction operation to apply for non-unique indices + (:obj:`"sum"`, :obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`) + include_self (bool): whether elements from the :attr:`self` tensor are + included in the reduction + +Example:: + + >>> src = torch.tensor([1., 2., 3., 4., 5., 6.]) + >>> index = torch.tensor([0, 1, 0, 1, 2, 1]) + >>> input = torch.tensor([1., 2., 3., 4.]) + >>> input.scatter_reduce(0, index, src, reduce="sum") + tensor([5., 14., 8., 4.]) + >>> input.scatter_reduce(0, index, src, reduce="sum", include_self=False) + tensor([4., 12., 5., 4.]) + >>> input2 = torch.tensor([5., 4., 3., 2.]) + >>> input2.scatter_reduce(0, index, src, reduce="amax") + tensor([5., 6., 5., 2.]) + >>> input2.scatter_reduce(0, index, src, reduce="amax", include_self=False) + tensor([3., 6., 5., 2.]) + + +""".format( + **reproducibility_notes + ), +) + +add_docstr_all( + "select", + r""" +select(dim, index) -> Tensor + +See :func:`torch.select` +""", +) + +add_docstr_all( + "select_scatter", + r""" +select_scatter(src, dim, index) -> Tensor + +See :func:`torch.select_scatter` +""", +) + +add_docstr_all( + "slice_scatter", + r""" +slice_scatter(src, dim=0, start=None, end=None, step=1) -> Tensor + +See :func:`torch.slice_scatter` +""", +) + +add_docstr_all( + "set_", + r""" +set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor + +Sets the underlying storage, size, and strides. If :attr:`source` is a tensor, +:attr:`self` tensor will share the same storage and have the same size and +strides as :attr:`source`. Changes to elements in one tensor will be reflected +in the other. + +If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying +storage, offset, size, and stride. + +Args: + source (Tensor or Storage): the tensor or storage to use + storage_offset (int, optional): the offset in the storage + size (torch.Size, optional): the desired size. Defaults to the size of the source. + stride (tuple, optional): the desired stride. Defaults to C-contiguous strides. +""", +) + +add_docstr_all( + "sigmoid", + r""" +sigmoid() -> Tensor + +See :func:`torch.sigmoid` +""", +) + +add_docstr_all( + "sigmoid_", + r""" +sigmoid_() -> Tensor + +In-place version of :meth:`~Tensor.sigmoid` +""", +) + +add_docstr_all( + "logit", + r""" +logit() -> Tensor + +See :func:`torch.logit` +""", +) + +add_docstr_all( + "logit_", + r""" +logit_() -> Tensor + +In-place version of :meth:`~Tensor.logit` +""", +) + +add_docstr_all( + "sign", + r""" +sign() -> Tensor + +See :func:`torch.sign` +""", +) + +add_docstr_all( + "sign_", + r""" +sign_() -> Tensor + +In-place version of :meth:`~Tensor.sign` +""", +) + +add_docstr_all( + "signbit", + r""" +signbit() -> Tensor + +See :func:`torch.signbit` +""", +) + +add_docstr_all( + "sgn", + r""" +sgn() -> Tensor + +See :func:`torch.sgn` +""", +) + +add_docstr_all( + "sgn_", + r""" +sgn_() -> Tensor + +In-place version of :meth:`~Tensor.sgn` +""", +) + +add_docstr_all( + "sin", + r""" +sin() -> Tensor + +See :func:`torch.sin` +""", +) + +add_docstr_all( + "sin_", + r""" +sin_() -> Tensor + +In-place version of :meth:`~Tensor.sin` +""", +) + +add_docstr_all( + "sinc", + r""" +sinc() -> Tensor + +See :func:`torch.sinc` +""", +) + +add_docstr_all( + "sinc_", + r""" +sinc_() -> Tensor + +In-place version of :meth:`~Tensor.sinc` +""", +) + +add_docstr_all( + "sinh", + r""" +sinh() -> Tensor + +See :func:`torch.sinh` +""", +) + +add_docstr_all( + "sinh_", + r""" +sinh_() -> Tensor + +In-place version of :meth:`~Tensor.sinh` +""", +) + +add_docstr_all( + "size", + r""" +size(dim=None) -> torch.Size or int + +Returns the size of the :attr:`self` tensor. If ``dim`` is not specified, +the returned value is a :class:`torch.Size`, a subclass of :class:`tuple`. +If ``dim`` is specified, returns an int holding the size of that dimension. + +Args: + dim (int, optional): The dimension for which to retrieve the size. + +Example:: + + >>> t = torch.empty(3, 4, 5) + >>> t.size() + torch.Size([3, 4, 5]) + >>> t.size(dim=1) + 4 + +""", +) + +add_docstr_all( + "shape", + r""" +shape() -> torch.Size + +Returns the size of the :attr:`self` tensor. Alias for :attr:`size`. + +See also :meth:`Tensor.size`. + +Example:: + + >>> t = torch.empty(3, 4, 5) + >>> t.size() + torch.Size([3, 4, 5]) + >>> t.shape + torch.Size([3, 4, 5]) + +""", +) + +add_docstr_all( + "sort", + r""" +sort(dim=-1, descending=False) -> (Tensor, LongTensor) + +See :func:`torch.sort` +""", +) + +add_docstr_all( + "msort", + r""" +msort() -> Tensor + +See :func:`torch.msort` +""", +) + +add_docstr_all( + "argsort", + r""" +argsort(dim=-1, descending=False) -> LongTensor + +See :func:`torch.argsort` +""", +) + +add_docstr_all( + "sparse_dim", + r""" +sparse_dim() -> int + +Return the number of sparse dimensions in a :ref:`sparse tensor ` :attr:`self`. + +.. note:: + Returns ``0`` if :attr:`self` is not a sparse tensor. + +See also :meth:`Tensor.dense_dim` and :ref:`hybrid tensors `. +""", +) + +add_docstr_all( + "sparse_resize_", + r""" +sparse_resize_(size, sparse_dim, dense_dim) -> Tensor + +Resizes :attr:`self` :ref:`sparse tensor ` to the desired +size and the number of sparse and dense dimensions. + +.. note:: + If the number of specified elements in :attr:`self` is zero, then + :attr:`size`, :attr:`sparse_dim`, and :attr:`dense_dim` can be any + size and positive integers such that ``len(size) == sparse_dim + + dense_dim``. + + If :attr:`self` specifies one or more elements, however, then each + dimension in :attr:`size` must not be smaller than the corresponding + dimension of :attr:`self`, :attr:`sparse_dim` must equal the number + of sparse dimensions in :attr:`self`, and :attr:`dense_dim` must + equal the number of dense dimensions in :attr:`self`. + +.. warning:: + Throws an error if :attr:`self` is not a sparse tensor. + +Args: + size (torch.Size): the desired size. If :attr:`self` is non-empty + sparse tensor, the desired size cannot be smaller than the + original size. + sparse_dim (int): the number of sparse dimensions + dense_dim (int): the number of dense dimensions +""", +) + +add_docstr_all( + "sparse_resize_and_clear_", + r""" +sparse_resize_and_clear_(size, sparse_dim, dense_dim) -> Tensor + +Removes all specified elements from a :ref:`sparse tensor +` :attr:`self` and resizes :attr:`self` to the desired +size and the number of sparse and dense dimensions. + +.. warning: + Throws an error if :attr:`self` is not a sparse tensor. + +Args: + size (torch.Size): the desired size. + sparse_dim (int): the number of sparse dimensions + dense_dim (int): the number of dense dimensions +""", +) + +add_docstr_all( + "sqrt", + r""" +sqrt() -> Tensor + +See :func:`torch.sqrt` +""", +) + +add_docstr_all( + "sqrt_", + r""" +sqrt_() -> Tensor + +In-place version of :meth:`~Tensor.sqrt` +""", +) + +add_docstr_all( + "square", + r""" +square() -> Tensor + +See :func:`torch.square` +""", +) + +add_docstr_all( + "square_", + r""" +square_() -> Tensor + +In-place version of :meth:`~Tensor.square` +""", +) + +add_docstr_all( + "squeeze", + r""" +squeeze(dim=None) -> Tensor + +See :func:`torch.squeeze` +""", +) + +add_docstr_all( + "squeeze_", + r""" +squeeze_(dim=None) -> Tensor + +In-place version of :meth:`~Tensor.squeeze` +""", +) + +add_docstr_all( + "std", + r""" +std(dim=None, *, correction=1, keepdim=False) -> Tensor + +See :func:`torch.std` +""", +) + +add_docstr_all( + "storage_offset", + r""" +storage_offset() -> int + +Returns :attr:`self` tensor's offset in the underlying storage in terms of +number of storage elements (not bytes). + +Example:: + + >>> x = torch.tensor([1, 2, 3, 4, 5]) + >>> x.storage_offset() + 0 + >>> x[3:].storage_offset() + 3 + +""", +) + +add_docstr_all( + "untyped_storage", + r""" +untyped_storage() -> torch.UntypedStorage + +Returns the underlying :class:`UntypedStorage`. +""", +) + +add_docstr_all( + "stride", + r""" +stride(dim) -> tuple or int + +Returns the stride of :attr:`self` tensor. + +Stride is the jump necessary to go from one element to the next one in the +specified dimension :attr:`dim`. A tuple of all strides is returned when no +argument is passed in. Otherwise, an integer value is returned as the stride in +the particular dimension :attr:`dim`. + +Args: + dim (int, optional): the desired dimension in which stride is required + +Example:: + + >>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) + >>> x.stride() + (5, 1) + >>> x.stride(0) + 5 + >>> x.stride(-1) + 1 + +""", +) + +add_docstr_all( + "sub", + r""" +sub(other, *, alpha=1) -> Tensor + +See :func:`torch.sub`. +""", +) + +add_docstr_all( + "sub_", + r""" +sub_(other, *, alpha=1) -> Tensor + +In-place version of :meth:`~Tensor.sub` +""", +) + +add_docstr_all( + "subtract", + r""" +subtract(other, *, alpha=1) -> Tensor + +See :func:`torch.subtract`. +""", +) + +add_docstr_all( + "subtract_", + r""" +subtract_(other, *, alpha=1) -> Tensor + +In-place version of :meth:`~Tensor.subtract`. +""", +) + +add_docstr_all( + "sum", + r""" +sum(dim=None, keepdim=False, dtype=None) -> Tensor + +See :func:`torch.sum` +""", +) + +add_docstr_all( + "nansum", + r""" +nansum(dim=None, keepdim=False, dtype=None) -> Tensor + +See :func:`torch.nansum` +""", +) + +add_docstr_all( + "svd", + r""" +svd(some=True, compute_uv=True) -> (Tensor, Tensor, Tensor) + +See :func:`torch.svd` +""", +) + +add_docstr_all( + "swapdims", + r""" +swapdims(dim0, dim1) -> Tensor + +See :func:`torch.swapdims` +""", +) + +add_docstr_all( + "swapdims_", + r""" +swapdims_(dim0, dim1) -> Tensor + +In-place version of :meth:`~Tensor.swapdims` +""", +) + +add_docstr_all( + "swapaxes", + r""" +swapaxes(axis0, axis1) -> Tensor + +See :func:`torch.swapaxes` +""", +) + +add_docstr_all( + "swapaxes_", + r""" +swapaxes_(axis0, axis1) -> Tensor + +In-place version of :meth:`~Tensor.swapaxes` +""", +) + +add_docstr_all( + "t", + r""" +t() -> Tensor + +See :func:`torch.t` +""", +) + +add_docstr_all( + "t_", + r""" +t_() -> Tensor + +In-place version of :meth:`~Tensor.t` +""", +) + +add_docstr_all( + "tile", + r""" +tile(dims) -> Tensor + +See :func:`torch.tile` +""", +) + +add_docstr_all( + "to", + r""" +to(*args, **kwargs) -> Tensor + +Performs Tensor dtype and/or device conversion. A :class:`torch.dtype` and :class:`torch.device` are +inferred from the arguments of ``self.to(*args, **kwargs)``. + +.. note:: + + If the ``self`` Tensor already + has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned. + Otherwise, the returned tensor is a copy of ``self`` with the desired + :class:`torch.dtype` and :class:`torch.device`. + +Here are the ways to call ``to``: + +.. method:: to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor + :noindex: + + Returns a Tensor with the specified :attr:`dtype` + + Args: + {memory_format} + +.. method:: to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor + :noindex: + + Returns a Tensor with the specified :attr:`device` and (optional) + :attr:`dtype`. If :attr:`dtype` is ``None`` it is inferred to be ``self.dtype``. + When :attr:`non_blocking`, tries to convert asynchronously with respect to + the host if possible, e.g., converting a CPU Tensor with pinned memory to a + CUDA Tensor. + When :attr:`copy` is set, a new Tensor is created even when the Tensor + already matches the desired conversion. + + Args: + {memory_format} + +.. method:: to(other, non_blocking=False, copy=False) -> Tensor + :noindex: + + Returns a Tensor with same :class:`torch.dtype` and :class:`torch.device` as + the Tensor :attr:`other`. When :attr:`non_blocking`, tries to convert + asynchronously with respect to the host if possible, e.g., converting a CPU + Tensor with pinned memory to a CUDA Tensor. + When :attr:`copy` is set, a new Tensor is created even when the Tensor + already matches the desired conversion. + +Example:: + + >>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu + >>> tensor.to(torch.float64) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64) + + >>> cuda0 = torch.device('cuda:0') + >>> tensor.to(cuda0) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], device='cuda:0') + + >>> tensor.to(cuda0, dtype=torch.float64) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') + + >>> other = torch.randn((), dtype=torch.float64, device=cuda0) + >>> tensor.to(other, non_blocking=True) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') +""".format( + **common_args + ), +) + +add_docstr_all( + "byte", + r""" +byte(memory_format=torch.preserve_format) -> Tensor + +``self.byte()`` is equivalent to ``self.to(torch.uint8)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "bool", + r""" +bool(memory_format=torch.preserve_format) -> Tensor + +``self.bool()`` is equivalent to ``self.to(torch.bool)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "char", + r""" +char(memory_format=torch.preserve_format) -> Tensor + +``self.char()`` is equivalent to ``self.to(torch.int8)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "bfloat16", + r""" +bfloat16(memory_format=torch.preserve_format) -> Tensor +``self.bfloat16()`` is equivalent to ``self.to(torch.bfloat16)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "double", + r""" +double(memory_format=torch.preserve_format) -> Tensor + +``self.double()`` is equivalent to ``self.to(torch.float64)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "float", + r""" +float(memory_format=torch.preserve_format) -> Tensor + +``self.float()`` is equivalent to ``self.to(torch.float32)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "cdouble", + r""" +cdouble(memory_format=torch.preserve_format) -> Tensor + +``self.cdouble()`` is equivalent to ``self.to(torch.complex128)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "cfloat", + r""" +cfloat(memory_format=torch.preserve_format) -> Tensor + +``self.cfloat()`` is equivalent to ``self.to(torch.complex64)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "chalf", + r""" +chalf(memory_format=torch.preserve_format) -> Tensor + +``self.chalf()`` is equivalent to ``self.to(torch.complex32)``. See :func:`to`. + +Args: + {memory_format} + """.format( + **common_args + ), +) + +add_docstr_all( + "half", + r""" +half(memory_format=torch.preserve_format) -> Tensor + +``self.half()`` is equivalent to ``self.to(torch.float16)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "int", + r""" +int(memory_format=torch.preserve_format) -> Tensor + +``self.int()`` is equivalent to ``self.to(torch.int32)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "int_repr", + r""" +int_repr() -> Tensor + +Given a quantized Tensor, +``self.int_repr()`` returns a CPU Tensor with uint8_t as data type that stores the +underlying uint8_t values of the given Tensor. +""", +) + + +add_docstr_all( + "long", + r""" +long(memory_format=torch.preserve_format) -> Tensor + +``self.long()`` is equivalent to ``self.to(torch.int64)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "short", + r""" +short(memory_format=torch.preserve_format) -> Tensor + +``self.short()`` is equivalent to ``self.to(torch.int16)``. See :func:`to`. + +Args: + {memory_format} +""".format( + **common_args + ), +) + +add_docstr_all( + "take", + r""" +take(indices) -> Tensor + +See :func:`torch.take` +""", +) + +add_docstr_all( + "take_along_dim", + r""" +take_along_dim(indices, dim) -> Tensor + +See :func:`torch.take_along_dim` +""", +) + +add_docstr_all( + "tan", + r""" +tan() -> Tensor + +See :func:`torch.tan` +""", +) + +add_docstr_all( + "tan_", + r""" +tan_() -> Tensor + +In-place version of :meth:`~Tensor.tan` +""", +) + +add_docstr_all( + "tanh", + r""" +tanh() -> Tensor + +See :func:`torch.tanh` +""", +) + +add_docstr_all( + "softmax", + r""" +softmax(dim) -> Tensor + +Alias for :func:`torch.nn.functional.softmax`. +""", +) + +add_docstr_all( + "tanh_", + r""" +tanh_() -> Tensor + +In-place version of :meth:`~Tensor.tanh` +""", +) + +add_docstr_all( + "tolist", + r""" +tolist() -> list or number + +Returns the tensor as a (nested) list. For scalars, a standard +Python number is returned, just like with :meth:`~Tensor.item`. +Tensors are automatically moved to the CPU first if necessary. + +This operation is not differentiable. + +Examples:: + + >>> a = torch.randn(2, 2) + >>> a.tolist() + [[0.012766935862600803, 0.5415473580360413], + [-0.08909505605697632, 0.7729271650314331]] + >>> a[0,0].tolist() + 0.012766935862600803 +""", +) + +add_docstr_all( + "topk", + r""" +topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor) + +See :func:`torch.topk` +""", +) + +add_docstr_all( + "to_dense", + r""" +to_dense(dtype=None, *, masked_grad=True) -> Tensor + +Creates a strided copy of :attr:`self` if :attr:`self` is not a strided tensor, otherwise returns :attr:`self`. + +Keyword args: + {dtype} + masked_grad (bool, optional): If set to ``True`` (default) and + :attr:`self` has a sparse layout then the backward of + :meth:`to_dense` returns ``grad.sparse_mask(self)``. + +Example:: + + >>> s = torch.sparse_coo_tensor( + ... torch.tensor([[1, 1], + ... [0, 2]]), + ... torch.tensor([9, 10]), + ... size=(3, 3)) + >>> s.to_dense() + tensor([[ 0, 0, 0], + [ 9, 0, 10], + [ 0, 0, 0]]) +""", +) + +add_docstr_all( + "to_sparse", + r""" +to_sparse(sparseDims) -> Tensor + +Returns a sparse copy of the tensor. PyTorch supports sparse tensors in +:ref:`coordinate format `. + +Args: + sparseDims (int, optional): the number of sparse dimensions to include in the new sparse tensor + +Example:: + + >>> d = torch.tensor([[0, 0, 0], [9, 0, 10], [0, 0, 0]]) + >>> d + tensor([[ 0, 0, 0], + [ 9, 0, 10], + [ 0, 0, 0]]) + >>> d.to_sparse() + tensor(indices=tensor([[1, 1], + [0, 2]]), + values=tensor([ 9, 10]), + size=(3, 3), nnz=2, layout=torch.sparse_coo) + >>> d.to_sparse(1) + tensor(indices=tensor([[1]]), + values=tensor([[ 9, 0, 10]]), + size=(3, 3), nnz=1, layout=torch.sparse_coo) + +.. method:: to_sparse(*, layout=None, blocksize=None, dense_dim=None) -> Tensor + :noindex: + +Returns a sparse tensor with the specified layout and blocksize. If +the :attr:`self` is strided, the number of dense dimensions could be +specified, and a hybrid sparse tensor will be created, with +`dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch +dimension. + +.. note:: If the :attr:`self` layout and blocksize parameters match + with the specified layout and blocksize, return + :attr:`self`. Otherwise, return a sparse tensor copy of + :attr:`self`. + +Args: + + layout (:class:`torch.layout`, optional): The desired sparse + layout. One of ``torch.sparse_coo``, ``torch.sparse_csr``, + ``torch.sparse_csc``, ``torch.sparse_bsr``, or + ``torch.sparse_bsc``. Default: if ``None``, + ``torch.sparse_coo``. + + blocksize (list, tuple, :class:`torch.Size`, optional): Block size + of the resulting BSR or BSC tensor. For other layouts, + specifying the block size that is not ``None`` will result in a + RuntimeError exception. A block size must be a tuple of length + two such that its items evenly divide the two sparse dimensions. + + dense_dim (int, optional): Number of dense dimensions of the + resulting CSR, CSC, BSR or BSC tensor. This argument should be + used only if :attr:`self` is a strided tensor, and must be a + value between 0 and dimension of :attr:`self` tensor minus two. + +Example:: + + >>> x = torch.tensor([[1, 0], [0, 0], [2, 3]]) + >>> x.to_sparse(layout=torch.sparse_coo) + tensor(indices=tensor([[0, 2, 2], + [0, 0, 1]]), + values=tensor([1, 2, 3]), + size=(3, 2), nnz=3, layout=torch.sparse_coo) + >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(1, 2)) + tensor(crow_indices=tensor([0, 1, 1, 2]), + col_indices=tensor([0, 0]), + values=tensor([[[1, 0]], + [[2, 3]]]), size=(3, 2), nnz=2, layout=torch.sparse_bsr) + >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(2, 1)) + RuntimeError: Tensor size(-2) 3 needs to be divisible by blocksize[0] 2 + >>> x.to_sparse(layout=torch.sparse_csr, blocksize=(3, 1)) + RuntimeError: to_sparse for Strided to SparseCsr conversion does not use specified blocksize + + >>> x = torch.tensor([[[1], [0]], [[0], [0]], [[2], [3]]]) + >>> x.to_sparse(layout=torch.sparse_csr, dense_dim=1) + tensor(crow_indices=tensor([0, 1, 1, 3]), + col_indices=tensor([0, 0, 1]), + values=tensor([[1], + [2], + [3]]), size=(3, 2, 1), nnz=3, layout=torch.sparse_csr) + +""", +) + +add_docstr_all( + "to_sparse_csr", + r""" +to_sparse_csr(dense_dim=None) -> Tensor + +Convert a tensor to compressed row storage format (CSR). Except for +strided tensors, only works with 2D tensors. If the :attr:`self` is +strided, then the number of dense dimensions could be specified, and a +hybrid CSR tensor will be created, with `dense_dim` dense dimensions +and `self.dim() - 2 - dense_dim` batch dimension. + +Args: + + dense_dim (int, optional): Number of dense dimensions of the + resulting CSR tensor. This argument should be used only if + :attr:`self` is a strided tensor, and must be a value between 0 + and dimension of :attr:`self` tensor minus two. + +Example:: + + >>> dense = torch.randn(5, 5) + >>> sparse = dense.to_sparse_csr() + >>> sparse._nnz() + 25 + + >>> dense = torch.zeros(3, 3, 1, 1) + >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 + >>> dense.to_sparse_csr(dense_dim=2) + tensor(crow_indices=tensor([0, 1, 2, 3]), + col_indices=tensor([0, 2, 1]), + values=tensor([[[1.]], + + [[1.]], + + [[1.]]]), size=(3, 3, 1, 1), nnz=3, + layout=torch.sparse_csr) + +""", +) + +add_docstr_all( + "to_sparse_csc", + r""" +to_sparse_csc() -> Tensor + +Convert a tensor to compressed column storage (CSC) format. Except +for strided tensors, only works with 2D tensors. If the :attr:`self` +is strided, then the number of dense dimensions could be specified, +and a hybrid CSC tensor will be created, with `dense_dim` dense +dimensions and `self.dim() - 2 - dense_dim` batch dimension. + +Args: + + dense_dim (int, optional): Number of dense dimensions of the + resulting CSC tensor. This argument should be used only if + :attr:`self` is a strided tensor, and must be a value between 0 + and dimension of :attr:`self` tensor minus two. + +Example:: + + >>> dense = torch.randn(5, 5) + >>> sparse = dense.to_sparse_csc() + >>> sparse._nnz() + 25 + + >>> dense = torch.zeros(3, 3, 1, 1) + >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 + >>> dense.to_sparse_csc(dense_dim=2) + tensor(ccol_indices=tensor([0, 1, 2, 3]), + row_indices=tensor([0, 2, 1]), + values=tensor([[[1.]], + + [[1.]], + + [[1.]]]), size=(3, 3, 1, 1), nnz=3, + layout=torch.sparse_csc) + +""", +) + +add_docstr_all( + "to_sparse_bsr", + r""" +to_sparse_bsr(blocksize, dense_dim) -> Tensor + +Convert a tensor to a block sparse row (BSR) storage format of given +blocksize. If the :attr:`self` is strided, then the number of dense +dimensions could be specified, and a hybrid BSR tensor will be +created, with `dense_dim` dense dimensions and `self.dim() - 2 - +dense_dim` batch dimension. + +Args: + + blocksize (list, tuple, :class:`torch.Size`, optional): Block size + of the resulting BSR tensor. A block size must be a tuple of + length two such that its items evenly divide the two sparse + dimensions. + + dense_dim (int, optional): Number of dense dimensions of the + resulting BSR tensor. This argument should be used only if + :attr:`self` is a strided tensor, and must be a value between 0 + and dimension of :attr:`self` tensor minus two. + +Example:: + + >>> dense = torch.randn(10, 10) + >>> sparse = dense.to_sparse_csr() + >>> sparse_bsr = sparse.to_sparse_bsr((5, 5)) + >>> sparse_bsr.col_indices() + tensor([0, 1, 0, 1]) + + >>> dense = torch.zeros(4, 3, 1) + >>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1 + >>> dense.to_sparse_bsr((2, 1), 1) + tensor(crow_indices=tensor([0, 2, 3]), + col_indices=tensor([0, 2, 1]), + values=tensor([[[[1.]], + + [[1.]]], + + + [[[1.]], + + [[1.]]], + + + [[[1.]], + + [[1.]]]]), size=(4, 3, 1), nnz=3, + layout=torch.sparse_bsr) + +""", +) + +add_docstr_all( + "to_sparse_bsc", + r""" +to_sparse_bsc(blocksize, dense_dim) -> Tensor + +Convert a tensor to a block sparse column (BSC) storage format of +given blocksize. If the :attr:`self` is strided, then the number of +dense dimensions could be specified, and a hybrid BSC tensor will be +created, with `dense_dim` dense dimensions and `self.dim() - 2 - +dense_dim` batch dimension. + +Args: + + blocksize (list, tuple, :class:`torch.Size`, optional): Block size + of the resulting BSC tensor. A block size must be a tuple of + length two such that its items evenly divide the two sparse + dimensions. + + dense_dim (int, optional): Number of dense dimensions of the + resulting BSC tensor. This argument should be used only if + :attr:`self` is a strided tensor, and must be a value between 0 + and dimension of :attr:`self` tensor minus two. + +Example:: + + >>> dense = torch.randn(10, 10) + >>> sparse = dense.to_sparse_csr() + >>> sparse_bsc = sparse.to_sparse_bsc((5, 5)) + >>> sparse_bsc.row_indices() + tensor([0, 1, 0, 1]) + + >>> dense = torch.zeros(4, 3, 1) + >>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1 + >>> dense.to_sparse_bsc((2, 1), 1) + tensor(ccol_indices=tensor([0, 1, 2, 3]), + row_indices=tensor([0, 1, 0]), + values=tensor([[[[1.]], + + [[1.]]], + + + [[[1.]], + + [[1.]]], + + + [[[1.]], + + [[1.]]]]), size=(4, 3, 1), nnz=3, + layout=torch.sparse_bsc) + +""", +) + +add_docstr_all( + "to_mkldnn", + r""" +to_mkldnn() -> Tensor +Returns a copy of the tensor in ``torch.mkldnn`` layout. + +""", +) + +add_docstr_all( + "trace", + r""" +trace() -> Tensor + +See :func:`torch.trace` +""", +) + +add_docstr_all( + "transpose", + r""" +transpose(dim0, dim1) -> Tensor + +See :func:`torch.transpose` +""", +) + +add_docstr_all( + "transpose_", + r""" +transpose_(dim0, dim1) -> Tensor + +In-place version of :meth:`~Tensor.transpose` +""", +) + +add_docstr_all( + "triangular_solve", + r""" +triangular_solve(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor) + +See :func:`torch.triangular_solve` +""", +) + +add_docstr_all( + "tril", + r""" +tril(diagonal=0) -> Tensor + +See :func:`torch.tril` +""", +) + +add_docstr_all( + "tril_", + r""" +tril_(diagonal=0) -> Tensor + +In-place version of :meth:`~Tensor.tril` +""", +) + +add_docstr_all( + "triu", + r""" +triu(diagonal=0) -> Tensor + +See :func:`torch.triu` +""", +) + +add_docstr_all( + "triu_", + r""" +triu_(diagonal=0) -> Tensor + +In-place version of :meth:`~Tensor.triu` +""", +) + +add_docstr_all( + "true_divide", + r""" +true_divide(value) -> Tensor + +See :func:`torch.true_divide` +""", +) + +add_docstr_all( + "true_divide_", + r""" +true_divide_(value) -> Tensor + +In-place version of :meth:`~Tensor.true_divide_` +""", +) + +add_docstr_all( + "trunc", + r""" +trunc() -> Tensor + +See :func:`torch.trunc` +""", +) + +add_docstr_all( + "fix", + r""" +fix() -> Tensor + +See :func:`torch.fix`. +""", +) + +add_docstr_all( + "trunc_", + r""" +trunc_() -> Tensor + +In-place version of :meth:`~Tensor.trunc` +""", +) + +add_docstr_all( + "fix_", + r""" +fix_() -> Tensor + +In-place version of :meth:`~Tensor.fix` +""", +) + +add_docstr_all( + "type", + r""" +type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor +Returns the type if `dtype` is not provided, else casts this object to +the specified type. + +If this is already of the correct type, no copy is performed and the +original object is returned. + +Args: + dtype (dtype or string): The desired type + non_blocking (bool): If ``True``, and the source is in pinned memory + and destination is on the GPU or vice versa, the copy is performed + asynchronously with respect to the host. Otherwise, the argument + has no effect. + **kwargs: For compatibility, may contain the key ``async`` in place of + the ``non_blocking`` argument. The ``async`` arg is deprecated. +""", +) + +add_docstr_all( + "type_as", + r""" +type_as(tensor) -> Tensor + +Returns this tensor cast to the type of the given tensor. + +This is a no-op if the tensor is already of the correct type. This is +equivalent to ``self.type(tensor.type())`` + +Args: + tensor (Tensor): the tensor which has the desired type +""", +) + +add_docstr_all( + "unfold", + r""" +unfold(dimension, size, step) -> Tensor + +Returns a view of the original tensor which contains all slices of size :attr:`size` from +:attr:`self` tensor in the dimension :attr:`dimension`. + +Step between two slices is given by :attr:`step`. + +If `sizedim` is the size of dimension :attr:`dimension` for :attr:`self`, the size of +dimension :attr:`dimension` in the returned tensor will be +`(sizedim - size) / step + 1`. + +An additional dimension of size :attr:`size` is appended in the returned tensor. + +Args: + dimension (int): dimension in which unfolding happens + size (int): the size of each slice that is unfolded + step (int): the step between each slice + +Example:: + + >>> x = torch.arange(1., 8) + >>> x + tensor([ 1., 2., 3., 4., 5., 6., 7.]) + >>> x.unfold(0, 2, 1) + tensor([[ 1., 2.], + [ 2., 3.], + [ 3., 4.], + [ 4., 5.], + [ 5., 6.], + [ 6., 7.]]) + >>> x.unfold(0, 2, 2) + tensor([[ 1., 2.], + [ 3., 4.], + [ 5., 6.]]) +""", +) + +add_docstr_all( + "uniform_", + r""" +uniform_(from=0, to=1, *, generator=None) -> Tensor + +Fills :attr:`self` tensor with numbers sampled from the continuous uniform +distribution: + +.. math:: + f(x) = \dfrac{1}{\text{to} - \text{from}} +""", +) + +add_docstr_all( + "unsqueeze", + r""" +unsqueeze(dim) -> Tensor + +See :func:`torch.unsqueeze` +""", +) + +add_docstr_all( + "unsqueeze_", + r""" +unsqueeze_(dim) -> Tensor + +In-place version of :meth:`~Tensor.unsqueeze` +""", +) + +add_docstr_all( + "var", + r""" +var(dim=None, *, correction=1, keepdim=False) -> Tensor + +See :func:`torch.var` +""", +) + +add_docstr_all( + "vdot", + r""" +vdot(other) -> Tensor + +See :func:`torch.vdot` +""", +) + +add_docstr_all( + "view", + r""" +view(*shape) -> Tensor + +Returns a new tensor with the same data as the :attr:`self` tensor but of a +different :attr:`shape`. + +The returned tensor shares the same data and must have the same number +of elements, but may have a different size. For a tensor to be viewed, the new +view size must be compatible with its original size and stride, i.e., each new +view dimension must either be a subspace of an original dimension, or only span +across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following +contiguity-like condition that :math:`\forall i = d, \dots, d+k-1`, + +.. math:: + + \text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1] + +Otherwise, it will not be possible to view :attr:`self` tensor as :attr:`shape` +without copying it (e.g., via :meth:`contiguous`). When it is unclear whether a +:meth:`view` can be performed, it is advisable to use :meth:`reshape`, which +returns a view if the shapes are compatible, and copies (equivalent to calling +:meth:`contiguous`) otherwise. + +Args: + shape (torch.Size or int...): the desired size + +Example:: + + >>> x = torch.randn(4, 4) + >>> x.size() + torch.Size([4, 4]) + >>> y = x.view(16) + >>> y.size() + torch.Size([16]) + >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions + >>> z.size() + torch.Size([2, 8]) + + >>> a = torch.randn(1, 2, 3, 4) + >>> a.size() + torch.Size([1, 2, 3, 4]) + >>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension + >>> b.size() + torch.Size([1, 3, 2, 4]) + >>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory + >>> c.size() + torch.Size([1, 3, 2, 4]) + >>> torch.equal(b, c) + False + + +.. method:: view(dtype) -> Tensor + :noindex: + +Returns a new tensor with the same data as the :attr:`self` tensor but of a +different :attr:`dtype`. + +If the element size of :attr:`dtype` is different than that of ``self.dtype``, +then the size of the last dimension of the output will be scaled +proportionally. For instance, if :attr:`dtype` element size is twice that of +``self.dtype``, then each pair of elements in the last dimension of +:attr:`self` will be combined, and the size of the last dimension of the output +will be half that of :attr:`self`. If :attr:`dtype` element size is half that +of ``self.dtype``, then each element in the last dimension of :attr:`self` will +be split in two, and the size of the last dimension of the output will be +double that of :attr:`self`. For this to be possible, the following conditions +must be true: + + * ``self.dim()`` must be greater than 0. + * ``self.stride(-1)`` must be 1. + +Additionally, if the element size of :attr:`dtype` is greater than that of +``self.dtype``, the following conditions must be true as well: + + * ``self.size(-1)`` must be divisible by the ratio between the element + sizes of the dtypes. + * ``self.storage_offset()`` must be divisible by the ratio between the + element sizes of the dtypes. + * The strides of all dimensions, except the last dimension, must be + divisible by the ratio between the element sizes of the dtypes. + +If any of the above conditions are not met, an error is thrown. + +.. warning:: + + This overload is not supported by TorchScript, and using it in a Torchscript + program will cause undefined behavior. + + +Args: + dtype (:class:`torch.dtype`): the desired dtype + +Example:: + + >>> x = torch.randn(4, 4) + >>> x + tensor([[ 0.9482, -0.0310, 1.4999, -0.5316], + [-0.1520, 0.7472, 0.5617, -0.8649], + [-2.4724, -0.0334, -0.2976, -0.8499], + [-0.2109, 1.9913, -0.9607, -0.6123]]) + >>> x.dtype + torch.float32 + + >>> y = x.view(torch.int32) + >>> y + tensor([[ 1064483442, -1124191867, 1069546515, -1089989247], + [-1105482831, 1061112040, 1057999968, -1084397505], + [-1071760287, -1123489973, -1097310419, -1084649136], + [-1101533110, 1073668768, -1082790149, -1088634448]], + dtype=torch.int32) + >>> y[0, 0] = 1000000000 + >>> x + tensor([[ 0.0047, -0.0310, 1.4999, -0.5316], + [-0.1520, 0.7472, 0.5617, -0.8649], + [-2.4724, -0.0334, -0.2976, -0.8499], + [-0.2109, 1.9913, -0.9607, -0.6123]]) + + >>> x.view(torch.cfloat) + tensor([[ 0.0047-0.0310j, 1.4999-0.5316j], + [-0.1520+0.7472j, 0.5617-0.8649j], + [-2.4724-0.0334j, -0.2976-0.8499j], + [-0.2109+1.9913j, -0.9607-0.6123j]]) + >>> x.view(torch.cfloat).size() + torch.Size([4, 2]) + + >>> x.view(torch.uint8) + tensor([[ 0, 202, 154, 59, 182, 243, 253, 188, 185, 252, 191, 63, 240, 22, + 8, 191], + [227, 165, 27, 190, 128, 72, 63, 63, 146, 203, 15, 63, 22, 106, + 93, 191], + [205, 59, 30, 192, 112, 206, 8, 189, 7, 95, 152, 190, 12, 147, + 89, 191], + [ 43, 246, 87, 190, 235, 226, 254, 63, 111, 240, 117, 191, 177, 191, + 28, 191]], dtype=torch.uint8) + >>> x.view(torch.uint8).size() + torch.Size([4, 16]) +""", +) + +add_docstr_all( + "view_as", + r""" +view_as(other) -> Tensor + +View this tensor as the same size as :attr:`other`. +``self.view_as(other)`` is equivalent to ``self.view(other.size())``. + +Please see :meth:`~Tensor.view` for more information about ``view``. + +Args: + other (:class:`torch.Tensor`): The result tensor has the same size + as :attr:`other`. +""", +) + +add_docstr_all( + "expand", + r""" +expand(*sizes) -> Tensor + +Returns a new view of the :attr:`self` tensor with singleton dimensions expanded +to a larger size. + +Passing -1 as the size for a dimension means not changing the size of +that dimension. + +Tensor can be also expanded to a larger number of dimensions, and the +new ones will be appended at the front. For the new dimensions, the +size cannot be set to -1. + +Expanding a tensor does not allocate new memory, but only creates a +new view on the existing tensor where a dimension of size one is +expanded to a larger size by setting the ``stride`` to 0. Any dimension +of size 1 can be expanded to an arbitrary value without allocating new +memory. + +Args: + *sizes (torch.Size or int...): the desired expanded size + +.. warning:: + + More than one element of an expanded tensor may refer to a single + memory location. As a result, in-place operations (especially ones that + are vectorized) may result in incorrect behavior. If you need to write + to the tensors, please clone them first. + +Example:: + + >>> x = torch.tensor([[1], [2], [3]]) + >>> x.size() + torch.Size([3, 1]) + >>> x.expand(3, 4) + tensor([[ 1, 1, 1, 1], + [ 2, 2, 2, 2], + [ 3, 3, 3, 3]]) + >>> x.expand(-1, 4) # -1 means not changing the size of that dimension + tensor([[ 1, 1, 1, 1], + [ 2, 2, 2, 2], + [ 3, 3, 3, 3]]) +""", +) + +add_docstr_all( + "expand_as", + r""" +expand_as(other) -> Tensor + +Expand this tensor to the same size as :attr:`other`. +``self.expand_as(other)`` is equivalent to ``self.expand(other.size())``. + +Please see :meth:`~Tensor.expand` for more information about ``expand``. + +Args: + other (:class:`torch.Tensor`): The result tensor has the same size + as :attr:`other`. +""", +) + +add_docstr_all( + "sum_to_size", + r""" +sum_to_size(*size) -> Tensor + +Sum ``this`` tensor to :attr:`size`. +:attr:`size` must be broadcastable to ``this`` tensor size. + +Args: + size (int...): a sequence of integers defining the shape of the output tensor. +""", +) + + +add_docstr_all( + "zero_", + r""" +zero_() -> Tensor + +Fills :attr:`self` tensor with zeros. +""", +) + +add_docstr_all( + "matmul", + r""" +matmul(tensor2) -> Tensor + +See :func:`torch.matmul` +""", +) + +add_docstr_all( + "chunk", + r""" +chunk(chunks, dim=0) -> List of Tensors + +See :func:`torch.chunk` +""", +) + +add_docstr_all( + "unsafe_chunk", + r""" +unsafe_chunk(chunks, dim=0) -> List of Tensors + +See :func:`torch.unsafe_chunk` +""", +) + +add_docstr_all( + "unsafe_split", + r""" +unsafe_split(split_size, dim=0) -> List of Tensors + +See :func:`torch.unsafe_split` +""", +) + +add_docstr_all( + "tensor_split", + r""" +tensor_split(indices_or_sections, dim=0) -> List of Tensors + +See :func:`torch.tensor_split` +""", +) + +add_docstr_all( + "hsplit", + r""" +hsplit(split_size_or_sections) -> List of Tensors + +See :func:`torch.hsplit` +""", +) + +add_docstr_all( + "vsplit", + r""" +vsplit(split_size_or_sections) -> List of Tensors + +See :func:`torch.vsplit` +""", +) + +add_docstr_all( + "dsplit", + r""" +dsplit(split_size_or_sections) -> List of Tensors + +See :func:`torch.dsplit` +""", +) + +add_docstr_all( + "stft", + r""" +stft(frame_length, hop, fft_size=None, return_onesided=True, window=None, pad_end=0) -> Tensor + +See :func:`torch.stft` +""", +) + +add_docstr_all( + "istft", + r""" +istft(n_fft, hop_length=None, win_length=None, window=None, + center=True, normalized=False, onesided=True, length=None) -> Tensor + +See :func:`torch.istft` +""", +) + +add_docstr_all( + "det", + r""" +det() -> Tensor + +See :func:`torch.det` +""", +) + +add_docstr_all( + "where", + r""" +where(condition, y) -> Tensor + +``self.where(condition, y)`` is equivalent to ``torch.where(condition, self, y)``. +See :func:`torch.where` +""", +) + +add_docstr_all( + "logdet", + r""" +logdet() -> Tensor + +See :func:`torch.logdet` +""", +) + +add_docstr_all( + "slogdet", + r""" +slogdet() -> (Tensor, Tensor) + +See :func:`torch.slogdet` +""", +) + +add_docstr_all( + "unbind", + r""" +unbind(dim=0) -> seq + +See :func:`torch.unbind` +""", +) + +add_docstr_all( + "pin_memory", + r""" +pin_memory() -> Tensor + +Copies the tensor to pinned memory, if it's not already pinned. +""", +) + +add_docstr_all( + "pinverse", + r""" +pinverse() -> Tensor + +See :func:`torch.pinverse` +""", +) + +add_docstr_all( + "index_add", + r""" +index_add(dim, index, source, *, alpha=1) -> Tensor + +Out-of-place version of :meth:`torch.Tensor.index_add_`. +""", +) + +add_docstr_all( + "index_copy", + r""" +index_copy(dim, index, tensor2) -> Tensor + +Out-of-place version of :meth:`torch.Tensor.index_copy_`. +""", +) + +add_docstr_all( + "index_fill", + r""" +index_fill(dim, index, value) -> Tensor + +Out-of-place version of :meth:`torch.Tensor.index_fill_`. +""", +) + +add_docstr_all( + "scatter", + r""" +scatter(dim, index, src) -> Tensor + +Out-of-place version of :meth:`torch.Tensor.scatter_` +""", +) + +add_docstr_all( + "scatter_add", + r""" +scatter_add(dim, index, src) -> Tensor + +Out-of-place version of :meth:`torch.Tensor.scatter_add_` +""", +) + +add_docstr_all( + "scatter_reduce", + r""" +scatter_reduce(dim, index, src, reduce, *, include_self=True) -> Tensor + +Out-of-place version of :meth:`torch.Tensor.scatter_reduce_` +""", +) + +add_docstr_all( + "masked_scatter", + r""" +masked_scatter(mask, tensor) -> Tensor + +Out-of-place version of :meth:`torch.Tensor.masked_scatter_` + +.. note:: + + The inputs :attr:`self` and :attr:`mask` + :ref:`broadcast `. + +Example: + + >>> self = torch.tensor([0, 0, 0, 0, 0]) + >>> mask = torch.tensor([[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]]) + >>> source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) + >>> self.masked_scatter(mask, source) + tensor([[0, 0, 0, 0, 1], + [2, 3, 0, 4, 5]]) + +""", +) + +add_docstr_all( + "xlogy", + r""" +xlogy(other) -> Tensor + +See :func:`torch.xlogy` +""", +) + +add_docstr_all( + "xlogy_", + r""" +xlogy_(other) -> Tensor + +In-place version of :meth:`~Tensor.xlogy` +""", +) + +add_docstr_all( + "masked_fill", + r""" +masked_fill(mask, value) -> Tensor + +Out-of-place version of :meth:`torch.Tensor.masked_fill_` +""", +) + +add_docstr_all( + "grad", + r""" +This attribute is ``None`` by default and becomes a Tensor the first time a call to +:func:`backward` computes gradients for ``self``. +The attribute will then contain the gradients computed and future calls to +:func:`backward` will accumulate (add) gradients into it. +""", +) + +add_docstr_all( + "retain_grad", + r""" +retain_grad() -> None + +Enables this Tensor to have their :attr:`grad` populated during +:func:`backward`. This is a no-op for leaf tensors. +""", +) + +add_docstr_all( + "retains_grad", + r""" +Is ``True`` if this Tensor is non-leaf and its :attr:`grad` is enabled to be +populated during :func:`backward`, ``False`` otherwise. +""", +) + +add_docstr_all( + "requires_grad", + r""" +Is ``True`` if gradients need to be computed for this Tensor, ``False`` otherwise. + +.. note:: + + The fact that gradients need to be computed for a Tensor do not mean that the :attr:`grad` + attribute will be populated, see :attr:`is_leaf` for more details. + +""", +) + +add_docstr_all( + "is_leaf", + r""" +All Tensors that have :attr:`requires_grad` which is ``False`` will be leaf Tensors by convention. + +For Tensors that have :attr:`requires_grad` which is ``True``, they will be leaf Tensors if they were +created by the user. This means that they are not the result of an operation and so +:attr:`grad_fn` is None. + +Only leaf Tensors will have their :attr:`grad` populated during a call to :func:`backward`. +To get :attr:`grad` populated for non-leaf Tensors, you can use :func:`retain_grad`. + +Example:: + + >>> a = torch.rand(10, requires_grad=True) + >>> a.is_leaf + True + >>> b = torch.rand(10, requires_grad=True).cuda() + >>> b.is_leaf + False + # b was created by the operation that cast a cpu Tensor into a cuda Tensor + >>> c = torch.rand(10, requires_grad=True) + 2 + >>> c.is_leaf + False + # c was created by the addition operation + >>> d = torch.rand(10).cuda() + >>> d.is_leaf + True + # d does not require gradients and so has no operation creating it (that is tracked by the autograd engine) + >>> e = torch.rand(10).cuda().requires_grad_() + >>> e.is_leaf + True + # e requires gradients and has no operations creating it + >>> f = torch.rand(10, requires_grad=True, device="cuda") + >>> f.is_leaf + True + # f requires grad, has no operation creating it + + +""", +) + +add_docstr_all( + "names", + r""" +Stores names for each of this tensor's dimensions. + +``names[idx]`` corresponds to the name of tensor dimension ``idx``. +Names are either a string if the dimension is named or ``None`` if the +dimension is unnamed. + +Dimension names may contain characters or underscore. Furthermore, a dimension +name must be a valid Python variable name (i.e., does not start with underscore). + +Tensors may not have two named dimensions with the same name. + +.. warning:: + The named tensor API is experimental and subject to change. + +""", +) + +add_docstr_all( + "is_cuda", + r""" +Is ``True`` if the Tensor is stored on the GPU, ``False`` otherwise. +""", +) + +add_docstr_all( + "is_cpu", + r""" +Is ``True`` if the Tensor is stored on the CPU, ``False`` otherwise. +""", +) + +add_docstr_all( + "is_xla", + r""" +Is ``True`` if the Tensor is stored on an XLA device, ``False`` otherwise. +""", +) + +add_docstr_all( + "is_ipu", + r""" +Is ``True`` if the Tensor is stored on the IPU, ``False`` otherwise. +""", +) + +add_docstr_all( + "is_xpu", + r""" +Is ``True`` if the Tensor is stored on the XPU, ``False`` otherwise. +""", +) + +add_docstr_all( + "is_quantized", + r""" +Is ``True`` if the Tensor is quantized, ``False`` otherwise. +""", +) + +add_docstr_all( + "is_meta", + r""" +Is ``True`` if the Tensor is a meta tensor, ``False`` otherwise. Meta tensors +are like normal tensors, but they carry no data. +""", +) + +add_docstr_all( + "is_mps", + r""" +Is ``True`` if the Tensor is stored on the MPS device, ``False`` otherwise. +""", +) + +add_docstr_all( + "is_sparse", + r""" +Is ``True`` if the Tensor uses sparse COO storage layout, ``False`` otherwise. +""", +) + +add_docstr_all( + "is_sparse_csr", + r""" +Is ``True`` if the Tensor uses sparse CSR storage layout, ``False`` otherwise. +""", +) + +add_docstr_all( + "device", + r""" +Is the :class:`torch.device` where this Tensor is. +""", +) + +add_docstr_all( + "ndim", + r""" +Alias for :meth:`~Tensor.dim()` +""", +) + +add_docstr_all( + "itemsize", + r""" +Alias for :meth:`~Tensor.element_size()` +""", +) + +add_docstr_all( + "nbytes", + r""" +Returns the number of bytes consumed by the "view" of elements of the Tensor +if the Tensor does not use sparse storage layout. +Defined to be :meth:`~Tensor.numel()` * :meth:`~Tensor.element_size()` +""", +) + +add_docstr_all( + "T", + r""" +Returns a view of this tensor with its dimensions reversed. + +If ``n`` is the number of dimensions in ``x``, +``x.T`` is equivalent to ``x.permute(n-1, n-2, ..., 0)``. + +.. warning:: + The use of :func:`Tensor.T` on tensors of dimension other than 2 to reverse their shape + is deprecated and it will throw an error in a future release. Consider :attr:`~.Tensor.mT` + to transpose batches of matrices or `x.permute(*torch.arange(x.ndim - 1, -1, -1))` to reverse + the dimensions of a tensor. +""", +) + +add_docstr_all( + "H", + r""" +Returns a view of a matrix (2-D tensor) conjugated and transposed. + +``x.H`` is equivalent to ``x.transpose(0, 1).conj()`` for complex matrices and +``x.transpose(0, 1)`` for real matrices. + +.. seealso:: + + :attr:`~.Tensor.mH`: An attribute that also works on batches of matrices. +""", +) + +add_docstr_all( + "mT", + r""" +Returns a view of this tensor with the last two dimensions transposed. + +``x.mT`` is equivalent to ``x.transpose(-2, -1)``. +""", +) + +add_docstr_all( + "mH", + r""" +Accessing this property is equivalent to calling :func:`adjoint`. +""", +) + +add_docstr_all( + "adjoint", + r""" +adjoint() -> Tensor + +Alias for :func:`adjoint` +""", +) + +add_docstr_all( + "real", + r""" +Returns a new tensor containing real values of the :attr:`self` tensor for a complex-valued input tensor. +The returned tensor and :attr:`self` share the same underlying storage. + +Returns :attr:`self` if :attr:`self` is a real-valued tensor tensor. + +Example:: + >>> x=torch.randn(4, dtype=torch.cfloat) + >>> x + tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) + >>> x.real + tensor([ 0.3100, -0.5445, -1.6492, -0.0638]) + +""", +) + +add_docstr_all( + "imag", + r""" +Returns a new tensor containing imaginary values of the :attr:`self` tensor. +The returned tensor and :attr:`self` share the same underlying storage. + +.. warning:: + :func:`imag` is only supported for tensors with complex dtypes. + +Example:: + >>> x=torch.randn(4, dtype=torch.cfloat) + >>> x + tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) + >>> x.imag + tensor([ 0.3553, -0.7896, -0.0633, -0.8119]) + +""", +) + +add_docstr_all( + "as_subclass", + r""" +as_subclass(cls) -> Tensor + +Makes a ``cls`` instance with the same data pointer as ``self``. Changes +in the output mirror changes in ``self``, and the output stays attached +to the autograd graph. ``cls`` must be a subclass of ``Tensor``. +""", +) + +add_docstr_all( + "crow_indices", + r""" +crow_indices() -> IntTensor + +Returns the tensor containing the compressed row indices of the :attr:`self` +tensor when :attr:`self` is a sparse CSR tensor of layout ``sparse_csr``. +The ``crow_indices`` tensor is strictly of shape (:attr:`self`.size(0) + 1) +and of type ``int32`` or ``int64``. When using MKL routines such as sparse +matrix multiplication, it is necessary to use ``int32`` indexing in order +to avoid downcasting and potentially losing information. + +Example:: + >>> csr = torch.eye(5,5).to_sparse_csr() + >>> csr.crow_indices() + tensor([0, 1, 2, 3, 4, 5], dtype=torch.int32) + +""", +) + +add_docstr_all( + "col_indices", + r""" +col_indices() -> IntTensor + +Returns the tensor containing the column indices of the :attr:`self` +tensor when :attr:`self` is a sparse CSR tensor of layout ``sparse_csr``. +The ``col_indices`` tensor is strictly of shape (:attr:`self`.nnz()) +and of type ``int32`` or ``int64``. When using MKL routines such as sparse +matrix multiplication, it is necessary to use ``int32`` indexing in order +to avoid downcasting and potentially losing information. + +Example:: + >>> csr = torch.eye(5,5).to_sparse_csr() + >>> csr.col_indices() + tensor([0, 1, 2, 3, 4], dtype=torch.int32) + +""", +) + +add_docstr_all( + "to_padded_tensor", + r""" +to_padded_tensor(padding, output_size=None) -> Tensor +See :func:`to_padded_tensor` +""", +)