diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5622ab70de642935e75967c9121355cb65bc2c8f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/__init__.py @@ -0,0 +1,138 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_blenderbot_small": [ + "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", + "BlenderbotSmallConfig", + "BlenderbotSmallOnnxConfig", + ], + "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_blenderbot_small_fast"] = ["BlenderbotSmallTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_blenderbot_small"] = [ + "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", + "BlenderbotSmallForCausalLM", + "BlenderbotSmallForConditionalGeneration", + "BlenderbotSmallModel", + "BlenderbotSmallPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_blenderbot_small"] = [ + "TFBlenderbotSmallForConditionalGeneration", + "TFBlenderbotSmallModel", + "TFBlenderbotSmallPreTrainedModel", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_blenderbot_small"] = [ + "FlaxBlenderbotSmallForConditionalGeneration", + "FlaxBlenderbotSmallModel", + "FlaxBlenderbotSmallPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_blenderbot_small import ( + BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, + BlenderbotSmallConfig, + BlenderbotSmallOnnxConfig, + ) + from .tokenization_blenderbot_small import BlenderbotSmallTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_blenderbot_small import ( + BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, + BlenderbotSmallForCausalLM, + BlenderbotSmallForConditionalGeneration, + BlenderbotSmallModel, + BlenderbotSmallPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_blenderbot_small import ( + TFBlenderbotSmallForConditionalGeneration, + TFBlenderbotSmallModel, + TFBlenderbotSmallPreTrainedModel, + ) + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_blenderbot_small import ( + FlaxBlenderbotSmallForConditionalGeneration, + FlaxBlenderbotSmallModel, + FlaxBlenderbotSmallPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py new file mode 100644 index 0000000000000000000000000000000000000000..b41330656d39abee211a69ba6c0f94462fa67bbf --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py @@ -0,0 +1,392 @@ +# coding=utf-8 +# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" BlenderbotSmall model configuration""" + +from collections import OrderedDict +from typing import Any, Mapping, Optional + +from ... import PreTrainedTokenizer +from ...configuration_utils import PretrainedConfig +from ...file_utils import TensorType, is_torch_available +from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast +from ...onnx.utils import compute_effective_axis_dimension +from ...utils import logging + + +logger = logging.get_logger(__name__) + +BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", + # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small +} + + +class BlenderbotSmallConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`BlenderbotSmallModel`]. It is used to instantiate + an BlenderbotSmall model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the BlenderbotSmall + [facebook/blenderbot_small-90M](https://huggingface.co/facebook/blenderbot_small-90M) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50265): + Vocabulary size of the BlenderbotSmall model. Defines the number of different tokens that can be + represented by the `inputs_ids` passed when calling [`BlenderbotSmallModel`] or [`TFBlenderbotSmallModel`]. + d_model (`int`, *optional*, defaults to 512): + Dimensionality of the layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 8): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 8): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + scale_embedding (`bool`, *optional*, defaults to `False`): + Scale embeddings by diving by sqrt(d_model). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models) + forced_eos_token_id (`int`, *optional*, defaults to 2): + The id of the token to force as the last generated token when `max_length` is reached. Usually set to + `eos_token_id`. + + Example: + + ```python + >>> from transformers import BlenderbotSmallConfig, BlenderbotSmallModel + + >>> # Initializing a BlenderbotSmall facebook/blenderbot_small-90M style configuration + >>> configuration = BlenderbotSmallConfig() + + >>> # Initializing a model (with random weights) from the facebook/blenderbot_small-90M style configuration + >>> model = BlenderbotSmallModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "blenderbot-small" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} + + def __init__( + self, + vocab_size=50265, + max_position_embeddings=512, + encoder_layers=8, + encoder_ffn_dim=2048, + encoder_attention_heads=16, + decoder_layers=8, + decoder_ffn_dim=2048, + decoder_attention_heads=16, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + use_cache=True, + is_encoder_decoder=True, + activation_function="gelu", + d_model=512, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + decoder_start_token_id=1, + scale_embedding=False, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + forced_eos_token_id=2, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + decoder_start_token_id=decoder_start_token_id, + forced_eos_token_id=forced_eos_token_id, + **kwargs, + ) + + +# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig +class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task in ["default", "seq2seq-lm"]: + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ] + ) + + if self.use_past: + common_inputs["decoder_input_ids"] = {0: "batch"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + else: + common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} + + if self.use_past: + self.fill_with_past_key_values_(common_inputs, direction="inputs") + elif self.task == "causal-lm": + # TODO: figure this case out. + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ] + ) + if self.use_past: + num_encoder_layers, _ = self.num_layers + for i in range(num_encoder_layers): + common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} + common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} + else: + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), + ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), + ] + ) + + return common_inputs + + @property + def outputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task in ["default", "seq2seq-lm"]: + common_outputs = super().outputs + else: + common_outputs = super(OnnxConfigWithPast, self).outputs + if self.use_past: + num_encoder_layers, _ = self.num_layers + for i in range(num_encoder_layers): + common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} + common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} + return common_outputs + + def _generate_dummy_inputs_for_default_and_seq2seq_lm( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, seq_length, is_pair, framework + ) + + # Generate decoder inputs + decoder_seq_length = seq_length if not self.use_past else 1 + decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, decoder_seq_length, is_pair, framework + ) + decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} + common_inputs = dict(**encoder_inputs, **decoder_inputs) + + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + batch, encoder_seq_length = common_inputs["input_ids"].shape + decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] + num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads + encoder_shape = ( + batch, + num_encoder_attention_heads, + encoder_seq_length, + self._config.hidden_size // num_encoder_attention_heads, + ) + decoder_past_length = decoder_seq_length + 3 + decoder_shape = ( + batch, + num_decoder_attention_heads, + decoder_past_length, + self._config.hidden_size // num_decoder_attention_heads, + ) + + common_inputs["decoder_attention_mask"] = torch.cat( + [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 + ) + + common_inputs["past_key_values"] = [] + # If the number of encoder and decoder layers are present in the model configuration, both are considered + num_encoder_layers, num_decoder_layers = self.num_layers + min_num_layers = min(num_encoder_layers, num_decoder_layers) + max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers + remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" + + for _ in range(min_num_layers): + common_inputs["past_key_values"].append( + ( + torch.zeros(decoder_shape), + torch.zeros(decoder_shape), + torch.zeros(encoder_shape), + torch.zeros(encoder_shape), + ) + ) + # TODO: test this. + shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape + for _ in range(min_num_layers, max_num_layers): + common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) + return common_inputs + + def _generate_dummy_inputs_for_causal_lm( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, seq_length, is_pair, framework + ) + + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + batch, seqlen = common_inputs["input_ids"].shape + # Not using the same length for past_key_values + past_key_values_length = seqlen + 2 + num_encoder_layers, _ = self.num_layers + num_encoder_attention_heads, _ = self.num_attention_heads + past_shape = ( + batch, + num_encoder_attention_heads, + past_key_values_length, + self._config.hidden_size // num_encoder_attention_heads, + ) + + mask_dtype = common_inputs["attention_mask"].dtype + common_inputs["attention_mask"] = torch.cat( + [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 + ) + common_inputs["past_key_values"] = [ + (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) + ] + return common_inputs + + def _generate_dummy_inputs_for_sequence_classification_and_question_answering( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + # Copied from OnnxConfig.generate_dummy_inputs + # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. + # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX + batch_size = compute_effective_axis_dimension( + batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 + ) + + # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX + token_to_add = tokenizer.num_special_tokens_to_add(is_pair) + seq_length = compute_effective_axis_dimension( + seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add + ) + + # Generate dummy inputs according to compute batch and sequence + dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size + common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) + return common_inputs + + def generate_dummy_inputs( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + if self.task in ["default", "seq2seq-lm"]: + common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + elif self.task == "causal-lm": + common_inputs = self._generate_dummy_inputs_for_causal_lm( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + else: + common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + return common_inputs + + def _flatten_past_key_values_(self, flattened_output, name, idx, t): + if self.task in ["default", "seq2seq-lm"]: + flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) + else: + flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( + flattened_output, name, idx, t + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_blenderbot_small.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_blenderbot_small.py new file mode 100644 index 0000000000000000000000000000000000000000..f9a9508e5905575dedf832e01b239a9a14ae3cc8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_blenderbot_small.py @@ -0,0 +1,1570 @@ +# coding=utf-8 +# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch BlenderbotSmall model.""" + + +import copy +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_blenderbot_small import BlenderbotSmallConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "BlenderbotSmallConfig" + + +BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "facebook/blenderbot_small-90M", + # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small +] + + +# Copied from transformers.models.bart.modeling_bart.shift_tokens_right +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): + """ + Shift input ids one token to the right. + """ + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() + shifted_input_ids[:, 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +# Copied from transformers.models.blenderbot.modeling_blenderbot.BlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall +class BlenderbotSmallLearnedPositionalEmbedding(nn.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int): + super().__init__(num_embeddings, embedding_dim) + + def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0): + """`input_ids_shape` is expected to be [bsz x seqlen].""" + bsz, seq_len = input_ids_shape[:2] + positions = torch.arange( + past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device + ) + return super().forward(positions) + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BlenderbotSmall +class BlenderbotSmallAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[BlenderbotSmallConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +# Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL +class BlenderbotSmallEncoderLayer(nn.Module): + def __init__(self, config: BlenderbotSmallConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + config=config, + ) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.FloatTensor, + attention_mask: torch.FloatTensor, + layer_head_mask: torch.FloatTensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states, attn_weights, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + if hidden_states.dtype == torch.float16 and ( + torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() + ): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# TODO: Implement attention with SDPA for TimeSeriesTransformer. +BLENDERBOT_SMALL_ATTENTION_CLASSES = { + "eager": BlenderbotSmallAttention, +} + + +# Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL +class BlenderbotSmallDecoderLayer(nn.Module): + def __init__(self, config: BlenderbotSmallConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + is_causal=True, + config=config, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.encoder_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation]( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + config=config, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of + size `(decoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class BlenderbotSmallPreTrainedModel(PreTrainedModel): + config_class = BlenderbotSmallConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + @property + def dummy_inputs(self): + pad_token = self.config.pad_token_id + input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) + dummy_inputs = { + "attention_mask": input_ids.ne(pad_token), + "input_ids": input_ids, + "decoder_input_ids": input_ids, + } + return dummy_inputs + + +BLENDERBOT_SMALL_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`BlenderbotSmallConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BLENDERBOT_SMALL_GENERATION_EXAMPLE = r""" + Conversation example: + + ```python + >>> from transformers import AutoTokenizer, BlenderbotSmallForConditionalGeneration + + >>> mname = "facebook/blenderbot_small-90M" + >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname) + >>> tokenizer = AutoTokenizer.from_pretrained(mname) + >>> UTTERANCE = "My friends are cool but they eat too many carbs." + >>> print("Human: ", UTTERANCE) + Human: My friends are cool but they eat too many carbs. + + >>> inputs = tokenizer([UTTERANCE], return_tensors="pt") + >>> reply_ids = model.generate(**inputs) + >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]) + Bot: what kind of carbs do they eat? i don't know much about carbs. + + >>> REPLY = "I'm not sure" + >>> print("Human: ", REPLY) + Human: I'm not sure + + >>> NEXT_UTTERANCE = ( + ... "My friends are cool but they eat too many carbs.__end__ __start__what kind of carbs do they eat? " + ... "i don't know much about carbs__end__ " + ... "__start__ I'm not sure." + ... ) + >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt") + >>> next_reply_ids = model.generate(**inputs) + >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0]) + Bot: they eat a lot of carbs. carbs are high in fat, protein, and fats. + ``` +""" + +BLENDERBOT_SMALL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`BlenderbotSmallEncoderLayer`]. + + Args: + config: BlenderbotSmallConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + embed_dim = config.d_model + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 + + if embed_tokens is not None: + self.embed_tokens = embed_tokens + else: + self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) + + self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding( + config.max_position_embeddings, + embed_dim, + ) + self.layers = nn.ModuleList([BlenderbotSmallEncoderLayer(config) for _ in range(config.encoder_layers)]) + self.layernorm_embedding = nn.LayerNorm(embed_dim) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_ids=None, + attention_mask=None, + head_mask=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(input_shape) + + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.size()[0] != len(self.layers): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + to_drop = False + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: # skip the layer + to_drop = True + + if to_drop: + layer_outputs = (None, None) + else: + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + (head_mask[idx] if head_mask is not None else None), + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotSmallDecoderLayer`] + + Args: + config: BlenderbotSmallConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + + if embed_tokens is not None: + self.embed_tokens = embed_tokens + else: + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) + + self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + ) + self.layers = nn.ModuleList([BlenderbotSmallDecoderLayer(config) for _ in range(config.decoder_layers)]) + self.layernorm_embedding = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + head_mask=None, + cross_attn_head_mask=None, + past_key_values=None, + inputs_embeds=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing + cross-attention on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # embed positions + positions = self.embed_positions(input_shape, past_key_values_length) + + # BlenderbotSmall applies layer norm on hidden_states + inputs_embeds = self.layernorm_embedding(inputs_embeds) + hidden_states = inputs_embeds + positions + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + if attn_mask.size()[0] != len(self.layers): + raise ValueError( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + head_mask[idx] if head_mask is not None else None, + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + "The bare BlenderbotSmall Model outputting raw hidden-states without any specific head on top.", + BLENDERBOT_SMALL_START_DOCSTRING, +) +class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel): + _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"] + + def __init__(self, config: BlenderbotSmallConfig): + super().__init__(config) + + padding_idx, vocab_size = config.pad_token_id, config.vocab_size + self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) + + self.encoder = BlenderbotSmallEncoder(config, self.shared) + self.decoder = BlenderbotSmallDecoder(config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, value): + self.shared = value + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, BlenderbotSmallModel + + >>> model = BlenderbotSmallModel.from_pretrained("facebook/blenderbot_small-90M") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") + + >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") + >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") # Batch size 1 + >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) + + >>> last_hidden_states = outputs.last_hidden_state + >>> list(last_hidden_states.shape) + [1, 3, 512] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + "The BlenderbotSmall Model with a language modeling head. Can be used for summarization.", + BLENDERBOT_SMALL_START_DOCSTRING, +) +class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel): + base_model_prefix = "model" + _keys_to_ignore_on_load_missing = ["final_logits_bias"] + _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"] + + def __init__(self, config: BlenderbotSmallConfig): + super().__init__(config) + self.model = BlenderbotSmallModel(config) + self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) + self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.model.get_encoder() + + def get_decoder(self): + return self.model.get_decoder() + + def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: + new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) + self._resize_final_logits_bias(new_embeddings.weight.shape[0]) + return new_embeddings + + def _resize_final_logits_bias(self, new_num_tokens: int) -> None: + old_num_tokens = self.final_logits_bias.shape[-1] + if new_num_tokens <= old_num_tokens: + new_bias = self.final_logits_bias[:, :new_num_tokens] + else: + extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) + new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) + self.register_buffer("final_logits_bias", new_bias) + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if use_cache: + logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return Seq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if decoder_input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = decoder_input_ids.shape[1] - 1 + + decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + # cached cross_attention states don't have to be reordered -> they are always the same + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + + layer_past[2:], + ) + return reordered_past + + +# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->BlenderbotSmall +class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel): + """ + This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is + used in combination with the [`EncoderDecoderModel`] framework. + """ + + def __init__(self, config): + super().__init__(config) + self.decoder = BlenderbotSmallDecoder(config) + + def forward(self, *args, **kwargs): + return self.decoder(*args, **kwargs) + + +# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall, facebook/bart-base->facebook/blenderbot_small-90M +class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + config = copy.deepcopy(config) + config.is_decoder = True + config.is_encoder_decoder = False + super().__init__(config) + self.model = BlenderbotSmallDecoderWrapper(config) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.model.decoder.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model.decoder = decoder + + def get_decoder(self): + return self.model.decoder + + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + if the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used + in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional + tensors are only required when the model is used as a decoder in a Sequence to Sequence model. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, BlenderbotSmallForCausalLM + + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") + >>> model = BlenderbotSmallForCausalLM.from_pretrained("facebook/blenderbot_small-90M", add_cross_attention=False) + >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> logits = outputs.logits + >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] + >>> list(logits.shape) == expected_shape + True + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model.decoder( + input_ids=input_ids, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = self.lm_head(outputs[0]) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs + ): + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_ids.shape) + + if past_key_values: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + # first step, decoder_cached_states are empty + return { + "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed + "attention_mask": attention_mask, + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py new file mode 100644 index 0000000000000000000000000000000000000000..b5272fb3bca9e2eef8e307f738f6d456cb5e8218 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py @@ -0,0 +1,1522 @@ +# coding=utf-8 +# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax BlenderbotSmall model.""" + + +import math +import random +from functools import partial +from typing import Callable, Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax +from jax.random import PRNGKey + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxSeq2SeqLMOutput, + FlaxSeq2SeqModelOutput, +) +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_call_sample_docstring, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import add_start_docstrings, logging, replace_return_docstrings +from .configuration_blenderbot_small import BlenderbotSmallConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M" +_CONFIG_FOR_DOC = "BlenderbotSmallConfig" + +BLENDERBOT_SMALL_START_DOCSTRING = r""" + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +BLENDERBOT_SMALL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING = r""" + Args: + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + encoder_outputs (`tuple(tuple(jnp.ndarray)`): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): + Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast + auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right +def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: + """ + Shift input ids one token to the right. + """ + shifted_input_ids = jnp.zeros_like(input_ids) + shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) + shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) + + shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->BlenderbotSmall +class FlaxBlenderbotSmallAttention(nn.Module): + config: BlenderbotSmallConfig + embed_dim: int + num_heads: int + dropout: float = 0.0 + causal: bool = False + bias: bool = True + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self) -> None: + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {self.num_heads})." + ) + + dense = partial( + nn.Dense, + self.embed_dim, + use_bias=self.bias, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() + self.out_proj = dense() + + self.dropout_layer = nn.Dropout(rate=self.dropout) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" + ) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) + + @nn.compact + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states: jnp.ndarray, + key_value_states: Optional[jnp.ndarray] = None, + attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + # get query proj + query_states = self.q_proj(hidden_states) + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self.k_proj(key_value_states) + value_states = self.v_proj(key_value_states) + else: + # self_attention + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # handle cache prepare causal attention mask + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = self._merge_heads(attn_output) + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayer with Bart->BlenderbotSmall +class FlaxBlenderbotSmallEncoderLayer(nn.Module): + config: BlenderbotSmallConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxBlenderbotSmallAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.encoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + ) + self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + self.fc1 = nn.Dense( + self.config.encoder_ffn_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.fc2 = nn.Dense( + self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + output_attentions: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + residual = hidden_states + hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) + + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->BlenderbotSmall +class FlaxBlenderbotSmallEncoderLayerCollection(nn.Module): + config: BlenderbotSmallConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxBlenderbotSmallEncoderLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.encoder_layers) + ] + self.layerdrop = self.config.encoder_layerdrop + + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for encoder_layer in self.layers: + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.layerdrop): # skip the layer + layer_outputs = (None, None) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + output_attentions, + deterministic, + ) + hidden_states = layer_outputs[0] + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states, all_hidden_states, all_attentions) + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayer with Bart->BlenderbotSmall +class FlaxBlenderbotSmallDecoderLayer(nn.Module): + config: BlenderbotSmallConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxBlenderbotSmallAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + causal=True, + dtype=self.dtype, + ) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + + self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.encoder_attn = FlaxBlenderbotSmallAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.fc1 = nn.Dense( + self.config.decoder_ffn_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.fc2 = nn.Dense( + self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + residual = hidden_states + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + hidden_states, cross_attn_weights = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + return outputs + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->BlenderbotSmall +class FlaxBlenderbotSmallDecoderLayerCollection(nn.Module): + config: BlenderbotSmallConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxBlenderbotSmallDecoderLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.decoder_layers) + ] + self.layerdrop = self.config.decoder_layerdrop + + def __call__( + self, + hidden_states, + attention_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.layerdrop): + layer_outputs = (None, None, None) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + output_attentions=output_attentions, + deterministic=deterministic, + ) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +class FlaxBlenderbotSmallEncoder(nn.Module): + config: BlenderbotSmallConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.padding_idx = self.config.pad_token_id + self.max_source_positions = self.config.max_position_embeddings + self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 + + self.embed_positions = nn.Embed( + self.config.max_position_embeddings, + embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.layers = FlaxBlenderbotSmallEncoderLayerCollection(self.config, self.dtype) + self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + input_shape = input_ids.shape + input_ids = input_ids.reshape(-1, input_shape[-1]) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(position_ids) + + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return outputs + + return FlaxBaseModelOutput( + last_hidden_state=outputs.last_hidden_state, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class FlaxBlenderbotSmallDecoder(nn.Module): + config: BlenderbotSmallConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.padding_idx = self.config.pad_token_id + self.max_target_positions = self.config.max_position_embeddings + self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 + + self.embed_positions = nn.Embed( + self.config.max_position_embeddings, + embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.layers = FlaxBlenderbotSmallDecoderLayerCollection(self.config, self.dtype) + self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + input_shape = input_ids.shape + input_ids = input_ids.reshape(-1, input_shape[-1]) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + # embed positions + positions = self.embed_positions(position_ids) + + # BlenderbotSmall applies layer norm on inputs_embeds in decoder + inputs_embeds = self.layernorm_embedding(inputs_embeds) + hidden_states = inputs_embeds + positions + + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return outputs + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=outputs.last_hidden_state, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->BlenderbotSmall +class FlaxBlenderbotSmallModule(nn.Module): + config: BlenderbotSmallConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.shared = nn.Embed( + self.config.vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + dtype=self.dtype, + ) + + self.encoder = FlaxBlenderbotSmallEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) + self.decoder = FlaxBlenderbotSmallDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) + + def _get_encoder_module(self): + return self.encoder + + def _get_decoder_module(self): + return self.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return FlaxSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +class FlaxBlenderbotSmallPreTrainedModel(FlaxPreTrainedModel): + config_class = BlenderbotSmallConfig + base_model_prefix: str = "model" + module_class: nn.Module = None + + def __init__( + self, + config: BlenderbotSmallConfig, + input_shape: Tuple[int] = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + # make sure initialization pass will work for FlaxBlenderbotSmallForSequenceClassificationModule + input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) + attention_mask = jnp.ones_like(input_ids) + decoder_input_ids = input_ids + decoder_attention_mask = jnp.ones_like(input_ids) + + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init( + rngs, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + )["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + def init_cache(self, batch_size, max_length, encoder_outputs): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): + `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: + `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) + is a sequence of hidden-states at the output of the last layer of the encoder. Used in the + cross-attention of the decoder. + """ + # init input variables to retrieve cache + decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + decoder_position_ids = jnp.broadcast_to( + jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape + ) + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + + init_variables = self.module.init( + jax.random.PRNGKey(0), + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + init_cache=True, + method=_decoder_forward, # we only need to call the decoder to init the cache + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings(BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotSmallConfig) + def encode( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration + + >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") + >>> encoder_outputs = model.encode(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): + encode_module = module._get_encoder_module() + return encode_module(input_ids, attention_mask, position_ids, **kwargs) + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + method=_encoder_forward, + ) + + @add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings( + output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotSmallConfig + ) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> import jax.numpy as jnp + >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration + + >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> last_decoder_hidden_states = outputs.last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxBlenderbotSmallAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past = outputs + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past = outputs + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + decoder_input_ids: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # prepare encoder inputs + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # prepare decoder inputs + if decoder_input_ids is None: + decoder_input_ids = shift_tokens_right( + input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id + ) + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + if decoder_position_ids is None: + batch_size, sequence_length = decoder_input_ids.shape + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + ) + + +@add_start_docstrings( + "The bare BlenderbotSmall Model transformer outputting raw hidden-states without any specific head on top.", + BLENDERBOT_SMALL_START_DOCSTRING, +) +class FlaxBlenderbotSmallModel(FlaxBlenderbotSmallPreTrainedModel): + config: BlenderbotSmallConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + module_class = FlaxBlenderbotSmallModule + + +append_call_sample_docstring(FlaxBlenderbotSmallModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->BlenderbotSmall +class FlaxBlenderbotSmallForConditionalGenerationModule(nn.Module): + config: BlenderbotSmallConfig + dtype: jnp.dtype = jnp.float32 + bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros + + def setup(self): + self.model = FlaxBlenderbotSmallModule(config=self.config, dtype=self.dtype) + self.lm_head = nn.Dense( + self.model.shared.num_embeddings, + use_bias=False, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) + + def _get_encoder_module(self): + return self.model.encoder + + def _get_decoder_module(self): + return self.model.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + position_ids=position_ids, + decoder_position_ids=decoder_position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = self.model.variables["params"]["shared"]["embedding"] + lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = self.lm_head(hidden_states) + + lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return output + + return FlaxSeq2SeqLMOutput( + logits=lm_logits, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + "The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.", + BLENDERBOT_SMALL_START_DOCSTRING, +) +class FlaxBlenderbotSmallForConditionalGeneration(FlaxBlenderbotSmallPreTrainedModel): + module_class = FlaxBlenderbotSmallForConditionalGenerationModule + dtype: jnp.dtype = jnp.float32 + + @add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotSmallConfig) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + deterministic: bool = True, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> import jax.numpy as jnp + >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration + + >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> logits = outputs.logits + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxBlenderbotSmallAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + outputs = decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = module.model.variables["params"]["shared"]["embedding"] + lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = module.lm_head(hidden_states) + + lm_logits += module.final_logits_bias.astype(self.dtype) + return lm_logits, outputs + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + if past_key_values is None: + lm_logits, decoder_outputs = outputs + else: + (lm_logits, decoder_outputs), past = outputs + + if return_dict: + outputs = FlaxCausalLMOutputWithCrossAttentions( + logits=lm_logits, + hidden_states=decoder_outputs.hidden_states, + attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + ) + else: + outputs = (lm_logits,) + decoder_outputs[1:] + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + max_length, + attention_mask: Optional[jax.Array] = None, + decoder_attention_mask: Optional[jax.Array] = None, + encoder_outputs=None, + **kwargs, + ): + # initializing the cache + batch_size, seq_length = decoder_input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyways. + # Thus we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if decoder_attention_mask is not None: + position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "encoder_attention_mask": attention_mask, + "decoder_attention_mask": extended_attention_mask, + "decoder_position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 + return model_kwargs + + +FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING = """ + Returns: + + Summarization example: + + ```py + >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration + + >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") + + >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np") + + >>> # Generate Summary + >>> summary_ids = model.generate(inputs["input_ids"]).sequences + >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) + ``` + + Mask filling example: + + ```py + >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") + >>> TXT = "My friends are but they eat too many carbs." + + >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") + >>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"] + >>> logits = model(input_ids).logits + + >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() + >>> probs = jax.nn.softmax(logits[0, masked_index], axis=0) + >>> values, predictions = jax.lax.top_k(probs) + + >>> tokenizer.decode(predictions).split() + ``` +""" + +overwrite_call_docstring( + FlaxBlenderbotSmallForConditionalGeneration, + BLENDERBOT_SMALL_INPUTS_DOCSTRING + FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING, +) +append_replace_return_docstrings( + FlaxBlenderbotSmallForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC +) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py new file mode 100644 index 0000000000000000000000000000000000000000..01206831ac96c3cdf3ccb0401be67111bd6d9a4b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py @@ -0,0 +1,1526 @@ +# coding=utf-8 +# Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 BlenderbotSmall model.""" + + +from __future__ import annotations + +import random +from typing import List, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPastAndCrossAttentions, + TFSeq2SeqLMOutput, + TFSeq2SeqModelOutput, +) + +# Public API +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFPreTrainedModel, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_blenderbot_small import BlenderbotSmallConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M" +_CONFIG_FOR_DOC = "BlenderbotSmallConfig" + + +LARGE_NEGATIVE = -1e8 + + +# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right +def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): + pad_token_id = tf.cast(pad_token_id, input_ids.dtype) + decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) + start_tokens = tf.fill( + (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) + ) + shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids = tf.where( + shifted_input_ids == -100, + tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), + shifted_input_ids, + ) + + # "Verify that `labels` has only positive values and -100" + assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) + + # Make sure the assertion op is called by wrapping the result in an identity no-op + with tf.control_dependencies([assert_gte0]): + shifted_input_ids = tf.identity(shifted_input_ids) + + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask +def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz = input_ids_shape[0] + tgt_len = input_ids_shape[1] + mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE + mask_cond = tf.range(shape_list(mask)[-1]) + + mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) + + if past_key_values_length > 0: + mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) + + return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) + + +# Copied from transformers.models.bart.modeling_tf_bart._expand_mask +def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + src_len = shape_list(mask)[1] + tgt_len = tgt_len if tgt_len is not None else src_len + one_cst = tf.constant(1.0) + mask = tf.cast(mask, dtype=one_cst.dtype) + expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) + + return (one_cst - expanded_mask) * LARGE_NEGATIVE + + +# Copied from transformers.models.blenderbot.modeling_tf_blenderbot.TFBlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall +class TFBlenderbotSmallLearnedPositionalEmbedding(keras.layers.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): + super().__init__(num_embeddings, embedding_dim, **kwargs) + + def call( + self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None + ): + """Input is expected to be of size [bsz x seqlen].""" + if position_ids is None: + seq_len = input_shape[1] + position_ids = tf.range(seq_len, delta=1, name="range") + position_ids += past_key_values_length + + return super().call(tf.cast(position_ids, dtype=tf.int32)) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->BlenderbotSmall +class TFBlenderbotSmallAttention(keras.layers.Layer): + """Multi-headed attention from "Attention Is All You Need""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + **kwargs, + ): + super().__init__(**kwargs) + self.embed_dim = embed_dim + + self.num_heads = num_heads + self.dropout = keras.layers.Dropout(dropout) + self.head_dim = embed_dim // num_heads + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") + self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") + self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") + self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") + + def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): + return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) + + def call( + self, + hidden_states: tf.Tensor, + key_value_states: tf.Tensor | None = None, + past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, + attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor | None]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = shape_list(hidden_states) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = tf.concat([past_key_value[0], key_states], axis=2) + value_states = tf.concat([past_key_value[1], value_states], axis=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) + key_states = tf.reshape(key_states, proj_shape) + value_states = tf.reshape(value_states, proj_shape) + + src_len = shape_list(key_states)[1] + attn_weights = tf.matmul(query_states, key_states, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(attn_weights), + [bsz * self.num_heads, tgt_len, src_len], + message=( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {shape_list(attn_weights)}" + ), + ) + + if attention_mask is not None: + tf.debugging.assert_equal( + shape_list(attention_mask), + [bsz, 1, tgt_len, src_len], + message=( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {shape_list(attention_mask)}" + ), + ) + + attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) + attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_weights = stable_softmax(attn_weights, axis=-1) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + attn_weights, (bsz, self.num_heads, tgt_len, src_len) + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_probs = self.dropout(attn_weights, training=training) + attn_output = tf.matmul(attn_probs, value_states) + + tf.debugging.assert_equal( + shape_list(attn_output), + [bsz * self.num_heads, tgt_len, self.head_dim], + message=( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {shape_list(attn_output)}" + ), + ) + + attn_output = tf.transpose( + tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) + ) + attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) + + attn_output = self.out_proj(attn_output) + attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + + return attn_output, attn_weights, past_key_value + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.embed_dim]) + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.embed_dim]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.embed_dim]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.embed_dim]) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->BlenderbotSmall +class TFBlenderbotSmallEncoderLayer(keras.layers.Layer): + def __init__(self, config: BlenderbotSmallConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFBlenderbotSmallAttention( + self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" + ) + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: np.ndarray | tf.Tensor | None, + layer_head_mask: tf.Tensor | None, + training: Optional[bool] = False, + ) -> tf.Tensor: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`tf.Tensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)` + """ + residual = hidden_states + hidden_states, self_attn_weights, _ = self.self_attn( + hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask + ) + + tf.debugging.assert_equal( + shape_list(hidden_states), + shape_list(residual), + message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", + ) + + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + return hidden_states, self_attn_weights + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.encoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->BlenderbotSmall +class TFBlenderbotSmallDecoderLayer(keras.layers.Layer): + def __init__(self, config: BlenderbotSmallConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFBlenderbotSmallAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + name="self_attn", + is_decoder=True, + ) + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.encoder_attn = TFBlenderbotSmallAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + name="encoder_attn", + is_decoder=True, + ) + self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") + self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + cross_attn_layer_head_mask: tf.Tensor | None = None, + past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`tf.Tensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`tf.Tensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`tf.Tensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + `(decoder_attention_heads,)` + cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. + `(decoder_attention_heads,)` + past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states + """ + residual = hidden_states + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + return ( + hidden_states, + self_attn_weights, + cross_attn_weights, + present_key_value, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "encoder_attn", None) is not None: + with tf.name_scope(self.encoder_attn.name): + self.encoder_attn.build(None) + if getattr(self, "encoder_attn_layer_norm", None) is not None: + with tf.name_scope(self.encoder_attn_layer_norm.name): + self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.decoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFBlenderbotSmallPreTrainedModel(TFPreTrainedModel): + config_class = BlenderbotSmallConfig + base_model_prefix = "model" + + +BLENDERBOT_SMALL_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BLENDERBOT_SMALL_GENERATION_EXAMPLE = r""" + Conversation example:: + + ```py + >>> from transformers import AutoTokenizer, TFBlenderbotSmallForConditionalGeneration + + >>> mname = "facebook/blenderbot_small-90M" + >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname) + >>> tokenizer = AutoTokenizer.from_pretrained(mname) + + >>> UTTERANCE = "My friends are cool but they eat too many carbs." + >>> print("Human: ", UTTERANCE) + >>> inputs = tokenizer([UTTERANCE], return_tensors="tf") + + >>> reply_ids = model.generate(**inputs) + >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]) + what kind of carbs do they eat? i don't know much about carbs. + + >>> REPLY = "I'm not sure" + >>> print("Human: ", REPLY) + >>> NEXT_UTTERANCE = ( + ... "My friends are cool but they eat too many carbs. " + ... "what kind of carbs do they eat? i don't know much about carbs. " + ... "I'm not sure." + ... ) + + >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf") + >>> inputs.pop("token_type_ids") + >>> next_reply_ids = model.generate(**inputs) + >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0]) + ``` +""" + +BLENDERBOT_SMALL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. + decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tf.FloatTensor`, *optional*): + hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + of shape `(batch_size, sequence_length, hidden_size)` is a sequence of + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@keras_serializable +class TFBlenderbotSmallEncoder(keras.layers.Layer): + config_class = BlenderbotSmallConfig + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`TFBlenderbotSmallEncoderLayer`]. + + Args: + config: BlenderbotSmallConfig + """ + + def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.dropout = keras.layers.Dropout(config.dropout) + self.layerdrop = config.encoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + + self.embed_tokens = embed_tokens + self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.layers = [TFBlenderbotSmallEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + self.embed_dim = config.d_model + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids=None, + inputs_embeds=None, + attention_mask=None, + head_mask=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + """ + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value + in the config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. This argument can be used only in eager mode, in graph mode the value in the config + will be used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(input_shape) + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + + # check attention mask and invert + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _expand_mask(attention_mask) + else: + attention_mask = None + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + tf.debugging.assert_equal( + shape_list(head_mask)[0], + len(self.layers), + message=( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(head_mask)[0]}." + ), + ) + + # encoder layers + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if training and (dropout_probability < self.layerdrop): # skip the layer + continue + + hidden_states, attn = encoder_layer( + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + ) + + if output_attentions: + all_attentions += (attn,) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.embed_dim]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFBlenderbotSmallDecoder(keras.layers.Layer): + config_class = BlenderbotSmallConfig + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotSmallDecoderLayer`] + + Args: + config: BlenderbotSmallConfig + embed_tokens: output embedding + """ + + def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.padding_idx = config.pad_token_id + self.embed_tokens = embed_tokens + self.layerdrop = config.decoder_layerdrop + self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + self.layers = [TFBlenderbotSmallDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + + self.dropout = keras.layers.Dropout(config.dropout) + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids=None, + inputs_embeds=None, + attention_mask=None, + position_ids=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + head_mask=None, + cross_attn_head_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + r""" + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up + decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value + in the config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. This argument can be used only in eager mode, in graph mode the value in the config + will be used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + else: + combined_attention_mask = _expand_mask( + tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] + ) + + if attention_mask is not None: + combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) + + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) + + # embed positions + if position_ids is None: + positions = self.embed_positions(input_shape, past_key_values_length) + else: + positions = self.embed_positions(input_shape, position_ids=position_ids) + + hidden_states = self.layernorm_embedding(inputs_embeds) + positions + hidden_states = self.dropout(hidden_states, training=training) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None + present_key_values = () if use_cache else None + + # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired + for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: + if attn_mask is not None: + tf.debugging.assert_equal( + shape_list(attn_mask)[0], + len(self.layers), + message=( + f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(attn_mask)[0]}." + ), + ) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + dropout_probability = random.uniform(0, 1) + + if training and (dropout_probability < self.layerdrop): + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + past_key_value=past_key_value, + ) + + if use_cache: + present_key_values += (present_key_value,) + + if output_attentions: + all_self_attns += (layer_self_attn,) + + if encoder_hidden_states is not None: + all_cross_attns += (layer_cross_attn,) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if not return_dict: + return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns + else: + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_values, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.config.d_model]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFBlenderbotSmallMainLayer(keras.layers.Layer): + config_class = BlenderbotSmallConfig + + def __init__(self, config: BlenderbotSmallConfig, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.shared = keras.layers.Embedding( + input_dim=config.vocab_size, + output_dim=config.d_model, + embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), + name="model.shared", + ) + # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) + self.shared.load_weight_prefix = "model.shared" + + self.encoder = TFBlenderbotSmallEncoder(config, self.shared, name="encoder") + self.decoder = TFBlenderbotSmallDecoder(config, self.shared, name="decoder") + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + decoder_input_ids=None, + decoder_attention_mask=None, + decoder_position_ids=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values=None, + inputs_embeds=None, + decoder_inputs_embeds=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + **kwargs, + ): + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): + encoder_outputs = TFBaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False + elif not return_dict and not isinstance(encoder_outputs, tuple): + encoder_outputs = encoder_outputs.to_tuple() + + decoder_outputs = self.decoder( + decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return TFSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + # The shared/tied weights expect to be in the model base namespace + # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than + # the current one. + with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): + self.shared.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings( + "The bare BLENDERBOT_SMALL Model outputting raw hidden-states without any specific head on top.", + BLENDERBOT_SMALL_START_DOCSTRING, +) +class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel): + def __init__(self, config: BlenderbotSmallConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.model = TFBlenderbotSmallMainLayer(config, name="model") + + def get_encoder(self): + return self.model.encoder + + def get_decoder(self): + return self.model.decoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSeq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values: List[tf.Tensor] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs, + ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]: + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqModelOutput( + last_hidden_state=output.last_hidden_state, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + + +# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer +class BiasLayer(keras.layers.Layer): + """ + Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, + so all weights have to be registered in a layer. + """ + + def __init__(self, shape, initializer, trainable, name, **kwargs): + super().__init__(name=name, **kwargs) + # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of + # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: + # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 + self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) + + def call(self, x): + return x + self.bias + + +@add_start_docstrings( + "The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.", + BLENDERBOT_SMALL_START_DOCSTRING, +) +class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel, TFCausalLanguageModelingLoss): + _keys_to_ignore_on_load_unexpected = [ + r"model.encoder.embed_tokens.weight", + r"model.decoder.embed_tokens.weight", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.model = TFBlenderbotSmallMainLayer(config, name="model") + self.use_cache = config.use_cache + # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False + ) + + def get_decoder(self): + return self.model.decoder + + def get_encoder(self): + return self.model.encoder + + def get_output_embeddings(self): + return self.get_input_embeddings() + + def set_output_embeddings(self, value): + self.set_input_embeddings(value) + + def get_bias(self): + return {"final_logits_bias": self.bias_layer.bias} + + def set_bias(self, value): + # Replaces the existing layers containing bias for correct (de)serialization. + vocab_size = value["final_logits_bias"].shape[-1] + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False + ) + self.bias_layer.bias.assign(value["final_logits_bias"]) + + @unpack_inputs + @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) + def call( + self, + input_ids: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[TFBaseModelOutput] = None, + past_key_values: List[tf.Tensor] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: + r""" + labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + """ + + if labels is not None: + labels = tf.where( + labels == self.config.pad_token_id, + tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), + labels, + ) + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) + lm_logits = self.bias_layer(lm_logits) + masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + return TFSeq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, # index 1 of d outputs + decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs + decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs + cross_attentions=outputs.cross_attentions, # index 4 of d outputs + encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs + encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out + encoder_attentions=outputs.encoder_attentions, # 2 of e out + ) + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqLMOutput( + logits=output.logits, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + decoder_attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + if decoder_attention_mask is not None: # xla + decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] + elif past_key_values is not None: # no xla + past_key_values + decoder_position_ids = past_key_values[0][0].shape[2] + else: # no xla + no past_key_values + decoder_position_ids = tf.range(decoder_input_ids.shape[1]) + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "decoder_attention_mask": decoder_attention_mask, + "decoder_position_ids": decoder_position_ids, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + if getattr(self, "bias_layer", None) is not None: + with tf.name_scope(self.bias_layer.name): + self.bias_layer.build(None) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small.py new file mode 100644 index 0000000000000000000000000000000000000000..240495d73894efc2bd3911d28d30199262981a2b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small.py @@ -0,0 +1,258 @@ +# coding=utf-8 +# Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization class for BlenderbotSmall.""" + +import json +import os +from typing import Dict, List, Optional, Tuple + +import regex as re + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", + "tokenizer_config_file": "tokenizer_config.json", +} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" + }, + "merges_file": { + "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" + }, + "tokenizer_config_file": { + "facebook/blenderbot_small-90M": ( + "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" + ) + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/blenderbot_small-90M": 512} + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. + + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + + pairs = set(pairs) + return pairs + + +class BlenderbotSmallTokenizer(PreTrainedTokenizer): + """ + Constructs a Blenderbot-90M tokenizer based on BPE (Byte-Pair-Encoding) + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + the superclass for more information regarding methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + merges_file (`str`): + Path to the merges file. + bos_token (`str`, *optional*, defaults to `"__start__"`): + The beginning of sentence token. + eos_token (`str`, *optional*, defaults to `"__end__"`): + The end of sentence token. + unk_token (`str`, *optional*, defaults to `"__unk__"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `"__null__"`): + The token used for padding, for example when batching sequences of different lengths. + kwargs (*optional*): + Additional keyword arguments passed along to [`PreTrainedTokenizer`] + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + merges_file, + bos_token="__start__", + eos_token="__end__", + unk_token="__unk__", + pad_token="__null__", + **kwargs, + ): + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + merges = merges_handle.read().split("\n")[1:-1] + merges = [tuple(merge.split()) for merge in merges] + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {} + super().__init__(unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs) + + @property + def vocab_size(self) -> int: + return len(self.encoder) + + def get_vocab(self) -> Dict: + return dict(self.encoder, **self.added_tokens_encoder) + + def bpe(self, token: str) -> str: + if token in self.cache: + return self.cache[token] + token = re.sub("([.,!?()])", r" \1", token) + token = re.sub("(')", r" \1 ", token) + token = re.sub(r"\s{2,}", " ", token) + if "\n" in token: + token = token.replace("\n", " __newln__") + + tokens = token.split(" ") + words = [] + for token in tokens: + if not len(token): + continue + + token = token.lower() + word = tuple(token) + word = tuple(list(word[:-1]) + [word[-1] + ""]) + pairs = get_pairs(word) + + if not pairs: + words.append(token) + continue + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + + while i < len(word): + try: + j = word.index(first, i) + new_word.extend(word[i:j]) + i = j + except ValueError: + new_word.extend(word[i:]) + break + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = "@@ ".join(word) + word = word[:-4] + + self.cache[token] = word + words.append(word) + return " ".join(words) + + def _tokenize(self, text: str) -> List[str]: + """Split a string into tokens using BPE.""" + split_tokens = [] + + words = re.findall(r"\S+\n?", text) + + for token in words: + split_tokens.extend(list(self.bpe(token).split(" "))) + return split_tokens + + def _convert_token_to_id(self, token: str) -> int: + """Converts a token to an id using the vocab.""" + token = token.lower() + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index: int) -> str: + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens: List[str]) -> str: + """Converts a sequence of tokens in a single string.""" + out_string = " ".join(tokens).replace("@@ ", "").strip() + return out_string + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + @property + # Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template + def default_chat_template(self): + """ + A very simple chat template that just adds whitespace between messages. + """ + logger.warning_once( + "\nNo chat template is defined for this tokenizer - using the default template " + f"for the {self.__class__.__name__} class. If the default is not appropriate for " + "your model, please set `tokenizer.chat_template` to an appropriate template. " + "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" + ) + return ( + "{% for message in messages %}" + "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}" + "{{ message['content'] }}" + "{% if not loop.last %}{{ ' ' }}{% endif %}" + "{% endfor %}" + "{{ eos_token }}" + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..4bf0017b5f2a29753bfce8414b813c270e82432a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py @@ -0,0 +1,140 @@ +# coding=utf-8 +# Copyright 2021, The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Fast tokenization class for BlenderbotSmall.""" +from typing import List, Optional + +from tokenizers import ByteLevelBPETokenizer + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_blenderbot_small import BlenderbotSmallTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", + "tokenizer_config_file": "tokenizer_config.json", +} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" + }, + "merges_file": { + "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" + }, + "tokenizer_config_file": { + "facebook/blenderbot_small-90M": ( + "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" + ) + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "facebook/blenderbot_small-90M": 512, +} + + +class BlenderbotSmallTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" BlenderbotSmall tokenizer (backed by HuggingFace's *tokenizers* library). + + Args: + vocab_file (`str`): + Path to the vocabulary file. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + slow_tokenizer_class = BlenderbotSmallTokenizer + + def __init__( + self, + vocab_file=None, + merges_file=None, + unk_token="<|endoftext|>", + bos_token="<|endoftext|>", + eos_token="<|endoftext|>", + add_prefix_space=False, + trim_offsets=True, + **kwargs, + ): + super().__init__( + ByteLevelBPETokenizer( + vocab=vocab_file, + merges=merges_file, + add_prefix_space=add_prefix_space, + trim_offsets=trim_offsets, + ), + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + **kwargs, + ) + self.add_prefix_space = add_prefix_space + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] + if token_ids_1 is None: + return output + + return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. BlenderbotSmall + does not make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + @property + # Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template + def default_chat_template(self): + """ + A very simple chat template that just adds whitespace between messages. + """ + logger.warning_once( + "\nNo chat template is defined for this tokenizer - using the default template " + f"for the {self.__class__.__name__} class. If the default is not appropriate for " + "your model, please set `tokenizer.chat_template` to an appropriate template. " + "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" + ) + return ( + "{% for message in messages %}" + "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}" + "{{ message['content'] }}" + "{% if not loop.last %}{{ ' ' }}{% endif %}" + "{% endfor %}" + "{{ eos_token }}" + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..57e39b6e1fa66085b4571324ee61e35468204b7e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__init__.py @@ -0,0 +1,76 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_clap": [ + "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", + "ClapAudioConfig", + "ClapConfig", + "ClapTextConfig", + ], + "processing_clap": ["ClapProcessor"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_clap"] = [ + "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", + "ClapModel", + "ClapPreTrainedModel", + "ClapTextModel", + "ClapTextModelWithProjection", + "ClapAudioModel", + "ClapAudioModelWithProjection", + ] + _import_structure["feature_extraction_clap"] = ["ClapFeatureExtractor"] + +if TYPE_CHECKING: + from .configuration_clap import ( + CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, + ClapAudioConfig, + ClapConfig, + ClapTextConfig, + ) + from .processing_clap import ClapProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_clap import ClapFeatureExtractor + from .modeling_clap import ( + CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, + ClapAudioModel, + ClapAudioModelWithProjection, + ClapModel, + ClapPreTrainedModel, + ClapTextModel, + ClapTextModelWithProjection, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e43f940ddcea8e82d09e81de82d2936819aa167d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/configuration_clap.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/configuration_clap.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..746c6804e26822aa455846b17357a08847a44d23 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/configuration_clap.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/convert_clap_original_pytorch_to_hf.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/convert_clap_original_pytorch_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..06336657fd89b4d5497ed358bcac3b58ee8d8c3f Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/convert_clap_original_pytorch_to_hf.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/feature_extraction_clap.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/feature_extraction_clap.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..80620594974ffbf8cc3981af3c16a42610194437 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/feature_extraction_clap.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/modeling_clap.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/modeling_clap.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e66f373f82160d535c3291bcbc5f739806b0dbaf Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/modeling_clap.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/processing_clap.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/processing_clap.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8a8e95ff8ee7b911ec5effb3104edf7d4916cac4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/__pycache__/processing_clap.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/configuration_clap.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/configuration_clap.py new file mode 100644 index 0000000000000000000000000000000000000000..1a02d8460937d0e69e20e627657a576ea9f6ad53 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/configuration_clap.py @@ -0,0 +1,432 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" CLAP model configuration""" + +import os +from typing import Union + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = { + "laion/clap-htsat-fused": "https://huggingface.co/laion/clap-htsat-fused/resolve/main/config.json", + "laion/clap-htsat-unfused": "https://huggingface.co/laion/clap-htsat-unfused/resolve/main/config.json", +} + + +class ClapTextConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ClapTextModel`]. It is used to instantiate a CLAP + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the CLAP + [calp-hsat-fused](https://huggingface.co/laion/clap-hsat-fused) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the CLAP model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`ClapTextModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"relu"`, + `"relu"`, `"silu"` and `"relu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`ClapTextModel`]. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + is_decoder (`bool`, *optional*, defaults to `False`): + Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + projection_hidden_act (`str`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + projection_dim (`int`, *optional*, defaults to 512) + Dimension of the projection head of the `ClapTextModelWithProjection`. + + Examples: + + ```python + >>> from transformers import ClapTextConfig, ClapTextModel + + >>> # Initializing a CLAP text configuration + >>> configuration = ClapTextConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = ClapTextModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "clap_text_model" + + def __init__( + self, + vocab_size=50265, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=514, + type_vocab_size=1, + initializer_factor=1.0, + layer_norm_eps=1e-12, + projection_dim=512, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + position_embedding_type="absolute", + use_cache=True, + projection_hidden_act="relu", + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_factor = initializer_factor + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache + self.projection_hidden_act = projection_hidden_act + self.projection_dim = projection_dim + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) + + # get the text config dict if we are loading from ClapConfig + if config_dict.get("model_type") == "clap": + config_dict = config_dict["text_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class ClapAudioConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ClapAudioModel`]. It is used to instantiate a + CLAP audio encoder according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the audio encoder of the CLAP + [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + window_size (`int`, *optional*, defaults to 8): + Image size of the spectrogram + num_mel_bins (`int`, *optional*, defaults to 64): + Number of mel features used per frames. Should correspond to the value used in the `ClapProcessor` class. + spec_size (`int`, *optional*, defaults to 256): + Desired input size of the spectrogram that the model supports. It can be different from the output of the + `ClapFeatureExtractor`, in which case the input features will be resized. Corresponds to the `image_size` + of the audio models. + hidden_act (`str`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + patch_size (`int`, *optional*, defaults to 4): + Patch size for the audio spectrogram + patch_stride (`list`, *optional*, defaults to `[4, 4]`): + Patch stride for the audio spectrogram + num_classes (`int`, *optional*, defaults to 527): + Number of classes used for the head training + hidden_size (`int`, *optional*, defaults to 768): + Hidden size of the output of the audio encoder. Correspond to the dimension of the penultimate layer's + output,which is sent to the projection MLP layer. + projection_dim (`int`, *optional*, defaults to 512): + Hidden size of the projection layer. + depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`): + Depths used for the Swin Layers of the audio model + num_attention_heads (`list`, *optional*, defaults to `[4, 8, 16, 32]`): + Number of attention heads used for the Swin Layers of the audio model + enable_fusion (`bool`, *optional*, defaults to `False`): + Whether or not to enable patch fusion. This is the main contribution of the authors, and should give the + best results. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the encoder. + fusion_type (`[type]`, *optional*): + Fusion type used for the patch fusion. + patch_embed_input_channels (`int`, *optional*, defaults to 1): + Number of channels used for the input spectrogram + flatten_patch_embeds (`bool`, *optional*, defaults to `True`): + Whether or not to flatten the patch embeddings + patch_embeds_hidden_size (`int`, *optional*, defaults to 96): + Hidden size of the patch embeddings. It is used as the number of output channels. + enable_patch_layer_norm (`bool`, *optional*, defaults to `True`): + Whether or not to enable layer normalization for the patch embeddings + drop_path_rate (`float`, *optional*, defaults to 0.0): + Drop path rate for the patch fusion + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether or not to add a bias to the query, key, value projections. + mlp_ratio (`float`, *optional*, defaults to 4.0): + Ratio of the mlp hidden dim to embedding dim. + aff_block_r (`int`, *optional*, defaults to 4): + downsize_ratio used in the AudioFF block + num_hidden_layers (`int`, *optional*, defaults to 4): + Number of hidden layers in the Transformer encoder. + projection_hidden_act (`str`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + layer_norm_eps (`[type]`, *optional*, defaults to 1e-05): + The epsilon used by the layer normalization layers. + initializer_factor (`float`, *optional*, defaults to 1.0): + A factor for initializing all weight matrices (should be kept to 1, used internally for initialization + testing). + + Example: + + ```python + >>> from transformers import ClapAudioConfig, ClapAudioModel + + >>> # Initializing a ClapAudioConfig with laion/clap-htsat-fused style configuration + >>> configuration = ClapAudioConfig() + + >>> # Initializing a ClapAudioModel (with random weights) from the laion/clap-htsat-fused style configuration + >>> model = ClapAudioModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "clap_audio_model" + + def __init__( + self, + window_size=8, + num_mel_bins=64, + spec_size=256, + hidden_act="gelu", + patch_size=4, + patch_stride=[4, 4], + num_classes=527, + hidden_size=768, + projection_dim=512, + depths=[2, 2, 6, 2], + num_attention_heads=[4, 8, 16, 32], + enable_fusion=False, + hidden_dropout_prob=0.1, + fusion_type=None, + patch_embed_input_channels=1, + flatten_patch_embeds=True, + patch_embeds_hidden_size=96, + enable_patch_layer_norm=True, + drop_path_rate=0.0, + attention_probs_dropout_prob=0.0, + qkv_bias=True, + mlp_ratio=4.0, + aff_block_r=4, + num_hidden_layers=4, + projection_hidden_act="relu", + layer_norm_eps=1e-5, + initializer_factor=1.0, + **kwargs, + ): + super().__init__(**kwargs) + self.window_size = window_size + self.num_mel_bins = num_mel_bins + self.spec_size = spec_size + self.patch_size = patch_size + self.patch_stride = patch_stride + self.num_classes = num_classes + self.hidden_size = hidden_size + self.depths = depths + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.window_size = window_size + self.enable_fusion = enable_fusion + self.fusion_type = fusion_type + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.projection_dim = projection_dim + self.flatten_patch_embeds = flatten_patch_embeds + self.patch_embeds_hidden_size = patch_embeds_hidden_size + self.enable_patch_layer_norm = enable_patch_layer_norm + self.drop_path_rate = drop_path_rate + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.qkv_bias = qkv_bias + self.mlp_ratio = mlp_ratio + self.patch_embed_input_channels = patch_embed_input_channels + self.aff_block_r = aff_block_r + self.layer_norm_eps = layer_norm_eps + self.initializer_factor = initializer_factor + self.projection_hidden_act = projection_hidden_act + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) + + # get the audio config dict if we are loading from ClapConfig + if config_dict.get("model_type") == "clap": + config_dict = config_dict["audio_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class ClapConfig(PretrainedConfig): + r""" + [`ClapConfig`] is the configuration class to store the configuration of a [`ClapModel`]. It is used to instantiate + a CLAP model according to the specified arguments, defining the text model and audio model configs. Instantiating a + configuration with the defaults will yield a similar configuration to that of the CLAP + [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + text_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`ClapTextConfig`]. + audio_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`ClapAudioConfig`]. + logit_scale_init_value (`float`, *optional*, defaults to 14.29): + The inital value of the *logit_scale* paramter. Default is used as per the original CLAP implementation. + projection_dim (`int`, *optional*, defaults to 512): + Dimentionality of text and audio projection layers. + projection_hidden_act (`str`, *optional*, defaults to `"relu"`): + Activation function for the projection layers. + initializer_factor (`float`, *optional*, defaults to 1.0): + Factor to scale the initialization of the model weights. + kwargs (*optional*): + Dictionary of keyword arguments. + + Example: + + ```python + >>> from transformers import ClapConfig, ClapModel + + >>> # Initializing a ClapConfig with laion-ai/base style configuration + >>> configuration = ClapConfig() + + >>> # Initializing a ClapModel (with random weights) from the laion-ai/base style configuration + >>> model = ClapModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + + >>> # We can also initialize a ClapConfig from a ClapTextConfig and a ClapAudioConfig + >>> from transformers import ClapTextConfig, ClapAudioConfig + + >>> # Initializing a ClapText and ClapAudioConfig configuration + >>> config_text = ClapTextConfig() + >>> config_audio = ClapAudioConfig() + + >>> config = ClapConfig.from_text_audio_configs(config_text, config_audio) + ```""" + + model_type = "clap" + + def __init__( + self, + text_config=None, + audio_config=None, + logit_scale_init_value=(1 / 0.07), + projection_dim=512, + projection_hidden_act="relu", + initializer_factor=1.0, + **kwargs, + ): + super().__init__(**kwargs) + + if text_config is None: + text_config = {} + logger.info("text_config is None. Initializing the ClapTextConfig with default values.") + + if audio_config is None: + audio_config = {} + logger.info("audio_config is None. initializing the ClapAudioConfig with default values.") + + self.text_config = ClapTextConfig(**text_config) + self.audio_config = ClapAudioConfig(**audio_config) + self.text_config.projection_dim = projection_dim + self.audio_config.projection_dim = projection_dim + + self.text_config.projection_hidden_act = projection_hidden_act + self.audio_config.projection_hidden_act = projection_hidden_act + + self.projection_dim = projection_dim + self.projection_hidden_act = projection_hidden_act + self.hidden_size = self.text_config.hidden_size + + self.logit_scale_init_value = logit_scale_init_value + self.initializer_factor = initializer_factor + self.num_hidden_layers = self.text_config.num_hidden_layers + len(self.audio_config.depths) + + @classmethod + def from_text_audio_configs(cls, text_config: ClapTextConfig, audio_config: ClapAudioConfig, **kwargs): + r""" + Instantiate a [`ClapConfig`] (or a derived class) from clap text model configuration and clap audio model + configuration. + + Returns: + [`ClapConfig`]: An instance of a configuration object + """ + + return cls(text_config=text_config.to_dict(), audio_config=audio_config.to_dict(), **kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/convert_clap_original_pytorch_to_hf.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/convert_clap_original_pytorch_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..d422bc45ab3de00cd6df4de21ff6c7012ebb6559 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/convert_clap_original_pytorch_to_hf.py @@ -0,0 +1,133 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import re + +from laion_clap import CLAP_Module + +from transformers import AutoFeatureExtractor, ClapConfig, ClapModel + + +KEYS_TO_MODIFY_MAPPING = { + "text_branch": "text_model", + "audio_branch": "audio_model.audio_encoder", + "attn": "attention.self", + "self.proj": "output.dense", + "attention.self_mask": "attn_mask", + "mlp.fc1": "intermediate.dense", + "mlp.fc2": "output.dense", + "norm1": "layernorm_before", + "norm2": "layernorm_after", + "bn0": "batch_norm", +} + +processor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") + + +def init_clap(checkpoint_path, model_type, enable_fusion=False): + model = CLAP_Module( + amodel=model_type, + enable_fusion=enable_fusion, + ) + model.load_ckpt(checkpoint_path) + return model + + +def get_config_from_original(clap_model): + audio_config = { + "patch_embeds_hidden_size": clap_model.model.audio_branch.embed_dim, + "depths": clap_model.model.audio_branch.depths, + "hidden_size": clap_model.model.audio_projection[0].in_features, + } + + text_config = {"hidden_size": clap_model.model.text_branch.pooler.dense.in_features} + + return ClapConfig(audio_config=audio_config, text_config=text_config) + + +def rename_state_dict(state_dict): + model_state_dict = {} + + sequential_layers_pattern = r".*sequential.(\d+).*" + text_projection_pattern = r".*_projection.(\d+).*" + + for key, value in state_dict.items(): + # check if any key needs to be modified + for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): + if key_to_modify in key: + key = key.replace(key_to_modify, new_key) + + if re.match(sequential_layers_pattern, key): + # replace sequential layers with list + sequential_layer = re.match(sequential_layers_pattern, key).group(1) + + key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.") + elif re.match(text_projection_pattern, key): + projecton_layer = int(re.match(text_projection_pattern, key).group(1)) + + # Because in CLAP they use `nn.Sequential`... + transformers_projection_layer = 1 if projecton_layer == 0 else 2 + + key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.") + + if "audio" and "qkv" in key: + # split qkv into query key and value + mixed_qkv = value + qkv_dim = mixed_qkv.size(0) // 3 + + query_layer = mixed_qkv[:qkv_dim] + key_layer = mixed_qkv[qkv_dim : qkv_dim * 2] + value_layer = mixed_qkv[qkv_dim * 2 :] + + model_state_dict[key.replace("qkv", "query")] = query_layer + model_state_dict[key.replace("qkv", "key")] = key_layer + model_state_dict[key.replace("qkv", "value")] = value_layer + else: + model_state_dict[key] = value + + return model_state_dict + + +def convert_clap_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path, model_type, enable_fusion=False): + clap_model = init_clap(checkpoint_path, model_type, enable_fusion=enable_fusion) + + clap_model.eval() + state_dict = clap_model.model.state_dict() + state_dict = rename_state_dict(state_dict) + + transformers_config = get_config_from_original(clap_model) + transformers_config.audio_config.enable_fusion = enable_fusion + model = ClapModel(transformers_config) + + # ignore the spectrogram embedding layer + model.load_state_dict(state_dict, strict=False) + + model.save_pretrained(pytorch_dump_folder_path) + transformers_config.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") + parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") + parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") + parser.add_argument("--model_type", default="HTSAT-tiny", type=str, help="Whether to enable fusion or not") + args = parser.parse_args() + + convert_clap_checkpoint( + args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.model_type, args.enable_fusion + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/feature_extraction_clap.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/feature_extraction_clap.py new file mode 100644 index 0000000000000000000000000000000000000000..ce18fedd19b109ee9af3b6c7de964e6a217abeef --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/feature_extraction_clap.py @@ -0,0 +1,363 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for CLAP.""" + + +import copy +from typing import Any, Dict, List, Optional, Union + +import numpy as np +import torch + +from ...audio_utils import mel_filter_bank, spectrogram, window_function +from ...feature_extraction_sequence_utils import SequenceFeatureExtractor +from ...feature_extraction_utils import BatchFeature +from ...utils import TensorType, logging + + +logger = logging.get_logger(__name__) + + +class ClapFeatureExtractor(SequenceFeatureExtractor): + r""" + Constructs a CLAP feature extractor. + + This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains + most of the main methods. Users should refer to this superclass for more information regarding those methods. + + This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the *Short Time + Fourier Transform* (STFT) which should match pytorch's `torch.stft` equivalent. + + Args: + feature_size (`int`, *optional*, defaults to 64): + The feature dimension of the extracted Mel spectrograms. This corresponds to the number of mel filters + (`n_mels`). + sampling_rate (`int`, *optional*, defaults to 48000): + The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). This only serves + to warn users if the audio fed to the feature extractor does not have the same sampling rate. + hop_length (`int`,*optional*, defaults to 480): + Length of the overlaping windows for the STFT used to obtain the Mel Spectrogram. The audio will be split + in smaller `frames` with a step of `hop_length` between each frame. + max_length_s (`int`, *optional*, defaults to 10): + The maximum input length of the model in seconds. This is used to pad the audio. + fft_window_size (`int`, *optional*, defaults to 1024): + Size of the window (in samples) on which the Fourier transform is applied. This controls the frequency + resolution of the spectrogram. 400 means that the fourrier transform is computed on windows of 400 samples. + padding_value (`float`, *optional*, defaults to 0.0): + Padding value used to pad the audio. Should correspond to silences. + return_attention_mask (`bool`, *optional*, defaults to `False`): + Whether or not the model should return the attention masks coresponding to the input. + frequency_min (`float`, *optional*, defaults to 0): + The lowest frequency of interest. The STFT will not be computed for values below this. + frequency_max (`float`, *optional*, defaults to 14000): + The highest frequency of interest. The STFT will not be computed for values above this. + top_db (`float`, *optional*): + The highest decibel value used to convert the mel spectrogram to the log scale. For more details see the + `audio_utils.power_to_db` function + truncation (`str`, *optional*, defaults to `"fusion"`): + Truncation pattern for long audio inputs. Two patterns are available: + - `fusion` will use `_random_mel_fusion`, which stacks 3 random crops from the mel spectrogram and a + downsampled version of the entire mel spectrogram. + If `config.fusion` is set to True, shorter audios also need to to return 4 mels, which will just be a copy + of the original mel obtained from the padded audio. + - `rand_trunc` will select a random crop of the mel spectrogram. + padding (`str`, *optional*, defaults to `"repeatpad"`): + Padding pattern for shorter audio inputs. Three patterns were originally implemented: + - `repeatpad`: the audio is repeated, and then padded to fit the `max_length`. + - `repeat`: the audio is repeated and then cut to fit the `max_length` + - `pad`: the audio is padded. + """ + + model_input_names = ["input_features", "is_longer"] + + def __init__( + self, + feature_size=64, + sampling_rate=48_000, + hop_length=480, + max_length_s=10, + fft_window_size=1024, + padding_value=0.0, + return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask + frequency_min: float = 0, + frequency_max: float = 14_000, + top_db: int = None, + truncation: str = "fusion", + padding: str = "repeatpad", + **kwargs, + ): + super().__init__( + feature_size=feature_size, + sampling_rate=sampling_rate, + padding_value=padding_value, + return_attention_mask=return_attention_mask, + **kwargs, + ) + self.top_db = top_db + self.truncation = truncation + self.padding = padding + self.fft_window_size = fft_window_size + self.nb_frequency_bins = (fft_window_size >> 1) + 1 + self.hop_length = hop_length + self.max_length_s = max_length_s + self.nb_max_samples = max_length_s * sampling_rate + self.sampling_rate = sampling_rate + self.frequency_min = frequency_min + self.frequency_max = frequency_max + self.mel_filters = mel_filter_bank( + num_frequency_bins=self.nb_frequency_bins, + num_mel_filters=feature_size, + min_frequency=frequency_min, + max_frequency=frequency_max, + sampling_rate=sampling_rate, + norm=None, + mel_scale="htk", + ) + self.mel_filters_slaney = mel_filter_bank( + num_frequency_bins=self.nb_frequency_bins, + num_mel_filters=feature_size, + min_frequency=frequency_min, + max_frequency=frequency_max, + sampling_rate=sampling_rate, + norm="slaney", + mel_scale="slaney", + ) + + def to_dict(self) -> Dict[str, Any]: + """ + Serializes this instance to a Python dictionary. + + Returns: + `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, excpet for the + mel filter banks, which do not need to be saved or printed as they are too long. + """ + output = copy.deepcopy(self.__dict__) + output["feature_extractor_type"] = self.__class__.__name__ + if "mel_filters" in output: + del output["mel_filters"] + if "mel_filters_slaney" in output: + del output["mel_filters_slaney"] + return output + + def _np_extract_fbank_features(self, waveform: np.array, mel_filters: Optional[np.array] = None) -> np.ndarray: + """ + Compute the log-mel spectrogram of the provided `waveform` using the Hann window. In CLAP, two different filter + banks are used depending on the truncation pattern: + - `self.mel_filters`: they correspond to the default parameters of `torchaudio` which can be obtained from + calling `torchaudio.transforms.MelSpectrogram().mel_scale.fb`. These filters are used when `truncation` + is set to `"fusion"`. + - `self.mel_filteres_slaney` : they correspond to the default parameters of `librosa` which used + `librosa.filters.mel` when computing the mel spectrogram. These filters were only used in the original + implementation when the truncation mode is not `"fusion"`. + """ + log_mel_spectrogram = spectrogram( + waveform, + window_function(self.fft_window_size, "hann"), + frame_length=self.fft_window_size, + hop_length=self.hop_length, + power=2.0, + mel_filters=mel_filters, + log_mel="dB", + ) + return log_mel_spectrogram.T + + def _random_mel_fusion(self, mel, total_frames, chunk_frames): + ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3) + if len(ranges[1]) == 0: + # if the audio is too short, we just use the first chunk + ranges[1] = [0] + if len(ranges[2]) == 0: + # if the audio is too short, we just use the first chunk + ranges[2] = [0] + # randomly choose index for each part + idx_front = np.random.choice(ranges[0]) + idx_middle = np.random.choice(ranges[1]) + idx_back = np.random.choice(ranges[2]) + + mel_chunk_front = mel[idx_front : idx_front + chunk_frames, :] + mel_chunk_middle = mel[idx_middle : idx_middle + chunk_frames, :] + mel_chunk_back = mel[idx_back : idx_back + chunk_frames, :] + + mel = torch.tensor(mel[None, None, :]) + mel_shrink = torch.nn.functional.interpolate( + mel, size=[chunk_frames, 64], mode="bilinear", align_corners=False + ) + mel_shrink = mel_shrink[0][0].numpy() + mel_fusion = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0) + return mel_fusion + + def _get_input_mel(self, waveform: np.array, max_length, truncation, padding) -> np.array: + """ + Extracts the mel spectrogram and prepares it for the mode based on the `truncation` and `padding` arguments. + Four different path are possible: + - `truncation="fusion"` and the length of the waveform is greater than the max length: the mel spectrogram + will be computed on the entire audio. 3 random crops and a dowsampled version of the full mel spectrogram + are then stacked together. They will later be used for `feature_fusion`. + - `truncation="rand_trunc"` and the length of the waveform is smaller than the max length: the audio is + padded based on `padding`. + - `truncation="fusion"` and the length of the waveform is smaller than the max length: the audio is padded + based on `padding`, and is repeated `4` times. + - `truncation="rand_trunc"` and the length of the waveform is greater than the max length: the mel + spectrogram will be computed on a random crop of the waveform. + + """ + if waveform.shape[0] > max_length: + if truncation == "rand_trunc": + longer = True + # random crop to max_length (for compatibility) -> this should be handled by self.pad + overflow = len(waveform) - max_length + idx = np.random.randint(0, overflow + 1) + waveform = waveform[idx : idx + max_length] + input_mel = self._np_extract_fbank_features(waveform, self.mel_filters_slaney)[None, :] + elif truncation == "fusion": + mel = self._np_extract_fbank_features(waveform, self.mel_filters) + chunk_frames = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed + total_frames = mel.shape[0] + if chunk_frames == total_frames: + # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. + # In this case, we just use the whole audio. + input_mel = np.stack([mel, mel, mel, mel], axis=0) + longer = False + else: + input_mel = self._random_mel_fusion(mel, total_frames, chunk_frames) + longer = True + else: + raise NotImplementedError(f"data_truncating {truncation} not implemented") + + else: + longer = False + # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding + if waveform.shape[0] < max_length: + if padding == "repeat": + n_repeat = int(max_length / len(waveform)) + waveform = np.tile(waveform, n_repeat + 1)[:max_length] + if padding == "repeatpad": + n_repeat = int(max_length / len(waveform)) + waveform = np.tile(waveform, n_repeat) + waveform = np.pad(waveform, (0, max_length - waveform.shape[0]), mode="constant", constant_values=0) + + if truncation == "fusion": + input_mel = self._np_extract_fbank_features(waveform, self.mel_filters) + input_mel = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0) + else: + input_mel = self._np_extract_fbank_features(waveform, self.mel_filters_slaney)[None, :] + + return input_mel, longer + + def __call__( + self, + raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], + truncation: str = None, + padding: Optional[str] = None, + max_length: Optional[int] = None, + sampling_rate: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> BatchFeature: + """ + Main method to featurize and prepare for the model one or several sequence(s). + + Args: + raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): + The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float + values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not + stereo, i.e. single float per timestep. + truncation (`str`, *optional*): + Truncation pattern for long audio inputs. Two patterns are available: + - `fusion` will use `_random_mel_fusion`, which stacks 3 random crops from the mel spectrogram and + a downsampled version of the entire mel spectrogram. + If `config.fusion` is set to True, shorter audios also need to to return 4 mels, which will just be a + copy of the original mel obtained from the padded audio. + - `rand_trunc` will select a random crop of the mel spectrogram. + padding (`str`, *optional*): + Padding pattern for shorter audio inputs. Three patterns were originally implemented: + - `repeatpad`: the audio is repeated, and then padded to fit the `max_length`. + - `repeat`: the audio is repeated and then cut to fit the `max_length` + - `pad`: the audio is padded. + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.np.array` objects. + - `'np'`: Return Numpy `np.ndarray` objects. + sampling_rate (`int`, *optional*): + The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass + `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition + pipeline. + """ + truncation = truncation if truncation is not None else self.truncation + padding = padding if padding else self.padding + + if sampling_rate is not None: + if sampling_rate != self.sampling_rate: + raise ValueError( + f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" + f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" + f" was sampled with {self.sampling_rate} and not {sampling_rate}." + ) + else: + logger.warning( + "It is strongly recommended to pass the `sampling_rate` argument to this function. " + "Failing to do so can result in silent errors that might be hard to debug." + ) + + is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 + if is_batched_numpy and len(raw_speech.shape) > 2: + raise ValueError(f"Only mono-channel audio is supported for input to {self}") + is_batched = is_batched_numpy or ( + isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) + ) + + if is_batched: + raw_speech = [np.asarray(speech, dtype=np.float64) for speech in raw_speech] + elif not is_batched and not isinstance(raw_speech, np.ndarray): + raw_speech = np.asarray(raw_speech, dtype=np.float64) + elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): + raw_speech = raw_speech.astype(np.float64) + + # always return batch + if not is_batched: + raw_speech = [np.asarray(raw_speech)] + + # convert to mel spectrogram, truncate and pad if needed. + padded_inputs = [ + self._get_input_mel(waveform, max_length if max_length else self.nb_max_samples, truncation, padding) + for waveform in raw_speech + ] + + input_mel = [] + is_longer = [] + for mel, longer in padded_inputs: + input_mel.append(mel) + is_longer.append(longer) + + if truncation == "fusion" and sum(is_longer) == 0: + # if no audio is longer than 10s, then randomly select one audio to be longer + rand_idx = np.random.randint(0, len(input_mel)) + is_longer[rand_idx] = True + + if isinstance(input_mel[0], List): + input_mel = [np.asarray(feature, dtype=np.float64) for feature in input_mel] + + # is_longer is a list of bool + is_longer = [[longer] for longer in is_longer] + + input_features = {"input_features": input_mel, "is_longer": is_longer} + input_features = BatchFeature(input_features) + + if return_tensors is not None: + input_features = input_features.convert_to_tensors(return_tensors) + + return input_features diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py new file mode 100644 index 0000000000000000000000000000000000000000..6310b9675fb654cd3b53af54315a8688a9d43f8e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py @@ -0,0 +1,2300 @@ +# coding=utf-8 +# Copyright 2023 The LAION-AI Team and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch CLAP model.""" +import collections +import math +from dataclasses import dataclass +from typing import Any, List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +from torch import nn + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPooling, + BaseModelOutputWithPoolingAndCrossAttentions, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_clap import ClapAudioConfig, ClapConfig, ClapTextConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "laion/clap-htsat-fused" + +CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "laion/clap-htsat-fused", + "laion/clap-htsat-unfused", + # See all clap models at https://huggingface.co/models?filter=clap +] + + +# Adapted from: https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/utils.py#L191 +def interpolate(hidden_states, ratio): + """ + Interpolate data in time domain. This is used to compensate the resolution reduction in downsampling of a CNN. + + Args: + hidden_states (`torch.FloatTensor` of shape (batch_size, time_length, classes_num)): + Input hidden states + ratio (`int`): + The ratio of the length of the output to the length of the input. + """ + (batch_size, time_length, classes_num) = hidden_states.shape + upsampled = hidden_states[:, :, None, :].repeat(1, 1, ratio, 1) + upsampled = upsampled.reshape(batch_size, time_length * ratio, classes_num) + return upsampled + + +# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L249 +def window_partition(hidden_states, window_size): + """ + Returns the resized hidden states. The output shape should be `(batch_size * num_windows, window_size, window_size, + num_channels)` + + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, height, width, num_channels)`): + Input hidden states + window_size (`int`): + Window size + """ + batch_size, height, width, num_channels = hidden_states.shape + + hidden_states = hidden_states.view( + batch_size, height // window_size, window_size, width // window_size, window_size, num_channels + ) + windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) + return windows + + +# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L263 +def window_reverse(windows, window_size, height, width): + """ + Merges windows to produce higher resolution features. + Args: + windows (`torch.FloatTensor` of shape `(num_windows * batch_size, window_size, window_size, num_channels)`): + Input windows + window_size (`int`): + Window size + height (`int`): + Height of the resized audio + width (`int`): + Width of the resized audio + """ + num_channels = windows.shape[-1] + windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) + windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) + return windows + + +# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids +def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx + + +# contrastive loss function, adapted from +# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html#CLIP-loss-function +def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: + labels = torch.arange(len(logits), device=logits.device) + return nn.functional.cross_entropy(logits, labels) + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Clap +class ClapTextModelOutput(ModelOutput): + """ + Base class for text model's outputs that also contains a pooling of the last hidden states. + + Args: + text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): + The text embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + text_embeds: Optional[torch.FloatTensor] = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class ClapAudioModelOutput(ModelOutput): + """ + ClapAudio model output to mimic the output of the original implementation. + + Args: + audio_embeds (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + The Audio embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + """ + + audio_embeds: Optional[torch.FloatTensor] = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Clap, vision->audio, Vision->Audio, image->audio +class ClapOutput(ModelOutput): + """ + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): + Contrastive loss for audio-text similarity. + logits_per_audio:(`torch.FloatTensor` of shape `(audio_batch_size, text_batch_size)`): + The scaled dot product scores between `audio_embeds` and `text_embeds`. This represents the audio-text + similarity scores. + logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, audio_batch_size)`): + The scaled dot product scores between `text_embeds` and `audio_embeds`. This represents the text-audio + similarity scores. + text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): + The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`]. + audio_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): + The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`]. + text_model_output(`BaseModelOutputWithPooling`): + The output of the [`ClapTextModel`]. + audio_model_output(`BaseModelOutputWithPooling`): + The output of the [`ClapAudioModel`]. + """ + + loss: Optional[torch.FloatTensor] = None + logits_per_audio: torch.FloatTensor = None + logits_per_text: torch.FloatTensor = None + text_embeds: torch.FloatTensor = None + audio_embeds: torch.FloatTensor = None + text_model_output: BaseModelOutputWithPooling = None + audio_model_output: BaseModelOutputWithPooling = None + + def to_tuple(self) -> Tuple[Any]: + return tuple( + self[k] if k not in ["text_model_output", "audio_model_output"] else getattr(self, k).to_tuple() + for k in self.keys() + ) + + +# Adapted from transformers.models.swin.modeling_swin.SwinDropPath +class ClapDropPath(nn.Module): + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is a slightly + refactored version of the `SwinDropPath` implementation. + """ + + def __init__(self, drop_prob=None): + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states): + if self.drop_prob == 0.0 or not self.training: + return hidden_states + + keep_prob = 1 - self.drop_prob + # work with diff dim tensors, not just 2D ConvNets + shape = (hidden_states.shape[0],) + (1,) * (hidden_states.ndim - 1) + + random_tensor = keep_prob + torch.rand(shape, dtype=hidden_states.dtype, device=hidden_states.device) + random_tensor.floor_() # binarize + output = hidden_states.div(keep_prob) * random_tensor + return output + + +# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/feature_fusion.py#L133 +class ClapAudioAFFBlock(nn.Module): + r""" + ATTENTIONAL FEATURE FUSION Block from CLAP, since in CLAP we are always in 2D mode, it is not needed to implement + the 1D version. + """ + + def __init__(self, config: ClapAudioConfig): + super().__init__() + channels = config.patch_embeds_hidden_size + downsize_ratio = config.aff_block_r + inter_channels = int(channels // downsize_ratio) + + self.local_att = nn.Sequential( + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + self.global_att = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + + self.sigmoid = nn.Sigmoid() + + def forward(self, hidden_states, residual): + attention_input = hidden_states + residual + + fused_layer_output = self.local_att(attention_input) + self.global_att(attention_input) + fused_layer_output = self.sigmoid(fused_layer_output) + + output = 2 * hidden_states * fused_layer_output + 2 * residual * (1 - fused_layer_output) + return output + + +class ClapAudioPatchEmbed(nn.Module): + """ + This module converts the hidden states reshaped as an image to patch embeddings ready to be passed to the + Transformer block. + """ + + def __init__(self, config: ClapAudioConfig): + super().__init__() + img_size = (config.spec_size, config.spec_size) if isinstance(config.spec_size, int) else config.spec_size + patch_size = ( + (config.patch_size, config.patch_size) if isinstance(config.patch_size, int) else config.patch_size + ) + patch_stride = ( + (config.patch_stride, config.patch_stride) if isinstance(config.patch_stride, int) else config.patch_stride + ) + + self.img_size = img_size + self.patch_stride = patch_stride + + self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + + self.flatten = config.flatten_patch_embeds + self.enable_fusion = config.enable_fusion + + padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2) + + scale_factor = 4 if (self.enable_fusion) and (config.fusion_type == "channel_map") else 1 + + self.proj = nn.Conv2d( + config.patch_embed_input_channels * scale_factor, + config.patch_embeds_hidden_size, + kernel_size=patch_size, + stride=patch_stride, + padding=padding, + ) + + self.norm = nn.LayerNorm(config.patch_embeds_hidden_size) if config.enable_patch_layer_norm else nn.Identity() + if self.enable_fusion: + self.fusion_model = ClapAudioAFFBlock(config) + self.mel_conv2d = nn.Conv2d( + config.patch_embed_input_channels, + config.patch_embeds_hidden_size, + kernel_size=(patch_size[0], patch_size[1] * 3), + stride=(patch_stride[0], patch_stride[1] * 3), + padding=padding, + ) + + def forward(self, hidden_states, is_longer_idx=None): + if self.enable_fusion: + # retrieve the last mel as we have transposed the input + global_hidden_states = hidden_states[:, 0:1, :, :] + + # global processing + batch_size, num_channels, height, width = global_hidden_states.shape + + if height != self.img_size[0] or width != self.img_size[1]: + raise ValueError( + f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + ) + + global_hidden_states = self.proj(global_hidden_states) + output_width = global_hidden_states.size(-1) + if len(is_longer_idx) > 0: + # local processing + local_hidden_states = hidden_states[is_longer_idx, 1:, :, :].contiguous() + batch_size, num_channels, height, width = local_hidden_states.shape + local_hidden_states = local_hidden_states.view(batch_size * num_channels, 1, height, width) + + local_hidden_states = self.mel_conv2d(local_hidden_states) + + _, features, height, width = local_hidden_states.shape + local_hidden_states = local_hidden_states.view(batch_size, num_channels, features, height, width) + local_hidden_states = local_hidden_states.permute((0, 2, 3, 1, 4)).contiguous().flatten(3) + + local_width = local_hidden_states.size(-1) + local_hidden_states = torch.nn.functional.pad( + local_hidden_states, (0, output_width - local_width), "constant", 0 + ) + + global_hidden_states[is_longer_idx] = self.fusion_model( + global_hidden_states[is_longer_idx], local_hidden_states + ) + hidden_states = global_hidden_states + else: + _, _, height, width = hidden_states.shape + if height != self.img_size[0] or width != self.img_size[1]: + raise ValueError( + f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + ) + hidden_states = self.proj(hidden_states) + + if self.flatten: + hidden_states = hidden_states.flatten(2).transpose(1, 2) + hidden_states = self.norm(hidden_states) + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->ClapAudio +class ClapAudioSelfAttention(nn.Module): + def __init__(self, config, dim, num_heads, window_size): + super().__init__() + if dim % num_heads != 0: + raise ValueError( + f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" + ) + + self.num_attention_heads = num_heads + self.attention_head_size = int(dim / num_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.window_size = ( + window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) + ) + + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) + ) + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) + coords_flatten = torch.flatten(coords, 1) + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] + relative_coords = relative_coords.permute(1, 2, 0).contiguous() + relative_coords[:, :, 0] += self.window_size[0] - 1 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) + self.register_buffer("relative_position_index", relative_position_index) + + self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + batch_size, dim, num_channels = hidden_states.shape + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] + relative_position_bias = relative_position_bias.view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 + ) + + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() + attention_scores = attention_scores + relative_position_bias.unsqueeze(0) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in ClapAudioModel forward() function) + mask_shape = attention_mask.shape[0] + attention_scores = attention_scores.view( + batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim + ) + attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) + attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->ClapAudio +class ClapAudioSelfOutput(nn.Module): + def __init__(self, config, dim): + super().__init__() + self.dense = nn.Linear(dim, dim) + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->ClapAudio +class ClapAudioAttention(nn.Module): + def __init__(self, config, dim, num_heads, window_size): + super().__init__() + self.self = ClapAudioSelfAttention(config, dim, num_heads, window_size) + self.output = ClapAudioSelfOutput(config, dim) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->ClapAudio +class ClapAudioIntermediate(nn.Module): + def __init__(self, config, dim): + super().__init__() + self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->ClapAudio +class ClapAudioOutput(nn.Module): + def __init__(self, config, dim): + super().__init__() + self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinLayer with SwinDropPath->ClapDropPath, Swin->ClapAudio +class ClapAudioLayer(nn.Module): + def __init__(self, config, dim, input_resolution, num_heads, shift_size=0): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.shift_size = shift_size + self.window_size = config.window_size + self.input_resolution = input_resolution + self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) + self.attention = ClapAudioAttention(config, dim, num_heads, window_size=self.window_size) + self.drop_path = ClapDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() + self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) + self.intermediate = ClapAudioIntermediate(config, dim) + self.output = ClapAudioOutput(config, dim) + + def set_shift_and_window_size(self, input_resolution): + if min(input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(input_resolution) + + def get_attn_mask(self, height, width, dtype): + if self.shift_size > 0: + # calculate attention mask for SW-MSA + img_mask = torch.zeros((1, height, width, 1), dtype=dtype) + height_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + width_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + count = 0 + for height_slice in height_slices: + for width_slice in width_slices: + img_mask[:, height_slice, width_slice, :] = count + count += 1 + + mask_windows = window_partition(img_mask, self.window_size) + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + return attn_mask + + def maybe_pad(self, hidden_states, height, width): + pad_right = (self.window_size - width % self.window_size) % self.window_size + pad_bottom = (self.window_size - height % self.window_size) % self.window_size + pad_values = (0, 0, 0, pad_right, 0, pad_bottom) + hidden_states = nn.functional.pad(hidden_states, pad_values) + return hidden_states, pad_values + + def forward( + self, + hidden_states: torch.Tensor, + input_dimensions: Tuple[int, int], + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + always_partition: Optional[bool] = False, + ) -> Tuple[torch.Tensor, torch.Tensor]: + if not always_partition: + self.set_shift_and_window_size(input_dimensions) + else: + pass + height, width = input_dimensions + batch_size, _, channels = hidden_states.size() + shortcut = hidden_states + + hidden_states = self.layernorm_before(hidden_states) + + hidden_states = hidden_states.view(batch_size, height, width, channels) + + # pad hidden_states to multiples of window size + hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) + + _, height_pad, width_pad, _ = hidden_states.shape + # cyclic shift + if self.shift_size > 0: + shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) + else: + shifted_hidden_states = hidden_states + + # partition windows + hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) + hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) + attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) + if attn_mask is not None: + attn_mask = attn_mask.to(hidden_states_windows.device) + + attention_outputs = self.attention( + hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions + ) + + attention_output = attention_outputs[0] + + attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) + shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) + + # reverse cyclic shift + if self.shift_size > 0: + attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) + else: + attention_windows = shifted_windows + + was_padded = pad_values[3] > 0 or pad_values[5] > 0 + if was_padded: + attention_windows = attention_windows[:, :height, :width, :].contiguous() + + attention_windows = attention_windows.view(batch_size, height * width, channels) + + hidden_states = shortcut + self.drop_path(attention_windows) + + layer_output = self.layernorm_after(hidden_states) + layer_output = self.intermediate(layer_output) + layer_output = hidden_states + self.output(layer_output) + + layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) + return layer_outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->ClapAudio +class ClapAudioStage(nn.Module): + def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): + super().__init__() + self.config = config + self.dim = dim + self.blocks = nn.ModuleList( + [ + ClapAudioLayer( + config=config, + dim=dim, + input_resolution=input_resolution, + num_heads=num_heads, + shift_size=0 if (i % 2 == 0) else config.window_size // 2, + ) + for i in range(depth) + ] + ) + + # patch merging layer + if downsample is not None: + self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) + else: + self.downsample = None + + self.pointing = False + + def forward( + self, + hidden_states: torch.Tensor, + input_dimensions: Tuple[int, int], + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + always_partition: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + height, width = input_dimensions + for i, layer_module in enumerate(self.blocks): + layer_head_mask = head_mask[i] if head_mask is not None else None + + layer_outputs = layer_module( + hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition + ) + + hidden_states = layer_outputs[0] + + hidden_states_before_downsampling = hidden_states + if self.downsample is not None: + height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 + output_dimensions = (height, width, height_downsampled, width_downsampled) + hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) + else: + output_dimensions = (height, width, height, width) + + stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) + + if output_attentions: + stage_outputs += layer_outputs[1:] + return stage_outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging with Swin->ClapAudio +class ClapAudioPatchMerging(nn.Module): + """ + Patch Merging Layer. + + Args: + input_resolution (`Tuple[int]`): + Resolution of input feature. + dim (`int`): + Number of input channels. + norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): + Normalization layer class. + """ + + def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def maybe_pad(self, input_feature, height, width): + should_pad = (height % 2 == 1) or (width % 2 == 1) + if should_pad: + pad_values = (0, 0, 0, width % 2, 0, height % 2) + input_feature = nn.functional.pad(input_feature, pad_values) + + return input_feature + + def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: + height, width = input_dimensions + # `dim` is height * width + batch_size, dim, num_channels = input_feature.shape + + input_feature = input_feature.view(batch_size, height, width, num_channels) + # pad input to be disible by width and height, if needed + input_feature = self.maybe_pad(input_feature, height, width) + # [batch_size, height/2, width/2, num_channels] + input_feature_0 = input_feature[:, 0::2, 0::2, :] + # [batch_size, height/2, width/2, num_channels] + input_feature_1 = input_feature[:, 1::2, 0::2, :] + # [batch_size, height/2, width/2, num_channels] + input_feature_2 = input_feature[:, 0::2, 1::2, :] + # [batch_size, height/2, width/2, num_channels] + input_feature_3 = input_feature[:, 1::2, 1::2, :] + # batch_size height/2 width/2 4*num_channels + input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) + input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C + + input_feature = self.norm(input_feature) + input_feature = self.reduction(input_feature) + + return input_feature + + +class ClapAudioEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.num_layers = len(config.depths) + + self.config = config + self.patch_embed = ClapAudioPatchEmbed(config) + self.enable_fusion = config.enable_fusion + self.patch_stride = self.patch_embed.patch_stride + self.spec_size = config.spec_size + self.freq_ratio = config.spec_size // config.num_mel_bins + + self.num_features = int(config.patch_embeds_hidden_size * 2 ** (self.num_layers - 1)) + + drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] + + grid_size = self.patch_embed.grid_size + self.input_resolutions = [(grid_size[0] // (2**i), grid_size[1] // (2**i)) for i in range(self.num_layers)] + + self.layers = nn.ModuleList( + [ + ClapAudioStage( + config=config, + dim=int(config.patch_embeds_hidden_size * 2**i_layer), + input_resolution=self.input_resolutions[i_layer], + depth=config.depths[i_layer], + num_heads=config.num_attention_heads[i_layer], + drop_path=drop_path_rate[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], + downsample=ClapAudioPatchMerging if (i_layer < self.num_layers - 1) else None, + ) + for i_layer in range(self.num_layers) + ] + ) + + self.gradient_checkpointing = False + + self.batch_norm = nn.BatchNorm2d(config.num_mel_bins) + self.norm = nn.LayerNorm(self.num_features) + self.depths = config.depths + self.avgpool = nn.AdaptiveAvgPool1d(1) + + def reshape_mel2img(self, normalized_input_features): + """ + The input is 4 normalized log mel spectrograms. It is reshape to the common shape of images. Each channel + should represent 1 of the 4 crops of the spectrogram. For more details, refer to the [`ClapFeatureExtractor`]. + """ + _, _, time_length, freq_length = normalized_input_features.shape + + spec_width = int(self.spec_size * self.freq_ratio) + spec_heigth = self.spec_size // self.freq_ratio + + if time_length > spec_width or freq_length > spec_heigth: + raise ValueError("the wav size should be less than or equal to the swin input size") + + # to avoid bicubic zero error + if time_length < spec_width: + normalized_input_features = nn.functional.interpolate( + normalized_input_features, (spec_width, freq_length), mode="bicubic", align_corners=True + ) + if freq_length < spec_heigth: + normalized_input_features = nn.functional.interpolate( + normalized_input_features, (time_length, spec_heigth), mode="bicubic", align_corners=True + ) + + batch, channels, time, freq = normalized_input_features.shape + + # batch_size, channels, spec_width, spec_heigth --> batch_size, channels, spec_heigth * freq_ratio, spec_width // freq_ratio + normalized_input_features = normalized_input_features.reshape( + batch, channels * self.freq_ratio, time // self.freq_ratio, freq + ) + normalized_input_features = normalized_input_features.permute(0, 1, 3, 2).contiguous() + normalized_input_features = normalized_input_features.reshape( + batch, channels, freq * self.freq_ratio, time // self.freq_ratio + ) + + return normalized_input_features + + def forward( + self, + input_features, + is_longer: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + output_hidden_states_before_downsampling: Optional[bool] = False, + always_partition: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, ClapAudioModelOutput]: + input_features = input_features.transpose(1, 3) + normalized_input_features = self.batch_norm(input_features) + normalized_input_features = normalized_input_features.transpose(1, 3) + + is_longer_list_idx = None + if self.enable_fusion: + is_longer_list = is_longer.to(input_features.device) + is_longer_list_idx = torch.where(is_longer_list == 1)[0] + + hidden_states = self.reshape_mel2img(normalized_input_features) + + frames_num = hidden_states.shape[2] + + hidden_states = self.patch_embed(hidden_states, is_longer_list_idx) + + all_hidden_states = () if output_hidden_states else None + all_reshaped_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + input_dimensions = self.input_resolutions[0] + + if output_hidden_states: + batch_size, _, hidden_size = hidden_states.shape + # rearrange batch_size (height width) channels -> batch_size channel height width + reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + + for i, layer_module in enumerate(self.layers): + layer_head_mask = head_mask[i] if head_mask is not None else None + + input_dimensions = self.input_resolutions[i] + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, hidden_states, input_dimensions, layer_head_mask, output_attentions + ) + else: + layer_outputs = layer_module( + hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition + ) + + hidden_states = layer_outputs[0] + + hidden_states_before_downsampling = layer_outputs[1] + output_dimensions = layer_outputs[2] + + input_dimensions = (output_dimensions[-2], output_dimensions[-1]) + + if output_hidden_states and output_hidden_states_before_downsampling: + batch_size, _, hidden_size = hidden_states_before_downsampling.shape + # rearrange batch_size (height width) channels -> batch_size channel height width + # here we use the original (not downsampled) height and width + reshaped_hidden_state = hidden_states_before_downsampling.view( + batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size + ) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states_before_downsampling,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + elif output_hidden_states and not output_hidden_states_before_downsampling: + batch_size, _, hidden_size = hidden_states.shape + # rearrange batch_size (height width) channels -> batch_size channel height width + reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + + if output_attentions: + all_self_attentions += layer_outputs[3:] + + last_hidden_state = self.norm(hidden_states) + + batch_size, _, n_channels = last_hidden_state.shape + + freq_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] + temporal_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1] + + last_hidden_state = ( + last_hidden_state.permute(0, 2, 1).contiguous().reshape(batch_size, n_channels, freq_shape, temporal_shape) + ) + + batch_size, n_channels, n_frequencies, n_temp = last_hidden_state.shape + # group 2D CNN + c_freq_bin = n_frequencies // self.freq_ratio + last_hidden_state = last_hidden_state.reshape( + batch_size, n_channels, n_frequencies // c_freq_bin, c_freq_bin, n_temp + ) + last_hidden_state = ( + last_hidden_state.permute(0, 1, 3, 2, 4).contiguous().reshape(batch_size, n_channels, c_freq_bin, -1) + ) + latent_output = self.avgpool(torch.flatten(last_hidden_state, 2)) + latent_output = torch.flatten(latent_output, 1) + + if not return_dict: + return tuple( + v + for v in [ + last_hidden_state, + latent_output, + all_reshaped_hidden_states, + all_self_attentions, + ] + if v is not None + ) + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=latent_output, + hidden_states=all_reshaped_hidden_states, + attentions=all_self_attentions, + ) + + +CLAP_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`ClapConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CLAP_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +CLAP_AUDIO_INPUTS_DOCSTRING = r""" + Args: + input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also + retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. + is_longer (`torch.FloatTensor`, of shape `(batch_size, 1)`, *optional*): + Whether the audio clip is longer than `max_length`. If `True`, a feature fusion will be enabled to enhance + the features. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +CLAP_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also + retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. + return_loss (`bool`, *optional*): + Whether or not to return the contrastive loss. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class ClapProjectionLayer(nn.Module): + def __init__(self, config: Union[ClapAudioConfig, ClapTextConfig]): + super().__init__() + self.config = config + hidden_size = config.hidden_size + projection_dim = config.projection_dim + + self.linear1 = nn.Linear(hidden_size, projection_dim) + self.activation = ACT2FN[config.projection_hidden_act] + self.linear2 = nn.Linear(projection_dim, projection_dim) + + def forward(self, hidden_states): + hidden_states = self.linear1(hidden_states) + hidden_states = self.activation(hidden_states) + hidden_states = self.linear2(hidden_states) + return hidden_states + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->ClapText, persistent=False->persistent=True +class ClapTextEmbeddings(nn.Module): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=True + ) + self.register_buffer( + "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=True + ) + + # End copy + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + def forward( + self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 + ): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ClapText +class ClapTextSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in ClapTextModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class ClapTextSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ClapText +class ClapTextAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = ClapTextSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = ClapTextSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class ClapTextIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class ClapTextOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ClapText +class ClapTextLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = ClapTextAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = ClapTextAttention(config, position_embedding_type="absolute") + self.intermediate = ClapTextIntermediate(config) + self.output = ClapTextOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ClapText +class ClapTextEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([ClapTextLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class ClapTextPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class ClapPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ClapConfig + base_model_prefix = "clap" + supports_gradient_checkpointing = False + + def _init_weights(self, module): + """Initialize the weights""" + factor = self.config.initializer_factor + + if isinstance(module, ClapTextEmbeddings): + module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) + module.token_type_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) + elif isinstance(module, ClapModel): + nn.init.normal_(module.logit_scale_a, std=factor * 0.02) + nn.init.normal_(module.logit_scale_t, std=factor * 0.02) + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=factor * 0.02) + + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, (nn.Conv2d, nn.Linear)): + in_proj_std = (self.config.hidden_size**-0.5) * ((2 * self.config.num_hidden_layers) ** -0.5) * factor + nn.init.normal_(module.weight, std=in_proj_std) + if module.bias is not None: + module.bias.data.zero_() + + +class ClapAudioModel(ClapPreTrainedModel): + config_class = ClapAudioConfig + main_input_name = "input_features" + + def __init__(self, config: ClapAudioConfig): + super().__init__(config) + self.audio_encoder = ClapAudioEncoder(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.audio_encoder.patch_embed.proj + + @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ClapAudioConfig) + def forward( + self, + input_features: Optional[torch.FloatTensor] = None, + is_longer: Optional[torch.BoolTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Examples: + + ```python + >>> from datasets import load_dataset + >>> from transformers import AutoProcessor, ClapAudioModel + + >>> dataset = load_dataset("ashraq/esc50") + >>> audio_sample = dataset["train"]["audio"][0]["array"] + + >>> model = ClapAudioModel.from_pretrained("laion/clap-htsat-fused") + >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-fused") + + >>> inputs = processor(audios=audio_sample, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + return self.audio_encoder( + input_features=input_features, + is_longer=is_longer, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class ClapTextModel(ClapPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in *Attention is + all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz + Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + + .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 + + """ + + config_class = ClapTextConfig + + # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->ClapText + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = ClapTextEmbeddings(config) + self.encoder = ClapTextEncoder(config) + + self.pooler = ClapTextPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + # Copied from transformers.models.bert.modeling_bert.BertModel.forward + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings(CLAP_START_DOCSTRING) +class ClapModel(ClapPreTrainedModel): + config_class = ClapConfig + + def __init__(self, config: ClapConfig): + super().__init__(config) + + if not isinstance(config.text_config, ClapTextConfig): + raise ValueError( + "config.text_config is expected to be of type ClapTextConfig but is of type" + f" {type(config.text_config)}." + ) + + if not isinstance(config.audio_config, ClapAudioConfig): + raise ValueError( + "config.audio_config is expected to be of type ClapAudioConfig but is of type" + f" {type(config.audio_config)}." + ) + + text_config = config.text_config + audio_config = config.audio_config + + self.logit_scale_a = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) + self.logit_scale_t = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) + + self.projection_dim = config.projection_dim + + self.text_model = ClapTextModel(text_config) + self.text_projection = ClapProjectionLayer(text_config) + + self.audio_model = ClapAudioModel(audio_config) + self.audio_projection = ClapProjectionLayer(audio_config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) + def get_text_features( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by + applying the projection layer to the pooled output of [`ClapTextModel`]. + + Examples: + + ```python + >>> from transformers import AutoTokenizer, ClapModel + + >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") + >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") + + >>> inputs = tokenizer(["the sound of a cat", "the sound of a dog"], padding=True, return_tensors="pt") + >>> text_features = model.get_text_features(**inputs) + ```""" + # Use CLAP model's config for some fields (if specified) instead of those of audio & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = text_outputs[1] if return_dict is not None else text_outputs.pooler_output + text_features = self.text_projection(pooled_output) + text_features = F.normalize(text_features, dim=-1) + + return text_features + + @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) + def get_audio_features( + self, + input_features: Optional[torch.Tensor] = None, + is_longer: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + audio_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by + applying the projection layer to the pooled output of [`ClapAudioModel`]. + + Examples: + + ```python + >>> from transformers import AutoFeatureExtractor, ClapModel + >>> import torch + + >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") + >>> feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused") + >>> random_audio = torch.rand((16_000)) + >>> inputs = feature_extractor(random_audio, return_tensors="pt") + >>> audio_features = model.get_audio_features(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + audio_outputs = self.audio_model( + input_features=input_features, + is_longer=is_longer, + return_dict=return_dict, + ) + + pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output + + audio_features = self.audio_projection(pooled_output) + audio_features = F.normalize(audio_features, dim=-1) + + return audio_features + + @add_start_docstrings_to_model_forward(CLAP_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ClapOutput, config_class=ClapConfig) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + input_features: Optional[torch.FloatTensor] = None, + is_longer: Optional[torch.BoolTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + return_loss: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ClapOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from datasets import load_dataset + >>> from transformers import AutoProcessor, ClapModel + + >>> dataset = load_dataset("ashraq/esc50") + >>> audio_sample = dataset["train"]["audio"][0]["array"] + + >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") + >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-unfused") + + >>> input_text = ["Sound of a dog", "Sound of vaccum cleaner"] + + >>> inputs = processor(text=input_text, audios=audio_sample, return_tensors="pt", padding=True) + + >>> outputs = model(**inputs) + >>> logits_per_audio = outputs.logits_per_audio # this is the audio-text similarity score + >>> probs = logits_per_audio.softmax(dim=-1) # we can take the softmax to get the label probabilities + ```""" + # Use CLAP model's config for some fields (if specified) instead of those of audio & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + audio_outputs = self.audio_model( + input_features=input_features, + is_longer=is_longer, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + audio_embeds = audio_outputs[1] if not return_dict else audio_outputs.pooler_output + audio_embeds = self.audio_projection(audio_embeds) + + text_embeds = text_outputs[1] if not return_dict else text_outputs.pooler_output + text_embeds = self.text_projection(text_embeds) + + # normalized features + audio_embeds = audio_embeds / audio_embeds.norm(p=2, dim=-1, keepdim=True) + text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) + + # cosine similarity as logits + logit_scale_text = self.logit_scale_t.exp() + logit_scale_audio = self.logit_scale_a.exp() + logits_per_text = torch.matmul(text_embeds, audio_embeds.t()) * logit_scale_text + logits_per_audio = torch.matmul(audio_embeds, text_embeds.t()) * logit_scale_audio + + loss = None + if return_loss: + caption_loss = contrastive_loss(logits_per_text) + audio_loss = contrastive_loss(logits_per_audio.t()) + loss = (caption_loss + audio_loss) / 2.0 + + if not return_dict: + output = (logits_per_audio, logits_per_text, text_embeds, audio_embeds, text_outputs, audio_outputs) + return ((loss,) + output) if loss is not None else output + + return ClapOutput( + loss=loss, + logits_per_audio=logits_per_audio, + logits_per_text=logits_per_text, + text_embeds=text_embeds, + audio_embeds=audio_embeds, + text_model_output=text_outputs, + audio_model_output=audio_outputs, + ) + + +@add_start_docstrings( + """ + CLAP Text Model with a projection layer on top (a linear layer on top of the pooled output). + """, + CLAP_START_DOCSTRING, +) +class ClapTextModelWithProjection(ClapPreTrainedModel): + config_class = ClapTextConfig + + def __init__(self, config: ClapTextConfig): + super().__init__(config) + self.text_model = ClapTextModel(config) + self.text_projection = ClapProjectionLayer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.text_model.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.text_model.embeddings.word_embeddings = value + + @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ClapTextModelOutput, config_class=ClapTextConfig) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ClapTextModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, ClapTextModelWithProjection + + >>> model = ClapTextModelWithProjection.from_pretrained("laion/clap-htsat-unfused") + >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") + + >>> inputs = tokenizer(["a sound of a cat", "a sound of a dog"], padding=True, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> text_embeds = outputs.text_embeds + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = text_outputs[1] if not return_dict else text_outputs.pooler_output + + text_embeds = self.text_projection(pooled_output) + + if not return_dict: + outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] + return tuple(output for output in outputs if output is not None) + + return ClapTextModelOutput( + text_embeds=text_embeds, + last_hidden_state=text_outputs.last_hidden_state, + hidden_states=text_outputs.hidden_states, + attentions=text_outputs.attentions, + ) + + +@add_start_docstrings( + """ + CLAP Audio Model with a projection layer on top (a linear layer on top of the pooled output). + """, + CLAP_START_DOCSTRING, +) +class ClapAudioModelWithProjection(ClapPreTrainedModel): + config_class = ClapAudioConfig + main_input_name = "input_features" + + def __init__(self, config: ClapAudioConfig): + super().__init__(config) + self.audio_model = ClapAudioModel(config) + self.audio_projection = ClapProjectionLayer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.audio_model.audio_encoder.patch_embed.proj + + @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ClapAudioModelOutput, config_class=ClapAudioConfig) + def forward( + self, + input_features: Optional[torch.FloatTensor] = None, + is_longer: Optional[torch.BoolTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ClapAudioModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from datasets import load_dataset + >>> from transformers import ClapAudioModelWithProjection, ClapProcessor + + >>> model = ClapAudioModelWithProjection.from_pretrained("laion/clap-htsat-fused") + >>> processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused") + + >>> dataset = load_dataset("ashraq/esc50") + >>> audio_sample = dataset["train"]["audio"][0]["array"] + + >>> inputs = processor(audios=audio_sample, return_tensors="pt") + >>> outputs = model(**inputs) + >>> audio_embeds = outputs.audio_embeds + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + audio_outputs = self.audio_model( + input_features=input_features, + is_longer=is_longer, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output + + audio_embeds = self.audio_projection(pooled_output) + + if not return_dict: + outputs = (audio_embeds, audio_outputs[0]) + audio_outputs[2:] + return tuple(output for output in outputs if output is not None) + + return ClapAudioModelOutput( + audio_embeds=audio_embeds, + last_hidden_state=audio_outputs.last_hidden_state, + attentions=audio_outputs.attentions, + hidden_states=audio_outputs.hidden_states, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py new file mode 100644 index 0000000000000000000000000000000000000000..87799899945fa669d3980e8cc6c15192cf7a2ba5 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py @@ -0,0 +1,117 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Audio/Text processor class for CLAP +""" + +from ...processing_utils import ProcessorMixin +from ...tokenization_utils_base import BatchEncoding + + +class ClapProcessor(ProcessorMixin): + r""" + Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor. + + [`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the + [`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information. + + Args: + feature_extractor ([`ClapFeatureExtractor`]): + The audio processor is a required input. + tokenizer ([`RobertaTokenizerFast`]): + The tokenizer is a required input. + """ + + feature_extractor_class = "ClapFeatureExtractor" + tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast") + + def __init__(self, feature_extractor, tokenizer): + super().__init__(feature_extractor, tokenizer) + + def __call__(self, text=None, audios=None, return_tensors=None, **kwargs): + """ + Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` + and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to + encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to + ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the + doctsring of the above two methods for more information. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings + (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set + `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). + audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): + The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case + of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, + and T the sample length of the audio. + + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors of a particular framework. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return NumPy `np.ndarray` objects. + - `'jax'`: Return JAX `jnp.ndarray` objects. + + Returns: + [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: + + - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. + - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when + `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not + `None`). + - **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`. + """ + sampling_rate = kwargs.pop("sampling_rate", None) + + if text is None and audios is None: + raise ValueError("You have to specify either text or audios. Both cannot be none.") + + if text is not None: + encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) + + if audios is not None: + audio_features = self.feature_extractor( + audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs + ) + + if text is not None and audios is not None: + encoding["input_features"] = audio_features.input_features + return encoding + elif text is not None: + return encoding + else: + return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors) + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please + refer to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer + to the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @property + def model_input_names(self): + tokenizer_input_names = self.tokenizer.model_input_names + feature_extractor_input_names = self.feature_extractor.model_input_names + return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names)) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..344c17d9f962e342337f07d13b56087e37ccc06b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/__pycache__/convert_model_with_hifigan.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/__pycache__/convert_model_with_hifigan.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a8e7489f458cefb1bdab7eb280091910351d8e99 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/__pycache__/convert_model_with_hifigan.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/__pycache__/tokenization_fastspeech2_conformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/__pycache__/tokenization_fastspeech2_conformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef33eec764149487b736cce42d718aecb66d2465 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/__pycache__/tokenization_fastspeech2_conformer.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..49e0e5c675ace2c777d88833bcd4b9bc319ed7b8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__init__.py @@ -0,0 +1,64 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_sentencepiece_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = {} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_nllb"] = ["NllbTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_nllb_fast"] = ["NllbTokenizerFast"] + + +if TYPE_CHECKING: + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_nllb import NllbTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_nllb_fast import NllbTokenizerFast + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7304eee9c3c9c517a79f2120d366ec6639a860fb Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/tokenization_nllb.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/tokenization_nllb.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6bb6507fd150792417b9486f2c69eb2bd638c857 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/tokenization_nllb.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/tokenization_nllb_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/tokenization_nllb_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2702ccb658e64d743d65b496a5d4526fc333bc0c Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/tokenization_nllb_fast.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/tokenization_nllb.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/tokenization_nllb.py new file mode 100644 index 0000000000000000000000000000000000000000..ee2285e8263acb333cd4ddf8681015acf449e3f8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/tokenization_nllb.py @@ -0,0 +1,446 @@ +# coding=utf-8 +# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +SPIECE_UNDERLINE = "▁" + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "facebook/nllb-200-distilled-600M": ( + "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" + ), + } +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "facebook/nllb-200-distilled-600M": 1024, +} + +FAIRSEQ_LANGUAGE_CODES = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] # fmt: skip + + +class NllbTokenizer(PreTrainedTokenizer): + """ + Construct an NLLB tokenizer. + + Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + The tokenization method is ` ` for source language documents, and ` + ` for target language documents. + + Examples: + + ```python + >>> from transformers import NllbTokenizer + + >>> tokenizer = NllbTokenizer.from_pretrained( + ... "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn" + ... ) + >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" + >>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie." + >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt") + ``` + + Args: + vocab_file (`str`): + Path to the vocabulary file. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenizer_file (`str`, *optional*): + The path to a tokenizer file to use instead of the vocab file. + src_lang (`str`, *optional*): + The language to use as source language for translation. + tgt_lang (`str`, *optional*): + The language to use as target language for translation. + sp_model_kwargs (`Dict[str, str]`): + Additional keyword arguments to pass to the model initialization. + """ + + vocab_files_names = VOCAB_FILES_NAMES + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + model_input_names = ["input_ids", "attention_mask"] + + prefix_tokens: List[int] = [] + suffix_tokens: List[int] = [] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + tokenizer_file=None, + src_lang=None, + tgt_lang=None, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + additional_special_tokens=None, + legacy_behaviour=False, + **kwargs, + ): + if additional_special_tokens is None: + additional_special_tokens = FAIRSEQ_LANGUAGE_CODES + bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token + pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token + eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token + unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token + # Mask token behave like a normal word, i.e. include the space before it + mask_token = ( + AddedToken(mask_token, normalized=True, lstrip=True, special=True) + if isinstance(mask_token, str) + else mask_token + ) + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + self.legacy_behaviour = legacy_behaviour + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(str(vocab_file)) + self.vocab_file = vocab_file + # Original fairseq vocab and spm vocab must be "aligned": + # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 + # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- + # fairseq | '' | '' | '' | '' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' + # spm | '' | '' | '' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' + + # unk token needs to be in the vocab with correct index + self._added_tokens_decoder = {0: bos_token, 1: pad_token, 2: eos_token, 3: unk_token} + # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab + self.fairseq_offset = 1 + self.sp_model_size = len(self.sp_model) + + # Everything that follows is kept for BC and will be removed in v4.38 + self._fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3} + language_codes = FAIRSEQ_LANGUAGE_CODES if additional_special_tokens is None else additional_special_tokens + self._lang_code_to_id = { + code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(language_codes) + } + self._id_to_lang_code = {v: k for k, v in self._lang_code_to_id.items()} + self._fairseq_tokens_to_ids[""] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + + self._fairseq_tokens_to_ids.update(self.lang_code_to_id) + self._fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + tokenizer_file=tokenizer_file, + src_lang=src_lang, + tgt_lang=tgt_lang, + additional_special_tokens=additional_special_tokens, + sp_model_kwargs=self.sp_model_kwargs, + legacy_behaviour=legacy_behaviour, + **kwargs, + ) + + self._src_lang = src_lang if src_lang is not None else "eng_Latn" + self.cur_lang_code_id = self.convert_tokens_to_ids(self._src_lang) + self.tgt_lang = tgt_lang + self.set_src_lang_special_tokens(self._src_lang) + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + state["sp_model_proto"] = self.sp_model.serialized_model_proto() + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.LoadFromSerializedProto(self.sp_model_proto) + + @property + def vocab_size(self): + return len(self.sp_model) + self.fairseq_offset + + @property + def src_lang(self) -> str: + return self._src_lang + + @property + def lang_code_to_id(self): + logger.warning_once( + "the `lang_code_to_id` attribute is deprecated. The logic is natively handled in the `tokenizer.adder_tokens_decoder`" + " this attribute will be removed in `transformers` v4.38" + ) + return self._lang_code_to_id + + @property + def fairseq_tokens_to_ids(self): + logger.warning_once( + "the `fairseq_tokens_to_ids` attribute is deprecated. The logic is natively handled in the `tokenizer.adder_tokens_decoder`" + " this attribute will be removed in `transformers` v4.38" + ) + return self._fairseq_tokens_to_ids + + @property + def id_to_lang_code(self): + logger.warning_once( + "the `id_to_lang_code` attribute is deprecated. The logic is natively handled in the `tokenizer.adder_tokens_decoder`" + " this attribute will be removed in `transformers` v4.38" + ) + return self._id_to_lang_code + + @property + def fairseq_ids_to_tokens(self): + logger.warning_once( + "the `_fairseq_ids_to_tokens` attribute is deprecated. The logic is natively handled in the `tokenizer.adder_tokens_decoder`" + " this attribute will be removed in `transformers` v4.38" + ) + return self._fairseq_ids_to_tokens + + @src_lang.setter + def src_lang(self, new_src_lang: str) -> None: + self._src_lang = new_src_lang + self.set_src_lang_special_tokens(self._src_lang) + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + prefix_ones = [1] * len(self.prefix_tokens) + suffix_ones = [1] * len(self.suffix_tokens) + if token_ids_1 is None: + return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones + return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An NLLB sequence has the following format, where `X` represents the sequence: + + - `input_ids` (for encoder) `X [eos, src_lang_code]` + - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` + + BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a + separator. + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return self.prefix_tokens + token_ids_0 + self.suffix_tokens + # We don't expect to process pairs, but leave the pair logic for API consistency + return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def _build_translation_inputs( + self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs + ): + """Used by translation pipeline, to prepare inputs for the generate function""" + if src_lang is None or tgt_lang is None: + raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") + self.src_lang = src_lang + inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) + tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) + inputs["forced_bos_token_id"] = tgt_lang_id + return inputs + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text: str) -> List[str]: + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + spm_id = self.sp_model.PieceToId(token) + # Need to return unknown token if the SP model returned 0 + return spm_id + self.fairseq_offset if spm_id else self.unk_token_id + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.sp_model.IdToPiece(index - self.fairseq_offset) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (strings for sub-words) in a single string.""" + out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() + return out_string + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + def prepare_seq2seq_batch( + self, + src_texts: List[str], + src_lang: str = "eng_Latn", + tgt_texts: Optional[List[str]] = None, + tgt_lang: str = "fra_Latn", + **kwargs, + ) -> BatchEncoding: + self.src_lang = src_lang + self.tgt_lang = tgt_lang + return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) + + def _switch_to_input_mode(self): + return self.set_src_lang_special_tokens(self.src_lang) + + def _switch_to_target_mode(self): + return self.set_tgt_lang_special_tokens(self.tgt_lang) + + def set_src_lang_special_tokens(self, src_lang) -> None: + """Reset the special tokens to the source lang setting. + - In legacy mode: No prefix and suffix=[eos, src_lang_code]. + - In default mode: Prefix=[src_lang_code], suffix = [eos] + """ + self.cur_lang_code = self.convert_tokens_to_ids(src_lang) + if self.legacy_behaviour: + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] + else: + self.prefix_tokens = [self.cur_lang_code] + self.suffix_tokens = [self.eos_token_id] + + def set_tgt_lang_special_tokens(self, lang: str) -> None: + """Reset the special tokens to the target lang setting. + - In legacy mode: No prefix and suffix=[eos, tgt_lang_code]. + - In default mode: Prefix=[tgt_lang_code], suffix = [eos] + """ + self.cur_lang_code = self.convert_tokens_to_ids(lang) + if self.legacy_behaviour: + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] + else: + self.prefix_tokens = [self.cur_lang_code] + self.suffix_tokens = [self.eos_token_id] diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/tokenization_nllb_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/tokenization_nllb_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..d71de82d4142026b9618ab88a04c49284b0e8ee3 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/nllb/tokenization_nllb_fast.py @@ -0,0 +1,359 @@ +# coding=utf-8 +# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from shutil import copyfile +from typing import List, Optional, Tuple + +from tokenizers import processors + +from ...tokenization_utils import AddedToken, BatchEncoding +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_nllb import NllbTokenizer +else: + NllbTokenizer = None + + +logger = logging.get_logger(__name__) + + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "facebook/nllb-200-distilled-600M": ( + "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" + ), + }, + "tokenizer_file": { + "facebook/nllb-200-distilled-600M": ( + "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" + ), + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "facebook/nllb-large-en-ro": 1024, + "facebook/nllb-200-distilled-600M": 1024, +} + +FAIRSEQ_LANGUAGE_CODES = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] # fmt: skip + + +class NllbTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" NLLB tokenizer (backed by HuggingFace's *tokenizers* library). Based on + [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + The tokenization method is ` ` for source language documents, and ` + ` for target language documents. + + Examples: + + ```python + >>> from transformers import NllbTokenizerFast + + >>> tokenizer = NllbTokenizerFast.from_pretrained( + ... "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn" + ... ) + >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" + >>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie." + >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt") + ``` + + Args: + vocab_file (`str`): + Path to the vocabulary file. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenizer_file (`str`, *optional*): + The path to a tokenizer file to use instead of the vocab file. + src_lang (`str`, *optional*): + The language to use as source language for translation. + tgt_lang (`str`, *optional*): + The language to use as target language for translation. + """ + + vocab_files_names = VOCAB_FILES_NAMES + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = NllbTokenizer + + prefix_tokens: List[int] = [] + suffix_tokens: List[int] = [] + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + src_lang=None, + tgt_lang=None, + additional_special_tokens=None, + legacy_behaviour=False, + **kwargs, + ): + if additional_special_tokens is None: + additional_special_tokens = FAIRSEQ_LANGUAGE_CODES + + self.vocab_file = vocab_file + # Mask token behave like a normal word, i.e. include the space before it + mask_token = ( + AddedToken(mask_token, normalized=True, lstrip=True, special=True) + if isinstance(mask_token, str) + else mask_token + ) + self.legacy_behaviour = legacy_behaviour + super().__init__( + vocab_file=vocab_file, + tokenizer_file=tokenizer_file, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + cls_token=cls_token, + unk_token=unk_token, + pad_token=pad_token, + src_lang=src_lang, + tgt_lang=tgt_lang, + mask_token=mask_token, + additional_special_tokens=additional_special_tokens, + legacy_behaviour=legacy_behaviour, + **kwargs, + ) + + self._lang_code_to_id = { + lang_code: self.convert_tokens_to_ids(str(lang_code)) for lang_code in additional_special_tokens + } + + self._src_lang = src_lang if src_lang is not None else "eng_Latn" + self.cur_lang_code = self.convert_tokens_to_ids(self._src_lang) + self.tgt_lang = tgt_lang + self.set_src_lang_special_tokens(self._src_lang) + + @property + def lang_code_to_id(self): + logger.warning_once( + "the `lang_code_to_id` attribute is deprecated. The logic is natively handled in the `tokenizer.adder_tokens_decoder`" + " this attribute will be removed in `transformers` v4.38" + ) + return self._lang_code_to_id + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + @property + def src_lang(self) -> str: + return self._src_lang + + @src_lang.setter + def src_lang(self, new_src_lang: str) -> None: + self._src_lang = new_src_lang + self.set_src_lang_special_tokens(self._src_lang) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. The special tokens depend on calling set_lang. + + An NLLB sequence has the following format, where `X` represents the sequence: + + - `input_ids` (for encoder) `X [eos, src_lang_code]` + - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` + + BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a + separator. + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return self.prefix_tokens + token_ids_0 + self.suffix_tokens + # We don't expect to process pairs, but leave the pair logic for API consistency + return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def _build_translation_inputs( + self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs + ): + """Used by translation pipeline, to prepare inputs for the generate function""" + if src_lang is None or tgt_lang is None: + raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") + self.src_lang = src_lang + inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) + tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) + inputs["forced_bos_token_id"] = tgt_lang_id + return inputs + + def prepare_seq2seq_batch( + self, + src_texts: List[str], + src_lang: str = "eng_Latn", + tgt_texts: Optional[List[str]] = None, + tgt_lang: str = "fra_Latn", + **kwargs, + ) -> BatchEncoding: + self.src_lang = src_lang + self.tgt_lang = tgt_lang + return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) + + def _switch_to_input_mode(self): + return self.set_src_lang_special_tokens(self.src_lang) + + def _switch_to_target_mode(self): + return self.set_tgt_lang_special_tokens(self.tgt_lang) + + def set_src_lang_special_tokens(self, src_lang) -> None: + """Reset the special tokens to the source lang setting. + - In legacy mode: No prefix and suffix=[eos, src_lang_code]. + - In default mode: Prefix=[src_lang_code], suffix = [eos] + """ + self.cur_lang_code = self.convert_tokens_to_ids(src_lang) + + if self.legacy_behaviour: + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] + else: + self.prefix_tokens = [self.cur_lang_code] + self.suffix_tokens = [self.eos_token_id] + + prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) + suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) + + self._tokenizer.post_processor = processors.TemplateProcessing( + single=prefix_tokens_str + ["$A"] + suffix_tokens_str, + pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, + special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), + ) + + def set_tgt_lang_special_tokens(self, lang: str) -> None: + """Reset the special tokens to the target lang setting. + - In legacy mode: No prefix and suffix=[eos, tgt_lang_code]. + - In default mode: Prefix=[tgt_lang_code], suffix = [eos] + """ + self.cur_lang_code = self.convert_tokens_to_ids(lang) + if self.legacy_behaviour: + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] + else: + self.prefix_tokens = [self.cur_lang_code] + self.suffix_tokens = [self.eos_token_id] + + prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) + suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) + + self._tokenizer.post_processor = processors.TemplateProcessing( + single=prefix_tokens_str + ["$A"] + suffix_tokens_str, + pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, + special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), + ) + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory.") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qdqbert/__pycache__/configuration_qdqbert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/qdqbert/__pycache__/configuration_qdqbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4216c4785ae4df09c62373869c1514f75b3e3139 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/qdqbert/__pycache__/configuration_qdqbert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qdqbert/__pycache__/modeling_qdqbert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/qdqbert/__pycache__/modeling_qdqbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c08c077062bb0c89edcf18582fda0875874f6932 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/qdqbert/__pycache__/modeling_qdqbert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qdqbert/modeling_qdqbert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/qdqbert/modeling_qdqbert.py new file mode 100644 index 0000000000000000000000000000000000000000..8c610ecaedbfc48caed7f1327c454af5cb22b7af --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/qdqbert/modeling_qdqbert.py @@ -0,0 +1,1739 @@ +# coding=utf-8 +# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. +# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch QDQBERT model.""" + + +import math +import os +import warnings +from typing import Dict, List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + NextSentencePredictorOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_pytorch_quantization_available, + logging, + replace_return_docstrings, + requires_backends, +) +from .configuration_qdqbert import QDQBertConfig + + +logger = logging.get_logger(__name__) + +# soft dependency +if is_pytorch_quantization_available(): + try: + from pytorch_quantization import nn as quant_nn + from pytorch_quantization.nn.modules.tensor_quantizer import TensorQuantizer + except OSError: + logger.error( + "QDQBERT model are not usable since `pytorch_quantization` can't be loaded. Please try to reinstall it" + " following the instructions here:" + " https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization." + ) + +_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased" +_CONFIG_FOR_DOC = "QDQBertConfig" + +QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "google-bert/bert-base-uncased", + # See all BERT models at https://huggingface.co/models?filter=bert +] + + +def load_tf_weights_in_qdqbert(model, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + for name, array in zip(names, arrays): + name = name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if m_name[-11:] == "_embeddings": + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + try: + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + return model + + +# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert -> QDQBert +class QDQBertEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.register_buffer( + "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False + ) + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + past_key_values_length: int = 0, + ) -> torch.Tensor: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class QDQBertSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = quant_nn.QuantLinear(config.hidden_size, self.all_head_size) + self.key = quant_nn.QuantLinear(config.hidden_size, self.all_head_size) + self.value = quant_nn.QuantLinear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + self.matmul_q_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) + self.matmul_k_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) + self.matmul_v_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) + self.matmul_a_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul( + self.matmul_q_input_quantizer(query_layer), self.matmul_k_input_quantizer(key_layer.transpose(-1, -2)) + ) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + seq_length = hidden_states.size()[1] + position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in QDQBertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul( + self.matmul_a_input_quantizer(attention_probs), self.matmul_v_input_quantizer(value_layer) + ) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +class QDQBertSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + # Quantize Linear layer + self.dense = quant_nn.QuantLinear(config.hidden_size, config.hidden_size) + + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # Quantize the inputs to the residual add + self.add_local_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) + self.add_residual_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + # Quantize the inputs to the residual add + add_local = self.add_local_input_quantizer(hidden_states) + add_residual = self.add_residual_input_quantizer(input_tensor) + hidden_states = self.LayerNorm(add_local + add_residual) + return hidden_states + + +# Based on transformers.models.bert.modeling_bert.BertAttention with Bert -> QDQBert +class QDQBertAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.self = QDQBertSelfAttention(config) + self.output = QDQBertSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class QDQBertIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + # Quantize Linear layer + self.dense = quant_nn.QuantLinear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class QDQBertOutput(nn.Module): + def __init__(self, config): + super().__init__() + # Quantize Linear layer + self.dense = quant_nn.QuantLinear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # Quantize the inputs to the residual add + self.add_local_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) + self.add_residual_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + # Quantize the inputs to the residual add + add_local = self.add_local_input_quantizer(hidden_states) + add_residual = self.add_residual_input_quantizer(input_tensor) + hidden_states = self.LayerNorm(add_local + add_residual) + return hidden_states + + +# Based on transformers.models.bert.modeling_bert.BertLayer with Bert -> QDQBert +class QDQBertLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.seq_len_dim = 1 + self.attention = QDQBertAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = QDQBertAttention(config) + self.intermediate = QDQBertIntermediate(config) + self.output = QDQBertOutput(config) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = self.feed_forward_chunk(attention_output) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Based on transformers.models.bert.modeling_bert.BertEncoder with Bert -> QDQBert +class QDQBertEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([QDQBertLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert -> QDQBert +class QDQBertPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert -> QDQBert +class QDQBertPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +# Based on transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert -> QDQBert +class QDQBertLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = QDQBertPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +# Based on transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert -> QDQBert +class QDQBertOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = QDQBertLMPredictionHead(config) + + def forward(self, sequence_output): + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert -> QDQBert +class QDQBertOnlyNSPHead(nn.Module): + def __init__(self, config): + super().__init__() + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, pooled_output): + seq_relationship_score = self.seq_relationship(pooled_output) + return seq_relationship_score + + +# Based on transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert -> QDQBert +class QDQBertPreTrainingHeads(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = QDQBertLMPredictionHead(config) + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, sequence_output, pooled_output): + prediction_scores = self.predictions(sequence_output) + seq_relationship_score = self.seq_relationship(pooled_output) + return prediction_scores, seq_relationship_score + + +# Based on transformers.models.bert.modeling_bert.BertPreTrainedModel with Bert -> QDQBert +class QDQBertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = QDQBertConfig + load_tf_weights = load_tf_weights_in_qdqbert + base_model_prefix = "bert" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +QDQBERT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`QDQBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +QDQBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare QDQBERT Model transformer outputting raw hidden-states without any specific head on top.", + QDQBERT_START_DOCSTRING, +) +class QDQBertModel(QDQBertPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in [Attention is + all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + """ + + def __init__(self, config, add_pooling_layer: bool = True): + requires_backends(self, "pytorch_quantization") + super().__init__(config) + self.config = config + + self.embeddings = QDQBertEmbeddings(config) + self.encoder = QDQBertEncoder(config) + + self.pooler = QDQBertPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + batch_size, seq_length = input_shape + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size, seq_length = input_shape + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings( + """QDQBERT Model with a `language modeling` head on top for CLM fine-tuning.""", QDQBERT_START_DOCSTRING +) +class QDQBertLMHeadModel(QDQBertPreTrainedModel): + _tied_weights_keys = ["predictions.decoder.weight", "predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + if not config.is_decoder: + logger.warning("If you want to use `QDQBertLMHeadModel` as a standalone, add `is_decoder=True.`") + + self.bert = QDQBertModel(config, add_pooling_layer=False) + self.cls = QDQBertOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.LongTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, QDQBertLMHeadModel, QDQBertConfig + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") + >>> config = QDQBertConfig.from_pretrained("google-bert/bert-base-cased") + >>> config.is_decoder = True + >>> model = QDQBertLMHeadModel.from_pretrained("google-bert/bert-base-cased", config=config) + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids: Optional[torch.LongTensor], + past_key_values=None, + attention_mask: Optional[torch.Tensor] = None, + **model_kwargs, + ): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} + + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings("""QDQBERT Model with a `language modeling` head on top.""", QDQBERT_START_DOCSTRING) +class QDQBertForMaskedLM(QDQBertPreTrainedModel): + _tied_weights_keys = ["predictions.decoder.weight", "predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + if config.is_decoder: + logger.warning( + "If you want to use `QDQBertForMaskedLM` make sure `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.bert = QDQBertModel(config, add_pooling_layer=False) + self.cls = QDQBertOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids: torch.LongTensor, attention_mask: Optional[torch.FloatTensor] = None, **model_kwargs + ): + input_shape = input_ids.shape + effective_batch_size = input_shape[0] + + # add a dummy token + if self.config.pad_token_id is None: + raise ValueError("The PAD token should be defined for generation") + + attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) + dummy_token = torch.full( + (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device + ) + input_ids = torch.cat([input_ids, dummy_token], dim=1) + + return {"input_ids": input_ids, "attention_mask": attention_mask} + + +@add_start_docstrings( + """Bert Model with a `next sentence prediction (classification)` head on top.""", + QDQBERT_START_DOCSTRING, +) +class QDQBertForNextSentencePrediction(QDQBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.bert = QDQBertModel(config) + self.cls = QDQBertOnlyNSPHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[Tuple, NextSentencePredictorOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair + (see `input_ids` docstring). Indices should be in `[0, 1]`: + + - 0 indicates sequence B is a continuation of sequence A, + - 1 indicates sequence B is a random sequence. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, QDQBertForNextSentencePrediction + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") + >>> model = QDQBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased") + + >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." + >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." + >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") + + >>> outputs = model(**encoding, labels=torch.LongTensor([1])) + >>> logits = outputs.logits + >>> assert logits[0, 0] < logits[0, 1] # next sentence was random + ```""" + + if "next_sentence_label" in kwargs: + warnings.warn( + "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" + " `labels` instead.", + FutureWarning, + ) + labels = kwargs.pop("next_sentence_label") + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + seq_relationship_scores = self.cls(pooled_output) + + next_sentence_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) + + if not return_dict: + output = (seq_relationship_scores,) + outputs[2:] + return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output + + return NextSentencePredictorOutput( + loss=next_sentence_loss, + logits=seq_relationship_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + QDQBERT_START_DOCSTRING, +) +class QDQBertForSequenceClassification(QDQBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.bert = QDQBertModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + QDQBERT_START_DOCSTRING, +) +class QDQBertForMultipleChoice(QDQBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.bert = QDQBertModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + QDQBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + QDQBERT_START_DOCSTRING, +) +class QDQBertForTokenClassification(QDQBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.bert = QDQBertModel(config, add_pooling_layer=False) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + QDQBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + QDQBERT_START_DOCSTRING, +) +class QDQBertForQuestionAnswering(QDQBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.bert = QDQBertModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9fd51aaffee86cf99842756bcce5deb2d52f1143 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__init__.py @@ -0,0 +1,80 @@ +# Copyright 2024 The Qwen Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_qwen2": ["QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Qwen2Config"], + "tokenization_qwen2": ["Qwen2Tokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_qwen2_fast"] = ["Qwen2TokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_qwen2"] = [ + "Qwen2ForCausalLM", + "Qwen2Model", + "Qwen2PreTrainedModel", + "Qwen2ForSequenceClassification", + ] + + +if TYPE_CHECKING: + from .configuration_qwen2 import QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP, Qwen2Config + from .tokenization_qwen2 import Qwen2Tokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_qwen2_fast import Qwen2TokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_qwen2 import ( + Qwen2ForCausalLM, + Qwen2ForSequenceClassification, + Qwen2Model, + Qwen2PreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d44198cd142dabf6e64670bc029c21d586a796bb Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/configuration_qwen2.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/configuration_qwen2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..977a8fc4dd56015c1a2dce510c688d97b51ca278 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/configuration_qwen2.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/modeling_qwen2.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/modeling_qwen2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1066b34d596f9786ce46db27b1d96b92f636f574 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/modeling_qwen2.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28baeea8eaf09d522430536cd35708113fb482ed Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6821a3ce5e2dea3e9e4f6e4b8eeb29fae36dd81e Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2_fast.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/configuration_qwen2.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/configuration_qwen2.py new file mode 100644 index 0000000000000000000000000000000000000000..0bbfd1cf1601ed248c5559b11c8dbcf4da108378 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/configuration_qwen2.py @@ -0,0 +1,144 @@ +# coding=utf-8 +# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Qwen2 model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json", +} + + +class Qwen2Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a + Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of + Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 151936): + Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`Qwen2Model`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 22016): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer encoder. + num_key_value_heads (`int`, *optional*, defaults to 32): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 32768): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether the model's input and output word embeddings should be tied. + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + use_sliding_window (`bool`, *optional*, defaults to `False`): + Whether to use sliding window attention. + sliding_window (`int`, *optional*, defaults to 4096): + Sliding window attention (SWA) window size. If not specified, will default to `4096`. + max_window_layers (`int`, *optional*, defaults to 28): + The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + + ```python + >>> from transformers import Qwen2Model, Qwen2Config + + >>> # Initializing a Qwen2 style configuration + >>> configuration = Qwen2Config() + + >>> # Initializing a model from the Qwen2-7B style configuration + >>> model = Qwen2Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "qwen2" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=151936, + hidden_size=4096, + intermediate_size=22016, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=32, + hidden_act="silu", + max_position_embeddings=32768, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + tie_word_embeddings=False, + rope_theta=10000.0, + use_sliding_window=False, + sliding_window=4096, + max_window_layers=28, + attention_dropout=0.0, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.use_sliding_window = use_sliding_window + self.sliding_window = sliding_window + self.max_window_layers = max_window_layers + + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.attention_dropout = attention_dropout + + super().__init__( + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.py new file mode 100644 index 0000000000000000000000000000000000000000..bfba4a45324818714aaea75a85abcec433f4ea75 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.py @@ -0,0 +1,1401 @@ +# coding=utf-8 +# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Qwen2 model.""" +import inspect +import math +import warnings +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...cache_utils import Cache, DynamicCache +from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa +from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_qwen2 import Qwen2Config + + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) + + +logger = logging.get_logger(__name__) + + +_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta" +_CONFIG_FOR_DOC = "Qwen2Config" + +QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "Qwen/Qwen2-7B-beta", + # See all Qwen2 models at https://huggingface.co/models?filter=qwen2 +] + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2 +class Qwen2RMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Qwen2RMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2 +class Qwen2RotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() + ) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2 +class Qwen2MLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + + +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +class Qwen2Attention(nn.Module): + """ + Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer + and "Generating Long Sequences with Sparse Transformers". + """ + + def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " + "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.is_causal = True + self.attention_dropout = config.attention_dropout + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) + self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) + self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) + self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) + + self.rotary_emb = Qwen2RotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +class Qwen2FlashAttention2(Qwen2Attention): + """ + Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention` + as the weights of the module stays untouched. The only required change would be on the forward pass + where it needs to correctly call the public API of flash attention and deal with padding tokens + in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom + config.max_window_layers layers. + """ + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ): + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + + # Because the input can be padded, the absolute sequence length depends on the max position id. + rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 + cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) + + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + use_sliding_windows = ( + _flash_supports_window_size + and getattr(self.config, "sliding_window", None) is not None + and kv_seq_len > self.config.sliding_window + and self.config.use_sliding_window + ) + + if not _flash_supports_window_size: + logger.warning_once( + "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" + " make sure to upgrade flash-attn library." + ) + + if past_key_value is not None: + # Activate slicing cache only if the config has a value `sliding_windows` attribute + cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 + if ( + getattr(self.config, "sliding_window", None) is not None + and kv_seq_len > self.config.sliding_window + and cache_has_contents + ): + slicing_tokens = 1 - self.config.sliding_window + + past_key = past_key_value[self.layer_idx][0] + past_value = past_key_value[self.layer_idx][1] + + past_key = past_key[:, :, slicing_tokens:, :].contiguous() + past_value = past_value[:, :, slicing_tokens:, :].contiguous() + + if past_key.shape[-2] != self.config.sliding_window - 1: + raise ValueError( + f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" + f" {past_key.shape}" + ) + + if attention_mask is not None: + attention_mask = attention_mask[:, slicing_tokens:] + attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) + + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + dropout_rate = 0.0 if not self.training else self.attention_dropout + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in float16 just to be sure everything works as expected. + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + # Reashape to the expected shape for Flash Attention + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + attn_output = self._flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + dropout=dropout_rate, + use_sliding_windows=use_sliding_windows, + ) + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, + query_states, + key_states, + value_states, + attention_mask, + query_length, + dropout=0.0, + softmax_scale=None, + use_sliding_windows=False, + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`float`): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + use_sliding_windows (`bool`, *optional*): + Whether to activate sliding window attention. + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Decide whether to use SWA or not by layer index. + if use_sliding_windows and self.layer_idx >= self.config.max_window_layers: + use_sliding_windows = False + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + if not use_sliding_windows: + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + else: + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + window_size=(self.config.sliding_window, self.config.sliding_window), + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + if not use_sliding_windows: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + else: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + window_size=(self.config.sliding_window, self.config.sliding_window), + ) + + return attn_output + + # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape + + # On the first iteration we need to properly re-create the padding mask + # by slicing it on the proper place + if kv_seq_len != attention_mask.shape[-1]: + attention_mask_num_tokens = attention_mask.shape[-1] + attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] + + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + + key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) + value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) + + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2 +class Qwen2SdpaAttention(Qwen2Attention): + """ + Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from + `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to + SDPA API. + """ + + # Adapted from Qwen2Attention.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if output_attentions: + # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. + logger.warning_once( + "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " + 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + return super().forward( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + + # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, + # Reference: https://github.com/pytorch/pytorch/issues/112577. + if query_states.device.type == "cuda" and attention_mask is not None: + query_states = query_states.contiguous() + key_states = key_states.contiguous() + value_states = value_states.contiguous() + + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=attention_mask, + dropout_p=self.attention_dropout if self.training else 0.0, + # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. + is_causal=self.is_causal and attention_mask is None and q_len > 1, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.view(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + return attn_output, None, past_key_value + + +QWEN2_ATTENTION_CLASSES = { + "eager": Qwen2Attention, + "flash_attention_2": Qwen2FlashAttention2, + "sdpa": Qwen2SdpaAttention, +} + + +class Qwen2DecoderLayer(nn.Module): + def __init__(self, config: Qwen2Config, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + if config.use_sliding_window and config._attn_implementation != "flash_attention_2": + logger.warning_once( + f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " + "unexpected results may be encountered." + ) + self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) + + self.mlp = Qwen2MLP(config) + self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. " + "Please make sure use `attention_mask` instead.`" + ) + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, sequence_length)` where padding elements are indicated by 0. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +QWEN2_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Qwen2Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", + QWEN2_START_DOCSTRING, +) +class Qwen2PreTrainedModel(PreTrainedModel): + config_class = Qwen2Config + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["Qwen2DecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_cache_class = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +QWEN2_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", + QWEN2_START_DOCSTRING, +) +class Qwen2Model(Qwen2PreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`] + + Args: + config: Qwen2Config + """ + + def __init__(self, config: Qwen2Config): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self._attn_implementation = config._attn_implementation + self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + past_key_values_length = 0 + + if use_cache: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_length) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0).view(-1, seq_length) + else: + position_ids = position_ids.view(-1, seq_length).long() + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: + is_padding_right = attention_mask[:, -1].sum().item() != batch_size + if is_padding_right: + raise ValueError( + "You are attempting to perform batched generation with padding_side='right'" + " this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to " + " call `tokenizer.padding_side = 'left'` before tokenizing the input. " + ) + + if self._attn_implementation == "flash_attention_2": + # 2d mask is passed through the layers + attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None + elif self._attn_implementation == "sdpa" and not output_attentions: + # output_attentions=True can not be supported when using SDPA, and we fall back on + # the manual implementation that requires a 4D causal mask in all cases. + attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + ) + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + sliding_window=self.config.sliding_window, + ) + + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = None + if use_cache: + next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache + + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class Qwen2ForCausalLM(Qwen2PreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = Qwen2Model(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, Qwen2ForCausalLM + + >>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + # Omit tokens covered by past_key_values + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """ + The Qwen2 Model transformer with a sequence classification head on top (linear layer). + + [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + QWEN2_START_DOCSTRING, +) +class Qwen2ForSequenceClassification(Qwen2PreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = Qwen2Model(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2.py new file mode 100644 index 0000000000000000000000000000000000000000..9f8607c9ef6ca4e8e80695c9c75f29ff4e7d0f29 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2.py @@ -0,0 +1,345 @@ +# coding=utf-8 +# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for Qwen2.""" + +import json +import os +import unicodedata +from functools import lru_cache +from typing import Optional, Tuple + +import regex as re + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", +} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/vocab.json"}, + "merges_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/merges.txt"}, +} + +MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} + +PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" + + +@lru_cache() +# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control + characters the bpe code barfs on. + + The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab + if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for + decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup + tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs +def get_pairs(word): + """ + Return set of symbol pairs in a word. + + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +class Qwen2Tokenizer(PreTrainedTokenizer): + """ + Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding. + + Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import Qwen2Tokenizer + + >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer") + >>> tokenizer("Hello world")["input_ids"] + [9707, 1879] + + >>> tokenizer(" Hello world")["input_ids"] + [21927, 1879] + ``` + This is expected. + + You should not use GPT2Tokenizer instead, because of the different pretokenization rules. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str`, *optional*): + The beginning of sequence token. Not applicable for this tokenizer. + eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The end of sequence token. + pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The token used for padding, for example when batching sequences of different lengths. + clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): + Whether or not the model should cleanup the spaces that were added when splitting the input text during the + tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces. + split_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the special tokens should be split during the tokenization process. The default behavior is + to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") = + ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<', + '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = MAX_MODEL_INPUT_SIZES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + merges_file, + errors="replace", + unk_token="<|endoftext|>", + bos_token=None, + eos_token="<|endoftext|>", + pad_token="<|endoftext|>", + clean_up_tokenization_spaces=False, + split_special_tokens=False, + **kwargs, + ): + # Qwen vocab does not contain control tokens; added tokens need to be special + bos_token = ( + AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) + if isinstance(bos_token, str) + else bos_token + ) + eos_token = ( + AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) + if isinstance(eos_token, str) + else eos_token + ) + unk_token = ( + AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) + if isinstance(unk_token, str) + else unk_token + ) + pad_token = ( + AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) + if isinstance(pad_token, str) + else pad_token + ) + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + bpe_merges = [] + with open(merges_file, encoding="utf-8") as merges_handle: + for line in merges_handle: + line = line.strip() + if not line or line.startswith("#"): + continue + bpe_merges.append(tuple(line.split())) + self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) + # NOTE: the cache can grow without bound and will get really large for long running processes + # (esp. for texts of language that do not use space between word, e.g. Chinese); technically + # not a memory leak but appears as one. + # GPT2Tokenizer has the same problem, so let's be consistent. + self.cache = {} + + self.pat = re.compile(PRETOKENIZE_REGEX) + + if kwargs.get("add_prefix_space", False): + logger.warning_once( + f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect." + ) + + super().__init__( + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + pad_token=pad_token, + unk_token=unk_token, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + split_special_tokens=split_special_tokens, + **kwargs, + ) + + @property + def vocab_size(self) -> int: + return len(self.encoder) + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab + def get_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token) + pairs = get_pairs(word) + + if not pairs: + return token + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize + def _tokenize(self, text): + """Tokenize a string.""" + bpe_tokens = [] + for token in re.findall(self.pat, text): + token = "".join( + self.byte_encoder[b] for b in token.encode("utf-8") + ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) + bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) + return bpe_tokens + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index) + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + text = "".join(tokens) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) + return text + + def decode( + self, + token_ids, + skip_special_tokens: bool = False, + clean_up_tokenization_spaces: Optional[bool] = False, + spaces_between_special_tokens: bool = False, + **kwargs, + ) -> str: + # `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers + # and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer + return super().decode( + token_ids, + skip_special_tokens=skip_special_tokens, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + spaces_between_special_tokens=spaces_between_special_tokens, + **kwargs, + ) + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + def prepare_for_tokenization(self, text, **kwargs): + text = unicodedata.normalize("NFC", text) + return (text, kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..467aa6d947e1f36643a17356ae800dc7bb134841 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2_fast.py @@ -0,0 +1,143 @@ +# coding=utf-8 +# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for Qwen2.""" + +from typing import Optional, Tuple + +from ...tokenization_utils import AddedToken +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_qwen2 import Qwen2Tokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", + "tokenizer_file": "tokenizer.json", +} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/vocab.json"}, + "merges_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/merges.txt"}, + "tokenizer_file": { + "qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/tokenizer.json" + }, +} + +MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} + + +class Qwen2TokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level + Byte-Pair-Encoding. + + Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import Qwen2TokenizerFast + + >>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer") + >>> tokenizer("Hello world")["input_ids"] + [9707, 1879] + + >>> tokenizer(" Hello world")["input_ids"] + [21927, 1879] + ``` + This is expected. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`, *optional*): + Path to the vocabulary file. + merges_file (`str`, *optional*): + Path to the merges file. + tokenizer_file (`str`, *optional*): + Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that + contains everything needed to load the tokenizer. + unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. Not applicable to this tokenizer. + bos_token (`str`, *optional*): + The beginning of sequence token. Not applicable for this tokenizer. + eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The end of sequence token. + pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The token used for padding, for example when batching sequences of different lengths. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = MAX_MODEL_INPUT_SIZES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = Qwen2Tokenizer + + def __init__( + self, + vocab_file=None, + merges_file=None, + tokenizer_file=None, + unk_token="<|endoftext|>", + bos_token=None, + eos_token="<|endoftext|>", + pad_token="<|endoftext|>", + **kwargs, + ): + # We need to at least pass vocab_file and merges_file to base class + # in case a slow tokenizer needs to be initialized; other can be + # configured through files. + # following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token + + bos_token = ( + AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) + if isinstance(bos_token, str) + else bos_token + ) + eos_token = ( + AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) + if isinstance(eos_token, str) + else eos_token + ) + unk_token = ( + AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) + if isinstance(unk_token, str) + else unk_token + ) + pad_token = ( + AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) + if isinstance(pad_token, str) + else pad_token + ) + + super().__init__( + vocab_file, + merges_file, + tokenizer_file=tokenizer_file, + unk_token=unk_token, + bos_token=bos_token, + eos_token=eos_token, + pad_token=pad_token, + **kwargs, + ) + + # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..24355c01add73bfeb1c6aefb97c1d742d79e983c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__init__.py @@ -0,0 +1,79 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = { + "configuration_splinter": ["SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SplinterConfig"], + "tokenization_splinter": ["SplinterTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_splinter_fast"] = ["SplinterTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_splinter"] = [ + "SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST", + "SplinterForQuestionAnswering", + "SplinterForPreTraining", + "SplinterLayer", + "SplinterModel", + "SplinterPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_splinter import SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP, SplinterConfig + from .tokenization_splinter import SplinterTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_splinter_fast import SplinterTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_splinter import ( + SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST, + SplinterForPreTraining, + SplinterForQuestionAnswering, + SplinterLayer, + SplinterModel, + SplinterPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..69df36e33466abfeb9501b0ae7eb039e332253f9 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/configuration_splinter.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/configuration_splinter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..96097036943461aea04f2b784b5be3d90948013d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/configuration_splinter.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/modeling_splinter.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/modeling_splinter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bc2d2c9ce03a874009243037f5ba9ba5b10f3a48 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/modeling_splinter.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b052e036ced8c456ad09d62122671306b703899b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6acbad83be8ed0a28627415d720762835287a3a8 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/__pycache__/tokenization_splinter_fast.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/configuration_splinter.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/configuration_splinter.py new file mode 100644 index 0000000000000000000000000000000000000000..e7325f01656f12362aaa194b6d20508cd54b2993 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/configuration_splinter.py @@ -0,0 +1,128 @@ +# coding=utf-8 +# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Splinter model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "tau/splinter-base": "https://huggingface.co/tau/splinter-base/resolve/main/config.json", + "tau/splinter-base-qass": "https://huggingface.co/tau/splinter-base-qass/resolve/main/config.json", + "tau/splinter-large": "https://huggingface.co/tau/splinter-large/resolve/main/config.json", + "tau/splinter-large-qass": "https://huggingface.co/tau/splinter-large-qass/resolve/main/config.json", + # See all Splinter models at https://huggingface.co/models?filter=splinter +} + + +class SplinterConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SplinterModel`]. It is used to instantiate an + Splinter model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Splinter + [tau/splinter-base](https://huggingface.co/tau/splinter-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the Splinter model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`SplinterModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimension of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`SplinterModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + question_token_id (`int`, *optional*, defaults to 104): + The id of the `[QUESTION]` token. + + Example: + + ```python + >>> from transformers import SplinterModel, SplinterConfig + + >>> # Initializing a Splinter tau/splinter-base style configuration + >>> configuration = SplinterConfig() + + >>> # Initializing a model from the tau/splinter-base style configuration + >>> model = SplinterModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "splinter" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + use_cache=True, + pad_token_id=0, + question_token_id=104, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.type_vocab_size = type_vocab_size + self.layer_norm_eps = layer_norm_eps + self.use_cache = use_cache + self.question_token_id = question_token_id diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/modeling_splinter.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/modeling_splinter.py new file mode 100644 index 0000000000000000000000000000000000000000..75187c36b930a47b0b91f87f5fd64e7cb3ae9c48 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/modeling_splinter.py @@ -0,0 +1,1109 @@ +# coding=utf-8 +# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Splinter model.""" + + +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, ModelOutput, QuestionAnsweringModelOutput +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_splinter import SplinterConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "tau/splinter-base" +_CONFIG_FOR_DOC = "SplinterConfig" + +SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "tau/splinter-base", + "tau/splinter-base-qass", + "tau/splinter-large", + "tau/splinter-large-qass", + # See all Splinter models at https://huggingface.co/models?filter=splinter +] + + +class SplinterEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + past_key_values_length: Optional[int] = 0, + ) -> Tuple: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Splinter +class SplinterSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in SplinterModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Splinter +class SplinterSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Splinter +class SplinterAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = SplinterSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = SplinterSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Splinter +class SplinterIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Splinter +class SplinterOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Splinter +class SplinterLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = SplinterAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = SplinterAttention(config, position_embedding_type="absolute") + self.intermediate = SplinterIntermediate(config) + self.output = SplinterOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Splinter +class SplinterEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([SplinterLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class SplinterPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SplinterConfig + base_model_prefix = "splinter" + supports_gradient_checkpointing = True + + # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +SPLINTER_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`SplinterConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +SPLINTER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `{0}`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Splinter Model transformer outputting raw hidden-states without any specific head on top.", + SPLINTER_START_DOCSTRING, +) +class SplinterModel(SplinterPreTrainedModel): + """ + The model is an encoder (with only self-attention) following the architecture described in [Attention is all you + need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, + Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + """ + + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embeddings = SplinterEmbeddings(config) + self.encoder = SplinterEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(SPLINTER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + + if not return_dict: + return (sequence_output,) + encoder_outputs[1:] + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=sequence_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +class SplinterFullyConnectedLayer(nn.Module): + def __init__(self, input_dim, output_dim, hidden_act="gelu"): + super().__init__() + + self.input_dim = input_dim + self.output_dim = output_dim + + self.dense = nn.Linear(self.input_dim, self.output_dim) + self.act_fn = ACT2FN[hidden_act] + self.LayerNorm = nn.LayerNorm(self.output_dim) + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(inputs) + hidden_states = self.act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class QuestionAwareSpanSelectionHead(nn.Module): + """ + Implementation of Question-Aware Span Selection (QASS) head, described in Splinter's paper: + + """ + + def __init__(self, config): + super().__init__() + + self.query_start_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) + self.query_end_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) + self.start_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) + self.end_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) + + self.start_classifier = nn.Linear(config.hidden_size, config.hidden_size, bias=False) + self.end_classifier = nn.Linear(config.hidden_size, config.hidden_size, bias=False) + + def forward(self, inputs, positions): + _, _, dim = inputs.size() + index = positions.unsqueeze(-1).repeat(1, 1, dim) # [batch_size, num_positions, dim] + gathered_reps = torch.gather(inputs, dim=1, index=index) # [batch_size, num_positions, dim] + + query_start_reps = self.query_start_transform(gathered_reps) # [batch_size, num_positions, dim] + query_end_reps = self.query_end_transform(gathered_reps) # [batch_size, num_positions, dim] + start_reps = self.start_transform(inputs) # [batch_size, seq_length, dim] + end_reps = self.end_transform(inputs) # [batch_size, seq_length, dim] + + hidden_states = self.start_classifier(query_start_reps) # [batch_size, num_positions, dim] + start_reps = start_reps.permute(0, 2, 1) # [batch_size, dim, seq_length] + start_logits = torch.matmul(hidden_states, start_reps) + + hidden_states = self.end_classifier(query_end_reps) + end_reps = end_reps.permute(0, 2, 1) + end_logits = torch.matmul(hidden_states, end_reps) + + return start_logits, end_logits + + +@add_start_docstrings( + """ + Splinter Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + SPLINTER_START_DOCSTRING, +) +class SplinterForQuestionAnswering(SplinterPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.splinter = SplinterModel(config) + self.splinter_qass = QuestionAwareSpanSelectionHead(config) + self.question_token_id = config.question_token_id + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(SPLINTER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + question_positions: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): + The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size, + num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be + the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size, + sequence_length)`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + question_positions_were_none = False + if question_positions is None: + if input_ids is not None: + question_position_for_each_example = torch.argmax( + (torch.eq(input_ids, self.question_token_id)).int(), dim=-1 + ) + else: + question_position_for_each_example = torch.zeros( + inputs_embeds.size(0), dtype=torch.long, layout=inputs_embeds.layout, device=inputs_embeds.device + ) + question_positions = question_position_for_each_example.unsqueeze(-1) + question_positions_were_none = True + + outputs = self.splinter( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + start_logits, end_logits = self.splinter_qass(sequence_output, question_positions) + + if question_positions_were_none: + start_logits, end_logits = start_logits.squeeze(1), end_logits.squeeze(1) + + if attention_mask is not None: + start_logits = start_logits + (1 - attention_mask) * torch.finfo(start_logits.dtype).min + end_logits = end_logits + (1 - attention_mask) * torch.finfo(end_logits.dtype).min + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions.clamp_(0, ignored_index) + end_positions.clamp_(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@dataclass +class SplinterForPreTrainingOutput(ModelOutput): + """ + Class for outputs of Splinter as a span selection model. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when start and end positions are provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`): + Span-start scores (before SoftMax). + end_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`): + Span-end scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + start_logits: torch.FloatTensor = None + end_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@add_start_docstrings( + """ + Splinter Model for the recurring span selection task as done during the pretraining. The difference to the QA task + is that we do not have a question, but multiple question tokens that replace the occurrences of recurring spans + instead. + """, + SPLINTER_START_DOCSTRING, +) +class SplinterForPreTraining(SplinterPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.splinter = SplinterModel(config) + self.splinter_qass = QuestionAwareSpanSelectionHead(config) + self.question_token_id = config.question_token_id + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + SPLINTER_INPUTS_DOCSTRING.format("batch_size, num_questions, sequence_length") + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + question_positions: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, SplinterForPreTrainingOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): + The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size, + num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be + the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size, + sequence_length)`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if question_positions is None and start_positions is not None and end_positions is not None: + raise TypeError("question_positions must be specified in order to calculate the loss") + + elif question_positions is None and input_ids is None: + raise TypeError("question_positions must be specified when input_embeds is used") + + elif question_positions is None: + question_positions = self._prepare_question_positions(input_ids) + + outputs = self.splinter( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + batch_size, sequence_length, dim = sequence_output.size() + # [batch_size, num_questions, sequence_length] + start_logits, end_logits = self.splinter_qass(sequence_output, question_positions) + + num_questions = question_positions.size(1) + if attention_mask is not None: + attention_mask_for_each_question = attention_mask.unsqueeze(1).expand( + batch_size, num_questions, sequence_length + ) + start_logits = start_logits + (1 - attention_mask_for_each_question) * torch.finfo(start_logits.dtype).min + end_logits = end_logits + (1 - attention_mask_for_each_question) * torch.finfo(end_logits.dtype).min + + total_loss = None + # [batch_size, num_questions, sequence_length] + if start_positions is not None and end_positions is not None: + # sometimes the start/end positions are outside our model inputs, we ignore these terms + start_positions.clamp_(0, max(0, sequence_length - 1)) + end_positions.clamp_(0, max(0, sequence_length - 1)) + + # Ignore zero positions in the loss. Splinter never predicts zero + # during pretraining and zero is used for padding question + # tokens as well as for start and end positions of padded + # question tokens. + loss_fct = CrossEntropyLoss(ignore_index=self.config.pad_token_id) + start_loss = loss_fct( + start_logits.view(batch_size * num_questions, sequence_length), + start_positions.view(batch_size * num_questions), + ) + end_loss = loss_fct( + end_logits.view(batch_size * num_questions, sequence_length), + end_positions.view(batch_size * num_questions), + ) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return SplinterForPreTrainingOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def _prepare_question_positions(self, input_ids: torch.Tensor) -> torch.Tensor: + rows, flat_positions = torch.where(input_ids == self.config.question_token_id) + num_questions = torch.bincount(rows) + positions = torch.full( + (input_ids.size(0), num_questions.max()), + self.config.pad_token_id, + dtype=torch.long, + device=input_ids.device, + ) + cols = torch.cat([torch.arange(n) for n in num_questions]) + positions[rows, cols] = flat_positions + return positions diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter.py new file mode 100644 index 0000000000000000000000000000000000000000..909905979be38c9dc2c035b261c1767b9022f60d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter.py @@ -0,0 +1,529 @@ +# coding=utf-8 +# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. +# All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for Splinter.""" + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "tau/splinter-base": "https://huggingface.co/tau/splinter-base/resolve/main/vocab.txt", + "tau/splinter-base-qass": "https://huggingface.co/tau/splinter-base-qass/resolve/main/vocab.txt", + "tau/splinter-large": "https://huggingface.co/tau/splinter-large/resolve/main/vocab.txt", + "tau/splinter-large-qass": "https://huggingface.co/tau/splinter-large-qass/resolve/main/vocab.txt", + } +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "tau/splinter-base": 512, + "tau/splinter-base-qass": 512, + "tau/splinter-large": 512, + "tau/splinter-large-qass": 512, +} + +PRETRAINED_INIT_CONFIGURATION = { + "tau/splinter-base": {"do_lower_case": False}, + "tau/splinter-base-qass": {"do_lower_case": False}, + "tau/splinter-large": {"do_lower_case": False}, + "tau/splinter-large-qass": {"do_lower_case": False}, +} + + +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +class SplinterTokenizer(PreTrainedTokenizer): + r""" + Construct a Splinter tokenizer. Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + question_token (`str`, *optional*, defaults to `"[QUESTION]"`): + The token used for constructing question representations. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + question_token="[QUESTION]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + self.question_token = question_token + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + def question_token_id(self): + """ + `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question + representation. + """ + return self.convert_tokens_to_ids(self.question_token) + + @property + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + def vocab_size(self): + return len(self.vocab) + + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + def _tokenize(self, text): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special + tokens. A Splinter sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]` + + Args: + token_ids_0 (`List[int]`): + The question token IDs if pad_on_right, else context tokens IDs + token_ids_1 (`List[int]`, *optional*): + The context token IDs if pad_on_right, else question token IDs + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + cls = [self.cls_token_id] + sep = [self.sep_token_id] + question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] + if self.padding_side == "right": + # Input is question-then-context + return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep + else: + # Input is context-then-question + return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create the token type IDs corresponding to the sequences passed. [What are token type + IDs?](../glossary#token-type-ids) + + Should be overridden in a subclass if the model has a special way of building those. + + Args: + token_ids_0 (`List[int]`): The first tokenized sequence. + token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. + + Returns: + `List[int]`: The token type ids. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + + if self.padding_side == "right": + # Input is question-then-context + return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1] + else: + # Input is context-then-question + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + """ + + def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see + WordPieceTokenizer. + + Args: + **never_split**: (*optional*) list of str + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + orig_tokens = whitespace_tokenize(text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if never_split is not None and text in never_split: + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..97db72caadc05cd0c7be5c98ca4d7596c5c33e18 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/splinter/tokenization_splinter_fast.py @@ -0,0 +1,216 @@ +# coding=utf-8 +# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Fast Tokenization classes for Splinter.""" + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_splinter import SplinterTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "tau/splinter-base": "https://huggingface.co/tau/splinter-base/resolve/main/vocab.txt", + "tau/splinter-base-qass": "https://huggingface.co/tau/splinter-base-qass/resolve/main/vocab.txt", + "tau/splinter-large": "https://huggingface.co/tau/splinter-large/resolve/main/vocab.txt", + "tau/splinter-large-qass": "https://huggingface.co/tau/splinter-large-qass/resolve/main/vocab.txt", + } +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "tau/splinter-base": 512, + "tau/splinter-base-qass": 512, + "tau/splinter-large": 512, + "tau/splinter-large-qass": 512, +} + +PRETRAINED_INIT_CONFIGURATION = { + "tau/splinter-base": {"do_lower_case": False}, + "tau/splinter-base-qass": {"do_lower_case": False}, + "tau/splinter-large": {"do_lower_case": False}, + "tau/splinter-large-qass": {"do_lower_case": False}, +} + + +class SplinterTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" Splinter tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + question_token (`str`, *optional*, defaults to `"[QUESTION]"`): + The token used for constructing question representations. + clean_text (`bool`, *optional*, defaults to `True`): + Whether or not to clean the text before tokenization by removing any control characters and replacing all + whitespaces by the classic one. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + wordpieces_prefix (`str`, *optional*, defaults to `"##"`): + The prefix for subwords. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + slow_tokenizer_class = SplinterTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + question_token="[QUESTION]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + additional_special_tokens=(question_token,), + **kwargs, + ) + + pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + pre_tok_state.get("lowercase", do_lower_case) != do_lower_case + or pre_tok_state.get("strip_accents", strip_accents) != strip_accents + ): + pre_tok_class = getattr(normalizers, pre_tok_state.pop("type")) + pre_tok_state["lowercase"] = do_lower_case + pre_tok_state["strip_accents"] = strip_accents + self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state) + + self.do_lower_case = do_lower_case + + @property + def question_token_id(self): + """ + `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question + representation. + """ + return self.convert_tokens_to_ids(self.question_token) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special + tokens. A Splinter sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]` + + Args: + token_ids_0 (`List[int]`): + The question token IDs if pad_on_right, else context tokens IDs + token_ids_1 (`List[int]`, *optional*): + The context token IDs if pad_on_right, else question token IDs + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + cls = [self.cls_token_id] + sep = [self.sep_token_id] + question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] + if self.padding_side == "right": + # Input is question-then-context + return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep + else: + # Input is context-then-question + return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create the token type IDs corresponding to the sequences passed. [What are token type + IDs?](../glossary#token-type-ids) + + Should be overridden in a subclass if the model has a special way of building those. + + Args: + token_ids_0 (`List[int]`): The first tokenized sequence. + token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. + + Returns: + `List[int]`: The token type ids. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + + if self.padding_side == "right": + # Input is question-then-context + return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1] + else: + # Input is context-then-question + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d426ec93bf5859bc3ba040421c54ae4eefbbb32e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__init__.py @@ -0,0 +1,121 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tf_available, + is_torch_available, + is_vision_available, +) + + +_import_structure = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["feature_extraction_vit"] = ["ViTFeatureExtractor"] + _import_structure["image_processing_vit"] = ["ViTImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_vit"] = [ + "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", + "ViTForImageClassification", + "ViTForMaskedImageModeling", + "ViTModel", + "ViTPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_vit"] = [ + "TFViTForImageClassification", + "TFViTModel", + "TFViTPreTrainedModel", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_vit"] = [ + "FlaxViTForImageClassification", + "FlaxViTModel", + "FlaxViTPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_vit import ViTFeatureExtractor + from .image_processing_vit import ViTImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_vit import ( + VIT_PRETRAINED_MODEL_ARCHIVE_LIST, + ViTForImageClassification, + ViTForMaskedImageModeling, + ViTModel, + ViTPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aa04c0673a99aa06f26a6d14da9fe6a2b2c9268c Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/configuration_vit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/configuration_vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea0aaaef491760c793202859c5397399aa3695df Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/configuration_vit.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_dino_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_dino_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a8593e5a7457cfad17a3d4076b2c26214fbd6e48 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_dino_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/image_processing_vit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/image_processing_vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..92b9f3ab92e0297c537b0efee83dd36f1370b3ad Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/image_processing_vit.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_flax_vit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_flax_vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c3b57cfc64b2c694e376f930fb00e2beb1b252a3 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_flax_vit.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_vit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d3c8b6b1f3679bd4207a3a6d17d5799a657e9780 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_vit.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/configuration_vit.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/configuration_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..5eda0385c30c1ddd86933dc89bbb01f987757f9d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/configuration_vit.py @@ -0,0 +1,143 @@ +# coding=utf-8 +# Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" ViT model configuration""" + +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", + # See all ViT models at https://huggingface.co/models?filter=vit +} + + +class ViTConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ViTModel`]. It is used to instantiate an ViT + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the ViT + [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to the queries, keys and values. + encoder_stride (`int`, *optional*, defaults to 16): + Factor to increase the spatial resolution by in the decoder head for masked image modeling. + + Example: + + ```python + >>> from transformers import ViTConfig, ViTModel + + >>> # Initializing a ViT vit-base-patch16-224 style configuration + >>> configuration = ViTConfig() + + >>> # Initializing a model (with random weights) from the vit-base-patch16-224 style configuration + >>> model = ViTModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "vit" + + def __init__( + self, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-12, + image_size=224, + patch_size=16, + num_channels=3, + qkv_bias=True, + encoder_stride=16, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.qkv_bias = qkv_bias + self.encoder_stride = encoder_stride + + +class ViTOnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/feature_extraction_vit.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/feature_extraction_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..54d47c0f3ad59b217b56d8522ca9a356dbc3c9db --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/feature_extraction_vit.py @@ -0,0 +1,33 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for ViT.""" + +import warnings + +from ...utils import logging +from .image_processing_vit import ViTImageProcessor + + +logger = logging.get_logger(__name__) + + +class ViTFeatureExtractor(ViTImageProcessor): + def __init__(self, *args, **kwargs) -> None: + warnings.warn( + "The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" + " use ViTImageProcessor instead.", + FutureWarning, + ) + super().__init__(*args, **kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_tf_vit.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_tf_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..ac5cf691e9f8a7ce537866c30c6d6004fd6e029f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/modeling_tf_vit.py @@ -0,0 +1,905 @@ +# coding=utf-8 +# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 ViT model.""" + + +from __future__ import annotations + +import collections.abc +import math +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput +from ...modeling_tf_utils import ( + TFModelInputType, + TFPreTrainedModel, + TFSequenceClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import shape_list, stable_softmax +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_vit import ViTConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "ViTConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k" +_EXPECTED_OUTPUT_SHAPE = [1, 197, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat" + + +class TFViTEmbeddings(keras.layers.Layer): + """ + Construct the CLS token, position and patch embeddings. + + """ + + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.patch_embeddings = TFViTPatchEmbeddings(config, name="patch_embeddings") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def build(self, input_shape=None): + num_patches = self.patch_embeddings.num_patches + self.cls_token = self.add_weight( + shape=(1, 1, self.config.hidden_size), + initializer=get_initializer(self.config.initializer_range), + trainable=True, + name="cls_token", + ) + self.position_embeddings = self.add_weight( + shape=(1, num_patches + 1, self.config.hidden_size), + initializer=get_initializer(self.config.initializer_range), + trainable=True, + name="position_embeddings", + ) + + if self.built: + return + self.built = True + if getattr(self, "patch_embeddings", None) is not None: + with tf.name_scope(self.patch_embeddings.name): + self.patch_embeddings.build(None) + + def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + batch_size, seq_len, dim = shape_list(embeddings) + num_patches = seq_len - 1 + + _, num_positions, _ = shape_list(self.position_embeddings) + num_positions -= 1 + + if num_patches == num_positions and height == width: + return self.position_embeddings + class_pos_embed = self.position_embeddings[:, :1] + patch_pos_embed = self.position_embeddings[:, 1:] + h0 = height // self.config.patch_size + w0 = width // self.config.patch_size + patch_pos_embed = tf.image.resize( + images=tf.reshape( + patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) + ), + size=(h0, w0), + method="bicubic", + ) + + shape = shape_list(patch_pos_embed) + assert h0 == shape[-3] and w0 == shape[-2] + patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim)) + return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1) + + def call( + self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False + ) -> tf.Tensor: + batch_size, num_channels, height, width = shape_list(pixel_values) + embeddings = self.patch_embeddings( + pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, training=training + ) + + # add the [CLS] token to the embedded patch tokens + cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0) + embeddings = tf.concat((cls_tokens, embeddings), axis=1) + + # add positional encoding to each token + if interpolate_pos_encoding: + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + else: + embeddings = embeddings + self.position_embeddings + + embeddings = self.dropout(embeddings, training=training) + + return embeddings + + +# Based on timm implementation, which can be found here: +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py +class TFViTPatchEmbeddings(keras.layers.Layer): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_patches = num_patches + self.num_channels = num_channels + self.config = config + + self.projection = keras.layers.Conv2D( + filters=hidden_size, + kernel_size=patch_size, + strides=patch_size, + padding="valid", + data_format="channels_last", + use_bias=True, + kernel_initializer=get_initializer(self.config.initializer_range), + bias_initializer="zeros", + name="projection", + ) + + def call( + self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False + ) -> tf.Tensor: + batch_size, num_channels, height, width = shape_list(pixel_values) + if tf.executing_eagerly() and num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + if not interpolate_pos_encoding: + if tf.executing_eagerly(): + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model" + f" ({self.image_size[0]}*{self.image_size[1]})." + ) + + # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. + # So change the input format from `NCHW` to `NHWC`. + # shape = (batch_size, in_height, in_width, in_channels=num_channels) + pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) + + projection = self.projection(pixel_values) + + # Change the 2D spatial dimensions to a single temporal dimension. + # shape = (batch_size, num_patches, out_channels=embed_dim) + num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) + embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1)) + + return embeddings + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "projection", None) is not None: + with tf.name_scope(self.projection.name): + self.projection.build([None, None, None, self.num_channels]) + + +class TFViTSelfAttention(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number " + f"of attention heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.sqrt_att_head_size = math.sqrt(self.attention_head_size) + + self.query = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) + self.config = config + + def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + batch_size = shape_list(hidden_states)[0] + mixed_query_layer = self.query(inputs=hidden_states) + mixed_key_layer = self.key(inputs=hidden_states) + mixed_value_layer = self.value(inputs=hidden_states) + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) + value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) + + # Take the dot product between "query" and "key" to get the raw attention scores. + # (batch size, num_heads, seq_len_q, seq_len_k) + attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) + dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) + attention_scores = tf.divide(attention_scores, dk) + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(logits=attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(inputs=attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = tf.multiply(attention_probs, head_mask) + + attention_output = tf.matmul(attention_probs, value_layer) + attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) + + # (batch_size, seq_len_q, all_head_size) + attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + + +class TFViTSelfOutput(keras.layers.Layer): + """ + The residual connection is defined in TFViTLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFViTAttention(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.self_attention = TFViTSelfAttention(config, name="attention") + self.dense_output = TFViTSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + input_tensor: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + self_outputs = self.self_attention( + hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training + ) + attention_output = self.dense_output( + hidden_states=self_outputs[0], input_tensor=input_tensor, training=training + ) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attention", None) is not None: + with tf.name_scope(self.self_attention.name): + self.self_attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +class TFViTIntermediate(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFViTOutput(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = hidden_states + input_tensor + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + + +class TFViTLayer(keras.layers.Layer): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.attention = TFViTAttention(config, name="attention") + self.intermediate = TFViTIntermediate(config, name="intermediate") + self.vit_output = TFViTOutput(config, name="output") + + self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") + self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + attention_outputs = self.attention( + # in ViT, layernorm is applied before self-attention + input_tensor=self.layernorm_before(inputs=hidden_states), + head_mask=head_mask, + output_attentions=output_attentions, + training=training, + ) + attention_output = attention_outputs[0] + + # first residual connection + hidden_states = attention_output + hidden_states + + # in ViT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(inputs=hidden_states) + + intermediate_output = self.intermediate(hidden_states=layer_output) + + # second residual connection is done here + layer_output = self.vit_output( + hidden_states=intermediate_output, input_tensor=hidden_states, training=training + ) + outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "vit_output", None) is not None: + with tf.name_scope(self.vit_output.name): + self.vit_output.build(None) + if getattr(self, "layernorm_before", None) is not None: + with tf.name_scope(self.layernorm_before.name): + self.layernorm_before.build([None, None, self.config.hidden_size]) + if getattr(self, "layernorm_after", None) is not None: + with tf.name_scope(self.layernorm_after.name): + self.layernorm_after.build([None, None, self.config.hidden_size]) + + +class TFViTEncoder(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.layer = [TFViTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + output_hidden_states: bool, + return_dict: bool, + training: bool = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states=hidden_states, + head_mask=head_mask[i], + output_attentions=output_attentions, + training=training, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFViTMainLayer(keras.layers.Layer): + config_class = ViTConfig + + def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, **kwargs): + super().__init__(**kwargs) + + self.config = config + + self.embeddings = TFViTEmbeddings(config, name="embeddings") + self.encoder = TFViTEncoder(config, name="encoder") + self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") + self.pooler = TFViTPooler(config, name="pooler") if add_pooling_layer else None + + def get_input_embeddings(self) -> keras.layers.Layer: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + pixel_values: TFModelInputType | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + embedding_output = self.embeddings( + pixel_values=pixel_values, + interpolate_pos_encoding=interpolate_pos_encoding, + training=training, + ) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.config.num_hidden_layers + + encoder_outputs = self.encoder( + hidden_states=embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(inputs=sequence_output) + pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return TFBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "layernorm", None) is not None: + with tf.name_scope(self.layernorm.name): + self.layernorm.build([None, None, self.config.hidden_size]) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +class TFViTPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ViTConfig + base_model_prefix = "vit" + main_input_name = "pixel_values" + + +VIT_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`ViTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +VIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] + for details. + + head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + interpolate_pos_encoding (`bool`, *optional*): + Whether to interpolate the pre-trained position encodings. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False``): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.", + VIT_START_DOCSTRING, +) +class TFViTModel(TFViTPreTrainedModel): + def __init__(self, config: ViTConfig, *inputs, add_pooling_layer=True, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.vit = TFViTMainLayer(config, add_pooling_layer=add_pooling_layer, name="vit") + + @unpack_inputs + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def call( + self, + pixel_values: TFModelInputType | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + outputs = self.vit( + pixel_values=pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + interpolate_pos_encoding=interpolate_pos_encoding, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "vit", None) is not None: + with tf.name_scope(self.vit.name): + self.vit.build(None) + + +class TFViTPooler(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of + the [CLS] token) e.g. for ImageNet. + + + + Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by + setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained + position embeddings to the higher resolution. + + + """, + VIT_START_DOCSTRING, +) +class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config: ViTConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.vit = TFViTMainLayer(config, add_pooling_layer=False, name="vit") + + # Classifier head + self.classifier = keras.layers.Dense( + units=config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="classifier", + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def call( + self, + pixel_values: TFModelInputType | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + outputs = self.vit( + pixel_values=pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + interpolate_pos_encoding=interpolate_pos_encoding, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + logits = self.classifier(inputs=sequence_output[:, 0, :]) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "vit", None) is not None: + with tf.name_scope(self.vit.name): + self.vit.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..813cba9fe17c1df2f3cef3d2a523fd93f99348f0 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__init__.py @@ -0,0 +1,186 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_sentencepiece_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_xlm_roberta": [ + "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", + "XLMRobertaConfig", + "XLMRobertaOnnxConfig", + ], +} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_xlm_roberta"] = ["XLMRobertaTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_xlm_roberta_fast"] = ["XLMRobertaTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_xlm_roberta"] = [ + "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", + "XLMRobertaForCausalLM", + "XLMRobertaForMaskedLM", + "XLMRobertaForMultipleChoice", + "XLMRobertaForQuestionAnswering", + "XLMRobertaForSequenceClassification", + "XLMRobertaForTokenClassification", + "XLMRobertaModel", + "XLMRobertaPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_xlm_roberta"] = [ + "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFXLMRobertaForCausalLM", + "TFXLMRobertaForMaskedLM", + "TFXLMRobertaForMultipleChoice", + "TFXLMRobertaForQuestionAnswering", + "TFXLMRobertaForSequenceClassification", + "TFXLMRobertaForTokenClassification", + "TFXLMRobertaModel", + "TFXLMRobertaPreTrainedModel", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_xlm_roberta"] = [ + "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", + "FlaxXLMRobertaForMaskedLM", + "FlaxXLMRobertaForCausalLM", + "FlaxXLMRobertaForMultipleChoice", + "FlaxXLMRobertaForQuestionAnswering", + "FlaxXLMRobertaForSequenceClassification", + "FlaxXLMRobertaForTokenClassification", + "FlaxXLMRobertaModel", + "FlaxXLMRobertaPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_xlm_roberta import ( + XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, + XLMRobertaConfig, + XLMRobertaOnnxConfig, + ) + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_xlm_roberta import XLMRobertaTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_xlm_roberta import ( + XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, + XLMRobertaForCausalLM, + XLMRobertaForMaskedLM, + XLMRobertaForMultipleChoice, + XLMRobertaForQuestionAnswering, + XLMRobertaForSequenceClassification, + XLMRobertaForTokenClassification, + XLMRobertaModel, + XLMRobertaPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_xlm_roberta import ( + TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, + TFXLMRobertaForCausalLM, + TFXLMRobertaForMaskedLM, + TFXLMRobertaForMultipleChoice, + TFXLMRobertaForQuestionAnswering, + TFXLMRobertaForSequenceClassification, + TFXLMRobertaForTokenClassification, + TFXLMRobertaModel, + TFXLMRobertaPreTrainedModel, + ) + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_xlm_roberta import ( + FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, + FlaxXLMRobertaForCausalLM, + FlaxXLMRobertaForMaskedLM, + FlaxXLMRobertaForMultipleChoice, + FlaxXLMRobertaForQuestionAnswering, + FlaxXLMRobertaForSequenceClassification, + FlaxXLMRobertaForTokenClassification, + FlaxXLMRobertaModel, + FlaxXLMRobertaPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b193ee0929d05b2c01a55a2b4c69a5604bdb30a0 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/configuration_xlm_roberta.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/configuration_xlm_roberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6da50ddd76df21f063bf96d56a800e0a9c3e4a40 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/configuration_xlm_roberta.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/modeling_flax_xlm_roberta.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/modeling_flax_xlm_roberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bcff5bf9abb98b2f989fff908c9ea15dc4ff9ef7 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/modeling_flax_xlm_roberta.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/modeling_tf_xlm_roberta.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/modeling_tf_xlm_roberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9a1d631cc0c31c4c0951e473f194252bc9ca9588 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/modeling_tf_xlm_roberta.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/modeling_xlm_roberta.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/modeling_xlm_roberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aa8c68b0ef280f89a0752dd3dfef68e0afad9b78 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/modeling_xlm_roberta.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/tokenization_xlm_roberta.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/tokenization_xlm_roberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2170960b8f2273d8180a9b486390d9daa61b6691 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/tokenization_xlm_roberta.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/tokenization_xlm_roberta_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/tokenization_xlm_roberta_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ac6e2fec3a25671d026647938e450eea07aba0ec Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/__pycache__/tokenization_xlm_roberta_fast.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/configuration_xlm_roberta.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/configuration_xlm_roberta.py new file mode 100644 index 0000000000000000000000000000000000000000..65c536ba4373466e5c1eeeee8fbf5491c84cca00 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/configuration_xlm_roberta.py @@ -0,0 +1,170 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" XLM-RoBERTa configuration""" +from collections import OrderedDict +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "FacebookAI/xlm-roberta-base": "https://huggingface.co/FacebookAI/xlm-roberta-base/resolve/main/config.json", + "FacebookAI/xlm-roberta-large": "https://huggingface.co/FacebookAI/xlm-roberta-large/resolve/main/config.json", + "FacebookAI/xlm-roberta-large-finetuned-conll02-dutch": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll02-spanish": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll03-english": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll03-german": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" + ), +} + + +class XLMRobertaConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`XLMRobertaModel`] or a [`TFXLMRobertaModel`]. It + is used to instantiate a XLM-RoBERTa model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the XLMRoBERTa + [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the XLM-RoBERTa model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`XLMRobertaModel`] or [`TFXLMRobertaModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaModel`] or + [`TFXLMRobertaModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + is_decoder (`bool`, *optional*, defaults to `False`): + Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + classifier_dropout (`float`, *optional*): + The dropout ratio for the classification head. + + Examples: + + ```python + >>> from transformers import XLMRobertaConfig, XLMRobertaModel + + >>> # Initializing a XLM-RoBERTa FacebookAI/xlm-roberta-base style configuration + >>> configuration = XLMRobertaConfig() + + >>> # Initializing a model (with random weights) from the FacebookAI/xlm-roberta-base style configuration + >>> model = XLMRobertaModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "xlm-roberta" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + position_embedding_type="absolute", + use_cache=True, + classifier_dropout=None, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache + self.classifier_dropout = classifier_dropout + + +# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRoberta +class XLMRobertaOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ] + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py new file mode 100644 index 0000000000000000000000000000000000000000..0017be6bd8c145dd152342bcf52270d6cdd2bef2 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py @@ -0,0 +1,1505 @@ +# coding=utf-8 +# Copyright 2022 Facebook AI Research and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Flax XLM-RoBERTa model.""" + +from typing import Callable, Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen import partitioning as nn_partitioning +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxBaseModelOutputWithPooling, + FlaxBaseModelOutputWithPoolingAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxMaskedLMOutput, + FlaxMultipleChoiceModelOutput, + FlaxQuestionAnsweringModelOutput, + FlaxSequenceClassifierOutput, + FlaxTokenClassifierOutput, +) +from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_xlm_roberta import XLMRobertaConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "FacebookAI/xlm-roberta-base" +_CONFIG_FOR_DOC = "XLMRobertaConfig" + +remat = nn_partitioning.remat + +FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "FacebookAI/xlm-roberta-base", + "FacebookAI/xlm-roberta-large", + # See all XLM-RoBERTa models at https://huggingface.co/models?filter=xlm-roberta +] + + +# Copied from transformers.models.roberta.modeling_flax_roberta.create_position_ids_from_input_ids +def create_position_ids_from_input_ids(input_ids, padding_idx): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + input_ids: jnp.ndarray + padding_idx: int + + Returns: jnp.ndarray + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = (input_ids != padding_idx).astype("i4") + + if mask.ndim > 2: + mask = mask.reshape((-1, mask.shape[-1])) + incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask + incremental_indices = incremental_indices.reshape(input_ids.shape) + else: + incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask + + return incremental_indices.astype("i4") + padding_idx + + +XLM_ROBERTA_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading, saving and converting weights from PyTorch models) + + This model is also a + [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as + a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and + behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +XLM_ROBERTA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`numpy.ndarray` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`numpy.ndarray` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + head_mask (`numpy.ndarray` of shape `({0})`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings with Bert->XLMRoberta +class FlaxXLMRobertaEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.word_embeddings = nn.Embed( + self.config.vocab_size, + self.config.hidden_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + dtype=self.dtype, + ) + self.position_embeddings = nn.Embed( + self.config.max_position_embeddings, + self.config.hidden_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + dtype=self.dtype, + ) + self.token_type_embeddings = nn.Embed( + self.config.type_vocab_size, + self.config.hidden_size, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + dtype=self.dtype, + ) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): + # Embed + inputs_embeds = self.word_embeddings(input_ids.astype("i4")) + position_embeds = self.position_embeddings(position_ids.astype("i4")) + token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) + + # Sum all embeddings + hidden_states = inputs_embeds + token_type_embeddings + position_embeds + + # Layer Norm + hidden_states = self.LayerNorm(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->XLMRoberta +class FlaxXLMRobertaSelfAttention(nn.Module): + config: XLMRobertaConfig + causal: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.head_dim = self.config.hidden_size // self.config.num_attention_heads + if self.config.hidden_size % self.config.num_attention_heads != 0: + raise ValueError( + "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " + " : {self.config.num_attention_heads}" + ) + + self.query = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.key = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.value = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" + ) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) + + @nn.compact + # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + key_value_states: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic=True, + output_attentions: bool = False, + ): + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + # get query proj + query_states = self.query(hidden_states) + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self.key(key_value_states) + value_states = self.value(key_value_states) + else: + # self_attention + key_states = self.key(hidden_states) + value_states = self.value(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # handle cache prepare causal attention mask + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.config.attention_probs_dropout_prob > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.config.attention_probs_dropout_prob, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + # Mask heads if we want to + if layer_head_mask is not None: + attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) + + outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) + return outputs + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->XLMRoberta +class FlaxXLMRobertaSelfOutput(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, input_tensor, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->XLMRoberta +class FlaxXLMRobertaAttention(nn.Module): + config: XLMRobertaConfig + causal: bool = False + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.self = FlaxXLMRobertaSelfAttention(self.config, causal=self.causal, dtype=self.dtype) + self.output = FlaxXLMRobertaSelfOutput(self.config, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + key_value_states=None, + init_cache=False, + deterministic=True, + output_attentions: bool = False, + ): + # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) + # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable + # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) + attn_outputs = self.self( + hidden_states, + attention_mask, + layer_head_mask=layer_head_mask, + key_value_states=key_value_states, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] + hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_outputs[1],) + + return outputs + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->XLMRoberta +class FlaxXLMRobertaIntermediate(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.intermediate_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.activation = ACT2FN[self.config.hidden_act] + + def __call__(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->XLMRoberta +class FlaxXLMRobertaOutput(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + + def __call__(self, hidden_states, attention_output, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.LayerNorm(hidden_states + attention_output) + return hidden_states + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->XLMRoberta +class FlaxXLMRobertaLayer(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.attention = FlaxXLMRobertaAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype) + self.intermediate = FlaxXLMRobertaIntermediate(self.config, dtype=self.dtype) + self.output = FlaxXLMRobertaOutput(self.config, dtype=self.dtype) + if self.config.add_cross_attention: + self.crossattention = FlaxXLMRobertaAttention(self.config, causal=False, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + ): + # Self Attention + attention_outputs = self.attention( + hidden_states, + attention_mask, + layer_head_mask=layer_head_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attention_output = attention_outputs[0] + + # Cross-Attention Block + if encoder_hidden_states is not None: + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask=encoder_attention_mask, + layer_head_mask=layer_head_mask, + key_value_states=encoder_hidden_states, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attention_output = cross_attention_outputs[0] + + hidden_states = self.intermediate(attention_output) + hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attention_outputs[1],) + if encoder_hidden_states is not None: + outputs += (cross_attention_outputs[1],) + return outputs + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->XLMRoberta +class FlaxXLMRobertaLayerCollection(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + if self.gradient_checkpointing: + FlaxXLMRobertaCheckpointLayer = remat(FlaxXLMRobertaLayer, static_argnums=(5, 6, 7)) + self.layers = [ + FlaxXLMRobertaCheckpointLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.num_hidden_layers) + ] + else: + self.layers = [ + FlaxXLMRobertaLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.num_hidden_layers) + ] + + def __call__( + self, + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + # Check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.shape[0] != (len(self.layers)): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for " + f" {head_mask.shape[0]}." + ) + + for i, layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = layer( + hidden_states, + attention_mask, + head_mask[i] if head_mask is not None else None, + encoder_hidden_states, + encoder_attention_mask, + init_cache, + deterministic, + output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->XLMRoberta +class FlaxXLMRobertaEncoder(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + self.layer = FlaxXLMRobertaLayerCollection( + self.config, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + + def __call__( + self, + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return self.layer( + hidden_states, + attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPooler with Bert->XLMRoberta +class FlaxXLMRobertaPooler(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + + def __call__(self, hidden_states): + cls_hidden_state = hidden_states[:, 0] + cls_hidden_state = self.dense(cls_hidden_state) + return nn.tanh(cls_hidden_state) + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaLMHead with Roberta->XLMRoberta +class FlaxXLMRobertaLMHead(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 + bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.decoder = nn.Dense( + self.config.vocab_size, + dtype=self.dtype, + use_bias=False, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) + + def __call__(self, hidden_states, shared_embedding=None): + hidden_states = self.dense(hidden_states) + hidden_states = ACT2FN["gelu"](hidden_states) + hidden_states = self.layer_norm(hidden_states) + + if shared_embedding is not None: + hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + hidden_states = self.decoder(hidden_states) + + bias = jnp.asarray(self.bias, self.dtype) + hidden_states += bias + return hidden_states + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaClassificationHead with Roberta->XLMRoberta +class FlaxXLMRobertaClassificationHead(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + classifier_dropout = ( + self.config.classifier_dropout + if self.config.classifier_dropout is not None + else self.config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(rate=classifier_dropout) + self.out_proj = nn.Dense( + self.config.num_labels, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + + def __call__(self, hidden_states, deterministic=True): + hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS]) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.dense(hidden_states) + hidden_states = nn.tanh(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaPreTrainedModel with Roberta->XLMRoberta, roberta->xlm-roberta, ROBERTA->XLM_ROBERTA +class FlaxXLMRobertaPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = XLMRobertaConfig + base_model_prefix = "xlm-roberta" + + module_class: nn.Module = None + + def __init__( + self, + config: XLMRobertaConfig, + input_shape: Tuple = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + gradient_checkpointing: bool = False, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing + def enable_gradient_checkpointing(self): + self._module = self.module_class( + config=self.config, + dtype=self.dtype, + gradient_checkpointing=True, + ) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + token_type_ids = jnp.ones_like(input_ids) + position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id) + attention_mask = jnp.ones_like(input_ids) + head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + if self.config.add_cross_attention: + encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,)) + encoder_attention_mask = attention_mask + module_init_outputs = self.module.init( + rngs, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + return_dict=False, + ) + else: + module_init_outputs = self.module.init( + rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False + ) + + random_params = module_init_outputs["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache + def init_cache(self, batch_size, max_length): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + """ + # init input variables to retrieve cache + input_ids = jnp.ones((batch_size, max_length), dtype="i4") + attention_mask = jnp.ones_like(input_ids, dtype="i4") + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + init_variables = self.module.init( + jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def __call__( + self, + input_ids, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + params: dict = None, + dropout_rng: jax.random.PRNGKey = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + past_key_values: dict = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # init input tensors if not passed + if token_type_ids is None: + token_type_ids = jnp.zeros_like(input_ids) + + if position_ids is None: + position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id) + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + if head_mask is None: + head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + if self.config.add_cross_attention: + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed + # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be + # changed by FlaxXLMRobertaAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + outputs = self.module.apply( + inputs, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + token_type_ids=jnp.array(token_type_ids, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + head_mask=jnp.array(head_mask, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + deterministic=not train, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + rngs=rngs, + mutable=mutable, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past_key_values = outputs + outputs["past_key_values"] = unfreeze(past_key_values["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past_key_values = outputs + outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] + + else: + outputs = self.module.apply( + inputs, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + token_type_ids=jnp.array(token_type_ids, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + head_mask=jnp.array(head_mask, dtype="i4"), + deterministic=not train, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + rngs=rngs, + ) + + return outputs + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModule with Bert->XLMRoberta +class FlaxXLMRobertaModule(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + add_pooling_layer: bool = True + gradient_checkpointing: bool = False + + def setup(self): + self.embeddings = FlaxXLMRobertaEmbeddings(self.config, dtype=self.dtype) + self.encoder = FlaxXLMRobertaEncoder( + self.config, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.pooler = FlaxXLMRobertaPooler(self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + head_mask: Optional[jnp.ndarray] = None, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # make sure `token_type_ids` is correctly initialized when not passed + if token_type_ids is None: + token_type_ids = jnp.zeros_like(input_ids) + + # make sure `position_ids` is correctly initialized when not passed + if position_ids is None: + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + hidden_states = self.embeddings( + input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic + ) + outputs = self.encoder( + hidden_states, + attention_mask, + head_mask=head_mask, + deterministic=deterministic, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + pooled = self.pooler(hidden_states) if self.add_pooling_layer else None + + if not return_dict: + # if pooled is None, don't return it + if pooled is None: + return (hidden_states,) + outputs[1:] + return (hidden_states, pooled) + outputs[1:] + + return FlaxBaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=hidden_states, + pooler_output=pooled, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + "The bare XLM RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", + XLM_ROBERTA_START_DOCSTRING, +) +class FlaxXLMRobertaModel(FlaxXLMRobertaPreTrainedModel): + module_class = FlaxXLMRobertaModule + + +append_call_sample_docstring(FlaxXLMRobertaModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC) + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForMaskedLMModule with Roberta->XLMRoberta +class FlaxXLMRobertaForMaskedLMModule(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta = FlaxXLMRobertaModule( + config=self.config, + add_pooling_layer=False, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.lm_head = FlaxXLMRobertaLMHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.roberta( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + if self.config.tie_word_embeddings: + shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"] + else: + shared_embedding = None + + # Compute the prediction scores + logits = self.lm_head(hidden_states, shared_embedding=shared_embedding) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxMaskedLMOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings("""XLM RoBERTa Model with a `language modeling` head on top.""", XLM_ROBERTA_START_DOCSTRING) +class FlaxXLMRobertaForMaskedLM(FlaxXLMRobertaPreTrainedModel): + module_class = FlaxXLMRobertaForMaskedLMModule + + +append_call_sample_docstring( + FlaxXLMRobertaForMaskedLM, + _CHECKPOINT_FOR_DOC, + FlaxBaseModelOutputWithPooling, + _CONFIG_FOR_DOC, + mask="", +) + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForSequenceClassificationModule with Roberta->XLMRoberta +class FlaxXLMRobertaForSequenceClassificationModule(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta = FlaxXLMRobertaModule( + config=self.config, + dtype=self.dtype, + add_pooling_layer=False, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.classifier = FlaxXLMRobertaClassificationHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.roberta( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + logits = self.classifier(sequence_output, deterministic=deterministic) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxSequenceClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + XLM Roberta Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + XLM_ROBERTA_START_DOCSTRING, +) +class FlaxXLMRobertaForSequenceClassification(FlaxXLMRobertaPreTrainedModel): + module_class = FlaxXLMRobertaForSequenceClassificationModule + + +append_call_sample_docstring( + FlaxXLMRobertaForSequenceClassification, + _CHECKPOINT_FOR_DOC, + FlaxSequenceClassifierOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->XLMRoberta, with self.bert->self.roberta +class FlaxXLMRobertaForMultipleChoiceModule(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta = FlaxXLMRobertaModule( + config=self.config, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + self.classifier = nn.Dense(1, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + num_choices = input_ids.shape[1] + input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None + attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None + token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None + position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None + + # Model + outputs = self.roberta( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + pooled_output = self.dropout(pooled_output, deterministic=deterministic) + logits = self.classifier(pooled_output) + + reshaped_logits = logits.reshape(-1, num_choices) + + if not return_dict: + return (reshaped_logits,) + outputs[2:] + + return FlaxMultipleChoiceModelOutput( + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + XLM Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + XLM_ROBERTA_START_DOCSTRING, +) +class FlaxXLMRobertaForMultipleChoice(FlaxXLMRobertaPreTrainedModel): + module_class = FlaxXLMRobertaForMultipleChoiceModule + + +overwrite_call_docstring( + FlaxXLMRobertaForMultipleChoice, XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") +) +append_call_sample_docstring( + FlaxXLMRobertaForMultipleChoice, + _CHECKPOINT_FOR_DOC, + FlaxMultipleChoiceModelOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->XLMRoberta, with self.bert->self.roberta +class FlaxXLMRobertaForTokenClassificationModule(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta = FlaxXLMRobertaModule( + config=self.config, + dtype=self.dtype, + add_pooling_layer=False, + gradient_checkpointing=self.gradient_checkpointing, + ) + classifier_dropout = ( + self.config.classifier_dropout + if self.config.classifier_dropout is not None + else self.config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(rate=classifier_dropout) + self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.roberta( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + logits = self.classifier(hidden_states) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxTokenClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + XLM Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + XLM_ROBERTA_START_DOCSTRING, +) +class FlaxXLMRobertaForTokenClassification(FlaxXLMRobertaPreTrainedModel): + module_class = FlaxXLMRobertaForTokenClassificationModule + + +append_call_sample_docstring( + FlaxXLMRobertaForTokenClassification, + _CHECKPOINT_FOR_DOC, + FlaxTokenClassifierOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForQuestionAnsweringModule with Bert->XLMRoberta, with self.bert->self.roberta +class FlaxXLMRobertaForQuestionAnsweringModule(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta = FlaxXLMRobertaModule( + config=self.config, + dtype=self.dtype, + add_pooling_layer=False, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.roberta( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + + logits = self.qa_outputs(hidden_states) + start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + if not return_dict: + return (start_logits, end_logits) + outputs[1:] + + return FlaxQuestionAnsweringModelOutput( + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + XLM Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + XLM_ROBERTA_START_DOCSTRING, +) +class FlaxXLMRobertaForQuestionAnswering(FlaxXLMRobertaPreTrainedModel): + module_class = FlaxXLMRobertaForQuestionAnsweringModule + + +append_call_sample_docstring( + FlaxXLMRobertaForQuestionAnswering, + _CHECKPOINT_FOR_DOC, + FlaxQuestionAnsweringModelOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForCausalLMModule with Roberta->XLMRoberta +class FlaxXLMRobertaForCausalLMModule(nn.Module): + config: XLMRobertaConfig + dtype: jnp.dtype = jnp.float32 + gradient_checkpointing: bool = False + + def setup(self): + self.roberta = FlaxXLMRobertaModule( + config=self.config, + add_pooling_layer=False, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + self.lm_head = FlaxXLMRobertaLMHead(config=self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + token_type_ids: Optional[jnp.ndarray] = None, + head_mask: Optional[jnp.ndarray] = None, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # Model + outputs = self.roberta( + input_ids, + attention_mask, + token_type_ids, + position_ids, + head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + if self.config.tie_word_embeddings: + shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"] + else: + shared_embedding = None + + # Compute the prediction scores + logits = self.lm_head(hidden_states, shared_embedding=shared_embedding) + + if not return_dict: + return (logits,) + outputs[1:] + + return FlaxCausalLMOutputWithCrossAttentions( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ + XLM Roberta Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for + autoregressive tasks. + """, + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForCausalLM with Roberta->XLMRoberta +class FlaxXLMRobertaForCausalLM(FlaxXLMRobertaPreTrainedModel): + module_class = FlaxXLMRobertaForCausalLMModule + + def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): + # initializing the cache + batch_size, seq_length = input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyway. + # Thus, we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if attention_mask is not None: + position_ids = attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "attention_mask": extended_attention_mask, + "position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 + return model_kwargs + + +append_call_sample_docstring( + FlaxXLMRobertaForCausalLM, + _CHECKPOINT_FOR_DOC, + FlaxCausalLMOutputWithCrossAttentions, + _CONFIG_FOR_DOC, +) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py new file mode 100644 index 0000000000000000000000000000000000000000..dcf1b018b2af6604b44e1ba6747eabffe3656596 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py @@ -0,0 +1,1787 @@ +# coding=utf-8 +# Copyright 2019 Facebook AI Research and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 XLM-RoBERTa model.""" + + +from __future__ import annotations + +import math +import warnings +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutputWithPastAndCrossAttentions, + TFBaseModelOutputWithPoolingAndCrossAttentions, + TFCausalLMOutputWithCrossAttentions, + TFMaskedLMOutput, + TFMultipleChoiceModelOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_xlm_roberta import XLMRobertaConfig + + +logger = logging.get_logger(__name__) + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "FacebookAI/xlm-roberta-base" +_CONFIG_FOR_DOC = "XLMRobertaConfig" + +TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "FacebookAI/xlm-roberta-base", + "FacebookAI/xlm-roberta-large", + "joeddav/xlm-roberta-large-xnli", + "cardiffnlp/twitter-xlm-roberta-base-sentiment", + # See all XLM-RoBERTa models at https://huggingface.co/models?filter=xlm-roberta +] + +XLM_ROBERTA_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +XLM_ROBERTA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See + [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input + IDs?](../glossary#input-ids) + attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) + head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaEmbeddings with Roberta->XLMRoberta +class TFXLMRobertaEmbeddings(keras.layers.Layer): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.padding_idx = 1 + self.config = config + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding + symbols are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + input_ids: tf.Tensor + Returns: tf.Tensor + """ + mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) + incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask + + return incremental_indices + self.padding_idx + + def call( + self, + input_ids=None, + position_ids=None, + token_type_ids=None, + inputs_embeds=None, + past_key_values_length=0, + training=False, + ): + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = self.create_position_ids_from_input_ids( + input_ids=input_ids, past_key_values_length=past_key_values_length + ) + else: + position_ids = tf.expand_dims( + tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0 + ) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings = inputs_embeds + position_embeds + token_type_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->XLMRoberta +class TFXLMRobertaPooler(keras.layers.Layer): + def __init__(self, config: XLMRobertaConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->XLMRoberta +class TFXLMRobertaSelfAttention(keras.layers.Layer): + def __init__(self, config: XLMRobertaConfig, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number " + f"of attention heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.sqrt_att_head_size = math.sqrt(self.attention_head_size) + + self.query = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) + + self.is_decoder = config.is_decoder + self.config = config + + def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor, + encoder_attention_mask: tf.Tensor, + past_key_value: Tuple[tf.Tensor], + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + batch_size = shape_list(hidden_states)[0] + mixed_query_layer = self.query(inputs=hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) + key_layer = tf.concat([past_key_value[0], key_layer], axis=2) + value_layer = tf.concat([past_key_value[1], value_layer], axis=2) + else: + key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) + + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + # (batch size, num_heads, seq_len_q, seq_len_k) + attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) + dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) + attention_scores = tf.divide(attention_scores, dk) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in TFXLMRobertaModel call() function) + attention_scores = tf.add(attention_scores, attention_mask) + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(logits=attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(inputs=attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = tf.multiply(attention_probs, head_mask) + + attention_output = tf.matmul(attention_probs, value_layer) + attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) + + # (batch_size, seq_len_q, all_head_size) + attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->XLMRoberta +class TFXLMRobertaSelfOutput(keras.layers.Layer): + def __init__(self, config: XLMRobertaConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->XLMRoberta +class TFXLMRobertaAttention(keras.layers.Layer): + def __init__(self, config: XLMRobertaConfig, **kwargs): + super().__init__(**kwargs) + + self.self_attention = TFXLMRobertaSelfAttention(config, name="self") + self.dense_output = TFXLMRobertaSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + input_tensor: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor, + encoder_attention_mask: tf.Tensor, + past_key_value: Tuple[tf.Tensor], + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + self_outputs = self.self_attention( + hidden_states=input_tensor, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = self.dense_output( + hidden_states=self_outputs[0], input_tensor=input_tensor, training=training + ) + # add attentions (possibly with past_key_value) if we output them + outputs = (attention_output,) + self_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attention", None) is not None: + with tf.name_scope(self.self_attention.name): + self.self_attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->XLMRoberta +class TFXLMRobertaIntermediate(keras.layers.Layer): + def __init__(self, config: XLMRobertaConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->XLMRoberta +class TFXLMRobertaOutput(keras.layers.Layer): + def __init__(self, config: XLMRobertaConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->XLMRoberta +class TFXLMRobertaLayer(keras.layers.Layer): + def __init__(self, config: XLMRobertaConfig, **kwargs): + super().__init__(**kwargs) + + self.attention = TFXLMRobertaAttention(config, name="attention") + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = TFXLMRobertaAttention(config, name="crossattention") + self.intermediate = TFXLMRobertaIntermediate(config, name="intermediate") + self.bert_output = TFXLMRobertaOutput(config, name="output") + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor | None, + encoder_attention_mask: tf.Tensor | None, + past_key_value: Tuple[tf.Tensor] | None, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + input_tensor=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=self_attn_past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + input_tensor=attention_output, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + intermediate_output = self.intermediate(hidden_states=attention_output) + layer_output = self.bert_output( + hidden_states=intermediate_output, input_tensor=attention_output, training=training + ) + outputs = (layer_output,) + outputs # add attentions if we output them + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "bert_output", None) is not None: + with tf.name_scope(self.bert_output.name): + self.bert_output.build(None) + if getattr(self, "crossattention", None) is not None: + with tf.name_scope(self.crossattention.name): + self.crossattention.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->XLMRoberta +class TFXLMRobertaEncoder(keras.layers.Layer): + def __init__(self, config: XLMRobertaConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.layer = [TFXLMRobertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor | None, + encoder_attention_mask: tf.Tensor | None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None, + use_cache: Optional[bool], + output_attentions: bool, + output_hidden_states: bool, + return_dict: bool, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + past_key_value = past_key_values[i] if past_key_values is not None else None + + layer_outputs = layer_module( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask[i], + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + training=training, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + if self.config.add_cross_attention and encoder_hidden_states is not None: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None + ) + + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaMainLayer with Roberta->XLMRoberta +class TFXLMRobertaMainLayer(keras.layers.Layer): + config_class = XLMRobertaConfig + + def __init__(self, config, add_pooling_layer=True, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.is_decoder = config.is_decoder + + self.num_hidden_layers = config.num_hidden_layers + self.initializer_range = config.initializer_range + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + self.encoder = TFXLMRobertaEncoder(config, name="encoder") + self.pooler = TFXLMRobertaPooler(config, name="pooler") if add_pooling_layer else None + # The embeddings must be the last declaration in order to follow the weights order + self.embeddings = TFXLMRobertaEmbeddings(config, name="embeddings") + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings + def get_input_embeddings(self) -> keras.layers.Layer: + return self.embeddings + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings + def set_input_embeddings(self, value: tf.Variable): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: + if not self.config.is_decoder: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + + if past_key_values is None: + past_key_values_length = 0 + past_key_values = [None] * len(self.encoder.layer) + else: + past_key_values_length = shape_list(past_key_values[0][0])[-2] + + if attention_mask is None: + attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + training=training, + ) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask_shape = shape_list(attention_mask) + + mask_seq_length = seq_length + past_key_values_length + # Copied from `modeling_tf_t5.py` + # Provided a padding mask of dimensions [batch_size, mask_seq_length] + # - if the model is a decoder, apply a causal mask in addition to the padding mask + # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] + if self.is_decoder: + seq_ids = tf.range(mask_seq_length) + causal_mask = tf.less_equal( + tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), + seq_ids[None, :, None], + ) + causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) + extended_attention_mask = causal_mask * attention_mask[:, None, :] + attention_mask_shape = shape_list(extended_attention_mask) + extended_attention_mask = tf.reshape( + extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) + ) + if past_key_values[0] is not None: + # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] + extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] + else: + extended_attention_mask = tf.reshape( + attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) + ) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) + one_cst = tf.constant(1.0, dtype=embedding_output.dtype) + ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) + extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) + + # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 + if self.is_decoder and encoder_attention_mask is not None: + # If a 2D ou 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) + num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) + if num_dims_encoder_attention_mask == 3: + encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] + if num_dims_encoder_attention_mask == 2: + encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] + + # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition + # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 + # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, + # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) + + encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.config.num_hidden_layers + + encoder_outputs = self.encoder( + hidden_states=embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None + + if not return_dict: + return ( + sequence_output, + pooled_output, + ) + encoder_outputs[1:] + + return TFBaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaPreTrainedModel with Roberta->XLMRoberta +class TFXLMRobertaPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = XLMRobertaConfig + base_model_prefix = "roberta" + + +@add_start_docstrings( + "The bare XLM RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaModel with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class TFXLMRobertaModel(TFXLMRobertaPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.roberta = TFXLMRobertaMainLayer(config, name="roberta") + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + """ + outputs = self.roberta( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta", None) is not None: + with tf.name_scope(self.roberta.name): + self.roberta.build(None) + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->XLMRoberta +class TFXLMRobertaLMHead(keras.layers.Layer): + """XLMRoberta Head for masked language modeling.""" + + def __init__(self, config, input_embeddings, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + self.dense = keras.layers.Dense( + config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") + self.act = get_tf_activation("gelu") + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = input_embeddings + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.hidden_size]) + + def get_output_embeddings(self): + return self.decoder + + def set_output_embeddings(self, value): + self.decoder.weight = value + self.decoder.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.layer_norm(hidden_states) + + # project back to size of vocabulary with bias + seq_length = shape_list(tensor=hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +@add_start_docstrings("""XLM RoBERTa Model with a `language modeling` head on top.""", XLM_ROBERTA_START_DOCSTRING) +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class TFXLMRobertaForMaskedLM(TFXLMRobertaPreTrainedModel, TFMaskedLanguageModelingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") + self.lm_head = TFXLMRobertaLMHead(config, self.roberta.embeddings, name="lm_head") + + def get_lm_head(self): + return self.lm_head + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.lm_head.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="", + expected_output="' Paris'", + expected_loss=0.1, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + outputs = self.roberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta", None) is not None: + with tf.name_scope(self.roberta.name): + self.roberta.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build(None) + + +@add_start_docstrings( + "XLM-RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.", + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForCausalLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class TFXLMRobertaForCausalLM(TFXLMRobertaPreTrainedModel, TFCausalLanguageModelingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] + + def __init__(self, config: XLMRobertaConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + if not config.is_decoder: + logger.warning("If you want to use `TFXLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`") + + self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") + self.lm_head = TFXLMRobertaLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head") + + def get_lm_head(self): + return self.lm_head + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.lm_head.name + + # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = tf.ones(input_shape) + + # cut decoder_input_ids if past is used + if past_key_values is not None: + input_ids = input_ids[:, -1:] + + return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFCausalLMOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: + r""" + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., + config.vocab_size - 1]`. + """ + outputs = self.roberta( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = outputs[0] + logits = self.lm_head(hidden_states=sequence_output, training=training) + loss = None + + if labels is not None: + # shift labels to the left and cut last logit token + shifted_logits = logits[:, :-1] + labels = labels[:, 1:] + loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFCausalLMOutputWithCrossAttentions( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta", None) is not None: + with tf.name_scope(self.roberta.name): + self.roberta.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build(None) + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaClassificationHead with Roberta->XLMRoberta +class TFXLMRobertaClassificationHead(keras.layers.Layer): + """Head for sentence-level classification tasks.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(classifier_dropout) + self.out_proj = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" + ) + self.config = config + + def call(self, features, training=False): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x, training=training) + x = self.dense(x) + x = self.dropout(x, training=training) + x = self.out_proj(x) + return x + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + XLM RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class TFXLMRobertaForSequenceClassification(TFXLMRobertaPreTrainedModel, TFSequenceClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") + self.classifier = TFXLMRobertaClassificationHead(config, name="classifier") + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="cardiffnlp/twitter-roberta-base-emotion", + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'optimism'", + expected_loss=0.08, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + outputs = self.roberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output, training=training) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta", None) is not None: + with tf.name_scope(self.roberta.name): + self.roberta.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build(None) + + +@add_start_docstrings( + """ + XLM Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMultipleChoice with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class TFXLMRobertaForMultipleChoice(TFXLMRobertaPreTrainedModel, TFMultipleChoiceLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"lm_head"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.roberta = TFXLMRobertaMainLayer(config, name="roberta") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward( + XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None + flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None + outputs = self.roberta( + flat_input_ids, + flat_attention_mask, + flat_token_type_ids, + flat_position_ids, + head_mask, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + pooled_output = self.dropout(pooled_output, training=training) + logits = self.classifier(pooled_output) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta", None) is not None: + with tf.name_scope(self.roberta.name): + self.roberta.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + XLM RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForTokenClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class TFXLMRobertaForTokenClassification(TFXLMRobertaPreTrainedModel, TFTokenClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(classifier_dropout) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="ydshieh/roberta-large-ner-english", + output_type=TFTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", + expected_loss=0.01, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + outputs = self.roberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output, training=training) + logits = self.classifier(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta", None) is not None: + with tf.name_scope(self.roberta.name): + self.roberta.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + XLM RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForQuestionAnswering with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class TFXLMRobertaForQuestionAnswering(TFXLMRobertaPreTrainedModel, TFQuestionAnsweringLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") + self.qa_outputs = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="ydshieh/roberta-base-squad2", + output_type=TFQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="' puppet'", + expected_loss=0.86, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + outputs = self.roberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + + loss = None + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions} + labels["end_position"] = end_positions + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "roberta", None) is not None: + with tf.name_scope(self.roberta.name): + self.roberta.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/modeling_xlm_roberta.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/modeling_xlm_roberta.py new file mode 100644 index 0000000000000000000000000000000000000000..8abd77b8c30215266bbe1fd8a2380850987d9760 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/modeling_xlm_roberta.py @@ -0,0 +1,1579 @@ +# coding=utf-8 +# Copyright 2019 Facebook AI Research and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch XLM-RoBERTa model.""" + +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN, gelu +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_xlm_roberta import XLMRobertaConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "FacebookAI/xlm-roberta-base" +_CONFIG_FOR_DOC = "XLMRobertaConfig" + +XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "FacebookAI/xlm-roberta-base", + "FacebookAI/xlm-roberta-large", + "FacebookAI/xlm-roberta-large-finetuned-conll02-dutch", + "FacebookAI/xlm-roberta-large-finetuned-conll02-spanish", + "FacebookAI/xlm-roberta-large-finetuned-conll03-english", + "FacebookAI/xlm-roberta-large-finetuned-conll03-german", + # See all XLM-RoBERTa models at https://huggingface.co/models?filter=xlm-roberta +] + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->XLMRoberta +class XLMRobertaEmbeddings(nn.Module): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.register_buffer( + "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False + ) + + # End copy + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + def forward( + self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 + ): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->XLMRoberta +class XLMRobertaSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput with Roberta->XLMRoberta +class XLMRobertaSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->XLMRoberta +class XLMRobertaAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = XLMRobertaSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = XLMRobertaSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate with Roberta->XLMRoberta +class XLMRobertaIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaOutput with Roberta->XLMRoberta +class XLMRobertaOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->XLMRoberta +class XLMRobertaLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = XLMRobertaAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = XLMRobertaAttention(config, position_embedding_type="absolute") + self.intermediate = XLMRobertaIntermediate(config) + self.output = XLMRobertaOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->XLMRoberta +class XLMRobertaEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([XLMRobertaLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaPooler with Roberta->XLMRoberta +class XLMRobertaPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel with Roberta->XLMRoberta +class XLMRobertaPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = XLMRobertaConfig + base_model_prefix = "roberta" + supports_gradient_checkpointing = True + _no_split_modules = ["XLMRobertaEmbeddings", "XLMRobertaSelfAttention"] + + # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +XLM_ROBERTA_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +XLM_ROBERTA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare XLM-RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_roberta.RobertaModel with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class XLMRobertaModel(XLMRobertaPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in *Attention is + all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz + Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + + .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 + + """ + + # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->XLMRoberta + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = XLMRobertaEmbeddings(config) + self.encoder = XLMRobertaEncoder(config) + + self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.bert.modeling_bert.BertModel.forward + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings( + "XLM-RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.", + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class XLMRobertaForCausalLM(XLMRobertaPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + if not config.is_decoder: + logger.warning("If you want to use `XLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`") + + self.roberta = XLMRobertaModel(config, add_pooling_layer=False) + self.lm_head = XLMRobertaLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, XLMRobertaForCausalLM, AutoConfig + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base") + >>> config = AutoConfig.from_pretrained("FacebookAI/roberta-base") + >>> config.is_decoder = True + >>> model = XLMRobertaForCausalLM.from_pretrained("FacebookAI/roberta-base", config=config) + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + outputs = self.roberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + lm_loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(prediction_scores.device) + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} + + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """XLM-RoBERTa Model with a `language modeling` head on top.""", + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + if config.is_decoder: + logger.warning( + "If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.roberta = XLMRobertaModel(config, add_pooling_layer=False) + self.lm_head = XLMRobertaLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="", + expected_output="' Paris'", + expected_loss=0.1, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + kwargs (`Dict[str, any]`, optional, defaults to *{}*): + Used to hide legacy arguments that have been deprecated. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.roberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + masked_lm_loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(prediction_scores.device) + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead +class XLMRobertaLMHead(nn.Module): + """Roberta Head for masked language modeling.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.decoder = nn.Linear(config.hidden_size, config.vocab_size) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + self.decoder.bias = self.bias + + def forward(self, features, **kwargs): + x = self.dense(features) + x = gelu(x) + x = self.layer_norm(x) + + # project back to size of vocabulary with bias + x = self.decoder(x) + + return x + + def _tie_weights(self): + # To tie those two weights if they get disconnected (on TPU or when the bias is resized) + # For accelerate compatibility and to not break backward compatibility + if self.decoder.bias.device.type == "meta": + self.decoder.bias = self.bias + else: + self.bias = self.decoder.bias + + +@add_start_docstrings( + """ + XLM-RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.roberta = XLMRobertaModel(config, add_pooling_layer=False) + self.classifier = XLMRobertaClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="cardiffnlp/twitter-roberta-base-emotion", + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'optimism'", + expected_loss=0.08, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.roberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + XLM-RoBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class XLMRobertaForMultipleChoice(XLMRobertaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.roberta = XLMRobertaModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + flat_inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.roberta( + flat_input_ids, + position_ids=flat_position_ids, + token_type_ids=flat_token_type_ids, + attention_mask=flat_attention_mask, + head_mask=head_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(reshaped_logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + XLM-RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class XLMRobertaForTokenClassification(XLMRobertaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.roberta = XLMRobertaModel(config, add_pooling_layer=False) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="Jean-Baptiste/roberta-large-ner-english", + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", + expected_loss=0.01, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.roberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta +class XLMRobertaClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, features, **kwargs): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x) + x = self.dense(x) + x = torch.tanh(x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +@add_start_docstrings( + """ + XLM-RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + XLM_ROBERTA_START_DOCSTRING, +) +# Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA +class XLMRobertaForQuestionAnswering(XLMRobertaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.roberta = XLMRobertaModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="deepset/roberta-base-squad2", + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="' puppet'", + expected_loss=0.86, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.roberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids +def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/tokenization_xlm_roberta.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/tokenization_xlm_roberta.py new file mode 100644 index 0000000000000000000000000000000000000000..3f87bd9b0dd9fab3c81e876a4963150726fc61f9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/tokenization_xlm_roberta.py @@ -0,0 +1,327 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +""" Tokenization classes for XLM-RoBERTa model.""" + + +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +SPIECE_UNDERLINE = "▁" + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "FacebookAI/xlm-roberta-base": "https://huggingface.co/FacebookAI/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", + "FacebookAI/xlm-roberta-large": "https://huggingface.co/FacebookAI/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", + "FacebookAI/xlm-roberta-large-finetuned-conll02-dutch": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll02-spanish": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll03-english": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll03-german": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" + ), + } +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "FacebookAI/xlm-roberta-base": 512, + "FacebookAI/xlm-roberta-large": 512, + "FacebookAI/xlm-roberta-large-finetuned-conll02-dutch": 512, + "FacebookAI/xlm-roberta-large-finetuned-conll02-spanish": 512, + "FacebookAI/xlm-roberta-large-finetuned-conll03-english": 512, + "FacebookAI/xlm-roberta-large-finetuned-conll03-german": 512, +} + + +class XLMRobertaTokenizer(PreTrainedTokenizer): + """ + Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(str(vocab_file)) + self.vocab_file = vocab_file + + # Original fairseq vocab and spm vocab must be "aligned": + # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 + # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- + # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' + # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' + + # Mimic fairseq token-to-id alignment for the first 4 token + self.fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3} + + # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab + self.fairseq_offset = 1 + + self.fairseq_tokens_to_ids[""] = len(self.sp_model) + self.fairseq_offset + self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + state["sp_model_proto"] = self.sp_model.serialized_model_proto() + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.LoadFromSerializedProto(self.sp_model_proto) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An XLM-RoBERTa sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does + not make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + @property + def vocab_size(self): + return len(self.sp_model) + self.fairseq_offset + 1 # Add the token + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text: str) -> List[str]: + # TODO check if the t5/llama PR also applies here + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + if token in self.fairseq_tokens_to_ids: + return self.fairseq_tokens_to_ids[token] + spm_id = self.sp_model.PieceToId(token) + + # Need to return unknown token if the SP model returned 0 + return spm_id + self.fairseq_offset if spm_id else self.unk_token_id + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + if index in self.fairseq_ids_to_tokens: + return self.fairseq_ids_to_tokens[index] + return self.sp_model.IdToPiece(index - self.fairseq_offset) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (strings for sub-words) in a single string.""" + out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() + return out_string + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..8f2c1e02a0a37ede467501a3853e3f68a3786117 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.py @@ -0,0 +1,242 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +""" Tokenization classes for XLM-RoBERTa model.""" + + +import os +from shutil import copyfile +from typing import List, Optional, Tuple + +from ...tokenization_utils import AddedToken +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_xlm_roberta import XLMRobertaTokenizer +else: + XLMRobertaTokenizer = None + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "FacebookAI/xlm-roberta-base": "https://huggingface.co/FacebookAI/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", + "FacebookAI/xlm-roberta-large": "https://huggingface.co/FacebookAI/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", + "FacebookAI/xlm-roberta-large-finetuned-conll02-dutch": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll02-spanish": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll03-english": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll03-german": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" + ), + }, + "tokenizer_file": { + "FacebookAI/xlm-roberta-base": "https://huggingface.co/FacebookAI/xlm-roberta-base/resolve/main/tokenizer.json", + "FacebookAI/xlm-roberta-large": "https://huggingface.co/FacebookAI/xlm-roberta-large/resolve/main/tokenizer.json", + "FacebookAI/xlm-roberta-large-finetuned-conll02-dutch": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/tokenizer.json" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll02-spanish": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/tokenizer.json" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll03-english": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english/resolve/main/tokenizer.json" + ), + "FacebookAI/xlm-roberta-large-finetuned-conll03-german": ( + "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-german/resolve/main/tokenizer.json" + ), + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "FacebookAI/xlm-roberta-base": 512, + "FacebookAI/xlm-roberta-large": 512, + "FacebookAI/xlm-roberta-large-finetuned-conll02-dutch": 512, + "FacebookAI/xlm-roberta-large-finetuned-conll02-spanish": 512, + "FacebookAI/xlm-roberta-large-finetuned-conll03-english": 512, + "FacebookAI/xlm-roberta-large-finetuned-conll03-german": 512, +} + + +class XLMRobertaTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" XLM-RoBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from + [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on + [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + additional_special_tokens (`List[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`): + Additional special tokens used by the tokenizer. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = XLMRobertaTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + **kwargs, + ): + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + cls_token=cls_token, + unk_token=unk_token, + pad_token=pad_token, + mask_token=mask_token, + **kwargs, + ) + + self.vocab_file = vocab_file + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An XLM-RoBERTa sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does + not make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory.") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,)