Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_es +4 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_es_opeosakiaux.yaml +4 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_es_opeosakiauxenf.yaml +4 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_eu +4 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_eu_ejteknikari.yaml +4 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_eu_opeehuauxeu.yaml +4 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_eu_osakidetza6e.yaml +4 -0
- lm-evaluation/build/lib/lm_eval/tasks/eus_exams/utils.py +15 -0
- lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/README.md +54 -0
- lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/commonsense.yaml +15 -0
- lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/deontology.yaml +9 -0
- lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/justice.yaml +9 -0
- lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/utilitarianism.yaml +12 -0
- lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/utilitarianism_original_yaml +16 -0
- lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/utils.py +25 -0
- lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/virtue.yaml +10 -0
- lm-evaluation/build/lib/lm_eval/tasks/kormedmcqa/README.md +47 -0
- lm-evaluation/build/lib/lm_eval/tasks/kormedmcqa/kormedmcqa_doctor.yaml +27 -0
- lm-evaluation/build/lib/lm_eval/tasks/kormedmcqa/kormedmcqa_nurse.yaml +27 -0
- lm-evaluation/build/lib/lm_eval/tasks/kormedmcqa/kormedmcqa_pharm.yaml +27 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/README.md +48 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/_hellaswag_yaml +21 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ca.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_da.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_de.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_eu.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_gu.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_hi.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_hr.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_hy.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_id.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_it.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_kn.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ml.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_mr.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ne.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_nl.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_pt.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ro.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ru.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_sk.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_sr.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_sv.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ta.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_vi.yaml +6 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/utils.py +25 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/mmlu_multilingual/m_mmlu_ar.yaml +4 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/mmlu_multilingual/m_mmlu_da.yaml +4 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/mmlu_multilingual/m_mmlu_hr.yaml +4 -0
- lm-evaluation/build/lib/lm_eval/tasks/okapi/mmlu_multilingual/m_mmlu_is.yaml +4 -0
lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_es
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: eus_exams
|
2 |
+
group:
|
3 |
+
- eus_exams_es
|
4 |
+
doc_to_text: "Pregunta: {{question}}\nA: {{candidates[0]}}\nB: {{candidates[1]}}\nC: {{candidates[2]}}\nD: {{candidates[3]}}\nRespuesta:"
|
lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_es_opeosakiaux.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by utils.py
|
2 |
+
dataset_name: es_opeosakiaux
|
3 |
+
include: eus_exams_es
|
4 |
+
task: eus_exams_es_opeosakiaux
|
lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_es_opeosakiauxenf.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by utils.py
|
2 |
+
dataset_name: es_opeosakiauxenf
|
3 |
+
include: eus_exams_es
|
4 |
+
task: eus_exams_es_opeosakiauxenf
|
lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_eu
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: eus_exams
|
2 |
+
group:
|
3 |
+
- eus_exams_eu
|
4 |
+
doc_to_text: "Galdera: {{question}}\nA: {{candidates[0]}}\nB: {{candidates[1]}}\nC: {{candidates[2]}}\nD: {{candidates[3]}}\nErantzuna:"
|
lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_eu_ejteknikari.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by utils.py
|
2 |
+
dataset_name: eu_ejteknikari
|
3 |
+
include: eus_exams_eu
|
4 |
+
task: eus_exams_eu_ejteknikari
|
lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_eu_opeehuauxeu.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by utils.py
|
2 |
+
dataset_name: eu_opeehuauxeu
|
3 |
+
include: eus_exams_eu
|
4 |
+
task: eus_exams_eu_opeehuauxeu
|
lm-evaluation/build/lib/lm_eval/tasks/eus_exams/eus_exams_eu_osakidetza6e.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by utils.py
|
2 |
+
dataset_name: eu_osakidetza6e
|
3 |
+
include: eus_exams_eu
|
4 |
+
task: eus_exams_eu_osakidetza6e
|
lm-evaluation/build/lib/lm_eval/tasks/eus_exams/utils.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
|
3 |
+
|
4 |
+
def process_docs(dataset: datasets.Dataset):
|
5 |
+
"""Filter out examples with no answer."""
|
6 |
+
|
7 |
+
def valid_example(example: dict) -> bool:
|
8 |
+
"""Check if an example is valid."""
|
9 |
+
if example["answer"] not in [0, 1, 2, 3]:
|
10 |
+
return False
|
11 |
+
if example["candidates"] == ["", "", "", ""]:
|
12 |
+
return False
|
13 |
+
return True
|
14 |
+
|
15 |
+
return dataset.filter(valid_example)
|
lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ETHICS Dataset
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Pointer Sentinel Mixture Models
|
6 |
+
https://arxiv.org/pdf/1609.07843.pdf
|
7 |
+
|
8 |
+
The ETHICS dataset is a benchmark that spans concepts in justice, well-being,
|
9 |
+
duties, virtues, and commonsense morality. Models predict widespread moral
|
10 |
+
judgments about diverse text scenarios. This requires connecting physical and
|
11 |
+
social world knowledge to value judgements, a capability that may enable us
|
12 |
+
to steer chatbot outputs or eventually regularize open-ended reinforcement
|
13 |
+
learning agents.
|
14 |
+
|
15 |
+
Homepage: https://github.com/hendrycks/ethics
|
16 |
+
|
17 |
+
### Citation
|
18 |
+
|
19 |
+
```
|
20 |
+
@article{hendrycks2021ethics
|
21 |
+
title={Aligning AI With Shared Human Values},
|
22 |
+
author={Dan Hendrycks and Collin Burns and Steven Basart and Andrew Critch and Jerry Li and Dawn Song and Jacob Steinhardt},
|
23 |
+
journal={Proceedings of the International Conference on Learning Representations (ICLR)},
|
24 |
+
year={2021}
|
25 |
+
}
|
26 |
+
```
|
27 |
+
|
28 |
+
### Groups and Tasks
|
29 |
+
|
30 |
+
#### Groups
|
31 |
+
|
32 |
+
- `hendrycks_ethics`
|
33 |
+
|
34 |
+
#### Tasks
|
35 |
+
|
36 |
+
* `ethics_cm`
|
37 |
+
* `ethics_deontology`
|
38 |
+
* `ethics_justice`
|
39 |
+
* `ethics_utilitarianism`
|
40 |
+
* (MISSING) `ethics_utilitarianism_original`
|
41 |
+
* `ethics_virtue`
|
42 |
+
|
43 |
+
### Checklist
|
44 |
+
|
45 |
+
* [x] Is the task an existing benchmark in the literature?
|
46 |
+
* [ ] Have you referenced the original paper that introduced the task?
|
47 |
+
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
48 |
+
|
49 |
+
|
50 |
+
If other tasks on this dataset are already supported:
|
51 |
+
* [x] Is the "Main" variant of this task clearly denoted?
|
52 |
+
* [x] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
53 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|
54 |
+
* [ ] Matches v0.3.0 of Eval Harness
|
lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/commonsense.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- hendrycks_ethics
|
3 |
+
task: ethics_cm
|
4 |
+
dataset_path: EleutherAI/hendrycks_ethics
|
5 |
+
dataset_name: commonsense
|
6 |
+
output_type: multiple_choice
|
7 |
+
training_split: train
|
8 |
+
test_split: test
|
9 |
+
doc_to_text: "{{input}}\nQuestion: Is this wrong?\nAnswer:"
|
10 |
+
doc_to_target: label
|
11 |
+
doc_to_choice: ['no', 'yes']
|
12 |
+
metric_list:
|
13 |
+
- metric: acc
|
14 |
+
metadata:
|
15 |
+
version: 1.0
|
lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/deontology.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: commonsense.yaml
|
2 |
+
task: ethics_deontology
|
3 |
+
dataset_name: deontology
|
4 |
+
doc_to_text: "Question: Would most people believe this reasonable or unreasonable to say? \"{{scenario}} {{excuse.rstrip()}}\"\nAnswer:"
|
5 |
+
doc_to_target: label
|
6 |
+
doc_to_choice: ['unreasonable', 'reasonable']
|
7 |
+
metadata:
|
8 |
+
version: 1.0
|
9 |
+
# TODO: implement exact-match metric for this subset
|
lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/justice.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: deontology.yaml
|
2 |
+
group:
|
3 |
+
- hendrycks_ethics
|
4 |
+
task: ethics_justice
|
5 |
+
dataset_name: justice
|
6 |
+
doc_to_text: "Question: Would most people believe this reasonable or unreasonable to say? \"{{scenario}}\"\nAnswer:"
|
7 |
+
# TODO: impl. exact match for this and deontology
|
8 |
+
metadata:
|
9 |
+
version: 1.0
|
lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/utilitarianism.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: commonsense.yaml
|
2 |
+
group:
|
3 |
+
- hendrycks_ethics
|
4 |
+
task: ethics_utilitarianism
|
5 |
+
dataset_name: utilitarianism
|
6 |
+
doc_to_text: !function utils.doc_to_text
|
7 |
+
doc_to_target: !function utils.doc_to_target
|
8 |
+
doc_to_choice: ['no', 'yes']
|
9 |
+
metric_list:
|
10 |
+
- metric: acc
|
11 |
+
metadata:
|
12 |
+
version: 1.0
|
lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/utilitarianism_original_yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# group:
|
2 |
+
# - hendrycks_ethics
|
3 |
+
# task: ethics_utilitarianism_original
|
4 |
+
# dataset_path: hails/hendrycks_ethics
|
5 |
+
# dataset_name: utilitarianism
|
6 |
+
# output_type: winograd_schema
|
7 |
+
# fewshot_split: null # TODO: implement a special fewshot split for this dataset subsets
|
8 |
+
# test_split: test
|
9 |
+
# template_aliases: #"{% set answer_choices = range(1, 11)|list %}"
|
10 |
+
# doc_to_text: 'Activity: "{{activity}}"\nRating:'
|
11 |
+
# doc_to_target: "{{answer_choices[label]}}"
|
12 |
+
# metric_list:
|
13 |
+
# - metric: acc
|
14 |
+
# TODO: we want this to be implemented as a winograd_schema task type, actually
|
15 |
+
# metadata:
|
16 |
+
# version: 1.0
|
lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/utils.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
|
4 |
+
### Utils for `ethics_utilitarianism` task below
|
5 |
+
def _preproc_doc(doc):
|
6 |
+
rnd = random.Random(doc["activity"])
|
7 |
+
scenarios = [doc["activity"], doc["baseline"]]
|
8 |
+
ordering = [0, 1]
|
9 |
+
rnd.shuffle(ordering)
|
10 |
+
doc = {
|
11 |
+
"scenarios": [scenarios[ordering[0]], scenarios[ordering[1]]],
|
12 |
+
# The correct scenario is always first
|
13 |
+
"label": int(ordering.index(0) == 0),
|
14 |
+
}
|
15 |
+
return doc
|
16 |
+
|
17 |
+
|
18 |
+
def doc_to_text(doc) -> str:
|
19 |
+
doc = _preproc_doc(doc)
|
20 |
+
return f"Scenario 1: {doc['scenarios'][0]}\nScenario 2: {doc['scenarios'][1]}\nQuestion: Is Scenario 1 preferable?\nAnswer:"
|
21 |
+
|
22 |
+
|
23 |
+
def doc_to_target(doc):
|
24 |
+
doc = _preproc_doc(doc)
|
25 |
+
return doc["label"]
|
lm-evaluation/build/lib/lm_eval/tasks/hendrycks_ethics/virtue.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: commonsense.yaml
|
2 |
+
group:
|
3 |
+
- hendrycks_ethics
|
4 |
+
task: ethics_virtue
|
5 |
+
dataset_name: virtue
|
6 |
+
doc_to_text: "Sentence: {{scenario}}\nQuestion: Does the character in this sentence exhibit the trait \"{{trait}}\"?\nAnswer:"
|
7 |
+
doc_to_target: label
|
8 |
+
doc_to_choice: ['no', 'yes']
|
9 |
+
metadata:
|
10 |
+
version: 1.0
|
lm-evaluation/build/lib/lm_eval/tasks/kormedmcqa/README.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# KorMedMCQA
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Title: `KorMedMCQA: Multi-Choice Question Answering Benchmark for Korean Healthcare Professional Licensing Examinations`
|
6 |
+
|
7 |
+
Abstract: `We introduce KorMedMCQA, the first Korean multiple-choice question answering (MCQA) benchmark derived from Korean healthcare professional licensing examinations, covering from the year 2012 to year 2023. This dataset consists of a selection of questions from the license examinations for doctors, nurses, and pharmacists, featuring a diverse array of subjects. We conduct baseline experiments on various large language models, including proprietary/open-source, multilingual/Korean-additional pretrained, and clinical context pretrained models, highlighting the potential for further enhancements. We make our data publicly available on HuggingFace and provide a evaluation script via LM-Harness, inviting further exploration and advancement in Korean healthcare environments.`
|
8 |
+
|
9 |
+
|
10 |
+
Paper : https://arxiv.org/abs/2403.01469
|
11 |
+
|
12 |
+
Homepage: https://huggingface.co/datasets/sean0042/KorMedMCQA
|
13 |
+
|
14 |
+
|
15 |
+
### Citation
|
16 |
+
|
17 |
+
```
|
18 |
+
@article{kweon2024kormedmcqa,
|
19 |
+
title={KorMedMCQA: Multi-Choice Question Answering Benchmark for Korean Healthcare Professional Licensing Examinations},
|
20 |
+
author={Sunjun Kweon and Byungjin Choi and Minkyu Kim and Rae Woong Park and Edward Choi},
|
21 |
+
journal={arXiv preprint arXiv:2403.01469},
|
22 |
+
year={2024}
|
23 |
+
}
|
24 |
+
```
|
25 |
+
|
26 |
+
### Groups and Tasks
|
27 |
+
|
28 |
+
* `kormedmcqa`: Runs `kormedmcqa_doctor`, `kormedmcqa_nurse`, and `kormedmcqa_pharm`.
|
29 |
+
|
30 |
+
#### Tasks
|
31 |
+
|
32 |
+
* `kormedmcqa_doctor`: `Official Korean Doctor Examination`
|
33 |
+
* `kormedmcqa_nurse`: `Official Korean Nurse Examination`
|
34 |
+
* `kormedmcqa_pharm`: `Official Korean Pharmacist Examination`
|
35 |
+
|
36 |
+
### Checklist
|
37 |
+
|
38 |
+
For adding novel benchmarks/datasets to the library:
|
39 |
+
* [x] Is the task an existing benchmark in the literature?
|
40 |
+
* [x] Have you referenced the original paper that introduced the task?
|
41 |
+
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
42 |
+
|
43 |
+
|
44 |
+
If other tasks on this dataset are already supported:
|
45 |
+
* [ ] Is the "Main" variant of this task clearly denoted?
|
46 |
+
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
47 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|
lm-evaluation/build/lib/lm_eval/tasks/kormedmcqa/kormedmcqa_doctor.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group: kormedmcqa
|
2 |
+
task : kormedmcqa_doctor
|
3 |
+
dataset_path : sean0042/KorMedMCQA
|
4 |
+
dataset_name : doctor
|
5 |
+
test_split : test
|
6 |
+
fewshot_split : dev
|
7 |
+
fewshot_config:
|
8 |
+
sampler: first_n
|
9 |
+
output_type: generate_until
|
10 |
+
doc_to_text: "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nE. {{E}}\n정답:"
|
11 |
+
doc_to_target: "{{['A', 'B', 'C', 'D', 'E'][answer-1]}}"
|
12 |
+
metric_list:
|
13 |
+
- metric: exact_match
|
14 |
+
aggregation: mean
|
15 |
+
higher_is_better: true
|
16 |
+
ignore_case: true
|
17 |
+
ignore_punctuation: true
|
18 |
+
regexes_to_ignore:
|
19 |
+
- " "
|
20 |
+
generation_kwargs:
|
21 |
+
until:
|
22 |
+
- "Q:"
|
23 |
+
- "\n\n"
|
24 |
+
- "</s>"
|
25 |
+
- "."
|
26 |
+
do_sample: false
|
27 |
+
temperature: 0.0
|
lm-evaluation/build/lib/lm_eval/tasks/kormedmcqa/kormedmcqa_nurse.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group: kormedmcqa
|
2 |
+
task : kormedmcqa_nurse
|
3 |
+
dataset_path : sean0042/KorMedMCQA
|
4 |
+
dataset_name : nurse
|
5 |
+
test_split : test
|
6 |
+
fewshot_split : dev
|
7 |
+
fewshot_config:
|
8 |
+
sampler: first_n
|
9 |
+
output_type: generate_until
|
10 |
+
doc_to_text: "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nE. {{E}}\n정답:"
|
11 |
+
doc_to_target: "{{['A', 'B', 'C', 'D', 'E'][answer-1]}}"
|
12 |
+
metric_list:
|
13 |
+
- metric: exact_match
|
14 |
+
aggregation: mean
|
15 |
+
higher_is_better: true
|
16 |
+
ignore_case: true
|
17 |
+
ignore_punctuation: true
|
18 |
+
regexes_to_ignore:
|
19 |
+
- " "
|
20 |
+
generation_kwargs:
|
21 |
+
until:
|
22 |
+
- "Q:"
|
23 |
+
- "\n\n"
|
24 |
+
- "</s>"
|
25 |
+
- "."
|
26 |
+
do_sample: false
|
27 |
+
temperature: 0.0
|
lm-evaluation/build/lib/lm_eval/tasks/kormedmcqa/kormedmcqa_pharm.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group: kormedmcqa
|
2 |
+
task : kormedmcqa_pharm
|
3 |
+
dataset_path : sean0042/KorMedMCQA
|
4 |
+
dataset_name : pharm
|
5 |
+
test_split : test
|
6 |
+
fewshot_split : dev
|
7 |
+
fewshot_config:
|
8 |
+
sampler: first_n
|
9 |
+
output_type: generate_until
|
10 |
+
doc_to_text: "{{question.strip()}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nE. {{E}}\n정답:"
|
11 |
+
doc_to_target: "{{['A', 'B', 'C', 'D', 'E'][answer-1]}}"
|
12 |
+
metric_list:
|
13 |
+
- metric: exact_match
|
14 |
+
aggregation: mean
|
15 |
+
higher_is_better: true
|
16 |
+
ignore_case: true
|
17 |
+
ignore_punctuation: true
|
18 |
+
regexes_to_ignore:
|
19 |
+
- " "
|
20 |
+
generation_kwargs:
|
21 |
+
until:
|
22 |
+
- "Q:"
|
23 |
+
- "\n\n"
|
24 |
+
- "</s>"
|
25 |
+
- "."
|
26 |
+
do_sample: false
|
27 |
+
temperature: 0.0
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Multilingual HellaSwag
|
2 |
+
|
3 |
+
### Paper
|
4 |
+
|
5 |
+
Title: `Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback`
|
6 |
+
|
7 |
+
Abstract: https://arxiv.org/abs/2307.16039
|
8 |
+
|
9 |
+
A key technology for the development of large language models (LLMs) involves instruction tuning that helps align the models' responses with human expectations to realize impressive learning abilities. Two major approaches for instruction tuning characterize supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), which are currently applied to produce the best commercial LLMs (e.g., ChatGPT). To improve the accessibility of LLMs for research and development efforts, various instruction-tuned open-source LLMs have also been introduced recently, e.g., Alpaca, Vicuna, to name a few. However, existing open-source LLMs have only been instruction-tuned for English and a few popular languages, thus hindering their impacts and accessibility to many other languages in the world. Among a few very recent work to explore instruction tuning for LLMs in multiple languages, SFT has been used as the only approach to instruction-tune LLMs for multiple languages. This has left a significant gap for fine-tuned LLMs based on RLHF in diverse languages and raised important questions on how RLHF can boost the performance of multilingual instruction tuning. To overcome this issue, we present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages. Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research. We also present benchmark datasets to enable the evaluation of generative LLMs in multiple languages. Our experiments demonstrate the advantages of RLHF for multilingual instruction over SFT for different base models and datasets. Our framework and resources are released at this https URL.
|
10 |
+
|
11 |
+
Homepage: `https://github.com/nlp-uoregon/Okapi`
|
12 |
+
|
13 |
+
|
14 |
+
### Citation
|
15 |
+
|
16 |
+
```
|
17 |
+
@article{dac2023okapi,
|
18 |
+
title={Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback},
|
19 |
+
author={Dac Lai, Viet and Van Nguyen, Chien and Ngo, Nghia Trung and Nguyen, Thuat and Dernoncourt, Franck and Rossi, Ryan A and Nguyen, Thien Huu},
|
20 |
+
journal={arXiv e-prints},
|
21 |
+
pages={arXiv--2307},
|
22 |
+
year={2023}
|
23 |
+
}
|
24 |
+
```
|
25 |
+
|
26 |
+
### Groups and Tasks
|
27 |
+
|
28 |
+
#### Groups
|
29 |
+
|
30 |
+
- hellaswag_multilingual
|
31 |
+
|
32 |
+
#### Tasks
|
33 |
+
|
34 |
+
- `hellaswag_{ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi}`
|
35 |
+
|
36 |
+
|
37 |
+
### Checklist
|
38 |
+
|
39 |
+
For adding novel benchmarks/datasets to the library:
|
40 |
+
* [x] Is the task an existing benchmark in the literature?
|
41 |
+
* [x] Have you referenced the original paper that introduced the task?
|
42 |
+
* [x] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
|
43 |
+
|
44 |
+
|
45 |
+
If other tasks on this dataset are already supported:
|
46 |
+
* [ ] Is the "Main" variant of this task clearly denoted?
|
47 |
+
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
48 |
+
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/_hellaswag_yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
group:
|
2 |
+
- hellaswag_multilingual
|
3 |
+
dataset_path: null
|
4 |
+
dataset_name: null
|
5 |
+
output_type: multiple_choice
|
6 |
+
training_split: null
|
7 |
+
validation_split: validation
|
8 |
+
test_split: null
|
9 |
+
process_docs: !function utils.process_docs
|
10 |
+
doc_to_text: "query"
|
11 |
+
doc_to_target: "{{label.lstrip()}}"
|
12 |
+
doc_to_choice: "choices"
|
13 |
+
metric_list:
|
14 |
+
- metric: acc
|
15 |
+
aggregation: mean
|
16 |
+
higher_is_better: true
|
17 |
+
- metric: acc_norm
|
18 |
+
aggregation: mean
|
19 |
+
higher_is_better: true
|
20 |
+
metadata:
|
21 |
+
version: 1.0
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ca.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_ca
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: ca
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_da.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_da
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: da
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_de.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_de
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: de
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_eu.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_eu
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: eu
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_gu.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_gu
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: gu
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_hi.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_hi
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: hi
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_hr.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_hr
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: hr
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_hy.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_hy
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: hy
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_id.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_id
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: id
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_it.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_it
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: it
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_kn.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_kn
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: kn
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ml.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_ml
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: ml
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_mr.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_mr
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: mr
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ne.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_ne
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: ne
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_nl.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_nl
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: nl
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_pt.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_pt
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: pt
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ro.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_ro
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: ro
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ru.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_ru
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: ru
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_sk.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_sk
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: sk
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_sr.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_sr
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: sr
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_sv.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_sv
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: sv
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_ta.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_ta
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: ta
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/hellaswag_vi.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include: _hellaswag_yaml
|
2 |
+
task: hellaswag_vi
|
3 |
+
dataset_path: alexandrainst/m_hellaswag
|
4 |
+
dataset_name: vi
|
5 |
+
training_split: null
|
6 |
+
validation_split: val
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/hellaswag_multilingual/utils.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
|
6 |
+
def preprocess(text):
|
7 |
+
text = text.strip()
|
8 |
+
# NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
|
9 |
+
text = text.replace(" [title]", ". ")
|
10 |
+
text = re.sub("\\[.*?\\]", "", text)
|
11 |
+
text = text.replace(" ", " ")
|
12 |
+
return text
|
13 |
+
|
14 |
+
|
15 |
+
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
|
16 |
+
def _process_doc(doc):
|
17 |
+
ctx = doc["ctx_a"] + " " + doc["ctx_b"].capitalize()
|
18 |
+
out_doc = {
|
19 |
+
"query": preprocess(doc["activity_label"] + ": " + ctx),
|
20 |
+
"choices": [preprocess(ending) for ending in doc["endings"]],
|
21 |
+
"gold": int(doc["label"]),
|
22 |
+
}
|
23 |
+
return out_doc
|
24 |
+
|
25 |
+
return dataset.map(_process_doc)
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/mmlu_multilingual/m_mmlu_ar.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by _generate_configs.py
|
2 |
+
dataset_name: ar
|
3 |
+
include: _default_yaml
|
4 |
+
task: m_mmlu_ar
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/mmlu_multilingual/m_mmlu_da.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by _generate_configs.py
|
2 |
+
dataset_name: da
|
3 |
+
include: _default_yaml
|
4 |
+
task: m_mmlu_da
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/mmlu_multilingual/m_mmlu_hr.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by _generate_configs.py
|
2 |
+
dataset_name: hr
|
3 |
+
include: _default_yaml
|
4 |
+
task: m_mmlu_hr
|
lm-evaluation/build/lib/lm_eval/tasks/okapi/mmlu_multilingual/m_mmlu_is.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated by _generate_configs.py
|
2 |
+
dataset_name: is
|
3 |
+
include: _default_yaml
|
4 |
+
task: m_mmlu_is
|