Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__init__.py +5 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/connectivity.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/correlation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/mixing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/neighbor_degree.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/pairs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/connectivity.py +122 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/correlation.py +302 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/mixing.py +254 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/neighbor_degree.py +160 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/pairs.py +118 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/base_test.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_connectivity.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_correlation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_mixing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_neighbor_degree.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_pairs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/base_test.py +81 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_connectivity.py +143 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_correlation.py +123 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_mixing.py +176 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_neighbor_degree.py +108 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_pairs.py +87 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/centrality/katz.py +330 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/centrality/reaching.py +206 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/centrality/subgraph_alg.py +339 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/centrality/voterank_alg.py +94 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__init__.py +11 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/connectivity.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/cuts.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/disjoint_paths.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_augmentation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_kcomponents.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcomponents.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcutsets.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/stoerwagner.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/connectivity.py +816 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/cuts.py +611 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/disjoint_paths.py +407 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/edge_augmentation.py +1269 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/edge_kcomponents.py +591 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/kcomponents.py +222 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/kcutsets.py +234 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/stoerwagner.py +151 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/tests/__init__.py +0 -0
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from networkx.algorithms.assortativity.connectivity import *
|
2 |
+
from networkx.algorithms.assortativity.correlation import *
|
3 |
+
from networkx.algorithms.assortativity.mixing import *
|
4 |
+
from networkx.algorithms.assortativity.neighbor_degree import *
|
5 |
+
from networkx.algorithms.assortativity.pairs import *
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (482 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/connectivity.cpython-310.pyc
ADDED
Binary file (4.03 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/correlation.cpython-310.pyc
ADDED
Binary file (9.28 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/mixing.cpython-310.pyc
ADDED
Binary file (7.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/neighbor_degree.cpython-310.pyc
ADDED
Binary file (4.71 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/pairs.cpython-310.pyc
ADDED
Binary file (3.46 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/connectivity.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
__all__ = ["average_degree_connectivity"]
|
6 |
+
|
7 |
+
|
8 |
+
@nx._dispatchable(edge_attrs="weight")
|
9 |
+
def average_degree_connectivity(
|
10 |
+
G, source="in+out", target="in+out", nodes=None, weight=None
|
11 |
+
):
|
12 |
+
r"""Compute the average degree connectivity of graph.
|
13 |
+
|
14 |
+
The average degree connectivity is the average nearest neighbor degree of
|
15 |
+
nodes with degree k. For weighted graphs, an analogous measure can
|
16 |
+
be computed using the weighted average neighbors degree defined in
|
17 |
+
[1]_, for a node `i`, as
|
18 |
+
|
19 |
+
.. math::
|
20 |
+
|
21 |
+
k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j
|
22 |
+
|
23 |
+
where `s_i` is the weighted degree of node `i`,
|
24 |
+
`w_{ij}` is the weight of the edge that links `i` and `j`,
|
25 |
+
and `N(i)` are the neighbors of node `i`.
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
----------
|
29 |
+
G : NetworkX graph
|
30 |
+
|
31 |
+
source : "in"|"out"|"in+out" (default:"in+out")
|
32 |
+
Directed graphs only. Use "in"- or "out"-degree for source node.
|
33 |
+
|
34 |
+
target : "in"|"out"|"in+out" (default:"in+out"
|
35 |
+
Directed graphs only. Use "in"- or "out"-degree for target node.
|
36 |
+
|
37 |
+
nodes : list or iterable (optional)
|
38 |
+
Compute neighbor connectivity for these nodes. The default is all
|
39 |
+
nodes.
|
40 |
+
|
41 |
+
weight : string or None, optional (default=None)
|
42 |
+
The edge attribute that holds the numerical value used as a weight.
|
43 |
+
If None, then each edge has weight 1.
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
d : dict
|
48 |
+
A dictionary keyed by degree k with the value of average connectivity.
|
49 |
+
|
50 |
+
Raises
|
51 |
+
------
|
52 |
+
NetworkXError
|
53 |
+
If either `source` or `target` are not one of 'in',
|
54 |
+
'out', or 'in+out'.
|
55 |
+
If either `source` or `target` is passed for an undirected graph.
|
56 |
+
|
57 |
+
Examples
|
58 |
+
--------
|
59 |
+
>>> G = nx.path_graph(4)
|
60 |
+
>>> G.edges[1, 2]["weight"] = 3
|
61 |
+
>>> nx.average_degree_connectivity(G)
|
62 |
+
{1: 2.0, 2: 1.5}
|
63 |
+
>>> nx.average_degree_connectivity(G, weight="weight")
|
64 |
+
{1: 2.0, 2: 1.75}
|
65 |
+
|
66 |
+
See Also
|
67 |
+
--------
|
68 |
+
average_neighbor_degree
|
69 |
+
|
70 |
+
References
|
71 |
+
----------
|
72 |
+
.. [1] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
|
73 |
+
"The architecture of complex weighted networks".
|
74 |
+
PNAS 101 (11): 3747–3752 (2004).
|
75 |
+
"""
|
76 |
+
# First, determine the type of neighbors and the type of degree to use.
|
77 |
+
if G.is_directed():
|
78 |
+
if source not in ("in", "out", "in+out"):
|
79 |
+
raise nx.NetworkXError('source must be one of "in", "out", or "in+out"')
|
80 |
+
if target not in ("in", "out", "in+out"):
|
81 |
+
raise nx.NetworkXError('target must be one of "in", "out", or "in+out"')
|
82 |
+
direction = {"out": G.out_degree, "in": G.in_degree, "in+out": G.degree}
|
83 |
+
neighbor_funcs = {
|
84 |
+
"out": G.successors,
|
85 |
+
"in": G.predecessors,
|
86 |
+
"in+out": G.neighbors,
|
87 |
+
}
|
88 |
+
source_degree = direction[source]
|
89 |
+
target_degree = direction[target]
|
90 |
+
neighbors = neighbor_funcs[source]
|
91 |
+
# `reverse` indicates whether to look at the in-edge when
|
92 |
+
# computing the weight of an edge.
|
93 |
+
reverse = source == "in"
|
94 |
+
else:
|
95 |
+
if source != "in+out" or target != "in+out":
|
96 |
+
raise nx.NetworkXError(
|
97 |
+
f"source and target arguments are only supported for directed graphs"
|
98 |
+
)
|
99 |
+
source_degree = G.degree
|
100 |
+
target_degree = G.degree
|
101 |
+
neighbors = G.neighbors
|
102 |
+
reverse = False
|
103 |
+
dsum = defaultdict(int)
|
104 |
+
dnorm = defaultdict(int)
|
105 |
+
# Check if `source_nodes` is actually a single node in the graph.
|
106 |
+
source_nodes = source_degree(nodes)
|
107 |
+
if nodes in G:
|
108 |
+
source_nodes = [(nodes, source_degree(nodes))]
|
109 |
+
for n, k in source_nodes:
|
110 |
+
nbrdeg = target_degree(neighbors(n))
|
111 |
+
if weight is None:
|
112 |
+
s = sum(d for n, d in nbrdeg)
|
113 |
+
else: # weight nbr degree by weight of (n,nbr) edge
|
114 |
+
if reverse:
|
115 |
+
s = sum(G[nbr][n].get(weight, 1) * d for nbr, d in nbrdeg)
|
116 |
+
else:
|
117 |
+
s = sum(G[n][nbr].get(weight, 1) * d for nbr, d in nbrdeg)
|
118 |
+
dnorm[k] += source_degree(n, weight=weight)
|
119 |
+
dsum[k] += s
|
120 |
+
|
121 |
+
# normalize
|
122 |
+
return {k: avg if dnorm[k] == 0 else avg / dnorm[k] for k, avg in dsum.items()}
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/correlation.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Node assortativity coefficients and correlation measures.
|
2 |
+
"""
|
3 |
+
import networkx as nx
|
4 |
+
from networkx.algorithms.assortativity.mixing import (
|
5 |
+
attribute_mixing_matrix,
|
6 |
+
degree_mixing_matrix,
|
7 |
+
)
|
8 |
+
from networkx.algorithms.assortativity.pairs import node_degree_xy
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
"degree_pearson_correlation_coefficient",
|
12 |
+
"degree_assortativity_coefficient",
|
13 |
+
"attribute_assortativity_coefficient",
|
14 |
+
"numeric_assortativity_coefficient",
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
@nx._dispatchable(edge_attrs="weight")
|
19 |
+
def degree_assortativity_coefficient(G, x="out", y="in", weight=None, nodes=None):
|
20 |
+
"""Compute degree assortativity of graph.
|
21 |
+
|
22 |
+
Assortativity measures the similarity of connections
|
23 |
+
in the graph with respect to the node degree.
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
G : NetworkX graph
|
28 |
+
|
29 |
+
x: string ('in','out')
|
30 |
+
The degree type for source node (directed graphs only).
|
31 |
+
|
32 |
+
y: string ('in','out')
|
33 |
+
The degree type for target node (directed graphs only).
|
34 |
+
|
35 |
+
weight: string or None, optional (default=None)
|
36 |
+
The edge attribute that holds the numerical value used
|
37 |
+
as a weight. If None, then each edge has weight 1.
|
38 |
+
The degree is the sum of the edge weights adjacent to the node.
|
39 |
+
|
40 |
+
nodes: list or iterable (optional)
|
41 |
+
Compute degree assortativity only for nodes in container.
|
42 |
+
The default is all nodes.
|
43 |
+
|
44 |
+
Returns
|
45 |
+
-------
|
46 |
+
r : float
|
47 |
+
Assortativity of graph by degree.
|
48 |
+
|
49 |
+
Examples
|
50 |
+
--------
|
51 |
+
>>> G = nx.path_graph(4)
|
52 |
+
>>> r = nx.degree_assortativity_coefficient(G)
|
53 |
+
>>> print(f"{r:3.1f}")
|
54 |
+
-0.5
|
55 |
+
|
56 |
+
See Also
|
57 |
+
--------
|
58 |
+
attribute_assortativity_coefficient
|
59 |
+
numeric_assortativity_coefficient
|
60 |
+
degree_mixing_dict
|
61 |
+
degree_mixing_matrix
|
62 |
+
|
63 |
+
Notes
|
64 |
+
-----
|
65 |
+
This computes Eq. (21) in Ref. [1]_ , where e is the joint
|
66 |
+
probability distribution (mixing matrix) of the degrees. If G is
|
67 |
+
directed than the matrix e is the joint probability of the
|
68 |
+
user-specified degree type for the source and target.
|
69 |
+
|
70 |
+
References
|
71 |
+
----------
|
72 |
+
.. [1] M. E. J. Newman, Mixing patterns in networks,
|
73 |
+
Physical Review E, 67 026126, 2003
|
74 |
+
.. [2] Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M.
|
75 |
+
Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).
|
76 |
+
"""
|
77 |
+
if nodes is None:
|
78 |
+
nodes = G.nodes
|
79 |
+
|
80 |
+
degrees = None
|
81 |
+
|
82 |
+
if G.is_directed():
|
83 |
+
indeg = (
|
84 |
+
{d for _, d in G.in_degree(nodes, weight=weight)}
|
85 |
+
if "in" in (x, y)
|
86 |
+
else set()
|
87 |
+
)
|
88 |
+
outdeg = (
|
89 |
+
{d for _, d in G.out_degree(nodes, weight=weight)}
|
90 |
+
if "out" in (x, y)
|
91 |
+
else set()
|
92 |
+
)
|
93 |
+
degrees = set.union(indeg, outdeg)
|
94 |
+
else:
|
95 |
+
degrees = {d for _, d in G.degree(nodes, weight=weight)}
|
96 |
+
|
97 |
+
mapping = {d: i for i, d in enumerate(degrees)}
|
98 |
+
M = degree_mixing_matrix(G, x=x, y=y, nodes=nodes, weight=weight, mapping=mapping)
|
99 |
+
|
100 |
+
return _numeric_ac(M, mapping=mapping)
|
101 |
+
|
102 |
+
|
103 |
+
@nx._dispatchable(edge_attrs="weight")
|
104 |
+
def degree_pearson_correlation_coefficient(G, x="out", y="in", weight=None, nodes=None):
|
105 |
+
"""Compute degree assortativity of graph.
|
106 |
+
|
107 |
+
Assortativity measures the similarity of connections
|
108 |
+
in the graph with respect to the node degree.
|
109 |
+
|
110 |
+
This is the same as degree_assortativity_coefficient but uses the
|
111 |
+
potentially faster scipy.stats.pearsonr function.
|
112 |
+
|
113 |
+
Parameters
|
114 |
+
----------
|
115 |
+
G : NetworkX graph
|
116 |
+
|
117 |
+
x: string ('in','out')
|
118 |
+
The degree type for source node (directed graphs only).
|
119 |
+
|
120 |
+
y: string ('in','out')
|
121 |
+
The degree type for target node (directed graphs only).
|
122 |
+
|
123 |
+
weight: string or None, optional (default=None)
|
124 |
+
The edge attribute that holds the numerical value used
|
125 |
+
as a weight. If None, then each edge has weight 1.
|
126 |
+
The degree is the sum of the edge weights adjacent to the node.
|
127 |
+
|
128 |
+
nodes: list or iterable (optional)
|
129 |
+
Compute pearson correlation of degrees only for specified nodes.
|
130 |
+
The default is all nodes.
|
131 |
+
|
132 |
+
Returns
|
133 |
+
-------
|
134 |
+
r : float
|
135 |
+
Assortativity of graph by degree.
|
136 |
+
|
137 |
+
Examples
|
138 |
+
--------
|
139 |
+
>>> G = nx.path_graph(4)
|
140 |
+
>>> r = nx.degree_pearson_correlation_coefficient(G)
|
141 |
+
>>> print(f"{r:3.1f}")
|
142 |
+
-0.5
|
143 |
+
|
144 |
+
Notes
|
145 |
+
-----
|
146 |
+
This calls scipy.stats.pearsonr.
|
147 |
+
|
148 |
+
References
|
149 |
+
----------
|
150 |
+
.. [1] M. E. J. Newman, Mixing patterns in networks
|
151 |
+
Physical Review E, 67 026126, 2003
|
152 |
+
.. [2] Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M.
|
153 |
+
Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).
|
154 |
+
"""
|
155 |
+
import scipy as sp
|
156 |
+
|
157 |
+
xy = node_degree_xy(G, x=x, y=y, nodes=nodes, weight=weight)
|
158 |
+
x, y = zip(*xy)
|
159 |
+
return float(sp.stats.pearsonr(x, y)[0])
|
160 |
+
|
161 |
+
|
162 |
+
@nx._dispatchable(node_attrs="attribute")
|
163 |
+
def attribute_assortativity_coefficient(G, attribute, nodes=None):
|
164 |
+
"""Compute assortativity for node attributes.
|
165 |
+
|
166 |
+
Assortativity measures the similarity of connections
|
167 |
+
in the graph with respect to the given attribute.
|
168 |
+
|
169 |
+
Parameters
|
170 |
+
----------
|
171 |
+
G : NetworkX graph
|
172 |
+
|
173 |
+
attribute : string
|
174 |
+
Node attribute key
|
175 |
+
|
176 |
+
nodes: list or iterable (optional)
|
177 |
+
Compute attribute assortativity for nodes in container.
|
178 |
+
The default is all nodes.
|
179 |
+
|
180 |
+
Returns
|
181 |
+
-------
|
182 |
+
r: float
|
183 |
+
Assortativity of graph for given attribute
|
184 |
+
|
185 |
+
Examples
|
186 |
+
--------
|
187 |
+
>>> G = nx.Graph()
|
188 |
+
>>> G.add_nodes_from([0, 1], color="red")
|
189 |
+
>>> G.add_nodes_from([2, 3], color="blue")
|
190 |
+
>>> G.add_edges_from([(0, 1), (2, 3)])
|
191 |
+
>>> print(nx.attribute_assortativity_coefficient(G, "color"))
|
192 |
+
1.0
|
193 |
+
|
194 |
+
Notes
|
195 |
+
-----
|
196 |
+
This computes Eq. (2) in Ref. [1]_ , (trace(M)-sum(M^2))/(1-sum(M^2)),
|
197 |
+
where M is the joint probability distribution (mixing matrix)
|
198 |
+
of the specified attribute.
|
199 |
+
|
200 |
+
References
|
201 |
+
----------
|
202 |
+
.. [1] M. E. J. Newman, Mixing patterns in networks,
|
203 |
+
Physical Review E, 67 026126, 2003
|
204 |
+
"""
|
205 |
+
M = attribute_mixing_matrix(G, attribute, nodes)
|
206 |
+
return attribute_ac(M)
|
207 |
+
|
208 |
+
|
209 |
+
@nx._dispatchable(node_attrs="attribute")
|
210 |
+
def numeric_assortativity_coefficient(G, attribute, nodes=None):
|
211 |
+
"""Compute assortativity for numerical node attributes.
|
212 |
+
|
213 |
+
Assortativity measures the similarity of connections
|
214 |
+
in the graph with respect to the given numeric attribute.
|
215 |
+
|
216 |
+
Parameters
|
217 |
+
----------
|
218 |
+
G : NetworkX graph
|
219 |
+
|
220 |
+
attribute : string
|
221 |
+
Node attribute key.
|
222 |
+
|
223 |
+
nodes: list or iterable (optional)
|
224 |
+
Compute numeric assortativity only for attributes of nodes in
|
225 |
+
container. The default is all nodes.
|
226 |
+
|
227 |
+
Returns
|
228 |
+
-------
|
229 |
+
r: float
|
230 |
+
Assortativity of graph for given attribute
|
231 |
+
|
232 |
+
Examples
|
233 |
+
--------
|
234 |
+
>>> G = nx.Graph()
|
235 |
+
>>> G.add_nodes_from([0, 1], size=2)
|
236 |
+
>>> G.add_nodes_from([2, 3], size=3)
|
237 |
+
>>> G.add_edges_from([(0, 1), (2, 3)])
|
238 |
+
>>> print(nx.numeric_assortativity_coefficient(G, "size"))
|
239 |
+
1.0
|
240 |
+
|
241 |
+
Notes
|
242 |
+
-----
|
243 |
+
This computes Eq. (21) in Ref. [1]_ , which is the Pearson correlation
|
244 |
+
coefficient of the specified (scalar valued) attribute across edges.
|
245 |
+
|
246 |
+
References
|
247 |
+
----------
|
248 |
+
.. [1] M. E. J. Newman, Mixing patterns in networks
|
249 |
+
Physical Review E, 67 026126, 2003
|
250 |
+
"""
|
251 |
+
if nodes is None:
|
252 |
+
nodes = G.nodes
|
253 |
+
vals = {G.nodes[n][attribute] for n in nodes}
|
254 |
+
mapping = {d: i for i, d in enumerate(vals)}
|
255 |
+
M = attribute_mixing_matrix(G, attribute, nodes, mapping)
|
256 |
+
return _numeric_ac(M, mapping)
|
257 |
+
|
258 |
+
|
259 |
+
def attribute_ac(M):
|
260 |
+
"""Compute assortativity for attribute matrix M.
|
261 |
+
|
262 |
+
Parameters
|
263 |
+
----------
|
264 |
+
M : numpy.ndarray
|
265 |
+
2D ndarray representing the attribute mixing matrix.
|
266 |
+
|
267 |
+
Notes
|
268 |
+
-----
|
269 |
+
This computes Eq. (2) in Ref. [1]_ , (trace(e)-sum(e^2))/(1-sum(e^2)),
|
270 |
+
where e is the joint probability distribution (mixing matrix)
|
271 |
+
of the specified attribute.
|
272 |
+
|
273 |
+
References
|
274 |
+
----------
|
275 |
+
.. [1] M. E. J. Newman, Mixing patterns in networks,
|
276 |
+
Physical Review E, 67 026126, 2003
|
277 |
+
"""
|
278 |
+
if M.sum() != 1.0:
|
279 |
+
M = M / M.sum()
|
280 |
+
s = (M @ M).sum()
|
281 |
+
t = M.trace()
|
282 |
+
r = (t - s) / (1 - s)
|
283 |
+
return float(r)
|
284 |
+
|
285 |
+
|
286 |
+
def _numeric_ac(M, mapping):
|
287 |
+
# M is a 2D numpy array
|
288 |
+
# numeric assortativity coefficient, pearsonr
|
289 |
+
import numpy as np
|
290 |
+
|
291 |
+
if M.sum() != 1.0:
|
292 |
+
M = M / M.sum()
|
293 |
+
x = np.array(list(mapping.keys()))
|
294 |
+
y = x # x and y have the same support
|
295 |
+
idx = list(mapping.values())
|
296 |
+
a = M.sum(axis=0)
|
297 |
+
b = M.sum(axis=1)
|
298 |
+
vara = (a[idx] * x**2).sum() - ((a[idx] * x).sum()) ** 2
|
299 |
+
varb = (b[idx] * y**2).sum() - ((b[idx] * y).sum()) ** 2
|
300 |
+
xy = np.outer(x, y)
|
301 |
+
ab = np.outer(a[idx], b[idx])
|
302 |
+
return float((xy * (M - ab)).sum() / np.sqrt(vara * varb))
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/mixing.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Mixing matrices for node attributes and degree.
|
3 |
+
"""
|
4 |
+
import networkx as nx
|
5 |
+
from networkx.algorithms.assortativity.pairs import node_attribute_xy, node_degree_xy
|
6 |
+
from networkx.utils import dict_to_numpy_array
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"attribute_mixing_matrix",
|
10 |
+
"attribute_mixing_dict",
|
11 |
+
"degree_mixing_matrix",
|
12 |
+
"degree_mixing_dict",
|
13 |
+
"mixing_dict",
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
@nx._dispatchable(node_attrs="attribute")
|
18 |
+
def attribute_mixing_dict(G, attribute, nodes=None, normalized=False):
|
19 |
+
"""Returns dictionary representation of mixing matrix for attribute.
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
G : graph
|
24 |
+
NetworkX graph object.
|
25 |
+
|
26 |
+
attribute : string
|
27 |
+
Node attribute key.
|
28 |
+
|
29 |
+
nodes: list or iterable (optional)
|
30 |
+
Unse nodes in container to build the dict. The default is all nodes.
|
31 |
+
|
32 |
+
normalized : bool (default=False)
|
33 |
+
Return counts if False or probabilities if True.
|
34 |
+
|
35 |
+
Examples
|
36 |
+
--------
|
37 |
+
>>> G = nx.Graph()
|
38 |
+
>>> G.add_nodes_from([0, 1], color="red")
|
39 |
+
>>> G.add_nodes_from([2, 3], color="blue")
|
40 |
+
>>> G.add_edge(1, 3)
|
41 |
+
>>> d = nx.attribute_mixing_dict(G, "color")
|
42 |
+
>>> print(d["red"]["blue"])
|
43 |
+
1
|
44 |
+
>>> print(d["blue"]["red"]) # d symmetric for undirected graphs
|
45 |
+
1
|
46 |
+
|
47 |
+
Returns
|
48 |
+
-------
|
49 |
+
d : dictionary
|
50 |
+
Counts or joint probability of occurrence of attribute pairs.
|
51 |
+
"""
|
52 |
+
xy_iter = node_attribute_xy(G, attribute, nodes)
|
53 |
+
return mixing_dict(xy_iter, normalized=normalized)
|
54 |
+
|
55 |
+
|
56 |
+
@nx._dispatchable(node_attrs="attribute")
|
57 |
+
def attribute_mixing_matrix(G, attribute, nodes=None, mapping=None, normalized=True):
|
58 |
+
"""Returns mixing matrix for attribute.
|
59 |
+
|
60 |
+
Parameters
|
61 |
+
----------
|
62 |
+
G : graph
|
63 |
+
NetworkX graph object.
|
64 |
+
|
65 |
+
attribute : string
|
66 |
+
Node attribute key.
|
67 |
+
|
68 |
+
nodes: list or iterable (optional)
|
69 |
+
Use only nodes in container to build the matrix. The default is
|
70 |
+
all nodes.
|
71 |
+
|
72 |
+
mapping : dictionary, optional
|
73 |
+
Mapping from node attribute to integer index in matrix.
|
74 |
+
If not specified, an arbitrary ordering will be used.
|
75 |
+
|
76 |
+
normalized : bool (default=True)
|
77 |
+
Return counts if False or probabilities if True.
|
78 |
+
|
79 |
+
Returns
|
80 |
+
-------
|
81 |
+
m: numpy array
|
82 |
+
Counts or joint probability of occurrence of attribute pairs.
|
83 |
+
|
84 |
+
Notes
|
85 |
+
-----
|
86 |
+
If each node has a unique attribute value, the unnormalized mixing matrix
|
87 |
+
will be equal to the adjacency matrix. To get a denser mixing matrix,
|
88 |
+
the rounding can be performed to form groups of nodes with equal values.
|
89 |
+
For example, the exact height of persons in cm (180.79155222, 163.9080892,
|
90 |
+
163.30095355, 167.99016217, 168.21590163, ...) can be rounded to (180, 163,
|
91 |
+
163, 168, 168, ...).
|
92 |
+
|
93 |
+
Definitions of attribute mixing matrix vary on whether the matrix
|
94 |
+
should include rows for attribute values that don't arise. Here we
|
95 |
+
do not include such empty-rows. But you can force them to appear
|
96 |
+
by inputting a `mapping` that includes those values.
|
97 |
+
|
98 |
+
Examples
|
99 |
+
--------
|
100 |
+
>>> G = nx.path_graph(3)
|
101 |
+
>>> gender = {0: "male", 1: "female", 2: "female"}
|
102 |
+
>>> nx.set_node_attributes(G, gender, "gender")
|
103 |
+
>>> mapping = {"male": 0, "female": 1}
|
104 |
+
>>> mix_mat = nx.attribute_mixing_matrix(G, "gender", mapping=mapping)
|
105 |
+
>>> mix_mat
|
106 |
+
array([[0. , 0.25],
|
107 |
+
[0.25, 0.5 ]])
|
108 |
+
"""
|
109 |
+
d = attribute_mixing_dict(G, attribute, nodes)
|
110 |
+
a = dict_to_numpy_array(d, mapping=mapping)
|
111 |
+
if normalized:
|
112 |
+
a = a / a.sum()
|
113 |
+
return a
|
114 |
+
|
115 |
+
|
116 |
+
@nx._dispatchable(edge_attrs="weight")
|
117 |
+
def degree_mixing_dict(G, x="out", y="in", weight=None, nodes=None, normalized=False):
|
118 |
+
"""Returns dictionary representation of mixing matrix for degree.
|
119 |
+
|
120 |
+
Parameters
|
121 |
+
----------
|
122 |
+
G : graph
|
123 |
+
NetworkX graph object.
|
124 |
+
|
125 |
+
x: string ('in','out')
|
126 |
+
The degree type for source node (directed graphs only).
|
127 |
+
|
128 |
+
y: string ('in','out')
|
129 |
+
The degree type for target node (directed graphs only).
|
130 |
+
|
131 |
+
weight: string or None, optional (default=None)
|
132 |
+
The edge attribute that holds the numerical value used
|
133 |
+
as a weight. If None, then each edge has weight 1.
|
134 |
+
The degree is the sum of the edge weights adjacent to the node.
|
135 |
+
|
136 |
+
normalized : bool (default=False)
|
137 |
+
Return counts if False or probabilities if True.
|
138 |
+
|
139 |
+
Returns
|
140 |
+
-------
|
141 |
+
d: dictionary
|
142 |
+
Counts or joint probability of occurrence of degree pairs.
|
143 |
+
"""
|
144 |
+
xy_iter = node_degree_xy(G, x=x, y=y, nodes=nodes, weight=weight)
|
145 |
+
return mixing_dict(xy_iter, normalized=normalized)
|
146 |
+
|
147 |
+
|
148 |
+
@nx._dispatchable(edge_attrs="weight")
|
149 |
+
def degree_mixing_matrix(
|
150 |
+
G, x="out", y="in", weight=None, nodes=None, normalized=True, mapping=None
|
151 |
+
):
|
152 |
+
"""Returns mixing matrix for attribute.
|
153 |
+
|
154 |
+
Parameters
|
155 |
+
----------
|
156 |
+
G : graph
|
157 |
+
NetworkX graph object.
|
158 |
+
|
159 |
+
x: string ('in','out')
|
160 |
+
The degree type for source node (directed graphs only).
|
161 |
+
|
162 |
+
y: string ('in','out')
|
163 |
+
The degree type for target node (directed graphs only).
|
164 |
+
|
165 |
+
nodes: list or iterable (optional)
|
166 |
+
Build the matrix using only nodes in container.
|
167 |
+
The default is all nodes.
|
168 |
+
|
169 |
+
weight: string or None, optional (default=None)
|
170 |
+
The edge attribute that holds the numerical value used
|
171 |
+
as a weight. If None, then each edge has weight 1.
|
172 |
+
The degree is the sum of the edge weights adjacent to the node.
|
173 |
+
|
174 |
+
normalized : bool (default=True)
|
175 |
+
Return counts if False or probabilities if True.
|
176 |
+
|
177 |
+
mapping : dictionary, optional
|
178 |
+
Mapping from node degree to integer index in matrix.
|
179 |
+
If not specified, an arbitrary ordering will be used.
|
180 |
+
|
181 |
+
Returns
|
182 |
+
-------
|
183 |
+
m: numpy array
|
184 |
+
Counts, or joint probability, of occurrence of node degree.
|
185 |
+
|
186 |
+
Notes
|
187 |
+
-----
|
188 |
+
Definitions of degree mixing matrix vary on whether the matrix
|
189 |
+
should include rows for degree values that don't arise. Here we
|
190 |
+
do not include such empty-rows. But you can force them to appear
|
191 |
+
by inputting a `mapping` that includes those values. See examples.
|
192 |
+
|
193 |
+
Examples
|
194 |
+
--------
|
195 |
+
>>> G = nx.star_graph(3)
|
196 |
+
>>> mix_mat = nx.degree_mixing_matrix(G)
|
197 |
+
>>> mix_mat
|
198 |
+
array([[0. , 0.5],
|
199 |
+
[0.5, 0. ]])
|
200 |
+
|
201 |
+
If you want every possible degree to appear as a row, even if no nodes
|
202 |
+
have that degree, use `mapping` as follows,
|
203 |
+
|
204 |
+
>>> max_degree = max(deg for n, deg in G.degree)
|
205 |
+
>>> mapping = {x: x for x in range(max_degree + 1)} # identity mapping
|
206 |
+
>>> mix_mat = nx.degree_mixing_matrix(G, mapping=mapping)
|
207 |
+
>>> mix_mat
|
208 |
+
array([[0. , 0. , 0. , 0. ],
|
209 |
+
[0. , 0. , 0. , 0.5],
|
210 |
+
[0. , 0. , 0. , 0. ],
|
211 |
+
[0. , 0.5, 0. , 0. ]])
|
212 |
+
"""
|
213 |
+
d = degree_mixing_dict(G, x=x, y=y, nodes=nodes, weight=weight)
|
214 |
+
a = dict_to_numpy_array(d, mapping=mapping)
|
215 |
+
if normalized:
|
216 |
+
a = a / a.sum()
|
217 |
+
return a
|
218 |
+
|
219 |
+
|
220 |
+
def mixing_dict(xy, normalized=False):
|
221 |
+
"""Returns a dictionary representation of mixing matrix.
|
222 |
+
|
223 |
+
Parameters
|
224 |
+
----------
|
225 |
+
xy : list or container of two-tuples
|
226 |
+
Pairs of (x,y) items.
|
227 |
+
|
228 |
+
attribute : string
|
229 |
+
Node attribute key
|
230 |
+
|
231 |
+
normalized : bool (default=False)
|
232 |
+
Return counts if False or probabilities if True.
|
233 |
+
|
234 |
+
Returns
|
235 |
+
-------
|
236 |
+
d: dictionary
|
237 |
+
Counts or Joint probability of occurrence of values in xy.
|
238 |
+
"""
|
239 |
+
d = {}
|
240 |
+
psum = 0.0
|
241 |
+
for x, y in xy:
|
242 |
+
if x not in d:
|
243 |
+
d[x] = {}
|
244 |
+
if y not in d:
|
245 |
+
d[y] = {}
|
246 |
+
v = d[x].get(y, 0)
|
247 |
+
d[x][y] = v + 1
|
248 |
+
psum += 1
|
249 |
+
|
250 |
+
if normalized:
|
251 |
+
for _, jdict in d.items():
|
252 |
+
for j in jdict:
|
253 |
+
jdict[j] /= psum
|
254 |
+
return d
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/neighbor_degree.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import networkx as nx
|
2 |
+
|
3 |
+
__all__ = ["average_neighbor_degree"]
|
4 |
+
|
5 |
+
|
6 |
+
@nx._dispatchable(edge_attrs="weight")
|
7 |
+
def average_neighbor_degree(G, source="out", target="out", nodes=None, weight=None):
|
8 |
+
r"""Returns the average degree of the neighborhood of each node.
|
9 |
+
|
10 |
+
In an undirected graph, the neighborhood `N(i)` of node `i` contains the
|
11 |
+
nodes that are connected to `i` by an edge.
|
12 |
+
|
13 |
+
For directed graphs, `N(i)` is defined according to the parameter `source`:
|
14 |
+
|
15 |
+
- if source is 'in', then `N(i)` consists of predecessors of node `i`.
|
16 |
+
- if source is 'out', then `N(i)` consists of successors of node `i`.
|
17 |
+
- if source is 'in+out', then `N(i)` is both predecessors and successors.
|
18 |
+
|
19 |
+
The average neighborhood degree of a node `i` is
|
20 |
+
|
21 |
+
.. math::
|
22 |
+
|
23 |
+
k_{nn,i} = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j
|
24 |
+
|
25 |
+
where `N(i)` are the neighbors of node `i` and `k_j` is
|
26 |
+
the degree of node `j` which belongs to `N(i)`. For weighted
|
27 |
+
graphs, an analogous measure can be defined [1]_,
|
28 |
+
|
29 |
+
.. math::
|
30 |
+
|
31 |
+
k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j
|
32 |
+
|
33 |
+
where `s_i` is the weighted degree of node `i`, `w_{ij}`
|
34 |
+
is the weight of the edge that links `i` and `j` and
|
35 |
+
`N(i)` are the neighbors of node `i`.
|
36 |
+
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
G : NetworkX graph
|
41 |
+
|
42 |
+
source : string ("in"|"out"|"in+out"), optional (default="out")
|
43 |
+
Directed graphs only.
|
44 |
+
Use "in"- or "out"-neighbors of source node.
|
45 |
+
|
46 |
+
target : string ("in"|"out"|"in+out"), optional (default="out")
|
47 |
+
Directed graphs only.
|
48 |
+
Use "in"- or "out"-degree for target node.
|
49 |
+
|
50 |
+
nodes : list or iterable, optional (default=G.nodes)
|
51 |
+
Compute neighbor degree only for specified nodes.
|
52 |
+
|
53 |
+
weight : string or None, optional (default=None)
|
54 |
+
The edge attribute that holds the numerical value used as a weight.
|
55 |
+
If None, then each edge has weight 1.
|
56 |
+
|
57 |
+
Returns
|
58 |
+
-------
|
59 |
+
d: dict
|
60 |
+
A dictionary keyed by node to the average degree of its neighbors.
|
61 |
+
|
62 |
+
Raises
|
63 |
+
------
|
64 |
+
NetworkXError
|
65 |
+
If either `source` or `target` are not one of 'in', 'out', or 'in+out'.
|
66 |
+
If either `source` or `target` is passed for an undirected graph.
|
67 |
+
|
68 |
+
Examples
|
69 |
+
--------
|
70 |
+
>>> G = nx.path_graph(4)
|
71 |
+
>>> G.edges[0, 1]["weight"] = 5
|
72 |
+
>>> G.edges[2, 3]["weight"] = 3
|
73 |
+
|
74 |
+
>>> nx.average_neighbor_degree(G)
|
75 |
+
{0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0}
|
76 |
+
>>> nx.average_neighbor_degree(G, weight="weight")
|
77 |
+
{0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0}
|
78 |
+
|
79 |
+
>>> G = nx.DiGraph()
|
80 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
81 |
+
>>> nx.average_neighbor_degree(G, source="in", target="in")
|
82 |
+
{0: 0.0, 1: 0.0, 2: 1.0, 3: 1.0}
|
83 |
+
|
84 |
+
>>> nx.average_neighbor_degree(G, source="out", target="out")
|
85 |
+
{0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0}
|
86 |
+
|
87 |
+
See Also
|
88 |
+
--------
|
89 |
+
average_degree_connectivity
|
90 |
+
|
91 |
+
References
|
92 |
+
----------
|
93 |
+
.. [1] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
|
94 |
+
"The architecture of complex weighted networks".
|
95 |
+
PNAS 101 (11): 3747–3752 (2004).
|
96 |
+
"""
|
97 |
+
if G.is_directed():
|
98 |
+
if source == "in":
|
99 |
+
source_degree = G.in_degree
|
100 |
+
elif source == "out":
|
101 |
+
source_degree = G.out_degree
|
102 |
+
elif source == "in+out":
|
103 |
+
source_degree = G.degree
|
104 |
+
else:
|
105 |
+
raise nx.NetworkXError(
|
106 |
+
f"source argument {source} must be 'in', 'out' or 'in+out'"
|
107 |
+
)
|
108 |
+
|
109 |
+
if target == "in":
|
110 |
+
target_degree = G.in_degree
|
111 |
+
elif target == "out":
|
112 |
+
target_degree = G.out_degree
|
113 |
+
elif target == "in+out":
|
114 |
+
target_degree = G.degree
|
115 |
+
else:
|
116 |
+
raise nx.NetworkXError(
|
117 |
+
f"target argument {target} must be 'in', 'out' or 'in+out'"
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
if source != "out" or target != "out":
|
121 |
+
raise nx.NetworkXError(
|
122 |
+
f"source and target arguments are only supported for directed graphs"
|
123 |
+
)
|
124 |
+
source_degree = target_degree = G.degree
|
125 |
+
|
126 |
+
# precompute target degrees -- should *not* be weighted degree
|
127 |
+
t_deg = dict(target_degree())
|
128 |
+
|
129 |
+
# Set up both predecessor and successor neighbor dicts leaving empty if not needed
|
130 |
+
G_P = G_S = {n: {} for n in G}
|
131 |
+
if G.is_directed():
|
132 |
+
# "in" or "in+out" cases: G_P contains predecessors
|
133 |
+
if "in" in source:
|
134 |
+
G_P = G.pred
|
135 |
+
# "out" or "in+out" cases: G_S contains successors
|
136 |
+
if "out" in source:
|
137 |
+
G_S = G.succ
|
138 |
+
else:
|
139 |
+
# undirected leave G_P empty but G_S is the adjacency
|
140 |
+
G_S = G.adj
|
141 |
+
|
142 |
+
# Main loop: Compute average degree of neighbors
|
143 |
+
avg = {}
|
144 |
+
for n, deg in source_degree(nodes, weight=weight):
|
145 |
+
# handle degree zero average
|
146 |
+
if deg == 0:
|
147 |
+
avg[n] = 0.0
|
148 |
+
continue
|
149 |
+
|
150 |
+
# we sum over both G_P and G_S, but one of the two is usually empty.
|
151 |
+
if weight is None:
|
152 |
+
avg[n] = (
|
153 |
+
sum(t_deg[nbr] for nbr in G_S[n]) + sum(t_deg[nbr] for nbr in G_P[n])
|
154 |
+
) / deg
|
155 |
+
else:
|
156 |
+
avg[n] = (
|
157 |
+
sum(dd.get(weight, 1) * t_deg[nbr] for nbr, dd in G_S[n].items())
|
158 |
+
+ sum(dd.get(weight, 1) * t_deg[nbr] for nbr, dd in G_P[n].items())
|
159 |
+
) / deg
|
160 |
+
return avg
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/pairs.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generators of x-y pairs of node data."""
|
2 |
+
import networkx as nx
|
3 |
+
|
4 |
+
__all__ = ["node_attribute_xy", "node_degree_xy"]
|
5 |
+
|
6 |
+
|
7 |
+
@nx._dispatchable(node_attrs="attribute")
|
8 |
+
def node_attribute_xy(G, attribute, nodes=None):
|
9 |
+
"""Returns iterator of node-attribute pairs for all edges in G.
|
10 |
+
|
11 |
+
Parameters
|
12 |
+
----------
|
13 |
+
G: NetworkX graph
|
14 |
+
|
15 |
+
attribute: key
|
16 |
+
The node attribute key.
|
17 |
+
|
18 |
+
nodes: list or iterable (optional)
|
19 |
+
Use only edges that are incident to specified nodes.
|
20 |
+
The default is all nodes.
|
21 |
+
|
22 |
+
Returns
|
23 |
+
-------
|
24 |
+
(x, y): 2-tuple
|
25 |
+
Generates 2-tuple of (attribute, attribute) values.
|
26 |
+
|
27 |
+
Examples
|
28 |
+
--------
|
29 |
+
>>> G = nx.DiGraph()
|
30 |
+
>>> G.add_node(1, color="red")
|
31 |
+
>>> G.add_node(2, color="blue")
|
32 |
+
>>> G.add_edge(1, 2)
|
33 |
+
>>> list(nx.node_attribute_xy(G, "color"))
|
34 |
+
[('red', 'blue')]
|
35 |
+
|
36 |
+
Notes
|
37 |
+
-----
|
38 |
+
For undirected graphs each edge is produced twice, once for each edge
|
39 |
+
representation (u, v) and (v, u), with the exception of self-loop edges
|
40 |
+
which only appear once.
|
41 |
+
"""
|
42 |
+
if nodes is None:
|
43 |
+
nodes = set(G)
|
44 |
+
else:
|
45 |
+
nodes = set(nodes)
|
46 |
+
Gnodes = G.nodes
|
47 |
+
for u, nbrsdict in G.adjacency():
|
48 |
+
if u not in nodes:
|
49 |
+
continue
|
50 |
+
uattr = Gnodes[u].get(attribute, None)
|
51 |
+
if G.is_multigraph():
|
52 |
+
for v, keys in nbrsdict.items():
|
53 |
+
vattr = Gnodes[v].get(attribute, None)
|
54 |
+
for _ in keys:
|
55 |
+
yield (uattr, vattr)
|
56 |
+
else:
|
57 |
+
for v in nbrsdict:
|
58 |
+
vattr = Gnodes[v].get(attribute, None)
|
59 |
+
yield (uattr, vattr)
|
60 |
+
|
61 |
+
|
62 |
+
@nx._dispatchable(edge_attrs="weight")
|
63 |
+
def node_degree_xy(G, x="out", y="in", weight=None, nodes=None):
|
64 |
+
"""Generate node degree-degree pairs for edges in G.
|
65 |
+
|
66 |
+
Parameters
|
67 |
+
----------
|
68 |
+
G: NetworkX graph
|
69 |
+
|
70 |
+
x: string ('in','out')
|
71 |
+
The degree type for source node (directed graphs only).
|
72 |
+
|
73 |
+
y: string ('in','out')
|
74 |
+
The degree type for target node (directed graphs only).
|
75 |
+
|
76 |
+
weight: string or None, optional (default=None)
|
77 |
+
The edge attribute that holds the numerical value used
|
78 |
+
as a weight. If None, then each edge has weight 1.
|
79 |
+
The degree is the sum of the edge weights adjacent to the node.
|
80 |
+
|
81 |
+
nodes: list or iterable (optional)
|
82 |
+
Use only edges that are adjacency to specified nodes.
|
83 |
+
The default is all nodes.
|
84 |
+
|
85 |
+
Returns
|
86 |
+
-------
|
87 |
+
(x, y): 2-tuple
|
88 |
+
Generates 2-tuple of (degree, degree) values.
|
89 |
+
|
90 |
+
|
91 |
+
Examples
|
92 |
+
--------
|
93 |
+
>>> G = nx.DiGraph()
|
94 |
+
>>> G.add_edge(1, 2)
|
95 |
+
>>> list(nx.node_degree_xy(G, x="out", y="in"))
|
96 |
+
[(1, 1)]
|
97 |
+
>>> list(nx.node_degree_xy(G, x="in", y="out"))
|
98 |
+
[(0, 0)]
|
99 |
+
|
100 |
+
Notes
|
101 |
+
-----
|
102 |
+
For undirected graphs each edge is produced twice, once for each edge
|
103 |
+
representation (u, v) and (v, u), with the exception of self-loop edges
|
104 |
+
which only appear once.
|
105 |
+
"""
|
106 |
+
nodes = set(G) if nodes is None else set(nodes)
|
107 |
+
if G.is_directed():
|
108 |
+
direction = {"out": G.out_degree, "in": G.in_degree}
|
109 |
+
xdeg = direction[x]
|
110 |
+
ydeg = direction[y]
|
111 |
+
else:
|
112 |
+
xdeg = ydeg = G.degree
|
113 |
+
|
114 |
+
for u, degu in xdeg(nodes, weight=weight):
|
115 |
+
# use G.edges to treat multigraphs correctly
|
116 |
+
neighbors = (nbr for _, nbr in G.edges(u) if nbr in nodes)
|
117 |
+
for _, degv in ydeg(neighbors, weight=weight):
|
118 |
+
yield degu, degv
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (204 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/base_test.cpython-310.pyc
ADDED
Binary file (2.48 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_connectivity.cpython-310.pyc
ADDED
Binary file (4.41 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_correlation.cpython-310.pyc
ADDED
Binary file (7.09 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_mixing.cpython-310.pyc
ADDED
Binary file (7.59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_neighbor_degree.cpython-310.pyc
ADDED
Binary file (3.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_pairs.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/base_test.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import networkx as nx
|
2 |
+
|
3 |
+
|
4 |
+
class BaseTestAttributeMixing:
|
5 |
+
@classmethod
|
6 |
+
def setup_class(cls):
|
7 |
+
G = nx.Graph()
|
8 |
+
G.add_nodes_from([0, 1], fish="one")
|
9 |
+
G.add_nodes_from([2, 3], fish="two")
|
10 |
+
G.add_nodes_from([4], fish="red")
|
11 |
+
G.add_nodes_from([5], fish="blue")
|
12 |
+
G.add_edges_from([(0, 1), (2, 3), (0, 4), (2, 5)])
|
13 |
+
cls.G = G
|
14 |
+
|
15 |
+
D = nx.DiGraph()
|
16 |
+
D.add_nodes_from([0, 1], fish="one")
|
17 |
+
D.add_nodes_from([2, 3], fish="two")
|
18 |
+
D.add_nodes_from([4], fish="red")
|
19 |
+
D.add_nodes_from([5], fish="blue")
|
20 |
+
D.add_edges_from([(0, 1), (2, 3), (0, 4), (2, 5)])
|
21 |
+
cls.D = D
|
22 |
+
|
23 |
+
M = nx.MultiGraph()
|
24 |
+
M.add_nodes_from([0, 1], fish="one")
|
25 |
+
M.add_nodes_from([2, 3], fish="two")
|
26 |
+
M.add_nodes_from([4], fish="red")
|
27 |
+
M.add_nodes_from([5], fish="blue")
|
28 |
+
M.add_edges_from([(0, 1), (0, 1), (2, 3)])
|
29 |
+
cls.M = M
|
30 |
+
|
31 |
+
S = nx.Graph()
|
32 |
+
S.add_nodes_from([0, 1], fish="one")
|
33 |
+
S.add_nodes_from([2, 3], fish="two")
|
34 |
+
S.add_nodes_from([4], fish="red")
|
35 |
+
S.add_nodes_from([5], fish="blue")
|
36 |
+
S.add_edge(0, 0)
|
37 |
+
S.add_edge(2, 2)
|
38 |
+
cls.S = S
|
39 |
+
|
40 |
+
N = nx.Graph()
|
41 |
+
N.add_nodes_from([0, 1], margin=-2)
|
42 |
+
N.add_nodes_from([2, 3], margin=-2)
|
43 |
+
N.add_nodes_from([4], margin=-3)
|
44 |
+
N.add_nodes_from([5], margin=-4)
|
45 |
+
N.add_edges_from([(0, 1), (2, 3), (0, 4), (2, 5)])
|
46 |
+
cls.N = N
|
47 |
+
|
48 |
+
F = nx.Graph()
|
49 |
+
F.add_edges_from([(0, 3), (1, 3), (2, 3)], weight=0.5)
|
50 |
+
F.add_edge(0, 2, weight=1)
|
51 |
+
nx.set_node_attributes(F, dict(F.degree(weight="weight")), "margin")
|
52 |
+
cls.F = F
|
53 |
+
|
54 |
+
K = nx.Graph()
|
55 |
+
K.add_nodes_from([1, 2], margin=-1)
|
56 |
+
K.add_nodes_from([3], margin=1)
|
57 |
+
K.add_nodes_from([4], margin=2)
|
58 |
+
K.add_edges_from([(3, 4), (1, 2), (1, 3)])
|
59 |
+
cls.K = K
|
60 |
+
|
61 |
+
|
62 |
+
class BaseTestDegreeMixing:
|
63 |
+
@classmethod
|
64 |
+
def setup_class(cls):
|
65 |
+
cls.P4 = nx.path_graph(4)
|
66 |
+
cls.D = nx.DiGraph()
|
67 |
+
cls.D.add_edges_from([(0, 2), (0, 3), (1, 3), (2, 3)])
|
68 |
+
cls.D2 = nx.DiGraph()
|
69 |
+
cls.D2.add_edges_from([(0, 3), (1, 0), (1, 2), (2, 4), (4, 1), (4, 3), (4, 2)])
|
70 |
+
cls.M = nx.MultiGraph()
|
71 |
+
nx.add_path(cls.M, range(4))
|
72 |
+
cls.M.add_edge(0, 1)
|
73 |
+
cls.S = nx.Graph()
|
74 |
+
cls.S.add_edges_from([(0, 0), (1, 1)])
|
75 |
+
cls.W = nx.Graph()
|
76 |
+
cls.W.add_edges_from([(0, 3), (1, 3), (2, 3)], weight=0.5)
|
77 |
+
cls.W.add_edge(0, 2, weight=1)
|
78 |
+
S1 = nx.star_graph(4)
|
79 |
+
S2 = nx.star_graph(4)
|
80 |
+
cls.DS = nx.disjoint_union(S1, S2)
|
81 |
+
cls.DS.add_edge(4, 5)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_connectivity.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import permutations
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
|
7 |
+
|
8 |
+
class TestNeighborConnectivity:
|
9 |
+
def test_degree_p4(self):
|
10 |
+
G = nx.path_graph(4)
|
11 |
+
answer = {1: 2.0, 2: 1.5}
|
12 |
+
nd = nx.average_degree_connectivity(G)
|
13 |
+
assert nd == answer
|
14 |
+
|
15 |
+
D = G.to_directed()
|
16 |
+
answer = {2: 2.0, 4: 1.5}
|
17 |
+
nd = nx.average_degree_connectivity(D)
|
18 |
+
assert nd == answer
|
19 |
+
|
20 |
+
answer = {1: 2.0, 2: 1.5}
|
21 |
+
D = G.to_directed()
|
22 |
+
nd = nx.average_degree_connectivity(D, source="in", target="in")
|
23 |
+
assert nd == answer
|
24 |
+
|
25 |
+
D = G.to_directed()
|
26 |
+
nd = nx.average_degree_connectivity(D, source="in", target="in")
|
27 |
+
assert nd == answer
|
28 |
+
|
29 |
+
def test_degree_p4_weighted(self):
|
30 |
+
G = nx.path_graph(4)
|
31 |
+
G[1][2]["weight"] = 4
|
32 |
+
answer = {1: 2.0, 2: 1.8}
|
33 |
+
nd = nx.average_degree_connectivity(G, weight="weight")
|
34 |
+
assert nd == answer
|
35 |
+
answer = {1: 2.0, 2: 1.5}
|
36 |
+
nd = nx.average_degree_connectivity(G)
|
37 |
+
assert nd == answer
|
38 |
+
|
39 |
+
D = G.to_directed()
|
40 |
+
answer = {2: 2.0, 4: 1.8}
|
41 |
+
nd = nx.average_degree_connectivity(D, weight="weight")
|
42 |
+
assert nd == answer
|
43 |
+
|
44 |
+
answer = {1: 2.0, 2: 1.8}
|
45 |
+
D = G.to_directed()
|
46 |
+
nd = nx.average_degree_connectivity(
|
47 |
+
D, weight="weight", source="in", target="in"
|
48 |
+
)
|
49 |
+
assert nd == answer
|
50 |
+
|
51 |
+
D = G.to_directed()
|
52 |
+
nd = nx.average_degree_connectivity(
|
53 |
+
D, source="in", target="out", weight="weight"
|
54 |
+
)
|
55 |
+
assert nd == answer
|
56 |
+
|
57 |
+
def test_weight_keyword(self):
|
58 |
+
G = nx.path_graph(4)
|
59 |
+
G[1][2]["other"] = 4
|
60 |
+
answer = {1: 2.0, 2: 1.8}
|
61 |
+
nd = nx.average_degree_connectivity(G, weight="other")
|
62 |
+
assert nd == answer
|
63 |
+
answer = {1: 2.0, 2: 1.5}
|
64 |
+
nd = nx.average_degree_connectivity(G, weight=None)
|
65 |
+
assert nd == answer
|
66 |
+
|
67 |
+
D = G.to_directed()
|
68 |
+
answer = {2: 2.0, 4: 1.8}
|
69 |
+
nd = nx.average_degree_connectivity(D, weight="other")
|
70 |
+
assert nd == answer
|
71 |
+
|
72 |
+
answer = {1: 2.0, 2: 1.8}
|
73 |
+
D = G.to_directed()
|
74 |
+
nd = nx.average_degree_connectivity(D, weight="other", source="in", target="in")
|
75 |
+
assert nd == answer
|
76 |
+
|
77 |
+
D = G.to_directed()
|
78 |
+
nd = nx.average_degree_connectivity(D, weight="other", source="in", target="in")
|
79 |
+
assert nd == answer
|
80 |
+
|
81 |
+
def test_degree_barrat(self):
|
82 |
+
G = nx.star_graph(5)
|
83 |
+
G.add_edges_from([(5, 6), (5, 7), (5, 8), (5, 9)])
|
84 |
+
G[0][5]["weight"] = 5
|
85 |
+
nd = nx.average_degree_connectivity(G)[5]
|
86 |
+
assert nd == 1.8
|
87 |
+
nd = nx.average_degree_connectivity(G, weight="weight")[5]
|
88 |
+
assert nd == pytest.approx(3.222222, abs=1e-5)
|
89 |
+
|
90 |
+
def test_zero_deg(self):
|
91 |
+
G = nx.DiGraph()
|
92 |
+
G.add_edge(1, 2)
|
93 |
+
G.add_edge(1, 3)
|
94 |
+
G.add_edge(1, 4)
|
95 |
+
c = nx.average_degree_connectivity(G)
|
96 |
+
assert c == {1: 0, 3: 1}
|
97 |
+
c = nx.average_degree_connectivity(G, source="in", target="in")
|
98 |
+
assert c == {0: 0, 1: 0}
|
99 |
+
c = nx.average_degree_connectivity(G, source="in", target="out")
|
100 |
+
assert c == {0: 0, 1: 3}
|
101 |
+
c = nx.average_degree_connectivity(G, source="in", target="in+out")
|
102 |
+
assert c == {0: 0, 1: 3}
|
103 |
+
c = nx.average_degree_connectivity(G, source="out", target="out")
|
104 |
+
assert c == {0: 0, 3: 0}
|
105 |
+
c = nx.average_degree_connectivity(G, source="out", target="in")
|
106 |
+
assert c == {0: 0, 3: 1}
|
107 |
+
c = nx.average_degree_connectivity(G, source="out", target="in+out")
|
108 |
+
assert c == {0: 0, 3: 1}
|
109 |
+
|
110 |
+
def test_in_out_weight(self):
|
111 |
+
G = nx.DiGraph()
|
112 |
+
G.add_edge(1, 2, weight=1)
|
113 |
+
G.add_edge(1, 3, weight=1)
|
114 |
+
G.add_edge(3, 1, weight=1)
|
115 |
+
for s, t in permutations(["in", "out", "in+out"], 2):
|
116 |
+
c = nx.average_degree_connectivity(G, source=s, target=t)
|
117 |
+
cw = nx.average_degree_connectivity(G, source=s, target=t, weight="weight")
|
118 |
+
assert c == cw
|
119 |
+
|
120 |
+
def test_invalid_source(self):
|
121 |
+
with pytest.raises(nx.NetworkXError):
|
122 |
+
G = nx.DiGraph()
|
123 |
+
nx.average_degree_connectivity(G, source="bogus")
|
124 |
+
|
125 |
+
def test_invalid_target(self):
|
126 |
+
with pytest.raises(nx.NetworkXError):
|
127 |
+
G = nx.DiGraph()
|
128 |
+
nx.average_degree_connectivity(G, target="bogus")
|
129 |
+
|
130 |
+
def test_invalid_undirected_graph(self):
|
131 |
+
G = nx.Graph()
|
132 |
+
with pytest.raises(nx.NetworkXError):
|
133 |
+
nx.average_degree_connectivity(G, target="bogus")
|
134 |
+
with pytest.raises(nx.NetworkXError):
|
135 |
+
nx.average_degree_connectivity(G, source="bogus")
|
136 |
+
|
137 |
+
def test_single_node(self):
|
138 |
+
# TODO Is this really the intended behavior for providing a
|
139 |
+
# single node as the argument `nodes`? Shouldn't the function
|
140 |
+
# just return the connectivity value itself?
|
141 |
+
G = nx.trivial_graph()
|
142 |
+
conn = nx.average_degree_connectivity(G, nodes=0)
|
143 |
+
assert conn == {0: 0}
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_correlation.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
np = pytest.importorskip("numpy")
|
4 |
+
pytest.importorskip("scipy")
|
5 |
+
|
6 |
+
|
7 |
+
import networkx as nx
|
8 |
+
from networkx.algorithms.assortativity.correlation import attribute_ac
|
9 |
+
|
10 |
+
from .base_test import BaseTestAttributeMixing, BaseTestDegreeMixing
|
11 |
+
|
12 |
+
|
13 |
+
class TestDegreeMixingCorrelation(BaseTestDegreeMixing):
|
14 |
+
def test_degree_assortativity_undirected(self):
|
15 |
+
r = nx.degree_assortativity_coefficient(self.P4)
|
16 |
+
np.testing.assert_almost_equal(r, -1.0 / 2, decimal=4)
|
17 |
+
|
18 |
+
def test_degree_assortativity_node_kwargs(self):
|
19 |
+
G = nx.Graph()
|
20 |
+
edges = [(0, 1), (0, 3), (1, 2), (1, 3), (1, 4), (5, 9), (9, 0)]
|
21 |
+
G.add_edges_from(edges)
|
22 |
+
r = nx.degree_assortativity_coefficient(G, nodes=[1, 2, 4])
|
23 |
+
np.testing.assert_almost_equal(r, -1.0, decimal=4)
|
24 |
+
|
25 |
+
def test_degree_assortativity_directed(self):
|
26 |
+
r = nx.degree_assortativity_coefficient(self.D)
|
27 |
+
np.testing.assert_almost_equal(r, -0.57735, decimal=4)
|
28 |
+
|
29 |
+
def test_degree_assortativity_directed2(self):
|
30 |
+
"""Test degree assortativity for a directed graph where the set of
|
31 |
+
in/out degree does not equal the total degree."""
|
32 |
+
r = nx.degree_assortativity_coefficient(self.D2)
|
33 |
+
np.testing.assert_almost_equal(r, 0.14852, decimal=4)
|
34 |
+
|
35 |
+
def test_degree_assortativity_multigraph(self):
|
36 |
+
r = nx.degree_assortativity_coefficient(self.M)
|
37 |
+
np.testing.assert_almost_equal(r, -1.0 / 7.0, decimal=4)
|
38 |
+
|
39 |
+
def test_degree_pearson_assortativity_undirected(self):
|
40 |
+
r = nx.degree_pearson_correlation_coefficient(self.P4)
|
41 |
+
np.testing.assert_almost_equal(r, -1.0 / 2, decimal=4)
|
42 |
+
|
43 |
+
def test_degree_pearson_assortativity_directed(self):
|
44 |
+
r = nx.degree_pearson_correlation_coefficient(self.D)
|
45 |
+
np.testing.assert_almost_equal(r, -0.57735, decimal=4)
|
46 |
+
|
47 |
+
def test_degree_pearson_assortativity_directed2(self):
|
48 |
+
"""Test degree assortativity with Pearson for a directed graph where
|
49 |
+
the set of in/out degree does not equal the total degree."""
|
50 |
+
r = nx.degree_pearson_correlation_coefficient(self.D2)
|
51 |
+
np.testing.assert_almost_equal(r, 0.14852, decimal=4)
|
52 |
+
|
53 |
+
def test_degree_pearson_assortativity_multigraph(self):
|
54 |
+
r = nx.degree_pearson_correlation_coefficient(self.M)
|
55 |
+
np.testing.assert_almost_equal(r, -1.0 / 7.0, decimal=4)
|
56 |
+
|
57 |
+
def test_degree_assortativity_weighted(self):
|
58 |
+
r = nx.degree_assortativity_coefficient(self.W, weight="weight")
|
59 |
+
np.testing.assert_almost_equal(r, -0.1429, decimal=4)
|
60 |
+
|
61 |
+
def test_degree_assortativity_double_star(self):
|
62 |
+
r = nx.degree_assortativity_coefficient(self.DS)
|
63 |
+
np.testing.assert_almost_equal(r, -0.9339, decimal=4)
|
64 |
+
|
65 |
+
|
66 |
+
class TestAttributeMixingCorrelation(BaseTestAttributeMixing):
|
67 |
+
def test_attribute_assortativity_undirected(self):
|
68 |
+
r = nx.attribute_assortativity_coefficient(self.G, "fish")
|
69 |
+
assert r == 6.0 / 22.0
|
70 |
+
|
71 |
+
def test_attribute_assortativity_directed(self):
|
72 |
+
r = nx.attribute_assortativity_coefficient(self.D, "fish")
|
73 |
+
assert r == 1.0 / 3.0
|
74 |
+
|
75 |
+
def test_attribute_assortativity_multigraph(self):
|
76 |
+
r = nx.attribute_assortativity_coefficient(self.M, "fish")
|
77 |
+
assert r == 1.0
|
78 |
+
|
79 |
+
def test_attribute_assortativity_coefficient(self):
|
80 |
+
# from "Mixing patterns in networks"
|
81 |
+
# fmt: off
|
82 |
+
a = np.array([[0.258, 0.016, 0.035, 0.013],
|
83 |
+
[0.012, 0.157, 0.058, 0.019],
|
84 |
+
[0.013, 0.023, 0.306, 0.035],
|
85 |
+
[0.005, 0.007, 0.024, 0.016]])
|
86 |
+
# fmt: on
|
87 |
+
r = attribute_ac(a)
|
88 |
+
np.testing.assert_almost_equal(r, 0.623, decimal=3)
|
89 |
+
|
90 |
+
def test_attribute_assortativity_coefficient2(self):
|
91 |
+
# fmt: off
|
92 |
+
a = np.array([[0.18, 0.02, 0.01, 0.03],
|
93 |
+
[0.02, 0.20, 0.03, 0.02],
|
94 |
+
[0.01, 0.03, 0.16, 0.01],
|
95 |
+
[0.03, 0.02, 0.01, 0.22]])
|
96 |
+
# fmt: on
|
97 |
+
r = attribute_ac(a)
|
98 |
+
np.testing.assert_almost_equal(r, 0.68, decimal=2)
|
99 |
+
|
100 |
+
def test_attribute_assortativity(self):
|
101 |
+
a = np.array([[50, 50, 0], [50, 50, 0], [0, 0, 2]])
|
102 |
+
r = attribute_ac(a)
|
103 |
+
np.testing.assert_almost_equal(r, 0.029, decimal=3)
|
104 |
+
|
105 |
+
def test_attribute_assortativity_negative(self):
|
106 |
+
r = nx.numeric_assortativity_coefficient(self.N, "margin")
|
107 |
+
np.testing.assert_almost_equal(r, -0.2903, decimal=4)
|
108 |
+
|
109 |
+
def test_assortativity_node_kwargs(self):
|
110 |
+
G = nx.Graph()
|
111 |
+
G.add_nodes_from([0, 1], size=2)
|
112 |
+
G.add_nodes_from([2, 3], size=3)
|
113 |
+
G.add_edges_from([(0, 1), (2, 3)])
|
114 |
+
r = nx.numeric_assortativity_coefficient(G, "size", nodes=[0, 3])
|
115 |
+
np.testing.assert_almost_equal(r, 1.0, decimal=4)
|
116 |
+
|
117 |
+
def test_attribute_assortativity_float(self):
|
118 |
+
r = nx.numeric_assortativity_coefficient(self.F, "margin")
|
119 |
+
np.testing.assert_almost_equal(r, -0.1429, decimal=4)
|
120 |
+
|
121 |
+
def test_attribute_assortativity_mixed(self):
|
122 |
+
r = nx.numeric_assortativity_coefficient(self.K, "margin")
|
123 |
+
np.testing.assert_almost_equal(r, 0.4340, decimal=4)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_mixing.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
np = pytest.importorskip("numpy")
|
4 |
+
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
|
8 |
+
from .base_test import BaseTestAttributeMixing, BaseTestDegreeMixing
|
9 |
+
|
10 |
+
|
11 |
+
class TestDegreeMixingDict(BaseTestDegreeMixing):
|
12 |
+
def test_degree_mixing_dict_undirected(self):
|
13 |
+
d = nx.degree_mixing_dict(self.P4)
|
14 |
+
d_result = {1: {2: 2}, 2: {1: 2, 2: 2}}
|
15 |
+
assert d == d_result
|
16 |
+
|
17 |
+
def test_degree_mixing_dict_undirected_normalized(self):
|
18 |
+
d = nx.degree_mixing_dict(self.P4, normalized=True)
|
19 |
+
d_result = {1: {2: 1.0 / 3}, 2: {1: 1.0 / 3, 2: 1.0 / 3}}
|
20 |
+
assert d == d_result
|
21 |
+
|
22 |
+
def test_degree_mixing_dict_directed(self):
|
23 |
+
d = nx.degree_mixing_dict(self.D)
|
24 |
+
print(d)
|
25 |
+
d_result = {1: {3: 2}, 2: {1: 1, 3: 1}, 3: {}}
|
26 |
+
assert d == d_result
|
27 |
+
|
28 |
+
def test_degree_mixing_dict_multigraph(self):
|
29 |
+
d = nx.degree_mixing_dict(self.M)
|
30 |
+
d_result = {1: {2: 1}, 2: {1: 1, 3: 3}, 3: {2: 3}}
|
31 |
+
assert d == d_result
|
32 |
+
|
33 |
+
def test_degree_mixing_dict_weighted(self):
|
34 |
+
d = nx.degree_mixing_dict(self.W, weight="weight")
|
35 |
+
d_result = {0.5: {1.5: 1}, 1.5: {1.5: 6, 0.5: 1}}
|
36 |
+
assert d == d_result
|
37 |
+
|
38 |
+
|
39 |
+
class TestDegreeMixingMatrix(BaseTestDegreeMixing):
|
40 |
+
def test_degree_mixing_matrix_undirected(self):
|
41 |
+
# fmt: off
|
42 |
+
a_result = np.array([[0, 2],
|
43 |
+
[2, 2]]
|
44 |
+
)
|
45 |
+
# fmt: on
|
46 |
+
a = nx.degree_mixing_matrix(self.P4, normalized=False)
|
47 |
+
np.testing.assert_equal(a, a_result)
|
48 |
+
a = nx.degree_mixing_matrix(self.P4)
|
49 |
+
np.testing.assert_equal(a, a_result / a_result.sum())
|
50 |
+
|
51 |
+
def test_degree_mixing_matrix_directed(self):
|
52 |
+
# fmt: off
|
53 |
+
a_result = np.array([[0, 0, 2],
|
54 |
+
[1, 0, 1],
|
55 |
+
[0, 0, 0]]
|
56 |
+
)
|
57 |
+
# fmt: on
|
58 |
+
a = nx.degree_mixing_matrix(self.D, normalized=False)
|
59 |
+
np.testing.assert_equal(a, a_result)
|
60 |
+
a = nx.degree_mixing_matrix(self.D)
|
61 |
+
np.testing.assert_equal(a, a_result / a_result.sum())
|
62 |
+
|
63 |
+
def test_degree_mixing_matrix_multigraph(self):
|
64 |
+
# fmt: off
|
65 |
+
a_result = np.array([[0, 1, 0],
|
66 |
+
[1, 0, 3],
|
67 |
+
[0, 3, 0]]
|
68 |
+
)
|
69 |
+
# fmt: on
|
70 |
+
a = nx.degree_mixing_matrix(self.M, normalized=False)
|
71 |
+
np.testing.assert_equal(a, a_result)
|
72 |
+
a = nx.degree_mixing_matrix(self.M)
|
73 |
+
np.testing.assert_equal(a, a_result / a_result.sum())
|
74 |
+
|
75 |
+
def test_degree_mixing_matrix_selfloop(self):
|
76 |
+
# fmt: off
|
77 |
+
a_result = np.array([[2]])
|
78 |
+
# fmt: on
|
79 |
+
a = nx.degree_mixing_matrix(self.S, normalized=False)
|
80 |
+
np.testing.assert_equal(a, a_result)
|
81 |
+
a = nx.degree_mixing_matrix(self.S)
|
82 |
+
np.testing.assert_equal(a, a_result / a_result.sum())
|
83 |
+
|
84 |
+
def test_degree_mixing_matrix_weighted(self):
|
85 |
+
a_result = np.array([[0.0, 1.0], [1.0, 6.0]])
|
86 |
+
a = nx.degree_mixing_matrix(self.W, weight="weight", normalized=False)
|
87 |
+
np.testing.assert_equal(a, a_result)
|
88 |
+
a = nx.degree_mixing_matrix(self.W, weight="weight")
|
89 |
+
np.testing.assert_equal(a, a_result / float(a_result.sum()))
|
90 |
+
|
91 |
+
def test_degree_mixing_matrix_mapping(self):
|
92 |
+
a_result = np.array([[6.0, 1.0], [1.0, 0.0]])
|
93 |
+
mapping = {0.5: 1, 1.5: 0}
|
94 |
+
a = nx.degree_mixing_matrix(
|
95 |
+
self.W, weight="weight", normalized=False, mapping=mapping
|
96 |
+
)
|
97 |
+
np.testing.assert_equal(a, a_result)
|
98 |
+
|
99 |
+
|
100 |
+
class TestAttributeMixingDict(BaseTestAttributeMixing):
|
101 |
+
def test_attribute_mixing_dict_undirected(self):
|
102 |
+
d = nx.attribute_mixing_dict(self.G, "fish")
|
103 |
+
d_result = {
|
104 |
+
"one": {"one": 2, "red": 1},
|
105 |
+
"two": {"two": 2, "blue": 1},
|
106 |
+
"red": {"one": 1},
|
107 |
+
"blue": {"two": 1},
|
108 |
+
}
|
109 |
+
assert d == d_result
|
110 |
+
|
111 |
+
def test_attribute_mixing_dict_directed(self):
|
112 |
+
d = nx.attribute_mixing_dict(self.D, "fish")
|
113 |
+
d_result = {
|
114 |
+
"one": {"one": 1, "red": 1},
|
115 |
+
"two": {"two": 1, "blue": 1},
|
116 |
+
"red": {},
|
117 |
+
"blue": {},
|
118 |
+
}
|
119 |
+
assert d == d_result
|
120 |
+
|
121 |
+
def test_attribute_mixing_dict_multigraph(self):
|
122 |
+
d = nx.attribute_mixing_dict(self.M, "fish")
|
123 |
+
d_result = {"one": {"one": 4}, "two": {"two": 2}}
|
124 |
+
assert d == d_result
|
125 |
+
|
126 |
+
|
127 |
+
class TestAttributeMixingMatrix(BaseTestAttributeMixing):
|
128 |
+
def test_attribute_mixing_matrix_undirected(self):
|
129 |
+
mapping = {"one": 0, "two": 1, "red": 2, "blue": 3}
|
130 |
+
a_result = np.array([[2, 0, 1, 0], [0, 2, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0]])
|
131 |
+
a = nx.attribute_mixing_matrix(
|
132 |
+
self.G, "fish", mapping=mapping, normalized=False
|
133 |
+
)
|
134 |
+
np.testing.assert_equal(a, a_result)
|
135 |
+
a = nx.attribute_mixing_matrix(self.G, "fish", mapping=mapping)
|
136 |
+
np.testing.assert_equal(a, a_result / a_result.sum())
|
137 |
+
|
138 |
+
def test_attribute_mixing_matrix_directed(self):
|
139 |
+
mapping = {"one": 0, "two": 1, "red": 2, "blue": 3}
|
140 |
+
a_result = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0]])
|
141 |
+
a = nx.attribute_mixing_matrix(
|
142 |
+
self.D, "fish", mapping=mapping, normalized=False
|
143 |
+
)
|
144 |
+
np.testing.assert_equal(a, a_result)
|
145 |
+
a = nx.attribute_mixing_matrix(self.D, "fish", mapping=mapping)
|
146 |
+
np.testing.assert_equal(a, a_result / a_result.sum())
|
147 |
+
|
148 |
+
def test_attribute_mixing_matrix_multigraph(self):
|
149 |
+
mapping = {"one": 0, "two": 1, "red": 2, "blue": 3}
|
150 |
+
a_result = np.array([[4, 0, 0, 0], [0, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
|
151 |
+
a = nx.attribute_mixing_matrix(
|
152 |
+
self.M, "fish", mapping=mapping, normalized=False
|
153 |
+
)
|
154 |
+
np.testing.assert_equal(a, a_result)
|
155 |
+
a = nx.attribute_mixing_matrix(self.M, "fish", mapping=mapping)
|
156 |
+
np.testing.assert_equal(a, a_result / a_result.sum())
|
157 |
+
|
158 |
+
def test_attribute_mixing_matrix_negative(self):
|
159 |
+
mapping = {-2: 0, -3: 1, -4: 2}
|
160 |
+
a_result = np.array([[4.0, 1.0, 1.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]])
|
161 |
+
a = nx.attribute_mixing_matrix(
|
162 |
+
self.N, "margin", mapping=mapping, normalized=False
|
163 |
+
)
|
164 |
+
np.testing.assert_equal(a, a_result)
|
165 |
+
a = nx.attribute_mixing_matrix(self.N, "margin", mapping=mapping)
|
166 |
+
np.testing.assert_equal(a, a_result / float(a_result.sum()))
|
167 |
+
|
168 |
+
def test_attribute_mixing_matrix_float(self):
|
169 |
+
mapping = {0.5: 1, 1.5: 0}
|
170 |
+
a_result = np.array([[6.0, 1.0], [1.0, 0.0]])
|
171 |
+
a = nx.attribute_mixing_matrix(
|
172 |
+
self.F, "margin", mapping=mapping, normalized=False
|
173 |
+
)
|
174 |
+
np.testing.assert_equal(a, a_result)
|
175 |
+
a = nx.attribute_mixing_matrix(self.F, "margin", mapping=mapping)
|
176 |
+
np.testing.assert_equal(a, a_result / a_result.sum())
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_neighbor_degree.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
|
6 |
+
class TestAverageNeighbor:
|
7 |
+
def test_degree_p4(self):
|
8 |
+
G = nx.path_graph(4)
|
9 |
+
answer = {0: 2, 1: 1.5, 2: 1.5, 3: 2}
|
10 |
+
nd = nx.average_neighbor_degree(G)
|
11 |
+
assert nd == answer
|
12 |
+
|
13 |
+
D = G.to_directed()
|
14 |
+
nd = nx.average_neighbor_degree(D)
|
15 |
+
assert nd == answer
|
16 |
+
|
17 |
+
D = nx.DiGraph(G.edges(data=True))
|
18 |
+
nd = nx.average_neighbor_degree(D)
|
19 |
+
assert nd == {0: 1, 1: 1, 2: 0, 3: 0}
|
20 |
+
nd = nx.average_neighbor_degree(D, "in", "out")
|
21 |
+
assert nd == {0: 0, 1: 1, 2: 1, 3: 1}
|
22 |
+
nd = nx.average_neighbor_degree(D, "out", "in")
|
23 |
+
assert nd == {0: 1, 1: 1, 2: 1, 3: 0}
|
24 |
+
nd = nx.average_neighbor_degree(D, "in", "in")
|
25 |
+
assert nd == {0: 0, 1: 0, 2: 1, 3: 1}
|
26 |
+
|
27 |
+
def test_degree_p4_weighted(self):
|
28 |
+
G = nx.path_graph(4)
|
29 |
+
G[1][2]["weight"] = 4
|
30 |
+
answer = {0: 2, 1: 1.8, 2: 1.8, 3: 2}
|
31 |
+
nd = nx.average_neighbor_degree(G, weight="weight")
|
32 |
+
assert nd == answer
|
33 |
+
|
34 |
+
D = G.to_directed()
|
35 |
+
nd = nx.average_neighbor_degree(D, weight="weight")
|
36 |
+
assert nd == answer
|
37 |
+
|
38 |
+
D = nx.DiGraph(G.edges(data=True))
|
39 |
+
print(D.edges(data=True))
|
40 |
+
nd = nx.average_neighbor_degree(D, weight="weight")
|
41 |
+
assert nd == {0: 1, 1: 1, 2: 0, 3: 0}
|
42 |
+
nd = nx.average_neighbor_degree(D, "out", "out", weight="weight")
|
43 |
+
assert nd == {0: 1, 1: 1, 2: 0, 3: 0}
|
44 |
+
nd = nx.average_neighbor_degree(D, "in", "in", weight="weight")
|
45 |
+
assert nd == {0: 0, 1: 0, 2: 1, 3: 1}
|
46 |
+
nd = nx.average_neighbor_degree(D, "in", "out", weight="weight")
|
47 |
+
assert nd == {0: 0, 1: 1, 2: 1, 3: 1}
|
48 |
+
nd = nx.average_neighbor_degree(D, "out", "in", weight="weight")
|
49 |
+
assert nd == {0: 1, 1: 1, 2: 1, 3: 0}
|
50 |
+
nd = nx.average_neighbor_degree(D, source="in+out", weight="weight")
|
51 |
+
assert nd == {0: 1.0, 1: 1.0, 2: 0.8, 3: 1.0}
|
52 |
+
nd = nx.average_neighbor_degree(D, target="in+out", weight="weight")
|
53 |
+
assert nd == {0: 2.0, 1: 2.0, 2: 1.0, 3: 0.0}
|
54 |
+
|
55 |
+
D = G.to_directed()
|
56 |
+
nd = nx.average_neighbor_degree(D, weight="weight")
|
57 |
+
assert nd == answer
|
58 |
+
nd = nx.average_neighbor_degree(D, source="out", target="out", weight="weight")
|
59 |
+
assert nd == answer
|
60 |
+
|
61 |
+
D = G.to_directed()
|
62 |
+
nd = nx.average_neighbor_degree(D, source="in", target="in", weight="weight")
|
63 |
+
assert nd == answer
|
64 |
+
|
65 |
+
def test_degree_k4(self):
|
66 |
+
G = nx.complete_graph(4)
|
67 |
+
answer = {0: 3, 1: 3, 2: 3, 3: 3}
|
68 |
+
nd = nx.average_neighbor_degree(G)
|
69 |
+
assert nd == answer
|
70 |
+
|
71 |
+
D = G.to_directed()
|
72 |
+
nd = nx.average_neighbor_degree(D)
|
73 |
+
assert nd == answer
|
74 |
+
|
75 |
+
D = G.to_directed()
|
76 |
+
nd = nx.average_neighbor_degree(D)
|
77 |
+
assert nd == answer
|
78 |
+
|
79 |
+
D = G.to_directed()
|
80 |
+
nd = nx.average_neighbor_degree(D, source="in", target="in")
|
81 |
+
assert nd == answer
|
82 |
+
|
83 |
+
def test_degree_k4_nodes(self):
|
84 |
+
G = nx.complete_graph(4)
|
85 |
+
answer = {1: 3.0, 2: 3.0}
|
86 |
+
nd = nx.average_neighbor_degree(G, nodes=[1, 2])
|
87 |
+
assert nd == answer
|
88 |
+
|
89 |
+
def test_degree_barrat(self):
|
90 |
+
G = nx.star_graph(5)
|
91 |
+
G.add_edges_from([(5, 6), (5, 7), (5, 8), (5, 9)])
|
92 |
+
G[0][5]["weight"] = 5
|
93 |
+
nd = nx.average_neighbor_degree(G)[5]
|
94 |
+
assert nd == 1.8
|
95 |
+
nd = nx.average_neighbor_degree(G, weight="weight")[5]
|
96 |
+
assert nd == pytest.approx(3.222222, abs=1e-5)
|
97 |
+
|
98 |
+
def test_error_invalid_source_target(self):
|
99 |
+
G = nx.path_graph(4)
|
100 |
+
with pytest.raises(nx.NetworkXError):
|
101 |
+
nx.average_neighbor_degree(G, "error")
|
102 |
+
with pytest.raises(nx.NetworkXError):
|
103 |
+
nx.average_neighbor_degree(G, "in", "error")
|
104 |
+
G = G.to_directed()
|
105 |
+
with pytest.raises(nx.NetworkXError):
|
106 |
+
nx.average_neighbor_degree(G, "error")
|
107 |
+
with pytest.raises(nx.NetworkXError):
|
108 |
+
nx.average_neighbor_degree(G, "in", "error")
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_pairs.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import networkx as nx
|
2 |
+
|
3 |
+
from .base_test import BaseTestAttributeMixing, BaseTestDegreeMixing
|
4 |
+
|
5 |
+
|
6 |
+
class TestAttributeMixingXY(BaseTestAttributeMixing):
|
7 |
+
def test_node_attribute_xy_undirected(self):
|
8 |
+
attrxy = sorted(nx.node_attribute_xy(self.G, "fish"))
|
9 |
+
attrxy_result = sorted(
|
10 |
+
[
|
11 |
+
("one", "one"),
|
12 |
+
("one", "one"),
|
13 |
+
("two", "two"),
|
14 |
+
("two", "two"),
|
15 |
+
("one", "red"),
|
16 |
+
("red", "one"),
|
17 |
+
("blue", "two"),
|
18 |
+
("two", "blue"),
|
19 |
+
]
|
20 |
+
)
|
21 |
+
assert attrxy == attrxy_result
|
22 |
+
|
23 |
+
def test_node_attribute_xy_undirected_nodes(self):
|
24 |
+
attrxy = sorted(nx.node_attribute_xy(self.G, "fish", nodes=["one", "yellow"]))
|
25 |
+
attrxy_result = sorted([])
|
26 |
+
assert attrxy == attrxy_result
|
27 |
+
|
28 |
+
def test_node_attribute_xy_directed(self):
|
29 |
+
attrxy = sorted(nx.node_attribute_xy(self.D, "fish"))
|
30 |
+
attrxy_result = sorted(
|
31 |
+
[("one", "one"), ("two", "two"), ("one", "red"), ("two", "blue")]
|
32 |
+
)
|
33 |
+
assert attrxy == attrxy_result
|
34 |
+
|
35 |
+
def test_node_attribute_xy_multigraph(self):
|
36 |
+
attrxy = sorted(nx.node_attribute_xy(self.M, "fish"))
|
37 |
+
attrxy_result = [
|
38 |
+
("one", "one"),
|
39 |
+
("one", "one"),
|
40 |
+
("one", "one"),
|
41 |
+
("one", "one"),
|
42 |
+
("two", "two"),
|
43 |
+
("two", "two"),
|
44 |
+
]
|
45 |
+
assert attrxy == attrxy_result
|
46 |
+
|
47 |
+
def test_node_attribute_xy_selfloop(self):
|
48 |
+
attrxy = sorted(nx.node_attribute_xy(self.S, "fish"))
|
49 |
+
attrxy_result = [("one", "one"), ("two", "two")]
|
50 |
+
assert attrxy == attrxy_result
|
51 |
+
|
52 |
+
|
53 |
+
class TestDegreeMixingXY(BaseTestDegreeMixing):
|
54 |
+
def test_node_degree_xy_undirected(self):
|
55 |
+
xy = sorted(nx.node_degree_xy(self.P4))
|
56 |
+
xy_result = sorted([(1, 2), (2, 1), (2, 2), (2, 2), (1, 2), (2, 1)])
|
57 |
+
assert xy == xy_result
|
58 |
+
|
59 |
+
def test_node_degree_xy_undirected_nodes(self):
|
60 |
+
xy = sorted(nx.node_degree_xy(self.P4, nodes=[0, 1, -1]))
|
61 |
+
xy_result = sorted([(1, 2), (2, 1)])
|
62 |
+
assert xy == xy_result
|
63 |
+
|
64 |
+
def test_node_degree_xy_directed(self):
|
65 |
+
xy = sorted(nx.node_degree_xy(self.D))
|
66 |
+
xy_result = sorted([(2, 1), (2, 3), (1, 3), (1, 3)])
|
67 |
+
assert xy == xy_result
|
68 |
+
|
69 |
+
def test_node_degree_xy_multigraph(self):
|
70 |
+
xy = sorted(nx.node_degree_xy(self.M))
|
71 |
+
xy_result = sorted(
|
72 |
+
[(2, 3), (2, 3), (3, 2), (3, 2), (2, 3), (3, 2), (1, 2), (2, 1)]
|
73 |
+
)
|
74 |
+
assert xy == xy_result
|
75 |
+
|
76 |
+
def test_node_degree_xy_selfloop(self):
|
77 |
+
xy = sorted(nx.node_degree_xy(self.S))
|
78 |
+
xy_result = sorted([(2, 2), (2, 2)])
|
79 |
+
assert xy == xy_result
|
80 |
+
|
81 |
+
def test_node_degree_xy_weighted(self):
|
82 |
+
G = nx.Graph()
|
83 |
+
G.add_edge(1, 2, weight=7)
|
84 |
+
G.add_edge(2, 3, weight=10)
|
85 |
+
xy = sorted(nx.node_degree_xy(G, weight="weight"))
|
86 |
+
xy_result = sorted([(7, 17), (17, 10), (17, 7), (10, 17)])
|
87 |
+
assert xy == xy_result
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/centrality/katz.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Katz centrality."""
|
2 |
+
import math
|
3 |
+
|
4 |
+
import networkx as nx
|
5 |
+
from networkx.utils import not_implemented_for
|
6 |
+
|
7 |
+
__all__ = ["katz_centrality", "katz_centrality_numpy"]
|
8 |
+
|
9 |
+
|
10 |
+
@not_implemented_for("multigraph")
|
11 |
+
@nx._dispatchable(edge_attrs="weight")
|
12 |
+
def katz_centrality(
|
13 |
+
G,
|
14 |
+
alpha=0.1,
|
15 |
+
beta=1.0,
|
16 |
+
max_iter=1000,
|
17 |
+
tol=1.0e-6,
|
18 |
+
nstart=None,
|
19 |
+
normalized=True,
|
20 |
+
weight=None,
|
21 |
+
):
|
22 |
+
r"""Compute the Katz centrality for the nodes of the graph G.
|
23 |
+
|
24 |
+
Katz centrality computes the centrality for a node based on the centrality
|
25 |
+
of its neighbors. It is a generalization of the eigenvector centrality. The
|
26 |
+
Katz centrality for node $i$ is
|
27 |
+
|
28 |
+
.. math::
|
29 |
+
|
30 |
+
x_i = \alpha \sum_{j} A_{ij} x_j + \beta,
|
31 |
+
|
32 |
+
where $A$ is the adjacency matrix of graph G with eigenvalues $\lambda$.
|
33 |
+
|
34 |
+
The parameter $\beta$ controls the initial centrality and
|
35 |
+
|
36 |
+
.. math::
|
37 |
+
|
38 |
+
\alpha < \frac{1}{\lambda_{\max}}.
|
39 |
+
|
40 |
+
Katz centrality computes the relative influence of a node within a
|
41 |
+
network by measuring the number of the immediate neighbors (first
|
42 |
+
degree nodes) and also all other nodes in the network that connect
|
43 |
+
to the node under consideration through these immediate neighbors.
|
44 |
+
|
45 |
+
Extra weight can be provided to immediate neighbors through the
|
46 |
+
parameter $\beta$. Connections made with distant neighbors
|
47 |
+
are, however, penalized by an attenuation factor $\alpha$ which
|
48 |
+
should be strictly less than the inverse largest eigenvalue of the
|
49 |
+
adjacency matrix in order for the Katz centrality to be computed
|
50 |
+
correctly. More information is provided in [1]_.
|
51 |
+
|
52 |
+
Parameters
|
53 |
+
----------
|
54 |
+
G : graph
|
55 |
+
A NetworkX graph.
|
56 |
+
|
57 |
+
alpha : float, optional (default=0.1)
|
58 |
+
Attenuation factor
|
59 |
+
|
60 |
+
beta : scalar or dictionary, optional (default=1.0)
|
61 |
+
Weight attributed to the immediate neighborhood. If not a scalar, the
|
62 |
+
dictionary must have a value for every node.
|
63 |
+
|
64 |
+
max_iter : integer, optional (default=1000)
|
65 |
+
Maximum number of iterations in power method.
|
66 |
+
|
67 |
+
tol : float, optional (default=1.0e-6)
|
68 |
+
Error tolerance used to check convergence in power method iteration.
|
69 |
+
|
70 |
+
nstart : dictionary, optional
|
71 |
+
Starting value of Katz iteration for each node.
|
72 |
+
|
73 |
+
normalized : bool, optional (default=True)
|
74 |
+
If True normalize the resulting values.
|
75 |
+
|
76 |
+
weight : None or string, optional (default=None)
|
77 |
+
If None, all edge weights are considered equal.
|
78 |
+
Otherwise holds the name of the edge attribute used as weight.
|
79 |
+
In this measure the weight is interpreted as the connection strength.
|
80 |
+
|
81 |
+
Returns
|
82 |
+
-------
|
83 |
+
nodes : dictionary
|
84 |
+
Dictionary of nodes with Katz centrality as the value.
|
85 |
+
|
86 |
+
Raises
|
87 |
+
------
|
88 |
+
NetworkXError
|
89 |
+
If the parameter `beta` is not a scalar but lacks a value for at least
|
90 |
+
one node
|
91 |
+
|
92 |
+
PowerIterationFailedConvergence
|
93 |
+
If the algorithm fails to converge to the specified tolerance
|
94 |
+
within the specified number of iterations of the power iteration
|
95 |
+
method.
|
96 |
+
|
97 |
+
Examples
|
98 |
+
--------
|
99 |
+
>>> import math
|
100 |
+
>>> G = nx.path_graph(4)
|
101 |
+
>>> phi = (1 + math.sqrt(5)) / 2.0 # largest eigenvalue of adj matrix
|
102 |
+
>>> centrality = nx.katz_centrality(G, 1 / phi - 0.01)
|
103 |
+
>>> for n, c in sorted(centrality.items()):
|
104 |
+
... print(f"{n} {c:.2f}")
|
105 |
+
0 0.37
|
106 |
+
1 0.60
|
107 |
+
2 0.60
|
108 |
+
3 0.37
|
109 |
+
|
110 |
+
See Also
|
111 |
+
--------
|
112 |
+
katz_centrality_numpy
|
113 |
+
eigenvector_centrality
|
114 |
+
eigenvector_centrality_numpy
|
115 |
+
:func:`~networkx.algorithms.link_analysis.pagerank_alg.pagerank`
|
116 |
+
:func:`~networkx.algorithms.link_analysis.hits_alg.hits`
|
117 |
+
|
118 |
+
Notes
|
119 |
+
-----
|
120 |
+
Katz centrality was introduced by [2]_.
|
121 |
+
|
122 |
+
This algorithm it uses the power method to find the eigenvector
|
123 |
+
corresponding to the largest eigenvalue of the adjacency matrix of ``G``.
|
124 |
+
The parameter ``alpha`` should be strictly less than the inverse of largest
|
125 |
+
eigenvalue of the adjacency matrix for the algorithm to converge.
|
126 |
+
You can use ``max(nx.adjacency_spectrum(G))`` to get $\lambda_{\max}$ the largest
|
127 |
+
eigenvalue of the adjacency matrix.
|
128 |
+
The iteration will stop after ``max_iter`` iterations or an error tolerance of
|
129 |
+
``number_of_nodes(G) * tol`` has been reached.
|
130 |
+
|
131 |
+
For strongly connected graphs, as $\alpha \to 1/\lambda_{\max}$, and $\beta > 0$,
|
132 |
+
Katz centrality approaches the results for eigenvector centrality.
|
133 |
+
|
134 |
+
For directed graphs this finds "left" eigenvectors which corresponds
|
135 |
+
to the in-edges in the graph. For out-edges Katz centrality,
|
136 |
+
first reverse the graph with ``G.reverse()``.
|
137 |
+
|
138 |
+
References
|
139 |
+
----------
|
140 |
+
.. [1] Mark E. J. Newman:
|
141 |
+
Networks: An Introduction.
|
142 |
+
Oxford University Press, USA, 2010, p. 720.
|
143 |
+
.. [2] Leo Katz:
|
144 |
+
A New Status Index Derived from Sociometric Index.
|
145 |
+
Psychometrika 18(1):39–43, 1953
|
146 |
+
https://link.springer.com/content/pdf/10.1007/BF02289026.pdf
|
147 |
+
"""
|
148 |
+
if len(G) == 0:
|
149 |
+
return {}
|
150 |
+
|
151 |
+
nnodes = G.number_of_nodes()
|
152 |
+
|
153 |
+
if nstart is None:
|
154 |
+
# choose starting vector with entries of 0
|
155 |
+
x = {n: 0 for n in G}
|
156 |
+
else:
|
157 |
+
x = nstart
|
158 |
+
|
159 |
+
try:
|
160 |
+
b = dict.fromkeys(G, float(beta))
|
161 |
+
except (TypeError, ValueError, AttributeError) as err:
|
162 |
+
b = beta
|
163 |
+
if set(beta) != set(G):
|
164 |
+
raise nx.NetworkXError(
|
165 |
+
"beta dictionary must have a value for every node"
|
166 |
+
) from err
|
167 |
+
|
168 |
+
# make up to max_iter iterations
|
169 |
+
for _ in range(max_iter):
|
170 |
+
xlast = x
|
171 |
+
x = dict.fromkeys(xlast, 0)
|
172 |
+
# do the multiplication y^T = Alpha * x^T A + Beta
|
173 |
+
for n in x:
|
174 |
+
for nbr in G[n]:
|
175 |
+
x[nbr] += xlast[n] * G[n][nbr].get(weight, 1)
|
176 |
+
for n in x:
|
177 |
+
x[n] = alpha * x[n] + b[n]
|
178 |
+
|
179 |
+
# check convergence
|
180 |
+
error = sum(abs(x[n] - xlast[n]) for n in x)
|
181 |
+
if error < nnodes * tol:
|
182 |
+
if normalized:
|
183 |
+
# normalize vector
|
184 |
+
try:
|
185 |
+
s = 1.0 / math.hypot(*x.values())
|
186 |
+
except ZeroDivisionError:
|
187 |
+
s = 1.0
|
188 |
+
else:
|
189 |
+
s = 1
|
190 |
+
for n in x:
|
191 |
+
x[n] *= s
|
192 |
+
return x
|
193 |
+
raise nx.PowerIterationFailedConvergence(max_iter)
|
194 |
+
|
195 |
+
|
196 |
+
@not_implemented_for("multigraph")
|
197 |
+
@nx._dispatchable(edge_attrs="weight")
|
198 |
+
def katz_centrality_numpy(G, alpha=0.1, beta=1.0, normalized=True, weight=None):
|
199 |
+
r"""Compute the Katz centrality for the graph G.
|
200 |
+
|
201 |
+
Katz centrality computes the centrality for a node based on the centrality
|
202 |
+
of its neighbors. It is a generalization of the eigenvector centrality. The
|
203 |
+
Katz centrality for node $i$ is
|
204 |
+
|
205 |
+
.. math::
|
206 |
+
|
207 |
+
x_i = \alpha \sum_{j} A_{ij} x_j + \beta,
|
208 |
+
|
209 |
+
where $A$ is the adjacency matrix of graph G with eigenvalues $\lambda$.
|
210 |
+
|
211 |
+
The parameter $\beta$ controls the initial centrality and
|
212 |
+
|
213 |
+
.. math::
|
214 |
+
|
215 |
+
\alpha < \frac{1}{\lambda_{\max}}.
|
216 |
+
|
217 |
+
Katz centrality computes the relative influence of a node within a
|
218 |
+
network by measuring the number of the immediate neighbors (first
|
219 |
+
degree nodes) and also all other nodes in the network that connect
|
220 |
+
to the node under consideration through these immediate neighbors.
|
221 |
+
|
222 |
+
Extra weight can be provided to immediate neighbors through the
|
223 |
+
parameter $\beta$. Connections made with distant neighbors
|
224 |
+
are, however, penalized by an attenuation factor $\alpha$ which
|
225 |
+
should be strictly less than the inverse largest eigenvalue of the
|
226 |
+
adjacency matrix in order for the Katz centrality to be computed
|
227 |
+
correctly. More information is provided in [1]_.
|
228 |
+
|
229 |
+
Parameters
|
230 |
+
----------
|
231 |
+
G : graph
|
232 |
+
A NetworkX graph
|
233 |
+
|
234 |
+
alpha : float
|
235 |
+
Attenuation factor
|
236 |
+
|
237 |
+
beta : scalar or dictionary, optional (default=1.0)
|
238 |
+
Weight attributed to the immediate neighborhood. If not a scalar the
|
239 |
+
dictionary must have an value for every node.
|
240 |
+
|
241 |
+
normalized : bool
|
242 |
+
If True normalize the resulting values.
|
243 |
+
|
244 |
+
weight : None or string, optional
|
245 |
+
If None, all edge weights are considered equal.
|
246 |
+
Otherwise holds the name of the edge attribute used as weight.
|
247 |
+
In this measure the weight is interpreted as the connection strength.
|
248 |
+
|
249 |
+
Returns
|
250 |
+
-------
|
251 |
+
nodes : dictionary
|
252 |
+
Dictionary of nodes with Katz centrality as the value.
|
253 |
+
|
254 |
+
Raises
|
255 |
+
------
|
256 |
+
NetworkXError
|
257 |
+
If the parameter `beta` is not a scalar but lacks a value for at least
|
258 |
+
one node
|
259 |
+
|
260 |
+
Examples
|
261 |
+
--------
|
262 |
+
>>> import math
|
263 |
+
>>> G = nx.path_graph(4)
|
264 |
+
>>> phi = (1 + math.sqrt(5)) / 2.0 # largest eigenvalue of adj matrix
|
265 |
+
>>> centrality = nx.katz_centrality_numpy(G, 1 / phi)
|
266 |
+
>>> for n, c in sorted(centrality.items()):
|
267 |
+
... print(f"{n} {c:.2f}")
|
268 |
+
0 0.37
|
269 |
+
1 0.60
|
270 |
+
2 0.60
|
271 |
+
3 0.37
|
272 |
+
|
273 |
+
See Also
|
274 |
+
--------
|
275 |
+
katz_centrality
|
276 |
+
eigenvector_centrality_numpy
|
277 |
+
eigenvector_centrality
|
278 |
+
:func:`~networkx.algorithms.link_analysis.pagerank_alg.pagerank`
|
279 |
+
:func:`~networkx.algorithms.link_analysis.hits_alg.hits`
|
280 |
+
|
281 |
+
Notes
|
282 |
+
-----
|
283 |
+
Katz centrality was introduced by [2]_.
|
284 |
+
|
285 |
+
This algorithm uses a direct linear solver to solve the above equation.
|
286 |
+
The parameter ``alpha`` should be strictly less than the inverse of largest
|
287 |
+
eigenvalue of the adjacency matrix for there to be a solution.
|
288 |
+
You can use ``max(nx.adjacency_spectrum(G))`` to get $\lambda_{\max}$ the largest
|
289 |
+
eigenvalue of the adjacency matrix.
|
290 |
+
|
291 |
+
For strongly connected graphs, as $\alpha \to 1/\lambda_{\max}$, and $\beta > 0$,
|
292 |
+
Katz centrality approaches the results for eigenvector centrality.
|
293 |
+
|
294 |
+
For directed graphs this finds "left" eigenvectors which corresponds
|
295 |
+
to the in-edges in the graph. For out-edges Katz centrality,
|
296 |
+
first reverse the graph with ``G.reverse()``.
|
297 |
+
|
298 |
+
References
|
299 |
+
----------
|
300 |
+
.. [1] Mark E. J. Newman:
|
301 |
+
Networks: An Introduction.
|
302 |
+
Oxford University Press, USA, 2010, p. 173.
|
303 |
+
.. [2] Leo Katz:
|
304 |
+
A New Status Index Derived from Sociometric Index.
|
305 |
+
Psychometrika 18(1):39–43, 1953
|
306 |
+
https://link.springer.com/content/pdf/10.1007/BF02289026.pdf
|
307 |
+
"""
|
308 |
+
import numpy as np
|
309 |
+
|
310 |
+
if len(G) == 0:
|
311 |
+
return {}
|
312 |
+
try:
|
313 |
+
nodelist = beta.keys()
|
314 |
+
if set(nodelist) != set(G):
|
315 |
+
raise nx.NetworkXError("beta dictionary must have a value for every node")
|
316 |
+
b = np.array(list(beta.values()), dtype=float)
|
317 |
+
except AttributeError:
|
318 |
+
nodelist = list(G)
|
319 |
+
try:
|
320 |
+
b = np.ones((len(nodelist), 1)) * beta
|
321 |
+
except (TypeError, ValueError, AttributeError) as err:
|
322 |
+
raise nx.NetworkXError("beta must be a number") from err
|
323 |
+
|
324 |
+
A = nx.adjacency_matrix(G, nodelist=nodelist, weight=weight).todense().T
|
325 |
+
n = A.shape[0]
|
326 |
+
centrality = np.linalg.solve(np.eye(n, n) - (alpha * A), b).squeeze()
|
327 |
+
|
328 |
+
# Normalize: rely on truediv to cast to float, then tolist to make Python numbers
|
329 |
+
norm = np.sign(sum(centrality)) * np.linalg.norm(centrality) if normalized else 1
|
330 |
+
return dict(zip(nodelist, (centrality / norm).tolist()))
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/centrality/reaching.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for computing reaching centrality of a node or a graph."""
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
from networkx.utils import pairwise
|
5 |
+
|
6 |
+
__all__ = ["global_reaching_centrality", "local_reaching_centrality"]
|
7 |
+
|
8 |
+
|
9 |
+
def _average_weight(G, path, weight=None):
|
10 |
+
"""Returns the average weight of an edge in a weighted path.
|
11 |
+
|
12 |
+
Parameters
|
13 |
+
----------
|
14 |
+
G : graph
|
15 |
+
A networkx graph.
|
16 |
+
|
17 |
+
path: list
|
18 |
+
A list of vertices that define the path.
|
19 |
+
|
20 |
+
weight : None or string, optional (default=None)
|
21 |
+
If None, edge weights are ignored. Then the average weight of an edge
|
22 |
+
is assumed to be the multiplicative inverse of the length of the path.
|
23 |
+
Otherwise holds the name of the edge attribute used as weight.
|
24 |
+
"""
|
25 |
+
path_length = len(path) - 1
|
26 |
+
if path_length <= 0:
|
27 |
+
return 0
|
28 |
+
if weight is None:
|
29 |
+
return 1 / path_length
|
30 |
+
total_weight = sum(G.edges[i, j][weight] for i, j in pairwise(path))
|
31 |
+
return total_weight / path_length
|
32 |
+
|
33 |
+
|
34 |
+
@nx._dispatchable(edge_attrs="weight")
|
35 |
+
def global_reaching_centrality(G, weight=None, normalized=True):
|
36 |
+
"""Returns the global reaching centrality of a directed graph.
|
37 |
+
|
38 |
+
The *global reaching centrality* of a weighted directed graph is the
|
39 |
+
average over all nodes of the difference between the local reaching
|
40 |
+
centrality of the node and the greatest local reaching centrality of
|
41 |
+
any node in the graph [1]_. For more information on the local
|
42 |
+
reaching centrality, see :func:`local_reaching_centrality`.
|
43 |
+
Informally, the local reaching centrality is the proportion of the
|
44 |
+
graph that is reachable from the neighbors of the node.
|
45 |
+
|
46 |
+
Parameters
|
47 |
+
----------
|
48 |
+
G : DiGraph
|
49 |
+
A networkx DiGraph.
|
50 |
+
|
51 |
+
weight : None or string, optional (default=None)
|
52 |
+
Attribute to use for edge weights. If ``None``, each edge weight
|
53 |
+
is assumed to be one. A higher weight implies a stronger
|
54 |
+
connection between nodes and a *shorter* path length.
|
55 |
+
|
56 |
+
normalized : bool, optional (default=True)
|
57 |
+
Whether to normalize the edge weights by the total sum of edge
|
58 |
+
weights.
|
59 |
+
|
60 |
+
Returns
|
61 |
+
-------
|
62 |
+
h : float
|
63 |
+
The global reaching centrality of the graph.
|
64 |
+
|
65 |
+
Examples
|
66 |
+
--------
|
67 |
+
>>> G = nx.DiGraph()
|
68 |
+
>>> G.add_edge(1, 2)
|
69 |
+
>>> G.add_edge(1, 3)
|
70 |
+
>>> nx.global_reaching_centrality(G)
|
71 |
+
1.0
|
72 |
+
>>> G.add_edge(3, 2)
|
73 |
+
>>> nx.global_reaching_centrality(G)
|
74 |
+
0.75
|
75 |
+
|
76 |
+
See also
|
77 |
+
--------
|
78 |
+
local_reaching_centrality
|
79 |
+
|
80 |
+
References
|
81 |
+
----------
|
82 |
+
.. [1] Mones, Enys, Lilla Vicsek, and Tamás Vicsek.
|
83 |
+
"Hierarchy Measure for Complex Networks."
|
84 |
+
*PLoS ONE* 7.3 (2012): e33799.
|
85 |
+
https://doi.org/10.1371/journal.pone.0033799
|
86 |
+
"""
|
87 |
+
if nx.is_negatively_weighted(G, weight=weight):
|
88 |
+
raise nx.NetworkXError("edge weights must be positive")
|
89 |
+
total_weight = G.size(weight=weight)
|
90 |
+
if total_weight <= 0:
|
91 |
+
raise nx.NetworkXError("Size of G must be positive")
|
92 |
+
|
93 |
+
# If provided, weights must be interpreted as connection strength
|
94 |
+
# (so higher weights are more likely to be chosen). However, the
|
95 |
+
# shortest path algorithms in NetworkX assume the provided "weight"
|
96 |
+
# is actually a distance (so edges with higher weight are less
|
97 |
+
# likely to be chosen). Therefore we need to invert the weights when
|
98 |
+
# computing shortest paths.
|
99 |
+
#
|
100 |
+
# If weight is None, we leave it as-is so that the shortest path
|
101 |
+
# algorithm can use a faster, unweighted algorithm.
|
102 |
+
if weight is not None:
|
103 |
+
|
104 |
+
def as_distance(u, v, d):
|
105 |
+
return total_weight / d.get(weight, 1)
|
106 |
+
|
107 |
+
shortest_paths = nx.shortest_path(G, weight=as_distance)
|
108 |
+
else:
|
109 |
+
shortest_paths = nx.shortest_path(G)
|
110 |
+
|
111 |
+
centrality = local_reaching_centrality
|
112 |
+
# TODO This can be trivially parallelized.
|
113 |
+
lrc = [
|
114 |
+
centrality(G, node, paths=paths, weight=weight, normalized=normalized)
|
115 |
+
for node, paths in shortest_paths.items()
|
116 |
+
]
|
117 |
+
|
118 |
+
max_lrc = max(lrc)
|
119 |
+
return sum(max_lrc - c for c in lrc) / (len(G) - 1)
|
120 |
+
|
121 |
+
|
122 |
+
@nx._dispatchable(edge_attrs="weight")
|
123 |
+
def local_reaching_centrality(G, v, paths=None, weight=None, normalized=True):
|
124 |
+
"""Returns the local reaching centrality of a node in a directed
|
125 |
+
graph.
|
126 |
+
|
127 |
+
The *local reaching centrality* of a node in a directed graph is the
|
128 |
+
proportion of other nodes reachable from that node [1]_.
|
129 |
+
|
130 |
+
Parameters
|
131 |
+
----------
|
132 |
+
G : DiGraph
|
133 |
+
A NetworkX DiGraph.
|
134 |
+
|
135 |
+
v : node
|
136 |
+
A node in the directed graph `G`.
|
137 |
+
|
138 |
+
paths : dictionary (default=None)
|
139 |
+
If this is not `None` it must be a dictionary representation
|
140 |
+
of single-source shortest paths, as computed by, for example,
|
141 |
+
:func:`networkx.shortest_path` with source node `v`. Use this
|
142 |
+
keyword argument if you intend to invoke this function many
|
143 |
+
times but don't want the paths to be recomputed each time.
|
144 |
+
|
145 |
+
weight : None or string, optional (default=None)
|
146 |
+
Attribute to use for edge weights. If `None`, each edge weight
|
147 |
+
is assumed to be one. A higher weight implies a stronger
|
148 |
+
connection between nodes and a *shorter* path length.
|
149 |
+
|
150 |
+
normalized : bool, optional (default=True)
|
151 |
+
Whether to normalize the edge weights by the total sum of edge
|
152 |
+
weights.
|
153 |
+
|
154 |
+
Returns
|
155 |
+
-------
|
156 |
+
h : float
|
157 |
+
The local reaching centrality of the node ``v`` in the graph
|
158 |
+
``G``.
|
159 |
+
|
160 |
+
Examples
|
161 |
+
--------
|
162 |
+
>>> G = nx.DiGraph()
|
163 |
+
>>> G.add_edges_from([(1, 2), (1, 3)])
|
164 |
+
>>> nx.local_reaching_centrality(G, 3)
|
165 |
+
0.0
|
166 |
+
>>> G.add_edge(3, 2)
|
167 |
+
>>> nx.local_reaching_centrality(G, 3)
|
168 |
+
0.5
|
169 |
+
|
170 |
+
See also
|
171 |
+
--------
|
172 |
+
global_reaching_centrality
|
173 |
+
|
174 |
+
References
|
175 |
+
----------
|
176 |
+
.. [1] Mones, Enys, Lilla Vicsek, and Tamás Vicsek.
|
177 |
+
"Hierarchy Measure for Complex Networks."
|
178 |
+
*PLoS ONE* 7.3 (2012): e33799.
|
179 |
+
https://doi.org/10.1371/journal.pone.0033799
|
180 |
+
"""
|
181 |
+
if paths is None:
|
182 |
+
if nx.is_negatively_weighted(G, weight=weight):
|
183 |
+
raise nx.NetworkXError("edge weights must be positive")
|
184 |
+
total_weight = G.size(weight=weight)
|
185 |
+
if total_weight <= 0:
|
186 |
+
raise nx.NetworkXError("Size of G must be positive")
|
187 |
+
if weight is not None:
|
188 |
+
# Interpret weights as lengths.
|
189 |
+
def as_distance(u, v, d):
|
190 |
+
return total_weight / d.get(weight, 1)
|
191 |
+
|
192 |
+
paths = nx.shortest_path(G, source=v, weight=as_distance)
|
193 |
+
else:
|
194 |
+
paths = nx.shortest_path(G, source=v)
|
195 |
+
# If the graph is unweighted, simply return the proportion of nodes
|
196 |
+
# reachable from the source node ``v``.
|
197 |
+
if weight is None and G.is_directed():
|
198 |
+
return (len(paths) - 1) / (len(G) - 1)
|
199 |
+
if normalized and weight is not None:
|
200 |
+
norm = G.size(weight=weight) / G.size()
|
201 |
+
else:
|
202 |
+
norm = 1
|
203 |
+
# TODO This can be trivially parallelized.
|
204 |
+
avgw = (_average_weight(G, path, weight=weight) for path in paths.values())
|
205 |
+
sum_avg_weight = sum(avgw) / norm
|
206 |
+
return sum_avg_weight / (len(G) - 1)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/centrality/subgraph_alg.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Subraph centrality and communicability betweenness.
|
3 |
+
"""
|
4 |
+
import networkx as nx
|
5 |
+
from networkx.utils import not_implemented_for
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"subgraph_centrality_exp",
|
9 |
+
"subgraph_centrality",
|
10 |
+
"communicability_betweenness_centrality",
|
11 |
+
"estrada_index",
|
12 |
+
]
|
13 |
+
|
14 |
+
|
15 |
+
@not_implemented_for("directed")
|
16 |
+
@not_implemented_for("multigraph")
|
17 |
+
@nx._dispatchable
|
18 |
+
def subgraph_centrality_exp(G):
|
19 |
+
r"""Returns the subgraph centrality for each node of G.
|
20 |
+
|
21 |
+
Subgraph centrality of a node `n` is the sum of weighted closed
|
22 |
+
walks of all lengths starting and ending at node `n`. The weights
|
23 |
+
decrease with path length. Each closed walk is associated with a
|
24 |
+
connected subgraph ([1]_).
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
G: graph
|
29 |
+
|
30 |
+
Returns
|
31 |
+
-------
|
32 |
+
nodes:dictionary
|
33 |
+
Dictionary of nodes with subgraph centrality as the value.
|
34 |
+
|
35 |
+
Raises
|
36 |
+
------
|
37 |
+
NetworkXError
|
38 |
+
If the graph is not undirected and simple.
|
39 |
+
|
40 |
+
See Also
|
41 |
+
--------
|
42 |
+
subgraph_centrality:
|
43 |
+
Alternative algorithm of the subgraph centrality for each node of G.
|
44 |
+
|
45 |
+
Notes
|
46 |
+
-----
|
47 |
+
This version of the algorithm exponentiates the adjacency matrix.
|
48 |
+
|
49 |
+
The subgraph centrality of a node `u` in G can be found using
|
50 |
+
the matrix exponential of the adjacency matrix of G [1]_,
|
51 |
+
|
52 |
+
.. math::
|
53 |
+
|
54 |
+
SC(u)=(e^A)_{uu} .
|
55 |
+
|
56 |
+
References
|
57 |
+
----------
|
58 |
+
.. [1] Ernesto Estrada, Juan A. Rodriguez-Velazquez,
|
59 |
+
"Subgraph centrality in complex networks",
|
60 |
+
Physical Review E 71, 056103 (2005).
|
61 |
+
https://arxiv.org/abs/cond-mat/0504730
|
62 |
+
|
63 |
+
Examples
|
64 |
+
--------
|
65 |
+
(Example from [1]_)
|
66 |
+
>>> G = nx.Graph(
|
67 |
+
... [
|
68 |
+
... (1, 2),
|
69 |
+
... (1, 5),
|
70 |
+
... (1, 8),
|
71 |
+
... (2, 3),
|
72 |
+
... (2, 8),
|
73 |
+
... (3, 4),
|
74 |
+
... (3, 6),
|
75 |
+
... (4, 5),
|
76 |
+
... (4, 7),
|
77 |
+
... (5, 6),
|
78 |
+
... (6, 7),
|
79 |
+
... (7, 8),
|
80 |
+
... ]
|
81 |
+
... )
|
82 |
+
>>> sc = nx.subgraph_centrality_exp(G)
|
83 |
+
>>> print([f"{node} {sc[node]:0.2f}" for node in sorted(sc)])
|
84 |
+
['1 3.90', '2 3.90', '3 3.64', '4 3.71', '5 3.64', '6 3.71', '7 3.64', '8 3.90']
|
85 |
+
"""
|
86 |
+
# alternative implementation that calculates the matrix exponential
|
87 |
+
import scipy as sp
|
88 |
+
|
89 |
+
nodelist = list(G) # ordering of nodes in matrix
|
90 |
+
A = nx.to_numpy_array(G, nodelist)
|
91 |
+
# convert to 0-1 matrix
|
92 |
+
A[A != 0.0] = 1
|
93 |
+
expA = sp.linalg.expm(A)
|
94 |
+
# convert diagonal to dictionary keyed by node
|
95 |
+
sc = dict(zip(nodelist, map(float, expA.diagonal())))
|
96 |
+
return sc
|
97 |
+
|
98 |
+
|
99 |
+
@not_implemented_for("directed")
|
100 |
+
@not_implemented_for("multigraph")
|
101 |
+
@nx._dispatchable
|
102 |
+
def subgraph_centrality(G):
|
103 |
+
r"""Returns subgraph centrality for each node in G.
|
104 |
+
|
105 |
+
Subgraph centrality of a node `n` is the sum of weighted closed
|
106 |
+
walks of all lengths starting and ending at node `n`. The weights
|
107 |
+
decrease with path length. Each closed walk is associated with a
|
108 |
+
connected subgraph ([1]_).
|
109 |
+
|
110 |
+
Parameters
|
111 |
+
----------
|
112 |
+
G: graph
|
113 |
+
|
114 |
+
Returns
|
115 |
+
-------
|
116 |
+
nodes : dictionary
|
117 |
+
Dictionary of nodes with subgraph centrality as the value.
|
118 |
+
|
119 |
+
Raises
|
120 |
+
------
|
121 |
+
NetworkXError
|
122 |
+
If the graph is not undirected and simple.
|
123 |
+
|
124 |
+
See Also
|
125 |
+
--------
|
126 |
+
subgraph_centrality_exp:
|
127 |
+
Alternative algorithm of the subgraph centrality for each node of G.
|
128 |
+
|
129 |
+
Notes
|
130 |
+
-----
|
131 |
+
This version of the algorithm computes eigenvalues and eigenvectors
|
132 |
+
of the adjacency matrix.
|
133 |
+
|
134 |
+
Subgraph centrality of a node `u` in G can be found using
|
135 |
+
a spectral decomposition of the adjacency matrix [1]_,
|
136 |
+
|
137 |
+
.. math::
|
138 |
+
|
139 |
+
SC(u)=\sum_{j=1}^{N}(v_{j}^{u})^2 e^{\lambda_{j}},
|
140 |
+
|
141 |
+
where `v_j` is an eigenvector of the adjacency matrix `A` of G
|
142 |
+
corresponding to the eigenvalue `\lambda_j`.
|
143 |
+
|
144 |
+
Examples
|
145 |
+
--------
|
146 |
+
(Example from [1]_)
|
147 |
+
>>> G = nx.Graph(
|
148 |
+
... [
|
149 |
+
... (1, 2),
|
150 |
+
... (1, 5),
|
151 |
+
... (1, 8),
|
152 |
+
... (2, 3),
|
153 |
+
... (2, 8),
|
154 |
+
... (3, 4),
|
155 |
+
... (3, 6),
|
156 |
+
... (4, 5),
|
157 |
+
... (4, 7),
|
158 |
+
... (5, 6),
|
159 |
+
... (6, 7),
|
160 |
+
... (7, 8),
|
161 |
+
... ]
|
162 |
+
... )
|
163 |
+
>>> sc = nx.subgraph_centrality(G)
|
164 |
+
>>> print([f"{node} {sc[node]:0.2f}" for node in sorted(sc)])
|
165 |
+
['1 3.90', '2 3.90', '3 3.64', '4 3.71', '5 3.64', '6 3.71', '7 3.64', '8 3.90']
|
166 |
+
|
167 |
+
References
|
168 |
+
----------
|
169 |
+
.. [1] Ernesto Estrada, Juan A. Rodriguez-Velazquez,
|
170 |
+
"Subgraph centrality in complex networks",
|
171 |
+
Physical Review E 71, 056103 (2005).
|
172 |
+
https://arxiv.org/abs/cond-mat/0504730
|
173 |
+
|
174 |
+
"""
|
175 |
+
import numpy as np
|
176 |
+
|
177 |
+
nodelist = list(G) # ordering of nodes in matrix
|
178 |
+
A = nx.to_numpy_array(G, nodelist)
|
179 |
+
# convert to 0-1 matrix
|
180 |
+
A[np.nonzero(A)] = 1
|
181 |
+
w, v = np.linalg.eigh(A)
|
182 |
+
vsquare = np.array(v) ** 2
|
183 |
+
expw = np.exp(w)
|
184 |
+
xg = vsquare @ expw
|
185 |
+
# convert vector dictionary keyed by node
|
186 |
+
sc = dict(zip(nodelist, map(float, xg)))
|
187 |
+
return sc
|
188 |
+
|
189 |
+
|
190 |
+
@not_implemented_for("directed")
|
191 |
+
@not_implemented_for("multigraph")
|
192 |
+
@nx._dispatchable
|
193 |
+
def communicability_betweenness_centrality(G):
|
194 |
+
r"""Returns subgraph communicability for all pairs of nodes in G.
|
195 |
+
|
196 |
+
Communicability betweenness measure makes use of the number of walks
|
197 |
+
connecting every pair of nodes as the basis of a betweenness centrality
|
198 |
+
measure.
|
199 |
+
|
200 |
+
Parameters
|
201 |
+
----------
|
202 |
+
G: graph
|
203 |
+
|
204 |
+
Returns
|
205 |
+
-------
|
206 |
+
nodes : dictionary
|
207 |
+
Dictionary of nodes with communicability betweenness as the value.
|
208 |
+
|
209 |
+
Raises
|
210 |
+
------
|
211 |
+
NetworkXError
|
212 |
+
If the graph is not undirected and simple.
|
213 |
+
|
214 |
+
Notes
|
215 |
+
-----
|
216 |
+
Let `G=(V,E)` be a simple undirected graph with `n` nodes and `m` edges,
|
217 |
+
and `A` denote the adjacency matrix of `G`.
|
218 |
+
|
219 |
+
Let `G(r)=(V,E(r))` be the graph resulting from
|
220 |
+
removing all edges connected to node `r` but not the node itself.
|
221 |
+
|
222 |
+
The adjacency matrix for `G(r)` is `A+E(r)`, where `E(r)` has nonzeros
|
223 |
+
only in row and column `r`.
|
224 |
+
|
225 |
+
The subraph betweenness of a node `r` is [1]_
|
226 |
+
|
227 |
+
.. math::
|
228 |
+
|
229 |
+
\omega_{r} = \frac{1}{C}\sum_{p}\sum_{q}\frac{G_{prq}}{G_{pq}},
|
230 |
+
p\neq q, q\neq r,
|
231 |
+
|
232 |
+
where
|
233 |
+
`G_{prq}=(e^{A}_{pq} - (e^{A+E(r)})_{pq}` is the number of walks
|
234 |
+
involving node r,
|
235 |
+
`G_{pq}=(e^{A})_{pq}` is the number of closed walks starting
|
236 |
+
at node `p` and ending at node `q`,
|
237 |
+
and `C=(n-1)^{2}-(n-1)` is a normalization factor equal to the
|
238 |
+
number of terms in the sum.
|
239 |
+
|
240 |
+
The resulting `\omega_{r}` takes values between zero and one.
|
241 |
+
The lower bound cannot be attained for a connected
|
242 |
+
graph, and the upper bound is attained in the star graph.
|
243 |
+
|
244 |
+
References
|
245 |
+
----------
|
246 |
+
.. [1] Ernesto Estrada, Desmond J. Higham, Naomichi Hatano,
|
247 |
+
"Communicability Betweenness in Complex Networks"
|
248 |
+
Physica A 388 (2009) 764-774.
|
249 |
+
https://arxiv.org/abs/0905.4102
|
250 |
+
|
251 |
+
Examples
|
252 |
+
--------
|
253 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (1, 5), (5, 4), (2, 4), (2, 3), (4, 3), (3, 6)])
|
254 |
+
>>> cbc = nx.communicability_betweenness_centrality(G)
|
255 |
+
>>> print([f"{node} {cbc[node]:0.2f}" for node in sorted(cbc)])
|
256 |
+
['0 0.03', '1 0.45', '2 0.51', '3 0.45', '4 0.40', '5 0.19', '6 0.03']
|
257 |
+
"""
|
258 |
+
import numpy as np
|
259 |
+
import scipy as sp
|
260 |
+
|
261 |
+
nodelist = list(G) # ordering of nodes in matrix
|
262 |
+
n = len(nodelist)
|
263 |
+
A = nx.to_numpy_array(G, nodelist)
|
264 |
+
# convert to 0-1 matrix
|
265 |
+
A[np.nonzero(A)] = 1
|
266 |
+
expA = sp.linalg.expm(A)
|
267 |
+
mapping = dict(zip(nodelist, range(n)))
|
268 |
+
cbc = {}
|
269 |
+
for v in G:
|
270 |
+
# remove row and col of node v
|
271 |
+
i = mapping[v]
|
272 |
+
row = A[i, :].copy()
|
273 |
+
col = A[:, i].copy()
|
274 |
+
A[i, :] = 0
|
275 |
+
A[:, i] = 0
|
276 |
+
B = (expA - sp.linalg.expm(A)) / expA
|
277 |
+
# sum with row/col of node v and diag set to zero
|
278 |
+
B[i, :] = 0
|
279 |
+
B[:, i] = 0
|
280 |
+
B -= np.diag(np.diag(B))
|
281 |
+
cbc[v] = float(B.sum())
|
282 |
+
# put row and col back
|
283 |
+
A[i, :] = row
|
284 |
+
A[:, i] = col
|
285 |
+
# rescale when more than two nodes
|
286 |
+
order = len(cbc)
|
287 |
+
if order > 2:
|
288 |
+
scale = 1.0 / ((order - 1.0) ** 2 - (order - 1.0))
|
289 |
+
cbc = {node: value * scale for node, value in cbc.items()}
|
290 |
+
return cbc
|
291 |
+
|
292 |
+
|
293 |
+
@nx._dispatchable
|
294 |
+
def estrada_index(G):
|
295 |
+
r"""Returns the Estrada index of a the graph G.
|
296 |
+
|
297 |
+
The Estrada Index is a topological index of folding or 3D "compactness" ([1]_).
|
298 |
+
|
299 |
+
Parameters
|
300 |
+
----------
|
301 |
+
G: graph
|
302 |
+
|
303 |
+
Returns
|
304 |
+
-------
|
305 |
+
estrada index: float
|
306 |
+
|
307 |
+
Raises
|
308 |
+
------
|
309 |
+
NetworkXError
|
310 |
+
If the graph is not undirected and simple.
|
311 |
+
|
312 |
+
Notes
|
313 |
+
-----
|
314 |
+
Let `G=(V,E)` be a simple undirected graph with `n` nodes and let
|
315 |
+
`\lambda_{1}\leq\lambda_{2}\leq\cdots\lambda_{n}`
|
316 |
+
be a non-increasing ordering of the eigenvalues of its adjacency
|
317 |
+
matrix `A`. The Estrada index is ([1]_, [2]_)
|
318 |
+
|
319 |
+
.. math::
|
320 |
+
EE(G)=\sum_{j=1}^n e^{\lambda _j}.
|
321 |
+
|
322 |
+
References
|
323 |
+
----------
|
324 |
+
.. [1] E. Estrada, "Characterization of 3D molecular structure",
|
325 |
+
Chem. Phys. Lett. 319, 713 (2000).
|
326 |
+
https://doi.org/10.1016/S0009-2614(00)00158-5
|
327 |
+
.. [2] José Antonio de la Peñaa, Ivan Gutman, Juan Rada,
|
328 |
+
"Estimating the Estrada index",
|
329 |
+
Linear Algebra and its Applications. 427, 1 (2007).
|
330 |
+
https://doi.org/10.1016/j.laa.2007.06.020
|
331 |
+
|
332 |
+
Examples
|
333 |
+
--------
|
334 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (1, 5), (5, 4), (2, 4), (2, 3), (4, 3), (3, 6)])
|
335 |
+
>>> ei = nx.estrada_index(G)
|
336 |
+
>>> print(f"{ei:0.5}")
|
337 |
+
20.55
|
338 |
+
"""
|
339 |
+
return sum(subgraph_centrality(G).values())
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/centrality/voterank_alg.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Algorithm to select influential nodes in a graph using VoteRank."""
|
2 |
+
import networkx as nx
|
3 |
+
|
4 |
+
__all__ = ["voterank"]
|
5 |
+
|
6 |
+
|
7 |
+
@nx._dispatchable
|
8 |
+
def voterank(G, number_of_nodes=None):
|
9 |
+
"""Select a list of influential nodes in a graph using VoteRank algorithm
|
10 |
+
|
11 |
+
VoteRank [1]_ computes a ranking of the nodes in a graph G based on a
|
12 |
+
voting scheme. With VoteRank, all nodes vote for each of its in-neighbors
|
13 |
+
and the node with the highest votes is elected iteratively. The voting
|
14 |
+
ability of out-neighbors of elected nodes is decreased in subsequent turns.
|
15 |
+
|
16 |
+
Parameters
|
17 |
+
----------
|
18 |
+
G : graph
|
19 |
+
A NetworkX graph.
|
20 |
+
|
21 |
+
number_of_nodes : integer, optional
|
22 |
+
Number of ranked nodes to extract (default all nodes).
|
23 |
+
|
24 |
+
Returns
|
25 |
+
-------
|
26 |
+
voterank : list
|
27 |
+
Ordered list of computed seeds.
|
28 |
+
Only nodes with positive number of votes are returned.
|
29 |
+
|
30 |
+
Examples
|
31 |
+
--------
|
32 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 4)])
|
33 |
+
>>> nx.voterank(G)
|
34 |
+
[0, 1]
|
35 |
+
|
36 |
+
The algorithm can be used both for undirected and directed graphs.
|
37 |
+
However, the directed version is different in two ways:
|
38 |
+
(i) nodes only vote for their in-neighbors and
|
39 |
+
(ii) only the voting ability of elected node and its out-neighbors are updated:
|
40 |
+
|
41 |
+
>>> G = nx.DiGraph([(0, 1), (2, 1), (2, 3), (3, 4)])
|
42 |
+
>>> nx.voterank(G)
|
43 |
+
[2, 3]
|
44 |
+
|
45 |
+
Notes
|
46 |
+
-----
|
47 |
+
Each edge is treated independently in case of multigraphs.
|
48 |
+
|
49 |
+
References
|
50 |
+
----------
|
51 |
+
.. [1] Zhang, J.-X. et al. (2016).
|
52 |
+
Identifying a set of influential spreaders in complex networks.
|
53 |
+
Sci. Rep. 6, 27823; doi: 10.1038/srep27823.
|
54 |
+
"""
|
55 |
+
influential_nodes = []
|
56 |
+
vote_rank = {}
|
57 |
+
if len(G) == 0:
|
58 |
+
return influential_nodes
|
59 |
+
if number_of_nodes is None or number_of_nodes > len(G):
|
60 |
+
number_of_nodes = len(G)
|
61 |
+
if G.is_directed():
|
62 |
+
# For directed graphs compute average out-degree
|
63 |
+
avgDegree = sum(deg for _, deg in G.out_degree()) / len(G)
|
64 |
+
else:
|
65 |
+
# For undirected graphs compute average degree
|
66 |
+
avgDegree = sum(deg for _, deg in G.degree()) / len(G)
|
67 |
+
# step 1 - initiate all nodes to (0,1) (score, voting ability)
|
68 |
+
for n in G.nodes():
|
69 |
+
vote_rank[n] = [0, 1]
|
70 |
+
# Repeat steps 1b to 4 until num_seeds are elected.
|
71 |
+
for _ in range(number_of_nodes):
|
72 |
+
# step 1b - reset rank
|
73 |
+
for n in G.nodes():
|
74 |
+
vote_rank[n][0] = 0
|
75 |
+
# step 2 - vote
|
76 |
+
for n, nbr in G.edges():
|
77 |
+
# In directed graphs nodes only vote for their in-neighbors
|
78 |
+
vote_rank[n][0] += vote_rank[nbr][1]
|
79 |
+
if not G.is_directed():
|
80 |
+
vote_rank[nbr][0] += vote_rank[n][1]
|
81 |
+
for n in influential_nodes:
|
82 |
+
vote_rank[n][0] = 0
|
83 |
+
# step 3 - select top node
|
84 |
+
n = max(G.nodes, key=lambda x: vote_rank[x][0])
|
85 |
+
if vote_rank[n][0] == 0:
|
86 |
+
return influential_nodes
|
87 |
+
influential_nodes.append(n)
|
88 |
+
# weaken the selected node
|
89 |
+
vote_rank[n] = [0, 0]
|
90 |
+
# step 4 - update voterank properties
|
91 |
+
for _, nbr in G.edges(n):
|
92 |
+
vote_rank[nbr][1] -= 1 / avgDegree
|
93 |
+
vote_rank[nbr][1] = max(vote_rank[nbr][1], 0)
|
94 |
+
return influential_nodes
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Connectivity and cut algorithms
|
2 |
+
"""
|
3 |
+
from .connectivity import *
|
4 |
+
from .cuts import *
|
5 |
+
from .edge_augmentation import *
|
6 |
+
from .edge_kcomponents import *
|
7 |
+
from .disjoint_paths import *
|
8 |
+
from .kcomponents import *
|
9 |
+
from .kcutsets import *
|
10 |
+
from .stoerwagner import *
|
11 |
+
from .utils import *
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (457 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/connectivity.cpython-310.pyc
ADDED
Binary file (26.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/cuts.cpython-310.pyc
ADDED
Binary file (20.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/disjoint_paths.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_augmentation.cpython-310.pyc
ADDED
Binary file (37.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_kcomponents.cpython-310.pyc
ADDED
Binary file (18.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcomponents.cpython-310.pyc
ADDED
Binary file (7.92 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcutsets.cpython-310.pyc
ADDED
Binary file (6.32 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/stoerwagner.cpython-310.pyc
ADDED
Binary file (4.51 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (3.19 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/connectivity.py
ADDED
@@ -0,0 +1,816 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Flow based connectivity algorithms
|
3 |
+
"""
|
4 |
+
|
5 |
+
import itertools
|
6 |
+
from operator import itemgetter
|
7 |
+
|
8 |
+
import networkx as nx
|
9 |
+
|
10 |
+
# Define the default maximum flow function to use in all flow based
|
11 |
+
# connectivity algorithms.
|
12 |
+
from networkx.algorithms.flow import (
|
13 |
+
boykov_kolmogorov,
|
14 |
+
build_residual_network,
|
15 |
+
dinitz,
|
16 |
+
edmonds_karp,
|
17 |
+
shortest_augmenting_path,
|
18 |
+
)
|
19 |
+
|
20 |
+
default_flow_func = edmonds_karp
|
21 |
+
|
22 |
+
from .utils import build_auxiliary_edge_connectivity, build_auxiliary_node_connectivity
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
"average_node_connectivity",
|
26 |
+
"local_node_connectivity",
|
27 |
+
"node_connectivity",
|
28 |
+
"local_edge_connectivity",
|
29 |
+
"edge_connectivity",
|
30 |
+
"all_pairs_node_connectivity",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
@nx._dispatchable(graphs={"G": 0, "auxiliary?": 4}, preserve_graph_attrs={"auxiliary"})
|
35 |
+
def local_node_connectivity(
|
36 |
+
G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None
|
37 |
+
):
|
38 |
+
r"""Computes local node connectivity for nodes s and t.
|
39 |
+
|
40 |
+
Local node connectivity for two non adjacent nodes s and t is the
|
41 |
+
minimum number of nodes that must be removed (along with their incident
|
42 |
+
edges) to disconnect them.
|
43 |
+
|
44 |
+
This is a flow based implementation of node connectivity. We compute the
|
45 |
+
maximum flow on an auxiliary digraph build from the original input
|
46 |
+
graph (see below for details).
|
47 |
+
|
48 |
+
Parameters
|
49 |
+
----------
|
50 |
+
G : NetworkX graph
|
51 |
+
Undirected graph
|
52 |
+
|
53 |
+
s : node
|
54 |
+
Source node
|
55 |
+
|
56 |
+
t : node
|
57 |
+
Target node
|
58 |
+
|
59 |
+
flow_func : function
|
60 |
+
A function for computing the maximum flow among a pair of nodes.
|
61 |
+
The function has to accept at least three parameters: a Digraph,
|
62 |
+
a source node, and a target node. And return a residual network
|
63 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
64 |
+
details). If flow_func is None, the default maximum flow function
|
65 |
+
(:meth:`edmonds_karp`) is used. See below for details. The choice
|
66 |
+
of the default function may change from version to version and
|
67 |
+
should not be relied on. Default value: None.
|
68 |
+
|
69 |
+
auxiliary : NetworkX DiGraph
|
70 |
+
Auxiliary digraph to compute flow based node connectivity. It has
|
71 |
+
to have a graph attribute called mapping with a dictionary mapping
|
72 |
+
node names in G and in the auxiliary digraph. If provided
|
73 |
+
it will be reused instead of recreated. Default value: None.
|
74 |
+
|
75 |
+
residual : NetworkX DiGraph
|
76 |
+
Residual network to compute maximum flow. If provided it will be
|
77 |
+
reused instead of recreated. Default value: None.
|
78 |
+
|
79 |
+
cutoff : integer, float, or None (default: None)
|
80 |
+
If specified, the maximum flow algorithm will terminate when the
|
81 |
+
flow value reaches or exceeds the cutoff. This only works for flows
|
82 |
+
that support the cutoff parameter (most do) and is ignored otherwise.
|
83 |
+
|
84 |
+
Returns
|
85 |
+
-------
|
86 |
+
K : integer
|
87 |
+
local node connectivity for nodes s and t
|
88 |
+
|
89 |
+
Examples
|
90 |
+
--------
|
91 |
+
This function is not imported in the base NetworkX namespace, so you
|
92 |
+
have to explicitly import it from the connectivity package:
|
93 |
+
|
94 |
+
>>> from networkx.algorithms.connectivity import local_node_connectivity
|
95 |
+
|
96 |
+
We use in this example the platonic icosahedral graph, which has node
|
97 |
+
connectivity 5.
|
98 |
+
|
99 |
+
>>> G = nx.icosahedral_graph()
|
100 |
+
>>> local_node_connectivity(G, 0, 6)
|
101 |
+
5
|
102 |
+
|
103 |
+
If you need to compute local connectivity on several pairs of
|
104 |
+
nodes in the same graph, it is recommended that you reuse the
|
105 |
+
data structures that NetworkX uses in the computation: the
|
106 |
+
auxiliary digraph for node connectivity, and the residual
|
107 |
+
network for the underlying maximum flow computation.
|
108 |
+
|
109 |
+
Example of how to compute local node connectivity among
|
110 |
+
all pairs of nodes of the platonic icosahedral graph reusing
|
111 |
+
the data structures.
|
112 |
+
|
113 |
+
>>> import itertools
|
114 |
+
>>> # You also have to explicitly import the function for
|
115 |
+
>>> # building the auxiliary digraph from the connectivity package
|
116 |
+
>>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity
|
117 |
+
>>> H = build_auxiliary_node_connectivity(G)
|
118 |
+
>>> # And the function for building the residual network from the
|
119 |
+
>>> # flow package
|
120 |
+
>>> from networkx.algorithms.flow import build_residual_network
|
121 |
+
>>> # Note that the auxiliary digraph has an edge attribute named capacity
|
122 |
+
>>> R = build_residual_network(H, "capacity")
|
123 |
+
>>> result = dict.fromkeys(G, dict())
|
124 |
+
>>> # Reuse the auxiliary digraph and the residual network by passing them
|
125 |
+
>>> # as parameters
|
126 |
+
>>> for u, v in itertools.combinations(G, 2):
|
127 |
+
... k = local_node_connectivity(G, u, v, auxiliary=H, residual=R)
|
128 |
+
... result[u][v] = k
|
129 |
+
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
|
130 |
+
True
|
131 |
+
|
132 |
+
You can also use alternative flow algorithms for computing node
|
133 |
+
connectivity. For instance, in dense networks the algorithm
|
134 |
+
:meth:`shortest_augmenting_path` will usually perform better than
|
135 |
+
the default :meth:`edmonds_karp` which is faster for sparse
|
136 |
+
networks with highly skewed degree distributions. Alternative flow
|
137 |
+
functions have to be explicitly imported from the flow package.
|
138 |
+
|
139 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
140 |
+
>>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
|
141 |
+
5
|
142 |
+
|
143 |
+
Notes
|
144 |
+
-----
|
145 |
+
This is a flow based implementation of node connectivity. We compute the
|
146 |
+
maximum flow using, by default, the :meth:`edmonds_karp` algorithm (see:
|
147 |
+
:meth:`maximum_flow`) on an auxiliary digraph build from the original
|
148 |
+
input graph:
|
149 |
+
|
150 |
+
For an undirected graph G having `n` nodes and `m` edges we derive a
|
151 |
+
directed graph H with `2n` nodes and `2m+n` arcs by replacing each
|
152 |
+
original node `v` with two nodes `v_A`, `v_B` linked by an (internal)
|
153 |
+
arc in H. Then for each edge (`u`, `v`) in G we add two arcs
|
154 |
+
(`u_B`, `v_A`) and (`v_B`, `u_A`) in H. Finally we set the attribute
|
155 |
+
capacity = 1 for each arc in H [1]_ .
|
156 |
+
|
157 |
+
For a directed graph G having `n` nodes and `m` arcs we derive a
|
158 |
+
directed graph H with `2n` nodes and `m+n` arcs by replacing each
|
159 |
+
original node `v` with two nodes `v_A`, `v_B` linked by an (internal)
|
160 |
+
arc (`v_A`, `v_B`) in H. Then for each arc (`u`, `v`) in G we add one arc
|
161 |
+
(`u_B`, `v_A`) in H. Finally we set the attribute capacity = 1 for
|
162 |
+
each arc in H.
|
163 |
+
|
164 |
+
This is equal to the local node connectivity because the value of
|
165 |
+
a maximum s-t-flow is equal to the capacity of a minimum s-t-cut.
|
166 |
+
|
167 |
+
See also
|
168 |
+
--------
|
169 |
+
:meth:`local_edge_connectivity`
|
170 |
+
:meth:`node_connectivity`
|
171 |
+
:meth:`minimum_node_cut`
|
172 |
+
:meth:`maximum_flow`
|
173 |
+
:meth:`edmonds_karp`
|
174 |
+
:meth:`preflow_push`
|
175 |
+
:meth:`shortest_augmenting_path`
|
176 |
+
|
177 |
+
References
|
178 |
+
----------
|
179 |
+
.. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and
|
180 |
+
Erlebach, 'Network Analysis: Methodological Foundations', Lecture
|
181 |
+
Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.
|
182 |
+
http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
|
183 |
+
|
184 |
+
"""
|
185 |
+
if flow_func is None:
|
186 |
+
flow_func = default_flow_func
|
187 |
+
|
188 |
+
if auxiliary is None:
|
189 |
+
H = build_auxiliary_node_connectivity(G)
|
190 |
+
else:
|
191 |
+
H = auxiliary
|
192 |
+
|
193 |
+
mapping = H.graph.get("mapping", None)
|
194 |
+
if mapping is None:
|
195 |
+
raise nx.NetworkXError("Invalid auxiliary digraph.")
|
196 |
+
|
197 |
+
kwargs = {"flow_func": flow_func, "residual": residual}
|
198 |
+
if flow_func is shortest_augmenting_path:
|
199 |
+
kwargs["cutoff"] = cutoff
|
200 |
+
kwargs["two_phase"] = True
|
201 |
+
elif flow_func is edmonds_karp:
|
202 |
+
kwargs["cutoff"] = cutoff
|
203 |
+
elif flow_func is dinitz:
|
204 |
+
kwargs["cutoff"] = cutoff
|
205 |
+
elif flow_func is boykov_kolmogorov:
|
206 |
+
kwargs["cutoff"] = cutoff
|
207 |
+
|
208 |
+
return nx.maximum_flow_value(H, f"{mapping[s]}B", f"{mapping[t]}A", **kwargs)
|
209 |
+
|
210 |
+
|
211 |
+
@nx._dispatchable
|
212 |
+
def node_connectivity(G, s=None, t=None, flow_func=None):
|
213 |
+
r"""Returns node connectivity for a graph or digraph G.
|
214 |
+
|
215 |
+
Node connectivity is equal to the minimum number of nodes that
|
216 |
+
must be removed to disconnect G or render it trivial. If source
|
217 |
+
and target nodes are provided, this function returns the local node
|
218 |
+
connectivity: the minimum number of nodes that must be removed to break
|
219 |
+
all paths from source to target in G.
|
220 |
+
|
221 |
+
Parameters
|
222 |
+
----------
|
223 |
+
G : NetworkX graph
|
224 |
+
Undirected graph
|
225 |
+
|
226 |
+
s : node
|
227 |
+
Source node. Optional. Default value: None.
|
228 |
+
|
229 |
+
t : node
|
230 |
+
Target node. Optional. Default value: None.
|
231 |
+
|
232 |
+
flow_func : function
|
233 |
+
A function for computing the maximum flow among a pair of nodes.
|
234 |
+
The function has to accept at least three parameters: a Digraph,
|
235 |
+
a source node, and a target node. And return a residual network
|
236 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
237 |
+
details). If flow_func is None, the default maximum flow function
|
238 |
+
(:meth:`edmonds_karp`) is used. See below for details. The
|
239 |
+
choice of the default function may change from version
|
240 |
+
to version and should not be relied on. Default value: None.
|
241 |
+
|
242 |
+
Returns
|
243 |
+
-------
|
244 |
+
K : integer
|
245 |
+
Node connectivity of G, or local node connectivity if source
|
246 |
+
and target are provided.
|
247 |
+
|
248 |
+
Examples
|
249 |
+
--------
|
250 |
+
>>> # Platonic icosahedral graph is 5-node-connected
|
251 |
+
>>> G = nx.icosahedral_graph()
|
252 |
+
>>> nx.node_connectivity(G)
|
253 |
+
5
|
254 |
+
|
255 |
+
You can use alternative flow algorithms for the underlying maximum
|
256 |
+
flow computation. In dense networks the algorithm
|
257 |
+
:meth:`shortest_augmenting_path` will usually perform better
|
258 |
+
than the default :meth:`edmonds_karp`, which is faster for
|
259 |
+
sparse networks with highly skewed degree distributions. Alternative
|
260 |
+
flow functions have to be explicitly imported from the flow package.
|
261 |
+
|
262 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
263 |
+
>>> nx.node_connectivity(G, flow_func=shortest_augmenting_path)
|
264 |
+
5
|
265 |
+
|
266 |
+
If you specify a pair of nodes (source and target) as parameters,
|
267 |
+
this function returns the value of local node connectivity.
|
268 |
+
|
269 |
+
>>> nx.node_connectivity(G, 3, 7)
|
270 |
+
5
|
271 |
+
|
272 |
+
If you need to perform several local computations among different
|
273 |
+
pairs of nodes on the same graph, it is recommended that you reuse
|
274 |
+
the data structures used in the maximum flow computations. See
|
275 |
+
:meth:`local_node_connectivity` for details.
|
276 |
+
|
277 |
+
Notes
|
278 |
+
-----
|
279 |
+
This is a flow based implementation of node connectivity. The
|
280 |
+
algorithm works by solving $O((n-\delta-1+\delta(\delta-1)/2))$
|
281 |
+
maximum flow problems on an auxiliary digraph. Where $\delta$
|
282 |
+
is the minimum degree of G. For details about the auxiliary
|
283 |
+
digraph and the computation of local node connectivity see
|
284 |
+
:meth:`local_node_connectivity`. This implementation is based
|
285 |
+
on algorithm 11 in [1]_.
|
286 |
+
|
287 |
+
See also
|
288 |
+
--------
|
289 |
+
:meth:`local_node_connectivity`
|
290 |
+
:meth:`edge_connectivity`
|
291 |
+
:meth:`maximum_flow`
|
292 |
+
:meth:`edmonds_karp`
|
293 |
+
:meth:`preflow_push`
|
294 |
+
:meth:`shortest_augmenting_path`
|
295 |
+
|
296 |
+
References
|
297 |
+
----------
|
298 |
+
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
|
299 |
+
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
|
300 |
+
|
301 |
+
"""
|
302 |
+
if (s is not None and t is None) or (s is None and t is not None):
|
303 |
+
raise nx.NetworkXError("Both source and target must be specified.")
|
304 |
+
|
305 |
+
# Local node connectivity
|
306 |
+
if s is not None and t is not None:
|
307 |
+
if s not in G:
|
308 |
+
raise nx.NetworkXError(f"node {s} not in graph")
|
309 |
+
if t not in G:
|
310 |
+
raise nx.NetworkXError(f"node {t} not in graph")
|
311 |
+
return local_node_connectivity(G, s, t, flow_func=flow_func)
|
312 |
+
|
313 |
+
# Global node connectivity
|
314 |
+
if G.is_directed():
|
315 |
+
if not nx.is_weakly_connected(G):
|
316 |
+
return 0
|
317 |
+
iter_func = itertools.permutations
|
318 |
+
# It is necessary to consider both predecessors
|
319 |
+
# and successors for directed graphs
|
320 |
+
|
321 |
+
def neighbors(v):
|
322 |
+
return itertools.chain.from_iterable([G.predecessors(v), G.successors(v)])
|
323 |
+
|
324 |
+
else:
|
325 |
+
if not nx.is_connected(G):
|
326 |
+
return 0
|
327 |
+
iter_func = itertools.combinations
|
328 |
+
neighbors = G.neighbors
|
329 |
+
|
330 |
+
# Reuse the auxiliary digraph and the residual network
|
331 |
+
H = build_auxiliary_node_connectivity(G)
|
332 |
+
R = build_residual_network(H, "capacity")
|
333 |
+
kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
|
334 |
+
|
335 |
+
# Pick a node with minimum degree
|
336 |
+
# Node connectivity is bounded by degree.
|
337 |
+
v, K = min(G.degree(), key=itemgetter(1))
|
338 |
+
# compute local node connectivity with all its non-neighbors nodes
|
339 |
+
for w in set(G) - set(neighbors(v)) - {v}:
|
340 |
+
kwargs["cutoff"] = K
|
341 |
+
K = min(K, local_node_connectivity(G, v, w, **kwargs))
|
342 |
+
# Also for non adjacent pairs of neighbors of v
|
343 |
+
for x, y in iter_func(neighbors(v), 2):
|
344 |
+
if y in G[x]:
|
345 |
+
continue
|
346 |
+
kwargs["cutoff"] = K
|
347 |
+
K = min(K, local_node_connectivity(G, x, y, **kwargs))
|
348 |
+
|
349 |
+
return K
|
350 |
+
|
351 |
+
|
352 |
+
@nx._dispatchable
|
353 |
+
def average_node_connectivity(G, flow_func=None):
|
354 |
+
r"""Returns the average connectivity of a graph G.
|
355 |
+
|
356 |
+
The average connectivity `\bar{\kappa}` of a graph G is the average
|
357 |
+
of local node connectivity over all pairs of nodes of G [1]_ .
|
358 |
+
|
359 |
+
.. math::
|
360 |
+
|
361 |
+
\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_{G}(u,v)}{{n \choose 2}}
|
362 |
+
|
363 |
+
Parameters
|
364 |
+
----------
|
365 |
+
|
366 |
+
G : NetworkX graph
|
367 |
+
Undirected graph
|
368 |
+
|
369 |
+
flow_func : function
|
370 |
+
A function for computing the maximum flow among a pair of nodes.
|
371 |
+
The function has to accept at least three parameters: a Digraph,
|
372 |
+
a source node, and a target node. And return a residual network
|
373 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
374 |
+
details). If flow_func is None, the default maximum flow function
|
375 |
+
(:meth:`edmonds_karp`) is used. See :meth:`local_node_connectivity`
|
376 |
+
for details. The choice of the default function may change from
|
377 |
+
version to version and should not be relied on. Default value: None.
|
378 |
+
|
379 |
+
Returns
|
380 |
+
-------
|
381 |
+
K : float
|
382 |
+
Average node connectivity
|
383 |
+
|
384 |
+
See also
|
385 |
+
--------
|
386 |
+
:meth:`local_node_connectivity`
|
387 |
+
:meth:`node_connectivity`
|
388 |
+
:meth:`edge_connectivity`
|
389 |
+
:meth:`maximum_flow`
|
390 |
+
:meth:`edmonds_karp`
|
391 |
+
:meth:`preflow_push`
|
392 |
+
:meth:`shortest_augmenting_path`
|
393 |
+
|
394 |
+
References
|
395 |
+
----------
|
396 |
+
.. [1] Beineke, L., O. Oellermann, and R. Pippert (2002). The average
|
397 |
+
connectivity of a graph. Discrete mathematics 252(1-3), 31-45.
|
398 |
+
http://www.sciencedirect.com/science/article/pii/S0012365X01001807
|
399 |
+
|
400 |
+
"""
|
401 |
+
if G.is_directed():
|
402 |
+
iter_func = itertools.permutations
|
403 |
+
else:
|
404 |
+
iter_func = itertools.combinations
|
405 |
+
|
406 |
+
# Reuse the auxiliary digraph and the residual network
|
407 |
+
H = build_auxiliary_node_connectivity(G)
|
408 |
+
R = build_residual_network(H, "capacity")
|
409 |
+
kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
|
410 |
+
|
411 |
+
num, den = 0, 0
|
412 |
+
for u, v in iter_func(G, 2):
|
413 |
+
num += local_node_connectivity(G, u, v, **kwargs)
|
414 |
+
den += 1
|
415 |
+
|
416 |
+
if den == 0: # Null Graph
|
417 |
+
return 0
|
418 |
+
return num / den
|
419 |
+
|
420 |
+
|
421 |
+
@nx._dispatchable
|
422 |
+
def all_pairs_node_connectivity(G, nbunch=None, flow_func=None):
|
423 |
+
"""Compute node connectivity between all pairs of nodes of G.
|
424 |
+
|
425 |
+
Parameters
|
426 |
+
----------
|
427 |
+
G : NetworkX graph
|
428 |
+
Undirected graph
|
429 |
+
|
430 |
+
nbunch: container
|
431 |
+
Container of nodes. If provided node connectivity will be computed
|
432 |
+
only over pairs of nodes in nbunch.
|
433 |
+
|
434 |
+
flow_func : function
|
435 |
+
A function for computing the maximum flow among a pair of nodes.
|
436 |
+
The function has to accept at least three parameters: a Digraph,
|
437 |
+
a source node, and a target node. And return a residual network
|
438 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
439 |
+
details). If flow_func is None, the default maximum flow function
|
440 |
+
(:meth:`edmonds_karp`) is used. See below for details. The
|
441 |
+
choice of the default function may change from version
|
442 |
+
to version and should not be relied on. Default value: None.
|
443 |
+
|
444 |
+
Returns
|
445 |
+
-------
|
446 |
+
all_pairs : dict
|
447 |
+
A dictionary with node connectivity between all pairs of nodes
|
448 |
+
in G, or in nbunch if provided.
|
449 |
+
|
450 |
+
See also
|
451 |
+
--------
|
452 |
+
:meth:`local_node_connectivity`
|
453 |
+
:meth:`edge_connectivity`
|
454 |
+
:meth:`local_edge_connectivity`
|
455 |
+
:meth:`maximum_flow`
|
456 |
+
:meth:`edmonds_karp`
|
457 |
+
:meth:`preflow_push`
|
458 |
+
:meth:`shortest_augmenting_path`
|
459 |
+
|
460 |
+
"""
|
461 |
+
if nbunch is None:
|
462 |
+
nbunch = G
|
463 |
+
else:
|
464 |
+
nbunch = set(nbunch)
|
465 |
+
|
466 |
+
directed = G.is_directed()
|
467 |
+
if directed:
|
468 |
+
iter_func = itertools.permutations
|
469 |
+
else:
|
470 |
+
iter_func = itertools.combinations
|
471 |
+
|
472 |
+
all_pairs = {n: {} for n in nbunch}
|
473 |
+
|
474 |
+
# Reuse auxiliary digraph and residual network
|
475 |
+
H = build_auxiliary_node_connectivity(G)
|
476 |
+
mapping = H.graph["mapping"]
|
477 |
+
R = build_residual_network(H, "capacity")
|
478 |
+
kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
|
479 |
+
|
480 |
+
for u, v in iter_func(nbunch, 2):
|
481 |
+
K = local_node_connectivity(G, u, v, **kwargs)
|
482 |
+
all_pairs[u][v] = K
|
483 |
+
if not directed:
|
484 |
+
all_pairs[v][u] = K
|
485 |
+
|
486 |
+
return all_pairs
|
487 |
+
|
488 |
+
|
489 |
+
@nx._dispatchable(graphs={"G": 0, "auxiliary?": 4})
|
490 |
+
def local_edge_connectivity(
|
491 |
+
G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None
|
492 |
+
):
|
493 |
+
r"""Returns local edge connectivity for nodes s and t in G.
|
494 |
+
|
495 |
+
Local edge connectivity for two nodes s and t is the minimum number
|
496 |
+
of edges that must be removed to disconnect them.
|
497 |
+
|
498 |
+
This is a flow based implementation of edge connectivity. We compute the
|
499 |
+
maximum flow on an auxiliary digraph build from the original
|
500 |
+
network (see below for details). This is equal to the local edge
|
501 |
+
connectivity because the value of a maximum s-t-flow is equal to the
|
502 |
+
capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [1]_ .
|
503 |
+
|
504 |
+
Parameters
|
505 |
+
----------
|
506 |
+
G : NetworkX graph
|
507 |
+
Undirected or directed graph
|
508 |
+
|
509 |
+
s : node
|
510 |
+
Source node
|
511 |
+
|
512 |
+
t : node
|
513 |
+
Target node
|
514 |
+
|
515 |
+
flow_func : function
|
516 |
+
A function for computing the maximum flow among a pair of nodes.
|
517 |
+
The function has to accept at least three parameters: a Digraph,
|
518 |
+
a source node, and a target node. And return a residual network
|
519 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
520 |
+
details). If flow_func is None, the default maximum flow function
|
521 |
+
(:meth:`edmonds_karp`) is used. See below for details. The
|
522 |
+
choice of the default function may change from version
|
523 |
+
to version and should not be relied on. Default value: None.
|
524 |
+
|
525 |
+
auxiliary : NetworkX DiGraph
|
526 |
+
Auxiliary digraph for computing flow based edge connectivity. If
|
527 |
+
provided it will be reused instead of recreated. Default value: None.
|
528 |
+
|
529 |
+
residual : NetworkX DiGraph
|
530 |
+
Residual network to compute maximum flow. If provided it will be
|
531 |
+
reused instead of recreated. Default value: None.
|
532 |
+
|
533 |
+
cutoff : integer, float, or None (default: None)
|
534 |
+
If specified, the maximum flow algorithm will terminate when the
|
535 |
+
flow value reaches or exceeds the cutoff. This only works for flows
|
536 |
+
that support the cutoff parameter (most do) and is ignored otherwise.
|
537 |
+
|
538 |
+
Returns
|
539 |
+
-------
|
540 |
+
K : integer
|
541 |
+
local edge connectivity for nodes s and t.
|
542 |
+
|
543 |
+
Examples
|
544 |
+
--------
|
545 |
+
This function is not imported in the base NetworkX namespace, so you
|
546 |
+
have to explicitly import it from the connectivity package:
|
547 |
+
|
548 |
+
>>> from networkx.algorithms.connectivity import local_edge_connectivity
|
549 |
+
|
550 |
+
We use in this example the platonic icosahedral graph, which has edge
|
551 |
+
connectivity 5.
|
552 |
+
|
553 |
+
>>> G = nx.icosahedral_graph()
|
554 |
+
>>> local_edge_connectivity(G, 0, 6)
|
555 |
+
5
|
556 |
+
|
557 |
+
If you need to compute local connectivity on several pairs of
|
558 |
+
nodes in the same graph, it is recommended that you reuse the
|
559 |
+
data structures that NetworkX uses in the computation: the
|
560 |
+
auxiliary digraph for edge connectivity, and the residual
|
561 |
+
network for the underlying maximum flow computation.
|
562 |
+
|
563 |
+
Example of how to compute local edge connectivity among
|
564 |
+
all pairs of nodes of the platonic icosahedral graph reusing
|
565 |
+
the data structures.
|
566 |
+
|
567 |
+
>>> import itertools
|
568 |
+
>>> # You also have to explicitly import the function for
|
569 |
+
>>> # building the auxiliary digraph from the connectivity package
|
570 |
+
>>> from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity
|
571 |
+
>>> H = build_auxiliary_edge_connectivity(G)
|
572 |
+
>>> # And the function for building the residual network from the
|
573 |
+
>>> # flow package
|
574 |
+
>>> from networkx.algorithms.flow import build_residual_network
|
575 |
+
>>> # Note that the auxiliary digraph has an edge attribute named capacity
|
576 |
+
>>> R = build_residual_network(H, "capacity")
|
577 |
+
>>> result = dict.fromkeys(G, dict())
|
578 |
+
>>> # Reuse the auxiliary digraph and the residual network by passing them
|
579 |
+
>>> # as parameters
|
580 |
+
>>> for u, v in itertools.combinations(G, 2):
|
581 |
+
... k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R)
|
582 |
+
... result[u][v] = k
|
583 |
+
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
|
584 |
+
True
|
585 |
+
|
586 |
+
You can also use alternative flow algorithms for computing edge
|
587 |
+
connectivity. For instance, in dense networks the algorithm
|
588 |
+
:meth:`shortest_augmenting_path` will usually perform better than
|
589 |
+
the default :meth:`edmonds_karp` which is faster for sparse
|
590 |
+
networks with highly skewed degree distributions. Alternative flow
|
591 |
+
functions have to be explicitly imported from the flow package.
|
592 |
+
|
593 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
594 |
+
>>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
|
595 |
+
5
|
596 |
+
|
597 |
+
Notes
|
598 |
+
-----
|
599 |
+
This is a flow based implementation of edge connectivity. We compute the
|
600 |
+
maximum flow using, by default, the :meth:`edmonds_karp` algorithm on an
|
601 |
+
auxiliary digraph build from the original input graph:
|
602 |
+
|
603 |
+
If the input graph is undirected, we replace each edge (`u`,`v`) with
|
604 |
+
two reciprocal arcs (`u`, `v`) and (`v`, `u`) and then we set the attribute
|
605 |
+
'capacity' for each arc to 1. If the input graph is directed we simply
|
606 |
+
add the 'capacity' attribute. This is an implementation of algorithm 1
|
607 |
+
in [1]_.
|
608 |
+
|
609 |
+
The maximum flow in the auxiliary network is equal to the local edge
|
610 |
+
connectivity because the value of a maximum s-t-flow is equal to the
|
611 |
+
capacity of a minimum s-t-cut (Ford and Fulkerson theorem).
|
612 |
+
|
613 |
+
See also
|
614 |
+
--------
|
615 |
+
:meth:`edge_connectivity`
|
616 |
+
:meth:`local_node_connectivity`
|
617 |
+
:meth:`node_connectivity`
|
618 |
+
:meth:`maximum_flow`
|
619 |
+
:meth:`edmonds_karp`
|
620 |
+
:meth:`preflow_push`
|
621 |
+
:meth:`shortest_augmenting_path`
|
622 |
+
|
623 |
+
References
|
624 |
+
----------
|
625 |
+
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
|
626 |
+
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
|
627 |
+
|
628 |
+
"""
|
629 |
+
if flow_func is None:
|
630 |
+
flow_func = default_flow_func
|
631 |
+
|
632 |
+
if auxiliary is None:
|
633 |
+
H = build_auxiliary_edge_connectivity(G)
|
634 |
+
else:
|
635 |
+
H = auxiliary
|
636 |
+
|
637 |
+
kwargs = {"flow_func": flow_func, "residual": residual}
|
638 |
+
if flow_func is shortest_augmenting_path:
|
639 |
+
kwargs["cutoff"] = cutoff
|
640 |
+
kwargs["two_phase"] = True
|
641 |
+
elif flow_func is edmonds_karp:
|
642 |
+
kwargs["cutoff"] = cutoff
|
643 |
+
elif flow_func is dinitz:
|
644 |
+
kwargs["cutoff"] = cutoff
|
645 |
+
elif flow_func is boykov_kolmogorov:
|
646 |
+
kwargs["cutoff"] = cutoff
|
647 |
+
|
648 |
+
return nx.maximum_flow_value(H, s, t, **kwargs)
|
649 |
+
|
650 |
+
|
651 |
+
@nx._dispatchable
|
652 |
+
def edge_connectivity(G, s=None, t=None, flow_func=None, cutoff=None):
|
653 |
+
r"""Returns the edge connectivity of the graph or digraph G.
|
654 |
+
|
655 |
+
The edge connectivity is equal to the minimum number of edges that
|
656 |
+
must be removed to disconnect G or render it trivial. If source
|
657 |
+
and target nodes are provided, this function returns the local edge
|
658 |
+
connectivity: the minimum number of edges that must be removed to
|
659 |
+
break all paths from source to target in G.
|
660 |
+
|
661 |
+
Parameters
|
662 |
+
----------
|
663 |
+
G : NetworkX graph
|
664 |
+
Undirected or directed graph
|
665 |
+
|
666 |
+
s : node
|
667 |
+
Source node. Optional. Default value: None.
|
668 |
+
|
669 |
+
t : node
|
670 |
+
Target node. Optional. Default value: None.
|
671 |
+
|
672 |
+
flow_func : function
|
673 |
+
A function for computing the maximum flow among a pair of nodes.
|
674 |
+
The function has to accept at least three parameters: a Digraph,
|
675 |
+
a source node, and a target node. And return a residual network
|
676 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
677 |
+
details). If flow_func is None, the default maximum flow function
|
678 |
+
(:meth:`edmonds_karp`) is used. See below for details. The
|
679 |
+
choice of the default function may change from version
|
680 |
+
to version and should not be relied on. Default value: None.
|
681 |
+
|
682 |
+
cutoff : integer, float, or None (default: None)
|
683 |
+
If specified, the maximum flow algorithm will terminate when the
|
684 |
+
flow value reaches or exceeds the cutoff. This only works for flows
|
685 |
+
that support the cutoff parameter (most do) and is ignored otherwise.
|
686 |
+
|
687 |
+
Returns
|
688 |
+
-------
|
689 |
+
K : integer
|
690 |
+
Edge connectivity for G, or local edge connectivity if source
|
691 |
+
and target were provided
|
692 |
+
|
693 |
+
Examples
|
694 |
+
--------
|
695 |
+
>>> # Platonic icosahedral graph is 5-edge-connected
|
696 |
+
>>> G = nx.icosahedral_graph()
|
697 |
+
>>> nx.edge_connectivity(G)
|
698 |
+
5
|
699 |
+
|
700 |
+
You can use alternative flow algorithms for the underlying
|
701 |
+
maximum flow computation. In dense networks the algorithm
|
702 |
+
:meth:`shortest_augmenting_path` will usually perform better
|
703 |
+
than the default :meth:`edmonds_karp`, which is faster for
|
704 |
+
sparse networks with highly skewed degree distributions.
|
705 |
+
Alternative flow functions have to be explicitly imported
|
706 |
+
from the flow package.
|
707 |
+
|
708 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
709 |
+
>>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path)
|
710 |
+
5
|
711 |
+
|
712 |
+
If you specify a pair of nodes (source and target) as parameters,
|
713 |
+
this function returns the value of local edge connectivity.
|
714 |
+
|
715 |
+
>>> nx.edge_connectivity(G, 3, 7)
|
716 |
+
5
|
717 |
+
|
718 |
+
If you need to perform several local computations among different
|
719 |
+
pairs of nodes on the same graph, it is recommended that you reuse
|
720 |
+
the data structures used in the maximum flow computations. See
|
721 |
+
:meth:`local_edge_connectivity` for details.
|
722 |
+
|
723 |
+
Notes
|
724 |
+
-----
|
725 |
+
This is a flow based implementation of global edge connectivity.
|
726 |
+
For undirected graphs the algorithm works by finding a 'small'
|
727 |
+
dominating set of nodes of G (see algorithm 7 in [1]_ ) and
|
728 |
+
computing local maximum flow (see :meth:`local_edge_connectivity`)
|
729 |
+
between an arbitrary node in the dominating set and the rest of
|
730 |
+
nodes in it. This is an implementation of algorithm 6 in [1]_ .
|
731 |
+
For directed graphs, the algorithm does n calls to the maximum
|
732 |
+
flow function. This is an implementation of algorithm 8 in [1]_ .
|
733 |
+
|
734 |
+
See also
|
735 |
+
--------
|
736 |
+
:meth:`local_edge_connectivity`
|
737 |
+
:meth:`local_node_connectivity`
|
738 |
+
:meth:`node_connectivity`
|
739 |
+
:meth:`maximum_flow`
|
740 |
+
:meth:`edmonds_karp`
|
741 |
+
:meth:`preflow_push`
|
742 |
+
:meth:`shortest_augmenting_path`
|
743 |
+
:meth:`k_edge_components`
|
744 |
+
:meth:`k_edge_subgraphs`
|
745 |
+
|
746 |
+
References
|
747 |
+
----------
|
748 |
+
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
|
749 |
+
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
|
750 |
+
|
751 |
+
"""
|
752 |
+
if (s is not None and t is None) or (s is None and t is not None):
|
753 |
+
raise nx.NetworkXError("Both source and target must be specified.")
|
754 |
+
|
755 |
+
# Local edge connectivity
|
756 |
+
if s is not None and t is not None:
|
757 |
+
if s not in G:
|
758 |
+
raise nx.NetworkXError(f"node {s} not in graph")
|
759 |
+
if t not in G:
|
760 |
+
raise nx.NetworkXError(f"node {t} not in graph")
|
761 |
+
return local_edge_connectivity(G, s, t, flow_func=flow_func, cutoff=cutoff)
|
762 |
+
|
763 |
+
# Global edge connectivity
|
764 |
+
# reuse auxiliary digraph and residual network
|
765 |
+
H = build_auxiliary_edge_connectivity(G)
|
766 |
+
R = build_residual_network(H, "capacity")
|
767 |
+
kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
|
768 |
+
|
769 |
+
if G.is_directed():
|
770 |
+
# Algorithm 8 in [1]
|
771 |
+
if not nx.is_weakly_connected(G):
|
772 |
+
return 0
|
773 |
+
|
774 |
+
# initial value for \lambda is minimum degree
|
775 |
+
L = min(d for n, d in G.degree())
|
776 |
+
nodes = list(G)
|
777 |
+
n = len(nodes)
|
778 |
+
|
779 |
+
if cutoff is not None:
|
780 |
+
L = min(cutoff, L)
|
781 |
+
|
782 |
+
for i in range(n):
|
783 |
+
kwargs["cutoff"] = L
|
784 |
+
try:
|
785 |
+
L = min(L, local_edge_connectivity(G, nodes[i], nodes[i + 1], **kwargs))
|
786 |
+
except IndexError: # last node!
|
787 |
+
L = min(L, local_edge_connectivity(G, nodes[i], nodes[0], **kwargs))
|
788 |
+
return L
|
789 |
+
else: # undirected
|
790 |
+
# Algorithm 6 in [1]
|
791 |
+
if not nx.is_connected(G):
|
792 |
+
return 0
|
793 |
+
|
794 |
+
# initial value for \lambda is minimum degree
|
795 |
+
L = min(d for n, d in G.degree())
|
796 |
+
|
797 |
+
if cutoff is not None:
|
798 |
+
L = min(cutoff, L)
|
799 |
+
|
800 |
+
# A dominating set is \lambda-covering
|
801 |
+
# We need a dominating set with at least two nodes
|
802 |
+
for node in G:
|
803 |
+
D = nx.dominating_set(G, start_with=node)
|
804 |
+
v = D.pop()
|
805 |
+
if D:
|
806 |
+
break
|
807 |
+
else:
|
808 |
+
# in complete graphs the dominating sets will always be of one node
|
809 |
+
# thus we return min degree
|
810 |
+
return L
|
811 |
+
|
812 |
+
for w in D:
|
813 |
+
kwargs["cutoff"] = L
|
814 |
+
L = min(L, local_edge_connectivity(G, v, w, **kwargs))
|
815 |
+
|
816 |
+
return L
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/cuts.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Flow based cut algorithms
|
3 |
+
"""
|
4 |
+
import itertools
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
|
8 |
+
# Define the default maximum flow function to use in all flow based
|
9 |
+
# cut algorithms.
|
10 |
+
from networkx.algorithms.flow import build_residual_network, edmonds_karp
|
11 |
+
|
12 |
+
default_flow_func = edmonds_karp
|
13 |
+
|
14 |
+
from .utils import build_auxiliary_edge_connectivity, build_auxiliary_node_connectivity
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
"minimum_st_node_cut",
|
18 |
+
"minimum_node_cut",
|
19 |
+
"minimum_st_edge_cut",
|
20 |
+
"minimum_edge_cut",
|
21 |
+
]
|
22 |
+
|
23 |
+
|
24 |
+
@nx._dispatchable(
|
25 |
+
graphs={"G": 0, "auxiliary?": 4},
|
26 |
+
preserve_edge_attrs={"auxiliary": {"capacity": float("inf")}},
|
27 |
+
preserve_graph_attrs={"auxiliary"},
|
28 |
+
)
|
29 |
+
def minimum_st_edge_cut(G, s, t, flow_func=None, auxiliary=None, residual=None):
|
30 |
+
"""Returns the edges of the cut-set of a minimum (s, t)-cut.
|
31 |
+
|
32 |
+
This function returns the set of edges of minimum cardinality that,
|
33 |
+
if removed, would destroy all paths among source and target in G.
|
34 |
+
Edge weights are not considered. See :meth:`minimum_cut` for
|
35 |
+
computing minimum cuts considering edge weights.
|
36 |
+
|
37 |
+
Parameters
|
38 |
+
----------
|
39 |
+
G : NetworkX graph
|
40 |
+
|
41 |
+
s : node
|
42 |
+
Source node for the flow.
|
43 |
+
|
44 |
+
t : node
|
45 |
+
Sink node for the flow.
|
46 |
+
|
47 |
+
auxiliary : NetworkX DiGraph
|
48 |
+
Auxiliary digraph to compute flow based node connectivity. It has
|
49 |
+
to have a graph attribute called mapping with a dictionary mapping
|
50 |
+
node names in G and in the auxiliary digraph. If provided
|
51 |
+
it will be reused instead of recreated. Default value: None.
|
52 |
+
|
53 |
+
flow_func : function
|
54 |
+
A function for computing the maximum flow among a pair of nodes.
|
55 |
+
The function has to accept at least three parameters: a Digraph,
|
56 |
+
a source node, and a target node. And return a residual network
|
57 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
58 |
+
details). If flow_func is None, the default maximum flow function
|
59 |
+
(:meth:`edmonds_karp`) is used. See :meth:`node_connectivity` for
|
60 |
+
details. The choice of the default function may change from version
|
61 |
+
to version and should not be relied on. Default value: None.
|
62 |
+
|
63 |
+
residual : NetworkX DiGraph
|
64 |
+
Residual network to compute maximum flow. If provided it will be
|
65 |
+
reused instead of recreated. Default value: None.
|
66 |
+
|
67 |
+
Returns
|
68 |
+
-------
|
69 |
+
cutset : set
|
70 |
+
Set of edges that, if removed from the graph, will disconnect it.
|
71 |
+
|
72 |
+
See also
|
73 |
+
--------
|
74 |
+
:meth:`minimum_cut`
|
75 |
+
:meth:`minimum_node_cut`
|
76 |
+
:meth:`minimum_edge_cut`
|
77 |
+
:meth:`stoer_wagner`
|
78 |
+
:meth:`node_connectivity`
|
79 |
+
:meth:`edge_connectivity`
|
80 |
+
:meth:`maximum_flow`
|
81 |
+
:meth:`edmonds_karp`
|
82 |
+
:meth:`preflow_push`
|
83 |
+
:meth:`shortest_augmenting_path`
|
84 |
+
|
85 |
+
Examples
|
86 |
+
--------
|
87 |
+
This function is not imported in the base NetworkX namespace, so you
|
88 |
+
have to explicitly import it from the connectivity package:
|
89 |
+
|
90 |
+
>>> from networkx.algorithms.connectivity import minimum_st_edge_cut
|
91 |
+
|
92 |
+
We use in this example the platonic icosahedral graph, which has edge
|
93 |
+
connectivity 5.
|
94 |
+
|
95 |
+
>>> G = nx.icosahedral_graph()
|
96 |
+
>>> len(minimum_st_edge_cut(G, 0, 6))
|
97 |
+
5
|
98 |
+
|
99 |
+
If you need to compute local edge cuts on several pairs of
|
100 |
+
nodes in the same graph, it is recommended that you reuse the
|
101 |
+
data structures that NetworkX uses in the computation: the
|
102 |
+
auxiliary digraph for edge connectivity, and the residual
|
103 |
+
network for the underlying maximum flow computation.
|
104 |
+
|
105 |
+
Example of how to compute local edge cuts among all pairs of
|
106 |
+
nodes of the platonic icosahedral graph reusing the data
|
107 |
+
structures.
|
108 |
+
|
109 |
+
>>> import itertools
|
110 |
+
>>> # You also have to explicitly import the function for
|
111 |
+
>>> # building the auxiliary digraph from the connectivity package
|
112 |
+
>>> from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity
|
113 |
+
>>> H = build_auxiliary_edge_connectivity(G)
|
114 |
+
>>> # And the function for building the residual network from the
|
115 |
+
>>> # flow package
|
116 |
+
>>> from networkx.algorithms.flow import build_residual_network
|
117 |
+
>>> # Note that the auxiliary digraph has an edge attribute named capacity
|
118 |
+
>>> R = build_residual_network(H, "capacity")
|
119 |
+
>>> result = dict.fromkeys(G, dict())
|
120 |
+
>>> # Reuse the auxiliary digraph and the residual network by passing them
|
121 |
+
>>> # as parameters
|
122 |
+
>>> for u, v in itertools.combinations(G, 2):
|
123 |
+
... k = len(minimum_st_edge_cut(G, u, v, auxiliary=H, residual=R))
|
124 |
+
... result[u][v] = k
|
125 |
+
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
|
126 |
+
True
|
127 |
+
|
128 |
+
You can also use alternative flow algorithms for computing edge
|
129 |
+
cuts. For instance, in dense networks the algorithm
|
130 |
+
:meth:`shortest_augmenting_path` will usually perform better than
|
131 |
+
the default :meth:`edmonds_karp` which is faster for sparse
|
132 |
+
networks with highly skewed degree distributions. Alternative flow
|
133 |
+
functions have to be explicitly imported from the flow package.
|
134 |
+
|
135 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
136 |
+
>>> len(minimum_st_edge_cut(G, 0, 6, flow_func=shortest_augmenting_path))
|
137 |
+
5
|
138 |
+
|
139 |
+
"""
|
140 |
+
if flow_func is None:
|
141 |
+
flow_func = default_flow_func
|
142 |
+
|
143 |
+
if auxiliary is None:
|
144 |
+
H = build_auxiliary_edge_connectivity(G)
|
145 |
+
else:
|
146 |
+
H = auxiliary
|
147 |
+
|
148 |
+
kwargs = {"capacity": "capacity", "flow_func": flow_func, "residual": residual}
|
149 |
+
|
150 |
+
cut_value, partition = nx.minimum_cut(H, s, t, **kwargs)
|
151 |
+
reachable, non_reachable = partition
|
152 |
+
# Any edge in the original graph linking the two sets in the
|
153 |
+
# partition is part of the edge cutset
|
154 |
+
cutset = set()
|
155 |
+
for u, nbrs in ((n, G[n]) for n in reachable):
|
156 |
+
cutset.update((u, v) for v in nbrs if v in non_reachable)
|
157 |
+
|
158 |
+
return cutset
|
159 |
+
|
160 |
+
|
161 |
+
@nx._dispatchable(
|
162 |
+
graphs={"G": 0, "auxiliary?": 4},
|
163 |
+
preserve_node_attrs={"auxiliary": {"id": None}},
|
164 |
+
preserve_graph_attrs={"auxiliary"},
|
165 |
+
)
|
166 |
+
def minimum_st_node_cut(G, s, t, flow_func=None, auxiliary=None, residual=None):
|
167 |
+
r"""Returns a set of nodes of minimum cardinality that disconnect source
|
168 |
+
from target in G.
|
169 |
+
|
170 |
+
This function returns the set of nodes of minimum cardinality that,
|
171 |
+
if removed, would destroy all paths among source and target in G.
|
172 |
+
|
173 |
+
Parameters
|
174 |
+
----------
|
175 |
+
G : NetworkX graph
|
176 |
+
|
177 |
+
s : node
|
178 |
+
Source node.
|
179 |
+
|
180 |
+
t : node
|
181 |
+
Target node.
|
182 |
+
|
183 |
+
flow_func : function
|
184 |
+
A function for computing the maximum flow among a pair of nodes.
|
185 |
+
The function has to accept at least three parameters: a Digraph,
|
186 |
+
a source node, and a target node. And return a residual network
|
187 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
188 |
+
details). If flow_func is None, the default maximum flow function
|
189 |
+
(:meth:`edmonds_karp`) is used. See below for details. The choice
|
190 |
+
of the default function may change from version to version and
|
191 |
+
should not be relied on. Default value: None.
|
192 |
+
|
193 |
+
auxiliary : NetworkX DiGraph
|
194 |
+
Auxiliary digraph to compute flow based node connectivity. It has
|
195 |
+
to have a graph attribute called mapping with a dictionary mapping
|
196 |
+
node names in G and in the auxiliary digraph. If provided
|
197 |
+
it will be reused instead of recreated. Default value: None.
|
198 |
+
|
199 |
+
residual : NetworkX DiGraph
|
200 |
+
Residual network to compute maximum flow. If provided it will be
|
201 |
+
reused instead of recreated. Default value: None.
|
202 |
+
|
203 |
+
Returns
|
204 |
+
-------
|
205 |
+
cutset : set
|
206 |
+
Set of nodes that, if removed, would destroy all paths between
|
207 |
+
source and target in G.
|
208 |
+
|
209 |
+
Examples
|
210 |
+
--------
|
211 |
+
This function is not imported in the base NetworkX namespace, so you
|
212 |
+
have to explicitly import it from the connectivity package:
|
213 |
+
|
214 |
+
>>> from networkx.algorithms.connectivity import minimum_st_node_cut
|
215 |
+
|
216 |
+
We use in this example the platonic icosahedral graph, which has node
|
217 |
+
connectivity 5.
|
218 |
+
|
219 |
+
>>> G = nx.icosahedral_graph()
|
220 |
+
>>> len(minimum_st_node_cut(G, 0, 6))
|
221 |
+
5
|
222 |
+
|
223 |
+
If you need to compute local st cuts between several pairs of
|
224 |
+
nodes in the same graph, it is recommended that you reuse the
|
225 |
+
data structures that NetworkX uses in the computation: the
|
226 |
+
auxiliary digraph for node connectivity and node cuts, and the
|
227 |
+
residual network for the underlying maximum flow computation.
|
228 |
+
|
229 |
+
Example of how to compute local st node cuts reusing the data
|
230 |
+
structures:
|
231 |
+
|
232 |
+
>>> # You also have to explicitly import the function for
|
233 |
+
>>> # building the auxiliary digraph from the connectivity package
|
234 |
+
>>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity
|
235 |
+
>>> H = build_auxiliary_node_connectivity(G)
|
236 |
+
>>> # And the function for building the residual network from the
|
237 |
+
>>> # flow package
|
238 |
+
>>> from networkx.algorithms.flow import build_residual_network
|
239 |
+
>>> # Note that the auxiliary digraph has an edge attribute named capacity
|
240 |
+
>>> R = build_residual_network(H, "capacity")
|
241 |
+
>>> # Reuse the auxiliary digraph and the residual network by passing them
|
242 |
+
>>> # as parameters
|
243 |
+
>>> len(minimum_st_node_cut(G, 0, 6, auxiliary=H, residual=R))
|
244 |
+
5
|
245 |
+
|
246 |
+
You can also use alternative flow algorithms for computing minimum st
|
247 |
+
node cuts. For instance, in dense networks the algorithm
|
248 |
+
:meth:`shortest_augmenting_path` will usually perform better than
|
249 |
+
the default :meth:`edmonds_karp` which is faster for sparse
|
250 |
+
networks with highly skewed degree distributions. Alternative flow
|
251 |
+
functions have to be explicitly imported from the flow package.
|
252 |
+
|
253 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
254 |
+
>>> len(minimum_st_node_cut(G, 0, 6, flow_func=shortest_augmenting_path))
|
255 |
+
5
|
256 |
+
|
257 |
+
Notes
|
258 |
+
-----
|
259 |
+
This is a flow based implementation of minimum node cut. The algorithm
|
260 |
+
is based in solving a number of maximum flow computations to determine
|
261 |
+
the capacity of the minimum cut on an auxiliary directed network that
|
262 |
+
corresponds to the minimum node cut of G. It handles both directed
|
263 |
+
and undirected graphs. This implementation is based on algorithm 11
|
264 |
+
in [1]_.
|
265 |
+
|
266 |
+
See also
|
267 |
+
--------
|
268 |
+
:meth:`minimum_node_cut`
|
269 |
+
:meth:`minimum_edge_cut`
|
270 |
+
:meth:`stoer_wagner`
|
271 |
+
:meth:`node_connectivity`
|
272 |
+
:meth:`edge_connectivity`
|
273 |
+
:meth:`maximum_flow`
|
274 |
+
:meth:`edmonds_karp`
|
275 |
+
:meth:`preflow_push`
|
276 |
+
:meth:`shortest_augmenting_path`
|
277 |
+
|
278 |
+
References
|
279 |
+
----------
|
280 |
+
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
|
281 |
+
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
|
282 |
+
|
283 |
+
"""
|
284 |
+
if auxiliary is None:
|
285 |
+
H = build_auxiliary_node_connectivity(G)
|
286 |
+
else:
|
287 |
+
H = auxiliary
|
288 |
+
|
289 |
+
mapping = H.graph.get("mapping", None)
|
290 |
+
if mapping is None:
|
291 |
+
raise nx.NetworkXError("Invalid auxiliary digraph.")
|
292 |
+
if G.has_edge(s, t) or G.has_edge(t, s):
|
293 |
+
return {}
|
294 |
+
kwargs = {"flow_func": flow_func, "residual": residual, "auxiliary": H}
|
295 |
+
|
296 |
+
# The edge cut in the auxiliary digraph corresponds to the node cut in the
|
297 |
+
# original graph.
|
298 |
+
edge_cut = minimum_st_edge_cut(H, f"{mapping[s]}B", f"{mapping[t]}A", **kwargs)
|
299 |
+
# Each node in the original graph maps to two nodes of the auxiliary graph
|
300 |
+
node_cut = {H.nodes[node]["id"] for edge in edge_cut for node in edge}
|
301 |
+
return node_cut - {s, t}
|
302 |
+
|
303 |
+
|
304 |
+
@nx._dispatchable
|
305 |
+
def minimum_node_cut(G, s=None, t=None, flow_func=None):
|
306 |
+
r"""Returns a set of nodes of minimum cardinality that disconnects G.
|
307 |
+
|
308 |
+
If source and target nodes are provided, this function returns the
|
309 |
+
set of nodes of minimum cardinality that, if removed, would destroy
|
310 |
+
all paths among source and target in G. If not, it returns a set
|
311 |
+
of nodes of minimum cardinality that disconnects G.
|
312 |
+
|
313 |
+
Parameters
|
314 |
+
----------
|
315 |
+
G : NetworkX graph
|
316 |
+
|
317 |
+
s : node
|
318 |
+
Source node. Optional. Default value: None.
|
319 |
+
|
320 |
+
t : node
|
321 |
+
Target node. Optional. Default value: None.
|
322 |
+
|
323 |
+
flow_func : function
|
324 |
+
A function for computing the maximum flow among a pair of nodes.
|
325 |
+
The function has to accept at least three parameters: a Digraph,
|
326 |
+
a source node, and a target node. And return a residual network
|
327 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
328 |
+
details). If flow_func is None, the default maximum flow function
|
329 |
+
(:meth:`edmonds_karp`) is used. See below for details. The
|
330 |
+
choice of the default function may change from version
|
331 |
+
to version and should not be relied on. Default value: None.
|
332 |
+
|
333 |
+
Returns
|
334 |
+
-------
|
335 |
+
cutset : set
|
336 |
+
Set of nodes that, if removed, would disconnect G. If source
|
337 |
+
and target nodes are provided, the set contains the nodes that
|
338 |
+
if removed, would destroy all paths between source and target.
|
339 |
+
|
340 |
+
Examples
|
341 |
+
--------
|
342 |
+
>>> # Platonic icosahedral graph has node connectivity 5
|
343 |
+
>>> G = nx.icosahedral_graph()
|
344 |
+
>>> node_cut = nx.minimum_node_cut(G)
|
345 |
+
>>> len(node_cut)
|
346 |
+
5
|
347 |
+
|
348 |
+
You can use alternative flow algorithms for the underlying maximum
|
349 |
+
flow computation. In dense networks the algorithm
|
350 |
+
:meth:`shortest_augmenting_path` will usually perform better
|
351 |
+
than the default :meth:`edmonds_karp`, which is faster for
|
352 |
+
sparse networks with highly skewed degree distributions. Alternative
|
353 |
+
flow functions have to be explicitly imported from the flow package.
|
354 |
+
|
355 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
356 |
+
>>> node_cut == nx.minimum_node_cut(G, flow_func=shortest_augmenting_path)
|
357 |
+
True
|
358 |
+
|
359 |
+
If you specify a pair of nodes (source and target) as parameters,
|
360 |
+
this function returns a local st node cut.
|
361 |
+
|
362 |
+
>>> len(nx.minimum_node_cut(G, 3, 7))
|
363 |
+
5
|
364 |
+
|
365 |
+
If you need to perform several local st cuts among different
|
366 |
+
pairs of nodes on the same graph, it is recommended that you reuse
|
367 |
+
the data structures used in the maximum flow computations. See
|
368 |
+
:meth:`minimum_st_node_cut` for details.
|
369 |
+
|
370 |
+
Notes
|
371 |
+
-----
|
372 |
+
This is a flow based implementation of minimum node cut. The algorithm
|
373 |
+
is based in solving a number of maximum flow computations to determine
|
374 |
+
the capacity of the minimum cut on an auxiliary directed network that
|
375 |
+
corresponds to the minimum node cut of G. It handles both directed
|
376 |
+
and undirected graphs. This implementation is based on algorithm 11
|
377 |
+
in [1]_.
|
378 |
+
|
379 |
+
See also
|
380 |
+
--------
|
381 |
+
:meth:`minimum_st_node_cut`
|
382 |
+
:meth:`minimum_cut`
|
383 |
+
:meth:`minimum_edge_cut`
|
384 |
+
:meth:`stoer_wagner`
|
385 |
+
:meth:`node_connectivity`
|
386 |
+
:meth:`edge_connectivity`
|
387 |
+
:meth:`maximum_flow`
|
388 |
+
:meth:`edmonds_karp`
|
389 |
+
:meth:`preflow_push`
|
390 |
+
:meth:`shortest_augmenting_path`
|
391 |
+
|
392 |
+
References
|
393 |
+
----------
|
394 |
+
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
|
395 |
+
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
|
396 |
+
|
397 |
+
"""
|
398 |
+
if (s is not None and t is None) or (s is None and t is not None):
|
399 |
+
raise nx.NetworkXError("Both source and target must be specified.")
|
400 |
+
|
401 |
+
# Local minimum node cut.
|
402 |
+
if s is not None and t is not None:
|
403 |
+
if s not in G:
|
404 |
+
raise nx.NetworkXError(f"node {s} not in graph")
|
405 |
+
if t not in G:
|
406 |
+
raise nx.NetworkXError(f"node {t} not in graph")
|
407 |
+
return minimum_st_node_cut(G, s, t, flow_func=flow_func)
|
408 |
+
|
409 |
+
# Global minimum node cut.
|
410 |
+
# Analog to the algorithm 11 for global node connectivity in [1].
|
411 |
+
if G.is_directed():
|
412 |
+
if not nx.is_weakly_connected(G):
|
413 |
+
raise nx.NetworkXError("Input graph is not connected")
|
414 |
+
iter_func = itertools.permutations
|
415 |
+
|
416 |
+
def neighbors(v):
|
417 |
+
return itertools.chain.from_iterable([G.predecessors(v), G.successors(v)])
|
418 |
+
|
419 |
+
else:
|
420 |
+
if not nx.is_connected(G):
|
421 |
+
raise nx.NetworkXError("Input graph is not connected")
|
422 |
+
iter_func = itertools.combinations
|
423 |
+
neighbors = G.neighbors
|
424 |
+
|
425 |
+
# Reuse the auxiliary digraph and the residual network.
|
426 |
+
H = build_auxiliary_node_connectivity(G)
|
427 |
+
R = build_residual_network(H, "capacity")
|
428 |
+
kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
|
429 |
+
|
430 |
+
# Choose a node with minimum degree.
|
431 |
+
v = min(G, key=G.degree)
|
432 |
+
# Initial node cutset is all neighbors of the node with minimum degree.
|
433 |
+
min_cut = set(G[v])
|
434 |
+
# Compute st node cuts between v and all its non-neighbors nodes in G.
|
435 |
+
for w in set(G) - set(neighbors(v)) - {v}:
|
436 |
+
this_cut = minimum_st_node_cut(G, v, w, **kwargs)
|
437 |
+
if len(min_cut) >= len(this_cut):
|
438 |
+
min_cut = this_cut
|
439 |
+
# Also for non adjacent pairs of neighbors of v.
|
440 |
+
for x, y in iter_func(neighbors(v), 2):
|
441 |
+
if y in G[x]:
|
442 |
+
continue
|
443 |
+
this_cut = minimum_st_node_cut(G, x, y, **kwargs)
|
444 |
+
if len(min_cut) >= len(this_cut):
|
445 |
+
min_cut = this_cut
|
446 |
+
|
447 |
+
return min_cut
|
448 |
+
|
449 |
+
|
450 |
+
@nx._dispatchable
|
451 |
+
def minimum_edge_cut(G, s=None, t=None, flow_func=None):
|
452 |
+
r"""Returns a set of edges of minimum cardinality that disconnects G.
|
453 |
+
|
454 |
+
If source and target nodes are provided, this function returns the
|
455 |
+
set of edges of minimum cardinality that, if removed, would break
|
456 |
+
all paths among source and target in G. If not, it returns a set of
|
457 |
+
edges of minimum cardinality that disconnects G.
|
458 |
+
|
459 |
+
Parameters
|
460 |
+
----------
|
461 |
+
G : NetworkX graph
|
462 |
+
|
463 |
+
s : node
|
464 |
+
Source node. Optional. Default value: None.
|
465 |
+
|
466 |
+
t : node
|
467 |
+
Target node. Optional. Default value: None.
|
468 |
+
|
469 |
+
flow_func : function
|
470 |
+
A function for computing the maximum flow among a pair of nodes.
|
471 |
+
The function has to accept at least three parameters: a Digraph,
|
472 |
+
a source node, and a target node. And return a residual network
|
473 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
474 |
+
details). If flow_func is None, the default maximum flow function
|
475 |
+
(:meth:`edmonds_karp`) is used. See below for details. The
|
476 |
+
choice of the default function may change from version
|
477 |
+
to version and should not be relied on. Default value: None.
|
478 |
+
|
479 |
+
Returns
|
480 |
+
-------
|
481 |
+
cutset : set
|
482 |
+
Set of edges that, if removed, would disconnect G. If source
|
483 |
+
and target nodes are provided, the set contains the edges that
|
484 |
+
if removed, would destroy all paths between source and target.
|
485 |
+
|
486 |
+
Examples
|
487 |
+
--------
|
488 |
+
>>> # Platonic icosahedral graph has edge connectivity 5
|
489 |
+
>>> G = nx.icosahedral_graph()
|
490 |
+
>>> len(nx.minimum_edge_cut(G))
|
491 |
+
5
|
492 |
+
|
493 |
+
You can use alternative flow algorithms for the underlying
|
494 |
+
maximum flow computation. In dense networks the algorithm
|
495 |
+
:meth:`shortest_augmenting_path` will usually perform better
|
496 |
+
than the default :meth:`edmonds_karp`, which is faster for
|
497 |
+
sparse networks with highly skewed degree distributions.
|
498 |
+
Alternative flow functions have to be explicitly imported
|
499 |
+
from the flow package.
|
500 |
+
|
501 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
502 |
+
>>> len(nx.minimum_edge_cut(G, flow_func=shortest_augmenting_path))
|
503 |
+
5
|
504 |
+
|
505 |
+
If you specify a pair of nodes (source and target) as parameters,
|
506 |
+
this function returns the value of local edge connectivity.
|
507 |
+
|
508 |
+
>>> nx.edge_connectivity(G, 3, 7)
|
509 |
+
5
|
510 |
+
|
511 |
+
If you need to perform several local computations among different
|
512 |
+
pairs of nodes on the same graph, it is recommended that you reuse
|
513 |
+
the data structures used in the maximum flow computations. See
|
514 |
+
:meth:`local_edge_connectivity` for details.
|
515 |
+
|
516 |
+
Notes
|
517 |
+
-----
|
518 |
+
This is a flow based implementation of minimum edge cut. For
|
519 |
+
undirected graphs the algorithm works by finding a 'small' dominating
|
520 |
+
set of nodes of G (see algorithm 7 in [1]_) and computing the maximum
|
521 |
+
flow between an arbitrary node in the dominating set and the rest of
|
522 |
+
nodes in it. This is an implementation of algorithm 6 in [1]_. For
|
523 |
+
directed graphs, the algorithm does n calls to the max flow function.
|
524 |
+
The function raises an error if the directed graph is not weakly
|
525 |
+
connected and returns an empty set if it is weakly connected.
|
526 |
+
It is an implementation of algorithm 8 in [1]_.
|
527 |
+
|
528 |
+
See also
|
529 |
+
--------
|
530 |
+
:meth:`minimum_st_edge_cut`
|
531 |
+
:meth:`minimum_node_cut`
|
532 |
+
:meth:`stoer_wagner`
|
533 |
+
:meth:`node_connectivity`
|
534 |
+
:meth:`edge_connectivity`
|
535 |
+
:meth:`maximum_flow`
|
536 |
+
:meth:`edmonds_karp`
|
537 |
+
:meth:`preflow_push`
|
538 |
+
:meth:`shortest_augmenting_path`
|
539 |
+
|
540 |
+
References
|
541 |
+
----------
|
542 |
+
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
|
543 |
+
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
|
544 |
+
|
545 |
+
"""
|
546 |
+
if (s is not None and t is None) or (s is None and t is not None):
|
547 |
+
raise nx.NetworkXError("Both source and target must be specified.")
|
548 |
+
|
549 |
+
# reuse auxiliary digraph and residual network
|
550 |
+
H = build_auxiliary_edge_connectivity(G)
|
551 |
+
R = build_residual_network(H, "capacity")
|
552 |
+
kwargs = {"flow_func": flow_func, "residual": R, "auxiliary": H}
|
553 |
+
|
554 |
+
# Local minimum edge cut if s and t are not None
|
555 |
+
if s is not None and t is not None:
|
556 |
+
if s not in G:
|
557 |
+
raise nx.NetworkXError(f"node {s} not in graph")
|
558 |
+
if t not in G:
|
559 |
+
raise nx.NetworkXError(f"node {t} not in graph")
|
560 |
+
return minimum_st_edge_cut(H, s, t, **kwargs)
|
561 |
+
|
562 |
+
# Global minimum edge cut
|
563 |
+
# Analog to the algorithm for global edge connectivity
|
564 |
+
if G.is_directed():
|
565 |
+
# Based on algorithm 8 in [1]
|
566 |
+
if not nx.is_weakly_connected(G):
|
567 |
+
raise nx.NetworkXError("Input graph is not connected")
|
568 |
+
|
569 |
+
# Initial cutset is all edges of a node with minimum degree
|
570 |
+
node = min(G, key=G.degree)
|
571 |
+
min_cut = set(G.edges(node))
|
572 |
+
nodes = list(G)
|
573 |
+
n = len(nodes)
|
574 |
+
for i in range(n):
|
575 |
+
try:
|
576 |
+
this_cut = minimum_st_edge_cut(H, nodes[i], nodes[i + 1], **kwargs)
|
577 |
+
if len(this_cut) <= len(min_cut):
|
578 |
+
min_cut = this_cut
|
579 |
+
except IndexError: # Last node!
|
580 |
+
this_cut = minimum_st_edge_cut(H, nodes[i], nodes[0], **kwargs)
|
581 |
+
if len(this_cut) <= len(min_cut):
|
582 |
+
min_cut = this_cut
|
583 |
+
|
584 |
+
return min_cut
|
585 |
+
|
586 |
+
else: # undirected
|
587 |
+
# Based on algorithm 6 in [1]
|
588 |
+
if not nx.is_connected(G):
|
589 |
+
raise nx.NetworkXError("Input graph is not connected")
|
590 |
+
|
591 |
+
# Initial cutset is all edges of a node with minimum degree
|
592 |
+
node = min(G, key=G.degree)
|
593 |
+
min_cut = set(G.edges(node))
|
594 |
+
# A dominating set is \lambda-covering
|
595 |
+
# We need a dominating set with at least two nodes
|
596 |
+
for node in G:
|
597 |
+
D = nx.dominating_set(G, start_with=node)
|
598 |
+
v = D.pop()
|
599 |
+
if D:
|
600 |
+
break
|
601 |
+
else:
|
602 |
+
# in complete graphs the dominating set will always be of one node
|
603 |
+
# thus we return min_cut, which now contains the edges of a node
|
604 |
+
# with minimum degree
|
605 |
+
return min_cut
|
606 |
+
for w in D:
|
607 |
+
this_cut = minimum_st_edge_cut(H, v, w, **kwargs)
|
608 |
+
if len(this_cut) <= len(min_cut):
|
609 |
+
min_cut = this_cut
|
610 |
+
|
611 |
+
return min_cut
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/disjoint_paths.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Flow based node and edge disjoint paths."""
|
2 |
+
import networkx as nx
|
3 |
+
|
4 |
+
# Define the default maximum flow function to use for the underlying
|
5 |
+
# maximum flow computations
|
6 |
+
from networkx.algorithms.flow import (
|
7 |
+
edmonds_karp,
|
8 |
+
preflow_push,
|
9 |
+
shortest_augmenting_path,
|
10 |
+
)
|
11 |
+
from networkx.exception import NetworkXNoPath
|
12 |
+
|
13 |
+
default_flow_func = edmonds_karp
|
14 |
+
from itertools import filterfalse as _filterfalse
|
15 |
+
|
16 |
+
# Functions to build auxiliary data structures.
|
17 |
+
from .utils import build_auxiliary_edge_connectivity, build_auxiliary_node_connectivity
|
18 |
+
|
19 |
+
__all__ = ["edge_disjoint_paths", "node_disjoint_paths"]
|
20 |
+
|
21 |
+
|
22 |
+
@nx._dispatchable(
|
23 |
+
graphs={"G": 0, "auxiliary?": 5},
|
24 |
+
preserve_edge_attrs={"auxiliary": {"capacity": float("inf")}},
|
25 |
+
)
|
26 |
+
def edge_disjoint_paths(
|
27 |
+
G, s, t, flow_func=None, cutoff=None, auxiliary=None, residual=None
|
28 |
+
):
|
29 |
+
"""Returns the edges disjoint paths between source and target.
|
30 |
+
|
31 |
+
Edge disjoint paths are paths that do not share any edge. The
|
32 |
+
number of edge disjoint paths between source and target is equal
|
33 |
+
to their edge connectivity.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
----------
|
37 |
+
G : NetworkX graph
|
38 |
+
|
39 |
+
s : node
|
40 |
+
Source node for the flow.
|
41 |
+
|
42 |
+
t : node
|
43 |
+
Sink node for the flow.
|
44 |
+
|
45 |
+
flow_func : function
|
46 |
+
A function for computing the maximum flow among a pair of nodes.
|
47 |
+
The function has to accept at least three parameters: a Digraph,
|
48 |
+
a source node, and a target node. And return a residual network
|
49 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
50 |
+
details). If flow_func is None, the default maximum flow function
|
51 |
+
(:meth:`edmonds_karp`) is used. The choice of the default function
|
52 |
+
may change from version to version and should not be relied on.
|
53 |
+
Default value: None.
|
54 |
+
|
55 |
+
cutoff : integer or None (default: None)
|
56 |
+
Maximum number of paths to yield. If specified, the maximum flow
|
57 |
+
algorithm will terminate when the flow value reaches or exceeds the
|
58 |
+
cutoff. This only works for flows that support the cutoff parameter
|
59 |
+
(most do) and is ignored otherwise.
|
60 |
+
|
61 |
+
auxiliary : NetworkX DiGraph
|
62 |
+
Auxiliary digraph to compute flow based edge connectivity. It has
|
63 |
+
to have a graph attribute called mapping with a dictionary mapping
|
64 |
+
node names in G and in the auxiliary digraph. If provided
|
65 |
+
it will be reused instead of recreated. Default value: None.
|
66 |
+
|
67 |
+
residual : NetworkX DiGraph
|
68 |
+
Residual network to compute maximum flow. If provided it will be
|
69 |
+
reused instead of recreated. Default value: None.
|
70 |
+
|
71 |
+
Returns
|
72 |
+
-------
|
73 |
+
paths : generator
|
74 |
+
A generator of edge independent paths.
|
75 |
+
|
76 |
+
Raises
|
77 |
+
------
|
78 |
+
NetworkXNoPath
|
79 |
+
If there is no path between source and target.
|
80 |
+
|
81 |
+
NetworkXError
|
82 |
+
If source or target are not in the graph G.
|
83 |
+
|
84 |
+
See also
|
85 |
+
--------
|
86 |
+
:meth:`node_disjoint_paths`
|
87 |
+
:meth:`edge_connectivity`
|
88 |
+
:meth:`maximum_flow`
|
89 |
+
:meth:`edmonds_karp`
|
90 |
+
:meth:`preflow_push`
|
91 |
+
:meth:`shortest_augmenting_path`
|
92 |
+
|
93 |
+
Examples
|
94 |
+
--------
|
95 |
+
We use in this example the platonic icosahedral graph, which has node
|
96 |
+
edge connectivity 5, thus there are 5 edge disjoint paths between any
|
97 |
+
pair of nodes.
|
98 |
+
|
99 |
+
>>> G = nx.icosahedral_graph()
|
100 |
+
>>> len(list(nx.edge_disjoint_paths(G, 0, 6)))
|
101 |
+
5
|
102 |
+
|
103 |
+
|
104 |
+
If you need to compute edge disjoint paths on several pairs of
|
105 |
+
nodes in the same graph, it is recommended that you reuse the
|
106 |
+
data structures that NetworkX uses in the computation: the
|
107 |
+
auxiliary digraph for edge connectivity, and the residual
|
108 |
+
network for the underlying maximum flow computation.
|
109 |
+
|
110 |
+
Example of how to compute edge disjoint paths among all pairs of
|
111 |
+
nodes of the platonic icosahedral graph reusing the data
|
112 |
+
structures.
|
113 |
+
|
114 |
+
>>> import itertools
|
115 |
+
>>> # You also have to explicitly import the function for
|
116 |
+
>>> # building the auxiliary digraph from the connectivity package
|
117 |
+
>>> from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity
|
118 |
+
>>> H = build_auxiliary_edge_connectivity(G)
|
119 |
+
>>> # And the function for building the residual network from the
|
120 |
+
>>> # flow package
|
121 |
+
>>> from networkx.algorithms.flow import build_residual_network
|
122 |
+
>>> # Note that the auxiliary digraph has an edge attribute named capacity
|
123 |
+
>>> R = build_residual_network(H, "capacity")
|
124 |
+
>>> result = {n: {} for n in G}
|
125 |
+
>>> # Reuse the auxiliary digraph and the residual network by passing them
|
126 |
+
>>> # as arguments
|
127 |
+
>>> for u, v in itertools.combinations(G, 2):
|
128 |
+
... k = len(list(nx.edge_disjoint_paths(G, u, v, auxiliary=H, residual=R)))
|
129 |
+
... result[u][v] = k
|
130 |
+
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
|
131 |
+
True
|
132 |
+
|
133 |
+
You can also use alternative flow algorithms for computing edge disjoint
|
134 |
+
paths. For instance, in dense networks the algorithm
|
135 |
+
:meth:`shortest_augmenting_path` will usually perform better than
|
136 |
+
the default :meth:`edmonds_karp` which is faster for sparse
|
137 |
+
networks with highly skewed degree distributions. Alternative flow
|
138 |
+
functions have to be explicitly imported from the flow package.
|
139 |
+
|
140 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
141 |
+
>>> len(list(nx.edge_disjoint_paths(G, 0, 6, flow_func=shortest_augmenting_path)))
|
142 |
+
5
|
143 |
+
|
144 |
+
Notes
|
145 |
+
-----
|
146 |
+
This is a flow based implementation of edge disjoint paths. We compute
|
147 |
+
the maximum flow between source and target on an auxiliary directed
|
148 |
+
network. The saturated edges in the residual network after running the
|
149 |
+
maximum flow algorithm correspond to edge disjoint paths between source
|
150 |
+
and target in the original network. This function handles both directed
|
151 |
+
and undirected graphs, and can use all flow algorithms from NetworkX flow
|
152 |
+
package.
|
153 |
+
|
154 |
+
"""
|
155 |
+
if s not in G:
|
156 |
+
raise nx.NetworkXError(f"node {s} not in graph")
|
157 |
+
if t not in G:
|
158 |
+
raise nx.NetworkXError(f"node {t} not in graph")
|
159 |
+
|
160 |
+
if flow_func is None:
|
161 |
+
flow_func = default_flow_func
|
162 |
+
|
163 |
+
if auxiliary is None:
|
164 |
+
H = build_auxiliary_edge_connectivity(G)
|
165 |
+
else:
|
166 |
+
H = auxiliary
|
167 |
+
|
168 |
+
# Maximum possible edge disjoint paths
|
169 |
+
possible = min(H.out_degree(s), H.in_degree(t))
|
170 |
+
if not possible:
|
171 |
+
raise NetworkXNoPath
|
172 |
+
|
173 |
+
if cutoff is None:
|
174 |
+
cutoff = possible
|
175 |
+
else:
|
176 |
+
cutoff = min(cutoff, possible)
|
177 |
+
|
178 |
+
# Compute maximum flow between source and target. Flow functions in
|
179 |
+
# NetworkX return a residual network.
|
180 |
+
kwargs = {
|
181 |
+
"capacity": "capacity",
|
182 |
+
"residual": residual,
|
183 |
+
"cutoff": cutoff,
|
184 |
+
"value_only": True,
|
185 |
+
}
|
186 |
+
if flow_func is preflow_push:
|
187 |
+
del kwargs["cutoff"]
|
188 |
+
if flow_func is shortest_augmenting_path:
|
189 |
+
kwargs["two_phase"] = True
|
190 |
+
R = flow_func(H, s, t, **kwargs)
|
191 |
+
|
192 |
+
if R.graph["flow_value"] == 0:
|
193 |
+
raise NetworkXNoPath
|
194 |
+
|
195 |
+
# Saturated edges in the residual network form the edge disjoint paths
|
196 |
+
# between source and target
|
197 |
+
cutset = [
|
198 |
+
(u, v)
|
199 |
+
for u, v, d in R.edges(data=True)
|
200 |
+
if d["capacity"] == d["flow"] and d["flow"] > 0
|
201 |
+
]
|
202 |
+
# This is equivalent of what flow.utils.build_flow_dict returns, but
|
203 |
+
# only for the nodes with saturated edges and without reporting 0 flows.
|
204 |
+
flow_dict = {n: {} for edge in cutset for n in edge}
|
205 |
+
for u, v in cutset:
|
206 |
+
flow_dict[u][v] = 1
|
207 |
+
|
208 |
+
# Rebuild the edge disjoint paths from the flow dictionary.
|
209 |
+
paths_found = 0
|
210 |
+
for v in list(flow_dict[s]):
|
211 |
+
if paths_found >= cutoff:
|
212 |
+
# preflow_push does not support cutoff: we have to
|
213 |
+
# keep track of the paths founds and stop at cutoff.
|
214 |
+
break
|
215 |
+
path = [s]
|
216 |
+
if v == t:
|
217 |
+
path.append(v)
|
218 |
+
yield path
|
219 |
+
continue
|
220 |
+
u = v
|
221 |
+
while u != t:
|
222 |
+
path.append(u)
|
223 |
+
try:
|
224 |
+
u, _ = flow_dict[u].popitem()
|
225 |
+
except KeyError:
|
226 |
+
break
|
227 |
+
else:
|
228 |
+
path.append(t)
|
229 |
+
yield path
|
230 |
+
paths_found += 1
|
231 |
+
|
232 |
+
|
233 |
+
@nx._dispatchable(
|
234 |
+
graphs={"G": 0, "auxiliary?": 5},
|
235 |
+
preserve_node_attrs={"auxiliary": {"id": None}},
|
236 |
+
preserve_graph_attrs={"auxiliary"},
|
237 |
+
)
|
238 |
+
def node_disjoint_paths(
|
239 |
+
G, s, t, flow_func=None, cutoff=None, auxiliary=None, residual=None
|
240 |
+
):
|
241 |
+
r"""Computes node disjoint paths between source and target.
|
242 |
+
|
243 |
+
Node disjoint paths are paths that only share their first and last
|
244 |
+
nodes. The number of node independent paths between two nodes is
|
245 |
+
equal to their local node connectivity.
|
246 |
+
|
247 |
+
Parameters
|
248 |
+
----------
|
249 |
+
G : NetworkX graph
|
250 |
+
|
251 |
+
s : node
|
252 |
+
Source node.
|
253 |
+
|
254 |
+
t : node
|
255 |
+
Target node.
|
256 |
+
|
257 |
+
flow_func : function
|
258 |
+
A function for computing the maximum flow among a pair of nodes.
|
259 |
+
The function has to accept at least three parameters: a Digraph,
|
260 |
+
a source node, and a target node. And return a residual network
|
261 |
+
that follows NetworkX conventions (see :meth:`maximum_flow` for
|
262 |
+
details). If flow_func is None, the default maximum flow function
|
263 |
+
(:meth:`edmonds_karp`) is used. See below for details. The choice
|
264 |
+
of the default function may change from version to version and
|
265 |
+
should not be relied on. Default value: None.
|
266 |
+
|
267 |
+
cutoff : integer or None (default: None)
|
268 |
+
Maximum number of paths to yield. If specified, the maximum flow
|
269 |
+
algorithm will terminate when the flow value reaches or exceeds the
|
270 |
+
cutoff. This only works for flows that support the cutoff parameter
|
271 |
+
(most do) and is ignored otherwise.
|
272 |
+
|
273 |
+
auxiliary : NetworkX DiGraph
|
274 |
+
Auxiliary digraph to compute flow based node connectivity. It has
|
275 |
+
to have a graph attribute called mapping with a dictionary mapping
|
276 |
+
node names in G and in the auxiliary digraph. If provided
|
277 |
+
it will be reused instead of recreated. Default value: None.
|
278 |
+
|
279 |
+
residual : NetworkX DiGraph
|
280 |
+
Residual network to compute maximum flow. If provided it will be
|
281 |
+
reused instead of recreated. Default value: None.
|
282 |
+
|
283 |
+
Returns
|
284 |
+
-------
|
285 |
+
paths : generator
|
286 |
+
Generator of node disjoint paths.
|
287 |
+
|
288 |
+
Raises
|
289 |
+
------
|
290 |
+
NetworkXNoPath
|
291 |
+
If there is no path between source and target.
|
292 |
+
|
293 |
+
NetworkXError
|
294 |
+
If source or target are not in the graph G.
|
295 |
+
|
296 |
+
Examples
|
297 |
+
--------
|
298 |
+
We use in this example the platonic icosahedral graph, which has node
|
299 |
+
connectivity 5, thus there are 5 node disjoint paths between any pair
|
300 |
+
of non neighbor nodes.
|
301 |
+
|
302 |
+
>>> G = nx.icosahedral_graph()
|
303 |
+
>>> len(list(nx.node_disjoint_paths(G, 0, 6)))
|
304 |
+
5
|
305 |
+
|
306 |
+
If you need to compute node disjoint paths between several pairs of
|
307 |
+
nodes in the same graph, it is recommended that you reuse the
|
308 |
+
data structures that NetworkX uses in the computation: the
|
309 |
+
auxiliary digraph for node connectivity and node cuts, and the
|
310 |
+
residual network for the underlying maximum flow computation.
|
311 |
+
|
312 |
+
Example of how to compute node disjoint paths reusing the data
|
313 |
+
structures:
|
314 |
+
|
315 |
+
>>> # You also have to explicitly import the function for
|
316 |
+
>>> # building the auxiliary digraph from the connectivity package
|
317 |
+
>>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity
|
318 |
+
>>> H = build_auxiliary_node_connectivity(G)
|
319 |
+
>>> # And the function for building the residual network from the
|
320 |
+
>>> # flow package
|
321 |
+
>>> from networkx.algorithms.flow import build_residual_network
|
322 |
+
>>> # Note that the auxiliary digraph has an edge attribute named capacity
|
323 |
+
>>> R = build_residual_network(H, "capacity")
|
324 |
+
>>> # Reuse the auxiliary digraph and the residual network by passing them
|
325 |
+
>>> # as arguments
|
326 |
+
>>> len(list(nx.node_disjoint_paths(G, 0, 6, auxiliary=H, residual=R)))
|
327 |
+
5
|
328 |
+
|
329 |
+
You can also use alternative flow algorithms for computing node disjoint
|
330 |
+
paths. For instance, in dense networks the algorithm
|
331 |
+
:meth:`shortest_augmenting_path` will usually perform better than
|
332 |
+
the default :meth:`edmonds_karp` which is faster for sparse
|
333 |
+
networks with highly skewed degree distributions. Alternative flow
|
334 |
+
functions have to be explicitly imported from the flow package.
|
335 |
+
|
336 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
337 |
+
>>> len(list(nx.node_disjoint_paths(G, 0, 6, flow_func=shortest_augmenting_path)))
|
338 |
+
5
|
339 |
+
|
340 |
+
Notes
|
341 |
+
-----
|
342 |
+
This is a flow based implementation of node disjoint paths. We compute
|
343 |
+
the maximum flow between source and target on an auxiliary directed
|
344 |
+
network. The saturated edges in the residual network after running the
|
345 |
+
maximum flow algorithm correspond to node disjoint paths between source
|
346 |
+
and target in the original network. This function handles both directed
|
347 |
+
and undirected graphs, and can use all flow algorithms from NetworkX flow
|
348 |
+
package.
|
349 |
+
|
350 |
+
See also
|
351 |
+
--------
|
352 |
+
:meth:`edge_disjoint_paths`
|
353 |
+
:meth:`node_connectivity`
|
354 |
+
:meth:`maximum_flow`
|
355 |
+
:meth:`edmonds_karp`
|
356 |
+
:meth:`preflow_push`
|
357 |
+
:meth:`shortest_augmenting_path`
|
358 |
+
|
359 |
+
"""
|
360 |
+
if s not in G:
|
361 |
+
raise nx.NetworkXError(f"node {s} not in graph")
|
362 |
+
if t not in G:
|
363 |
+
raise nx.NetworkXError(f"node {t} not in graph")
|
364 |
+
|
365 |
+
if auxiliary is None:
|
366 |
+
H = build_auxiliary_node_connectivity(G)
|
367 |
+
else:
|
368 |
+
H = auxiliary
|
369 |
+
|
370 |
+
mapping = H.graph.get("mapping", None)
|
371 |
+
if mapping is None:
|
372 |
+
raise nx.NetworkXError("Invalid auxiliary digraph.")
|
373 |
+
|
374 |
+
# Maximum possible edge disjoint paths
|
375 |
+
possible = min(H.out_degree(f"{mapping[s]}B"), H.in_degree(f"{mapping[t]}A"))
|
376 |
+
if not possible:
|
377 |
+
raise NetworkXNoPath
|
378 |
+
|
379 |
+
if cutoff is None:
|
380 |
+
cutoff = possible
|
381 |
+
else:
|
382 |
+
cutoff = min(cutoff, possible)
|
383 |
+
|
384 |
+
kwargs = {
|
385 |
+
"flow_func": flow_func,
|
386 |
+
"residual": residual,
|
387 |
+
"auxiliary": H,
|
388 |
+
"cutoff": cutoff,
|
389 |
+
}
|
390 |
+
|
391 |
+
# The edge disjoint paths in the auxiliary digraph correspond to the node
|
392 |
+
# disjoint paths in the original graph.
|
393 |
+
paths_edges = edge_disjoint_paths(H, f"{mapping[s]}B", f"{mapping[t]}A", **kwargs)
|
394 |
+
for path in paths_edges:
|
395 |
+
# Each node in the original graph maps to two nodes in auxiliary graph
|
396 |
+
yield list(_unique_everseen(H.nodes[node]["id"] for node in path))
|
397 |
+
|
398 |
+
|
399 |
+
def _unique_everseen(iterable):
|
400 |
+
# Adapted from https://docs.python.org/3/library/itertools.html examples
|
401 |
+
"List unique elements, preserving order. Remember all elements ever seen."
|
402 |
+
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
|
403 |
+
seen = set()
|
404 |
+
seen_add = seen.add
|
405 |
+
for element in _filterfalse(seen.__contains__, iterable):
|
406 |
+
seen_add(element)
|
407 |
+
yield element
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/edge_augmentation.py
ADDED
@@ -0,0 +1,1269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Algorithms for finding k-edge-augmentations
|
3 |
+
|
4 |
+
A k-edge-augmentation is a set of edges, that once added to a graph, ensures
|
5 |
+
that the graph is k-edge-connected; i.e. the graph cannot be disconnected
|
6 |
+
unless k or more edges are removed. Typically, the goal is to find the
|
7 |
+
augmentation with minimum weight. In general, it is not guaranteed that a
|
8 |
+
k-edge-augmentation exists.
|
9 |
+
|
10 |
+
See Also
|
11 |
+
--------
|
12 |
+
:mod:`edge_kcomponents` : algorithms for finding k-edge-connected components
|
13 |
+
:mod:`connectivity` : algorithms for determining edge connectivity.
|
14 |
+
"""
|
15 |
+
import itertools as it
|
16 |
+
import math
|
17 |
+
from collections import defaultdict, namedtuple
|
18 |
+
|
19 |
+
import networkx as nx
|
20 |
+
from networkx.utils import not_implemented_for, py_random_state
|
21 |
+
|
22 |
+
__all__ = ["k_edge_augmentation", "is_k_edge_connected", "is_locally_k_edge_connected"]
|
23 |
+
|
24 |
+
|
25 |
+
@not_implemented_for("directed")
|
26 |
+
@not_implemented_for("multigraph")
|
27 |
+
@nx._dispatchable
|
28 |
+
def is_k_edge_connected(G, k):
|
29 |
+
"""Tests to see if a graph is k-edge-connected.
|
30 |
+
|
31 |
+
Is it impossible to disconnect the graph by removing fewer than k edges?
|
32 |
+
If so, then G is k-edge-connected.
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
G : NetworkX graph
|
37 |
+
An undirected graph.
|
38 |
+
|
39 |
+
k : integer
|
40 |
+
edge connectivity to test for
|
41 |
+
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
boolean
|
45 |
+
True if G is k-edge-connected.
|
46 |
+
|
47 |
+
See Also
|
48 |
+
--------
|
49 |
+
:func:`is_locally_k_edge_connected`
|
50 |
+
|
51 |
+
Examples
|
52 |
+
--------
|
53 |
+
>>> G = nx.barbell_graph(10, 0)
|
54 |
+
>>> nx.is_k_edge_connected(G, k=1)
|
55 |
+
True
|
56 |
+
>>> nx.is_k_edge_connected(G, k=2)
|
57 |
+
False
|
58 |
+
"""
|
59 |
+
if k < 1:
|
60 |
+
raise ValueError(f"k must be positive, not {k}")
|
61 |
+
# First try to quickly determine if G is not k-edge-connected
|
62 |
+
if G.number_of_nodes() < k + 1:
|
63 |
+
return False
|
64 |
+
elif any(d < k for n, d in G.degree()):
|
65 |
+
return False
|
66 |
+
else:
|
67 |
+
# Otherwise perform the full check
|
68 |
+
if k == 1:
|
69 |
+
return nx.is_connected(G)
|
70 |
+
elif k == 2:
|
71 |
+
return nx.is_connected(G) and not nx.has_bridges(G)
|
72 |
+
else:
|
73 |
+
return nx.edge_connectivity(G, cutoff=k) >= k
|
74 |
+
|
75 |
+
|
76 |
+
@not_implemented_for("directed")
|
77 |
+
@not_implemented_for("multigraph")
|
78 |
+
@nx._dispatchable
|
79 |
+
def is_locally_k_edge_connected(G, s, t, k):
|
80 |
+
"""Tests to see if an edge in a graph is locally k-edge-connected.
|
81 |
+
|
82 |
+
Is it impossible to disconnect s and t by removing fewer than k edges?
|
83 |
+
If so, then s and t are locally k-edge-connected in G.
|
84 |
+
|
85 |
+
Parameters
|
86 |
+
----------
|
87 |
+
G : NetworkX graph
|
88 |
+
An undirected graph.
|
89 |
+
|
90 |
+
s : node
|
91 |
+
Source node
|
92 |
+
|
93 |
+
t : node
|
94 |
+
Target node
|
95 |
+
|
96 |
+
k : integer
|
97 |
+
local edge connectivity for nodes s and t
|
98 |
+
|
99 |
+
Returns
|
100 |
+
-------
|
101 |
+
boolean
|
102 |
+
True if s and t are locally k-edge-connected in G.
|
103 |
+
|
104 |
+
See Also
|
105 |
+
--------
|
106 |
+
:func:`is_k_edge_connected`
|
107 |
+
|
108 |
+
Examples
|
109 |
+
--------
|
110 |
+
>>> from networkx.algorithms.connectivity import is_locally_k_edge_connected
|
111 |
+
>>> G = nx.barbell_graph(10, 0)
|
112 |
+
>>> is_locally_k_edge_connected(G, 5, 15, k=1)
|
113 |
+
True
|
114 |
+
>>> is_locally_k_edge_connected(G, 5, 15, k=2)
|
115 |
+
False
|
116 |
+
>>> is_locally_k_edge_connected(G, 1, 5, k=2)
|
117 |
+
True
|
118 |
+
"""
|
119 |
+
if k < 1:
|
120 |
+
raise ValueError(f"k must be positive, not {k}")
|
121 |
+
|
122 |
+
# First try to quickly determine s, t is not k-locally-edge-connected in G
|
123 |
+
if G.degree(s) < k or G.degree(t) < k:
|
124 |
+
return False
|
125 |
+
else:
|
126 |
+
# Otherwise perform the full check
|
127 |
+
if k == 1:
|
128 |
+
return nx.has_path(G, s, t)
|
129 |
+
else:
|
130 |
+
localk = nx.connectivity.local_edge_connectivity(G, s, t, cutoff=k)
|
131 |
+
return localk >= k
|
132 |
+
|
133 |
+
|
134 |
+
@not_implemented_for("directed")
|
135 |
+
@not_implemented_for("multigraph")
|
136 |
+
@nx._dispatchable
|
137 |
+
def k_edge_augmentation(G, k, avail=None, weight=None, partial=False):
|
138 |
+
"""Finds set of edges to k-edge-connect G.
|
139 |
+
|
140 |
+
Adding edges from the augmentation to G make it impossible to disconnect G
|
141 |
+
unless k or more edges are removed. This function uses the most efficient
|
142 |
+
function available (depending on the value of k and if the problem is
|
143 |
+
weighted or unweighted) to search for a minimum weight subset of available
|
144 |
+
edges that k-edge-connects G. In general, finding a k-edge-augmentation is
|
145 |
+
NP-hard, so solutions are not guaranteed to be minimal. Furthermore, a
|
146 |
+
k-edge-augmentation may not exist.
|
147 |
+
|
148 |
+
Parameters
|
149 |
+
----------
|
150 |
+
G : NetworkX graph
|
151 |
+
An undirected graph.
|
152 |
+
|
153 |
+
k : integer
|
154 |
+
Desired edge connectivity
|
155 |
+
|
156 |
+
avail : dict or a set of 2 or 3 tuples
|
157 |
+
The available edges that can be used in the augmentation.
|
158 |
+
|
159 |
+
If unspecified, then all edges in the complement of G are available.
|
160 |
+
Otherwise, each item is an available edge (with an optional weight).
|
161 |
+
|
162 |
+
In the unweighted case, each item is an edge ``(u, v)``.
|
163 |
+
|
164 |
+
In the weighted case, each item is a 3-tuple ``(u, v, d)`` or a dict
|
165 |
+
with items ``(u, v): d``. The third item, ``d``, can be a dictionary
|
166 |
+
or a real number. If ``d`` is a dictionary ``d[weight]``
|
167 |
+
correspondings to the weight.
|
168 |
+
|
169 |
+
weight : string
|
170 |
+
key to use to find weights if ``avail`` is a set of 3-tuples where the
|
171 |
+
third item in each tuple is a dictionary.
|
172 |
+
|
173 |
+
partial : boolean
|
174 |
+
If partial is True and no feasible k-edge-augmentation exists, then all
|
175 |
+
a partial k-edge-augmentation is generated. Adding the edges in a
|
176 |
+
partial augmentation to G, minimizes the number of k-edge-connected
|
177 |
+
components and maximizes the edge connectivity between those
|
178 |
+
components. For details, see :func:`partial_k_edge_augmentation`.
|
179 |
+
|
180 |
+
Yields
|
181 |
+
------
|
182 |
+
edge : tuple
|
183 |
+
Edges that, once added to G, would cause G to become k-edge-connected.
|
184 |
+
If partial is False, an error is raised if this is not possible.
|
185 |
+
Otherwise, generated edges form a partial augmentation, which
|
186 |
+
k-edge-connects any part of G where it is possible, and maximally
|
187 |
+
connects the remaining parts.
|
188 |
+
|
189 |
+
Raises
|
190 |
+
------
|
191 |
+
NetworkXUnfeasible
|
192 |
+
If partial is False and no k-edge-augmentation exists.
|
193 |
+
|
194 |
+
NetworkXNotImplemented
|
195 |
+
If the input graph is directed or a multigraph.
|
196 |
+
|
197 |
+
ValueError:
|
198 |
+
If k is less than 1
|
199 |
+
|
200 |
+
Notes
|
201 |
+
-----
|
202 |
+
When k=1 this returns an optimal solution.
|
203 |
+
|
204 |
+
When k=2 and ``avail`` is None, this returns an optimal solution.
|
205 |
+
Otherwise when k=2, this returns a 2-approximation of the optimal solution.
|
206 |
+
|
207 |
+
For k>3, this problem is NP-hard and this uses a randomized algorithm that
|
208 |
+
produces a feasible solution, but provides no guarantees on the
|
209 |
+
solution weight.
|
210 |
+
|
211 |
+
Examples
|
212 |
+
--------
|
213 |
+
>>> # Unweighted cases
|
214 |
+
>>> G = nx.path_graph((1, 2, 3, 4))
|
215 |
+
>>> G.add_node(5)
|
216 |
+
>>> sorted(nx.k_edge_augmentation(G, k=1))
|
217 |
+
[(1, 5)]
|
218 |
+
>>> sorted(nx.k_edge_augmentation(G, k=2))
|
219 |
+
[(1, 5), (5, 4)]
|
220 |
+
>>> sorted(nx.k_edge_augmentation(G, k=3))
|
221 |
+
[(1, 4), (1, 5), (2, 5), (3, 5), (4, 5)]
|
222 |
+
>>> complement = list(nx.k_edge_augmentation(G, k=5, partial=True))
|
223 |
+
>>> G.add_edges_from(complement)
|
224 |
+
>>> nx.edge_connectivity(G)
|
225 |
+
4
|
226 |
+
|
227 |
+
>>> # Weighted cases
|
228 |
+
>>> G = nx.path_graph((1, 2, 3, 4))
|
229 |
+
>>> G.add_node(5)
|
230 |
+
>>> # avail can be a tuple with a dict
|
231 |
+
>>> avail = [(1, 5, {"weight": 11}), (2, 5, {"weight": 10})]
|
232 |
+
>>> sorted(nx.k_edge_augmentation(G, k=1, avail=avail, weight="weight"))
|
233 |
+
[(2, 5)]
|
234 |
+
>>> # or avail can be a 3-tuple with a real number
|
235 |
+
>>> avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 51)]
|
236 |
+
>>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail))
|
237 |
+
[(1, 5), (2, 5), (4, 5)]
|
238 |
+
>>> # or avail can be a dict
|
239 |
+
>>> avail = {(1, 5): 11, (2, 5): 10, (4, 3): 1, (4, 5): 51}
|
240 |
+
>>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail))
|
241 |
+
[(1, 5), (2, 5), (4, 5)]
|
242 |
+
>>> # If augmentation is infeasible, then a partial solution can be found
|
243 |
+
>>> avail = {(1, 5): 11}
|
244 |
+
>>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail, partial=True))
|
245 |
+
[(1, 5)]
|
246 |
+
"""
|
247 |
+
try:
|
248 |
+
if k <= 0:
|
249 |
+
raise ValueError(f"k must be a positive integer, not {k}")
|
250 |
+
elif G.number_of_nodes() < k + 1:
|
251 |
+
msg = f"impossible to {k} connect in graph with less than {k + 1} nodes"
|
252 |
+
raise nx.NetworkXUnfeasible(msg)
|
253 |
+
elif avail is not None and len(avail) == 0:
|
254 |
+
if not nx.is_k_edge_connected(G, k):
|
255 |
+
raise nx.NetworkXUnfeasible("no available edges")
|
256 |
+
aug_edges = []
|
257 |
+
elif k == 1:
|
258 |
+
aug_edges = one_edge_augmentation(
|
259 |
+
G, avail=avail, weight=weight, partial=partial
|
260 |
+
)
|
261 |
+
elif k == 2:
|
262 |
+
aug_edges = bridge_augmentation(G, avail=avail, weight=weight)
|
263 |
+
else:
|
264 |
+
# raise NotImplementedError(f'not implemented for k>2. k={k}')
|
265 |
+
aug_edges = greedy_k_edge_augmentation(
|
266 |
+
G, k=k, avail=avail, weight=weight, seed=0
|
267 |
+
)
|
268 |
+
# Do eager evaluation so we can catch any exceptions
|
269 |
+
# Before executing partial code.
|
270 |
+
yield from list(aug_edges)
|
271 |
+
except nx.NetworkXUnfeasible:
|
272 |
+
if partial:
|
273 |
+
# Return all available edges
|
274 |
+
if avail is None:
|
275 |
+
aug_edges = complement_edges(G)
|
276 |
+
else:
|
277 |
+
# If we can't k-edge-connect the entire graph, try to
|
278 |
+
# k-edge-connect as much as possible
|
279 |
+
aug_edges = partial_k_edge_augmentation(
|
280 |
+
G, k=k, avail=avail, weight=weight
|
281 |
+
)
|
282 |
+
yield from aug_edges
|
283 |
+
else:
|
284 |
+
raise
|
285 |
+
|
286 |
+
|
287 |
+
@nx._dispatchable
|
288 |
+
def partial_k_edge_augmentation(G, k, avail, weight=None):
|
289 |
+
"""Finds augmentation that k-edge-connects as much of the graph as possible.
|
290 |
+
|
291 |
+
When a k-edge-augmentation is not possible, we can still try to find a
|
292 |
+
small set of edges that partially k-edge-connects as much of the graph as
|
293 |
+
possible. All possible edges are generated between remaining parts.
|
294 |
+
This minimizes the number of k-edge-connected subgraphs in the resulting
|
295 |
+
graph and maximizes the edge connectivity between those subgraphs.
|
296 |
+
|
297 |
+
Parameters
|
298 |
+
----------
|
299 |
+
G : NetworkX graph
|
300 |
+
An undirected graph.
|
301 |
+
|
302 |
+
k : integer
|
303 |
+
Desired edge connectivity
|
304 |
+
|
305 |
+
avail : dict or a set of 2 or 3 tuples
|
306 |
+
For more details, see :func:`k_edge_augmentation`.
|
307 |
+
|
308 |
+
weight : string
|
309 |
+
key to use to find weights if ``avail`` is a set of 3-tuples.
|
310 |
+
For more details, see :func:`k_edge_augmentation`.
|
311 |
+
|
312 |
+
Yields
|
313 |
+
------
|
314 |
+
edge : tuple
|
315 |
+
Edges in the partial augmentation of G. These edges k-edge-connect any
|
316 |
+
part of G where it is possible, and maximally connects the remaining
|
317 |
+
parts. In other words, all edges from avail are generated except for
|
318 |
+
those within subgraphs that have already become k-edge-connected.
|
319 |
+
|
320 |
+
Notes
|
321 |
+
-----
|
322 |
+
Construct H that augments G with all edges in avail.
|
323 |
+
Find the k-edge-subgraphs of H.
|
324 |
+
For each k-edge-subgraph, if the number of nodes is more than k, then find
|
325 |
+
the k-edge-augmentation of that graph and add it to the solution. Then add
|
326 |
+
all edges in avail between k-edge subgraphs to the solution.
|
327 |
+
|
328 |
+
See Also
|
329 |
+
--------
|
330 |
+
:func:`k_edge_augmentation`
|
331 |
+
|
332 |
+
Examples
|
333 |
+
--------
|
334 |
+
>>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))
|
335 |
+
>>> G.add_node(8)
|
336 |
+
>>> avail = [(1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 5), (1, 8)]
|
337 |
+
>>> sorted(partial_k_edge_augmentation(G, k=2, avail=avail))
|
338 |
+
[(1, 5), (1, 8)]
|
339 |
+
"""
|
340 |
+
|
341 |
+
def _edges_between_disjoint(H, only1, only2):
|
342 |
+
"""finds edges between disjoint nodes"""
|
343 |
+
only1_adj = {u: set(H.adj[u]) for u in only1}
|
344 |
+
for u, neighbs in only1_adj.items():
|
345 |
+
# Find the neighbors of u in only1 that are also in only2
|
346 |
+
neighbs12 = neighbs.intersection(only2)
|
347 |
+
for v in neighbs12:
|
348 |
+
yield (u, v)
|
349 |
+
|
350 |
+
avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=G)
|
351 |
+
|
352 |
+
# Find which parts of the graph can be k-edge-connected
|
353 |
+
H = G.copy()
|
354 |
+
H.add_edges_from(
|
355 |
+
(
|
356 |
+
(u, v, {"weight": w, "generator": (u, v)})
|
357 |
+
for (u, v), w in zip(avail, avail_w)
|
358 |
+
)
|
359 |
+
)
|
360 |
+
k_edge_subgraphs = list(nx.k_edge_subgraphs(H, k=k))
|
361 |
+
|
362 |
+
# Generate edges to k-edge-connect internal subgraphs
|
363 |
+
for nodes in k_edge_subgraphs:
|
364 |
+
if len(nodes) > 1:
|
365 |
+
# Get the k-edge-connected subgraph
|
366 |
+
C = H.subgraph(nodes).copy()
|
367 |
+
# Find the internal edges that were available
|
368 |
+
sub_avail = {
|
369 |
+
d["generator"]: d["weight"]
|
370 |
+
for (u, v, d) in C.edges(data=True)
|
371 |
+
if "generator" in d
|
372 |
+
}
|
373 |
+
# Remove potential augmenting edges
|
374 |
+
C.remove_edges_from(sub_avail.keys())
|
375 |
+
# Find a subset of these edges that makes the component
|
376 |
+
# k-edge-connected and ignore the rest
|
377 |
+
yield from nx.k_edge_augmentation(C, k=k, avail=sub_avail)
|
378 |
+
|
379 |
+
# Generate all edges between CCs that could not be k-edge-connected
|
380 |
+
for cc1, cc2 in it.combinations(k_edge_subgraphs, 2):
|
381 |
+
for u, v in _edges_between_disjoint(H, cc1, cc2):
|
382 |
+
d = H.get_edge_data(u, v)
|
383 |
+
edge = d.get("generator", None)
|
384 |
+
if edge is not None:
|
385 |
+
yield edge
|
386 |
+
|
387 |
+
|
388 |
+
@not_implemented_for("multigraph")
|
389 |
+
@not_implemented_for("directed")
|
390 |
+
@nx._dispatchable
|
391 |
+
def one_edge_augmentation(G, avail=None, weight=None, partial=False):
|
392 |
+
"""Finds minimum weight set of edges to connect G.
|
393 |
+
|
394 |
+
Equivalent to :func:`k_edge_augmentation` when k=1. Adding the resulting
|
395 |
+
edges to G will make it 1-edge-connected. The solution is optimal for both
|
396 |
+
weighted and non-weighted variants.
|
397 |
+
|
398 |
+
Parameters
|
399 |
+
----------
|
400 |
+
G : NetworkX graph
|
401 |
+
An undirected graph.
|
402 |
+
|
403 |
+
avail : dict or a set of 2 or 3 tuples
|
404 |
+
For more details, see :func:`k_edge_augmentation`.
|
405 |
+
|
406 |
+
weight : string
|
407 |
+
key to use to find weights if ``avail`` is a set of 3-tuples.
|
408 |
+
For more details, see :func:`k_edge_augmentation`.
|
409 |
+
|
410 |
+
partial : boolean
|
411 |
+
If partial is True and no feasible k-edge-augmentation exists, then the
|
412 |
+
augmenting edges minimize the number of connected components.
|
413 |
+
|
414 |
+
Yields
|
415 |
+
------
|
416 |
+
edge : tuple
|
417 |
+
Edges in the one-augmentation of G
|
418 |
+
|
419 |
+
Raises
|
420 |
+
------
|
421 |
+
NetworkXUnfeasible
|
422 |
+
If partial is False and no one-edge-augmentation exists.
|
423 |
+
|
424 |
+
Notes
|
425 |
+
-----
|
426 |
+
Uses either :func:`unconstrained_one_edge_augmentation` or
|
427 |
+
:func:`weighted_one_edge_augmentation` depending on whether ``avail`` is
|
428 |
+
specified. Both algorithms are based on finding a minimum spanning tree.
|
429 |
+
As such both algorithms find optimal solutions and run in linear time.
|
430 |
+
|
431 |
+
See Also
|
432 |
+
--------
|
433 |
+
:func:`k_edge_augmentation`
|
434 |
+
"""
|
435 |
+
if avail is None:
|
436 |
+
return unconstrained_one_edge_augmentation(G)
|
437 |
+
else:
|
438 |
+
return weighted_one_edge_augmentation(
|
439 |
+
G, avail=avail, weight=weight, partial=partial
|
440 |
+
)
|
441 |
+
|
442 |
+
|
443 |
+
@not_implemented_for("multigraph")
|
444 |
+
@not_implemented_for("directed")
|
445 |
+
@nx._dispatchable
|
446 |
+
def bridge_augmentation(G, avail=None, weight=None):
|
447 |
+
"""Finds the a set of edges that bridge connects G.
|
448 |
+
|
449 |
+
Equivalent to :func:`k_edge_augmentation` when k=2, and partial=False.
|
450 |
+
Adding the resulting edges to G will make it 2-edge-connected. If no
|
451 |
+
constraints are specified the returned set of edges is minimum an optimal,
|
452 |
+
otherwise the solution is approximated.
|
453 |
+
|
454 |
+
Parameters
|
455 |
+
----------
|
456 |
+
G : NetworkX graph
|
457 |
+
An undirected graph.
|
458 |
+
|
459 |
+
avail : dict or a set of 2 or 3 tuples
|
460 |
+
For more details, see :func:`k_edge_augmentation`.
|
461 |
+
|
462 |
+
weight : string
|
463 |
+
key to use to find weights if ``avail`` is a set of 3-tuples.
|
464 |
+
For more details, see :func:`k_edge_augmentation`.
|
465 |
+
|
466 |
+
Yields
|
467 |
+
------
|
468 |
+
edge : tuple
|
469 |
+
Edges in the bridge-augmentation of G
|
470 |
+
|
471 |
+
Raises
|
472 |
+
------
|
473 |
+
NetworkXUnfeasible
|
474 |
+
If no bridge-augmentation exists.
|
475 |
+
|
476 |
+
Notes
|
477 |
+
-----
|
478 |
+
If there are no constraints the solution can be computed in linear time
|
479 |
+
using :func:`unconstrained_bridge_augmentation`. Otherwise, the problem
|
480 |
+
becomes NP-hard and is the solution is approximated by
|
481 |
+
:func:`weighted_bridge_augmentation`.
|
482 |
+
|
483 |
+
See Also
|
484 |
+
--------
|
485 |
+
:func:`k_edge_augmentation`
|
486 |
+
"""
|
487 |
+
if G.number_of_nodes() < 3:
|
488 |
+
raise nx.NetworkXUnfeasible("impossible to bridge connect less than 3 nodes")
|
489 |
+
if avail is None:
|
490 |
+
return unconstrained_bridge_augmentation(G)
|
491 |
+
else:
|
492 |
+
return weighted_bridge_augmentation(G, avail, weight=weight)
|
493 |
+
|
494 |
+
|
495 |
+
# --- Algorithms and Helpers ---
|
496 |
+
|
497 |
+
|
498 |
+
def _ordered(u, v):
|
499 |
+
"""Returns the nodes in an undirected edge in lower-triangular order"""
|
500 |
+
return (u, v) if u < v else (v, u)
|
501 |
+
|
502 |
+
|
503 |
+
def _unpack_available_edges(avail, weight=None, G=None):
|
504 |
+
"""Helper to separate avail into edges and corresponding weights"""
|
505 |
+
if weight is None:
|
506 |
+
weight = "weight"
|
507 |
+
if isinstance(avail, dict):
|
508 |
+
avail_uv = list(avail.keys())
|
509 |
+
avail_w = list(avail.values())
|
510 |
+
else:
|
511 |
+
|
512 |
+
def _try_getitem(d):
|
513 |
+
try:
|
514 |
+
return d[weight]
|
515 |
+
except TypeError:
|
516 |
+
return d
|
517 |
+
|
518 |
+
avail_uv = [tup[0:2] for tup in avail]
|
519 |
+
avail_w = [1 if len(tup) == 2 else _try_getitem(tup[-1]) for tup in avail]
|
520 |
+
|
521 |
+
if G is not None:
|
522 |
+
# Edges already in the graph are filtered
|
523 |
+
flags = [not G.has_edge(u, v) for u, v in avail_uv]
|
524 |
+
avail_uv = list(it.compress(avail_uv, flags))
|
525 |
+
avail_w = list(it.compress(avail_w, flags))
|
526 |
+
return avail_uv, avail_w
|
527 |
+
|
528 |
+
|
529 |
+
MetaEdge = namedtuple("MetaEdge", ("meta_uv", "uv", "w"))
|
530 |
+
|
531 |
+
|
532 |
+
def _lightest_meta_edges(mapping, avail_uv, avail_w):
|
533 |
+
"""Maps available edges in the original graph to edges in the metagraph.
|
534 |
+
|
535 |
+
Parameters
|
536 |
+
----------
|
537 |
+
mapping : dict
|
538 |
+
mapping produced by :func:`collapse`, that maps each node in the
|
539 |
+
original graph to a node in the meta graph
|
540 |
+
|
541 |
+
avail_uv : list
|
542 |
+
list of edges
|
543 |
+
|
544 |
+
avail_w : list
|
545 |
+
list of edge weights
|
546 |
+
|
547 |
+
Notes
|
548 |
+
-----
|
549 |
+
Each node in the metagraph is a k-edge-connected component in the original
|
550 |
+
graph. We don't care about any edge within the same k-edge-connected
|
551 |
+
component, so we ignore self edges. We also are only interested in the
|
552 |
+
minimum weight edge bridging each k-edge-connected component so, we group
|
553 |
+
the edges by meta-edge and take the lightest in each group.
|
554 |
+
|
555 |
+
Examples
|
556 |
+
--------
|
557 |
+
>>> # Each group represents a meta-node
|
558 |
+
>>> groups = ([1, 2, 3], [4, 5], [6])
|
559 |
+
>>> mapping = {n: meta_n for meta_n, ns in enumerate(groups) for n in ns}
|
560 |
+
>>> avail_uv = [(1, 2), (3, 6), (1, 4), (5, 2), (6, 1), (2, 6), (3, 1)]
|
561 |
+
>>> avail_w = [20, 99, 20, 15, 50, 99, 20]
|
562 |
+
>>> sorted(_lightest_meta_edges(mapping, avail_uv, avail_w))
|
563 |
+
[MetaEdge(meta_uv=(0, 1), uv=(5, 2), w=15), MetaEdge(meta_uv=(0, 2), uv=(6, 1), w=50)]
|
564 |
+
"""
|
565 |
+
grouped_wuv = defaultdict(list)
|
566 |
+
for w, (u, v) in zip(avail_w, avail_uv):
|
567 |
+
# Order the meta-edge so it can be used as a dict key
|
568 |
+
meta_uv = _ordered(mapping[u], mapping[v])
|
569 |
+
# Group each available edge using the meta-edge as a key
|
570 |
+
grouped_wuv[meta_uv].append((w, u, v))
|
571 |
+
|
572 |
+
# Now that all available edges are grouped, choose one per group
|
573 |
+
for (mu, mv), choices_wuv in grouped_wuv.items():
|
574 |
+
# Ignore available edges within the same meta-node
|
575 |
+
if mu != mv:
|
576 |
+
# Choose the lightest available edge belonging to each meta-edge
|
577 |
+
w, u, v = min(choices_wuv)
|
578 |
+
yield MetaEdge((mu, mv), (u, v), w)
|
579 |
+
|
580 |
+
|
581 |
+
@nx._dispatchable
|
582 |
+
def unconstrained_one_edge_augmentation(G):
|
583 |
+
"""Finds the smallest set of edges to connect G.
|
584 |
+
|
585 |
+
This is a variant of the unweighted MST problem.
|
586 |
+
If G is not empty, a feasible solution always exists.
|
587 |
+
|
588 |
+
Parameters
|
589 |
+
----------
|
590 |
+
G : NetworkX graph
|
591 |
+
An undirected graph.
|
592 |
+
|
593 |
+
Yields
|
594 |
+
------
|
595 |
+
edge : tuple
|
596 |
+
Edges in the one-edge-augmentation of G
|
597 |
+
|
598 |
+
See Also
|
599 |
+
--------
|
600 |
+
:func:`one_edge_augmentation`
|
601 |
+
:func:`k_edge_augmentation`
|
602 |
+
|
603 |
+
Examples
|
604 |
+
--------
|
605 |
+
>>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
|
606 |
+
>>> G.add_nodes_from([6, 7, 8])
|
607 |
+
>>> sorted(unconstrained_one_edge_augmentation(G))
|
608 |
+
[(1, 4), (4, 6), (6, 7), (7, 8)]
|
609 |
+
"""
|
610 |
+
ccs1 = list(nx.connected_components(G))
|
611 |
+
C = collapse(G, ccs1)
|
612 |
+
# When we are not constrained, we can just make a meta graph tree.
|
613 |
+
meta_nodes = list(C.nodes())
|
614 |
+
# build a path in the metagraph
|
615 |
+
meta_aug = list(zip(meta_nodes, meta_nodes[1:]))
|
616 |
+
# map that path to the original graph
|
617 |
+
inverse = defaultdict(list)
|
618 |
+
for k, v in C.graph["mapping"].items():
|
619 |
+
inverse[v].append(k)
|
620 |
+
for mu, mv in meta_aug:
|
621 |
+
yield (inverse[mu][0], inverse[mv][0])
|
622 |
+
|
623 |
+
|
624 |
+
@nx._dispatchable
|
625 |
+
def weighted_one_edge_augmentation(G, avail, weight=None, partial=False):
|
626 |
+
"""Finds the minimum weight set of edges to connect G if one exists.
|
627 |
+
|
628 |
+
This is a variant of the weighted MST problem.
|
629 |
+
|
630 |
+
Parameters
|
631 |
+
----------
|
632 |
+
G : NetworkX graph
|
633 |
+
An undirected graph.
|
634 |
+
|
635 |
+
avail : dict or a set of 2 or 3 tuples
|
636 |
+
For more details, see :func:`k_edge_augmentation`.
|
637 |
+
|
638 |
+
weight : string
|
639 |
+
key to use to find weights if ``avail`` is a set of 3-tuples.
|
640 |
+
For more details, see :func:`k_edge_augmentation`.
|
641 |
+
|
642 |
+
partial : boolean
|
643 |
+
If partial is True and no feasible k-edge-augmentation exists, then the
|
644 |
+
augmenting edges minimize the number of connected components.
|
645 |
+
|
646 |
+
Yields
|
647 |
+
------
|
648 |
+
edge : tuple
|
649 |
+
Edges in the subset of avail chosen to connect G.
|
650 |
+
|
651 |
+
See Also
|
652 |
+
--------
|
653 |
+
:func:`one_edge_augmentation`
|
654 |
+
:func:`k_edge_augmentation`
|
655 |
+
|
656 |
+
Examples
|
657 |
+
--------
|
658 |
+
>>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
|
659 |
+
>>> G.add_nodes_from([6, 7, 8])
|
660 |
+
>>> # any edge not in avail has an implicit weight of infinity
|
661 |
+
>>> avail = [(1, 3), (1, 5), (4, 7), (4, 8), (6, 1), (8, 1), (8, 2)]
|
662 |
+
>>> sorted(weighted_one_edge_augmentation(G, avail))
|
663 |
+
[(1, 5), (4, 7), (6, 1), (8, 1)]
|
664 |
+
>>> # find another solution by giving large weights to edges in the
|
665 |
+
>>> # previous solution (note some of the old edges must be used)
|
666 |
+
>>> avail = [(1, 3), (1, 5, 99), (4, 7, 9), (6, 1, 99), (8, 1, 99), (8, 2)]
|
667 |
+
>>> sorted(weighted_one_edge_augmentation(G, avail))
|
668 |
+
[(1, 5), (4, 7), (6, 1), (8, 2)]
|
669 |
+
"""
|
670 |
+
avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=G)
|
671 |
+
# Collapse CCs in the original graph into nodes in a metagraph
|
672 |
+
# Then find an MST of the metagraph instead of the original graph
|
673 |
+
C = collapse(G, nx.connected_components(G))
|
674 |
+
mapping = C.graph["mapping"]
|
675 |
+
# Assign each available edge to an edge in the metagraph
|
676 |
+
candidate_mapping = _lightest_meta_edges(mapping, avail_uv, avail_w)
|
677 |
+
# nx.set_edge_attributes(C, name='weight', values=0)
|
678 |
+
C.add_edges_from(
|
679 |
+
(mu, mv, {"weight": w, "generator": uv})
|
680 |
+
for (mu, mv), uv, w in candidate_mapping
|
681 |
+
)
|
682 |
+
# Find MST of the meta graph
|
683 |
+
meta_mst = nx.minimum_spanning_tree(C)
|
684 |
+
if not partial and not nx.is_connected(meta_mst):
|
685 |
+
raise nx.NetworkXUnfeasible("Not possible to connect G with available edges")
|
686 |
+
# Yield the edge that generated the meta-edge
|
687 |
+
for mu, mv, d in meta_mst.edges(data=True):
|
688 |
+
if "generator" in d:
|
689 |
+
edge = d["generator"]
|
690 |
+
yield edge
|
691 |
+
|
692 |
+
|
693 |
+
@nx._dispatchable
|
694 |
+
def unconstrained_bridge_augmentation(G):
|
695 |
+
"""Finds an optimal 2-edge-augmentation of G using the fewest edges.
|
696 |
+
|
697 |
+
This is an implementation of the algorithm detailed in [1]_.
|
698 |
+
The basic idea is to construct a meta-graph of bridge-ccs, connect leaf
|
699 |
+
nodes of the trees to connect the entire graph, and finally connect the
|
700 |
+
leafs of the tree in dfs-preorder to bridge connect the entire graph.
|
701 |
+
|
702 |
+
Parameters
|
703 |
+
----------
|
704 |
+
G : NetworkX graph
|
705 |
+
An undirected graph.
|
706 |
+
|
707 |
+
Yields
|
708 |
+
------
|
709 |
+
edge : tuple
|
710 |
+
Edges in the bridge augmentation of G
|
711 |
+
|
712 |
+
Notes
|
713 |
+
-----
|
714 |
+
Input: a graph G.
|
715 |
+
First find the bridge components of G and collapse each bridge-cc into a
|
716 |
+
node of a metagraph graph C, which is guaranteed to be a forest of trees.
|
717 |
+
|
718 |
+
C contains p "leafs" --- nodes with exactly one incident edge.
|
719 |
+
C contains q "isolated nodes" --- nodes with no incident edges.
|
720 |
+
|
721 |
+
Theorem: If p + q > 1, then at least :math:`ceil(p / 2) + q` edges are
|
722 |
+
needed to bridge connect C. This algorithm achieves this min number.
|
723 |
+
|
724 |
+
The method first adds enough edges to make G into a tree and then pairs
|
725 |
+
leafs in a simple fashion.
|
726 |
+
|
727 |
+
Let n be the number of trees in C. Let v(i) be an isolated vertex in the
|
728 |
+
i-th tree if one exists, otherwise it is a pair of distinct leafs nodes
|
729 |
+
in the i-th tree. Alternating edges from these sets (i.e. adding edges
|
730 |
+
A1 = [(v(i)[0], v(i + 1)[1]), v(i + 1)[0], v(i + 2)[1])...]) connects C
|
731 |
+
into a tree T. This tree has p' = p + 2q - 2(n -1) leafs and no isolated
|
732 |
+
vertices. A1 has n - 1 edges. The next step finds ceil(p' / 2) edges to
|
733 |
+
biconnect any tree with p' leafs.
|
734 |
+
|
735 |
+
Convert T into an arborescence T' by picking an arbitrary root node with
|
736 |
+
degree >= 2 and directing all edges away from the root. Note the
|
737 |
+
implementation implicitly constructs T'.
|
738 |
+
|
739 |
+
The leafs of T are the nodes with no existing edges in T'.
|
740 |
+
Order the leafs of T' by DFS preorder. Then break this list in half
|
741 |
+
and add the zipped pairs to A2.
|
742 |
+
|
743 |
+
The set A = A1 + A2 is the minimum augmentation in the metagraph.
|
744 |
+
|
745 |
+
To convert this to edges in the original graph
|
746 |
+
|
747 |
+
References
|
748 |
+
----------
|
749 |
+
.. [1] Eswaran, Kapali P., and R. Endre Tarjan. (1975) Augmentation problems.
|
750 |
+
http://epubs.siam.org/doi/abs/10.1137/0205044
|
751 |
+
|
752 |
+
See Also
|
753 |
+
--------
|
754 |
+
:func:`bridge_augmentation`
|
755 |
+
:func:`k_edge_augmentation`
|
756 |
+
|
757 |
+
Examples
|
758 |
+
--------
|
759 |
+
>>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))
|
760 |
+
>>> sorted(unconstrained_bridge_augmentation(G))
|
761 |
+
[(1, 7)]
|
762 |
+
>>> G = nx.path_graph((1, 2, 3, 2, 4, 5, 6, 7))
|
763 |
+
>>> sorted(unconstrained_bridge_augmentation(G))
|
764 |
+
[(1, 3), (3, 7)]
|
765 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
|
766 |
+
>>> G.add_node(4)
|
767 |
+
>>> sorted(unconstrained_bridge_augmentation(G))
|
768 |
+
[(1, 4), (4, 0)]
|
769 |
+
"""
|
770 |
+
# -----
|
771 |
+
# Mapping of terms from (Eswaran and Tarjan):
|
772 |
+
# G = G_0 - the input graph
|
773 |
+
# C = G_0' - the bridge condensation of G. (This is a forest of trees)
|
774 |
+
# A1 = A_1 - the edges to connect the forest into a tree
|
775 |
+
# leaf = pendant - a node with degree of 1
|
776 |
+
|
777 |
+
# alpha(v) = maps the node v in G to its meta-node in C
|
778 |
+
# beta(x) = maps the meta-node x in C to any node in the bridge
|
779 |
+
# component of G corresponding to x.
|
780 |
+
|
781 |
+
# find the 2-edge-connected components of G
|
782 |
+
bridge_ccs = list(nx.connectivity.bridge_components(G))
|
783 |
+
# condense G into an forest C
|
784 |
+
C = collapse(G, bridge_ccs)
|
785 |
+
|
786 |
+
# Choose pairs of distinct leaf nodes in each tree. If this is not
|
787 |
+
# possible then make a pair using the single isolated node in the tree.
|
788 |
+
vset1 = [
|
789 |
+
tuple(cc) * 2 # case1: an isolated node
|
790 |
+
if len(cc) == 1
|
791 |
+
else sorted(cc, key=C.degree)[0:2] # case2: pair of leaf nodes
|
792 |
+
for cc in nx.connected_components(C)
|
793 |
+
]
|
794 |
+
if len(vset1) > 1:
|
795 |
+
# Use this set to construct edges that connect C into a tree.
|
796 |
+
nodes1 = [vs[0] for vs in vset1]
|
797 |
+
nodes2 = [vs[1] for vs in vset1]
|
798 |
+
A1 = list(zip(nodes1[1:], nodes2))
|
799 |
+
else:
|
800 |
+
A1 = []
|
801 |
+
# Connect each tree in the forest to construct an arborescence
|
802 |
+
T = C.copy()
|
803 |
+
T.add_edges_from(A1)
|
804 |
+
|
805 |
+
# If there are only two leaf nodes, we simply connect them.
|
806 |
+
leafs = [n for n, d in T.degree() if d == 1]
|
807 |
+
if len(leafs) == 1:
|
808 |
+
A2 = []
|
809 |
+
if len(leafs) == 2:
|
810 |
+
A2 = [tuple(leafs)]
|
811 |
+
else:
|
812 |
+
# Choose an arbitrary non-leaf root
|
813 |
+
try:
|
814 |
+
root = next(n for n, d in T.degree() if d > 1)
|
815 |
+
except StopIteration: # no nodes found with degree > 1
|
816 |
+
return
|
817 |
+
# order the leaves of C by (induced directed) preorder
|
818 |
+
v2 = [n for n in nx.dfs_preorder_nodes(T, root) if T.degree(n) == 1]
|
819 |
+
# connecting first half of the leafs in pre-order to the second
|
820 |
+
# half will bridge connect the tree with the fewest edges.
|
821 |
+
half = math.ceil(len(v2) / 2)
|
822 |
+
A2 = list(zip(v2[:half], v2[-half:]))
|
823 |
+
|
824 |
+
# collect the edges used to augment the original forest
|
825 |
+
aug_tree_edges = A1 + A2
|
826 |
+
|
827 |
+
# Construct the mapping (beta) from meta-nodes to regular nodes
|
828 |
+
inverse = defaultdict(list)
|
829 |
+
for k, v in C.graph["mapping"].items():
|
830 |
+
inverse[v].append(k)
|
831 |
+
# sort so we choose minimum degree nodes first
|
832 |
+
inverse = {
|
833 |
+
mu: sorted(mapped, key=lambda u: (G.degree(u), u))
|
834 |
+
for mu, mapped in inverse.items()
|
835 |
+
}
|
836 |
+
|
837 |
+
# For each meta-edge, map back to an arbitrary pair in the original graph
|
838 |
+
G2 = G.copy()
|
839 |
+
for mu, mv in aug_tree_edges:
|
840 |
+
# Find the first available edge that doesn't exist and return it
|
841 |
+
for u, v in it.product(inverse[mu], inverse[mv]):
|
842 |
+
if not G2.has_edge(u, v):
|
843 |
+
G2.add_edge(u, v)
|
844 |
+
yield u, v
|
845 |
+
break
|
846 |
+
|
847 |
+
|
848 |
+
@nx._dispatchable
|
849 |
+
def weighted_bridge_augmentation(G, avail, weight=None):
|
850 |
+
"""Finds an approximate min-weight 2-edge-augmentation of G.
|
851 |
+
|
852 |
+
This is an implementation of the approximation algorithm detailed in [1]_.
|
853 |
+
It chooses a set of edges from avail to add to G that renders it
|
854 |
+
2-edge-connected if such a subset exists. This is done by finding a
|
855 |
+
minimum spanning arborescence of a specially constructed metagraph.
|
856 |
+
|
857 |
+
Parameters
|
858 |
+
----------
|
859 |
+
G : NetworkX graph
|
860 |
+
An undirected graph.
|
861 |
+
|
862 |
+
avail : set of 2 or 3 tuples.
|
863 |
+
candidate edges (with optional weights) to choose from
|
864 |
+
|
865 |
+
weight : string
|
866 |
+
key to use to find weights if avail is a set of 3-tuples where the
|
867 |
+
third item in each tuple is a dictionary.
|
868 |
+
|
869 |
+
Yields
|
870 |
+
------
|
871 |
+
edge : tuple
|
872 |
+
Edges in the subset of avail chosen to bridge augment G.
|
873 |
+
|
874 |
+
Notes
|
875 |
+
-----
|
876 |
+
Finding a weighted 2-edge-augmentation is NP-hard.
|
877 |
+
Any edge not in ``avail`` is considered to have a weight of infinity.
|
878 |
+
The approximation factor is 2 if ``G`` is connected and 3 if it is not.
|
879 |
+
Runs in :math:`O(m + n log(n))` time
|
880 |
+
|
881 |
+
References
|
882 |
+
----------
|
883 |
+
.. [1] Khuller, Samir, and Ramakrishna Thurimella. (1993) Approximation
|
884 |
+
algorithms for graph augmentation.
|
885 |
+
http://www.sciencedirect.com/science/article/pii/S0196677483710102
|
886 |
+
|
887 |
+
See Also
|
888 |
+
--------
|
889 |
+
:func:`bridge_augmentation`
|
890 |
+
:func:`k_edge_augmentation`
|
891 |
+
|
892 |
+
Examples
|
893 |
+
--------
|
894 |
+
>>> G = nx.path_graph((1, 2, 3, 4))
|
895 |
+
>>> # When the weights are equal, (1, 4) is the best
|
896 |
+
>>> avail = [(1, 4, 1), (1, 3, 1), (2, 4, 1)]
|
897 |
+
>>> sorted(weighted_bridge_augmentation(G, avail))
|
898 |
+
[(1, 4)]
|
899 |
+
>>> # Giving (1, 4) a high weight makes the two edge solution the best.
|
900 |
+
>>> avail = [(1, 4, 1000), (1, 3, 1), (2, 4, 1)]
|
901 |
+
>>> sorted(weighted_bridge_augmentation(G, avail))
|
902 |
+
[(1, 3), (2, 4)]
|
903 |
+
>>> # ------
|
904 |
+
>>> G = nx.path_graph((1, 2, 3, 4))
|
905 |
+
>>> G.add_node(5)
|
906 |
+
>>> avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 1)]
|
907 |
+
>>> sorted(weighted_bridge_augmentation(G, avail=avail))
|
908 |
+
[(1, 5), (4, 5)]
|
909 |
+
>>> avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 51)]
|
910 |
+
>>> sorted(weighted_bridge_augmentation(G, avail=avail))
|
911 |
+
[(1, 5), (2, 5), (4, 5)]
|
912 |
+
"""
|
913 |
+
|
914 |
+
if weight is None:
|
915 |
+
weight = "weight"
|
916 |
+
|
917 |
+
# If input G is not connected the approximation factor increases to 3
|
918 |
+
if not nx.is_connected(G):
|
919 |
+
H = G.copy()
|
920 |
+
connectors = list(one_edge_augmentation(H, avail=avail, weight=weight))
|
921 |
+
H.add_edges_from(connectors)
|
922 |
+
|
923 |
+
yield from connectors
|
924 |
+
else:
|
925 |
+
connectors = []
|
926 |
+
H = G
|
927 |
+
|
928 |
+
if len(avail) == 0:
|
929 |
+
if nx.has_bridges(H):
|
930 |
+
raise nx.NetworkXUnfeasible("no augmentation possible")
|
931 |
+
|
932 |
+
avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=H)
|
933 |
+
|
934 |
+
# Collapse input into a metagraph. Meta nodes are bridge-ccs
|
935 |
+
bridge_ccs = nx.connectivity.bridge_components(H)
|
936 |
+
C = collapse(H, bridge_ccs)
|
937 |
+
|
938 |
+
# Use the meta graph to shrink avail to a small feasible subset
|
939 |
+
mapping = C.graph["mapping"]
|
940 |
+
# Choose the minimum weight feasible edge in each group
|
941 |
+
meta_to_wuv = {
|
942 |
+
(mu, mv): (w, uv)
|
943 |
+
for (mu, mv), uv, w in _lightest_meta_edges(mapping, avail_uv, avail_w)
|
944 |
+
}
|
945 |
+
|
946 |
+
# Mapping of terms from (Khuller and Thurimella):
|
947 |
+
# C : G_0 = (V, E^0)
|
948 |
+
# This is the metagraph where each node is a 2-edge-cc in G.
|
949 |
+
# The edges in C represent bridges in the original graph.
|
950 |
+
# (mu, mv) : E - E^0 # they group both avail and given edges in E
|
951 |
+
# T : \Gamma
|
952 |
+
# D : G^D = (V, E_D)
|
953 |
+
|
954 |
+
# The paper uses ancestor because children point to parents, which is
|
955 |
+
# contrary to networkx standards. So, we actually need to run
|
956 |
+
# nx.least_common_ancestor on the reversed Tree.
|
957 |
+
|
958 |
+
# Pick an arbitrary leaf from C as the root
|
959 |
+
try:
|
960 |
+
root = next(n for n, d in C.degree() if d == 1)
|
961 |
+
except StopIteration: # no nodes found with degree == 1
|
962 |
+
return
|
963 |
+
# Root C into a tree TR by directing all edges away from the root
|
964 |
+
# Note in their paper T directs edges towards the root
|
965 |
+
TR = nx.dfs_tree(C, root)
|
966 |
+
|
967 |
+
# Add to D the directed edges of T and set their weight to zero
|
968 |
+
# This indicates that it costs nothing to use edges that were given.
|
969 |
+
D = nx.reverse(TR).copy()
|
970 |
+
|
971 |
+
nx.set_edge_attributes(D, name="weight", values=0)
|
972 |
+
|
973 |
+
# The LCA of mu and mv in T is the shared ancestor of mu and mv that is
|
974 |
+
# located farthest from the root.
|
975 |
+
lca_gen = nx.tree_all_pairs_lowest_common_ancestor(
|
976 |
+
TR, root=root, pairs=meta_to_wuv.keys()
|
977 |
+
)
|
978 |
+
|
979 |
+
for (mu, mv), lca in lca_gen:
|
980 |
+
w, uv = meta_to_wuv[(mu, mv)]
|
981 |
+
if lca == mu:
|
982 |
+
# If u is an ancestor of v in TR, then add edge u->v to D
|
983 |
+
D.add_edge(lca, mv, weight=w, generator=uv)
|
984 |
+
elif lca == mv:
|
985 |
+
# If v is an ancestor of u in TR, then add edge v->u to D
|
986 |
+
D.add_edge(lca, mu, weight=w, generator=uv)
|
987 |
+
else:
|
988 |
+
# If neither u nor v is a ancestor of the other in TR
|
989 |
+
# let t = lca(TR, u, v) and add edges t->u and t->v
|
990 |
+
# Track the original edge that GENERATED these edges.
|
991 |
+
D.add_edge(lca, mu, weight=w, generator=uv)
|
992 |
+
D.add_edge(lca, mv, weight=w, generator=uv)
|
993 |
+
|
994 |
+
# Then compute a minimum rooted branching
|
995 |
+
try:
|
996 |
+
# Note the original edges must be directed towards to root for the
|
997 |
+
# branching to give us a bridge-augmentation.
|
998 |
+
A = _minimum_rooted_branching(D, root)
|
999 |
+
except nx.NetworkXException as err:
|
1000 |
+
# If there is no branching then augmentation is not possible
|
1001 |
+
raise nx.NetworkXUnfeasible("no 2-edge-augmentation possible") from err
|
1002 |
+
|
1003 |
+
# For each edge e, in the branching that did not belong to the directed
|
1004 |
+
# tree T, add the corresponding edge that **GENERATED** it (this is not
|
1005 |
+
# necessarily e itself!)
|
1006 |
+
|
1007 |
+
# ensure the third case does not generate edges twice
|
1008 |
+
bridge_connectors = set()
|
1009 |
+
for mu, mv in A.edges():
|
1010 |
+
data = D.get_edge_data(mu, mv)
|
1011 |
+
if "generator" in data:
|
1012 |
+
# Add the avail edge that generated the branching edge.
|
1013 |
+
edge = data["generator"]
|
1014 |
+
bridge_connectors.add(edge)
|
1015 |
+
|
1016 |
+
yield from bridge_connectors
|
1017 |
+
|
1018 |
+
|
1019 |
+
def _minimum_rooted_branching(D, root):
|
1020 |
+
"""Helper function to compute a minimum rooted branching (aka rooted
|
1021 |
+
arborescence)
|
1022 |
+
|
1023 |
+
Before the branching can be computed, the directed graph must be rooted by
|
1024 |
+
removing the predecessors of root.
|
1025 |
+
|
1026 |
+
A branching / arborescence of rooted graph G is a subgraph that contains a
|
1027 |
+
directed path from the root to every other vertex. It is the directed
|
1028 |
+
analog of the minimum spanning tree problem.
|
1029 |
+
|
1030 |
+
References
|
1031 |
+
----------
|
1032 |
+
[1] Khuller, Samir (2002) Advanced Algorithms Lecture 24 Notes.
|
1033 |
+
https://web.archive.org/web/20121030033722/https://www.cs.umd.edu/class/spring2011/cmsc651/lec07.pdf
|
1034 |
+
"""
|
1035 |
+
rooted = D.copy()
|
1036 |
+
# root the graph by removing all predecessors to `root`.
|
1037 |
+
rooted.remove_edges_from([(u, root) for u in D.predecessors(root)])
|
1038 |
+
# Then compute the branching / arborescence.
|
1039 |
+
A = nx.minimum_spanning_arborescence(rooted)
|
1040 |
+
return A
|
1041 |
+
|
1042 |
+
|
1043 |
+
@nx._dispatchable(returns_graph=True)
|
1044 |
+
def collapse(G, grouped_nodes):
|
1045 |
+
"""Collapses each group of nodes into a single node.
|
1046 |
+
|
1047 |
+
This is similar to condensation, but works on undirected graphs.
|
1048 |
+
|
1049 |
+
Parameters
|
1050 |
+
----------
|
1051 |
+
G : NetworkX Graph
|
1052 |
+
|
1053 |
+
grouped_nodes: list or generator
|
1054 |
+
Grouping of nodes to collapse. The grouping must be disjoint.
|
1055 |
+
If grouped_nodes are strongly_connected_components then this is
|
1056 |
+
equivalent to :func:`condensation`.
|
1057 |
+
|
1058 |
+
Returns
|
1059 |
+
-------
|
1060 |
+
C : NetworkX Graph
|
1061 |
+
The collapsed graph C of G with respect to the node grouping. The node
|
1062 |
+
labels are integers corresponding to the index of the component in the
|
1063 |
+
list of grouped_nodes. C has a graph attribute named 'mapping' with a
|
1064 |
+
dictionary mapping the original nodes to the nodes in C to which they
|
1065 |
+
belong. Each node in C also has a node attribute 'members' with the set
|
1066 |
+
of original nodes in G that form the group that the node in C
|
1067 |
+
represents.
|
1068 |
+
|
1069 |
+
Examples
|
1070 |
+
--------
|
1071 |
+
>>> # Collapses a graph using disjoint groups, but not necessarily connected
|
1072 |
+
>>> G = nx.Graph([(1, 0), (2, 3), (3, 1), (3, 4), (4, 5), (5, 6), (5, 7)])
|
1073 |
+
>>> G.add_node("A")
|
1074 |
+
>>> grouped_nodes = [{0, 1, 2, 3}, {5, 6, 7}]
|
1075 |
+
>>> C = collapse(G, grouped_nodes)
|
1076 |
+
>>> members = nx.get_node_attributes(C, "members")
|
1077 |
+
>>> sorted(members.keys())
|
1078 |
+
[0, 1, 2, 3]
|
1079 |
+
>>> member_values = set(map(frozenset, members.values()))
|
1080 |
+
>>> assert {0, 1, 2, 3} in member_values
|
1081 |
+
>>> assert {4} in member_values
|
1082 |
+
>>> assert {5, 6, 7} in member_values
|
1083 |
+
>>> assert {"A"} in member_values
|
1084 |
+
"""
|
1085 |
+
mapping = {}
|
1086 |
+
members = {}
|
1087 |
+
C = G.__class__()
|
1088 |
+
i = 0 # required if G is empty
|
1089 |
+
remaining = set(G.nodes())
|
1090 |
+
for i, group in enumerate(grouped_nodes):
|
1091 |
+
group = set(group)
|
1092 |
+
assert remaining.issuperset(
|
1093 |
+
group
|
1094 |
+
), "grouped nodes must exist in G and be disjoint"
|
1095 |
+
remaining.difference_update(group)
|
1096 |
+
members[i] = group
|
1097 |
+
mapping.update((n, i) for n in group)
|
1098 |
+
# remaining nodes are in their own group
|
1099 |
+
for i, node in enumerate(remaining, start=i + 1):
|
1100 |
+
group = {node}
|
1101 |
+
members[i] = group
|
1102 |
+
mapping.update((n, i) for n in group)
|
1103 |
+
number_of_groups = i + 1
|
1104 |
+
C.add_nodes_from(range(number_of_groups))
|
1105 |
+
C.add_edges_from(
|
1106 |
+
(mapping[u], mapping[v]) for u, v in G.edges() if mapping[u] != mapping[v]
|
1107 |
+
)
|
1108 |
+
# Add a list of members (ie original nodes) to each node (ie scc) in C.
|
1109 |
+
nx.set_node_attributes(C, name="members", values=members)
|
1110 |
+
# Add mapping dict as graph attribute
|
1111 |
+
C.graph["mapping"] = mapping
|
1112 |
+
return C
|
1113 |
+
|
1114 |
+
|
1115 |
+
@nx._dispatchable
|
1116 |
+
def complement_edges(G):
|
1117 |
+
"""Returns only the edges in the complement of G
|
1118 |
+
|
1119 |
+
Parameters
|
1120 |
+
----------
|
1121 |
+
G : NetworkX Graph
|
1122 |
+
|
1123 |
+
Yields
|
1124 |
+
------
|
1125 |
+
edge : tuple
|
1126 |
+
Edges in the complement of G
|
1127 |
+
|
1128 |
+
Examples
|
1129 |
+
--------
|
1130 |
+
>>> G = nx.path_graph((1, 2, 3, 4))
|
1131 |
+
>>> sorted(complement_edges(G))
|
1132 |
+
[(1, 3), (1, 4), (2, 4)]
|
1133 |
+
>>> G = nx.path_graph((1, 2, 3, 4), nx.DiGraph())
|
1134 |
+
>>> sorted(complement_edges(G))
|
1135 |
+
[(1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)]
|
1136 |
+
>>> G = nx.complete_graph(1000)
|
1137 |
+
>>> sorted(complement_edges(G))
|
1138 |
+
[]
|
1139 |
+
"""
|
1140 |
+
G_adj = G._adj # Store as a variable to eliminate attribute lookup
|
1141 |
+
if G.is_directed():
|
1142 |
+
for u, v in it.combinations(G.nodes(), 2):
|
1143 |
+
if v not in G_adj[u]:
|
1144 |
+
yield (u, v)
|
1145 |
+
if u not in G_adj[v]:
|
1146 |
+
yield (v, u)
|
1147 |
+
else:
|
1148 |
+
for u, v in it.combinations(G.nodes(), 2):
|
1149 |
+
if v not in G_adj[u]:
|
1150 |
+
yield (u, v)
|
1151 |
+
|
1152 |
+
|
1153 |
+
def _compat_shuffle(rng, input):
|
1154 |
+
"""wrapper around rng.shuffle for python 2 compatibility reasons"""
|
1155 |
+
rng.shuffle(input)
|
1156 |
+
|
1157 |
+
|
1158 |
+
@not_implemented_for("multigraph")
|
1159 |
+
@not_implemented_for("directed")
|
1160 |
+
@py_random_state(4)
|
1161 |
+
@nx._dispatchable
|
1162 |
+
def greedy_k_edge_augmentation(G, k, avail=None, weight=None, seed=None):
|
1163 |
+
"""Greedy algorithm for finding a k-edge-augmentation
|
1164 |
+
|
1165 |
+
Parameters
|
1166 |
+
----------
|
1167 |
+
G : NetworkX graph
|
1168 |
+
An undirected graph.
|
1169 |
+
|
1170 |
+
k : integer
|
1171 |
+
Desired edge connectivity
|
1172 |
+
|
1173 |
+
avail : dict or a set of 2 or 3 tuples
|
1174 |
+
For more details, see :func:`k_edge_augmentation`.
|
1175 |
+
|
1176 |
+
weight : string
|
1177 |
+
key to use to find weights if ``avail`` is a set of 3-tuples.
|
1178 |
+
For more details, see :func:`k_edge_augmentation`.
|
1179 |
+
|
1180 |
+
seed : integer, random_state, or None (default)
|
1181 |
+
Indicator of random number generation state.
|
1182 |
+
See :ref:`Randomness<randomness>`.
|
1183 |
+
|
1184 |
+
Yields
|
1185 |
+
------
|
1186 |
+
edge : tuple
|
1187 |
+
Edges in the greedy augmentation of G
|
1188 |
+
|
1189 |
+
Notes
|
1190 |
+
-----
|
1191 |
+
The algorithm is simple. Edges are incrementally added between parts of the
|
1192 |
+
graph that are not yet locally k-edge-connected. Then edges are from the
|
1193 |
+
augmenting set are pruned as long as local-edge-connectivity is not broken.
|
1194 |
+
|
1195 |
+
This algorithm is greedy and does not provide optimality guarantees. It
|
1196 |
+
exists only to provide :func:`k_edge_augmentation` with the ability to
|
1197 |
+
generate a feasible solution for arbitrary k.
|
1198 |
+
|
1199 |
+
See Also
|
1200 |
+
--------
|
1201 |
+
:func:`k_edge_augmentation`
|
1202 |
+
|
1203 |
+
Examples
|
1204 |
+
--------
|
1205 |
+
>>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))
|
1206 |
+
>>> sorted(greedy_k_edge_augmentation(G, k=2))
|
1207 |
+
[(1, 7)]
|
1208 |
+
>>> sorted(greedy_k_edge_augmentation(G, k=1, avail=[]))
|
1209 |
+
[]
|
1210 |
+
>>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))
|
1211 |
+
>>> avail = {(u, v): 1 for (u, v) in complement_edges(G)}
|
1212 |
+
>>> # randomized pruning process can produce different solutions
|
1213 |
+
>>> sorted(greedy_k_edge_augmentation(G, k=4, avail=avail, seed=2))
|
1214 |
+
[(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (3, 7), (5, 7)]
|
1215 |
+
>>> sorted(greedy_k_edge_augmentation(G, k=4, avail=avail, seed=3))
|
1216 |
+
[(1, 3), (1, 5), (1, 6), (2, 4), (2, 6), (3, 7), (4, 7), (5, 7)]
|
1217 |
+
"""
|
1218 |
+
# Result set
|
1219 |
+
aug_edges = []
|
1220 |
+
|
1221 |
+
done = is_k_edge_connected(G, k)
|
1222 |
+
if done:
|
1223 |
+
return
|
1224 |
+
if avail is None:
|
1225 |
+
# all edges are available
|
1226 |
+
avail_uv = list(complement_edges(G))
|
1227 |
+
avail_w = [1] * len(avail_uv)
|
1228 |
+
else:
|
1229 |
+
# Get the unique set of unweighted edges
|
1230 |
+
avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=G)
|
1231 |
+
|
1232 |
+
# Greedy: order lightest edges. Use degree sum to tie-break
|
1233 |
+
tiebreaker = [sum(map(G.degree, uv)) for uv in avail_uv]
|
1234 |
+
avail_wduv = sorted(zip(avail_w, tiebreaker, avail_uv))
|
1235 |
+
avail_uv = [uv for w, d, uv in avail_wduv]
|
1236 |
+
|
1237 |
+
# Incrementally add edges in until we are k-connected
|
1238 |
+
H = G.copy()
|
1239 |
+
for u, v in avail_uv:
|
1240 |
+
done = False
|
1241 |
+
if not is_locally_k_edge_connected(H, u, v, k=k):
|
1242 |
+
# Only add edges in parts that are not yet locally k-edge-connected
|
1243 |
+
aug_edges.append((u, v))
|
1244 |
+
H.add_edge(u, v)
|
1245 |
+
# Did adding this edge help?
|
1246 |
+
if H.degree(u) >= k and H.degree(v) >= k:
|
1247 |
+
done = is_k_edge_connected(H, k)
|
1248 |
+
if done:
|
1249 |
+
break
|
1250 |
+
|
1251 |
+
# Check for feasibility
|
1252 |
+
if not done:
|
1253 |
+
raise nx.NetworkXUnfeasible("not able to k-edge-connect with available edges")
|
1254 |
+
|
1255 |
+
# Randomized attempt to reduce the size of the solution
|
1256 |
+
_compat_shuffle(seed, aug_edges)
|
1257 |
+
for u, v in list(aug_edges):
|
1258 |
+
# Don't remove if we know it would break connectivity
|
1259 |
+
if H.degree(u) <= k or H.degree(v) <= k:
|
1260 |
+
continue
|
1261 |
+
H.remove_edge(u, v)
|
1262 |
+
aug_edges.remove((u, v))
|
1263 |
+
if not is_k_edge_connected(H, k=k):
|
1264 |
+
# If removing this edge breaks feasibility, undo
|
1265 |
+
H.add_edge(u, v)
|
1266 |
+
aug_edges.append((u, v))
|
1267 |
+
|
1268 |
+
# Generate results
|
1269 |
+
yield from aug_edges
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/edge_kcomponents.py
ADDED
@@ -0,0 +1,591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Algorithms for finding k-edge-connected components and subgraphs.
|
3 |
+
|
4 |
+
A k-edge-connected component (k-edge-cc) is a maximal set of nodes in G, such
|
5 |
+
that all pairs of node have an edge-connectivity of at least k.
|
6 |
+
|
7 |
+
A k-edge-connected subgraph (k-edge-subgraph) is a maximal set of nodes in G,
|
8 |
+
such that the subgraph of G defined by the nodes has an edge-connectivity at
|
9 |
+
least k.
|
10 |
+
"""
|
11 |
+
import itertools as it
|
12 |
+
from functools import partial
|
13 |
+
|
14 |
+
import networkx as nx
|
15 |
+
from networkx.utils import arbitrary_element, not_implemented_for
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
"k_edge_components",
|
19 |
+
"k_edge_subgraphs",
|
20 |
+
"bridge_components",
|
21 |
+
"EdgeComponentAuxGraph",
|
22 |
+
]
|
23 |
+
|
24 |
+
|
25 |
+
@not_implemented_for("multigraph")
|
26 |
+
@nx._dispatchable
|
27 |
+
def k_edge_components(G, k):
|
28 |
+
"""Generates nodes in each maximal k-edge-connected component in G.
|
29 |
+
|
30 |
+
Parameters
|
31 |
+
----------
|
32 |
+
G : NetworkX graph
|
33 |
+
|
34 |
+
k : Integer
|
35 |
+
Desired edge connectivity
|
36 |
+
|
37 |
+
Returns
|
38 |
+
-------
|
39 |
+
k_edge_components : a generator of k-edge-ccs. Each set of returned nodes
|
40 |
+
will have k-edge-connectivity in the graph G.
|
41 |
+
|
42 |
+
See Also
|
43 |
+
--------
|
44 |
+
:func:`local_edge_connectivity`
|
45 |
+
:func:`k_edge_subgraphs` : similar to this function, but the subgraph
|
46 |
+
defined by the nodes must also have k-edge-connectivity.
|
47 |
+
:func:`k_components` : similar to this function, but uses node-connectivity
|
48 |
+
instead of edge-connectivity
|
49 |
+
|
50 |
+
Raises
|
51 |
+
------
|
52 |
+
NetworkXNotImplemented
|
53 |
+
If the input graph is a multigraph.
|
54 |
+
|
55 |
+
ValueError:
|
56 |
+
If k is less than 1
|
57 |
+
|
58 |
+
Notes
|
59 |
+
-----
|
60 |
+
Attempts to use the most efficient implementation available based on k.
|
61 |
+
If k=1, this is simply connected components for directed graphs and
|
62 |
+
connected components for undirected graphs.
|
63 |
+
If k=2 on an efficient bridge connected component algorithm from _[1] is
|
64 |
+
run based on the chain decomposition.
|
65 |
+
Otherwise, the algorithm from _[2] is used.
|
66 |
+
|
67 |
+
Examples
|
68 |
+
--------
|
69 |
+
>>> import itertools as it
|
70 |
+
>>> from networkx.utils import pairwise
|
71 |
+
>>> paths = [
|
72 |
+
... (1, 2, 4, 3, 1, 4),
|
73 |
+
... (5, 6, 7, 8, 5, 7, 8, 6),
|
74 |
+
... ]
|
75 |
+
>>> G = nx.Graph()
|
76 |
+
>>> G.add_nodes_from(it.chain(*paths))
|
77 |
+
>>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths]))
|
78 |
+
>>> # note this returns {1, 4} unlike k_edge_subgraphs
|
79 |
+
>>> sorted(map(sorted, nx.k_edge_components(G, k=3)))
|
80 |
+
[[1, 4], [2], [3], [5, 6, 7, 8]]
|
81 |
+
|
82 |
+
References
|
83 |
+
----------
|
84 |
+
.. [1] https://en.wikipedia.org/wiki/Bridge_%28graph_theory%29
|
85 |
+
.. [2] Wang, Tianhao, et al. (2015) A simple algorithm for finding all
|
86 |
+
k-edge-connected components.
|
87 |
+
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264
|
88 |
+
"""
|
89 |
+
# Compute k-edge-ccs using the most efficient algorithms available.
|
90 |
+
if k < 1:
|
91 |
+
raise ValueError("k cannot be less than 1")
|
92 |
+
if G.is_directed():
|
93 |
+
if k == 1:
|
94 |
+
return nx.strongly_connected_components(G)
|
95 |
+
else:
|
96 |
+
# TODO: investigate https://arxiv.org/abs/1412.6466 for k=2
|
97 |
+
aux_graph = EdgeComponentAuxGraph.construct(G)
|
98 |
+
return aux_graph.k_edge_components(k)
|
99 |
+
else:
|
100 |
+
if k == 1:
|
101 |
+
return nx.connected_components(G)
|
102 |
+
elif k == 2:
|
103 |
+
return bridge_components(G)
|
104 |
+
else:
|
105 |
+
aux_graph = EdgeComponentAuxGraph.construct(G)
|
106 |
+
return aux_graph.k_edge_components(k)
|
107 |
+
|
108 |
+
|
109 |
+
@not_implemented_for("multigraph")
|
110 |
+
@nx._dispatchable
|
111 |
+
def k_edge_subgraphs(G, k):
|
112 |
+
"""Generates nodes in each maximal k-edge-connected subgraph in G.
|
113 |
+
|
114 |
+
Parameters
|
115 |
+
----------
|
116 |
+
G : NetworkX graph
|
117 |
+
|
118 |
+
k : Integer
|
119 |
+
Desired edge connectivity
|
120 |
+
|
121 |
+
Returns
|
122 |
+
-------
|
123 |
+
k_edge_subgraphs : a generator of k-edge-subgraphs
|
124 |
+
Each k-edge-subgraph is a maximal set of nodes that defines a subgraph
|
125 |
+
of G that is k-edge-connected.
|
126 |
+
|
127 |
+
See Also
|
128 |
+
--------
|
129 |
+
:func:`edge_connectivity`
|
130 |
+
:func:`k_edge_components` : similar to this function, but nodes only
|
131 |
+
need to have k-edge-connectivity within the graph G and the subgraphs
|
132 |
+
might not be k-edge-connected.
|
133 |
+
|
134 |
+
Raises
|
135 |
+
------
|
136 |
+
NetworkXNotImplemented
|
137 |
+
If the input graph is a multigraph.
|
138 |
+
|
139 |
+
ValueError:
|
140 |
+
If k is less than 1
|
141 |
+
|
142 |
+
Notes
|
143 |
+
-----
|
144 |
+
Attempts to use the most efficient implementation available based on k.
|
145 |
+
If k=1, or k=2 and the graph is undirected, then this simply calls
|
146 |
+
`k_edge_components`. Otherwise the algorithm from _[1] is used.
|
147 |
+
|
148 |
+
Examples
|
149 |
+
--------
|
150 |
+
>>> import itertools as it
|
151 |
+
>>> from networkx.utils import pairwise
|
152 |
+
>>> paths = [
|
153 |
+
... (1, 2, 4, 3, 1, 4),
|
154 |
+
... (5, 6, 7, 8, 5, 7, 8, 6),
|
155 |
+
... ]
|
156 |
+
>>> G = nx.Graph()
|
157 |
+
>>> G.add_nodes_from(it.chain(*paths))
|
158 |
+
>>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths]))
|
159 |
+
>>> # note this does not return {1, 4} unlike k_edge_components
|
160 |
+
>>> sorted(map(sorted, nx.k_edge_subgraphs(G, k=3)))
|
161 |
+
[[1], [2], [3], [4], [5, 6, 7, 8]]
|
162 |
+
|
163 |
+
References
|
164 |
+
----------
|
165 |
+
.. [1] Zhou, Liu, et al. (2012) Finding maximal k-edge-connected subgraphs
|
166 |
+
from a large graph. ACM International Conference on Extending Database
|
167 |
+
Technology 2012 480-–491.
|
168 |
+
https://openproceedings.org/2012/conf/edbt/ZhouLYLCL12.pdf
|
169 |
+
"""
|
170 |
+
if k < 1:
|
171 |
+
raise ValueError("k cannot be less than 1")
|
172 |
+
if G.is_directed():
|
173 |
+
if k <= 1:
|
174 |
+
# For directed graphs ,
|
175 |
+
# When k == 1, k-edge-ccs and k-edge-subgraphs are the same
|
176 |
+
return k_edge_components(G, k)
|
177 |
+
else:
|
178 |
+
return _k_edge_subgraphs_nodes(G, k)
|
179 |
+
else:
|
180 |
+
if k <= 2:
|
181 |
+
# For undirected graphs,
|
182 |
+
# when k <= 2, k-edge-ccs and k-edge-subgraphs are the same
|
183 |
+
return k_edge_components(G, k)
|
184 |
+
else:
|
185 |
+
return _k_edge_subgraphs_nodes(G, k)
|
186 |
+
|
187 |
+
|
188 |
+
def _k_edge_subgraphs_nodes(G, k):
|
189 |
+
"""Helper to get the nodes from the subgraphs.
|
190 |
+
|
191 |
+
This allows k_edge_subgraphs to return a generator.
|
192 |
+
"""
|
193 |
+
for C in general_k_edge_subgraphs(G, k):
|
194 |
+
yield set(C.nodes())
|
195 |
+
|
196 |
+
|
197 |
+
@not_implemented_for("directed")
|
198 |
+
@not_implemented_for("multigraph")
|
199 |
+
@nx._dispatchable
|
200 |
+
def bridge_components(G):
|
201 |
+
"""Finds all bridge-connected components G.
|
202 |
+
|
203 |
+
Parameters
|
204 |
+
----------
|
205 |
+
G : NetworkX undirected graph
|
206 |
+
|
207 |
+
Returns
|
208 |
+
-------
|
209 |
+
bridge_components : a generator of 2-edge-connected components
|
210 |
+
|
211 |
+
|
212 |
+
See Also
|
213 |
+
--------
|
214 |
+
:func:`k_edge_subgraphs` : this function is a special case for an
|
215 |
+
undirected graph where k=2.
|
216 |
+
:func:`biconnected_components` : similar to this function, but is defined
|
217 |
+
using 2-node-connectivity instead of 2-edge-connectivity.
|
218 |
+
|
219 |
+
Raises
|
220 |
+
------
|
221 |
+
NetworkXNotImplemented
|
222 |
+
If the input graph is directed or a multigraph.
|
223 |
+
|
224 |
+
Notes
|
225 |
+
-----
|
226 |
+
Bridge-connected components are also known as 2-edge-connected components.
|
227 |
+
|
228 |
+
Examples
|
229 |
+
--------
|
230 |
+
>>> # The barbell graph with parameter zero has a single bridge
|
231 |
+
>>> G = nx.barbell_graph(5, 0)
|
232 |
+
>>> from networkx.algorithms.connectivity.edge_kcomponents import bridge_components
|
233 |
+
>>> sorted(map(sorted, bridge_components(G)))
|
234 |
+
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
|
235 |
+
"""
|
236 |
+
H = G.copy()
|
237 |
+
H.remove_edges_from(nx.bridges(G))
|
238 |
+
yield from nx.connected_components(H)
|
239 |
+
|
240 |
+
|
241 |
+
class EdgeComponentAuxGraph:
|
242 |
+
r"""A simple algorithm to find all k-edge-connected components in a graph.
|
243 |
+
|
244 |
+
Constructing the auxiliary graph (which may take some time) allows for the
|
245 |
+
k-edge-ccs to be found in linear time for arbitrary k.
|
246 |
+
|
247 |
+
Notes
|
248 |
+
-----
|
249 |
+
This implementation is based on [1]_. The idea is to construct an auxiliary
|
250 |
+
graph from which the k-edge-ccs can be extracted in linear time. The
|
251 |
+
auxiliary graph is constructed in $O(|V|\cdot F)$ operations, where F is the
|
252 |
+
complexity of max flow. Querying the components takes an additional $O(|V|)$
|
253 |
+
operations. This algorithm can be slow for large graphs, but it handles an
|
254 |
+
arbitrary k and works for both directed and undirected inputs.
|
255 |
+
|
256 |
+
The undirected case for k=1 is exactly connected components.
|
257 |
+
The undirected case for k=2 is exactly bridge connected components.
|
258 |
+
The directed case for k=1 is exactly strongly connected components.
|
259 |
+
|
260 |
+
References
|
261 |
+
----------
|
262 |
+
.. [1] Wang, Tianhao, et al. (2015) A simple algorithm for finding all
|
263 |
+
k-edge-connected components.
|
264 |
+
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264
|
265 |
+
|
266 |
+
Examples
|
267 |
+
--------
|
268 |
+
>>> import itertools as it
|
269 |
+
>>> from networkx.utils import pairwise
|
270 |
+
>>> from networkx.algorithms.connectivity import EdgeComponentAuxGraph
|
271 |
+
>>> # Build an interesting graph with multiple levels of k-edge-ccs
|
272 |
+
>>> paths = [
|
273 |
+
... (1, 2, 3, 4, 1, 3, 4, 2), # a 3-edge-cc (a 4 clique)
|
274 |
+
... (5, 6, 7, 5), # a 2-edge-cc (a 3 clique)
|
275 |
+
... (1, 5), # combine first two ccs into a 1-edge-cc
|
276 |
+
... (0,), # add an additional disconnected 1-edge-cc
|
277 |
+
... ]
|
278 |
+
>>> G = nx.Graph()
|
279 |
+
>>> G.add_nodes_from(it.chain(*paths))
|
280 |
+
>>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths]))
|
281 |
+
>>> # Constructing the AuxGraph takes about O(n ** 4)
|
282 |
+
>>> aux_graph = EdgeComponentAuxGraph.construct(G)
|
283 |
+
>>> # Once constructed, querying takes O(n)
|
284 |
+
>>> sorted(map(sorted, aux_graph.k_edge_components(k=1)))
|
285 |
+
[[0], [1, 2, 3, 4, 5, 6, 7]]
|
286 |
+
>>> sorted(map(sorted, aux_graph.k_edge_components(k=2)))
|
287 |
+
[[0], [1, 2, 3, 4], [5, 6, 7]]
|
288 |
+
>>> sorted(map(sorted, aux_graph.k_edge_components(k=3)))
|
289 |
+
[[0], [1, 2, 3, 4], [5], [6], [7]]
|
290 |
+
>>> sorted(map(sorted, aux_graph.k_edge_components(k=4)))
|
291 |
+
[[0], [1], [2], [3], [4], [5], [6], [7]]
|
292 |
+
|
293 |
+
The auxiliary graph is primarily used for k-edge-ccs but it
|
294 |
+
can also speed up the queries of k-edge-subgraphs by refining the
|
295 |
+
search space.
|
296 |
+
|
297 |
+
>>> import itertools as it
|
298 |
+
>>> from networkx.utils import pairwise
|
299 |
+
>>> from networkx.algorithms.connectivity import EdgeComponentAuxGraph
|
300 |
+
>>> paths = [
|
301 |
+
... (1, 2, 4, 3, 1, 4),
|
302 |
+
... ]
|
303 |
+
>>> G = nx.Graph()
|
304 |
+
>>> G.add_nodes_from(it.chain(*paths))
|
305 |
+
>>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths]))
|
306 |
+
>>> aux_graph = EdgeComponentAuxGraph.construct(G)
|
307 |
+
>>> sorted(map(sorted, aux_graph.k_edge_subgraphs(k=3)))
|
308 |
+
[[1], [2], [3], [4]]
|
309 |
+
>>> sorted(map(sorted, aux_graph.k_edge_components(k=3)))
|
310 |
+
[[1, 4], [2], [3]]
|
311 |
+
"""
|
312 |
+
|
313 |
+
# @not_implemented_for('multigraph') # TODO: fix decor for classmethods
|
314 |
+
@classmethod
|
315 |
+
def construct(EdgeComponentAuxGraph, G):
|
316 |
+
"""Builds an auxiliary graph encoding edge-connectivity between nodes.
|
317 |
+
|
318 |
+
Notes
|
319 |
+
-----
|
320 |
+
Given G=(V, E), initialize an empty auxiliary graph A.
|
321 |
+
Choose an arbitrary source node s. Initialize a set N of available
|
322 |
+
nodes (that can be used as the sink). The algorithm picks an
|
323 |
+
arbitrary node t from N - {s}, and then computes the minimum st-cut
|
324 |
+
(S, T) with value w. If G is directed the minimum of the st-cut or
|
325 |
+
the ts-cut is used instead. Then, the edge (s, t) is added to the
|
326 |
+
auxiliary graph with weight w. The algorithm is called recursively
|
327 |
+
first using S as the available nodes and s as the source, and then
|
328 |
+
using T and t. Recursion stops when the source is the only available
|
329 |
+
node.
|
330 |
+
|
331 |
+
Parameters
|
332 |
+
----------
|
333 |
+
G : NetworkX graph
|
334 |
+
"""
|
335 |
+
# workaround for classmethod decorator
|
336 |
+
not_implemented_for("multigraph")(lambda G: G)(G)
|
337 |
+
|
338 |
+
def _recursive_build(H, A, source, avail):
|
339 |
+
# Terminate once the flow has been compute to every node.
|
340 |
+
if {source} == avail:
|
341 |
+
return
|
342 |
+
# pick an arbitrary node as the sink
|
343 |
+
sink = arbitrary_element(avail - {source})
|
344 |
+
# find the minimum cut and its weight
|
345 |
+
value, (S, T) = nx.minimum_cut(H, source, sink)
|
346 |
+
if H.is_directed():
|
347 |
+
# check if the reverse direction has a smaller cut
|
348 |
+
value_, (T_, S_) = nx.minimum_cut(H, sink, source)
|
349 |
+
if value_ < value:
|
350 |
+
value, S, T = value_, S_, T_
|
351 |
+
# add edge with weight of cut to the aux graph
|
352 |
+
A.add_edge(source, sink, weight=value)
|
353 |
+
# recursively call until all but one node is used
|
354 |
+
_recursive_build(H, A, source, avail.intersection(S))
|
355 |
+
_recursive_build(H, A, sink, avail.intersection(T))
|
356 |
+
|
357 |
+
# Copy input to ensure all edges have unit capacity
|
358 |
+
H = G.__class__()
|
359 |
+
H.add_nodes_from(G.nodes())
|
360 |
+
H.add_edges_from(G.edges(), capacity=1)
|
361 |
+
|
362 |
+
# A is the auxiliary graph to be constructed
|
363 |
+
# It is a weighted undirected tree
|
364 |
+
A = nx.Graph()
|
365 |
+
|
366 |
+
# Pick an arbitrary node as the source
|
367 |
+
if H.number_of_nodes() > 0:
|
368 |
+
source = arbitrary_element(H.nodes())
|
369 |
+
# Initialize a set of elements that can be chosen as the sink
|
370 |
+
avail = set(H.nodes())
|
371 |
+
|
372 |
+
# This constructs A
|
373 |
+
_recursive_build(H, A, source, avail)
|
374 |
+
|
375 |
+
# This class is a container the holds the auxiliary graph A and
|
376 |
+
# provides access the k_edge_components function.
|
377 |
+
self = EdgeComponentAuxGraph()
|
378 |
+
self.A = A
|
379 |
+
self.H = H
|
380 |
+
return self
|
381 |
+
|
382 |
+
def k_edge_components(self, k):
|
383 |
+
"""Queries the auxiliary graph for k-edge-connected components.
|
384 |
+
|
385 |
+
Parameters
|
386 |
+
----------
|
387 |
+
k : Integer
|
388 |
+
Desired edge connectivity
|
389 |
+
|
390 |
+
Returns
|
391 |
+
-------
|
392 |
+
k_edge_components : a generator of k-edge-ccs
|
393 |
+
|
394 |
+
Notes
|
395 |
+
-----
|
396 |
+
Given the auxiliary graph, the k-edge-connected components can be
|
397 |
+
determined in linear time by removing all edges with weights less than
|
398 |
+
k from the auxiliary graph. The resulting connected components are the
|
399 |
+
k-edge-ccs in the original graph.
|
400 |
+
"""
|
401 |
+
if k < 1:
|
402 |
+
raise ValueError("k cannot be less than 1")
|
403 |
+
A = self.A
|
404 |
+
# "traverse the auxiliary graph A and delete all edges with weights less
|
405 |
+
# than k"
|
406 |
+
aux_weights = nx.get_edge_attributes(A, "weight")
|
407 |
+
# Create a relevant graph with the auxiliary edges with weights >= k
|
408 |
+
R = nx.Graph()
|
409 |
+
R.add_nodes_from(A.nodes())
|
410 |
+
R.add_edges_from(e for e, w in aux_weights.items() if w >= k)
|
411 |
+
|
412 |
+
# Return the nodes that are k-edge-connected in the original graph
|
413 |
+
yield from nx.connected_components(R)
|
414 |
+
|
415 |
+
def k_edge_subgraphs(self, k):
|
416 |
+
"""Queries the auxiliary graph for k-edge-connected subgraphs.
|
417 |
+
|
418 |
+
Parameters
|
419 |
+
----------
|
420 |
+
k : Integer
|
421 |
+
Desired edge connectivity
|
422 |
+
|
423 |
+
Returns
|
424 |
+
-------
|
425 |
+
k_edge_subgraphs : a generator of k-edge-subgraphs
|
426 |
+
|
427 |
+
Notes
|
428 |
+
-----
|
429 |
+
Refines the k-edge-ccs into k-edge-subgraphs. The running time is more
|
430 |
+
than $O(|V|)$.
|
431 |
+
|
432 |
+
For single values of k it is faster to use `nx.k_edge_subgraphs`.
|
433 |
+
But for multiple values of k, it can be faster to build AuxGraph and
|
434 |
+
then use this method.
|
435 |
+
"""
|
436 |
+
if k < 1:
|
437 |
+
raise ValueError("k cannot be less than 1")
|
438 |
+
H = self.H
|
439 |
+
A = self.A
|
440 |
+
# "traverse the auxiliary graph A and delete all edges with weights less
|
441 |
+
# than k"
|
442 |
+
aux_weights = nx.get_edge_attributes(A, "weight")
|
443 |
+
# Create a relevant graph with the auxiliary edges with weights >= k
|
444 |
+
R = nx.Graph()
|
445 |
+
R.add_nodes_from(A.nodes())
|
446 |
+
R.add_edges_from(e for e, w in aux_weights.items() if w >= k)
|
447 |
+
|
448 |
+
# Return the components whose subgraphs are k-edge-connected
|
449 |
+
for cc in nx.connected_components(R):
|
450 |
+
if len(cc) < k:
|
451 |
+
# Early return optimization
|
452 |
+
for node in cc:
|
453 |
+
yield {node}
|
454 |
+
else:
|
455 |
+
# Call subgraph solution to refine the results
|
456 |
+
C = H.subgraph(cc)
|
457 |
+
yield from k_edge_subgraphs(C, k)
|
458 |
+
|
459 |
+
|
460 |
+
def _low_degree_nodes(G, k, nbunch=None):
|
461 |
+
"""Helper for finding nodes with degree less than k."""
|
462 |
+
# Nodes with degree less than k cannot be k-edge-connected.
|
463 |
+
if G.is_directed():
|
464 |
+
# Consider both in and out degree in the directed case
|
465 |
+
seen = set()
|
466 |
+
for node, degree in G.out_degree(nbunch):
|
467 |
+
if degree < k:
|
468 |
+
seen.add(node)
|
469 |
+
yield node
|
470 |
+
for node, degree in G.in_degree(nbunch):
|
471 |
+
if node not in seen and degree < k:
|
472 |
+
seen.add(node)
|
473 |
+
yield node
|
474 |
+
else:
|
475 |
+
# Only the degree matters in the undirected case
|
476 |
+
for node, degree in G.degree(nbunch):
|
477 |
+
if degree < k:
|
478 |
+
yield node
|
479 |
+
|
480 |
+
|
481 |
+
def _high_degree_components(G, k):
|
482 |
+
"""Helper for filtering components that can't be k-edge-connected.
|
483 |
+
|
484 |
+
Removes and generates each node with degree less than k. Then generates
|
485 |
+
remaining components where all nodes have degree at least k.
|
486 |
+
"""
|
487 |
+
# Iteratively remove parts of the graph that are not k-edge-connected
|
488 |
+
H = G.copy()
|
489 |
+
singletons = set(_low_degree_nodes(H, k))
|
490 |
+
while singletons:
|
491 |
+
# Only search neighbors of removed nodes
|
492 |
+
nbunch = set(it.chain.from_iterable(map(H.neighbors, singletons)))
|
493 |
+
nbunch.difference_update(singletons)
|
494 |
+
H.remove_nodes_from(singletons)
|
495 |
+
for node in singletons:
|
496 |
+
yield {node}
|
497 |
+
singletons = set(_low_degree_nodes(H, k, nbunch))
|
498 |
+
|
499 |
+
# Note: remaining connected components may not be k-edge-connected
|
500 |
+
if G.is_directed():
|
501 |
+
yield from nx.strongly_connected_components(H)
|
502 |
+
else:
|
503 |
+
yield from nx.connected_components(H)
|
504 |
+
|
505 |
+
|
506 |
+
@nx._dispatchable(returns_graph=True)
|
507 |
+
def general_k_edge_subgraphs(G, k):
|
508 |
+
"""General algorithm to find all maximal k-edge-connected subgraphs in `G`.
|
509 |
+
|
510 |
+
Parameters
|
511 |
+
----------
|
512 |
+
G : nx.Graph
|
513 |
+
Graph in which all maximal k-edge-connected subgraphs will be found.
|
514 |
+
|
515 |
+
k : int
|
516 |
+
|
517 |
+
Yields
|
518 |
+
------
|
519 |
+
k_edge_subgraphs : Graph instances that are k-edge-subgraphs
|
520 |
+
Each k-edge-subgraph contains a maximal set of nodes that defines a
|
521 |
+
subgraph of `G` that is k-edge-connected.
|
522 |
+
|
523 |
+
Notes
|
524 |
+
-----
|
525 |
+
Implementation of the basic algorithm from [1]_. The basic idea is to find
|
526 |
+
a global minimum cut of the graph. If the cut value is at least k, then the
|
527 |
+
graph is a k-edge-connected subgraph and can be added to the results.
|
528 |
+
Otherwise, the cut is used to split the graph in two and the procedure is
|
529 |
+
applied recursively. If the graph is just a single node, then it is also
|
530 |
+
added to the results. At the end, each result is either guaranteed to be
|
531 |
+
a single node or a subgraph of G that is k-edge-connected.
|
532 |
+
|
533 |
+
This implementation contains optimizations for reducing the number of calls
|
534 |
+
to max-flow, but there are other optimizations in [1]_ that could be
|
535 |
+
implemented.
|
536 |
+
|
537 |
+
References
|
538 |
+
----------
|
539 |
+
.. [1] Zhou, Liu, et al. (2012) Finding maximal k-edge-connected subgraphs
|
540 |
+
from a large graph. ACM International Conference on Extending Database
|
541 |
+
Technology 2012 480-–491.
|
542 |
+
https://openproceedings.org/2012/conf/edbt/ZhouLYLCL12.pdf
|
543 |
+
|
544 |
+
Examples
|
545 |
+
--------
|
546 |
+
>>> from networkx.utils import pairwise
|
547 |
+
>>> paths = [
|
548 |
+
... (11, 12, 13, 14, 11, 13, 14, 12), # a 4-clique
|
549 |
+
... (21, 22, 23, 24, 21, 23, 24, 22), # another 4-clique
|
550 |
+
... # connect the cliques with high degree but low connectivity
|
551 |
+
... (50, 13),
|
552 |
+
... (12, 50, 22),
|
553 |
+
... (13, 102, 23),
|
554 |
+
... (14, 101, 24),
|
555 |
+
... ]
|
556 |
+
>>> G = nx.Graph(it.chain(*[pairwise(path) for path in paths]))
|
557 |
+
>>> sorted(len(k_sg) for k_sg in k_edge_subgraphs(G, k=3))
|
558 |
+
[1, 1, 1, 4, 4]
|
559 |
+
"""
|
560 |
+
if k < 1:
|
561 |
+
raise ValueError("k cannot be less than 1")
|
562 |
+
|
563 |
+
# Node pruning optimization (incorporates early return)
|
564 |
+
# find_ccs is either connected_components/strongly_connected_components
|
565 |
+
find_ccs = partial(_high_degree_components, k=k)
|
566 |
+
|
567 |
+
# Quick return optimization
|
568 |
+
if G.number_of_nodes() < k:
|
569 |
+
for node in G.nodes():
|
570 |
+
yield G.subgraph([node]).copy()
|
571 |
+
return
|
572 |
+
|
573 |
+
# Intermediate results
|
574 |
+
R0 = {G.subgraph(cc).copy() for cc in find_ccs(G)}
|
575 |
+
# Subdivide CCs in the intermediate results until they are k-conn
|
576 |
+
while R0:
|
577 |
+
G1 = R0.pop()
|
578 |
+
if G1.number_of_nodes() == 1:
|
579 |
+
yield G1
|
580 |
+
else:
|
581 |
+
# Find a global minimum cut
|
582 |
+
cut_edges = nx.minimum_edge_cut(G1)
|
583 |
+
cut_value = len(cut_edges)
|
584 |
+
if cut_value < k:
|
585 |
+
# G1 is not k-edge-connected, so subdivide it
|
586 |
+
G1.remove_edges_from(cut_edges)
|
587 |
+
for cc in find_ccs(G1):
|
588 |
+
R0.add(G1.subgraph(cc).copy())
|
589 |
+
else:
|
590 |
+
# Otherwise we found a k-edge-connected subgraph
|
591 |
+
yield G1
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/kcomponents.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Moody and White algorithm for k-components
|
3 |
+
"""
|
4 |
+
from collections import defaultdict
|
5 |
+
from itertools import combinations
|
6 |
+
from operator import itemgetter
|
7 |
+
|
8 |
+
import networkx as nx
|
9 |
+
|
10 |
+
# Define the default maximum flow function.
|
11 |
+
from networkx.algorithms.flow import edmonds_karp
|
12 |
+
from networkx.utils import not_implemented_for
|
13 |
+
|
14 |
+
default_flow_func = edmonds_karp
|
15 |
+
|
16 |
+
__all__ = ["k_components"]
|
17 |
+
|
18 |
+
|
19 |
+
@not_implemented_for("directed")
|
20 |
+
@nx._dispatchable
|
21 |
+
def k_components(G, flow_func=None):
|
22 |
+
r"""Returns the k-component structure of a graph G.
|
23 |
+
|
24 |
+
A `k`-component is a maximal subgraph of a graph G that has, at least,
|
25 |
+
node connectivity `k`: we need to remove at least `k` nodes to break it
|
26 |
+
into more components. `k`-components have an inherent hierarchical
|
27 |
+
structure because they are nested in terms of connectivity: a connected
|
28 |
+
graph can contain several 2-components, each of which can contain
|
29 |
+
one or more 3-components, and so forth.
|
30 |
+
|
31 |
+
Parameters
|
32 |
+
----------
|
33 |
+
G : NetworkX graph
|
34 |
+
|
35 |
+
flow_func : function
|
36 |
+
Function to perform the underlying flow computations. Default value
|
37 |
+
:meth:`edmonds_karp`. This function performs better in sparse graphs with
|
38 |
+
right tailed degree distributions. :meth:`shortest_augmenting_path` will
|
39 |
+
perform better in denser graphs.
|
40 |
+
|
41 |
+
Returns
|
42 |
+
-------
|
43 |
+
k_components : dict
|
44 |
+
Dictionary with all connectivity levels `k` in the input Graph as keys
|
45 |
+
and a list of sets of nodes that form a k-component of level `k` as
|
46 |
+
values.
|
47 |
+
|
48 |
+
Raises
|
49 |
+
------
|
50 |
+
NetworkXNotImplemented
|
51 |
+
If the input graph is directed.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
--------
|
55 |
+
>>> # Petersen graph has 10 nodes and it is triconnected, thus all
|
56 |
+
>>> # nodes are in a single component on all three connectivity levels
|
57 |
+
>>> G = nx.petersen_graph()
|
58 |
+
>>> k_components = nx.k_components(G)
|
59 |
+
|
60 |
+
Notes
|
61 |
+
-----
|
62 |
+
Moody and White [1]_ (appendix A) provide an algorithm for identifying
|
63 |
+
k-components in a graph, which is based on Kanevsky's algorithm [2]_
|
64 |
+
for finding all minimum-size node cut-sets of a graph (implemented in
|
65 |
+
:meth:`all_node_cuts` function):
|
66 |
+
|
67 |
+
1. Compute node connectivity, k, of the input graph G.
|
68 |
+
|
69 |
+
2. Identify all k-cutsets at the current level of connectivity using
|
70 |
+
Kanevsky's algorithm.
|
71 |
+
|
72 |
+
3. Generate new graph components based on the removal of
|
73 |
+
these cutsets. Nodes in a cutset belong to both sides
|
74 |
+
of the induced cut.
|
75 |
+
|
76 |
+
4. If the graph is neither complete nor trivial, return to 1;
|
77 |
+
else end.
|
78 |
+
|
79 |
+
This implementation also uses some heuristics (see [3]_ for details)
|
80 |
+
to speed up the computation.
|
81 |
+
|
82 |
+
See also
|
83 |
+
--------
|
84 |
+
node_connectivity
|
85 |
+
all_node_cuts
|
86 |
+
biconnected_components : special case of this function when k=2
|
87 |
+
k_edge_components : similar to this function, but uses edge-connectivity
|
88 |
+
instead of node-connectivity
|
89 |
+
|
90 |
+
References
|
91 |
+
----------
|
92 |
+
.. [1] Moody, J. and D. White (2003). Social cohesion and embeddedness:
|
93 |
+
A hierarchical conception of social groups.
|
94 |
+
American Sociological Review 68(1), 103--28.
|
95 |
+
http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf
|
96 |
+
|
97 |
+
.. [2] Kanevsky, A. (1993). Finding all minimum-size separating vertex
|
98 |
+
sets in a graph. Networks 23(6), 533--541.
|
99 |
+
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
|
100 |
+
|
101 |
+
.. [3] Torrents, J. and F. Ferraro (2015). Structural Cohesion:
|
102 |
+
Visualization and Heuristics for Fast Computation.
|
103 |
+
https://arxiv.org/pdf/1503.04476v1
|
104 |
+
|
105 |
+
"""
|
106 |
+
# Dictionary with connectivity level (k) as keys and a list of
|
107 |
+
# sets of nodes that form a k-component as values. Note that
|
108 |
+
# k-components can overlap (but only k - 1 nodes).
|
109 |
+
k_components = defaultdict(list)
|
110 |
+
# Define default flow function
|
111 |
+
if flow_func is None:
|
112 |
+
flow_func = default_flow_func
|
113 |
+
# Bicomponents as a base to check for higher order k-components
|
114 |
+
for component in nx.connected_components(G):
|
115 |
+
# isolated nodes have connectivity 0
|
116 |
+
comp = set(component)
|
117 |
+
if len(comp) > 1:
|
118 |
+
k_components[1].append(comp)
|
119 |
+
bicomponents = [G.subgraph(c) for c in nx.biconnected_components(G)]
|
120 |
+
for bicomponent in bicomponents:
|
121 |
+
bicomp = set(bicomponent)
|
122 |
+
# avoid considering dyads as bicomponents
|
123 |
+
if len(bicomp) > 2:
|
124 |
+
k_components[2].append(bicomp)
|
125 |
+
for B in bicomponents:
|
126 |
+
if len(B) <= 2:
|
127 |
+
continue
|
128 |
+
k = nx.node_connectivity(B, flow_func=flow_func)
|
129 |
+
if k > 2:
|
130 |
+
k_components[k].append(set(B))
|
131 |
+
# Perform cuts in a DFS like order.
|
132 |
+
cuts = list(nx.all_node_cuts(B, k=k, flow_func=flow_func))
|
133 |
+
stack = [(k, _generate_partition(B, cuts, k))]
|
134 |
+
while stack:
|
135 |
+
(parent_k, partition) = stack[-1]
|
136 |
+
try:
|
137 |
+
nodes = next(partition)
|
138 |
+
C = B.subgraph(nodes)
|
139 |
+
this_k = nx.node_connectivity(C, flow_func=flow_func)
|
140 |
+
if this_k > parent_k and this_k > 2:
|
141 |
+
k_components[this_k].append(set(C))
|
142 |
+
cuts = list(nx.all_node_cuts(C, k=this_k, flow_func=flow_func))
|
143 |
+
if cuts:
|
144 |
+
stack.append((this_k, _generate_partition(C, cuts, this_k)))
|
145 |
+
except StopIteration:
|
146 |
+
stack.pop()
|
147 |
+
|
148 |
+
# This is necessary because k-components may only be reported at their
|
149 |
+
# maximum k level. But we want to return a dictionary in which keys are
|
150 |
+
# connectivity levels and values list of sets of components, without
|
151 |
+
# skipping any connectivity level. Also, it's possible that subsets of
|
152 |
+
# an already detected k-component appear at a level k. Checking for this
|
153 |
+
# in the while loop above penalizes the common case. Thus we also have to
|
154 |
+
# _consolidate all connectivity levels in _reconstruct_k_components.
|
155 |
+
return _reconstruct_k_components(k_components)
|
156 |
+
|
157 |
+
|
158 |
+
def _consolidate(sets, k):
|
159 |
+
"""Merge sets that share k or more elements.
|
160 |
+
|
161 |
+
See: http://rosettacode.org/wiki/Set_consolidation
|
162 |
+
|
163 |
+
The iterative python implementation posted there is
|
164 |
+
faster than this because of the overhead of building a
|
165 |
+
Graph and calling nx.connected_components, but it's not
|
166 |
+
clear for us if we can use it in NetworkX because there
|
167 |
+
is no licence for the code.
|
168 |
+
|
169 |
+
"""
|
170 |
+
G = nx.Graph()
|
171 |
+
nodes = dict(enumerate(sets))
|
172 |
+
G.add_nodes_from(nodes)
|
173 |
+
G.add_edges_from(
|
174 |
+
(u, v) for u, v in combinations(nodes, 2) if len(nodes[u] & nodes[v]) >= k
|
175 |
+
)
|
176 |
+
for component in nx.connected_components(G):
|
177 |
+
yield set.union(*[nodes[n] for n in component])
|
178 |
+
|
179 |
+
|
180 |
+
def _generate_partition(G, cuts, k):
|
181 |
+
def has_nbrs_in_partition(G, node, partition):
|
182 |
+
return any(n in partition for n in G[node])
|
183 |
+
|
184 |
+
components = []
|
185 |
+
nodes = {n for n, d in G.degree() if d > k} - {n for cut in cuts for n in cut}
|
186 |
+
H = G.subgraph(nodes)
|
187 |
+
for cc in nx.connected_components(H):
|
188 |
+
component = set(cc)
|
189 |
+
for cut in cuts:
|
190 |
+
for node in cut:
|
191 |
+
if has_nbrs_in_partition(G, node, cc):
|
192 |
+
component.add(node)
|
193 |
+
if len(component) < G.order():
|
194 |
+
components.append(component)
|
195 |
+
yield from _consolidate(components, k + 1)
|
196 |
+
|
197 |
+
|
198 |
+
def _reconstruct_k_components(k_comps):
|
199 |
+
result = {}
|
200 |
+
max_k = max(k_comps)
|
201 |
+
for k in reversed(range(1, max_k + 1)):
|
202 |
+
if k == max_k:
|
203 |
+
result[k] = list(_consolidate(k_comps[k], k))
|
204 |
+
elif k not in k_comps:
|
205 |
+
result[k] = list(_consolidate(result[k + 1], k))
|
206 |
+
else:
|
207 |
+
nodes_at_k = set.union(*k_comps[k])
|
208 |
+
to_add = [c for c in result[k + 1] if any(n not in nodes_at_k for n in c)]
|
209 |
+
if to_add:
|
210 |
+
result[k] = list(_consolidate(k_comps[k] + to_add, k))
|
211 |
+
else:
|
212 |
+
result[k] = list(_consolidate(k_comps[k], k))
|
213 |
+
return result
|
214 |
+
|
215 |
+
|
216 |
+
def build_k_number_dict(kcomps):
|
217 |
+
result = {}
|
218 |
+
for k, comps in sorted(kcomps.items(), key=itemgetter(0)):
|
219 |
+
for comp in comps:
|
220 |
+
for node in comp:
|
221 |
+
result[node] = k
|
222 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/kcutsets.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Kanevsky all minimum node k cutsets algorithm.
|
3 |
+
"""
|
4 |
+
import copy
|
5 |
+
from collections import defaultdict
|
6 |
+
from itertools import combinations
|
7 |
+
from operator import itemgetter
|
8 |
+
|
9 |
+
import networkx as nx
|
10 |
+
from networkx.algorithms.flow import (
|
11 |
+
build_residual_network,
|
12 |
+
edmonds_karp,
|
13 |
+
shortest_augmenting_path,
|
14 |
+
)
|
15 |
+
|
16 |
+
from .utils import build_auxiliary_node_connectivity
|
17 |
+
|
18 |
+
default_flow_func = edmonds_karp
|
19 |
+
|
20 |
+
|
21 |
+
__all__ = ["all_node_cuts"]
|
22 |
+
|
23 |
+
|
24 |
+
@nx._dispatchable
|
25 |
+
def all_node_cuts(G, k=None, flow_func=None):
|
26 |
+
r"""Returns all minimum k cutsets of an undirected graph G.
|
27 |
+
|
28 |
+
This implementation is based on Kanevsky's algorithm [1]_ for finding all
|
29 |
+
minimum-size node cut-sets of an undirected graph G; ie the set (or sets)
|
30 |
+
of nodes of cardinality equal to the node connectivity of G. Thus if
|
31 |
+
removed, would break G into two or more connected components.
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
G : NetworkX graph
|
36 |
+
Undirected graph
|
37 |
+
|
38 |
+
k : Integer
|
39 |
+
Node connectivity of the input graph. If k is None, then it is
|
40 |
+
computed. Default value: None.
|
41 |
+
|
42 |
+
flow_func : function
|
43 |
+
Function to perform the underlying flow computations. Default value is
|
44 |
+
:func:`~networkx.algorithms.flow.edmonds_karp`. This function performs
|
45 |
+
better in sparse graphs with right tailed degree distributions.
|
46 |
+
:func:`~networkx.algorithms.flow.shortest_augmenting_path` will
|
47 |
+
perform better in denser graphs.
|
48 |
+
|
49 |
+
|
50 |
+
Returns
|
51 |
+
-------
|
52 |
+
cuts : a generator of node cutsets
|
53 |
+
Each node cutset has cardinality equal to the node connectivity of
|
54 |
+
the input graph.
|
55 |
+
|
56 |
+
Examples
|
57 |
+
--------
|
58 |
+
>>> # A two-dimensional grid graph has 4 cutsets of cardinality 2
|
59 |
+
>>> G = nx.grid_2d_graph(5, 5)
|
60 |
+
>>> cutsets = list(nx.all_node_cuts(G))
|
61 |
+
>>> len(cutsets)
|
62 |
+
4
|
63 |
+
>>> all(2 == len(cutset) for cutset in cutsets)
|
64 |
+
True
|
65 |
+
>>> nx.node_connectivity(G)
|
66 |
+
2
|
67 |
+
|
68 |
+
Notes
|
69 |
+
-----
|
70 |
+
This implementation is based on the sequential algorithm for finding all
|
71 |
+
minimum-size separating vertex sets in a graph [1]_. The main idea is to
|
72 |
+
compute minimum cuts using local maximum flow computations among a set
|
73 |
+
of nodes of highest degree and all other non-adjacent nodes in the Graph.
|
74 |
+
Once we find a minimum cut, we add an edge between the high degree
|
75 |
+
node and the target node of the local maximum flow computation to make
|
76 |
+
sure that we will not find that minimum cut again.
|
77 |
+
|
78 |
+
See also
|
79 |
+
--------
|
80 |
+
node_connectivity
|
81 |
+
edmonds_karp
|
82 |
+
shortest_augmenting_path
|
83 |
+
|
84 |
+
References
|
85 |
+
----------
|
86 |
+
.. [1] Kanevsky, A. (1993). Finding all minimum-size separating vertex
|
87 |
+
sets in a graph. Networks 23(6), 533--541.
|
88 |
+
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
|
89 |
+
|
90 |
+
"""
|
91 |
+
if not nx.is_connected(G):
|
92 |
+
raise nx.NetworkXError("Input graph is disconnected.")
|
93 |
+
|
94 |
+
# Address some corner cases first.
|
95 |
+
# For complete Graphs
|
96 |
+
|
97 |
+
if nx.density(G) == 1:
|
98 |
+
yield from ()
|
99 |
+
return
|
100 |
+
|
101 |
+
# Initialize data structures.
|
102 |
+
# Keep track of the cuts already computed so we do not repeat them.
|
103 |
+
seen = []
|
104 |
+
# Even-Tarjan reduction is what we call auxiliary digraph
|
105 |
+
# for node connectivity.
|
106 |
+
H = build_auxiliary_node_connectivity(G)
|
107 |
+
H_nodes = H.nodes # for speed
|
108 |
+
mapping = H.graph["mapping"]
|
109 |
+
# Keep a copy of original predecessors, H will be modified later.
|
110 |
+
# Shallow copy is enough.
|
111 |
+
original_H_pred = copy.copy(H._pred)
|
112 |
+
R = build_residual_network(H, "capacity")
|
113 |
+
kwargs = {"capacity": "capacity", "residual": R}
|
114 |
+
# Define default flow function
|
115 |
+
if flow_func is None:
|
116 |
+
flow_func = default_flow_func
|
117 |
+
if flow_func is shortest_augmenting_path:
|
118 |
+
kwargs["two_phase"] = True
|
119 |
+
# Begin the actual algorithm
|
120 |
+
# step 1: Find node connectivity k of G
|
121 |
+
if k is None:
|
122 |
+
k = nx.node_connectivity(G, flow_func=flow_func)
|
123 |
+
# step 2:
|
124 |
+
# Find k nodes with top degree, call it X:
|
125 |
+
X = {n for n, d in sorted(G.degree(), key=itemgetter(1), reverse=True)[:k]}
|
126 |
+
# Check if X is a k-node-cutset
|
127 |
+
if _is_separating_set(G, X):
|
128 |
+
seen.append(X)
|
129 |
+
yield X
|
130 |
+
|
131 |
+
for x in X:
|
132 |
+
# step 3: Compute local connectivity flow of x with all other
|
133 |
+
# non adjacent nodes in G
|
134 |
+
non_adjacent = set(G) - {x} - set(G[x])
|
135 |
+
for v in non_adjacent:
|
136 |
+
# step 4: compute maximum flow in an Even-Tarjan reduction H of G
|
137 |
+
# and step 5: build the associated residual network R
|
138 |
+
R = flow_func(H, f"{mapping[x]}B", f"{mapping[v]}A", **kwargs)
|
139 |
+
flow_value = R.graph["flow_value"]
|
140 |
+
|
141 |
+
if flow_value == k:
|
142 |
+
# Find the nodes incident to the flow.
|
143 |
+
E1 = flowed_edges = [
|
144 |
+
(u, w) for (u, w, d) in R.edges(data=True) if d["flow"] != 0
|
145 |
+
]
|
146 |
+
VE1 = incident_nodes = {n for edge in E1 for n in edge}
|
147 |
+
# Remove saturated edges form the residual network.
|
148 |
+
# Note that reversed edges are introduced with capacity 0
|
149 |
+
# in the residual graph and they need to be removed too.
|
150 |
+
saturated_edges = [
|
151 |
+
(u, w, d)
|
152 |
+
for (u, w, d) in R.edges(data=True)
|
153 |
+
if d["capacity"] == d["flow"] or d["capacity"] == 0
|
154 |
+
]
|
155 |
+
R.remove_edges_from(saturated_edges)
|
156 |
+
R_closure = nx.transitive_closure(R)
|
157 |
+
# step 6: shrink the strongly connected components of
|
158 |
+
# residual flow network R and call it L.
|
159 |
+
L = nx.condensation(R)
|
160 |
+
cmap = L.graph["mapping"]
|
161 |
+
inv_cmap = defaultdict(list)
|
162 |
+
for n, scc in cmap.items():
|
163 |
+
inv_cmap[scc].append(n)
|
164 |
+
# Find the incident nodes in the condensed graph.
|
165 |
+
VE1 = {cmap[n] for n in VE1}
|
166 |
+
# step 7: Compute all antichains of L;
|
167 |
+
# they map to closed sets in H.
|
168 |
+
# Any edge in H that links a closed set is part of a cutset.
|
169 |
+
for antichain in nx.antichains(L):
|
170 |
+
# Only antichains that are subsets of incident nodes counts.
|
171 |
+
# Lemma 8 in reference.
|
172 |
+
if not set(antichain).issubset(VE1):
|
173 |
+
continue
|
174 |
+
# Nodes in an antichain of the condensation graph of
|
175 |
+
# the residual network map to a closed set of nodes that
|
176 |
+
# define a node partition of the auxiliary digraph H
|
177 |
+
# through taking all of antichain's predecessors in the
|
178 |
+
# transitive closure.
|
179 |
+
S = set()
|
180 |
+
for scc in antichain:
|
181 |
+
S.update(inv_cmap[scc])
|
182 |
+
S_ancestors = set()
|
183 |
+
for n in S:
|
184 |
+
S_ancestors.update(R_closure._pred[n])
|
185 |
+
S.update(S_ancestors)
|
186 |
+
if f"{mapping[x]}B" not in S or f"{mapping[v]}A" in S:
|
187 |
+
continue
|
188 |
+
# Find the cutset that links the node partition (S,~S) in H
|
189 |
+
cutset = set()
|
190 |
+
for u in S:
|
191 |
+
cutset.update((u, w) for w in original_H_pred[u] if w not in S)
|
192 |
+
# The edges in H that form the cutset are internal edges
|
193 |
+
# (ie edges that represent a node of the original graph G)
|
194 |
+
if any(H_nodes[u]["id"] != H_nodes[w]["id"] for u, w in cutset):
|
195 |
+
continue
|
196 |
+
node_cut = {H_nodes[u]["id"] for u, _ in cutset}
|
197 |
+
|
198 |
+
if len(node_cut) == k:
|
199 |
+
# The cut is invalid if it includes internal edges of
|
200 |
+
# end nodes. The other half of Lemma 8 in ref.
|
201 |
+
if x in node_cut or v in node_cut:
|
202 |
+
continue
|
203 |
+
if node_cut not in seen:
|
204 |
+
yield node_cut
|
205 |
+
seen.append(node_cut)
|
206 |
+
|
207 |
+
# Add an edge (x, v) to make sure that we do not
|
208 |
+
# find this cutset again. This is equivalent
|
209 |
+
# of adding the edge in the input graph
|
210 |
+
# G.add_edge(x, v) and then regenerate H and R:
|
211 |
+
# Add edges to the auxiliary digraph.
|
212 |
+
# See build_residual_network for convention we used
|
213 |
+
# in residual graphs.
|
214 |
+
H.add_edge(f"{mapping[x]}B", f"{mapping[v]}A", capacity=1)
|
215 |
+
H.add_edge(f"{mapping[v]}B", f"{mapping[x]}A", capacity=1)
|
216 |
+
# Add edges to the residual network.
|
217 |
+
R.add_edge(f"{mapping[x]}B", f"{mapping[v]}A", capacity=1)
|
218 |
+
R.add_edge(f"{mapping[v]}A", f"{mapping[x]}B", capacity=0)
|
219 |
+
R.add_edge(f"{mapping[v]}B", f"{mapping[x]}A", capacity=1)
|
220 |
+
R.add_edge(f"{mapping[x]}A", f"{mapping[v]}B", capacity=0)
|
221 |
+
|
222 |
+
# Add again the saturated edges to reuse the residual network
|
223 |
+
R.add_edges_from(saturated_edges)
|
224 |
+
|
225 |
+
|
226 |
+
def _is_separating_set(G, cut):
|
227 |
+
"""Assumes that the input graph is connected"""
|
228 |
+
if len(cut) == len(G) - 1:
|
229 |
+
return True
|
230 |
+
|
231 |
+
H = nx.restricted_view(G, cut, [])
|
232 |
+
if nx.is_connected(H):
|
233 |
+
return False
|
234 |
+
return True
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/stoerwagner.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Stoer-Wagner minimum cut algorithm.
|
3 |
+
"""
|
4 |
+
from itertools import islice
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
|
8 |
+
from ...utils import BinaryHeap, arbitrary_element, not_implemented_for
|
9 |
+
|
10 |
+
__all__ = ["stoer_wagner"]
|
11 |
+
|
12 |
+
|
13 |
+
@not_implemented_for("directed")
|
14 |
+
@not_implemented_for("multigraph")
|
15 |
+
@nx._dispatchable(edge_attrs="weight")
|
16 |
+
def stoer_wagner(G, weight="weight", heap=BinaryHeap):
|
17 |
+
r"""Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.
|
18 |
+
|
19 |
+
Determine the minimum edge cut of a connected graph using the
|
20 |
+
Stoer-Wagner algorithm. In weighted cases, all weights must be
|
21 |
+
nonnegative.
|
22 |
+
|
23 |
+
The running time of the algorithm depends on the type of heaps used:
|
24 |
+
|
25 |
+
============== =============================================
|
26 |
+
Type of heap Running time
|
27 |
+
============== =============================================
|
28 |
+
Binary heap $O(n (m + n) \log n)$
|
29 |
+
Fibonacci heap $O(nm + n^2 \log n)$
|
30 |
+
Pairing heap $O(2^{2 \sqrt{\log \log n}} nm + n^2 \log n)$
|
31 |
+
============== =============================================
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
G : NetworkX graph
|
36 |
+
Edges of the graph are expected to have an attribute named by the
|
37 |
+
weight parameter below. If this attribute is not present, the edge is
|
38 |
+
considered to have unit weight.
|
39 |
+
|
40 |
+
weight : string
|
41 |
+
Name of the weight attribute of the edges. If the attribute is not
|
42 |
+
present, unit weight is assumed. Default value: 'weight'.
|
43 |
+
|
44 |
+
heap : class
|
45 |
+
Type of heap to be used in the algorithm. It should be a subclass of
|
46 |
+
:class:`MinHeap` or implement a compatible interface.
|
47 |
+
|
48 |
+
If a stock heap implementation is to be used, :class:`BinaryHeap` is
|
49 |
+
recommended over :class:`PairingHeap` for Python implementations without
|
50 |
+
optimized attribute accesses (e.g., CPython) despite a slower
|
51 |
+
asymptotic running time. For Python implementations with optimized
|
52 |
+
attribute accesses (e.g., PyPy), :class:`PairingHeap` provides better
|
53 |
+
performance. Default value: :class:`BinaryHeap`.
|
54 |
+
|
55 |
+
Returns
|
56 |
+
-------
|
57 |
+
cut_value : integer or float
|
58 |
+
The sum of weights of edges in a minimum cut.
|
59 |
+
|
60 |
+
partition : pair of node lists
|
61 |
+
A partitioning of the nodes that defines a minimum cut.
|
62 |
+
|
63 |
+
Raises
|
64 |
+
------
|
65 |
+
NetworkXNotImplemented
|
66 |
+
If the graph is directed or a multigraph.
|
67 |
+
|
68 |
+
NetworkXError
|
69 |
+
If the graph has less than two nodes, is not connected or has a
|
70 |
+
negative-weighted edge.
|
71 |
+
|
72 |
+
Examples
|
73 |
+
--------
|
74 |
+
>>> G = nx.Graph()
|
75 |
+
>>> G.add_edge("x", "a", weight=3)
|
76 |
+
>>> G.add_edge("x", "b", weight=1)
|
77 |
+
>>> G.add_edge("a", "c", weight=3)
|
78 |
+
>>> G.add_edge("b", "c", weight=5)
|
79 |
+
>>> G.add_edge("b", "d", weight=4)
|
80 |
+
>>> G.add_edge("d", "e", weight=2)
|
81 |
+
>>> G.add_edge("c", "y", weight=2)
|
82 |
+
>>> G.add_edge("e", "y", weight=3)
|
83 |
+
>>> cut_value, partition = nx.stoer_wagner(G)
|
84 |
+
>>> cut_value
|
85 |
+
4
|
86 |
+
"""
|
87 |
+
n = len(G)
|
88 |
+
if n < 2:
|
89 |
+
raise nx.NetworkXError("graph has less than two nodes.")
|
90 |
+
if not nx.is_connected(G):
|
91 |
+
raise nx.NetworkXError("graph is not connected.")
|
92 |
+
|
93 |
+
# Make a copy of the graph for internal use.
|
94 |
+
G = nx.Graph(
|
95 |
+
(u, v, {"weight": e.get(weight, 1)}) for u, v, e in G.edges(data=True) if u != v
|
96 |
+
)
|
97 |
+
G.__networkx_cache__ = None # Disable caching
|
98 |
+
|
99 |
+
for u, v, e in G.edges(data=True):
|
100 |
+
if e["weight"] < 0:
|
101 |
+
raise nx.NetworkXError("graph has a negative-weighted edge.")
|
102 |
+
|
103 |
+
cut_value = float("inf")
|
104 |
+
nodes = set(G)
|
105 |
+
contractions = [] # contracted node pairs
|
106 |
+
|
107 |
+
# Repeatedly pick a pair of nodes to contract until only one node is left.
|
108 |
+
for i in range(n - 1):
|
109 |
+
# Pick an arbitrary node u and create a set A = {u}.
|
110 |
+
u = arbitrary_element(G)
|
111 |
+
A = {u}
|
112 |
+
# Repeatedly pick the node "most tightly connected" to A and add it to
|
113 |
+
# A. The tightness of connectivity of a node not in A is defined by the
|
114 |
+
# of edges connecting it to nodes in A.
|
115 |
+
h = heap() # min-heap emulating a max-heap
|
116 |
+
for v, e in G[u].items():
|
117 |
+
h.insert(v, -e["weight"])
|
118 |
+
# Repeat until all but one node has been added to A.
|
119 |
+
for j in range(n - i - 2):
|
120 |
+
u = h.pop()[0]
|
121 |
+
A.add(u)
|
122 |
+
for v, e in G[u].items():
|
123 |
+
if v not in A:
|
124 |
+
h.insert(v, h.get(v, 0) - e["weight"])
|
125 |
+
# A and the remaining node v define a "cut of the phase". There is a
|
126 |
+
# minimum cut of the original graph that is also a cut of the phase.
|
127 |
+
# Due to contractions in earlier phases, v may in fact represent
|
128 |
+
# multiple nodes in the original graph.
|
129 |
+
v, w = h.min()
|
130 |
+
w = -w
|
131 |
+
if w < cut_value:
|
132 |
+
cut_value = w
|
133 |
+
best_phase = i
|
134 |
+
# Contract v and the last node added to A.
|
135 |
+
contractions.append((u, v))
|
136 |
+
for w, e in G[v].items():
|
137 |
+
if w != u:
|
138 |
+
if w not in G[u]:
|
139 |
+
G.add_edge(u, w, weight=e["weight"])
|
140 |
+
else:
|
141 |
+
G[u][w]["weight"] += e["weight"]
|
142 |
+
G.remove_node(v)
|
143 |
+
|
144 |
+
# Recover the optimal partitioning from the contractions.
|
145 |
+
G = nx.Graph(islice(contractions, best_phase))
|
146 |
+
v = contractions[best_phase][1]
|
147 |
+
G.add_node(v)
|
148 |
+
reachable = set(nx.single_source_shortest_path_length(G, v))
|
149 |
+
partition = (list(reachable), list(nodes - reachable))
|
150 |
+
|
151 |
+
return cut_value, partition
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/connectivity/tests/__init__.py
ADDED
File without changes
|