Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Byte_ops.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cholesky_solve_helper_cuda_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_flatten_weight.h +91 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_flatten_weight_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_dimV_native.h +21 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_meta_dispatch.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_sparse_backward_compositeimplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_learnable_per_tensor_affine_native.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_fill_mem_eff_dropout_mask_meta_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_lerp_native.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_pow_ops.h +127 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_trunc_native.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_is_zerotensor_ops.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_make_dep_token_ops.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_slow_conv2d_forward.h +91 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sparse_matmul_native.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_test_check_tensor_native.h +21 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_to_copy_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_unsafe_view.h +91 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_backward_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/addr_ops.h +50 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/argsort_compositeimplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/as_strided_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/atan_native.h +29 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/choose_qparams_optimized_compositeimplicitautograd_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/column_stack.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/conv2d_compositeimplicitautograd_dispatch.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_convolution_ops.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_grid_sampler_compositeexplicitautograd_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cumprod.h +53 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cumprod_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/digamma_cpu_dispatch.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/divide.h +63 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_renorm_cpu_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/erfc_cuda_dispatch.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftfreq_compositeexplicitautograd_dispatch.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fix_native.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/flatten_dense_tensors.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/glu_backward_jvp_cuda_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hamming_window.h +97 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hardshrink_cpu_dispatch.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_add_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_copy_ops.h +72 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/instance_norm_ops.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/is_leaf_compositeimplicitautograd_dispatch.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_inv_ex.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_slogdet.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_ops.h +50 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/log2_cuda_dispatch.h +26 -0
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Byte_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _cast_Byte {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_cast_Byte")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_cast_Byte(Tensor self, bool non_blocking=False) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, bool non_blocking);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, bool non_blocking);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cholesky_solve_helper_cuda_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _cholesky_solve_helper(const at::Tensor & self, const at::Tensor & A, bool upper);
|
21 |
+
|
22 |
+
} // namespace cuda
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_flatten_weight.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_cudnn_rnn_flatten_weight_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
26 |
+
inline at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
27 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
32 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
37 |
+
inline at::Tensor _cudnn_rnn_flatten_weight_symint(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
38 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
43 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
49 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
54 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
60 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
65 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_symint_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
71 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
76 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_symint_outf(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
82 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
87 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_flatten_weight_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _cudnn_rnn_flatten_weight {
|
18 |
+
using schema = at::Tensor (at::TensorList, int64_t, c10::SymInt, int64_t, c10::SymInt, c10::SymInt, int64_t, bool, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_cudnn_rnn_flatten_weight")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor")
|
24 |
+
static at::Tensor call(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _cudnn_rnn_flatten_weight_out {
|
29 |
+
using schema = at::Tensor & (at::TensorList, int64_t, c10::SymInt, int64_t, c10::SymInt, c10::SymInt, int64_t, bool, bool, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_cudnn_rnn_flatten_weight")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_dimV_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API int64_t dense_dim_sparse(const at::Tensor & self);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_meta_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _efficientzerotensor(at::IntArrayRef size, at::TensorOptions options={});
|
21 |
+
TORCH_API at::Tensor _efficientzerotensor(at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
22 |
+
TORCH_API at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, at::TensorOptions options={});
|
23 |
+
TORCH_API at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
24 |
+
|
25 |
+
} // namespace meta
|
26 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_sparse_backward_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _embedding_bag_sparse_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, const at::Tensor & bag_size, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1);
|
21 |
+
TORCH_API at::Tensor _embedding_bag_sparse_backward_symint(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, const at::Tensor & bag_size, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1);
|
22 |
+
|
23 |
+
} // namespace compositeimplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_learnable_per_tensor_affine_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _fake_quantize_learnable_per_tensor_affine_out(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t quant_min, int64_t quant_max, double grad_factor, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor _fake_quantize_learnable_per_tensor_affine(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t quant_min, int64_t quant_max, double grad_factor=1.0);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_fill_mem_eff_dropout_mask_meta_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & _fill_mem_eff_dropout_mask_(at::Tensor & self, double dropout_p, int64_t seed, int64_t offset);
|
21 |
+
|
22 |
+
} // namespace meta
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_lerp_native.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API void _foreach_lerp_List_out(at::TensorList self, at::TensorList tensors1, at::TensorList weights, at::TensorList out);
|
20 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_ternary_lerp_slow(at::TensorList self, at::TensorList tensors1, at::TensorList weights);
|
21 |
+
TORCH_API void foreach_tensor_ternary_lerp_slow_(at::TensorList self, at::TensorList tensors1, at::TensorList weights);
|
22 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_lerp_ternary_cuda(at::TensorList self, at::TensorList tensors1, at::TensorList weights);
|
23 |
+
TORCH_API void foreach_tensor_lerp_ternary_cuda_(at::TensorList self, at::TensorList tensors1, at::TensorList weights);
|
24 |
+
TORCH_API void _foreach_lerp_Scalar_out(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight, at::TensorList out);
|
25 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_lerp_list_kernel_slow(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight);
|
26 |
+
TORCH_API void foreach_tensor_lerp_list_kernel_slow_(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight);
|
27 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_lerp_list_cuda(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight);
|
28 |
+
TORCH_API void foreach_tensor_lerp_list_cuda_(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight);
|
29 |
+
} // namespace native
|
30 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_pow_ops.h
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _foreach_pow_List {
|
18 |
+
using schema = ::std::vector<at::Tensor> (at::TensorList, at::TensorList);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_pow")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "List")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_pow.List(Tensor[] self, Tensor[] exponent) -> Tensor[]")
|
24 |
+
static ::std::vector<at::Tensor> call(at::TensorList self, at::TensorList exponent);
|
25 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList exponent);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _foreach_pow_Scalar {
|
29 |
+
using schema = ::std::vector<at::Tensor> (at::TensorList, const at::Scalar &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_pow")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_pow.Scalar(Tensor[] self, Scalar exponent) -> Tensor[]")
|
35 |
+
static ::std::vector<at::Tensor> call(at::TensorList self, const at::Scalar & exponent);
|
36 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, const at::Scalar & exponent);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API _foreach_pow_ScalarList {
|
40 |
+
using schema = ::std::vector<at::Tensor> (at::TensorList, at::ArrayRef<at::Scalar>);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_pow")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "ScalarList")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_pow.ScalarList(Tensor[] self, Scalar[] exponent) -> Tensor[]")
|
46 |
+
static ::std::vector<at::Tensor> call(at::TensorList self, at::ArrayRef<at::Scalar> exponent);
|
47 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::ArrayRef<at::Scalar> exponent);
|
48 |
+
};
|
49 |
+
|
50 |
+
struct TORCH_API _foreach_pow_ScalarAndTensor {
|
51 |
+
using schema = ::std::vector<at::Tensor> (const at::Scalar &, at::TensorList);
|
52 |
+
using ptr_schema = schema*;
|
53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
54 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_pow")
|
55 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "ScalarAndTensor")
|
56 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_pow.ScalarAndTensor(Scalar self, Tensor[] exponent) -> Tensor[]")
|
57 |
+
static ::std::vector<at::Tensor> call(const at::Scalar & self, at::TensorList exponent);
|
58 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & self, at::TensorList exponent);
|
59 |
+
};
|
60 |
+
|
61 |
+
struct TORCH_API _foreach_pow__List {
|
62 |
+
using schema = void (at::TensorList, at::TensorList);
|
63 |
+
using ptr_schema = schema*;
|
64 |
+
// See Note [static constexpr char* members for windows NVCC]
|
65 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_pow_")
|
66 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "List")
|
67 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_pow_.List(Tensor(a!)[] self, Tensor[] exponent) -> ()")
|
68 |
+
static void call(at::TensorList self, at::TensorList exponent);
|
69 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList exponent);
|
70 |
+
};
|
71 |
+
|
72 |
+
struct TORCH_API _foreach_pow__Scalar {
|
73 |
+
using schema = void (at::TensorList, const at::Scalar &);
|
74 |
+
using ptr_schema = schema*;
|
75 |
+
// See Note [static constexpr char* members for windows NVCC]
|
76 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_pow_")
|
77 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
|
78 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_pow_.Scalar(Tensor(a!)[] self, Scalar exponent) -> ()")
|
79 |
+
static void call(at::TensorList self, const at::Scalar & exponent);
|
80 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, const at::Scalar & exponent);
|
81 |
+
};
|
82 |
+
|
83 |
+
struct TORCH_API _foreach_pow__ScalarList {
|
84 |
+
using schema = void (at::TensorList, at::ArrayRef<at::Scalar>);
|
85 |
+
using ptr_schema = schema*;
|
86 |
+
// See Note [static constexpr char* members for windows NVCC]
|
87 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_pow_")
|
88 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "ScalarList")
|
89 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_pow_.ScalarList(Tensor(a!)[] self, Scalar[] exponent) -> ()")
|
90 |
+
static void call(at::TensorList self, at::ArrayRef<at::Scalar> exponent);
|
91 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::ArrayRef<at::Scalar> exponent);
|
92 |
+
};
|
93 |
+
|
94 |
+
struct TORCH_API _foreach_pow_List_out {
|
95 |
+
using schema = void (at::TensorList, at::TensorList, at::TensorList);
|
96 |
+
using ptr_schema = schema*;
|
97 |
+
// See Note [static constexpr char* members for windows NVCC]
|
98 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_pow")
|
99 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "List_out")
|
100 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_pow.List_out(Tensor[] self, Tensor[] exponent, *, Tensor(a!)[] out) -> ()")
|
101 |
+
static void call(at::TensorList self, at::TensorList exponent, at::TensorList out);
|
102 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList exponent, at::TensorList out);
|
103 |
+
};
|
104 |
+
|
105 |
+
struct TORCH_API _foreach_pow_Scalar_out {
|
106 |
+
using schema = void (at::TensorList, const at::Scalar &, at::TensorList);
|
107 |
+
using ptr_schema = schema*;
|
108 |
+
// See Note [static constexpr char* members for windows NVCC]
|
109 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_pow")
|
110 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar_out")
|
111 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_pow.Scalar_out(Tensor[] self, Scalar exponent, *, Tensor(a!)[] out) -> ()")
|
112 |
+
static void call(at::TensorList self, const at::Scalar & exponent, at::TensorList out);
|
113 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, const at::Scalar & exponent, at::TensorList out);
|
114 |
+
};
|
115 |
+
|
116 |
+
struct TORCH_API _foreach_pow_ScalarList_out {
|
117 |
+
using schema = void (at::TensorList, at::ArrayRef<at::Scalar>, at::TensorList);
|
118 |
+
using ptr_schema = schema*;
|
119 |
+
// See Note [static constexpr char* members for windows NVCC]
|
120 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_pow")
|
121 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "ScalarList_out")
|
122 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_pow.ScalarList_out(Tensor[] self, Scalar[] exponent, *, Tensor(a!)[] out) -> ()")
|
123 |
+
static void call(at::TensorList self, at::ArrayRef<at::Scalar> exponent, at::TensorList out);
|
124 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::ArrayRef<at::Scalar> exponent, at::TensorList out);
|
125 |
+
};
|
126 |
+
|
127 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_trunc_native.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API void _foreach_trunc_out(at::TensorList self, at::TensorList out);
|
20 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_trunc_slow(at::TensorList self);
|
21 |
+
TORCH_API void foreach_tensor_trunc_slow_(at::TensorList self);
|
22 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_trunc_cuda(at::TensorList self);
|
23 |
+
TORCH_API void foreach_tensor_trunc_cuda_(at::TensorList self);
|
24 |
+
} // namespace native
|
25 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_is_zerotensor_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _is_zerotensor {
|
18 |
+
using schema = bool (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_is_zerotensor")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_is_zerotensor(Tensor self) -> bool")
|
24 |
+
static bool call(const at::Tensor & self);
|
25 |
+
static bool redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _log_softmax {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, int64_t, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_log_softmax")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, int64_t dim, bool half_to_float);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, bool half_to_float);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _log_softmax_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, int64_t, bool, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_log_softmax")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_log_softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_make_dep_token_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _make_dep_token {
|
18 |
+
using schema = at::Tensor (c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>, c10::optional<at::MemoryFormat>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_make_dep_token")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_make_dep_token(*, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor")
|
24 |
+
static at::Tensor call(c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_slow_conv2d_forward.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_slow_conv2d_forward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_slow_conv2d_forward.output(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) output) -> Tensor(a!)
|
26 |
+
inline at::Tensor & _slow_conv2d_forward_out(at::Tensor & output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding) {
|
27 |
+
return at::_ops::_slow_conv2d_forward_output::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor & _slow_conv2d_forward_out(at::Tensor & output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding) {
|
32 |
+
return at::_ops::_slow_conv2d_forward_output::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_slow_conv2d_forward.output(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) output) -> Tensor(a!)
|
37 |
+
inline at::Tensor & _slow_conv2d_forward_outf(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & output) {
|
38 |
+
return at::_ops::_slow_conv2d_forward_output::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
42 |
+
at::Tensor & _slow_conv2d_forward_outf(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & output) {
|
43 |
+
return at::_ops::_slow_conv2d_forward_output::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_slow_conv2d_forward.output(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) output) -> Tensor(a!)
|
48 |
+
inline at::Tensor & _slow_conv2d_forward_symint_out(at::Tensor & output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding) {
|
49 |
+
return at::_ops::_slow_conv2d_forward_output::call(self, weight, kernel_size, bias, stride, padding, output);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
53 |
+
at::Tensor & _slow_conv2d_forward_out(at::Tensor & output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding) {
|
54 |
+
return at::_ops::_slow_conv2d_forward_output::call(self, weight, kernel_size, bias, stride, padding, output);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_slow_conv2d_forward.output(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) output) -> Tensor(a!)
|
59 |
+
inline at::Tensor & _slow_conv2d_forward_symint_outf(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, at::Tensor & output) {
|
60 |
+
return at::_ops::_slow_conv2d_forward_output::call(self, weight, kernel_size, bias, stride, padding, output);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
64 |
+
at::Tensor & _slow_conv2d_forward_outf(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, at::Tensor & output) {
|
65 |
+
return at::_ops::_slow_conv2d_forward_output::call(self, weight, kernel_size, bias, stride, padding, output);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_slow_conv2d_forward(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding) -> Tensor
|
70 |
+
inline at::Tensor _slow_conv2d_forward(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding) {
|
71 |
+
return at::_ops::_slow_conv2d_forward::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding));
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
75 |
+
at::Tensor _slow_conv2d_forward(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding) {
|
76 |
+
return at::_ops::_slow_conv2d_forward::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding));
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_slow_conv2d_forward(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding) -> Tensor
|
81 |
+
inline at::Tensor _slow_conv2d_forward_symint(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding) {
|
82 |
+
return at::_ops::_slow_conv2d_forward::call(self, weight, kernel_size, bias, stride, padding);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor _slow_conv2d_forward(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding) {
|
87 |
+
return at::_ops::_slow_conv2d_forward::call(self, weight, kernel_size, bias, stride, padding);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sparse_matmul_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _sparse_sparse_matmul_out(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor sparse_sparse_matmul_cpu(const at::Tensor & self, const at::Tensor & other);
|
21 |
+
TORCH_API at::Tensor sparse_sparse_matmul_cuda(const at::Tensor & self, const at::Tensor & other);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_test_check_tensor_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _test_check_tensor(const at::Tensor & self);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_to_copy_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _to_copy {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>, bool, c10::optional<at::MemoryFormat>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_to_copy")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, bool non_blocking, c10::optional<at::MemoryFormat> memory_format);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, bool non_blocking, c10::optional<at::MemoryFormat> memory_format);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _to_copy_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, bool, c10::optional<at::MemoryFormat>, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_to_copy")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_to_copy.out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, bool non_blocking, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, bool non_blocking, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_unsafe_view.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_unsafe_view_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_unsafe_view(Tensor self, SymInt[] size) -> Tensor
|
26 |
+
inline at::Tensor _unsafe_view(const at::Tensor & self, at::IntArrayRef size) {
|
27 |
+
return at::_ops::_unsafe_view::call(self, c10::fromIntArrayRefSlow(size));
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor _unsafe_view(const at::Tensor & self, at::IntArrayRef size) {
|
32 |
+
return at::_ops::_unsafe_view::call(self, c10::fromIntArrayRefSlow(size));
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_unsafe_view(Tensor self, SymInt[] size) -> Tensor
|
37 |
+
inline at::Tensor _unsafe_view_symint(const at::Tensor & self, c10::SymIntArrayRef size) {
|
38 |
+
return at::_ops::_unsafe_view::call(self, size);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor _unsafe_view(const at::Tensor & self, c10::SymIntArrayRef size) {
|
43 |
+
return at::_ops::_unsafe_view::call(self, size);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_unsafe_view.out(Tensor self, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & _unsafe_view_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef size) {
|
49 |
+
return at::_ops::_unsafe_view_out::call(self, c10::fromIntArrayRefSlow(size), out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & _unsafe_view_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef size) {
|
54 |
+
return at::_ops::_unsafe_view_out::call(self, c10::fromIntArrayRefSlow(size), out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_unsafe_view.out(Tensor self, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & _unsafe_view_outf(const at::Tensor & self, at::IntArrayRef size, at::Tensor & out) {
|
60 |
+
return at::_ops::_unsafe_view_out::call(self, c10::fromIntArrayRefSlow(size), out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & _unsafe_view_outf(const at::Tensor & self, at::IntArrayRef size, at::Tensor & out) {
|
65 |
+
return at::_ops::_unsafe_view_out::call(self, c10::fromIntArrayRefSlow(size), out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_unsafe_view.out(Tensor self, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & _unsafe_view_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef size) {
|
71 |
+
return at::_ops::_unsafe_view_out::call(self, size, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & _unsafe_view_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef size) {
|
76 |
+
return at::_ops::_unsafe_view_out::call(self, size, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_unsafe_view.out(Tensor self, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & _unsafe_view_symint_outf(const at::Tensor & self, c10::SymIntArrayRef size, at::Tensor & out) {
|
82 |
+
return at::_ops::_unsafe_view_out::call(self, size, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & _unsafe_view_outf(const at::Tensor & self, c10::SymIntArrayRef size, at::Tensor & out) {
|
87 |
+
return at::_ops::_unsafe_view_out::call(self, size, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_backward_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _upsample_nearest_exact2d_backward_grad_input {
|
18 |
+
using schema = at::Tensor & (const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::optional<double>, c10::optional<double>, at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_upsample_nearest_exact2d_backward")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "grad_input")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_upsample_nearest_exact2d_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)")
|
24 |
+
static at::Tensor & call(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input);
|
25 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _upsample_nearest_exact2d_backward {
|
29 |
+
using schema = at::Tensor (const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::optional<double>, c10::optional<double>);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_upsample_nearest_exact2d_backward")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_upsample_nearest_exact2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor")
|
35 |
+
static at::Tensor call(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w);
|
36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/addr_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API addr {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::addr")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta, const at::Scalar & alpha);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta, const at::Scalar & alpha);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API addr_ {
|
29 |
+
using schema = at::Tensor & (at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::addr_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "addr_(Tensor(a!) self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta, const at::Scalar & alpha);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta, const at::Scalar & alpha);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API addr_out {
|
40 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::addr")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "addr.out(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta, const at::Scalar & alpha, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta, const at::Scalar & alpha, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/argsort_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor argsort(const at::Tensor & self, int64_t dim=-1, bool descending=false);
|
21 |
+
TORCH_API at::Tensor argsort(const at::Tensor & self, at::Dimname dim, bool descending=false);
|
22 |
+
|
23 |
+
} // namespace compositeimplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/as_strided_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API as_strided {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::optional<c10::SymInt>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::as_strided")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "as_strided(Tensor(a) self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor(a)")
|
24 |
+
static at::Tensor call(const at::Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API as_strided_ {
|
29 |
+
using schema = const at::Tensor & (const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::optional<c10::SymInt>);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::as_strided_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "as_strided_(Tensor(a!) self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor(a!)")
|
35 |
+
static const at::Tensor & call(const at::Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset);
|
36 |
+
static const at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/atan_native.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/atan_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_atan_out : public at::meta::structured_atan {
|
20 |
+
void impl(const at::Tensor & self, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
TORCH_API at::Tensor atan_sparse(const at::Tensor & self);
|
23 |
+
TORCH_API at::Tensor & atan_sparse_out(const at::Tensor & self, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & atan_sparse_(at::Tensor & self);
|
25 |
+
TORCH_API at::Tensor atan_sparse_csr(const at::Tensor & self);
|
26 |
+
TORCH_API at::Tensor & atan_sparse_csr_out(const at::Tensor & self, at::Tensor & out);
|
27 |
+
TORCH_API at::Tensor & atan_sparse_csr_(at::Tensor & self);
|
28 |
+
} // namespace native
|
29 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/choose_qparams_optimized_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> choose_qparams_optimized(const at::Tensor & input, int64_t numel, int64_t n_bins, double ratio, int64_t bit_width);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/column_stack.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/column_stack_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::column_stack(Tensor[] tensors) -> Tensor
|
26 |
+
inline at::Tensor column_stack(at::TensorList tensors) {
|
27 |
+
return at::_ops::column_stack::call(tensors);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::column_stack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & column_stack_out(at::Tensor & out, at::TensorList tensors) {
|
32 |
+
return at::_ops::column_stack_out::call(tensors, out);
|
33 |
+
}
|
34 |
+
// aten::column_stack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & column_stack_outf(at::TensorList tensors, at::Tensor & out) {
|
36 |
+
return at::_ops::column_stack_out::call(tensors, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/conv2d_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor conv2d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, int64_t groups=1);
|
21 |
+
TORCH_API at::Tensor conv2d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0), c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1);
|
22 |
+
TORCH_API at::Tensor conv2d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, c10::string_view padding, at::IntArrayRef dilation=1, int64_t groups=1);
|
23 |
+
TORCH_API at::Tensor conv2d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1);
|
24 |
+
|
25 |
+
} // namespace compositeimplicitautograd
|
26 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_convolution_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API cudnn_convolution {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymInt, bool, bool, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cudnn_convolution")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cudnn_convolution(Tensor self, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, bool allow_tf32);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, bool allow_tf32);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API cudnn_convolution_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymInt, bool, bool, bool, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cudnn_convolution")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cudnn_convolution.out(Tensor self, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, bool allow_tf32, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, bool allow_tf32, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_grid_sampler_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & cudnn_grid_sampler_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & grid);
|
21 |
+
TORCH_API at::Tensor & cudnn_grid_sampler_outf(const at::Tensor & self, const at::Tensor & grid, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cumprod.h
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/cumprod_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::cumprod(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
|
26 |
+
inline at::Tensor cumprod(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt) {
|
27 |
+
return at::_ops::cumprod::call(self, dim, dtype);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::cumprod.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & cumprod_out(at::Tensor & out, const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt) {
|
32 |
+
return at::_ops::cumprod_out::call(self, dim, dtype, out);
|
33 |
+
}
|
34 |
+
// aten::cumprod.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & cumprod_outf(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype, at::Tensor & out) {
|
36 |
+
return at::_ops::cumprod_out::call(self, dim, dtype, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
// aten::cumprod.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
40 |
+
inline at::Tensor cumprod(const at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype=c10::nullopt) {
|
41 |
+
return at::_ops::cumprod_dimname::call(self, dim, dtype);
|
42 |
+
}
|
43 |
+
|
44 |
+
// aten::cumprod.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
45 |
+
inline at::Tensor & cumprod_out(at::Tensor & out, const at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype=c10::nullopt) {
|
46 |
+
return at::_ops::cumprod_dimname_out::call(self, dim, dtype, out);
|
47 |
+
}
|
48 |
+
// aten::cumprod.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
49 |
+
inline at::Tensor & cumprod_outf(const at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype, at::Tensor & out) {
|
50 |
+
return at::_ops::cumprod_dimname_out::call(self, dim, dtype, out);
|
51 |
+
}
|
52 |
+
|
53 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/cumprod_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor cumprod(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor & cumprod_(at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautogradnonfunctional
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/digamma_cpu_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor digamma(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & digamma_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & digamma_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & digamma_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cpu
|
26 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/divide.h
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/divide_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::divide.Tensor(Tensor self, Tensor other) -> Tensor
|
26 |
+
inline at::Tensor divide(const at::Tensor & self, const at::Tensor & other) {
|
27 |
+
return at::_ops::divide_Tensor::call(self, other);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & divide_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other) {
|
32 |
+
return at::_ops::divide_out::call(self, other, out);
|
33 |
+
}
|
34 |
+
// aten::divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & divide_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out) {
|
36 |
+
return at::_ops::divide_out::call(self, other, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
// aten::divide.Scalar(Tensor self, Scalar other) -> Tensor
|
40 |
+
inline at::Tensor divide(const at::Tensor & self, const at::Scalar & other) {
|
41 |
+
return at::_ops::divide_Scalar::call(self, other);
|
42 |
+
}
|
43 |
+
|
44 |
+
// aten::divide.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor
|
45 |
+
inline at::Tensor divide(const at::Tensor & self, const at::Tensor & other, c10::optional<c10::string_view> rounding_mode) {
|
46 |
+
return at::_ops::divide_Tensor_mode::call(self, other, rounding_mode);
|
47 |
+
}
|
48 |
+
|
49 |
+
// aten::divide.out_mode(Tensor self, Tensor other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!)
|
50 |
+
inline at::Tensor & divide_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other, c10::optional<c10::string_view> rounding_mode) {
|
51 |
+
return at::_ops::divide_out_mode::call(self, other, rounding_mode, out);
|
52 |
+
}
|
53 |
+
// aten::divide.out_mode(Tensor self, Tensor other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!)
|
54 |
+
inline at::Tensor & divide_outf(const at::Tensor & self, const at::Tensor & other, c10::optional<c10::string_view> rounding_mode, at::Tensor & out) {
|
55 |
+
return at::_ops::divide_out_mode::call(self, other, rounding_mode, out);
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::divide.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor
|
59 |
+
inline at::Tensor divide(const at::Tensor & self, const at::Scalar & other, c10::optional<c10::string_view> rounding_mode) {
|
60 |
+
return at::_ops::divide_Scalar_mode::call(self, other, rounding_mode);
|
61 |
+
}
|
62 |
+
|
63 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_renorm_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & embedding_renorm_(at::Tensor & self, const at::Tensor & indices, double max_norm, double norm_type);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/erfc_cuda_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor erfc(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & erfc_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & erfc_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & erfc_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cuda
|
26 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftfreq_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor fft_rfftfreq(int64_t n, double d=1.0, at::TensorOptions options={});
|
21 |
+
TORCH_API at::Tensor fft_rfftfreq(int64_t n, double d, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
22 |
+
TORCH_API at::Tensor & fft_rfftfreq_out(at::Tensor & out, int64_t n, double d=1.0);
|
23 |
+
TORCH_API at::Tensor & fft_rfftfreq_outf(int64_t n, double d, at::Tensor & out);
|
24 |
+
|
25 |
+
} // namespace compositeexplicitautograd
|
26 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/fix_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor fix(const at::Tensor & self);
|
20 |
+
TORCH_API at::Tensor & fix_out(const at::Tensor & self, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor & fix_(at::Tensor & self);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/flatten_dense_tensors.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/flatten_dense_tensors_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::flatten_dense_tensors(Tensor[] tensors) -> Tensor
|
26 |
+
inline at::Tensor flatten_dense_tensors(at::TensorList tensors) {
|
27 |
+
return at::_ops::flatten_dense_tensors::call(tensors);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/glu_backward_jvp_cuda_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor glu_backward_jvp(const at::Tensor & grad_x, const at::Tensor & grad_glu, const at::Tensor & x, const at::Tensor & dgrad_glu, const at::Tensor & dx, int64_t dim);
|
21 |
+
|
22 |
+
} // namespace cuda
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hamming_window.h
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/hamming_window_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::hamming_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
26 |
+
inline at::Tensor hamming_window(int64_t window_length, at::TensorOptions options={}) {
|
27 |
+
return at::_ops::hamming_window::call(window_length, optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
28 |
+
}
|
29 |
+
// aten::hamming_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
30 |
+
inline at::Tensor hamming_window(int64_t window_length, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
31 |
+
return at::_ops::hamming_window::call(window_length, dtype, layout, device, pin_memory);
|
32 |
+
}
|
33 |
+
|
34 |
+
// aten::hamming_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
35 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, at::TensorOptions options={}) {
|
36 |
+
return at::_ops::hamming_window_periodic::call(window_length, periodic, optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
37 |
+
}
|
38 |
+
// aten::hamming_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
39 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
40 |
+
return at::_ops::hamming_window_periodic::call(window_length, periodic, dtype, layout, device, pin_memory);
|
41 |
+
}
|
42 |
+
|
43 |
+
// aten::hamming_window.periodic_alpha(int window_length, bool periodic, float alpha, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
44 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, double alpha, at::TensorOptions options={}) {
|
45 |
+
return at::_ops::hamming_window_periodic_alpha::call(window_length, periodic, alpha, optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
46 |
+
}
|
47 |
+
// aten::hamming_window.periodic_alpha(int window_length, bool periodic, float alpha, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
48 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, double alpha, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
49 |
+
return at::_ops::hamming_window_periodic_alpha::call(window_length, periodic, alpha, dtype, layout, device, pin_memory);
|
50 |
+
}
|
51 |
+
|
52 |
+
// aten::hamming_window.periodic_alpha_beta(int window_length, bool periodic, float alpha, float beta, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
53 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, double alpha, double beta, at::TensorOptions options={}) {
|
54 |
+
return at::_ops::hamming_window_periodic_alpha_beta::call(window_length, periodic, alpha, beta, optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
55 |
+
}
|
56 |
+
// aten::hamming_window.periodic_alpha_beta(int window_length, bool periodic, float alpha, float beta, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
57 |
+
inline at::Tensor hamming_window(int64_t window_length, bool periodic, double alpha, double beta, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
58 |
+
return at::_ops::hamming_window_periodic_alpha_beta::call(window_length, periodic, alpha, beta, dtype, layout, device, pin_memory);
|
59 |
+
}
|
60 |
+
|
61 |
+
// aten::hamming_window.out(int window_length, *, Tensor(a!) out) -> Tensor(a!)
|
62 |
+
inline at::Tensor & hamming_window_out(at::Tensor & out, int64_t window_length) {
|
63 |
+
return at::_ops::hamming_window_out::call(window_length, out);
|
64 |
+
}
|
65 |
+
// aten::hamming_window.out(int window_length, *, Tensor(a!) out) -> Tensor(a!)
|
66 |
+
inline at::Tensor & hamming_window_outf(int64_t window_length, at::Tensor & out) {
|
67 |
+
return at::_ops::hamming_window_out::call(window_length, out);
|
68 |
+
}
|
69 |
+
|
70 |
+
// aten::hamming_window.periodic_out(int window_length, bool periodic, *, Tensor(a!) out) -> Tensor(a!)
|
71 |
+
inline at::Tensor & hamming_window_out(at::Tensor & out, int64_t window_length, bool periodic) {
|
72 |
+
return at::_ops::hamming_window_periodic_out::call(window_length, periodic, out);
|
73 |
+
}
|
74 |
+
// aten::hamming_window.periodic_out(int window_length, bool periodic, *, Tensor(a!) out) -> Tensor(a!)
|
75 |
+
inline at::Tensor & hamming_window_outf(int64_t window_length, bool periodic, at::Tensor & out) {
|
76 |
+
return at::_ops::hamming_window_periodic_out::call(window_length, periodic, out);
|
77 |
+
}
|
78 |
+
|
79 |
+
// aten::hamming_window.periodic_alpha_out(int window_length, bool periodic, float alpha, *, Tensor(a!) out) -> Tensor(a!)
|
80 |
+
inline at::Tensor & hamming_window_out(at::Tensor & out, int64_t window_length, bool periodic, double alpha) {
|
81 |
+
return at::_ops::hamming_window_periodic_alpha_out::call(window_length, periodic, alpha, out);
|
82 |
+
}
|
83 |
+
// aten::hamming_window.periodic_alpha_out(int window_length, bool periodic, float alpha, *, Tensor(a!) out) -> Tensor(a!)
|
84 |
+
inline at::Tensor & hamming_window_outf(int64_t window_length, bool periodic, double alpha, at::Tensor & out) {
|
85 |
+
return at::_ops::hamming_window_periodic_alpha_out::call(window_length, periodic, alpha, out);
|
86 |
+
}
|
87 |
+
|
88 |
+
// aten::hamming_window.periodic_alpha_beta_out(int window_length, bool periodic, float alpha, float beta, *, Tensor(a!) out) -> Tensor(a!)
|
89 |
+
inline at::Tensor & hamming_window_out(at::Tensor & out, int64_t window_length, bool periodic, double alpha, double beta) {
|
90 |
+
return at::_ops::hamming_window_periodic_alpha_beta_out::call(window_length, periodic, alpha, beta, out);
|
91 |
+
}
|
92 |
+
// aten::hamming_window.periodic_alpha_beta_out(int window_length, bool periodic, float alpha, float beta, *, Tensor(a!) out) -> Tensor(a!)
|
93 |
+
inline at::Tensor & hamming_window_outf(int64_t window_length, bool periodic, double alpha, double beta, at::Tensor & out) {
|
94 |
+
return at::_ops::hamming_window_periodic_alpha_beta_out::call(window_length, periodic, alpha, beta, out);
|
95 |
+
}
|
96 |
+
|
97 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/hardshrink_cpu_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor hardshrink(const at::Tensor & self, const at::Scalar & lambd=0.5);
|
21 |
+
TORCH_API at::Tensor & hardshrink_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & lambd=0.5);
|
22 |
+
TORCH_API at::Tensor & hardshrink_outf(const at::Tensor & self, const at::Scalar & lambd, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace cpu
|
25 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_add_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor index_add(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, const at::Scalar & alpha=1);
|
21 |
+
TORCH_API at::Tensor & index_add_(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, const at::Scalar & alpha=1);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautogradnonfunctional
|
24 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/index_copy_ops.h
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API index_copy_out {
|
18 |
+
using schema = at::Tensor & (const at::Tensor &, int64_t, const at::Tensor &, const at::Tensor &, at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_copy")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_copy.out(Tensor self, int dim, Tensor index, Tensor source, *, Tensor(a!) out) -> Tensor(a!)")
|
24 |
+
static at::Tensor & call(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, at::Tensor & out);
|
25 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source, at::Tensor & out);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API index_copy_ {
|
29 |
+
using schema = at::Tensor & (at::Tensor &, int64_t, const at::Tensor &, const at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_copy_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API index_copy {
|
40 |
+
using schema = at::Tensor (const at::Tensor &, int64_t, const at::Tensor &, const at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_copy")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_copy(Tensor self, int dim, Tensor index, Tensor source) -> Tensor")
|
46 |
+
static at::Tensor call(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
|
47 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & source);
|
48 |
+
};
|
49 |
+
|
50 |
+
struct TORCH_API index_copy__dimname {
|
51 |
+
using schema = at::Tensor & (at::Tensor &, at::Dimname, const at::Tensor &, const at::Tensor &);
|
52 |
+
using ptr_schema = schema*;
|
53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
54 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_copy_")
|
55 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "dimname")
|
56 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_copy_.dimname(Tensor(a!) self, Dimname dim, Tensor index, Tensor source) -> Tensor(a!)")
|
57 |
+
static at::Tensor & call(at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Tensor & source);
|
58 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Tensor & source);
|
59 |
+
};
|
60 |
+
|
61 |
+
struct TORCH_API index_copy_dimname {
|
62 |
+
using schema = at::Tensor (const at::Tensor &, at::Dimname, const at::Tensor &, const at::Tensor &);
|
63 |
+
using ptr_schema = schema*;
|
64 |
+
// See Note [static constexpr char* members for windows NVCC]
|
65 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::index_copy")
|
66 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "dimname")
|
67 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "index_copy.dimname(Tensor self, Dimname dim, Tensor index, Tensor source) -> Tensor")
|
68 |
+
static at::Tensor call(const at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Tensor & source);
|
69 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Dimname dim, const at::Tensor & index, const at::Tensor & source);
|
70 |
+
};
|
71 |
+
|
72 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/instance_norm_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API instance_norm {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, bool, double, double, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::instance_norm")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, float momentum, float eps, bool cudnn_enabled) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, bool use_input_stats, double momentum, double eps, bool cudnn_enabled);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, bool use_input_stats, double momentum, double eps, bool cudnn_enabled);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/is_leaf_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API bool is_leaf(const at::Tensor & self);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_inv_ex.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/linalg_inv_ex_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::linalg_inv_ex(Tensor A, *, bool check_errors=False) -> (Tensor inverse, Tensor info)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor> linalg_inv_ex(const at::Tensor & A, bool check_errors=false) {
|
27 |
+
return at::_ops::linalg_inv_ex::call(A, check_errors);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::linalg_inv_ex.inverse(Tensor A, *, bool check_errors=False, Tensor(a!) inverse, Tensor(b!) info) -> (Tensor(a!) inverse, Tensor(b!) info)
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> linalg_inv_ex_out(at::Tensor & inverse, at::Tensor & info, const at::Tensor & A, bool check_errors=false) {
|
32 |
+
return at::_ops::linalg_inv_ex_inverse::call(A, check_errors, inverse, info);
|
33 |
+
}
|
34 |
+
// aten::linalg_inv_ex.inverse(Tensor A, *, bool check_errors=False, Tensor(a!) inverse, Tensor(b!) info) -> (Tensor(a!) inverse, Tensor(b!) info)
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> linalg_inv_ex_outf(const at::Tensor & A, bool check_errors, at::Tensor & inverse, at::Tensor & info) {
|
36 |
+
return at::_ops::linalg_inv_ex_inverse::call(A, check_errors, inverse, info);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_slogdet.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/linalg_slogdet_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::linalg_slogdet(Tensor A) -> (Tensor sign, Tensor logabsdet)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor> linalg_slogdet(const at::Tensor & A) {
|
27 |
+
return at::_ops::linalg_slogdet::call(A);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::linalg_slogdet.out(Tensor A, *, Tensor(a!) sign, Tensor(b!) logabsdet) -> (Tensor(a!) sign, Tensor(b!) logabsdet)
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> linalg_slogdet_out(at::Tensor & sign, at::Tensor & logabsdet, const at::Tensor & A) {
|
32 |
+
return at::_ops::linalg_slogdet_out::call(A, sign, logabsdet);
|
33 |
+
}
|
34 |
+
// aten::linalg_slogdet.out(Tensor A, *, Tensor(a!) sign, Tensor(b!) logabsdet) -> (Tensor(a!) sign, Tensor(b!) logabsdet)
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> linalg_slogdet_outf(const at::Tensor & A, at::Tensor & sign, at::Tensor & logabsdet) {
|
36 |
+
return at::_ops::linalg_slogdet_out::call(A, sign, logabsdet);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API log1p {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::log1p")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "log1p(Tensor self) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API log1p_ {
|
29 |
+
using schema = at::Tensor & (at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::log1p_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "log1p_(Tensor(a!) self) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::Tensor & self);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API log1p_out {
|
40 |
+
using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::log1p")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ops/log2_cuda_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor log2(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & log2_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & log2_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & log2_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cuda
|
26 |
+
} // namespace at
|