applied-ai-018 commited on
Commit
4bf7b7d
·
verified ·
1 Parent(s): 65f9eba

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_csr_to_coo_cuda_dispatch.h +25 -0
  2. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cslt_compress_native.h +21 -0
  3. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized.h +113 -0
  4. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log2.h +44 -0
  5. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_round_cpu_dispatch.h +24 -0
  6. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sin_cpu_dispatch.h +24 -0
  7. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adamw.h +63 -0
  8. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_indices_copy_compositeexplicitautograd_dispatch.h +24 -0
  9. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_check_errors.h +30 -0
  10. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_native_batch_norm_legit_no_training.h +39 -0
  11. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_spatial_convolution_compositeexplicitautograd_dispatch.h +28 -0
  12. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_flash_attention_cpu_dispatch.h +23 -0
  13. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_softmax_native.h +28 -0
  14. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_csr_prod_compositeexplicitautograd_dispatch.h +24 -0
  15. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_backward_native.h +21 -0
  16. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_softmax_native.h +25 -0
  17. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_compositeimplicitautograd_dispatch.h +25 -0
  18. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_stack_cpu_dispatch.h +25 -0
  19. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_gru_cell_backward.h +30 -0
  20. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_unsafe_index_put_compositeexplicitautograd_dispatch.h +23 -0
  21. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_backward.h +91 -0
  22. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_compositeimplicitautograd_dispatch.h +24 -0
  23. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_backward_cpu_dispatch.h +28 -0
  24. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/abs_ops.h +50 -0
  25. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/acosh_meta.h +27 -0
  26. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_cuda_dispatch.h +25 -0
  27. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/arctan2_native.h +23 -0
  28. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/atanh_cuda_dispatch.h +26 -0
  29. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_backward_reduce_compositeexplicitautograd_dispatch.h +24 -0
  30. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_and_native.h +28 -0
  31. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/celu_ops.h +50 -0
  32. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/copy_compositeexplicitautograd_dispatch.h +25 -0
  33. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_grid_sampler_backward_compositeexplicitautograd_dispatch.h +24 -0
  34. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cumulative_trapezoid_compositeimplicitautograd_dispatch.h +24 -0
  35. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/dropout.h +35 -0
  36. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/empty_native.h +30 -0
  37. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_fp16_weight_fp32_activation.h +30 -0
  38. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hardtanh_meta_dispatch.h +23 -0
  39. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hinge_embedding_loss.h +30 -0
  40. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/histogramdd.h +40 -0
  41. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_add_cpu_dispatch.h +26 -0
  42. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_copy_cpu_dispatch.h +26 -0
  43. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/infinitely_differentiable_gelu_backward_compositeimplicitautograd_dispatch.h +23 -0
  44. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/is_complex.h +30 -0
  45. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_matrix_power_ops.h +39 -0
  46. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
  47. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lu_unpack_cpu_dispatch.h +25 -0
  48. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool2d_cuda_dispatch.h +28 -0
  49. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_linear_backward_compositeexplicitautograd_dispatch.h +24 -0
  50. env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/msort_native.h +22 -0
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_csr_to_coo_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _convert_indices_from_csr_to_coo(const at::Tensor & crow_indices, const at::Tensor & col_indices, bool out_int32=false, bool transpose=false);
21
+ TORCH_API at::Tensor & _convert_indices_from_csr_to_coo_out(at::Tensor & out, const at::Tensor & crow_indices, const at::Tensor & col_indices, bool out_int32=false, bool transpose=false);
22
+ TORCH_API at::Tensor & _convert_indices_from_csr_to_coo_outf(const at::Tensor & crow_indices, const at::Tensor & col_indices, bool out_int32, bool transpose, at::Tensor & out);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cslt_compress_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _cslt_compress(const at::Tensor & input);
20
+ } // namespace native
21
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized.h ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_empty_affine_quantized_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
26
+ inline at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
27
+ return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
32
+ return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
33
+ }
34
+ }
35
+
36
+ // aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
37
+ inline at::Tensor _empty_affine_quantized(at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format) {
38
+ return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), dtype, layout, device, pin_memory, scale, zero_point, memory_format);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor _empty_affine_quantized(at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format) {
43
+ return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), dtype, layout, device, pin_memory, scale, zero_point, memory_format);
44
+ }
45
+ }
46
+
47
+ // aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
48
+ inline at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
49
+ return at::_ops::_empty_affine_quantized::call(size, optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor _empty_affine_quantized(c10::SymIntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
54
+ return at::_ops::_empty_affine_quantized::call(size, optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
55
+ }
56
+ }
57
+
58
+ // aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
59
+ inline at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format) {
60
+ return at::_ops::_empty_affine_quantized::call(size, dtype, layout, device, pin_memory, scale, zero_point, memory_format);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor _empty_affine_quantized(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format) {
65
+ return at::_ops::_empty_affine_quantized::call(size, dtype, layout, device, pin_memory, scale, zero_point, memory_format);
66
+ }
67
+ }
68
+
69
+ // aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & _empty_affine_quantized_out(at::Tensor & out, at::IntArrayRef size, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
71
+ return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor & _empty_affine_quantized_out(at::Tensor & out, at::IntArrayRef size, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
76
+ return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
77
+ }
78
+ }
79
+
80
+ // aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & _empty_affine_quantized_outf(at::IntArrayRef size, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
82
+ return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
86
+ at::Tensor & _empty_affine_quantized_outf(at::IntArrayRef size, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
87
+ return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
88
+ }
89
+ }
90
+
91
+ // aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
92
+ inline at::Tensor & _empty_affine_quantized_symint_out(at::Tensor & out, c10::SymIntArrayRef size, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
93
+ return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
94
+ }
95
+ namespace symint {
96
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
97
+ at::Tensor & _empty_affine_quantized_out(at::Tensor & out, c10::SymIntArrayRef size, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous) {
98
+ return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
99
+ }
100
+ }
101
+
102
+ // aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
103
+ inline at::Tensor & _empty_affine_quantized_symint_outf(c10::SymIntArrayRef size, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
104
+ return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
105
+ }
106
+ namespace symint {
107
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
108
+ at::Tensor & _empty_affine_quantized_outf(c10::SymIntArrayRef size, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
109
+ return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
110
+ }
111
+ }
112
+
113
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log2.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_foreach_log2_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_foreach_log2(Tensor[] self) -> Tensor[]
26
+ inline ::std::vector<at::Tensor> _foreach_log2(at::TensorList self) {
27
+ return at::_ops::_foreach_log2::call(self);
28
+ }
29
+
30
+ // aten::_foreach_log2_(Tensor(a!)[] self) -> ()
31
+ inline void _foreach_log2_(at::TensorList self) {
32
+ return at::_ops::_foreach_log2_::call(self);
33
+ }
34
+
35
+ // aten::_foreach_log2.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
36
+ inline void _foreach_log2_out(at::TensorList out, at::TensorList self) {
37
+ return at::_ops::_foreach_log2_out::call(self, out);
38
+ }
39
+ // aten::_foreach_log2.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
40
+ inline void _foreach_log2_outf(at::TensorList self, at::TensorList out) {
41
+ return at::_ops::_foreach_log2_out::call(self, out);
42
+ }
43
+
44
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_round_cpu_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_round(at::TensorList self);
21
+ TORCH_API void _foreach_round_(at::TensorList self);
22
+
23
+ } // namespace cpu
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sin_cpu_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_sin(at::TensorList self);
21
+ TORCH_API void _foreach_sin_(at::TensorList self);
22
+
23
+ } // namespace cpu
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adamw.h ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_fused_adamw_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_fused_adamw_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()
26
+ inline void _fused_adamw_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
27
+ return at::_ops::_fused_adamw_::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf);
28
+ }
29
+
30
+ // aten::_fused_adamw_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()
31
+ inline void _fused_adamw_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
32
+ return at::_ops::_fused_adamw__tensor_lr::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf);
33
+ }
34
+
35
+ // aten::_fused_adamw.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()
36
+ inline void _fused_adamw_out(at::TensorList out, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
37
+ return at::_ops::_fused_adamw_out::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf, out);
38
+ }
39
+ // aten::_fused_adamw.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()
40
+ inline void _fused_adamw_outf(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out) {
41
+ return at::_ops::_fused_adamw_out::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf, out);
42
+ }
43
+
44
+ // aten::_fused_adamw(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)
45
+ inline ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adamw(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
46
+ return at::_ops::_fused_adamw::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf);
47
+ }
48
+
49
+ // aten::_fused_adamw.tensor_lr_out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()
50
+ inline void _fused_adamw_out(at::TensorList out, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
51
+ return at::_ops::_fused_adamw_tensor_lr_out::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf, out);
52
+ }
53
+ // aten::_fused_adamw.tensor_lr_out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()
54
+ inline void _fused_adamw_outf(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out) {
55
+ return at::_ops::_fused_adamw_tensor_lr_out::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf, out);
56
+ }
57
+
58
+ // aten::_fused_adamw.tensor_lr(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)
59
+ inline ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adamw(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={}) {
60
+ return at::_ops::_fused_adamw_tensor_lr::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf);
61
+ }
62
+
63
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_indices_copy_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _indices_copy_out(at::Tensor & out, const at::Tensor & self);
21
+ TORCH_API at::Tensor & _indices_copy_outf(const at::Tensor & self, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_check_errors.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_linalg_check_errors_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_linalg_check_errors(Tensor info, str api_name, *, bool is_matrix) -> ()
26
+ inline void _linalg_check_errors(const at::Tensor & info, c10::string_view api_name, bool is_matrix) {
27
+ return at::_ops::_linalg_check_errors::call(info, api_name, is_matrix);
28
+ }
29
+
30
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_native_batch_norm_legit_no_training.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_native_batch_norm_legit_no_training_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_native_batch_norm_legit_no_training(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps) -> (Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _native_batch_norm_legit_no_training(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, double momentum, double eps) {
27
+ return at::_ops::_native_batch_norm_legit_no_training::call(input, weight, bias, running_mean, running_var, momentum, eps);
28
+ }
29
+
30
+ // aten::_native_batch_norm_legit_no_training.out(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _native_batch_norm_legit_no_training_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, double momentum, double eps) {
32
+ return at::_ops::_native_batch_norm_legit_no_training_out::call(input, weight, bias, running_mean, running_var, momentum, eps, out0, out1, out2);
33
+ }
34
+ // aten::_native_batch_norm_legit_no_training.out(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _native_batch_norm_legit_no_training_outf(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const at::Tensor & running_mean, const at::Tensor & running_var, double momentum, double eps, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
36
+ return at::_ops::_native_batch_norm_legit_no_training_out::call(input, weight, bias, running_mean, running_var, momentum, eps, out0, out1, out2);
37
+ }
38
+
39
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_spatial_convolution_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor _nnpack_spatial_convolution(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride=1);
21
+ TORCH_API at::Tensor _nnpack_spatial_convolution_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride=c10::SymInt(1));
22
+ TORCH_API at::Tensor & _nnpack_spatial_convolution_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride=1);
23
+ TORCH_API at::Tensor & _nnpack_spatial_convolution_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride, at::Tensor & out);
24
+ TORCH_API at::Tensor & _nnpack_spatial_convolution_symint_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride=c10::SymInt(1));
25
+ TORCH_API at::Tensor & _nnpack_spatial_convolution_symint_outf(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, at::Tensor & out);
26
+
27
+ } // namespace compositeexplicitautograd
28
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_scaled_dot_product_flash_attention_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt,at::Tensor,at::Tensor,at::Tensor> _scaled_dot_product_flash_attention(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, double dropout_p=0.0, bool is_causal=false, bool return_debug_mask=false, c10::optional<double> scale=c10::nullopt);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_softmax_native.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/_softmax_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_softmax_cpu_out : public at::meta::structured__softmax {
20
+ void impl(const at::Tensor & self, int64_t dim, bool half_to_float, const at::Tensor & out);
21
+ };
22
+ struct TORCH_API structured_softmax_cuda_out : public at::meta::structured__softmax {
23
+ void impl(const at::Tensor & self, int64_t dim, bool half_to_float, const at::Tensor & out);
24
+ };
25
+ TORCH_API at::Tensor softmax_nested(const at::Tensor & self, int64_t dim, bool half_to_float);
26
+ TORCH_API at::Tensor mkldnn_softmax(const at::Tensor & self, int64_t dim, bool half_to_float);
27
+ } // namespace native
28
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_csr_prod_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _sparse_csr_prod_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, bool keepdim=false, c10::optional<at::ScalarType> dtype=c10::nullopt);
21
+ TORCH_API at::Tensor & _sparse_csr_prod_outf(const at::Tensor & self, at::IntArrayRef dim, bool keepdim, c10::optional<at::ScalarType> dtype, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_backward_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> _sparse_mm_reduce_impl_backward_sparse_csr_cpu(const at::Tensor & self, const at::Tensor & grad_out, const at::Tensor & weight, c10::string_view reduce, const at::Tensor & arg_out, ::std::array<bool,2> output_mask);
20
+ } // namespace native
21
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_softmax_native.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _sparse_softmax(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
20
+ TORCH_API at::Tensor _sparse_softmax(const at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
21
+ TORCH_API at::Tensor & _sparse_softmax_out(const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
22
+ TORCH_API at::Tensor softmax_sparse_cpu(const at::Tensor & self, int64_t dim, bool half_to_float);
23
+ TORCH_API at::Tensor softmax_sparse_cuda(const at::Tensor & self, int64_t dim, bool half_to_float);
24
+ } // namespace native
25
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor _sparse_sum(const at::Tensor & self);
21
+ TORCH_API at::Tensor _sparse_sum(const at::Tensor & self, at::ScalarType dtype);
22
+ TORCH_API at::Tensor _sparse_sum(const at::Tensor & self, at::IntArrayRef dim, at::ScalarType dtype);
23
+
24
+ } // namespace compositeimplicitautograd
25
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_stack_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _stack(at::TensorList tensors, int64_t dim=0);
21
+ TORCH_API at::Tensor & _stack_out(at::Tensor & out, at::TensorList tensors, int64_t dim=0);
22
+ TORCH_API at::Tensor & _stack_outf(at::TensorList tensors, int64_t dim, at::Tensor & out);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_gru_cell_backward.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_thnn_differentiable_gru_cell_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_thnn_differentiable_gru_cell_backward(Tensor grad_hy, Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias, Tensor? hidden_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _thnn_differentiable_gru_cell_backward(const at::Tensor & grad_hy, const at::Tensor & input_gates, const at::Tensor & hidden_gates, const at::Tensor & hx, const c10::optional<at::Tensor> & input_bias, const c10::optional<at::Tensor> & hidden_bias) {
27
+ return at::_ops::_thnn_differentiable_gru_cell_backward::call(grad_hy, input_gates, hidden_gates, hx, input_bias, hidden_bias);
28
+ }
29
+
30
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_unsafe_index_put_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor _unsafe_index_put(const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices, const at::Tensor & values, bool accumulate=false);
21
+
22
+ } // namespace compositeexplicitautograd
23
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
26
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
27
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
32
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
33
+ }
34
+ }
35
+
36
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
37
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
38
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
43
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
44
+ }
45
+ }
46
+
47
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
48
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
49
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
54
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
55
+ }
56
+ }
57
+
58
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
59
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
60
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
65
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
66
+ }
67
+ }
68
+
69
+ // aten::_upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
70
+ inline at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
71
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
76
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w);
77
+ }
78
+ }
79
+
80
+ // aten::_upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
81
+ inline at::Tensor _upsample_bicubic2d_aa_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
82
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
87
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w);
88
+ }
89
+ }
90
+
91
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor _upsample_nearest_exact1d(const at::Tensor & input, at::OptionalIntArrayRef output_size, c10::optional<at::ArrayRef<double>> scale_factors);
21
+ TORCH_API at::Tensor _upsample_nearest_exact1d_symint(const at::Tensor & input, at::OptionalSymIntArrayRef output_size, c10::optional<at::ArrayRef<double>> scale_factors);
22
+
23
+ } // namespace compositeimplicitautograd
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_backward_cpu_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _upsample_nearest_exact2d_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
21
+ TORCH_API at::Tensor _upsample_nearest_exact2d_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
22
+ TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
23
+ TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input);
24
+ TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
25
+ TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input);
26
+
27
+ } // namespace cpu
28
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/abs_ops.h ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API abs {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::abs")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "abs(Tensor self) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
26
+ };
27
+
28
+ struct TORCH_API abs_ {
29
+ using schema = at::Tensor & (at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::abs_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "abs_(Tensor(a!) self) -> Tensor(a!)")
35
+ static at::Tensor & call(at::Tensor & self);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self);
37
+ };
38
+
39
+ struct TORCH_API abs_out {
40
+ using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::abs")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
46
+ static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
47
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
48
+ };
49
+
50
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/acosh_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_acosh : public TensorIteratorBase {
21
+
22
+
23
+ void meta(const at::Tensor & self);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> adaptive_max_pool2d(const at::Tensor & self, at::IntArrayRef output_size);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> adaptive_max_pool2d_out(at::Tensor & out, at::Tensor & indices, const at::Tensor & self, at::IntArrayRef output_size);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> adaptive_max_pool2d_outf(const at::Tensor & self, at::IntArrayRef output_size, at::Tensor & out, at::Tensor & indices);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/arctan2_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor arctan2(const at::Tensor & self, const at::Tensor & other);
20
+ TORCH_API at::Tensor & arctan2_out(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
21
+ TORCH_API at::Tensor & arctan2_(at::Tensor & self, const at::Tensor & other);
22
+ } // namespace native
23
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/atanh_cuda_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor atanh(const at::Tensor & self);
21
+ TORCH_API at::Tensor & atanh_out(at::Tensor & out, const at::Tensor & self);
22
+ TORCH_API at::Tensor & atanh_outf(const at::Tensor & self, at::Tensor & out);
23
+ TORCH_API at::Tensor & atanh_(at::Tensor & self);
24
+
25
+ } // namespace cuda
26
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_backward_reduce_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> batch_norm_backward_reduce_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, const at::Tensor & grad_out, const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & weight, bool input_g, bool weight_g, bool bias_g);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> batch_norm_backward_reduce_outf(const at::Tensor & grad_out, const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & weight, bool input_g, bool weight_g, bool bias_g, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_and_native.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/bitwise_and_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_bitwise_and_out : public at::meta::structured_bitwise_and_Tensor {
20
+ void impl(const at::Tensor & self, const at::Tensor & other, const at::Tensor & out);
21
+ };
22
+ TORCH_API at::Tensor bitwise_and(const at::Tensor & self, const at::Scalar & other);
23
+ TORCH_API at::Tensor & bitwise_and_out(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
24
+ TORCH_API at::Tensor & bitwise_and_(at::Tensor & self, const at::Scalar & other);
25
+ TORCH_API at::Tensor bitwise_and(const at::Scalar & self, const at::Tensor & other);
26
+ TORCH_API at::Tensor & bitwise_and_Scalar_Tensor_out(const at::Scalar & self, const at::Tensor & other, at::Tensor & out);
27
+ } // namespace native
28
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/celu_ops.h ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API celu {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Scalar &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::celu")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "celu(Tensor self, Scalar alpha=1.0) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Scalar & alpha);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & alpha);
26
+ };
27
+
28
+ struct TORCH_API celu_ {
29
+ using schema = at::Tensor & (at::Tensor &, const at::Scalar &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::celu_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "celu_(Tensor(a!) self, Scalar alpha=1.0) -> Tensor(a!)")
35
+ static at::Tensor & call(at::Tensor & self, const at::Scalar & alpha);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Scalar & alpha);
37
+ };
38
+
39
+ struct TORCH_API celu_out {
40
+ using schema = at::Tensor & (const at::Tensor &, const at::Scalar &, at::Tensor &);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::celu")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "celu.out(Tensor self, Scalar alpha=1.0, *, Tensor(a!) out) -> Tensor(a!)")
46
+ static at::Tensor & call(const at::Tensor & self, const at::Scalar & alpha, at::Tensor & out);
47
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & alpha, at::Tensor & out);
48
+ };
49
+
50
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/copy_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & copy_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & src, bool non_blocking=false);
21
+ TORCH_API at::Tensor & copy_outf(const at::Tensor & self, const at::Tensor & src, bool non_blocking, at::Tensor & out);
22
+ TORCH_API at::Tensor & copy_(at::Tensor & self, const at::Tensor & src, bool non_blocking=false);
23
+
24
+ } // namespace compositeexplicitautograd
25
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_grid_sampler_backward_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> cudnn_grid_sampler_backward_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & self, const at::Tensor & grid, const at::Tensor & grad_output);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> cudnn_grid_sampler_backward_outf(const at::Tensor & self, const at::Tensor & grid, const at::Tensor & grad_output, at::Tensor & out0, at::Tensor & out1);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cumulative_trapezoid_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor cumulative_trapezoid(const at::Tensor & y, const at::Tensor & x, int64_t dim=-1);
21
+ TORCH_API at::Tensor cumulative_trapezoid(const at::Tensor & y, const at::Scalar & dx=1, int64_t dim=-1);
22
+
23
+ } // namespace compositeimplicitautograd
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/dropout.h ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/dropout_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::dropout(Tensor input, float p, bool train) -> Tensor
26
+ inline at::Tensor dropout(const at::Tensor & input, double p, bool train) {
27
+ return at::_ops::dropout::call(input, p, train);
28
+ }
29
+
30
+ // aten::dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
31
+ inline at::Tensor & dropout_(at::Tensor & self, double p, bool train) {
32
+ return at::_ops::dropout_::call(self, p, train);
33
+ }
34
+
35
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/empty_native.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor empty_names(at::IntArrayRef size, c10::optional<at::DimnameList> names, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
20
+ TORCH_API at::Tensor & empty_names_out(at::IntArrayRef size, c10::optional<at::DimnameList> names, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
21
+ TORCH_API at::Tensor & empty_out(at::IntArrayRef size, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
22
+ TORCH_API at::Tensor empty_cpu(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
23
+ TORCH_API at::Tensor empty_cuda(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
24
+ TORCH_API at::Tensor empty_sparse(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
25
+ TORCH_API at::Tensor empty_sparse_compressed(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
26
+ TORCH_API at::Tensor empty_meta_symint(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
27
+ TORCH_API at::Tensor empty_mkldnn(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
28
+ TORCH_API at::Tensor empty_unknown_quantized(at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
29
+ } // namespace native
30
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_fp16_weight_fp32_activation.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::fbgemm_linear_fp16_weight_fp32_activation(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor
26
+ inline at::Tensor fbgemm_linear_fp16_weight_fp32_activation(const at::Tensor & input, const at::Tensor & packed_weight, const at::Tensor & bias) {
27
+ return at::_ops::fbgemm_linear_fp16_weight_fp32_activation::call(input, packed_weight, bias);
28
+ }
29
+
30
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hardtanh_meta_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor & hardtanh_(at::Tensor & self, const at::Scalar & min_val=-1, const at::Scalar & max_val=1);
21
+
22
+ } // namespace meta
23
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hinge_embedding_loss.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/hinge_embedding_loss_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::hinge_embedding_loss(Tensor self, Tensor target, float margin=1.0, int reduction=Mean) -> Tensor
26
+ inline at::Tensor hinge_embedding_loss(const at::Tensor & self, const at::Tensor & target, double margin=1.0, int64_t reduction=at::Reduction::Mean) {
27
+ return at::_ops::hinge_embedding_loss::call(self, target, margin, reduction);
28
+ }
29
+
30
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/histogramdd.h ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/histogramdd_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::histogramdd(Tensor self, int[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
26
+ inline ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, at::IntArrayRef bins, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
27
+ return at::_ops::histogramdd::call(self, bins, range, weight, density);
28
+ }
29
+
30
+ // aten::histogramdd.int_bins(Tensor self, int bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
31
+ inline ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, int64_t bins, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
32
+ return at::_ops::histogramdd_int_bins::call(self, bins, range, weight, density);
33
+ }
34
+
35
+ // aten::histogramdd.TensorList_bins(Tensor self, Tensor[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
36
+ inline ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, at::TensorList bins, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
37
+ return at::_ops::histogramdd_TensorList_bins::call(self, bins, range, weight, density);
38
+ }
39
+
40
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_add_cpu_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor index_add(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, const at::Scalar & alpha=1);
21
+ TORCH_API at::Tensor & index_add_out(at::Tensor & out, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, const at::Scalar & alpha=1);
22
+ TORCH_API at::Tensor & index_add_outf(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, const at::Scalar & alpha, at::Tensor & out);
23
+ TORCH_API at::Tensor & index_add_(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, const at::Scalar & alpha=1);
24
+
25
+ } // namespace cpu
26
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_copy_cpu_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor index_copy(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
21
+ TORCH_API at::Tensor & index_copy_out(at::Tensor & out, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
22
+ TORCH_API at::Tensor & index_copy_outf(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, at::Tensor & out);
23
+ TORCH_API at::Tensor & index_copy_(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
24
+
25
+ } // namespace cpu
26
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/infinitely_differentiable_gelu_backward_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor infinitely_differentiable_gelu_backward(const at::Tensor & grad, const at::Tensor & self);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/is_complex.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/is_complex_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::is_complex(Tensor self) -> bool
26
+ inline bool __dispatch_is_complex(const at::Tensor & self) {
27
+ return at::_ops::is_complex::call(self);
28
+ }
29
+
30
+ }
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_matrix_power_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API linalg_matrix_power {
18
+ using schema = at::Tensor (const at::Tensor &, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_matrix_power")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_matrix_power(Tensor self, int n) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, int64_t n);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t n);
26
+ };
27
+
28
+ struct TORCH_API linalg_matrix_power_out {
29
+ using schema = at::Tensor & (const at::Tensor &, int64_t, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_matrix_power")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, int64_t n, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t n, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor log1p(const at::Tensor & self);
21
+ TORCH_API at::Tensor & log1p_(at::Tensor & self);
22
+
23
+ } // namespace compositeexplicitautogradnonfunctional
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/lu_unpack_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> lu_unpack(const at::Tensor & LU_data, const at::Tensor & LU_pivots, bool unpack_data=true, bool unpack_pivots=true);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> lu_unpack_out(at::Tensor & P, at::Tensor & L, at::Tensor & U, const at::Tensor & LU_data, const at::Tensor & LU_pivots, bool unpack_data=true, bool unpack_pivots=true);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> lu_unpack_outf(const at::Tensor & LU_data, const at::Tensor & LU_pivots, bool unpack_data, bool unpack_pivots, at::Tensor & P, at::Tensor & L, at::Tensor & U);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool2d_cuda_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor max_unpool2d(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size);
21
+ TORCH_API at::Tensor max_unpool2d_symint(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size);
22
+ TORCH_API at::Tensor & max_unpool2d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size);
23
+ TORCH_API at::Tensor & max_unpool2d_outf(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::Tensor & out);
24
+ TORCH_API at::Tensor & max_unpool2d_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size);
25
+ TORCH_API at::Tensor & max_unpool2d_symint_outf(const at::Tensor & self, const at::Tensor & indices, c10::SymIntArrayRef output_size, at::Tensor & out);
26
+
27
+ } // namespace cuda
28
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_linear_backward_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mkldnn_linear_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, ::std::array<bool,3> output_mask);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mkldnn_linear_backward_outf(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/msort_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor msort(const at::Tensor & self);
20
+ TORCH_API at::Tensor & msort_out(const at::Tensor & self, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at