diff --git "a/llmeval-env/lib/python3.10/site-packages/pandas/core/internals/blocks.py" "b/llmeval-env/lib/python3.10/site-packages/pandas/core/internals/blocks.py" new file mode 100644--- /dev/null +++ "b/llmeval-env/lib/python3.10/site-packages/pandas/core/internals/blocks.py" @@ -0,0 +1,2850 @@ +from __future__ import annotations + +from functools import wraps +import inspect +import re +from typing import ( + TYPE_CHECKING, + Any, + Callable, + Literal, + cast, + final, +) +import warnings +import weakref + +import numpy as np + +from pandas._config import ( + get_option, + using_copy_on_write, + warn_copy_on_write, +) + +from pandas._libs import ( + NaT, + internals as libinternals, + lib, +) +from pandas._libs.internals import ( + BlockPlacement, + BlockValuesRefs, +) +from pandas._libs.missing import NA +from pandas._typing import ( + ArrayLike, + AxisInt, + DtypeBackend, + DtypeObj, + F, + FillnaOptions, + IgnoreRaise, + InterpolateOptions, + QuantileInterpolation, + Self, + Shape, + npt, +) +from pandas.errors import AbstractMethodError +from pandas.util._decorators import cache_readonly +from pandas.util._exceptions import find_stack_level +from pandas.util._validators import validate_bool_kwarg + +from pandas.core.dtypes.astype import ( + astype_array_safe, + astype_is_view, +) +from pandas.core.dtypes.cast import ( + LossySetitemError, + can_hold_element, + convert_dtypes, + find_result_type, + maybe_downcast_to_dtype, + np_can_hold_element, +) +from pandas.core.dtypes.common import ( + is_1d_only_ea_dtype, + is_float_dtype, + is_integer_dtype, + is_list_like, + is_scalar, + is_string_dtype, +) +from pandas.core.dtypes.dtypes import ( + DatetimeTZDtype, + ExtensionDtype, + IntervalDtype, + NumpyEADtype, + PeriodDtype, +) +from pandas.core.dtypes.generic import ( + ABCDataFrame, + ABCIndex, + ABCNumpyExtensionArray, + ABCSeries, +) +from pandas.core.dtypes.missing import ( + is_valid_na_for_dtype, + isna, + na_value_for_dtype, +) + +from pandas.core import missing +import pandas.core.algorithms as algos +from pandas.core.array_algos.putmask import ( + extract_bool_array, + putmask_inplace, + putmask_without_repeat, + setitem_datetimelike_compat, + validate_putmask, +) +from pandas.core.array_algos.quantile import quantile_compat +from pandas.core.array_algos.replace import ( + compare_or_regex_search, + replace_regex, + should_use_regex, +) +from pandas.core.array_algos.transforms import shift +from pandas.core.arrays import ( + Categorical, + DatetimeArray, + ExtensionArray, + IntervalArray, + NumpyExtensionArray, + PeriodArray, + TimedeltaArray, +) +from pandas.core.base import PandasObject +import pandas.core.common as com +from pandas.core.computation import expressions +from pandas.core.construction import ( + ensure_wrapped_if_datetimelike, + extract_array, +) +from pandas.core.indexers import check_setitem_lengths +from pandas.core.indexes.base import get_values_for_csv + +if TYPE_CHECKING: + from collections.abc import ( + Iterable, + Sequence, + ) + + from pandas.core.api import Index + from pandas.core.arrays._mixins import NDArrayBackedExtensionArray + +# comparison is faster than is_object_dtype +_dtype_obj = np.dtype("object") + + +COW_WARNING_GENERAL_MSG = """\ +Setting a value on a view: behaviour will change in pandas 3.0. +You are mutating a Series or DataFrame object, and currently this mutation will +also have effect on other Series or DataFrame objects that share data with this +object. In pandas 3.0 (with Copy-on-Write), updating one Series or DataFrame object +will never modify another. +""" + + +COW_WARNING_SETITEM_MSG = """\ +Setting a value on a view: behaviour will change in pandas 3.0. +Currently, the mutation will also have effect on the object that shares data +with this object. For example, when setting a value in a Series that was +extracted from a column of a DataFrame, that DataFrame will also be updated: + + ser = df["col"] + ser[0] = 0 <--- in pandas 2, this also updates `df` + +In pandas 3.0 (with Copy-on-Write), updating one Series/DataFrame will never +modify another, and thus in the example above, `df` will not be changed. +""" + + +def maybe_split(meth: F) -> F: + """ + If we have a multi-column block, split and operate block-wise. Otherwise + use the original method. + """ + + @wraps(meth) + def newfunc(self, *args, **kwargs) -> list[Block]: + if self.ndim == 1 or self.shape[0] == 1: + return meth(self, *args, **kwargs) + else: + # Split and operate column-by-column + return self.split_and_operate(meth, *args, **kwargs) + + return cast(F, newfunc) + + +class Block(PandasObject, libinternals.Block): + """ + Canonical n-dimensional unit of homogeneous dtype contained in a pandas + data structure + + Index-ignorant; let the container take care of that + """ + + values: np.ndarray | ExtensionArray + ndim: int + refs: BlockValuesRefs + __init__: Callable + + __slots__ = () + is_numeric = False + + @final + @cache_readonly + def _validate_ndim(self) -> bool: + """ + We validate dimension for blocks that can hold 2D values, which for now + means numpy dtypes or DatetimeTZDtype. + """ + dtype = self.dtype + return not isinstance(dtype, ExtensionDtype) or isinstance( + dtype, DatetimeTZDtype + ) + + @final + @cache_readonly + def is_object(self) -> bool: + return self.values.dtype == _dtype_obj + + @final + @cache_readonly + def is_extension(self) -> bool: + return not lib.is_np_dtype(self.values.dtype) + + @final + @cache_readonly + def _can_consolidate(self) -> bool: + # We _could_ consolidate for DatetimeTZDtype but don't for now. + return not self.is_extension + + @final + @cache_readonly + def _consolidate_key(self): + return self._can_consolidate, self.dtype.name + + @final + @cache_readonly + def _can_hold_na(self) -> bool: + """ + Can we store NA values in this Block? + """ + dtype = self.dtype + if isinstance(dtype, np.dtype): + return dtype.kind not in "iub" + return dtype._can_hold_na + + @final + @property + def is_bool(self) -> bool: + """ + We can be bool if a) we are bool dtype or b) object dtype with bool objects. + """ + return self.values.dtype == np.dtype(bool) + + @final + def external_values(self): + return external_values(self.values) + + @final + @cache_readonly + def fill_value(self): + # Used in reindex_indexer + return na_value_for_dtype(self.dtype, compat=False) + + @final + def _standardize_fill_value(self, value): + # if we are passed a scalar None, convert it here + if self.dtype != _dtype_obj and is_valid_na_for_dtype(value, self.dtype): + value = self.fill_value + return value + + @property + def mgr_locs(self) -> BlockPlacement: + return self._mgr_locs + + @mgr_locs.setter + def mgr_locs(self, new_mgr_locs: BlockPlacement) -> None: + self._mgr_locs = new_mgr_locs + + @final + def make_block( + self, + values, + placement: BlockPlacement | None = None, + refs: BlockValuesRefs | None = None, + ) -> Block: + """ + Create a new block, with type inference propagate any values that are + not specified + """ + if placement is None: + placement = self._mgr_locs + if self.is_extension: + values = ensure_block_shape(values, ndim=self.ndim) + + return new_block(values, placement=placement, ndim=self.ndim, refs=refs) + + @final + def make_block_same_class( + self, + values, + placement: BlockPlacement | None = None, + refs: BlockValuesRefs | None = None, + ) -> Self: + """Wrap given values in a block of same type as self.""" + # Pre-2.0 we called ensure_wrapped_if_datetimelike because fastparquet + # relied on it, as of 2.0 the caller is responsible for this. + if placement is None: + placement = self._mgr_locs + + # We assume maybe_coerce_values has already been called + return type(self)(values, placement=placement, ndim=self.ndim, refs=refs) + + @final + def __repr__(self) -> str: + # don't want to print out all of the items here + name = type(self).__name__ + if self.ndim == 1: + result = f"{name}: {len(self)} dtype: {self.dtype}" + else: + shape = " x ".join([str(s) for s in self.shape]) + result = f"{name}: {self.mgr_locs.indexer}, {shape}, dtype: {self.dtype}" + + return result + + @final + def __len__(self) -> int: + return len(self.values) + + @final + def slice_block_columns(self, slc: slice) -> Self: + """ + Perform __getitem__-like, return result as block. + """ + new_mgr_locs = self._mgr_locs[slc] + + new_values = self._slice(slc) + refs = self.refs + return type(self)(new_values, new_mgr_locs, self.ndim, refs=refs) + + @final + def take_block_columns(self, indices: npt.NDArray[np.intp]) -> Self: + """ + Perform __getitem__-like, return result as block. + + Only supports slices that preserve dimensionality. + """ + # Note: only called from is from internals.concat, and we can verify + # that never happens with 1-column blocks, i.e. never for ExtensionBlock. + + new_mgr_locs = self._mgr_locs[indices] + + new_values = self._slice(indices) + return type(self)(new_values, new_mgr_locs, self.ndim, refs=None) + + @final + def getitem_block_columns( + self, slicer: slice, new_mgr_locs: BlockPlacement, ref_inplace_op: bool = False + ) -> Self: + """ + Perform __getitem__-like, return result as block. + + Only supports slices that preserve dimensionality. + """ + new_values = self._slice(slicer) + refs = self.refs if not ref_inplace_op or self.refs.has_reference() else None + return type(self)(new_values, new_mgr_locs, self.ndim, refs=refs) + + @final + def _can_hold_element(self, element: Any) -> bool: + """require the same dtype as ourselves""" + element = extract_array(element, extract_numpy=True) + return can_hold_element(self.values, element) + + @final + def should_store(self, value: ArrayLike) -> bool: + """ + Should we set self.values[indexer] = value inplace or do we need to cast? + + Parameters + ---------- + value : np.ndarray or ExtensionArray + + Returns + ------- + bool + """ + return value.dtype == self.dtype + + # --------------------------------------------------------------------- + # Apply/Reduce and Helpers + + @final + def apply(self, func, **kwargs) -> list[Block]: + """ + apply the function to my values; return a block if we are not + one + """ + result = func(self.values, **kwargs) + + result = maybe_coerce_values(result) + return self._split_op_result(result) + + @final + def reduce(self, func) -> list[Block]: + # We will apply the function and reshape the result into a single-row + # Block with the same mgr_locs; squeezing will be done at a higher level + assert self.ndim == 2 + + result = func(self.values) + + if self.values.ndim == 1: + res_values = result + else: + res_values = result.reshape(-1, 1) + + nb = self.make_block(res_values) + return [nb] + + @final + def _split_op_result(self, result: ArrayLike) -> list[Block]: + # See also: split_and_operate + if result.ndim > 1 and isinstance(result.dtype, ExtensionDtype): + # TODO(EA2D): unnecessary with 2D EAs + # if we get a 2D ExtensionArray, we need to split it into 1D pieces + nbs = [] + for i, loc in enumerate(self._mgr_locs): + if not is_1d_only_ea_dtype(result.dtype): + vals = result[i : i + 1] + else: + vals = result[i] + + bp = BlockPlacement(loc) + block = self.make_block(values=vals, placement=bp) + nbs.append(block) + return nbs + + nb = self.make_block(result) + + return [nb] + + @final + def _split(self) -> list[Block]: + """ + Split a block into a list of single-column blocks. + """ + assert self.ndim == 2 + + new_blocks = [] + for i, ref_loc in enumerate(self._mgr_locs): + vals = self.values[slice(i, i + 1)] + + bp = BlockPlacement(ref_loc) + nb = type(self)(vals, placement=bp, ndim=2, refs=self.refs) + new_blocks.append(nb) + return new_blocks + + @final + def split_and_operate(self, func, *args, **kwargs) -> list[Block]: + """ + Split the block and apply func column-by-column. + + Parameters + ---------- + func : Block method + *args + **kwargs + + Returns + ------- + List[Block] + """ + assert self.ndim == 2 and self.shape[0] != 1 + + res_blocks = [] + for nb in self._split(): + rbs = func(nb, *args, **kwargs) + res_blocks.extend(rbs) + return res_blocks + + # --------------------------------------------------------------------- + # Up/Down-casting + + @final + def coerce_to_target_dtype(self, other, warn_on_upcast: bool = False) -> Block: + """ + coerce the current block to a dtype compat for other + we will return a block, possibly object, and not raise + + we can also safely try to coerce to the same dtype + and will receive the same block + """ + new_dtype = find_result_type(self.values.dtype, other) + if new_dtype == self.dtype: + # GH#52927 avoid RecursionError + raise AssertionError( + "Something has gone wrong, please report a bug at " + "https://github.com/pandas-dev/pandas/issues" + ) + + # In a future version of pandas, the default will be that + # setting `nan` into an integer series won't raise. + if ( + is_scalar(other) + and is_integer_dtype(self.values.dtype) + and isna(other) + and other is not NaT + and not ( + isinstance(other, (np.datetime64, np.timedelta64)) and np.isnat(other) + ) + ): + warn_on_upcast = False + elif ( + isinstance(other, np.ndarray) + and other.ndim == 1 + and is_integer_dtype(self.values.dtype) + and is_float_dtype(other.dtype) + and lib.has_only_ints_or_nan(other) + ): + warn_on_upcast = False + + if warn_on_upcast: + warnings.warn( + f"Setting an item of incompatible dtype is deprecated " + "and will raise an error in a future version of pandas. " + f"Value '{other}' has dtype incompatible with {self.values.dtype}, " + "please explicitly cast to a compatible dtype first.", + FutureWarning, + stacklevel=find_stack_level(), + ) + if self.values.dtype == new_dtype: + raise AssertionError( + f"Did not expect new dtype {new_dtype} to equal self.dtype " + f"{self.values.dtype}. Please report a bug at " + "https://github.com/pandas-dev/pandas/issues." + ) + return self.astype(new_dtype, copy=False) + + @final + def _maybe_downcast( + self, + blocks: list[Block], + downcast, + using_cow: bool, + caller: str, + ) -> list[Block]: + if downcast is False: + return blocks + + if self.dtype == _dtype_obj: + # TODO: does it matter that self.dtype might not match blocks[i].dtype? + # GH#44241 We downcast regardless of the argument; + # respecting 'downcast=None' may be worthwhile at some point, + # but ATM it breaks too much existing code. + # split and convert the blocks + + if caller == "fillna" and get_option("future.no_silent_downcasting"): + return blocks + + nbs = extend_blocks( + [blk.convert(using_cow=using_cow, copy=not using_cow) for blk in blocks] + ) + if caller == "fillna": + if len(nbs) != len(blocks) or not all( + x.dtype == y.dtype for x, y in zip(nbs, blocks) + ): + # GH#54261 + warnings.warn( + "Downcasting object dtype arrays on .fillna, .ffill, .bfill " + "is deprecated and will change in a future version. " + "Call result.infer_objects(copy=False) instead. " + "To opt-in to the future " + "behavior, set " + "`pd.set_option('future.no_silent_downcasting', True)`", + FutureWarning, + stacklevel=find_stack_level(), + ) + + return nbs + + elif downcast is None: + return blocks + elif caller == "where" and get_option("future.no_silent_downcasting") is True: + return blocks + else: + nbs = extend_blocks([b._downcast_2d(downcast, using_cow) for b in blocks]) + + # When _maybe_downcast is called with caller="where", it is either + # a) with downcast=False, which is a no-op (the desired future behavior) + # b) with downcast="infer", which is _not_ passed by the user. + # In the latter case the future behavior is to stop doing inference, + # so we issue a warning if and only if some inference occurred. + if caller == "where": + # GH#53656 + if len(blocks) != len(nbs) or any( + left.dtype != right.dtype for left, right in zip(blocks, nbs) + ): + # In this case _maybe_downcast was _not_ a no-op, so the behavior + # will change, so we issue a warning. + warnings.warn( + "Downcasting behavior in Series and DataFrame methods 'where', " + "'mask', and 'clip' is deprecated. In a future " + "version this will not infer object dtypes or cast all-round " + "floats to integers. Instead call " + "result.infer_objects(copy=False) for object inference, " + "or cast round floats explicitly. To opt-in to the future " + "behavior, set " + "`pd.set_option('future.no_silent_downcasting', True)`", + FutureWarning, + stacklevel=find_stack_level(), + ) + + return nbs + + @final + @maybe_split + def _downcast_2d(self, dtype, using_cow: bool = False) -> list[Block]: + """ + downcast specialized to 2D case post-validation. + + Refactored to allow use of maybe_split. + """ + new_values = maybe_downcast_to_dtype(self.values, dtype=dtype) + new_values = maybe_coerce_values(new_values) + refs = self.refs if new_values is self.values else None + return [self.make_block(new_values, refs=refs)] + + @final + def convert( + self, + *, + copy: bool = True, + using_cow: bool = False, + ) -> list[Block]: + """ + Attempt to coerce any object types to better types. Return a copy + of the block (if copy = True). + """ + if not self.is_object: + if not copy and using_cow: + return [self.copy(deep=False)] + return [self.copy()] if copy else [self] + + if self.ndim != 1 and self.shape[0] != 1: + blocks = self.split_and_operate( + Block.convert, copy=copy, using_cow=using_cow + ) + if all(blk.dtype.kind == "O" for blk in blocks): + # Avoid fragmenting the block if convert is a no-op + if using_cow: + return [self.copy(deep=False)] + return [self.copy()] if copy else [self] + return blocks + + values = self.values + if values.ndim == 2: + # the check above ensures we only get here with values.shape[0] == 1, + # avoid doing .ravel as that might make a copy + values = values[0] + + res_values = lib.maybe_convert_objects( + values, # type: ignore[arg-type] + convert_non_numeric=True, + ) + refs = None + if copy and res_values is values: + res_values = values.copy() + elif res_values is values: + refs = self.refs + + res_values = ensure_block_shape(res_values, self.ndim) + res_values = maybe_coerce_values(res_values) + return [self.make_block(res_values, refs=refs)] + + def convert_dtypes( + self, + copy: bool, + using_cow: bool, + infer_objects: bool = True, + convert_string: bool = True, + convert_integer: bool = True, + convert_boolean: bool = True, + convert_floating: bool = True, + dtype_backend: DtypeBackend = "numpy_nullable", + ) -> list[Block]: + if infer_objects and self.is_object: + blks = self.convert(copy=False, using_cow=using_cow) + else: + blks = [self] + + if not any( + [convert_floating, convert_integer, convert_boolean, convert_string] + ): + return [b.copy(deep=copy) for b in blks] + + rbs = [] + for blk in blks: + # Determine dtype column by column + sub_blks = [blk] if blk.ndim == 1 or self.shape[0] == 1 else blk._split() + dtypes = [ + convert_dtypes( + b.values, + convert_string, + convert_integer, + convert_boolean, + convert_floating, + infer_objects, + dtype_backend, + ) + for b in sub_blks + ] + if all(dtype == self.dtype for dtype in dtypes): + # Avoid block splitting if no dtype changes + rbs.append(blk.copy(deep=copy)) + continue + + for dtype, b in zip(dtypes, sub_blks): + rbs.append(b.astype(dtype=dtype, copy=copy, squeeze=b.ndim != 1)) + return rbs + + # --------------------------------------------------------------------- + # Array-Like Methods + + @final + @cache_readonly + def dtype(self) -> DtypeObj: + return self.values.dtype + + @final + def astype( + self, + dtype: DtypeObj, + copy: bool = False, + errors: IgnoreRaise = "raise", + using_cow: bool = False, + squeeze: bool = False, + ) -> Block: + """ + Coerce to the new dtype. + + Parameters + ---------- + dtype : np.dtype or ExtensionDtype + copy : bool, default False + copy if indicated + errors : str, {'raise', 'ignore'}, default 'raise' + - ``raise`` : allow exceptions to be raised + - ``ignore`` : suppress exceptions. On error return original object + using_cow: bool, default False + Signaling if copy on write copy logic is used. + squeeze : bool, default False + squeeze values to ndim=1 if only one column is given + + Returns + ------- + Block + """ + values = self.values + if squeeze and values.ndim == 2 and is_1d_only_ea_dtype(dtype): + if values.shape[0] != 1: + raise ValueError("Can not squeeze with more than one column.") + values = values[0, :] # type: ignore[call-overload] + + new_values = astype_array_safe(values, dtype, copy=copy, errors=errors) + + new_values = maybe_coerce_values(new_values) + + refs = None + if (using_cow or not copy) and astype_is_view(values.dtype, new_values.dtype): + refs = self.refs + + newb = self.make_block(new_values, refs=refs) + if newb.shape != self.shape: + raise TypeError( + f"cannot set astype for copy = [{copy}] for dtype " + f"({self.dtype.name} [{self.shape}]) to different shape " + f"({newb.dtype.name} [{newb.shape}])" + ) + return newb + + @final + def get_values_for_csv( + self, *, float_format, date_format, decimal, na_rep: str = "nan", quoting=None + ) -> Block: + """convert to our native types format""" + result = get_values_for_csv( + self.values, + na_rep=na_rep, + quoting=quoting, + float_format=float_format, + date_format=date_format, + decimal=decimal, + ) + return self.make_block(result) + + @final + def copy(self, deep: bool = True) -> Self: + """copy constructor""" + values = self.values + refs: BlockValuesRefs | None + if deep: + values = values.copy() + refs = None + else: + refs = self.refs + return type(self)(values, placement=self._mgr_locs, ndim=self.ndim, refs=refs) + + # --------------------------------------------------------------------- + # Copy-on-Write Helpers + + @final + def _maybe_copy(self, using_cow: bool, inplace: bool) -> Self: + if using_cow and inplace: + deep = self.refs.has_reference() + blk = self.copy(deep=deep) + else: + blk = self if inplace else self.copy() + return blk + + @final + def _get_refs_and_copy(self, using_cow: bool, inplace: bool): + refs = None + copy = not inplace + if inplace: + if using_cow and self.refs.has_reference(): + copy = True + else: + refs = self.refs + return copy, refs + + # --------------------------------------------------------------------- + # Replace + + @final + def replace( + self, + to_replace, + value, + inplace: bool = False, + # mask may be pre-computed if we're called from replace_list + mask: npt.NDArray[np.bool_] | None = None, + using_cow: bool = False, + already_warned=None, + ) -> list[Block]: + """ + replace the to_replace value with value, possible to create new + blocks here this is just a call to putmask. + """ + + # Note: the checks we do in NDFrame.replace ensure we never get + # here with listlike to_replace or value, as those cases + # go through replace_list + values = self.values + + if isinstance(values, Categorical): + # TODO: avoid special-casing + # GH49404 + blk = self._maybe_copy(using_cow, inplace) + values = cast(Categorical, blk.values) + values._replace(to_replace=to_replace, value=value, inplace=True) + return [blk] + + if not self._can_hold_element(to_replace): + # We cannot hold `to_replace`, so we know immediately that + # replacing it is a no-op. + # Note: If to_replace were a list, NDFrame.replace would call + # replace_list instead of replace. + if using_cow: + return [self.copy(deep=False)] + else: + return [self] if inplace else [self.copy()] + + if mask is None: + mask = missing.mask_missing(values, to_replace) + if not mask.any(): + # Note: we get here with test_replace_extension_other incorrectly + # bc _can_hold_element is incorrect. + if using_cow: + return [self.copy(deep=False)] + else: + return [self] if inplace else [self.copy()] + + elif self._can_hold_element(value): + # TODO(CoW): Maybe split here as well into columns where mask has True + # and rest? + blk = self._maybe_copy(using_cow, inplace) + putmask_inplace(blk.values, mask, value) + if ( + inplace + and warn_copy_on_write() + and already_warned is not None + and not already_warned.warned_already + ): + if self.refs.has_reference(): + warnings.warn( + COW_WARNING_GENERAL_MSG, + FutureWarning, + stacklevel=find_stack_level(), + ) + already_warned.warned_already = True + + if not (self.is_object and value is None): + # if the user *explicitly* gave None, we keep None, otherwise + # may downcast to NaN + if get_option("future.no_silent_downcasting") is True: + blocks = [blk] + else: + blocks = blk.convert(copy=False, using_cow=using_cow) + if len(blocks) > 1 or blocks[0].dtype != blk.dtype: + warnings.warn( + # GH#54710 + "Downcasting behavior in `replace` is deprecated and " + "will be removed in a future version. To retain the old " + "behavior, explicitly call " + "`result.infer_objects(copy=False)`. " + "To opt-in to the future " + "behavior, set " + "`pd.set_option('future.no_silent_downcasting', True)`", + FutureWarning, + stacklevel=find_stack_level(), + ) + else: + blocks = [blk] + return blocks + + elif self.ndim == 1 or self.shape[0] == 1: + if value is None or value is NA: + blk = self.astype(np.dtype(object)) + else: + blk = self.coerce_to_target_dtype(value) + return blk.replace( + to_replace=to_replace, + value=value, + inplace=True, + mask=mask, + ) + + else: + # split so that we only upcast where necessary + blocks = [] + for i, nb in enumerate(self._split()): + blocks.extend( + type(self).replace( + nb, + to_replace=to_replace, + value=value, + inplace=True, + mask=mask[i : i + 1], + using_cow=using_cow, + ) + ) + return blocks + + @final + def _replace_regex( + self, + to_replace, + value, + inplace: bool = False, + mask=None, + using_cow: bool = False, + already_warned=None, + ) -> list[Block]: + """ + Replace elements by the given value. + + Parameters + ---------- + to_replace : object or pattern + Scalar to replace or regular expression to match. + value : object + Replacement object. + inplace : bool, default False + Perform inplace modification. + mask : array-like of bool, optional + True indicate corresponding element is ignored. + using_cow: bool, default False + Specifying if copy on write is enabled. + + Returns + ------- + List[Block] + """ + if not self._can_hold_element(to_replace): + # i.e. only if self.is_object is True, but could in principle include a + # String ExtensionBlock + if using_cow: + return [self.copy(deep=False)] + return [self] if inplace else [self.copy()] + + rx = re.compile(to_replace) + + block = self._maybe_copy(using_cow, inplace) + + replace_regex(block.values, rx, value, mask) + + if ( + inplace + and warn_copy_on_write() + and already_warned is not None + and not already_warned.warned_already + ): + if self.refs.has_reference(): + warnings.warn( + COW_WARNING_GENERAL_MSG, + FutureWarning, + stacklevel=find_stack_level(), + ) + already_warned.warned_already = True + + nbs = block.convert(copy=False, using_cow=using_cow) + opt = get_option("future.no_silent_downcasting") + if (len(nbs) > 1 or nbs[0].dtype != block.dtype) and not opt: + warnings.warn( + # GH#54710 + "Downcasting behavior in `replace` is deprecated and " + "will be removed in a future version. To retain the old " + "behavior, explicitly call `result.infer_objects(copy=False)`. " + "To opt-in to the future " + "behavior, set " + "`pd.set_option('future.no_silent_downcasting', True)`", + FutureWarning, + stacklevel=find_stack_level(), + ) + return nbs + + @final + def replace_list( + self, + src_list: Iterable[Any], + dest_list: Sequence[Any], + inplace: bool = False, + regex: bool = False, + using_cow: bool = False, + already_warned=None, + ) -> list[Block]: + """ + See BlockManager.replace_list docstring. + """ + values = self.values + + if isinstance(values, Categorical): + # TODO: avoid special-casing + # GH49404 + blk = self._maybe_copy(using_cow, inplace) + values = cast(Categorical, blk.values) + values._replace(to_replace=src_list, value=dest_list, inplace=True) + return [blk] + + # Exclude anything that we know we won't contain + pairs = [ + (x, y) for x, y in zip(src_list, dest_list) if self._can_hold_element(x) + ] + if not len(pairs): + if using_cow: + return [self.copy(deep=False)] + # shortcut, nothing to replace + return [self] if inplace else [self.copy()] + + src_len = len(pairs) - 1 + + if is_string_dtype(values.dtype): + # Calculate the mask once, prior to the call of comp + # in order to avoid repeating the same computations + na_mask = ~isna(values) + masks: Iterable[npt.NDArray[np.bool_]] = ( + extract_bool_array( + cast( + ArrayLike, + compare_or_regex_search( + values, s[0], regex=regex, mask=na_mask + ), + ) + ) + for s in pairs + ) + else: + # GH#38086 faster if we know we dont need to check for regex + masks = (missing.mask_missing(values, s[0]) for s in pairs) + # Materialize if inplace = True, since the masks can change + # as we replace + if inplace: + masks = list(masks) + + if using_cow: + # Don't set up refs here, otherwise we will think that we have + # references when we check again later + rb = [self] + else: + rb = [self if inplace else self.copy()] + + if ( + inplace + and warn_copy_on_write() + and already_warned is not None + and not already_warned.warned_already + ): + if self.refs.has_reference(): + warnings.warn( + COW_WARNING_GENERAL_MSG, + FutureWarning, + stacklevel=find_stack_level(), + ) + already_warned.warned_already = True + + opt = get_option("future.no_silent_downcasting") + for i, ((src, dest), mask) in enumerate(zip(pairs, masks)): + convert = i == src_len # only convert once at the end + new_rb: list[Block] = [] + + # GH-39338: _replace_coerce can split a block into + # single-column blocks, so track the index so we know + # where to index into the mask + for blk_num, blk in enumerate(rb): + if len(rb) == 1: + m = mask + else: + mib = mask + assert not isinstance(mib, bool) + m = mib[blk_num : blk_num + 1] + + # error: Argument "mask" to "_replace_coerce" of "Block" has + # incompatible type "Union[ExtensionArray, ndarray[Any, Any], bool]"; + # expected "ndarray[Any, dtype[bool_]]" + result = blk._replace_coerce( + to_replace=src, + value=dest, + mask=m, + inplace=inplace, + regex=regex, + using_cow=using_cow, + ) + + if using_cow and i != src_len: + # This is ugly, but we have to get rid of intermediate refs + # that did not go out of scope yet, otherwise we will trigger + # many unnecessary copies + for b in result: + ref = weakref.ref(b) + b.refs.referenced_blocks.pop( + b.refs.referenced_blocks.index(ref) + ) + + if ( + not opt + and convert + and blk.is_object + and not all(x is None for x in dest_list) + ): + # GH#44498 avoid unwanted cast-back + nbs = [] + for res_blk in result: + converted = res_blk.convert( + copy=True and not using_cow, using_cow=using_cow + ) + if len(converted) > 1 or converted[0].dtype != res_blk.dtype: + warnings.warn( + # GH#54710 + "Downcasting behavior in `replace` is deprecated " + "and will be removed in a future version. To " + "retain the old behavior, explicitly call " + "`result.infer_objects(copy=False)`. " + "To opt-in to the future " + "behavior, set " + "`pd.set_option('future.no_silent_downcasting', True)`", + FutureWarning, + stacklevel=find_stack_level(), + ) + nbs.extend(converted) + result = nbs + new_rb.extend(result) + rb = new_rb + return rb + + @final + def _replace_coerce( + self, + to_replace, + value, + mask: npt.NDArray[np.bool_], + inplace: bool = True, + regex: bool = False, + using_cow: bool = False, + ) -> list[Block]: + """ + Replace value corresponding to the given boolean array with another + value. + + Parameters + ---------- + to_replace : object or pattern + Scalar to replace or regular expression to match. + value : object + Replacement object. + mask : np.ndarray[bool] + True indicate corresponding element is ignored. + inplace : bool, default True + Perform inplace modification. + regex : bool, default False + If true, perform regular expression substitution. + + Returns + ------- + List[Block] + """ + if should_use_regex(regex, to_replace): + return self._replace_regex( + to_replace, + value, + inplace=inplace, + mask=mask, + ) + else: + if value is None: + # gh-45601, gh-45836, gh-46634 + if mask.any(): + has_ref = self.refs.has_reference() + nb = self.astype(np.dtype(object), copy=False, using_cow=using_cow) + if (nb is self or using_cow) and not inplace: + nb = nb.copy() + elif inplace and has_ref and nb.refs.has_reference() and using_cow: + # no copy in astype and we had refs before + nb = nb.copy() + putmask_inplace(nb.values, mask, value) + return [nb] + if using_cow: + return [self] + return [self] if inplace else [self.copy()] + return self.replace( + to_replace=to_replace, + value=value, + inplace=inplace, + mask=mask, + using_cow=using_cow, + ) + + # --------------------------------------------------------------------- + # 2D Methods - Shared by NumpyBlock and NDArrayBackedExtensionBlock + # but not ExtensionBlock + + def _maybe_squeeze_arg(self, arg: np.ndarray) -> np.ndarray: + """ + For compatibility with 1D-only ExtensionArrays. + """ + return arg + + def _unwrap_setitem_indexer(self, indexer): + """ + For compatibility with 1D-only ExtensionArrays. + """ + return indexer + + # NB: this cannot be made cache_readonly because in mgr.set_values we pin + # new .values that can have different shape GH#42631 + @property + def shape(self) -> Shape: + return self.values.shape + + def iget(self, i: int | tuple[int, int] | tuple[slice, int]) -> np.ndarray: + # In the case where we have a tuple[slice, int], the slice will always + # be slice(None) + # Note: only reached with self.ndim == 2 + # Invalid index type "Union[int, Tuple[int, int], Tuple[slice, int]]" + # for "Union[ndarray[Any, Any], ExtensionArray]"; expected type + # "Union[int, integer[Any]]" + return self.values[i] # type: ignore[index] + + def _slice( + self, slicer: slice | npt.NDArray[np.bool_] | npt.NDArray[np.intp] + ) -> ArrayLike: + """return a slice of my values""" + + return self.values[slicer] + + def set_inplace(self, locs, values: ArrayLike, copy: bool = False) -> None: + """ + Modify block values in-place with new item value. + + If copy=True, first copy the underlying values in place before modifying + (for Copy-on-Write). + + Notes + ----- + `set_inplace` never creates a new array or new Block, whereas `setitem` + _may_ create a new array and always creates a new Block. + + Caller is responsible for checking values.dtype == self.dtype. + """ + if copy: + self.values = self.values.copy() + self.values[locs] = values + + @final + def take_nd( + self, + indexer: npt.NDArray[np.intp], + axis: AxisInt, + new_mgr_locs: BlockPlacement | None = None, + fill_value=lib.no_default, + ) -> Block: + """ + Take values according to indexer and return them as a block. + """ + values = self.values + + if fill_value is lib.no_default: + fill_value = self.fill_value + allow_fill = False + else: + allow_fill = True + + # Note: algos.take_nd has upcast logic similar to coerce_to_target_dtype + new_values = algos.take_nd( + values, indexer, axis=axis, allow_fill=allow_fill, fill_value=fill_value + ) + + # Called from three places in managers, all of which satisfy + # these assertions + if isinstance(self, ExtensionBlock): + # NB: in this case, the 'axis' kwarg will be ignored in the + # algos.take_nd call above. + assert not (self.ndim == 1 and new_mgr_locs is None) + assert not (axis == 0 and new_mgr_locs is None) + + if new_mgr_locs is None: + new_mgr_locs = self._mgr_locs + + if new_values.dtype != self.dtype: + return self.make_block(new_values, new_mgr_locs) + else: + return self.make_block_same_class(new_values, new_mgr_locs) + + def _unstack( + self, + unstacker, + fill_value, + new_placement: npt.NDArray[np.intp], + needs_masking: npt.NDArray[np.bool_], + ): + """ + Return a list of unstacked blocks of self + + Parameters + ---------- + unstacker : reshape._Unstacker + fill_value : int + Only used in ExtensionBlock._unstack + new_placement : np.ndarray[np.intp] + allow_fill : bool + needs_masking : np.ndarray[bool] + + Returns + ------- + blocks : list of Block + New blocks of unstacked values. + mask : array-like of bool + The mask of columns of `blocks` we should keep. + """ + new_values, mask = unstacker.get_new_values( + self.values.T, fill_value=fill_value + ) + + mask = mask.any(0) + # TODO: in all tests we have mask.all(); can we rely on that? + + # Note: these next two lines ensure that + # mask.sum() == sum(len(nb.mgr_locs) for nb in blocks) + # which the calling function needs in order to pass verify_integrity=False + # to the BlockManager constructor + new_values = new_values.T[mask] + new_placement = new_placement[mask] + + bp = BlockPlacement(new_placement) + blocks = [new_block_2d(new_values, placement=bp)] + return blocks, mask + + # --------------------------------------------------------------------- + + def setitem(self, indexer, value, using_cow: bool = False) -> Block: + """ + Attempt self.values[indexer] = value, possibly creating a new array. + + Parameters + ---------- + indexer : tuple, list-like, array-like, slice, int + The subset of self.values to set + value : object + The value being set + using_cow: bool, default False + Signaling if CoW is used. + + Returns + ------- + Block + + Notes + ----- + `indexer` is a direct slice/positional indexer. `value` must + be a compatible shape. + """ + + value = self._standardize_fill_value(value) + + values = cast(np.ndarray, self.values) + if self.ndim == 2: + values = values.T + + # length checking + check_setitem_lengths(indexer, value, values) + + if self.dtype != _dtype_obj: + # GH48933: extract_array would convert a pd.Series value to np.ndarray + value = extract_array(value, extract_numpy=True) + try: + casted = np_can_hold_element(values.dtype, value) + except LossySetitemError: + # current dtype cannot store value, coerce to common dtype + nb = self.coerce_to_target_dtype(value, warn_on_upcast=True) + return nb.setitem(indexer, value) + else: + if self.dtype == _dtype_obj: + # TODO: avoid having to construct values[indexer] + vi = values[indexer] + if lib.is_list_like(vi): + # checking lib.is_scalar here fails on + # test_iloc_setitem_custom_object + casted = setitem_datetimelike_compat(values, len(vi), casted) + + self = self._maybe_copy(using_cow, inplace=True) + values = cast(np.ndarray, self.values.T) + if isinstance(casted, np.ndarray) and casted.ndim == 1 and len(casted) == 1: + # NumPy 1.25 deprecation: https://github.com/numpy/numpy/pull/10615 + casted = casted[0, ...] + try: + values[indexer] = casted + except (TypeError, ValueError) as err: + if is_list_like(casted): + raise ValueError( + "setting an array element with a sequence." + ) from err + raise + return self + + def putmask( + self, mask, new, using_cow: bool = False, already_warned=None + ) -> list[Block]: + """ + putmask the data to the block; it is possible that we may create a + new dtype of block + + Return the resulting block(s). + + Parameters + ---------- + mask : np.ndarray[bool], SparseArray[bool], or BooleanArray + new : a ndarray/object + using_cow: bool, default False + + Returns + ------- + List[Block] + """ + orig_mask = mask + values = cast(np.ndarray, self.values) + mask, noop = validate_putmask(values.T, mask) + assert not isinstance(new, (ABCIndex, ABCSeries, ABCDataFrame)) + + if new is lib.no_default: + new = self.fill_value + + new = self._standardize_fill_value(new) + new = extract_array(new, extract_numpy=True) + + if noop: + if using_cow: + return [self.copy(deep=False)] + return [self] + + if ( + warn_copy_on_write() + and already_warned is not None + and not already_warned.warned_already + ): + if self.refs.has_reference(): + warnings.warn( + COW_WARNING_GENERAL_MSG, + FutureWarning, + stacklevel=find_stack_level(), + ) + already_warned.warned_already = True + + try: + casted = np_can_hold_element(values.dtype, new) + + self = self._maybe_copy(using_cow, inplace=True) + values = cast(np.ndarray, self.values) + + putmask_without_repeat(values.T, mask, casted) + return [self] + except LossySetitemError: + if self.ndim == 1 or self.shape[0] == 1: + # no need to split columns + + if not is_list_like(new): + # using just new[indexer] can't save us the need to cast + return self.coerce_to_target_dtype( + new, warn_on_upcast=True + ).putmask(mask, new) + else: + indexer = mask.nonzero()[0] + nb = self.setitem(indexer, new[indexer], using_cow=using_cow) + return [nb] + + else: + is_array = isinstance(new, np.ndarray) + + res_blocks = [] + nbs = self._split() + for i, nb in enumerate(nbs): + n = new + if is_array: + # we have a different value per-column + n = new[:, i : i + 1] + + submask = orig_mask[:, i : i + 1] + rbs = nb.putmask(submask, n, using_cow=using_cow) + res_blocks.extend(rbs) + return res_blocks + + def where( + self, other, cond, _downcast: str | bool = "infer", using_cow: bool = False + ) -> list[Block]: + """ + evaluate the block; return result block(s) from the result + + Parameters + ---------- + other : a ndarray/object + cond : np.ndarray[bool], SparseArray[bool], or BooleanArray + _downcast : str or None, default "infer" + Private because we only specify it when calling from fillna. + + Returns + ------- + List[Block] + """ + assert cond.ndim == self.ndim + assert not isinstance(other, (ABCIndex, ABCSeries, ABCDataFrame)) + + transpose = self.ndim == 2 + + cond = extract_bool_array(cond) + + # EABlocks override where + values = cast(np.ndarray, self.values) + orig_other = other + if transpose: + values = values.T + + icond, noop = validate_putmask(values, ~cond) + if noop: + # GH-39595: Always return a copy; short-circuit up/downcasting + if using_cow: + return [self.copy(deep=False)] + return [self.copy()] + + if other is lib.no_default: + other = self.fill_value + + other = self._standardize_fill_value(other) + + try: + # try/except here is equivalent to a self._can_hold_element check, + # but this gets us back 'casted' which we will reuse below; + # without using 'casted', expressions.where may do unwanted upcasts. + casted = np_can_hold_element(values.dtype, other) + except (ValueError, TypeError, LossySetitemError): + # we cannot coerce, return a compat dtype + + if self.ndim == 1 or self.shape[0] == 1: + # no need to split columns + + block = self.coerce_to_target_dtype(other) + blocks = block.where(orig_other, cond, using_cow=using_cow) + return self._maybe_downcast( + blocks, downcast=_downcast, using_cow=using_cow, caller="where" + ) + + else: + # since _maybe_downcast would split blocks anyway, we + # can avoid some potential upcast/downcast by splitting + # on the front end. + is_array = isinstance(other, (np.ndarray, ExtensionArray)) + + res_blocks = [] + nbs = self._split() + for i, nb in enumerate(nbs): + oth = other + if is_array: + # we have a different value per-column + oth = other[:, i : i + 1] + + submask = cond[:, i : i + 1] + rbs = nb.where( + oth, submask, _downcast=_downcast, using_cow=using_cow + ) + res_blocks.extend(rbs) + return res_blocks + + else: + other = casted + alt = setitem_datetimelike_compat(values, icond.sum(), other) + if alt is not other: + if is_list_like(other) and len(other) < len(values): + # call np.where with other to get the appropriate ValueError + np.where(~icond, values, other) + raise NotImplementedError( + "This should not be reached; call to np.where above is " + "expected to raise ValueError. Please report a bug at " + "github.com/pandas-dev/pandas" + ) + result = values.copy() + np.putmask(result, icond, alt) + else: + # By the time we get here, we should have all Series/Index + # args extracted to ndarray + if ( + is_list_like(other) + and not isinstance(other, np.ndarray) + and len(other) == self.shape[-1] + ): + # If we don't do this broadcasting here, then expressions.where + # will broadcast a 1D other to be row-like instead of + # column-like. + other = np.array(other).reshape(values.shape) + # If lengths don't match (or len(other)==1), we will raise + # inside expressions.where, see test_series_where + + # Note: expressions.where may upcast. + result = expressions.where(~icond, values, other) + # The np_can_hold_element check _should_ ensure that we always + # have result.dtype == self.dtype here. + + if transpose: + result = result.T + + return [self.make_block(result)] + + def fillna( + self, + value, + limit: int | None = None, + inplace: bool = False, + downcast=None, + using_cow: bool = False, + already_warned=None, + ) -> list[Block]: + """ + fillna on the block with the value. If we fail, then convert to + block to hold objects instead and try again + """ + # Caller is responsible for validating limit; if int it is strictly positive + inplace = validate_bool_kwarg(inplace, "inplace") + + if not self._can_hold_na: + # can short-circuit the isna call + noop = True + else: + mask = isna(self.values) + mask, noop = validate_putmask(self.values, mask) + + if noop: + # we can't process the value, but nothing to do + if inplace: + if using_cow: + return [self.copy(deep=False)] + # Arbitrarily imposing the convention that we ignore downcast + # on no-op when inplace=True + return [self] + else: + # GH#45423 consistent downcasting on no-ops. + nb = self.copy(deep=not using_cow) + nbs = nb._maybe_downcast( + [nb], downcast=downcast, using_cow=using_cow, caller="fillna" + ) + return nbs + + if limit is not None: + mask[mask.cumsum(self.ndim - 1) > limit] = False + + if inplace: + nbs = self.putmask( + mask.T, value, using_cow=using_cow, already_warned=already_warned + ) + else: + # without _downcast, we would break + # test_fillna_dtype_conversion_equiv_replace + nbs = self.where(value, ~mask.T, _downcast=False) + + # Note: blk._maybe_downcast vs self._maybe_downcast(nbs) + # makes a difference bc blk may have object dtype, which has + # different behavior in _maybe_downcast. + return extend_blocks( + [ + blk._maybe_downcast( + [blk], downcast=downcast, using_cow=using_cow, caller="fillna" + ) + for blk in nbs + ] + ) + + def pad_or_backfill( + self, + *, + method: FillnaOptions, + axis: AxisInt = 0, + inplace: bool = False, + limit: int | None = None, + limit_area: Literal["inside", "outside"] | None = None, + downcast: Literal["infer"] | None = None, + using_cow: bool = False, + already_warned=None, + ) -> list[Block]: + if not self._can_hold_na: + # If there are no NAs, then interpolate is a no-op + if using_cow: + return [self.copy(deep=False)] + return [self] if inplace else [self.copy()] + + copy, refs = self._get_refs_and_copy(using_cow, inplace) + + # Dispatch to the NumpyExtensionArray method. + # We know self.array_values is a NumpyExtensionArray bc EABlock overrides + vals = cast(NumpyExtensionArray, self.array_values) + if axis == 1: + vals = vals.T + new_values = vals._pad_or_backfill( + method=method, + limit=limit, + limit_area=limit_area, + copy=copy, + ) + if ( + not copy + and warn_copy_on_write() + and already_warned is not None + and not already_warned.warned_already + ): + if self.refs.has_reference(): + warnings.warn( + COW_WARNING_GENERAL_MSG, + FutureWarning, + stacklevel=find_stack_level(), + ) + already_warned.warned_already = True + if axis == 1: + new_values = new_values.T + + data = extract_array(new_values, extract_numpy=True) + + nb = self.make_block_same_class(data, refs=refs) + return nb._maybe_downcast([nb], downcast, using_cow, caller="fillna") + + @final + def interpolate( + self, + *, + method: InterpolateOptions, + index: Index, + inplace: bool = False, + limit: int | None = None, + limit_direction: Literal["forward", "backward", "both"] = "forward", + limit_area: Literal["inside", "outside"] | None = None, + downcast: Literal["infer"] | None = None, + using_cow: bool = False, + already_warned=None, + **kwargs, + ) -> list[Block]: + inplace = validate_bool_kwarg(inplace, "inplace") + # error: Non-overlapping equality check [...] + if method == "asfreq": # type: ignore[comparison-overlap] + # clean_fill_method used to allow this + missing.clean_fill_method(method) + + if not self._can_hold_na: + # If there are no NAs, then interpolate is a no-op + if using_cow: + return [self.copy(deep=False)] + return [self] if inplace else [self.copy()] + + # TODO(3.0): this case will not be reachable once GH#53638 is enforced + if self.dtype == _dtype_obj: + # only deal with floats + # bc we already checked that can_hold_na, we don't have int dtype here + # test_interp_basic checks that we make a copy here + if using_cow: + return [self.copy(deep=False)] + return [self] if inplace else [self.copy()] + + copy, refs = self._get_refs_and_copy(using_cow, inplace) + + # Dispatch to the EA method. + new_values = self.array_values.interpolate( + method=method, + axis=self.ndim - 1, + index=index, + limit=limit, + limit_direction=limit_direction, + limit_area=limit_area, + copy=copy, + **kwargs, + ) + data = extract_array(new_values, extract_numpy=True) + + if ( + not copy + and warn_copy_on_write() + and already_warned is not None + and not already_warned.warned_already + ): + if self.refs.has_reference(): + warnings.warn( + COW_WARNING_GENERAL_MSG, + FutureWarning, + stacklevel=find_stack_level(), + ) + already_warned.warned_already = True + + nb = self.make_block_same_class(data, refs=refs) + return nb._maybe_downcast([nb], downcast, using_cow, caller="interpolate") + + @final + def diff(self, n: int) -> list[Block]: + """return block for the diff of the values""" + # only reached with ndim == 2 + # TODO(EA2D): transpose will be unnecessary with 2D EAs + new_values = algos.diff(self.values.T, n, axis=0).T + return [self.make_block(values=new_values)] + + def shift(self, periods: int, fill_value: Any = None) -> list[Block]: + """shift the block by periods, possibly upcast""" + # convert integer to float if necessary. need to do a lot more than + # that, handle boolean etc also + axis = self.ndim - 1 + + # Note: periods is never 0 here, as that is handled at the top of + # NDFrame.shift. If that ever changes, we can do a check for periods=0 + # and possibly avoid coercing. + + if not lib.is_scalar(fill_value) and self.dtype != _dtype_obj: + # with object dtype there is nothing to promote, and the user can + # pass pretty much any weird fill_value they like + # see test_shift_object_non_scalar_fill + raise ValueError("fill_value must be a scalar") + + fill_value = self._standardize_fill_value(fill_value) + + try: + # error: Argument 1 to "np_can_hold_element" has incompatible type + # "Union[dtype[Any], ExtensionDtype]"; expected "dtype[Any]" + casted = np_can_hold_element( + self.dtype, fill_value # type: ignore[arg-type] + ) + except LossySetitemError: + nb = self.coerce_to_target_dtype(fill_value) + return nb.shift(periods, fill_value=fill_value) + + else: + values = cast(np.ndarray, self.values) + new_values = shift(values, periods, axis, casted) + return [self.make_block_same_class(new_values)] + + @final + def quantile( + self, + qs: Index, # with dtype float64 + interpolation: QuantileInterpolation = "linear", + ) -> Block: + """ + compute the quantiles of the + + Parameters + ---------- + qs : Index + The quantiles to be computed in float64. + interpolation : str, default 'linear' + Type of interpolation. + + Returns + ------- + Block + """ + # We should always have ndim == 2 because Series dispatches to DataFrame + assert self.ndim == 2 + assert is_list_like(qs) # caller is responsible for this + + result = quantile_compat(self.values, np.asarray(qs._values), interpolation) + # ensure_block_shape needed for cases where we start with EA and result + # is ndarray, e.g. IntegerArray, SparseArray + result = ensure_block_shape(result, ndim=2) + return new_block_2d(result, placement=self._mgr_locs) + + @final + def round(self, decimals: int, using_cow: bool = False) -> Self: + """ + Rounds the values. + If the block is not of an integer or float dtype, nothing happens. + This is consistent with DataFrame.round behavivor. + (Note: Series.round would raise) + + Parameters + ---------- + decimals: int, + Number of decimal places to round to. + Caller is responsible for validating this + using_cow: bool, + Whether Copy on Write is enabled right now + """ + if not self.is_numeric or self.is_bool: + return self.copy(deep=not using_cow) + refs = None + # TODO: round only defined on BaseMaskedArray + # Series also does this, so would need to fix both places + # error: Item "ExtensionArray" of "Union[ndarray[Any, Any], ExtensionArray]" + # has no attribute "round" + values = self.values.round(decimals) # type: ignore[union-attr] + if values is self.values: + if not using_cow: + # Normally would need to do this before, but + # numpy only returns same array when round operation + # is no-op + # https://github.com/numpy/numpy/blob/486878b37fc7439a3b2b87747f50db9b62fea8eb/numpy/core/src/multiarray/calculation.c#L625-L636 + values = values.copy() + else: + refs = self.refs + return self.make_block_same_class(values, refs=refs) + + # --------------------------------------------------------------------- + # Abstract Methods Overridden By EABackedBlock and NumpyBlock + + def delete(self, loc) -> list[Block]: + """Deletes the locs from the block. + + We split the block to avoid copying the underlying data. We create new + blocks for every connected segment of the initial block that is not deleted. + The new blocks point to the initial array. + """ + if not is_list_like(loc): + loc = [loc] + + if self.ndim == 1: + values = cast(np.ndarray, self.values) + values = np.delete(values, loc) + mgr_locs = self._mgr_locs.delete(loc) + return [type(self)(values, placement=mgr_locs, ndim=self.ndim)] + + if np.max(loc) >= self.values.shape[0]: + raise IndexError + + # Add one out-of-bounds indexer as maximum to collect + # all columns after our last indexer if any + loc = np.concatenate([loc, [self.values.shape[0]]]) + mgr_locs_arr = self._mgr_locs.as_array + new_blocks: list[Block] = [] + + previous_loc = -1 + # TODO(CoW): This is tricky, if parent block goes out of scope + # all split blocks are referencing each other even though they + # don't share data + refs = self.refs if self.refs.has_reference() else None + for idx in loc: + if idx == previous_loc + 1: + # There is no column between current and last idx + pass + else: + # No overload variant of "__getitem__" of "ExtensionArray" matches + # argument type "Tuple[slice, slice]" + values = self.values[previous_loc + 1 : idx, :] # type: ignore[call-overload] + locs = mgr_locs_arr[previous_loc + 1 : idx] + nb = type(self)( + values, placement=BlockPlacement(locs), ndim=self.ndim, refs=refs + ) + new_blocks.append(nb) + + previous_loc = idx + + return new_blocks + + @property + def is_view(self) -> bool: + """return a boolean if I am possibly a view""" + raise AbstractMethodError(self) + + @property + def array_values(self) -> ExtensionArray: + """ + The array that Series.array returns. Always an ExtensionArray. + """ + raise AbstractMethodError(self) + + def get_values(self, dtype: DtypeObj | None = None) -> np.ndarray: + """ + return an internal format, currently just the ndarray + this is often overridden to handle to_dense like operations + """ + raise AbstractMethodError(self) + + +class EABackedBlock(Block): + """ + Mixin for Block subclasses backed by ExtensionArray. + """ + + values: ExtensionArray + + @final + def shift(self, periods: int, fill_value: Any = None) -> list[Block]: + """ + Shift the block by `periods`. + + Dispatches to underlying ExtensionArray and re-boxes in an + ExtensionBlock. + """ + # Transpose since EA.shift is always along axis=0, while we want to shift + # along rows. + new_values = self.values.T.shift(periods=periods, fill_value=fill_value).T + return [self.make_block_same_class(new_values)] + + @final + def setitem(self, indexer, value, using_cow: bool = False): + """ + Attempt self.values[indexer] = value, possibly creating a new array. + + This differs from Block.setitem by not allowing setitem to change + the dtype of the Block. + + Parameters + ---------- + indexer : tuple, list-like, array-like, slice, int + The subset of self.values to set + value : object + The value being set + using_cow: bool, default False + Signaling if CoW is used. + + Returns + ------- + Block + + Notes + ----- + `indexer` is a direct slice/positional indexer. `value` must + be a compatible shape. + """ + orig_indexer = indexer + orig_value = value + + indexer = self._unwrap_setitem_indexer(indexer) + value = self._maybe_squeeze_arg(value) + + values = self.values + if values.ndim == 2: + # TODO(GH#45419): string[pyarrow] tests break if we transpose + # unconditionally + values = values.T + check_setitem_lengths(indexer, value, values) + + try: + values[indexer] = value + except (ValueError, TypeError): + if isinstance(self.dtype, IntervalDtype): + # see TestSetitemFloatIntervalWithIntIntervalValues + nb = self.coerce_to_target_dtype(orig_value, warn_on_upcast=True) + return nb.setitem(orig_indexer, orig_value) + + elif isinstance(self, NDArrayBackedExtensionBlock): + nb = self.coerce_to_target_dtype(orig_value, warn_on_upcast=True) + return nb.setitem(orig_indexer, orig_value) + + else: + raise + + else: + return self + + @final + def where( + self, other, cond, _downcast: str | bool = "infer", using_cow: bool = False + ) -> list[Block]: + # _downcast private bc we only specify it when calling from fillna + arr = self.values.T + + cond = extract_bool_array(cond) + + orig_other = other + orig_cond = cond + other = self._maybe_squeeze_arg(other) + cond = self._maybe_squeeze_arg(cond) + + if other is lib.no_default: + other = self.fill_value + + icond, noop = validate_putmask(arr, ~cond) + if noop: + # GH#44181, GH#45135 + # Avoid a) raising for Interval/PeriodDtype and b) unnecessary object upcast + if using_cow: + return [self.copy(deep=False)] + return [self.copy()] + + try: + res_values = arr._where(cond, other).T + except (ValueError, TypeError): + if self.ndim == 1 or self.shape[0] == 1: + if isinstance(self.dtype, IntervalDtype): + # TestSetitemFloatIntervalWithIntIntervalValues + blk = self.coerce_to_target_dtype(orig_other) + nbs = blk.where(orig_other, orig_cond, using_cow=using_cow) + return self._maybe_downcast( + nbs, downcast=_downcast, using_cow=using_cow, caller="where" + ) + + elif isinstance(self, NDArrayBackedExtensionBlock): + # NB: not (yet) the same as + # isinstance(values, NDArrayBackedExtensionArray) + blk = self.coerce_to_target_dtype(orig_other) + nbs = blk.where(orig_other, orig_cond, using_cow=using_cow) + return self._maybe_downcast( + nbs, downcast=_downcast, using_cow=using_cow, caller="where" + ) + + else: + raise + + else: + # Same pattern we use in Block.putmask + is_array = isinstance(orig_other, (np.ndarray, ExtensionArray)) + + res_blocks = [] + nbs = self._split() + for i, nb in enumerate(nbs): + n = orig_other + if is_array: + # we have a different value per-column + n = orig_other[:, i : i + 1] + + submask = orig_cond[:, i : i + 1] + rbs = nb.where(n, submask, using_cow=using_cow) + res_blocks.extend(rbs) + return res_blocks + + nb = self.make_block_same_class(res_values) + return [nb] + + @final + def putmask( + self, mask, new, using_cow: bool = False, already_warned=None + ) -> list[Block]: + """ + See Block.putmask.__doc__ + """ + mask = extract_bool_array(mask) + if new is lib.no_default: + new = self.fill_value + + orig_new = new + orig_mask = mask + new = self._maybe_squeeze_arg(new) + mask = self._maybe_squeeze_arg(mask) + + if not mask.any(): + if using_cow: + return [self.copy(deep=False)] + return [self] + + if ( + warn_copy_on_write() + and already_warned is not None + and not already_warned.warned_already + ): + if self.refs.has_reference(): + warnings.warn( + COW_WARNING_GENERAL_MSG, + FutureWarning, + stacklevel=find_stack_level(), + ) + already_warned.warned_already = True + + self = self._maybe_copy(using_cow, inplace=True) + values = self.values + if values.ndim == 2: + values = values.T + + try: + # Caller is responsible for ensuring matching lengths + values._putmask(mask, new) + except (TypeError, ValueError): + if self.ndim == 1 or self.shape[0] == 1: + if isinstance(self.dtype, IntervalDtype): + # Discussion about what we want to support in the general + # case GH#39584 + blk = self.coerce_to_target_dtype(orig_new, warn_on_upcast=True) + return blk.putmask(orig_mask, orig_new) + + elif isinstance(self, NDArrayBackedExtensionBlock): + # NB: not (yet) the same as + # isinstance(values, NDArrayBackedExtensionArray) + blk = self.coerce_to_target_dtype(orig_new, warn_on_upcast=True) + return blk.putmask(orig_mask, orig_new) + + else: + raise + + else: + # Same pattern we use in Block.putmask + is_array = isinstance(orig_new, (np.ndarray, ExtensionArray)) + + res_blocks = [] + nbs = self._split() + for i, nb in enumerate(nbs): + n = orig_new + if is_array: + # we have a different value per-column + n = orig_new[:, i : i + 1] + + submask = orig_mask[:, i : i + 1] + rbs = nb.putmask(submask, n) + res_blocks.extend(rbs) + return res_blocks + + return [self] + + @final + def delete(self, loc) -> list[Block]: + # This will be unnecessary if/when __array_function__ is implemented + if self.ndim == 1: + values = self.values.delete(loc) + mgr_locs = self._mgr_locs.delete(loc) + return [type(self)(values, placement=mgr_locs, ndim=self.ndim)] + elif self.values.ndim == 1: + # We get here through to_stata + return [] + return super().delete(loc) + + @final + @cache_readonly + def array_values(self) -> ExtensionArray: + return self.values + + @final + def get_values(self, dtype: DtypeObj | None = None) -> np.ndarray: + """ + return object dtype as boxed values, such as Timestamps/Timedelta + """ + values: ArrayLike = self.values + if dtype == _dtype_obj: + values = values.astype(object) + # TODO(EA2D): reshape not needed with 2D EAs + return np.asarray(values).reshape(self.shape) + + @final + def pad_or_backfill( + self, + *, + method: FillnaOptions, + axis: AxisInt = 0, + inplace: bool = False, + limit: int | None = None, + limit_area: Literal["inside", "outside"] | None = None, + downcast: Literal["infer"] | None = None, + using_cow: bool = False, + already_warned=None, + ) -> list[Block]: + values = self.values + + kwargs: dict[str, Any] = {"method": method, "limit": limit} + if "limit_area" in inspect.signature(values._pad_or_backfill).parameters: + kwargs["limit_area"] = limit_area + elif limit_area is not None: + raise NotImplementedError( + f"{type(values).__name__} does not implement limit_area " + "(added in pandas 2.2). 3rd-party ExtnsionArray authors " + "need to add this argument to _pad_or_backfill." + ) + + if values.ndim == 2 and axis == 1: + # NDArrayBackedExtensionArray.fillna assumes axis=0 + new_values = values.T._pad_or_backfill(**kwargs).T + else: + new_values = values._pad_or_backfill(**kwargs) + return [self.make_block_same_class(new_values)] + + +class ExtensionBlock(EABackedBlock): + """ + Block for holding extension types. + + Notes + ----- + This holds all 3rd-party extension array types. It's also the immediate + parent class for our internal extension types' blocks. + + ExtensionArrays are limited to 1-D. + """ + + values: ExtensionArray + + def fillna( + self, + value, + limit: int | None = None, + inplace: bool = False, + downcast=None, + using_cow: bool = False, + already_warned=None, + ) -> list[Block]: + if isinstance(self.dtype, IntervalDtype): + # Block.fillna handles coercion (test_fillna_interval) + return super().fillna( + value=value, + limit=limit, + inplace=inplace, + downcast=downcast, + using_cow=using_cow, + already_warned=already_warned, + ) + if using_cow and self._can_hold_na and not self.values._hasna: + refs = self.refs + new_values = self.values + else: + copy, refs = self._get_refs_and_copy(using_cow, inplace) + + try: + new_values = self.values.fillna( + value=value, method=None, limit=limit, copy=copy + ) + except TypeError: + # 3rd party EA that has not implemented copy keyword yet + refs = None + new_values = self.values.fillna(value=value, method=None, limit=limit) + # issue the warning *after* retrying, in case the TypeError + # was caused by an invalid fill_value + warnings.warn( + # GH#53278 + "ExtensionArray.fillna added a 'copy' keyword in pandas " + "2.1.0. In a future version, ExtensionArray subclasses will " + "need to implement this keyword or an exception will be " + "raised. In the interim, the keyword is ignored by " + f"{type(self.values).__name__}.", + DeprecationWarning, + stacklevel=find_stack_level(), + ) + else: + if ( + not copy + and warn_copy_on_write() + and already_warned is not None + and not already_warned.warned_already + ): + if self.refs.has_reference(): + warnings.warn( + COW_WARNING_GENERAL_MSG, + FutureWarning, + stacklevel=find_stack_level(), + ) + already_warned.warned_already = True + + nb = self.make_block_same_class(new_values, refs=refs) + return nb._maybe_downcast([nb], downcast, using_cow=using_cow, caller="fillna") + + @cache_readonly + def shape(self) -> Shape: + # TODO(EA2D): override unnecessary with 2D EAs + if self.ndim == 1: + return (len(self.values),) + return len(self._mgr_locs), len(self.values) + + def iget(self, i: int | tuple[int, int] | tuple[slice, int]): + # In the case where we have a tuple[slice, int], the slice will always + # be slice(None) + # We _could_ make the annotation more specific, but mypy would + # complain about override mismatch: + # Literal[0] | tuple[Literal[0], int] | tuple[slice, int] + + # Note: only reached with self.ndim == 2 + + if isinstance(i, tuple): + # TODO(EA2D): unnecessary with 2D EAs + col, loc = i + if not com.is_null_slice(col) and col != 0: + raise IndexError(f"{self} only contains one item") + if isinstance(col, slice): + # the is_null_slice check above assures that col is slice(None) + # so what we want is a view on all our columns and row loc + if loc < 0: + loc += len(self.values) + # Note: loc:loc+1 vs [[loc]] makes a difference when called + # from fast_xs because we want to get a view back. + return self.values[loc : loc + 1] + return self.values[loc] + else: + if i != 0: + raise IndexError(f"{self} only contains one item") + return self.values + + def set_inplace(self, locs, values: ArrayLike, copy: bool = False) -> None: + # When an ndarray, we should have locs.tolist() == [0] + # When a BlockPlacement we should have list(locs) == [0] + if copy: + self.values = self.values.copy() + self.values[:] = values + + def _maybe_squeeze_arg(self, arg): + """ + If necessary, squeeze a (N, 1) ndarray to (N,) + """ + # e.g. if we are passed a 2D mask for putmask + if ( + isinstance(arg, (np.ndarray, ExtensionArray)) + and arg.ndim == self.values.ndim + 1 + ): + # TODO(EA2D): unnecessary with 2D EAs + assert arg.shape[1] == 1 + # error: No overload variant of "__getitem__" of "ExtensionArray" + # matches argument type "Tuple[slice, int]" + arg = arg[:, 0] # type: ignore[call-overload] + elif isinstance(arg, ABCDataFrame): + # 2022-01-06 only reached for setitem + # TODO: should we avoid getting here with DataFrame? + assert arg.shape[1] == 1 + arg = arg._ixs(0, axis=1)._values + + return arg + + def _unwrap_setitem_indexer(self, indexer): + """ + Adapt a 2D-indexer to our 1D values. + + This is intended for 'setitem', not 'iget' or '_slice'. + """ + # TODO: ATM this doesn't work for iget/_slice, can we change that? + + if isinstance(indexer, tuple) and len(indexer) == 2: + # TODO(EA2D): not needed with 2D EAs + # Should never have length > 2. Caller is responsible for checking. + # Length 1 is reached vis setitem_single_block and setitem_single_column + # each of which pass indexer=(pi,) + if all(isinstance(x, np.ndarray) and x.ndim == 2 for x in indexer): + # GH#44703 went through indexing.maybe_convert_ix + first, second = indexer + if not ( + second.size == 1 and (second == 0).all() and first.shape[1] == 1 + ): + raise NotImplementedError( + "This should not be reached. Please report a bug at " + "github.com/pandas-dev/pandas/" + ) + indexer = first[:, 0] + + elif lib.is_integer(indexer[1]) and indexer[1] == 0: + # reached via setitem_single_block passing the whole indexer + indexer = indexer[0] + + elif com.is_null_slice(indexer[1]): + indexer = indexer[0] + + elif is_list_like(indexer[1]) and indexer[1][0] == 0: + indexer = indexer[0] + + else: + raise NotImplementedError( + "This should not be reached. Please report a bug at " + "github.com/pandas-dev/pandas/" + ) + return indexer + + @property + def is_view(self) -> bool: + """Extension arrays are never treated as views.""" + return False + + # error: Cannot override writeable attribute with read-only property + @cache_readonly + def is_numeric(self) -> bool: # type: ignore[override] + return self.values.dtype._is_numeric + + def _slice( + self, slicer: slice | npt.NDArray[np.bool_] | npt.NDArray[np.intp] + ) -> ExtensionArray: + """ + Return a slice of my values. + + Parameters + ---------- + slicer : slice, ndarray[int], or ndarray[bool] + Valid (non-reducing) indexer for self.values. + + Returns + ------- + ExtensionArray + """ + # Notes: ndarray[bool] is only reachable when via get_rows_with_mask, which + # is only for Series, i.e. self.ndim == 1. + + # return same dims as we currently have + if self.ndim == 2: + # reached via getitem_block via _slice_take_blocks_ax0 + # TODO(EA2D): won't be necessary with 2D EAs + + if not isinstance(slicer, slice): + raise AssertionError( + "invalid slicing for a 1-ndim ExtensionArray", slicer + ) + # GH#32959 only full-slicers along fake-dim0 are valid + # TODO(EA2D): won't be necessary with 2D EAs + # range(1) instead of self._mgr_locs to avoid exception on [::-1] + # see test_iloc_getitem_slice_negative_step_ea_block + new_locs = range(1)[slicer] + if not len(new_locs): + raise AssertionError( + "invalid slicing for a 1-ndim ExtensionArray", slicer + ) + slicer = slice(None) + + return self.values[slicer] + + @final + def slice_block_rows(self, slicer: slice) -> Self: + """ + Perform __getitem__-like specialized to slicing along index. + """ + # GH#42787 in principle this is equivalent to values[..., slicer], but we don't + # require subclasses of ExtensionArray to support that form (for now). + new_values = self.values[slicer] + return type(self)(new_values, self._mgr_locs, ndim=self.ndim, refs=self.refs) + + def _unstack( + self, + unstacker, + fill_value, + new_placement: npt.NDArray[np.intp], + needs_masking: npt.NDArray[np.bool_], + ): + # ExtensionArray-safe unstack. + # We override Block._unstack, which unstacks directly on the + # values of the array. For EA-backed blocks, this would require + # converting to a 2-D ndarray of objects. + # Instead, we unstack an ndarray of integer positions, followed by + # a `take` on the actual values. + + # Caller is responsible for ensuring self.shape[-1] == len(unstacker.index) + new_values, mask = unstacker.arange_result + + # Note: these next two lines ensure that + # mask.sum() == sum(len(nb.mgr_locs) for nb in blocks) + # which the calling function needs in order to pass verify_integrity=False + # to the BlockManager constructor + new_values = new_values.T[mask] + new_placement = new_placement[mask] + + # needs_masking[i] calculated once in BlockManager.unstack tells + # us if there are any -1s in the relevant indices. When False, + # that allows us to go through a faster path in 'take', among + # other things avoiding e.g. Categorical._validate_scalar. + blocks = [ + # TODO: could cast to object depending on fill_value? + type(self)( + self.values.take( + indices, allow_fill=needs_masking[i], fill_value=fill_value + ), + BlockPlacement(place), + ndim=2, + ) + for i, (indices, place) in enumerate(zip(new_values, new_placement)) + ] + return blocks, mask + + +class NumpyBlock(Block): + values: np.ndarray + __slots__ = () + + @property + def is_view(self) -> bool: + """return a boolean if I am possibly a view""" + return self.values.base is not None + + @property + def array_values(self) -> ExtensionArray: + return NumpyExtensionArray(self.values) + + def get_values(self, dtype: DtypeObj | None = None) -> np.ndarray: + if dtype == _dtype_obj: + return self.values.astype(_dtype_obj) + return self.values + + @cache_readonly + def is_numeric(self) -> bool: # type: ignore[override] + dtype = self.values.dtype + kind = dtype.kind + + return kind in "fciub" + + +class NumericBlock(NumpyBlock): + # this Block type is kept for backwards-compatibility + # TODO(3.0): delete and remove deprecation in __init__.py. + __slots__ = () + + +class ObjectBlock(NumpyBlock): + # this Block type is kept for backwards-compatibility + # TODO(3.0): delete and remove deprecation in __init__.py. + __slots__ = () + + +class NDArrayBackedExtensionBlock(EABackedBlock): + """ + Block backed by an NDArrayBackedExtensionArray + """ + + values: NDArrayBackedExtensionArray + + @property + def is_view(self) -> bool: + """return a boolean if I am possibly a view""" + # check the ndarray values of the DatetimeIndex values + return self.values._ndarray.base is not None + + +class DatetimeLikeBlock(NDArrayBackedExtensionBlock): + """Block for datetime64[ns], timedelta64[ns].""" + + __slots__ = () + is_numeric = False + values: DatetimeArray | TimedeltaArray + + +class DatetimeTZBlock(DatetimeLikeBlock): + """implement a datetime64 block with a tz attribute""" + + values: DatetimeArray + + __slots__ = () + + +# ----------------------------------------------------------------- +# Constructor Helpers + + +def maybe_coerce_values(values: ArrayLike) -> ArrayLike: + """ + Input validation for values passed to __init__. Ensure that + any datetime64/timedelta64 dtypes are in nanoseconds. Ensure + that we do not have string dtypes. + + Parameters + ---------- + values : np.ndarray or ExtensionArray + + Returns + ------- + values : np.ndarray or ExtensionArray + """ + # Caller is responsible for ensuring NumpyExtensionArray is already extracted. + + if isinstance(values, np.ndarray): + values = ensure_wrapped_if_datetimelike(values) + + if issubclass(values.dtype.type, str): + values = np.array(values, dtype=object) + + if isinstance(values, (DatetimeArray, TimedeltaArray)) and values.freq is not None: + # freq is only stored in DatetimeIndex/TimedeltaIndex, not in Series/DataFrame + values = values._with_freq(None) + + return values + + +def get_block_type(dtype: DtypeObj) -> type[Block]: + """ + Find the appropriate Block subclass to use for the given values and dtype. + + Parameters + ---------- + dtype : numpy or pandas dtype + + Returns + ------- + cls : class, subclass of Block + """ + if isinstance(dtype, DatetimeTZDtype): + return DatetimeTZBlock + elif isinstance(dtype, PeriodDtype): + return NDArrayBackedExtensionBlock + elif isinstance(dtype, ExtensionDtype): + # Note: need to be sure NumpyExtensionArray is unwrapped before we get here + return ExtensionBlock + + # We use kind checks because it is much more performant + # than is_foo_dtype + kind = dtype.kind + if kind in "Mm": + return DatetimeLikeBlock + + return NumpyBlock + + +def new_block_2d( + values: ArrayLike, placement: BlockPlacement, refs: BlockValuesRefs | None = None +): + # new_block specialized to case with + # ndim=2 + # isinstance(placement, BlockPlacement) + # check_ndim/ensure_block_shape already checked + klass = get_block_type(values.dtype) + + values = maybe_coerce_values(values) + return klass(values, ndim=2, placement=placement, refs=refs) + + +def new_block( + values, + placement: BlockPlacement, + *, + ndim: int, + refs: BlockValuesRefs | None = None, +) -> Block: + # caller is responsible for ensuring: + # - values is NOT a NumpyExtensionArray + # - check_ndim/ensure_block_shape already checked + # - maybe_coerce_values already called/unnecessary + klass = get_block_type(values.dtype) + return klass(values, ndim=ndim, placement=placement, refs=refs) + + +def check_ndim(values, placement: BlockPlacement, ndim: int) -> None: + """ + ndim inference and validation. + + Validates that values.ndim and ndim are consistent. + Validates that len(values) and len(placement) are consistent. + + Parameters + ---------- + values : array-like + placement : BlockPlacement + ndim : int + + Raises + ------ + ValueError : the number of dimensions do not match + """ + + if values.ndim > ndim: + # Check for both np.ndarray and ExtensionArray + raise ValueError( + "Wrong number of dimensions. " + f"values.ndim > ndim [{values.ndim} > {ndim}]" + ) + + if not is_1d_only_ea_dtype(values.dtype): + # TODO(EA2D): special case not needed with 2D EAs + if values.ndim != ndim: + raise ValueError( + "Wrong number of dimensions. " + f"values.ndim != ndim [{values.ndim} != {ndim}]" + ) + if len(placement) != len(values): + raise ValueError( + f"Wrong number of items passed {len(values)}, " + f"placement implies {len(placement)}" + ) + elif ndim == 2 and len(placement) != 1: + # TODO(EA2D): special case unnecessary with 2D EAs + raise ValueError("need to split") + + +def extract_pandas_array( + values: ArrayLike, dtype: DtypeObj | None, ndim: int +) -> tuple[ArrayLike, DtypeObj | None]: + """ + Ensure that we don't allow NumpyExtensionArray / NumpyEADtype in internals. + """ + # For now, blocks should be backed by ndarrays when possible. + if isinstance(values, ABCNumpyExtensionArray): + values = values.to_numpy() + if ndim and ndim > 1: + # TODO(EA2D): special case not needed with 2D EAs + values = np.atleast_2d(values) + + if isinstance(dtype, NumpyEADtype): + dtype = dtype.numpy_dtype + + return values, dtype + + +# ----------------------------------------------------------------- + + +def extend_blocks(result, blocks=None) -> list[Block]: + """return a new extended blocks, given the result""" + if blocks is None: + blocks = [] + if isinstance(result, list): + for r in result: + if isinstance(r, list): + blocks.extend(r) + else: + blocks.append(r) + else: + assert isinstance(result, Block), type(result) + blocks.append(result) + return blocks + + +def ensure_block_shape(values: ArrayLike, ndim: int = 1) -> ArrayLike: + """ + Reshape if possible to have values.ndim == ndim. + """ + + if values.ndim < ndim: + if not is_1d_only_ea_dtype(values.dtype): + # TODO(EA2D): https://github.com/pandas-dev/pandas/issues/23023 + # block.shape is incorrect for "2D" ExtensionArrays + # We can't, and don't need to, reshape. + values = cast("np.ndarray | DatetimeArray | TimedeltaArray", values) + values = values.reshape(1, -1) + + return values + + +def external_values(values: ArrayLike) -> ArrayLike: + """ + The array that Series.values returns (public attribute). + + This has some historical constraints, and is overridden in block + subclasses to return the correct array (e.g. period returns + object ndarray and datetimetz a datetime64[ns] ndarray instead of + proper extension array). + """ + if isinstance(values, (PeriodArray, IntervalArray)): + return values.astype(object) + elif isinstance(values, (DatetimeArray, TimedeltaArray)): + # NB: for datetime64tz this is different from np.asarray(values), since + # that returns an object-dtype ndarray of Timestamps. + # Avoid raising in .astype in casting from dt64tz to dt64 + values = values._ndarray + + if isinstance(values, np.ndarray) and using_copy_on_write(): + values = values.view() + values.flags.writeable = False + + # TODO(CoW) we should also mark our ExtensionArrays as read-only + + return values