Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_csr_to_coo_cuda_dispatch.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cslt_compress_native.h +21 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized.h +113 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log2.h +44 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_round_cpu_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sin_cpu_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adamw.h +63 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_indices_copy_compositeexplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_check_errors.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_native_batch_norm_legit_no_training.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_spatial_convolution_compositeexplicitautograd_dispatch.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_flash_attention_cpu_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_softmax_native.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_csr_prod_compositeexplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_backward_native.h +21 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_softmax_native.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_compositeimplicitautograd_dispatch.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_stack_cpu_dispatch.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_gru_cell_backward.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_unsafe_index_put_compositeexplicitautograd_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_backward.h +91 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_compositeimplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_backward_cpu_dispatch.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/abs_ops.h +50 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/acosh_meta.h +27 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_cuda_dispatch.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/arctan2_native.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/atanh_cuda_dispatch.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_backward_reduce_compositeexplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_and_native.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/celu_ops.h +50 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/copy_compositeexplicitautograd_dispatch.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_grid_sampler_backward_compositeexplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cumulative_trapezoid_compositeimplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/dropout.h +35 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/empty_native.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_fp16_weight_fp32_activation.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hardtanh_meta_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hinge_embedding_loss.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/histogramdd.h +40 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_add_cpu_dispatch.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_copy_cpu_dispatch.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/infinitely_differentiable_gelu_backward_compositeimplicitautograd_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/is_complex.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_matrix_power_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lu_unpack_cpu_dispatch.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool2d_cuda_dispatch.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_linear_backward_compositeexplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/msort_native.h +22 -0
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_csr_to_coo_cuda_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _convert_indices_from_csr_to_coo(const at::Tensor & crow_indices, const at::Tensor & col_indices, bool out_int32=false, bool transpose=false);
|
21 |
+
TORCH_API at::Tensor & _convert_indices_from_csr_to_coo_out(at::Tensor & out, const at::Tensor & crow_indices, const at::Tensor & col_indices, bool out_int32=false, bool transpose=false);
|
22 |
+
TORCH_API at::Tensor & _convert_indices_from_csr_to_coo_outf(const at::Tensor & crow_indices, const at::Tensor & col_indices, bool out_int32, bool transpose, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace cuda
|
25 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cslt_compress_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _cslt_compress(const at::Tensor & input);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized.h
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_empty_affine_quantized_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
26 |
+
inline at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
|
27 |
+
return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
|
32 |
+
return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
37 |
+
inline at::Tensor _empty_affine_quantized(at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format) {
|
38 |
+
return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), dtype, layout, device, pin_memory, scale, zero_point, memory_format);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
42 |
+
at::Tensor _empty_affine_quantized(at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format) {
|
43 |
+
return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), dtype, layout, device, pin_memory, scale, zero_point, memory_format);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
48 |
+
inline at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
|
49 |
+
return at::_ops::_empty_affine_quantized::call(size, optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
53 |
+
at::Tensor _empty_affine_quantized(c10::SymIntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
|
54 |
+
return at::_ops::_empty_affine_quantized::call(size, optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
59 |
+
inline at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format) {
|
60 |
+
return at::_ops::_empty_affine_quantized::call(size, dtype, layout, device, pin_memory, scale, zero_point, memory_format);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
64 |
+
at::Tensor _empty_affine_quantized(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format) {
|
65 |
+
return at::_ops::_empty_affine_quantized::call(size, dtype, layout, device, pin_memory, scale, zero_point, memory_format);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & _empty_affine_quantized_out(at::Tensor & out, at::IntArrayRef size, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
|
71 |
+
return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
75 |
+
at::Tensor & _empty_affine_quantized_out(at::Tensor & out, at::IntArrayRef size, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
|
76 |
+
return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & _empty_affine_quantized_outf(at::IntArrayRef size, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
|
82 |
+
return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
86 |
+
at::Tensor & _empty_affine_quantized_outf(at::IntArrayRef size, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
|
87 |
+
return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
// aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
|
92 |
+
inline at::Tensor & _empty_affine_quantized_symint_out(at::Tensor & out, c10::SymIntArrayRef size, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
|
93 |
+
return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
|
94 |
+
}
|
95 |
+
namespace symint {
|
96 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
97 |
+
at::Tensor & _empty_affine_quantized_out(at::Tensor & out, c10::SymIntArrayRef size, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
|
98 |
+
return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
+
// aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
|
103 |
+
inline at::Tensor & _empty_affine_quantized_symint_outf(c10::SymIntArrayRef size, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
|
104 |
+
return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
|
105 |
+
}
|
106 |
+
namespace symint {
|
107 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
108 |
+
at::Tensor & _empty_affine_quantized_outf(c10::SymIntArrayRef size, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
|
109 |
+
return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
|
110 |
+
}
|
111 |
+
}
|
112 |
+
|
113 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log2.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_foreach_log2_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_foreach_log2(Tensor[] self) -> Tensor[]
|
26 |
+
inline ::std::vector<at::Tensor> _foreach_log2(at::TensorList self) {
|
27 |
+
return at::_ops::_foreach_log2::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_foreach_log2_(Tensor(a!)[] self) -> ()
|
31 |
+
inline void _foreach_log2_(at::TensorList self) {
|
32 |
+
return at::_ops::_foreach_log2_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::_foreach_log2.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
36 |
+
inline void _foreach_log2_out(at::TensorList out, at::TensorList self) {
|
37 |
+
return at::_ops::_foreach_log2_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::_foreach_log2.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
40 |
+
inline void _foreach_log2_outf(at::TensorList self, at::TensorList out) {
|
41 |
+
return at::_ops::_foreach_log2_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_round_cpu_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_round(at::TensorList self);
|
21 |
+
TORCH_API void _foreach_round_(at::TensorList self);
|
22 |
+
|
23 |
+
} // namespace cpu
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sin_cpu_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_sin(at::TensorList self);
|
21 |
+
TORCH_API void _foreach_sin_(at::TensorList self);
|
22 |
+
|
23 |
+
} // namespace cpu
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adamw.h
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_fused_adamw_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_fused_adamw_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()
|
26 |
+
inline void _fused_adamw_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
|
27 |
+
return at::_ops::_fused_adamw_::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_fused_adamw_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()
|
31 |
+
inline void _fused_adamw_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
|
32 |
+
return at::_ops::_fused_adamw__tensor_lr::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::_fused_adamw.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()
|
36 |
+
inline void _fused_adamw_out(at::TensorList out, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
|
37 |
+
return at::_ops::_fused_adamw_out::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf, out);
|
38 |
+
}
|
39 |
+
// aten::_fused_adamw.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()
|
40 |
+
inline void _fused_adamw_outf(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out) {
|
41 |
+
return at::_ops::_fused_adamw_out::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
// aten::_fused_adamw(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)
|
45 |
+
inline ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adamw(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
|
46 |
+
return at::_ops::_fused_adamw::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf);
|
47 |
+
}
|
48 |
+
|
49 |
+
// aten::_fused_adamw.tensor_lr_out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()
|
50 |
+
inline void _fused_adamw_out(at::TensorList out, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
|
51 |
+
return at::_ops::_fused_adamw_tensor_lr_out::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf, out);
|
52 |
+
}
|
53 |
+
// aten::_fused_adamw.tensor_lr_out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()
|
54 |
+
inline void _fused_adamw_outf(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out) {
|
55 |
+
return at::_ops::_fused_adamw_tensor_lr_out::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf, out);
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_fused_adamw.tensor_lr(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)
|
59 |
+
inline ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adamw(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
|
60 |
+
return at::_ops::_fused_adamw_tensor_lr::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf);
|
61 |
+
}
|
62 |
+
|
63 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_indices_copy_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & _indices_copy_out(at::Tensor & out, const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & _indices_copy_outf(const at::Tensor & self, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_check_errors.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_linalg_check_errors_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_linalg_check_errors(Tensor info, str api_name, *, bool is_matrix) -> ()
|
26 |
+
inline void _linalg_check_errors(const at::Tensor & info, c10::string_view api_name, bool is_matrix) {
|
27 |
+
return at::_ops::_linalg_check_errors::call(info, api_name, is_matrix);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_native_batch_norm_legit_no_training.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_native_batch_norm_legit_no_training_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_native_batch_norm_legit_no_training(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps) -> (Tensor, Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _native_batch_norm_legit_no_training(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, double momentum, double eps) {
|
27 |
+
return at::_ops::_native_batch_norm_legit_no_training::call(input, weight, bias, running_mean, running_var, momentum, eps);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_native_batch_norm_legit_no_training.out(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _native_batch_norm_legit_no_training_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, double momentum, double eps) {
|
32 |
+
return at::_ops::_native_batch_norm_legit_no_training_out::call(input, weight, bias, running_mean, running_var, momentum, eps, out0, out1, out2);
|
33 |
+
}
|
34 |
+
// aten::_native_batch_norm_legit_no_training.out(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _native_batch_norm_legit_no_training_outf(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, double momentum, double eps, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
|
36 |
+
return at::_ops::_native_batch_norm_legit_no_training_out::call(input, weight, bias, running_mean, running_var, momentum, eps, out0, out1, out2);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_spatial_convolution_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _nnpack_spatial_convolution(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride=1);
|
21 |
+
TORCH_API at::Tensor _nnpack_spatial_convolution_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride=c10::SymInt(1));
|
22 |
+
TORCH_API at::Tensor & _nnpack_spatial_convolution_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride=1);
|
23 |
+
TORCH_API at::Tensor & _nnpack_spatial_convolution_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & _nnpack_spatial_convolution_symint_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride=c10::SymInt(1));
|
25 |
+
TORCH_API at::Tensor & _nnpack_spatial_convolution_symint_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, at::Tensor & out);
|
26 |
+
|
27 |
+
} // namespace compositeexplicitautograd
|
28 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_flash_attention_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor> _scaled_dot_product_flash_attention(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, double dropout_p=0.0, bool is_causal=false, bool return_debug_mask=false, c10::optional<double> scale=c10::nullopt);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_softmax_native.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/_softmax_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_softmax_cpu_out : public at::meta::structured__softmax {
|
20 |
+
void impl(const at::Tensor & self, int64_t dim, bool half_to_float, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
struct TORCH_API structured_softmax_cuda_out : public at::meta::structured__softmax {
|
23 |
+
void impl(const at::Tensor & self, int64_t dim, bool half_to_float, const at::Tensor & out);
|
24 |
+
};
|
25 |
+
TORCH_API at::Tensor softmax_nested(const at::Tensor & self, int64_t dim, bool half_to_float);
|
26 |
+
TORCH_API at::Tensor mkldnn_softmax(const at::Tensor & self, int64_t dim, bool half_to_float);
|
27 |
+
} // namespace native
|
28 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_csr_prod_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & _sparse_csr_prod_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, bool keepdim=false, c10::optional<at::ScalarType> dtype=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor & _sparse_csr_prod_outf(const at::Tensor & self, at::IntArrayRef dim, bool keepdim, c10::optional<at::ScalarType> dtype, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_backward_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> _sparse_mm_reduce_impl_backward_sparse_csr_cpu(const at::Tensor & self, const at::Tensor & grad_out, const at::Tensor & weight, c10::string_view reduce, const at::Tensor & arg_out, ::std::array<bool,2> output_mask);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_softmax_native.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _sparse_softmax(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
|
20 |
+
TORCH_API at::Tensor _sparse_softmax(const at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor & _sparse_softmax_out(const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
|
22 |
+
TORCH_API at::Tensor softmax_sparse_cpu(const at::Tensor & self, int64_t dim, bool half_to_float);
|
23 |
+
TORCH_API at::Tensor softmax_sparse_cuda(const at::Tensor & self, int64_t dim, bool half_to_float);
|
24 |
+
} // namespace native
|
25 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _sparse_sum(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor _sparse_sum(const at::Tensor & self, at::ScalarType dtype);
|
22 |
+
TORCH_API at::Tensor _sparse_sum(const at::Tensor & self, at::IntArrayRef dim, at::ScalarType dtype);
|
23 |
+
|
24 |
+
} // namespace compositeimplicitautograd
|
25 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_stack_cpu_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _stack(at::TensorList tensors, int64_t dim=0);
|
21 |
+
TORCH_API at::Tensor & _stack_out(at::Tensor & out, at::TensorList tensors, int64_t dim=0);
|
22 |
+
TORCH_API at::Tensor & _stack_outf(at::TensorList tensors, int64_t dim, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace cpu
|
25 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_gru_cell_backward.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_thnn_differentiable_gru_cell_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_thnn_differentiable_gru_cell_backward(Tensor grad_hy, Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias, Tensor? hidden_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _thnn_differentiable_gru_cell_backward(const at::Tensor & grad_hy, const at::Tensor & input_gates, const at::Tensor & hidden_gates, const at::Tensor & hx, const c10::optional<at::Tensor> & input_bias, const c10::optional<at::Tensor> & hidden_bias) {
|
27 |
+
return at::_ops::_thnn_differentiable_gru_cell_backward::call(grad_hy, input_gates, hidden_gates, hx, input_bias, hidden_bias);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_unsafe_index_put_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _unsafe_index_put(const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices, const at::Tensor & values, bool accumulate=false);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautograd
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_backward.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
26 |
+
inline at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
|
27 |
+
return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
|
32 |
+
return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
37 |
+
inline at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
|
38 |
+
return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
42 |
+
at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
|
43 |
+
return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
48 |
+
inline at::Tensor & _upsample_bicubic2d_aa_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
|
49 |
+
return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
53 |
+
at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
|
54 |
+
return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
59 |
+
inline at::Tensor & _upsample_bicubic2d_aa_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
|
60 |
+
return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
64 |
+
at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
|
65 |
+
return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
70 |
+
inline at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
|
71 |
+
return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
75 |
+
at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
|
76 |
+
return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
81 |
+
inline at::Tensor _upsample_bicubic2d_aa_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
|
82 |
+
return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
|
87 |
+
return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _upsample_nearest_exact1d(const at::Tensor & input, at::OptionalIntArrayRef output_size, c10::optional<at::ArrayRef<double>> scale_factors);
|
21 |
+
TORCH_API at::Tensor _upsample_nearest_exact1d_symint(const at::Tensor & input, at::OptionalSymIntArrayRef output_size, c10::optional<at::ArrayRef<double>> scale_factors);
|
22 |
+
|
23 |
+
} // namespace compositeimplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_backward_cpu_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _upsample_nearest_exact2d_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor _upsample_nearest_exact2d_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input);
|
24 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
25 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input);
|
26 |
+
|
27 |
+
} // namespace cpu
|
28 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/abs_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API abs {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::abs")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "abs(Tensor self) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API abs_ {
|
29 |
+
using schema = at::Tensor & (at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::abs_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "abs_(Tensor(a!) self) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::Tensor & self);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API abs_out {
|
40 |
+
using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::abs")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/acosh_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_acosh : public TensorIteratorBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & self);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_cuda_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> adaptive_max_pool2d(const at::Tensor & self, at::IntArrayRef output_size);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> adaptive_max_pool2d_out(at::Tensor & out, at::Tensor & indices, const at::Tensor & self, at::IntArrayRef output_size);
|
22 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> adaptive_max_pool2d_outf(const at::Tensor & self, at::IntArrayRef output_size, at::Tensor & out, at::Tensor & indices);
|
23 |
+
|
24 |
+
} // namespace cuda
|
25 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/arctan2_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor arctan2(const at::Tensor & self, const at::Tensor & other);
|
20 |
+
TORCH_API at::Tensor & arctan2_out(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor & arctan2_(at::Tensor & self, const at::Tensor & other);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/atanh_cuda_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor atanh(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & atanh_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & atanh_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & atanh_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cuda
|
26 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_backward_reduce_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> batch_norm_backward_reduce_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, const at::Tensor & grad_out, const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & weight, bool input_g, bool weight_g, bool bias_g);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> batch_norm_backward_reduce_outf(const at::Tensor & grad_out, const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & weight, bool input_g, bool weight_g, bool bias_g, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_and_native.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/bitwise_and_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_bitwise_and_out : public at::meta::structured_bitwise_and_Tensor {
|
20 |
+
void impl(const at::Tensor & self, const at::Tensor & other, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
TORCH_API at::Tensor bitwise_and(const at::Tensor & self, const at::Scalar & other);
|
23 |
+
TORCH_API at::Tensor & bitwise_and_out(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & bitwise_and_(at::Tensor & self, const at::Scalar & other);
|
25 |
+
TORCH_API at::Tensor bitwise_and(const at::Scalar & self, const at::Tensor & other);
|
26 |
+
TORCH_API at::Tensor & bitwise_and_Scalar_Tensor_out(const at::Scalar & self, const at::Tensor & other, at::Tensor & out);
|
27 |
+
} // namespace native
|
28 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/celu_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API celu {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Scalar &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::celu")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "celu(Tensor self, Scalar alpha=1.0) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Scalar & alpha);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & alpha);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API celu_ {
|
29 |
+
using schema = at::Tensor & (at::Tensor &, const at::Scalar &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::celu_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "celu_(Tensor(a!) self, Scalar alpha=1.0) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::Tensor & self, const at::Scalar & alpha);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Scalar & alpha);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API celu_out {
|
40 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Scalar &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::celu")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "celu.out(Tensor self, Scalar alpha=1.0, *, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Tensor & self, const at::Scalar & alpha, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & alpha, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/copy_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & copy_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & src, bool non_blocking=false);
|
21 |
+
TORCH_API at::Tensor & copy_outf(const at::Tensor & self, const at::Tensor & src, bool non_blocking, at::Tensor & out);
|
22 |
+
TORCH_API at::Tensor & copy_(at::Tensor & self, const at::Tensor & src, bool non_blocking=false);
|
23 |
+
|
24 |
+
} // namespace compositeexplicitautograd
|
25 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_grid_sampler_backward_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> cudnn_grid_sampler_backward_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & self, const at::Tensor & grid, const at::Tensor & grad_output);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> cudnn_grid_sampler_backward_outf(const at::Tensor & self, const at::Tensor & grid, const at::Tensor & grad_output, at::Tensor & out0, at::Tensor & out1);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cumulative_trapezoid_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor cumulative_trapezoid(const at::Tensor & y, const at::Tensor & x, int64_t dim=-1);
|
21 |
+
TORCH_API at::Tensor cumulative_trapezoid(const at::Tensor & y, const at::Scalar & dx=1, int64_t dim=-1);
|
22 |
+
|
23 |
+
} // namespace compositeimplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/dropout.h
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/dropout_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::dropout(Tensor input, float p, bool train) -> Tensor
|
26 |
+
inline at::Tensor dropout(const at::Tensor & input, double p, bool train) {
|
27 |
+
return at::_ops::dropout::call(input, p, train);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
31 |
+
inline at::Tensor & dropout_(at::Tensor & self, double p, bool train) {
|
32 |
+
return at::_ops::dropout_::call(self, p, train);
|
33 |
+
}
|
34 |
+
|
35 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/empty_native.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor empty_names(at::IntArrayRef size, c10::optional<at::DimnameList> names, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
20 |
+
TORCH_API at::Tensor & empty_names_out(at::IntArrayRef size, c10::optional<at::DimnameList> names, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor & empty_out(at::IntArrayRef size, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
22 |
+
TORCH_API at::Tensor empty_cpu(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor empty_cuda(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
24 |
+
TORCH_API at::Tensor empty_sparse(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
25 |
+
TORCH_API at::Tensor empty_sparse_compressed(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
26 |
+
TORCH_API at::Tensor empty_meta_symint(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
27 |
+
TORCH_API at::Tensor empty_mkldnn(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
28 |
+
TORCH_API at::Tensor empty_unknown_quantized(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
29 |
+
} // namespace native
|
30 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_fp16_weight_fp32_activation.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::fbgemm_linear_fp16_weight_fp32_activation(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor
|
26 |
+
inline at::Tensor fbgemm_linear_fp16_weight_fp32_activation(const at::Tensor & input, const at::Tensor & packed_weight, const at::Tensor & bias) {
|
27 |
+
return at::_ops::fbgemm_linear_fp16_weight_fp32_activation::call(input, packed_weight, bias);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hardtanh_meta_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & hardtanh_(at::Tensor & self, const at::Scalar & min_val=-1, const at::Scalar & max_val=1);
|
21 |
+
|
22 |
+
} // namespace meta
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hinge_embedding_loss.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/hinge_embedding_loss_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::hinge_embedding_loss(Tensor self, Tensor target, float margin=1.0, int reduction=Mean) -> Tensor
|
26 |
+
inline at::Tensor hinge_embedding_loss(const at::Tensor & self, const at::Tensor & target, double margin=1.0, int64_t reduction=at::Reduction::Mean) {
|
27 |
+
return at::_ops::hinge_embedding_loss::call(self, target, margin, reduction);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/histogramdd.h
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/histogramdd_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::histogramdd(Tensor self, int[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
|
26 |
+
inline ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, at::IntArrayRef bins, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
|
27 |
+
return at::_ops::histogramdd::call(self, bins, range, weight, density);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::histogramdd.int_bins(Tensor self, int bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
|
31 |
+
inline ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, int64_t bins, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
|
32 |
+
return at::_ops::histogramdd_int_bins::call(self, bins, range, weight, density);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::histogramdd.TensorList_bins(Tensor self, Tensor[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
|
36 |
+
inline ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, at::TensorList bins, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
|
37 |
+
return at::_ops::histogramdd_TensorList_bins::call(self, bins, range, weight, density);
|
38 |
+
}
|
39 |
+
|
40 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_add_cpu_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor index_add(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, const at::Scalar & alpha=1);
|
21 |
+
TORCH_API at::Tensor & index_add_out(at::Tensor & out, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, const at::Scalar & alpha=1);
|
22 |
+
TORCH_API at::Tensor & index_add_outf(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, const at::Scalar & alpha, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & index_add_(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, const at::Scalar & alpha=1);
|
24 |
+
|
25 |
+
} // namespace cpu
|
26 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_copy_cpu_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor index_copy(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
|
21 |
+
TORCH_API at::Tensor & index_copy_out(at::Tensor & out, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
|
22 |
+
TORCH_API at::Tensor & index_copy_outf(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & index_copy_(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
|
24 |
+
|
25 |
+
} // namespace cpu
|
26 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/infinitely_differentiable_gelu_backward_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor infinitely_differentiable_gelu_backward(const at::Tensor & grad, const at::Tensor & self);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/is_complex.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/is_complex_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::is_complex(Tensor self) -> bool
|
26 |
+
inline bool __dispatch_is_complex(const at::Tensor & self) {
|
27 |
+
return at::_ops::is_complex::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_matrix_power_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API linalg_matrix_power {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, int64_t);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_matrix_power")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_matrix_power(Tensor self, int n) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, int64_t n);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t n);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API linalg_matrix_power_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, int64_t, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_matrix_power")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, int64_t n, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t n, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor log1p(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & log1p_(at::Tensor & self);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautogradnonfunctional
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lu_unpack_cpu_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> lu_unpack(const at::Tensor & LU_data, const at::Tensor & LU_pivots, bool unpack_data=true, bool unpack_pivots=true);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> lu_unpack_out(at::Tensor & P, at::Tensor & L, at::Tensor & U, const at::Tensor & LU_data, const at::Tensor & LU_pivots, bool unpack_data=true, bool unpack_pivots=true);
|
22 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> lu_unpack_outf(const at::Tensor & LU_data, const at::Tensor & LU_pivots, bool unpack_data, bool unpack_pivots, at::Tensor & P, at::Tensor & L, at::Tensor & U);
|
23 |
+
|
24 |
+
} // namespace cpu
|
25 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool2d_cuda_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor max_unpool2d(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size);
|
21 |
+
TORCH_API at::Tensor max_unpool2d_symint(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size);
|
22 |
+
TORCH_API at::Tensor & max_unpool2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size);
|
23 |
+
TORCH_API at::Tensor & max_unpool2d_outf(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & max_unpool2d_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size);
|
25 |
+
TORCH_API at::Tensor & max_unpool2d_symint_outf(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size, at::Tensor & out);
|
26 |
+
|
27 |
+
} // namespace cuda
|
28 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_linear_backward_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mkldnn_linear_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, ::std::array<bool,3> output_mask);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mkldnn_linear_backward_outf(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/msort_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor msort(const at::Tensor & self);
|
20 |
+
TORCH_API at::Tensor & msort_out(const at::Tensor & self, at::Tensor & out);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|