diff --git "a/llmeval-env/lib/python3.10/site-packages/pyarrow/array.pxi" "b/llmeval-env/lib/python3.10/site-packages/pyarrow/array.pxi" new file mode 100644--- /dev/null +++ "b/llmeval-env/lib/python3.10/site-packages/pyarrow/array.pxi" @@ -0,0 +1,4482 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +from cpython.pycapsule cimport PyCapsule_CheckExact, PyCapsule_GetPointer, PyCapsule_New + +import os +import warnings +from cython import sizeof + + +cdef _sequence_to_array(object sequence, object mask, object size, + DataType type, CMemoryPool* pool, c_bool from_pandas): + cdef: + int64_t c_size + PyConversionOptions options + shared_ptr[CChunkedArray] chunked + + if type is not None: + options.type = type.sp_type + + if size is not None: + options.size = size + + options.from_pandas = from_pandas + options.ignore_timezone = os.environ.get('PYARROW_IGNORE_TIMEZONE', False) + + with nogil: + chunked = GetResultValue( + ConvertPySequence(sequence, mask, options, pool) + ) + + if chunked.get().num_chunks() == 1: + return pyarrow_wrap_array(chunked.get().chunk(0)) + else: + return pyarrow_wrap_chunked_array(chunked) + + +cdef inline _is_array_like(obj): + if isinstance(obj, np.ndarray): + return True + return pandas_api._have_pandas_internal() and pandas_api.is_array_like(obj) + + +def _ndarray_to_arrow_type(object values, DataType type): + return pyarrow_wrap_data_type(_ndarray_to_type(values, type)) + + +cdef shared_ptr[CDataType] _ndarray_to_type(object values, + DataType type) except *: + cdef shared_ptr[CDataType] c_type + + dtype = values.dtype + + if type is None and dtype != object: + c_type = GetResultValue(NumPyDtypeToArrow(dtype)) + + if type is not None: + c_type = type.sp_type + + return c_type + + +cdef _ndarray_to_array(object values, object mask, DataType type, + c_bool from_pandas, c_bool safe, CMemoryPool* pool): + cdef: + shared_ptr[CChunkedArray] chunked_out + shared_ptr[CDataType] c_type = _ndarray_to_type(values, type) + CCastOptions cast_options = CCastOptions(safe) + + with nogil: + check_status(NdarrayToArrow(pool, values, mask, from_pandas, + c_type, cast_options, &chunked_out)) + + if chunked_out.get().num_chunks() > 1: + return pyarrow_wrap_chunked_array(chunked_out) + else: + return pyarrow_wrap_array(chunked_out.get().chunk(0)) + + +cdef _codes_to_indices(object codes, object mask, DataType type, + MemoryPool memory_pool): + """ + Convert the codes of a pandas Categorical to indices for a pyarrow + DictionaryArray, taking into account missing values + mask + """ + if mask is None: + mask = codes == -1 + else: + mask = mask | (codes == -1) + return array(codes, mask=mask, type=type, memory_pool=memory_pool) + + +def _handle_arrow_array_protocol(obj, type, mask, size): + if mask is not None or size is not None: + raise ValueError( + "Cannot specify a mask or a size when passing an object that is " + "converted with the __arrow_array__ protocol.") + res = obj.__arrow_array__(type=type) + if not isinstance(res, (Array, ChunkedArray)): + raise TypeError("The object's __arrow_array__ method does not " + "return a pyarrow Array or ChunkedArray.") + if isinstance(res, ChunkedArray) and res.num_chunks==1: + res = res.chunk(0) + return res + + +def array(object obj, type=None, mask=None, size=None, from_pandas=None, + bint safe=True, MemoryPool memory_pool=None): + """ + Create pyarrow.Array instance from a Python object. + + Parameters + ---------- + obj : sequence, iterable, ndarray, pandas.Series, Arrow-compatible array + If both type and size are specified may be a single use iterable. If + not strongly-typed, Arrow type will be inferred for resulting array. + Any Arrow-compatible array that implements the Arrow PyCapsule Protocol + (has an ``__arrow_c_array__`` method) can be passed as well. + type : pyarrow.DataType + Explicit type to attempt to coerce to, otherwise will be inferred from + the data. + mask : array[bool], optional + Indicate which values are null (True) or not null (False). + size : int64, optional + Size of the elements. If the input is larger than size bail at this + length. For iterators, if size is larger than the input iterator this + will be treated as a "max size", but will involve an initial allocation + of size followed by a resize to the actual size (so if you know the + exact size specifying it correctly will give you better performance). + from_pandas : bool, default None + Use pandas's semantics for inferring nulls from values in + ndarray-like data. If passed, the mask tasks precedence, but + if a value is unmasked (not-null), but still null according to + pandas semantics, then it is null. Defaults to False if not + passed explicitly by user, or True if a pandas object is + passed in. + safe : bool, default True + Check for overflows or other unsafe conversions. + memory_pool : pyarrow.MemoryPool, optional + If not passed, will allocate memory from the currently-set default + memory pool. + + Returns + ------- + array : pyarrow.Array or pyarrow.ChunkedArray + A ChunkedArray instead of an Array is returned if: + + - the object data overflowed binary storage. + - the object's ``__arrow_array__`` protocol method returned a chunked + array. + + Notes + ----- + Timezone will be preserved in the returned array for timezone-aware data, + else no timezone will be returned for naive timestamps. + Internally, UTC values are stored for timezone-aware data with the + timezone set in the data type. + + Pandas's DateOffsets and dateutil.relativedelta.relativedelta are by + default converted as MonthDayNanoIntervalArray. relativedelta leapdays + are ignored as are all absolute fields on both objects. datetime.timedelta + can also be converted to MonthDayNanoIntervalArray but this requires + passing MonthDayNanoIntervalType explicitly. + + Converting to dictionary array will promote to a wider integer type for + indices if the number of distinct values cannot be represented, even if + the index type was explicitly set. This means that if there are more than + 127 values the returned dictionary array's index type will be at least + pa.int16() even if pa.int8() was passed to the function. Note that an + explicit index type will not be demoted even if it is wider than required. + + Examples + -------- + >>> import pandas as pd + >>> import pyarrow as pa + >>> pa.array(pd.Series([1, 2])) + + [ + 1, + 2 + ] + + >>> pa.array(["a", "b", "a"], type=pa.dictionary(pa.int8(), pa.string())) + + ... + -- dictionary: + [ + "a", + "b" + ] + -- indices: + [ + 0, + 1, + 0 + ] + + >>> import numpy as np + >>> pa.array(pd.Series([1, 2]), mask=np.array([0, 1], dtype=bool)) + + [ + 1, + null + ] + + >>> arr = pa.array(range(1024), type=pa.dictionary(pa.int8(), pa.int64())) + >>> arr.type.index_type + DataType(int16) + """ + cdef: + CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) + bint is_pandas_object = False + bint c_from_pandas + + type = ensure_type(type, allow_none=True) + + extension_type = None + if type is not None and type.id == _Type_EXTENSION: + extension_type = type + type = type.storage_type + + if from_pandas is None: + c_from_pandas = False + else: + c_from_pandas = from_pandas + + if isinstance(obj, Array): + if type is not None and not obj.type.equals(type): + obj = obj.cast(type, safe=safe, memory_pool=memory_pool) + return obj + + if hasattr(obj, '__arrow_array__'): + return _handle_arrow_array_protocol(obj, type, mask, size) + elif hasattr(obj, '__arrow_c_array__'): + if type is not None: + requested_type = type.__arrow_c_schema__() + else: + requested_type = None + schema_capsule, array_capsule = obj.__arrow_c_array__(requested_type) + out_array = Array._import_from_c_capsule(schema_capsule, array_capsule) + if type is not None and out_array.type != type: + # PyCapsule interface type coercion is best effort, so we need to + # check the type of the returned array and cast if necessary + out_array = array.cast(type, safe=safe, memory_pool=memory_pool) + return out_array + elif _is_array_like(obj): + if mask is not None: + if _is_array_like(mask): + mask = get_values(mask, &is_pandas_object) + else: + raise TypeError("Mask must be a numpy array " + "when converting numpy arrays") + + values = get_values(obj, &is_pandas_object) + if is_pandas_object and from_pandas is None: + c_from_pandas = True + + if isinstance(values, np.ma.MaskedArray): + if mask is not None: + raise ValueError("Cannot pass a numpy masked array and " + "specify a mask at the same time") + else: + # don't use shrunken masks + mask = None if values.mask is np.ma.nomask else values.mask + values = values.data + + if mask is not None: + if mask.dtype != np.bool_: + raise TypeError("Mask must be boolean dtype") + if mask.ndim != 1: + raise ValueError("Mask must be 1D array") + if len(values) != len(mask): + raise ValueError( + "Mask is a different length from sequence being converted") + + if hasattr(values, '__arrow_array__'): + return _handle_arrow_array_protocol(values, type, mask, size) + elif (pandas_api.is_categorical(values) and + type is not None and type.id != Type_DICTIONARY): + result = _ndarray_to_array( + np.asarray(values), mask, type, c_from_pandas, safe, pool + ) + elif pandas_api.is_categorical(values): + if type is not None: + index_type = type.index_type + value_type = type.value_type + if values.ordered != type.ordered: + raise ValueError( + "The 'ordered' flag of the passed categorical values " + "does not match the 'ordered' of the specified type. ") + else: + index_type = None + value_type = None + + indices = _codes_to_indices( + values.codes, mask, index_type, memory_pool) + try: + dictionary = array( + values.categories.values, type=value_type, + memory_pool=memory_pool) + except TypeError: + # TODO when removing the deprecation warning, this whole + # try/except can be removed (to bubble the TypeError of + # the first array(..) call) + if value_type is not None: + warnings.warn( + "The dtype of the 'categories' of the passed " + "categorical values ({0}) does not match the " + "specified type ({1}). For now ignoring the specified " + "type, but in the future this mismatch will raise a " + "TypeError".format( + values.categories.dtype, value_type), + FutureWarning, stacklevel=2) + dictionary = array( + values.categories.values, memory_pool=memory_pool) + else: + raise + + return DictionaryArray.from_arrays( + indices, dictionary, ordered=values.ordered, safe=safe) + else: + if pandas_api.have_pandas: + values, type = pandas_api.compat.get_datetimetz_type( + values, obj.dtype, type) + if type and type.id == _Type_RUN_END_ENCODED: + arr = _ndarray_to_array( + values, mask, type.value_type, c_from_pandas, safe, pool) + result = _pc().run_end_encode(arr, run_end_type=type.run_end_type, + memory_pool=memory_pool) + else: + result = _ndarray_to_array(values, mask, type, c_from_pandas, safe, + pool) + else: + if type and type.id == _Type_RUN_END_ENCODED: + arr = _sequence_to_array( + obj, mask, size, type.value_type, pool, from_pandas) + result = _pc().run_end_encode(arr, run_end_type=type.run_end_type, + memory_pool=memory_pool) + # ConvertPySequence does strict conversion if type is explicitly passed + else: + result = _sequence_to_array(obj, mask, size, type, pool, c_from_pandas) + + if extension_type is not None: + result = ExtensionArray.from_storage(extension_type, result) + return result + + +def asarray(values, type=None): + """ + Convert to pyarrow.Array, inferring type if not provided. + + Parameters + ---------- + values : array-like + This can be a sequence, numpy.ndarray, pyarrow.Array or + pyarrow.ChunkedArray. If a ChunkedArray is passed, the output will be + a ChunkedArray, otherwise the output will be a Array. + type : string or DataType + Explicitly construct the array with this type. Attempt to cast if + indicated type is different. + + Returns + ------- + arr : Array or ChunkedArray + """ + if isinstance(values, (Array, ChunkedArray)): + if type is not None and not values.type.equals(type): + values = values.cast(type) + return values + else: + return array(values, type=type) + + +def nulls(size, type=None, MemoryPool memory_pool=None): + """ + Create a strongly-typed Array instance with all elements null. + + Parameters + ---------- + size : int + Array length. + type : pyarrow.DataType, default None + Explicit type for the array. By default use NullType. + memory_pool : MemoryPool, default None + Arrow MemoryPool to use for allocations. Uses the default memory + pool if not passed. + + Returns + ------- + arr : Array + + Examples + -------- + >>> import pyarrow as pa + >>> pa.nulls(10) + + 10 nulls + + >>> pa.nulls(3, pa.uint32()) + + [ + null, + null, + null + ] + """ + cdef: + CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) + int64_t length = size + shared_ptr[CDataType] ty + shared_ptr[CArray] arr + + type = ensure_type(type, allow_none=True) + if type is None: + type = null() + + ty = pyarrow_unwrap_data_type(type) + with nogil: + arr = GetResultValue(MakeArrayOfNull(ty, length, pool)) + + return pyarrow_wrap_array(arr) + + +def repeat(value, size, MemoryPool memory_pool=None): + """ + Create an Array instance whose slots are the given scalar. + + Parameters + ---------- + value : Scalar-like object + Either a pyarrow.Scalar or any python object coercible to a Scalar. + size : int + Number of times to repeat the scalar in the output Array. + memory_pool : MemoryPool, default None + Arrow MemoryPool to use for allocations. Uses the default memory + pool if not passed. + + Returns + ------- + arr : Array + + Examples + -------- + >>> import pyarrow as pa + >>> pa.repeat(10, 3) + + [ + 10, + 10, + 10 + ] + + >>> pa.repeat([1, 2], 2) + + [ + [ + 1, + 2 + ], + [ + 1, + 2 + ] + ] + + >>> pa.repeat("string", 3) + + [ + "string", + "string", + "string" + ] + + >>> pa.repeat(pa.scalar({'a': 1, 'b': [1, 2]}), 2) + + -- is_valid: all not null + -- child 0 type: int64 + [ + 1, + 1 + ] + -- child 1 type: list + [ + [ + 1, + 2 + ], + [ + 1, + 2 + ] + ] + """ + cdef: + CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) + int64_t length = size + shared_ptr[CArray] c_array + shared_ptr[CScalar] c_scalar + + if not isinstance(value, Scalar): + value = scalar(value, memory_pool=memory_pool) + + c_scalar = ( value).unwrap() + with nogil: + c_array = GetResultValue( + MakeArrayFromScalar(deref(c_scalar), length, pool) + ) + + return pyarrow_wrap_array(c_array) + + +def infer_type(values, mask=None, from_pandas=False): + """ + Attempt to infer Arrow data type that can hold the passed Python + sequence type in an Array object + + Parameters + ---------- + values : array-like + Sequence to infer type from. + mask : ndarray (bool type), optional + Optional exclusion mask where True marks null, False non-null. + from_pandas : bool, default False + Use pandas's NA/null sentinel values for type inference. + + Returns + ------- + type : DataType + """ + cdef: + shared_ptr[CDataType] out + c_bool use_pandas_sentinels = from_pandas + + if mask is not None and not isinstance(mask, np.ndarray): + mask = np.array(mask, dtype=bool) + + out = GetResultValue(InferArrowType(values, mask, use_pandas_sentinels)) + return pyarrow_wrap_data_type(out) + + +def _normalize_slice(object arrow_obj, slice key): + """ + Slices with step not equal to 1 (or None) will produce a copy + rather than a zero-copy view + """ + cdef: + Py_ssize_t start, stop, step + Py_ssize_t n = len(arrow_obj) + + start, stop, step = key.indices(n) + + if step != 1: + indices = np.arange(start, stop, step) + return arrow_obj.take(indices) + else: + length = max(stop - start, 0) + return arrow_obj.slice(start, length) + + +cdef Py_ssize_t _normalize_index(Py_ssize_t index, + Py_ssize_t length) except -1: + if index < 0: + index += length + if index < 0: + raise IndexError("index out of bounds") + elif index >= length: + raise IndexError("index out of bounds") + return index + + +cdef wrap_datum(const CDatum& datum): + if datum.kind() == DatumType_ARRAY: + return pyarrow_wrap_array(MakeArray(datum.array())) + elif datum.kind() == DatumType_CHUNKED_ARRAY: + return pyarrow_wrap_chunked_array(datum.chunked_array()) + elif datum.kind() == DatumType_RECORD_BATCH: + return pyarrow_wrap_batch(datum.record_batch()) + elif datum.kind() == DatumType_TABLE: + return pyarrow_wrap_table(datum.table()) + elif datum.kind() == DatumType_SCALAR: + return pyarrow_wrap_scalar(datum.scalar()) + else: + raise ValueError("Unable to wrap Datum in a Python object") + + +cdef _append_array_buffers(const CArrayData* ad, list res): + """ + Recursively append Buffer wrappers from *ad* and its children. + """ + cdef size_t i, n + assert ad != NULL + n = ad.buffers.size() + for i in range(n): + buf = ad.buffers[i] + res.append(pyarrow_wrap_buffer(buf) + if buf.get() != NULL else None) + n = ad.child_data.size() + for i in range(n): + _append_array_buffers(ad.child_data[i].get(), res) + + +cdef _reduce_array_data(const CArrayData* ad): + """ + Recursively dissect ArrayData to (pickable) tuples. + """ + cdef size_t i, n + assert ad != NULL + + n = ad.buffers.size() + buffers = [] + for i in range(n): + buf = ad.buffers[i] + buffers.append(pyarrow_wrap_buffer(buf) + if buf.get() != NULL else None) + + children = [] + n = ad.child_data.size() + for i in range(n): + children.append(_reduce_array_data(ad.child_data[i].get())) + + if ad.dictionary.get() != NULL: + dictionary = _reduce_array_data(ad.dictionary.get()) + else: + dictionary = None + + return pyarrow_wrap_data_type(ad.type), ad.length, ad.null_count, \ + ad.offset, buffers, children, dictionary + + +cdef shared_ptr[CArrayData] _reconstruct_array_data(data): + """ + Reconstruct CArrayData objects from the tuple structure generated + by _reduce_array_data. + """ + cdef: + int64_t length, null_count, offset, i + DataType dtype + Buffer buf + vector[shared_ptr[CBuffer]] c_buffers + vector[shared_ptr[CArrayData]] c_children + shared_ptr[CArrayData] c_dictionary + + dtype, length, null_count, offset, buffers, children, dictionary = data + + for i in range(len(buffers)): + buf = buffers[i] + if buf is None: + c_buffers.push_back(shared_ptr[CBuffer]()) + else: + c_buffers.push_back(buf.buffer) + + for i in range(len(children)): + c_children.push_back(_reconstruct_array_data(children[i])) + + if dictionary is not None: + c_dictionary = _reconstruct_array_data(dictionary) + + return CArrayData.MakeWithChildrenAndDictionary( + dtype.sp_type, + length, + c_buffers, + c_children, + c_dictionary, + null_count, + offset) + + +def _restore_array(data): + """ + Reconstruct an Array from pickled ArrayData. + """ + cdef shared_ptr[CArrayData] ad = _reconstruct_array_data(data) + return pyarrow_wrap_array(MakeArray(ad)) + + +cdef class _PandasConvertible(_Weakrefable): + + def to_pandas( + self, + memory_pool=None, + categories=None, + bint strings_to_categorical=False, + bint zero_copy_only=False, + bint integer_object_nulls=False, + bint date_as_object=True, + bint timestamp_as_object=False, + bint use_threads=True, + bint deduplicate_objects=True, + bint ignore_metadata=False, + bint safe=True, + bint split_blocks=False, + bint self_destruct=False, + str maps_as_pydicts=None, + types_mapper=None, + bint coerce_temporal_nanoseconds=False + ): + """ + Convert to a pandas-compatible NumPy array or DataFrame, as appropriate + + Parameters + ---------- + memory_pool : MemoryPool, default None + Arrow MemoryPool to use for allocations. Uses the default memory + pool if not passed. + categories : list, default empty + List of fields that should be returned as pandas.Categorical. Only + applies to table-like data structures. + strings_to_categorical : bool, default False + Encode string (UTF8) and binary types to pandas.Categorical. + zero_copy_only : bool, default False + Raise an ArrowException if this function call would require copying + the underlying data. + integer_object_nulls : bool, default False + Cast integers with nulls to objects + date_as_object : bool, default True + Cast dates to objects. If False, convert to datetime64 dtype with + the equivalent time unit (if supported). Note: in pandas version + < 2.0, only datetime64[ns] conversion is supported. + timestamp_as_object : bool, default False + Cast non-nanosecond timestamps (np.datetime64) to objects. This is + useful in pandas version 1.x if you have timestamps that don't fit + in the normal date range of nanosecond timestamps (1678 CE-2262 CE). + Non-nanosecond timestamps are supported in pandas version 2.0. + If False, all timestamps are converted to datetime64 dtype. + use_threads : bool, default True + Whether to parallelize the conversion using multiple threads. + deduplicate_objects : bool, default True + Do not create multiple copies Python objects when created, to save + on memory use. Conversion will be slower. + ignore_metadata : bool, default False + If True, do not use the 'pandas' metadata to reconstruct the + DataFrame index, if present + safe : bool, default True + For certain data types, a cast is needed in order to store the + data in a pandas DataFrame or Series (e.g. timestamps are always + stored as nanoseconds in pandas). This option controls whether it + is a safe cast or not. + split_blocks : bool, default False + If True, generate one internal "block" for each column when + creating a pandas.DataFrame from a RecordBatch or Table. While this + can temporarily reduce memory note that various pandas operations + can trigger "consolidation" which may balloon memory use. + self_destruct : bool, default False + EXPERIMENTAL: If True, attempt to deallocate the originating Arrow + memory while converting the Arrow object to pandas. If you use the + object after calling to_pandas with this option it will crash your + program. + + Note that you may not see always memory usage improvements. For + example, if multiple columns share an underlying allocation, + memory can't be freed until all columns are converted. + maps_as_pydicts : str, optional, default `None` + Valid values are `None`, 'lossy', or 'strict'. + The default behavior (`None`), is to convert Arrow Map arrays to + Python association lists (list-of-tuples) in the same order as the + Arrow Map, as in [(key1, value1), (key2, value2), ...]. + + If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts. + This can change the ordering of (key, value) pairs, and will + deduplicate multiple keys, resulting in a possible loss of data. + + If 'lossy', this key deduplication results in a warning printed + when detected. If 'strict', this instead results in an exception + being raised when detected. + types_mapper : function, default None + A function mapping a pyarrow DataType to a pandas ExtensionDtype. + This can be used to override the default pandas type for conversion + of built-in pyarrow types or in absence of pandas_metadata in the + Table schema. The function receives a pyarrow DataType and is + expected to return a pandas ExtensionDtype or ``None`` if the + default conversion should be used for that type. If you have + a dictionary mapping, you can pass ``dict.get`` as function. + coerce_temporal_nanoseconds : bool, default False + Only applicable to pandas version >= 2.0. + A legacy option to coerce date32, date64, duration, and timestamp + time units to nanoseconds when converting to pandas. This is the + default behavior in pandas version 1.x. Set this option to True if + you'd like to use this coercion when using pandas version >= 2.0 + for backwards compatibility (not recommended otherwise). + + Returns + ------- + pandas.Series or pandas.DataFrame depending on type of object + + Examples + -------- + >>> import pyarrow as pa + >>> import pandas as pd + + Convert a Table to pandas DataFrame: + + >>> table = pa.table([ + ... pa.array([2, 4, 5, 100]), + ... pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) + ... ], names=['n_legs', 'animals']) + >>> table.to_pandas() + n_legs animals + 0 2 Flamingo + 1 4 Horse + 2 5 Brittle stars + 3 100 Centipede + >>> isinstance(table.to_pandas(), pd.DataFrame) + True + + Convert a RecordBatch to pandas DataFrame: + + >>> import pyarrow as pa + >>> n_legs = pa.array([2, 4, 5, 100]) + >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) + >>> batch = pa.record_batch([n_legs, animals], + ... names=["n_legs", "animals"]) + >>> batch + pyarrow.RecordBatch + n_legs: int64 + animals: string + ---- + n_legs: [2,4,5,100] + animals: ["Flamingo","Horse","Brittle stars","Centipede"] + >>> batch.to_pandas() + n_legs animals + 0 2 Flamingo + 1 4 Horse + 2 5 Brittle stars + 3 100 Centipede + >>> isinstance(batch.to_pandas(), pd.DataFrame) + True + + Convert a Chunked Array to pandas Series: + + >>> import pyarrow as pa + >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) + >>> n_legs.to_pandas() + 0 2 + 1 2 + 2 4 + 3 4 + 4 5 + 5 100 + dtype: int64 + >>> isinstance(n_legs.to_pandas(), pd.Series) + True + """ + options = dict( + pool=memory_pool, + strings_to_categorical=strings_to_categorical, + zero_copy_only=zero_copy_only, + integer_object_nulls=integer_object_nulls, + date_as_object=date_as_object, + timestamp_as_object=timestamp_as_object, + use_threads=use_threads, + deduplicate_objects=deduplicate_objects, + safe=safe, + split_blocks=split_blocks, + self_destruct=self_destruct, + maps_as_pydicts=maps_as_pydicts, + coerce_temporal_nanoseconds=coerce_temporal_nanoseconds + ) + return self._to_pandas(options, categories=categories, + ignore_metadata=ignore_metadata, + types_mapper=types_mapper) + + +cdef PandasOptions _convert_pandas_options(dict options): + cdef PandasOptions result + result.pool = maybe_unbox_memory_pool(options['pool']) + result.strings_to_categorical = options['strings_to_categorical'] + result.zero_copy_only = options['zero_copy_only'] + result.integer_object_nulls = options['integer_object_nulls'] + result.date_as_object = options['date_as_object'] + result.timestamp_as_object = options['timestamp_as_object'] + result.use_threads = options['use_threads'] + result.deduplicate_objects = options['deduplicate_objects'] + result.safe_cast = options['safe'] + result.split_blocks = options['split_blocks'] + result.self_destruct = options['self_destruct'] + result.coerce_temporal_nanoseconds = options['coerce_temporal_nanoseconds'] + result.ignore_timezone = os.environ.get('PYARROW_IGNORE_TIMEZONE', False) + + maps_as_pydicts = options['maps_as_pydicts'] + if maps_as_pydicts is None: + result.maps_as_pydicts = MapConversionType.DEFAULT + elif maps_as_pydicts == "lossy": + result.maps_as_pydicts = MapConversionType.LOSSY + elif maps_as_pydicts == "strict": + result.maps_as_pydicts = MapConversionType.STRICT_ + else: + raise ValueError( + "Invalid value for 'maps_as_pydicts': " + + "valid values are 'lossy', 'strict' or `None` (default). " + + f"Received '{maps_as_pydicts}'." + ) + return result + + +cdef class Array(_PandasConvertible): + """ + The base class for all Arrow arrays. + """ + + def __init__(self): + raise TypeError("Do not call {}'s constructor directly, use one of " + "the `pyarrow.Array.from_*` functions instead." + .format(self.__class__.__name__)) + + cdef void init(self, const shared_ptr[CArray]& sp_array) except *: + self.sp_array = sp_array + self.ap = sp_array.get() + self.type = pyarrow_wrap_data_type(self.sp_array.get().type()) + + def _debug_print(self): + with nogil: + check_status(DebugPrint(deref(self.ap), 0)) + + def diff(self, Array other): + """ + Compare contents of this array against another one. + + Return a string containing the result of diffing this array + (on the left side) against the other array (on the right side). + + Parameters + ---------- + other : Array + The other array to compare this array with. + + Returns + ------- + diff : str + A human-readable printout of the differences. + + Examples + -------- + >>> import pyarrow as pa + >>> left = pa.array(["one", "two", "three"]) + >>> right = pa.array(["two", None, "two-and-a-half", "three"]) + >>> print(left.diff(right)) # doctest: +SKIP + + @@ -0, +0 @@ + -"one" + @@ -2, +1 @@ + +null + +"two-and-a-half" + + """ + cdef c_string result + with nogil: + result = self.ap.Diff(deref(other.ap)) + return frombytes(result, safe=True) + + def cast(self, object target_type=None, safe=None, options=None, memory_pool=None): + """ + Cast array values to another data type + + See :func:`pyarrow.compute.cast` for usage. + + Parameters + ---------- + target_type : DataType, default None + Type to cast array to. + safe : boolean, default True + Whether to check for conversion errors such as overflow. + options : CastOptions, default None + Additional checks pass by CastOptions + memory_pool : MemoryPool, optional + memory pool to use for allocations during function execution. + + Returns + ------- + cast : Array + """ + return _pc().cast(self, target_type, safe=safe, + options=options, memory_pool=memory_pool) + + def view(self, object target_type): + """ + Return zero-copy "view" of array as another data type. + + The data types must have compatible columnar buffer layouts + + Parameters + ---------- + target_type : DataType + Type to construct view as. + + Returns + ------- + view : Array + """ + cdef DataType type = ensure_type(target_type) + cdef shared_ptr[CArray] result + with nogil: + result = GetResultValue(self.ap.View(type.sp_type)) + return pyarrow_wrap_array(result) + + def sum(self, **kwargs): + """ + Sum the values in a numerical array. + + See :func:`pyarrow.compute.sum` for full usage. + + Parameters + ---------- + **kwargs : dict, optional + Options to pass to :func:`pyarrow.compute.sum`. + + Returns + ------- + sum : Scalar + A scalar containing the sum value. + """ + options = _pc().ScalarAggregateOptions(**kwargs) + return _pc().call_function('sum', [self], options) + + def unique(self): + """ + Compute distinct elements in array. + + Returns + ------- + unique : Array + An array of the same data type, with deduplicated elements. + """ + return _pc().call_function('unique', [self]) + + def dictionary_encode(self, null_encoding='mask'): + """ + Compute dictionary-encoded representation of array. + + See :func:`pyarrow.compute.dictionary_encode` for full usage. + + Parameters + ---------- + null_encoding : str, default "mask" + How to handle null entries. + + Returns + ------- + encoded : DictionaryArray + A dictionary-encoded version of this array. + """ + options = _pc().DictionaryEncodeOptions(null_encoding) + return _pc().call_function('dictionary_encode', [self], options) + + def value_counts(self): + """ + Compute counts of unique elements in array. + + Returns + ------- + StructArray + An array of structs + """ + return _pc().call_function('value_counts', [self]) + + @staticmethod + def from_pandas(obj, mask=None, type=None, bint safe=True, + MemoryPool memory_pool=None): + """ + Convert pandas.Series to an Arrow Array. + + This method uses Pandas semantics about what values indicate + nulls. See pyarrow.array for more general conversion from arrays or + sequences to Arrow arrays. + + Parameters + ---------- + obj : ndarray, pandas.Series, array-like + mask : array (boolean), optional + Indicate which values are null (True) or not null (False). + type : pyarrow.DataType + Explicit type to attempt to coerce to, otherwise will be inferred + from the data. + safe : bool, default True + Check for overflows or other unsafe conversions. + memory_pool : pyarrow.MemoryPool, optional + If not passed, will allocate memory from the currently-set default + memory pool. + + Notes + ----- + Localized timestamps will currently be returned as UTC (pandas's native + representation). Timezone-naive data will be implicitly interpreted as + UTC. + + Returns + ------- + array : pyarrow.Array or pyarrow.ChunkedArray + ChunkedArray is returned if object data overflows binary buffer. + """ + return array(obj, mask=mask, type=type, safe=safe, from_pandas=True, + memory_pool=memory_pool) + + def __reduce__(self): + return _restore_array, \ + (_reduce_array_data(self.sp_array.get().data().get()),) + + @staticmethod + def from_buffers(DataType type, length, buffers, null_count=-1, offset=0, + children=None): + """ + Construct an Array from a sequence of buffers. + + The concrete type returned depends on the datatype. + + Parameters + ---------- + type : DataType + The value type of the array. + length : int + The number of values in the array. + buffers : List[Buffer] + The buffers backing this array. + null_count : int, default -1 + The number of null entries in the array. Negative value means that + the null count is not known. + offset : int, default 0 + The array's logical offset (in values, not in bytes) from the + start of each buffer. + children : List[Array], default None + Nested type children with length matching type.num_fields. + + Returns + ------- + array : Array + """ + cdef: + Buffer buf + Array child + vector[shared_ptr[CBuffer]] c_buffers + vector[shared_ptr[CArrayData]] c_child_data + shared_ptr[CArrayData] array_data + + children = children or [] + + if type.num_fields != len(children): + raise ValueError("Type's expected number of children " + "({0}) did not match the passed number " + "({1}).".format(type.num_fields, len(children))) + + if type.num_buffers != len(buffers): + raise ValueError("Type's expected number of buffers " + "({0}) did not match the passed number " + "({1}).".format(type.num_buffers, len(buffers))) + + for buf in buffers: + # None will produce a null buffer pointer + c_buffers.push_back(pyarrow_unwrap_buffer(buf)) + + for child in children: + c_child_data.push_back(child.ap.data()) + + array_data = CArrayData.MakeWithChildren(type.sp_type, length, + c_buffers, c_child_data, + null_count, offset) + cdef Array result = pyarrow_wrap_array(MakeArray(array_data)) + result.validate() + return result + + @property + def null_count(self): + return self.sp_array.get().null_count() + + @property + def nbytes(self): + """ + Total number of bytes consumed by the elements of the array. + + In other words, the sum of bytes from all buffer + ranges referenced. + + Unlike `get_total_buffer_size` this method will account for array + offsets. + + If buffers are shared between arrays then the shared + portion will be counted multiple times. + + The dictionary of dictionary arrays will always be counted in their + entirety even if the array only references a portion of the dictionary. + """ + cdef: + CResult[int64_t] c_size_res + + with nogil: + c_size_res = ReferencedBufferSize(deref(self.ap)) + size = GetResultValue(c_size_res) + return size + + def get_total_buffer_size(self): + """ + The sum of bytes in each buffer referenced by the array. + + An array may only reference a portion of a buffer. + This method will overestimate in this case and return the + byte size of the entire buffer. + + If a buffer is referenced multiple times then it will + only be counted once. + """ + cdef: + int64_t total_buffer_size + + total_buffer_size = TotalBufferSize(deref(self.ap)) + return total_buffer_size + + def __sizeof__(self): + return super(Array, self).__sizeof__() + self.nbytes + + def __iter__(self): + for i in range(len(self)): + yield self.getitem(i) + + def __repr__(self): + type_format = object.__repr__(self) + return '{0}\n{1}'.format(type_format, str(self)) + + def to_string(self, *, int indent=2, int top_level_indent=0, int window=10, + int container_window=2, c_bool skip_new_lines=False): + """ + Render a "pretty-printed" string representation of the Array. + + Parameters + ---------- + indent : int, default 2 + How much to indent the internal items in the string to + the right, by default ``2``. + top_level_indent : int, default 0 + How much to indent right the entire content of the array, + by default ``0``. + window : int + How many primitive items to preview at the begin and end + of the array when the array is bigger than the window. + The other items will be ellipsed. + container_window : int + How many container items (such as a list in a list array) + to preview at the begin and end of the array when the array + is bigger than the window. + skip_new_lines : bool + If the array should be rendered as a single line of text + or if each element should be on its own line. + """ + cdef: + c_string result + PrettyPrintOptions options + + with nogil: + options = PrettyPrintOptions(top_level_indent, window) + options.skip_new_lines = skip_new_lines + options.indent_size = indent + check_status( + PrettyPrint( + deref(self.ap), + options, + &result + ) + ) + + return frombytes(result, safe=True) + + def format(self, **kwargs): + """ + DEPRECATED, use pyarrow.Array.to_string + + Parameters + ---------- + **kwargs : dict + + Returns + ------- + str + """ + import warnings + warnings.warn('Array.format is deprecated, use Array.to_string') + return self.to_string(**kwargs) + + def __str__(self): + return self.to_string() + + def __eq__(self, other): + try: + return self.equals(other) + except TypeError: + # This also handles comparing with None + # as Array.equals(None) raises a TypeError. + return NotImplemented + + def equals(Array self, Array other not None): + """ + Parameters + ---------- + other : pyarrow.Array + + Returns + ------- + bool + """ + return self.ap.Equals(deref(other.ap)) + + def __len__(self): + return self.length() + + cdef int64_t length(self): + if self.sp_array.get(): + return self.sp_array.get().length() + else: + return 0 + + def is_null(self, *, nan_is_null=False): + """ + Return BooleanArray indicating the null values. + + Parameters + ---------- + nan_is_null : bool (optional, default False) + Whether floating-point NaN values should also be considered null. + + Returns + ------- + array : boolean Array + """ + options = _pc().NullOptions(nan_is_null=nan_is_null) + return _pc().call_function('is_null', [self], options) + + def is_nan(self): + """ + Return BooleanArray indicating the NaN values. + + Returns + ------- + array : boolean Array + """ + return _pc().call_function('is_nan', [self]) + + def is_valid(self): + """ + Return BooleanArray indicating the non-null values. + """ + return _pc().is_valid(self) + + def fill_null(self, fill_value): + """ + See :func:`pyarrow.compute.fill_null` for usage. + + Parameters + ---------- + fill_value : any + The replacement value for null entries. + + Returns + ------- + result : Array + A new array with nulls replaced by the given value. + """ + return _pc().fill_null(self, fill_value) + + def __getitem__(self, key): + """ + Slice or return value at given index + + Parameters + ---------- + key : integer or slice + Slices with step not equal to 1 (or None) will produce a copy + rather than a zero-copy view + + Returns + ------- + value : Scalar (index) or Array (slice) + """ + if isinstance(key, slice): + return _normalize_slice(self, key) + + return self.getitem(_normalize_index(key, self.length())) + + cdef getitem(self, int64_t i): + return Scalar.wrap(GetResultValue(self.ap.GetScalar(i))) + + def slice(self, offset=0, length=None): + """ + Compute zero-copy slice of this array. + + Parameters + ---------- + offset : int, default 0 + Offset from start of array to slice. + length : int, default None + Length of slice (default is until end of Array starting from + offset). + + Returns + ------- + sliced : RecordBatch + """ + cdef: + shared_ptr[CArray] result + + if offset < 0: + raise IndexError('Offset must be non-negative') + + offset = min(len(self), offset) + if length is None: + result = self.ap.Slice(offset) + else: + if length < 0: + raise ValueError('Length must be non-negative') + result = self.ap.Slice(offset, length) + + return pyarrow_wrap_array(result) + + def take(self, object indices): + """ + Select values from an array. + + See :func:`pyarrow.compute.take` for full usage. + + Parameters + ---------- + indices : Array or array-like + The indices in the array whose values will be returned. + + Returns + ------- + taken : Array + An array with the same datatype, containing the taken values. + """ + return _pc().take(self, indices) + + def drop_null(self): + """ + Remove missing values from an array. + """ + return _pc().drop_null(self) + + def filter(self, Array mask, *, null_selection_behavior='drop'): + """ + Select values from an array. + + See :func:`pyarrow.compute.filter` for full usage. + + Parameters + ---------- + mask : Array or array-like + The boolean mask to filter the array with. + null_selection_behavior : str, default "drop" + How nulls in the mask should be handled. + + Returns + ------- + filtered : Array + An array of the same type, with only the elements selected by + the boolean mask. + """ + return _pc().filter(self, mask, + null_selection_behavior=null_selection_behavior) + + def index(self, value, start=None, end=None, *, memory_pool=None): + """ + Find the first index of a value. + + See :func:`pyarrow.compute.index` for full usage. + + Parameters + ---------- + value : Scalar or object + The value to look for in the array. + start : int, optional + The start index where to look for `value`. + end : int, optional + The end index where to look for `value`. + memory_pool : MemoryPool, optional + A memory pool for potential memory allocations. + + Returns + ------- + index : Int64Scalar + The index of the value in the array (-1 if not found). + """ + return _pc().index(self, value, start, end, memory_pool=memory_pool) + + def sort(self, order="ascending", **kwargs): + """ + Sort the Array + + Parameters + ---------- + order : str, default "ascending" + Which order to sort values in. + Accepted values are "ascending", "descending". + **kwargs : dict, optional + Additional sorting options. + As allowed by :class:`SortOptions` + + Returns + ------- + result : Array + """ + indices = _pc().sort_indices( + self, + options=_pc().SortOptions(sort_keys=[("", order)], **kwargs) + ) + return self.take(indices) + + def _to_pandas(self, options, types_mapper=None, **kwargs): + return _array_like_to_pandas(self, options, types_mapper=types_mapper) + + def __array__(self, dtype=None, copy=None): + if copy is False: + try: + values = self.to_numpy(zero_copy_only=True) + except ArrowInvalid: + raise ValueError( + "Unable to avoid a copy while creating a numpy array as requested.\n" + "If using `np.array(obj, copy=False)` replace it with " + "`np.asarray(obj)` to allow a copy when needed" + ) + # values is already a numpy array at this point, but calling np.array(..) + # again to handle the `dtype` keyword with a no-copy guarantee + return np.array(values, dtype=dtype, copy=False) + + values = self.to_numpy(zero_copy_only=False) + if copy is True and is_numeric(self.type.id) and self.null_count == 0: + # to_numpy did not yet make a copy (is_numeric = integer/floats, no decimal) + return np.array(values, dtype=dtype, copy=True) + + if dtype is None: + return values + return np.asarray(values, dtype=dtype) + + def to_numpy(self, zero_copy_only=True, writable=False): + """ + Return a NumPy view or copy of this array (experimental). + + By default, tries to return a view of this array. This is only + supported for primitive arrays with the same memory layout as NumPy + (i.e. integers, floating point, ..) and without any nulls. + + For the extension arrays, this method simply delegates to the + underlying storage array. + + Parameters + ---------- + zero_copy_only : bool, default True + If True, an exception will be raised if the conversion to a numpy + array would require copying the underlying data (e.g. in presence + of nulls, or for non-primitive types). + writable : bool, default False + For numpy arrays created with zero copy (view on the Arrow data), + the resulting array is not writable (Arrow data is immutable). + By setting this to True, a copy of the array is made to ensure + it is writable. + + Returns + ------- + array : numpy.ndarray + """ + cdef: + PyObject* out + PandasOptions c_options + object values + + if zero_copy_only and writable: + raise ValueError( + "Cannot return a writable array if asking for zero-copy") + + # If there are nulls and the array is a DictionaryArray + # decoding the dictionary will make sure nulls are correctly handled. + # Decoding a dictionary does imply a copy by the way, + # so it can't be done if the user requested a zero_copy. + c_options.decode_dictionaries = True + c_options.zero_copy_only = zero_copy_only + c_options.to_numpy = True + + with nogil: + check_status(ConvertArrayToPandas(c_options, self.sp_array, + self, &out)) + + # wrap_array_output uses pandas to convert to Categorical, here + # always convert to numpy array without pandas dependency + array = PyObject_to_object(out) + + if writable and not array.flags.writeable: + # if the conversion already needed to a copy, writeable is True + array = array.copy() + return array + + def to_pylist(self): + """ + Convert to a list of native Python objects. + + Returns + ------- + lst : list + """ + return [x.as_py() for x in self] + + def tolist(self): + """ + Alias of to_pylist for compatibility with NumPy. + """ + return self.to_pylist() + + def validate(self, *, full=False): + """ + Perform validation checks. An exception is raised if validation fails. + + By default only cheap validation checks are run. Pass `full=True` + for thorough validation checks (potentially O(n)). + + Parameters + ---------- + full : bool, default False + If True, run expensive checks, otherwise cheap checks only. + + Raises + ------ + ArrowInvalid + """ + if full: + with nogil: + check_status(self.ap.ValidateFull()) + else: + with nogil: + check_status(self.ap.Validate()) + + @property + def offset(self): + """ + A relative position into another array's data. + + The purpose is to enable zero-copy slicing. This value defaults to zero + but must be applied on all operations with the physical storage + buffers. + """ + return self.sp_array.get().offset() + + def buffers(self): + """ + Return a list of Buffer objects pointing to this array's physical + storage. + + To correctly interpret these buffers, you need to also apply the offset + multiplied with the size of the stored data type. + """ + res = [] + _append_array_buffers(self.sp_array.get().data().get(), res) + return res + + def _export_to_c(self, out_ptr, out_schema_ptr=0): + """ + Export to a C ArrowArray struct, given its pointer. + + If a C ArrowSchema struct pointer is also given, the array type + is exported to it at the same time. + + Parameters + ---------- + out_ptr: int + The raw pointer to a C ArrowArray struct. + out_schema_ptr: int (optional) + The raw pointer to a C ArrowSchema struct. + + Be careful: if you don't pass the ArrowArray struct to a consumer, + array memory will leak. This is a low-level function intended for + expert users. + """ + cdef: + void* c_ptr = _as_c_pointer(out_ptr) + void* c_schema_ptr = _as_c_pointer(out_schema_ptr, + allow_null=True) + with nogil: + check_status(ExportArray(deref(self.sp_array), + c_ptr, + c_schema_ptr)) + + @staticmethod + def _import_from_c(in_ptr, type): + """ + Import Array from a C ArrowArray struct, given its pointer + and the imported array type. + + Parameters + ---------- + in_ptr: int + The raw pointer to a C ArrowArray struct. + type: DataType or int + Either a DataType object, or the raw pointer to a C ArrowSchema + struct. + + This is a low-level function intended for expert users. + """ + cdef: + void* c_ptr = _as_c_pointer(in_ptr) + void* c_type_ptr + shared_ptr[CArray] c_array + + c_type = pyarrow_unwrap_data_type(type) + if c_type == nullptr: + # Not a DataType object, perhaps a raw ArrowSchema pointer + c_type_ptr = _as_c_pointer(type) + with nogil: + c_array = GetResultValue(ImportArray( + c_ptr, c_type_ptr)) + else: + with nogil: + c_array = GetResultValue(ImportArray( c_ptr, + c_type)) + return pyarrow_wrap_array(c_array) + + def __arrow_c_array__(self, requested_schema=None): + """ + Get a pair of PyCapsules containing a C ArrowArray representation of the object. + + Parameters + ---------- + requested_schema : PyCapsule | None + A PyCapsule containing a C ArrowSchema representation of a requested + schema. PyArrow will attempt to cast the array to this data type. + If None, the array will be returned as-is, with a type matching the + one returned by :meth:`__arrow_c_schema__()`. + + Returns + ------- + Tuple[PyCapsule, PyCapsule] + A pair of PyCapsules containing a C ArrowSchema and ArrowArray, + respectively. + """ + cdef: + ArrowArray* c_array + ArrowSchema* c_schema + shared_ptr[CArray] inner_array + + if requested_schema is not None: + target_type = DataType._import_from_c_capsule(requested_schema) + + if target_type != self.type: + try: + casted_array = _pc().cast(self, target_type, safe=True) + inner_array = pyarrow_unwrap_array(casted_array) + except ArrowInvalid as e: + raise ValueError( + f"Could not cast {self.type} to requested type {target_type}: {e}" + ) + else: + inner_array = self.sp_array + else: + inner_array = self.sp_array + + schema_capsule = alloc_c_schema(&c_schema) + array_capsule = alloc_c_array(&c_array) + + with nogil: + check_status(ExportArray(deref(inner_array), c_array, c_schema)) + + return schema_capsule, array_capsule + + @staticmethod + def _import_from_c_capsule(schema_capsule, array_capsule): + cdef: + ArrowSchema* c_schema + ArrowArray* c_array + shared_ptr[CArray] array + + c_schema = PyCapsule_GetPointer(schema_capsule, 'arrow_schema') + c_array = PyCapsule_GetPointer(array_capsule, 'arrow_array') + + with nogil: + array = GetResultValue(ImportArray(c_array, c_schema)) + + return pyarrow_wrap_array(array) + + def _export_to_c_device(self, out_ptr, out_schema_ptr=0): + """ + Export to a C ArrowDeviceArray struct, given its pointer. + + If a C ArrowSchema struct pointer is also given, the array type + is exported to it at the same time. + + Parameters + ---------- + out_ptr: int + The raw pointer to a C ArrowDeviceArray struct. + out_schema_ptr: int (optional) + The raw pointer to a C ArrowSchema struct. + + Be careful: if you don't pass the ArrowDeviceArray struct to a consumer, + array memory will leak. This is a low-level function intended for + expert users. + """ + cdef: + void* c_ptr = _as_c_pointer(out_ptr) + void* c_schema_ptr = _as_c_pointer(out_schema_ptr, + allow_null=True) + with nogil: + check_status(ExportDeviceArray( + deref(self.sp_array), NULL, + c_ptr, c_schema_ptr)) + + @staticmethod + def _import_from_c_device(in_ptr, type): + """ + Import Array from a C ArrowDeviceArray struct, given its pointer + and the imported array type. + + Parameters + ---------- + in_ptr: int + The raw pointer to a C ArrowDeviceArray struct. + type: DataType or int + Either a DataType object, or the raw pointer to a C ArrowSchema + struct. + + This is a low-level function intended for expert users. + """ + cdef: + void* c_ptr = _as_c_pointer(in_ptr) + void* c_type_ptr + shared_ptr[CArray] c_array + + c_type = pyarrow_unwrap_data_type(type) + if c_type == nullptr: + # Not a DataType object, perhaps a raw ArrowSchema pointer + c_type_ptr = _as_c_pointer(type) + with nogil: + c_array = GetResultValue( + ImportDeviceArray( c_ptr, + c_type_ptr) + ) + else: + with nogil: + c_array = GetResultValue( + ImportDeviceArray( c_ptr, c_type) + ) + return pyarrow_wrap_array(c_array) + + def __dlpack__(self, stream=None): + """Export a primitive array as a DLPack capsule. + + Parameters + ---------- + stream : int, optional + A Python integer representing a pointer to a stream. Currently not supported. + Stream is provided by the consumer to the producer to instruct the producer + to ensure that operations can safely be performed on the array. + + Returns + ------- + capsule : PyCapsule + A DLPack capsule for the array, pointing to a DLManagedTensor. + """ + if stream is None: + dlm_tensor = GetResultValue(ExportToDLPack(self.sp_array)) + + return PyCapsule_New(dlm_tensor, 'dltensor', dlpack_pycapsule_deleter) + else: + raise NotImplementedError( + "Only stream=None is supported." + ) + + def __dlpack_device__(self): + """ + Return the DLPack device tuple this arrays resides on. + + Returns + ------- + tuple : Tuple[int, int] + Tuple with index specifying the type of the device (where + CPU = 1, see cpp/src/arrow/c/dpack_abi.h) and index of the + device which is 0 by default for CPU. + """ + device = GetResultValue(ExportDevice(self.sp_array)) + return device.device_type, device.device_id + + +cdef _array_like_to_pandas(obj, options, types_mapper): + cdef: + PyObject* out + PandasOptions c_options = _convert_pandas_options(options) + + original_type = obj.type + name = obj._name + dtype = None + + if types_mapper: + dtype = types_mapper(original_type) + elif original_type.id == _Type_EXTENSION: + try: + dtype = original_type.to_pandas_dtype() + except NotImplementedError: + pass + + # Only call __from_arrow__ for Arrow extension types or when explicitly + # overridden via types_mapper + if hasattr(dtype, '__from_arrow__'): + arr = dtype.__from_arrow__(obj) + return pandas_api.series(arr, name=name, copy=False) + + if pandas_api.is_v1(): + # ARROW-3789: Coerce date/timestamp types to datetime64[ns] + c_options.coerce_temporal_nanoseconds = True + + if isinstance(obj, Array): + with nogil: + check_status(ConvertArrayToPandas(c_options, + ( obj).sp_array, + obj, &out)) + elif isinstance(obj, ChunkedArray): + with nogil: + check_status(libarrow_python.ConvertChunkedArrayToPandas( + c_options, + ( obj).sp_chunked_array, + obj, &out)) + + arr = wrap_array_output(out) + + if (isinstance(original_type, TimestampType) and + options["timestamp_as_object"]): + # ARROW-5359 - need to specify object dtype to avoid pandas to + # coerce back to ns resolution + dtype = "object" + elif types_mapper: + dtype = types_mapper(original_type) + else: + dtype = None + + result = pandas_api.series(arr, dtype=dtype, name=name, copy=False) + + if (isinstance(original_type, TimestampType) and + original_type.tz is not None and + # can be object dtype for non-ns and timestamp_as_object=True + result.dtype.kind == "M"): + from pyarrow.pandas_compat import make_tz_aware + result = make_tz_aware(result, original_type.tz) + + return result + + +cdef wrap_array_output(PyObject* output): + cdef object obj = PyObject_to_object(output) + + if isinstance(obj, dict): + return _pandas_api.categorical_type.from_codes( + obj['indices'], categories=obj['dictionary'], ordered=obj['ordered'] + ) + else: + return obj + + +cdef class NullArray(Array): + """ + Concrete class for Arrow arrays of null data type. + """ + + +cdef class BooleanArray(Array): + """ + Concrete class for Arrow arrays of boolean data type. + """ + @property + def false_count(self): + return ( self.ap).false_count() + + @property + def true_count(self): + return ( self.ap).true_count() + + +cdef class NumericArray(Array): + """ + A base class for Arrow numeric arrays. + """ + + +cdef class IntegerArray(NumericArray): + """ + A base class for Arrow integer arrays. + """ + + +cdef class FloatingPointArray(NumericArray): + """ + A base class for Arrow floating-point arrays. + """ + + +cdef class Int8Array(IntegerArray): + """ + Concrete class for Arrow arrays of int8 data type. + """ + + +cdef class UInt8Array(IntegerArray): + """ + Concrete class for Arrow arrays of uint8 data type. + """ + + +cdef class Int16Array(IntegerArray): + """ + Concrete class for Arrow arrays of int16 data type. + """ + + +cdef class UInt16Array(IntegerArray): + """ + Concrete class for Arrow arrays of uint16 data type. + """ + + +cdef class Int32Array(IntegerArray): + """ + Concrete class for Arrow arrays of int32 data type. + """ + + +cdef class UInt32Array(IntegerArray): + """ + Concrete class for Arrow arrays of uint32 data type. + """ + + +cdef class Int64Array(IntegerArray): + """ + Concrete class for Arrow arrays of int64 data type. + """ + + +cdef class UInt64Array(IntegerArray): + """ + Concrete class for Arrow arrays of uint64 data type. + """ + + +cdef class Date32Array(NumericArray): + """ + Concrete class for Arrow arrays of date32 data type. + """ + + +cdef class Date64Array(NumericArray): + """ + Concrete class for Arrow arrays of date64 data type. + """ + + +cdef class TimestampArray(NumericArray): + """ + Concrete class for Arrow arrays of timestamp data type. + """ + + +cdef class Time32Array(NumericArray): + """ + Concrete class for Arrow arrays of time32 data type. + """ + + +cdef class Time64Array(NumericArray): + """ + Concrete class for Arrow arrays of time64 data type. + """ + + +cdef class DurationArray(NumericArray): + """ + Concrete class for Arrow arrays of duration data type. + """ + + +cdef class MonthDayNanoIntervalArray(Array): + """ + Concrete class for Arrow arrays of interval[MonthDayNano] type. + """ + + def to_pylist(self): + """ + Convert to a list of native Python objects. + + pyarrow.MonthDayNano is used as the native representation. + + Returns + ------- + lst : list + """ + cdef: + CResult[PyObject*] maybe_py_list + PyObject* py_list + CMonthDayNanoIntervalArray* array + array = self.sp_array.get() + maybe_py_list = MonthDayNanoIntervalArrayToPyList(deref(array)) + py_list = GetResultValue(maybe_py_list) + return PyObject_to_object(py_list) + + +cdef class HalfFloatArray(FloatingPointArray): + """ + Concrete class for Arrow arrays of float16 data type. + """ + + +cdef class FloatArray(FloatingPointArray): + """ + Concrete class for Arrow arrays of float32 data type. + """ + + +cdef class DoubleArray(FloatingPointArray): + """ + Concrete class for Arrow arrays of float64 data type. + """ + + +cdef class FixedSizeBinaryArray(Array): + """ + Concrete class for Arrow arrays of a fixed-size binary data type. + """ + + +cdef class Decimal128Array(FixedSizeBinaryArray): + """ + Concrete class for Arrow arrays of decimal128 data type. + """ + + +cdef class Decimal256Array(FixedSizeBinaryArray): + """ + Concrete class for Arrow arrays of decimal256 data type. + """ + +cdef class BaseListArray(Array): + + def flatten(self): + """ + Unnest this ListArray/LargeListArray by one level. + + The returned Array is logically a concatenation of all the sub-lists + in this Array. + + Note that this method is different from ``self.values`` in that + it takes care of the slicing offset as well as null elements backed + by non-empty sub-lists. + + Returns + ------- + result : Array + """ + return _pc().list_flatten(self) + + def value_parent_indices(self): + """ + Return array of same length as list child values array where each + output value is the index of the parent list array slot containing each + child value. + + Examples + -------- + >>> import pyarrow as pa + >>> arr = pa.array([[1, 2, 3], [], None, [4]], + ... type=pa.list_(pa.int32())) + >>> arr.value_parent_indices() + + [ + 0, + 0, + 0, + 3 + ] + """ + return _pc().list_parent_indices(self) + + def value_lengths(self): + """ + Return integers array with values equal to the respective length of + each list element. Null list values are null in the output. + + Examples + -------- + >>> import pyarrow as pa + >>> arr = pa.array([[1, 2, 3], [], None, [4]], + ... type=pa.list_(pa.int32())) + >>> arr.value_lengths() + + [ + 3, + 0, + null, + 1 + ] + """ + return _pc().list_value_length(self) + + +cdef class ListArray(BaseListArray): + """ + Concrete class for Arrow arrays of a list data type. + """ + + @staticmethod + def from_arrays(offsets, values, DataType type=None, MemoryPool pool=None, mask=None): + """ + Construct ListArray from arrays of int32 offsets and values. + + Parameters + ---------- + offsets : Array (int32 type) + values : Array (any type) + type : DataType, optional + If not specified, a default ListType with the values' type is + used. + pool : MemoryPool, optional + mask : Array (boolean type), optional + Indicate which values are null (True) or not null (False). + + Returns + ------- + list_array : ListArray + + Examples + -------- + >>> import pyarrow as pa + >>> values = pa.array([1, 2, 3, 4]) + >>> offsets = pa.array([0, 2, 4]) + >>> pa.ListArray.from_arrays(offsets, values) + + [ + [ + 1, + 2 + ], + [ + 3, + 4 + ] + ] + >>> # nulls in the offsets array become null lists + >>> offsets = pa.array([0, None, 2, 4]) + >>> pa.ListArray.from_arrays(offsets, values) + + [ + [ + 1, + 2 + ], + null, + [ + 3, + 4 + ] + ] + """ + cdef: + Array _offsets, _values + shared_ptr[CArray] out + shared_ptr[CBuffer] c_mask + cdef CMemoryPool* cpool = maybe_unbox_memory_pool(pool) + + _offsets = asarray(offsets, type='int32') + _values = asarray(values) + + c_mask = c_mask_inverted_from_obj(mask, pool) + + if type is not None: + with nogil: + out = GetResultValue( + CListArray.FromArraysAndType( + type.sp_type, _offsets.ap[0], _values.ap[0], cpool, c_mask)) + else: + with nogil: + out = GetResultValue( + CListArray.FromArrays( + _offsets.ap[0], _values.ap[0], cpool, c_mask)) + cdef Array result = pyarrow_wrap_array(out) + result.validate() + return result + + @property + def values(self): + """ + Return the underlying array of values which backs the ListArray + ignoring the array's offset. + + If any of the list elements are null, but are backed by a + non-empty sub-list, those elements will be included in the + output. + + Compare with :meth:`flatten`, which returns only the non-null + values taking into consideration the array's offset. + + Returns + ------- + values : Array + + See Also + -------- + ListArray.flatten : ... + + Examples + -------- + + The values include null elements from sub-lists: + + >>> import pyarrow as pa + >>> array = pa.array([[1, 2], None, [3, 4, None, 6]]) + >>> array.values + + [ + 1, + 2, + 3, + 4, + null, + 6 + ] + + If an array is sliced, the slice still uses the same + underlying data as the original array, just with an + offset. Since values ignores the offset, the values are the + same: + + >>> sliced = array.slice(1, 2) + >>> sliced + + [ + null, + [ + 3, + 4, + null, + 6 + ] + ] + >>> sliced.values + + [ + 1, + 2, + 3, + 4, + null, + 6 + ] + + """ + cdef CListArray* arr = self.ap + return pyarrow_wrap_array(arr.values()) + + @property + def offsets(self): + """ + Return the list offsets as an int32 array. + + The returned array will not have a validity bitmap, so you cannot + expect to pass it to `ListArray.from_arrays` and get back the same + list array if the original one has nulls. + + Returns + ------- + offsets : Int32Array + + Examples + -------- + >>> import pyarrow as pa + >>> array = pa.array([[1, 2], None, [3, 4, 5]]) + >>> array.offsets + + [ + 0, + 2, + 2, + 5 + ] + """ + return pyarrow_wrap_array(( self.ap).offsets()) + + +cdef class LargeListArray(BaseListArray): + """ + Concrete class for Arrow arrays of a large list data type. + + Identical to ListArray, but 64-bit offsets. + """ + + @staticmethod + def from_arrays(offsets, values, DataType type=None, MemoryPool pool=None, mask=None): + """ + Construct LargeListArray from arrays of int64 offsets and values. + + Parameters + ---------- + offsets : Array (int64 type) + values : Array (any type) + type : DataType, optional + If not specified, a default ListType with the values' type is + used. + pool : MemoryPool, optional + mask : Array (boolean type), optional + Indicate which values are null (True) or not null (False). + + Returns + ------- + list_array : LargeListArray + """ + cdef: + Array _offsets, _values + shared_ptr[CArray] out + shared_ptr[CBuffer] c_mask + + cdef CMemoryPool* cpool = maybe_unbox_memory_pool(pool) + + _offsets = asarray(offsets, type='int64') + _values = asarray(values) + + c_mask = c_mask_inverted_from_obj(mask, pool) + + if type is not None: + with nogil: + out = GetResultValue( + CLargeListArray.FromArraysAndType( + type.sp_type, _offsets.ap[0], _values.ap[0], cpool, c_mask)) + else: + with nogil: + out = GetResultValue( + CLargeListArray.FromArrays( + _offsets.ap[0], _values.ap[0], cpool, c_mask)) + cdef Array result = pyarrow_wrap_array(out) + result.validate() + return result + + @property + def values(self): + """ + Return the underlying array of values which backs the LargeListArray + ignoring the array's offset. + + If any of the list elements are null, but are backed by a + non-empty sub-list, those elements will be included in the + output. + + Compare with :meth:`flatten`, which returns only the non-null + values taking into consideration the array's offset. + + Returns + ------- + values : Array + + See Also + -------- + LargeListArray.flatten : ... + + Examples + -------- + + The values include null elements from the sub-lists: + + >>> import pyarrow as pa + >>> array = pa.array( + ... [[1, 2], None, [3, 4, None, 6]], + ... type=pa.large_list(pa.int32()), + ... ) + >>> array.values + + [ + 1, + 2, + 3, + 4, + null, + 6 + ] + + If an array is sliced, the slice still uses the same + underlying data as the original array, just with an + offset. Since values ignores the offset, the values are the + same: + + >>> sliced = array.slice(1, 2) + >>> sliced + + [ + null, + [ + 3, + 4, + null, + 6 + ] + ] + >>> sliced.values + + [ + 1, + 2, + 3, + 4, + null, + 6 + ] + """ + cdef CLargeListArray* arr = self.ap + return pyarrow_wrap_array(arr.values()) + + @property + def offsets(self): + """ + Return the list offsets as an int64 array. + + The returned array will not have a validity bitmap, so you cannot + expect to pass it to `LargeListArray.from_arrays` and get back the + same list array if the original one has nulls. + + Returns + ------- + offsets : Int64Array + """ + return pyarrow_wrap_array(( self.ap).offsets()) + + +cdef class ListViewArray(Array): + """ + Concrete class for Arrow arrays of a list view data type. + """ + + @staticmethod + def from_arrays(offsets, sizes, values, DataType type=None, MemoryPool pool=None, mask=None): + """ + Construct ListViewArray from arrays of int32 offsets, sizes, and values. + + Parameters + ---------- + offsets : Array (int32 type) + sizes : Array (int32 type) + values : Array (any type) + type : DataType, optional + If not specified, a default ListType with the values' type is + used. + pool : MemoryPool, optional + mask : Array (boolean type), optional + Indicate which values are null (True) or not null (False). + + Returns + ------- + list_view_array : ListViewArray + + Examples + -------- + >>> import pyarrow as pa + >>> values = pa.array([1, 2, 3, 4]) + >>> offsets = pa.array([0, 1, 2]) + >>> sizes = pa.array([2, 2, 2]) + >>> pa.ListViewArray.from_arrays(offsets, sizes, values) + + [ + [ + 1, + 2 + ], + [ + 2, + 3 + ], + [ + 3, + 4 + ] + ] + >>> # use a null mask to represent null values + >>> mask = pa.array([False, True, False]) + >>> pa.ListViewArray.from_arrays(offsets, sizes, values, mask=mask) + + [ + [ + 1, + 2 + ], + null, + [ + 3, + 4 + ] + ] + >>> # null values can be defined in either offsets or sizes arrays + >>> # WARNING: this will result in a copy of the offsets or sizes arrays + >>> offsets = pa.array([0, None, 2]) + >>> pa.ListViewArray.from_arrays(offsets, sizes, values) + + [ + [ + 1, + 2 + ], + null, + [ + 3, + 4 + ] + ] + """ + cdef: + Array _offsets, _sizes, _values + shared_ptr[CArray] out + shared_ptr[CBuffer] c_mask + CMemoryPool* cpool = maybe_unbox_memory_pool(pool) + + _offsets = asarray(offsets, type='int32') + _sizes = asarray(sizes, type='int32') + _values = asarray(values) + + c_mask = c_mask_inverted_from_obj(mask, pool) + + if type is not None: + with nogil: + out = GetResultValue( + CListViewArray.FromArraysAndType( + type.sp_type, _offsets.ap[0], _sizes.ap[0], _values.ap[0], cpool, c_mask)) + else: + with nogil: + out = GetResultValue( + CListViewArray.FromArrays( + _offsets.ap[0], _sizes.ap[0], _values.ap[0], cpool, c_mask)) + cdef Array result = pyarrow_wrap_array(out) + result.validate() + return result + + @property + def values(self): + """ + Return the underlying array of values which backs the ListViewArray + ignoring the array's offset and sizes. + + The values array may be out of order and/or contain additional values + that are not found in the logical representation of the array. The only + guarantee is that each non-null value in the ListView Array is contiguous. + + Compare with :meth:`flatten`, which returns only the non-null + values taking into consideration the array's order and offset. + + Returns + ------- + values : Array + + Examples + -------- + The values include null elements from sub-lists: + + >>> import pyarrow as pa + >>> values = [1, 2, None, 3, 4] + >>> offsets = [0, 0, 1] + >>> sizes = [2, 0, 4] + >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) + >>> array + + [ + [ + 1, + 2 + ], + [], + [ + 2, + null, + 3, + 4 + ] + ] + >>> array.values + + [ + 1, + 2, + null, + 3, + 4 + ] + """ + cdef CListViewArray* arr = self.ap + return pyarrow_wrap_array(arr.values()) + + @property + def offsets(self): + """ + Return the list offsets as an int32 array. + + The returned array will not have a validity bitmap, so you cannot + expect to pass it to `ListViewArray.from_arrays` and get back the same + list array if the original one has nulls. + + Returns + ------- + offsets : Int32Array + + Examples + -------- + >>> import pyarrow as pa + >>> values = [1, 2, None, 3, 4] + >>> offsets = [0, 0, 1] + >>> sizes = [2, 0, 4] + >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) + >>> array.offsets + + [ + 0, + 0, + 1 + ] + """ + return pyarrow_wrap_array(( self.ap).offsets()) + + @property + def sizes(self): + """ + Return the list sizes as an int32 array. + + The returned array will not have a validity bitmap, so you cannot + expect to pass it to `ListViewArray.from_arrays` and get back the same + list array if the original one has nulls. + + Returns + ------- + sizes : Int32Array + + Examples + -------- + >>> import pyarrow as pa + >>> values = [1, 2, None, 3, 4] + >>> offsets = [0, 0, 1] + >>> sizes = [2, 0, 4] + >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) + >>> array.sizes + + [ + 2, + 0, + 4 + ] + """ + return pyarrow_wrap_array(( self.ap).sizes()) + + def flatten(self, memory_pool=None): + """ + Unnest this ListViewArray by one level. + + The returned Array is logically a concatenation of all the sub-lists + in this Array. + + Note that this method is different from ``self.values`` in that + it takes care of the slicing offset as well as null elements backed + by non-empty sub-lists. + + Parameters + ---------- + memory_pool : MemoryPool, optional + + Returns + ------- + result : Array + + Examples + -------- + + >>> import pyarrow as pa + >>> values = [1, 2, 3, 4] + >>> offsets = [2, 1, 0] + >>> sizes = [2, 2, 2] + >>> array = pa.ListViewArray.from_arrays(offsets, sizes, values) + >>> array + + [ + [ + 3, + 4 + ], + [ + 2, + 3 + ], + [ + 1, + 2 + ] + ] + >>> array.flatten() + + [ + 3, + 4, + 2, + 3, + 1, + 2 + ] + """ + cdef CMemoryPool* cpool = maybe_unbox_memory_pool(memory_pool) + with nogil: + out = GetResultValue(( self.ap).Flatten(cpool)) + cdef Array result = pyarrow_wrap_array(out) + result.validate() + return result + + +cdef class LargeListViewArray(Array): + """ + Concrete class for Arrow arrays of a large list view data type. + + Identical to ListViewArray, but with 64-bit offsets. + """ + @staticmethod + def from_arrays(offsets, sizes, values, DataType type=None, MemoryPool pool=None, mask=None): + """ + Construct LargeListViewArray from arrays of int64 offsets and values. + + Parameters + ---------- + offsets : Array (int64 type) + sizes : Array (int64 type) + values : Array (any type) + type : DataType, optional + If not specified, a default ListType with the values' type is + used. + pool : MemoryPool, optional + mask : Array (boolean type), optional + Indicate which values are null (True) or not null (False). + + Returns + ------- + list_view_array : LargeListViewArray + + Examples + -------- + >>> import pyarrow as pa + >>> values = pa.array([1, 2, 3, 4]) + >>> offsets = pa.array([0, 1, 2]) + >>> sizes = pa.array([2, 2, 2]) + >>> pa.LargeListViewArray.from_arrays(offsets, sizes, values) + + [ + [ + 1, + 2 + ], + [ + 2, + 3 + ], + [ + 3, + 4 + ] + ] + >>> # use a null mask to represent null values + >>> mask = pa.array([False, True, False]) + >>> pa.LargeListViewArray.from_arrays(offsets, sizes, values, mask=mask) + + [ + [ + 1, + 2 + ], + null, + [ + 3, + 4 + ] + ] + >>> # null values can be defined in either offsets or sizes arrays + >>> # WARNING: this will result in a copy of the offsets or sizes arrays + >>> offsets = pa.array([0, None, 2]) + >>> pa.LargeListViewArray.from_arrays(offsets, sizes, values) + + [ + [ + 1, + 2 + ], + null, + [ + 3, + 4 + ] + ] + """ + cdef: + Array _offsets, _sizes, _values + shared_ptr[CArray] out + shared_ptr[CBuffer] c_mask + CMemoryPool* cpool = maybe_unbox_memory_pool(pool) + + _offsets = asarray(offsets, type='int64') + _sizes = asarray(sizes, type='int64') + _values = asarray(values) + + c_mask = c_mask_inverted_from_obj(mask, pool) + + if type is not None: + with nogil: + out = GetResultValue( + CLargeListViewArray.FromArraysAndType( + type.sp_type, _offsets.ap[0], _sizes.ap[0], _values.ap[0], cpool, c_mask)) + else: + with nogil: + out = GetResultValue( + CLargeListViewArray.FromArrays( + _offsets.ap[0], _sizes.ap[0], _values.ap[0], cpool, c_mask)) + cdef Array result = pyarrow_wrap_array(out) + result.validate() + return result + + @property + def values(self): + """ + Return the underlying array of values which backs the LargeListArray + ignoring the array's offset. + + The values array may be out of order and/or contain additional values + that are not found in the logical representation of the array. The only + guarantee is that each non-null value in the ListView Array is contiguous. + + Compare with :meth:`flatten`, which returns only the non-null + values taking into consideration the array's order and offset. + + Returns + ------- + values : Array + + See Also + -------- + LargeListArray.flatten : ... + + Examples + -------- + + The values include null elements from sub-lists: + + >>> import pyarrow as pa + >>> values = [1, 2, None, 3, 4] + >>> offsets = [0, 0, 1] + >>> sizes = [2, 0, 4] + >>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values) + >>> array + + [ + [ + 1, + 2 + ], + [], + [ + 2, + null, + 3, + 4 + ] + ] + >>> array.values + + [ + 1, + 2, + null, + 3, + 4 + ] + """ + cdef CLargeListViewArray* arr = self.ap + return pyarrow_wrap_array(arr.values()) + + @property + def offsets(self): + """ + Return the list view offsets as an int64 array. + + The returned array will not have a validity bitmap, so you cannot + expect to pass it to `LargeListViewArray.from_arrays` and get back the + same list array if the original one has nulls. + + Returns + ------- + offsets : Int64Array + + Examples + -------- + + >>> import pyarrow as pa + >>> values = [1, 2, None, 3, 4] + >>> offsets = [0, 0, 1] + >>> sizes = [2, 0, 4] + >>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values) + >>> array.offsets + + [ + 0, + 0, + 1 + ] + """ + return pyarrow_wrap_array(( self.ap).offsets()) + + @property + def sizes(self): + """ + Return the list view sizes as an int64 array. + + The returned array will not have a validity bitmap, so you cannot + expect to pass it to `LargeListViewArray.from_arrays` and get back the + same list array if the original one has nulls. + + Returns + ------- + sizes : Int64Array + + Examples + -------- + + >>> import pyarrow as pa + >>> values = [1, 2, None, 3, 4] + >>> offsets = [0, 0, 1] + >>> sizes = [2, 0, 4] + >>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values) + >>> array.sizes + + [ + 2, + 0, + 4 + ] + """ + return pyarrow_wrap_array(( self.ap).sizes()) + + def flatten(self, memory_pool=None): + """ + Unnest this LargeListViewArray by one level. + + The returned Array is logically a concatenation of all the sub-lists + in this Array. + + Note that this method is different from ``self.values`` in that + it takes care of the slicing offset as well as null elements backed + by non-empty sub-lists. + + Parameters + ---------- + memory_pool : MemoryPool, optional + + Returns + ------- + result : Array + + Examples + -------- + + >>> import pyarrow as pa + >>> values = [1, 2, 3, 4] + >>> offsets = [2, 1, 0] + >>> sizes = [2, 2, 2] + >>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values) + >>> array + + [ + [ + 3, + 4 + ], + [ + 2, + 3 + ], + [ + 1, + 2 + ] + ] + >>> array.flatten() + + [ + 3, + 4, + 2, + 3, + 1, + 2 + ] + """ + cdef CMemoryPool* cpool = maybe_unbox_memory_pool(memory_pool) + with nogil: + out = GetResultValue(( self.ap).Flatten(cpool)) + cdef Array result = pyarrow_wrap_array(out) + result.validate() + return result + + +cdef class MapArray(ListArray): + """ + Concrete class for Arrow arrays of a map data type. + """ + + @staticmethod + def from_arrays(offsets, keys, items, DataType type=None, MemoryPool pool=None): + """ + Construct MapArray from arrays of int32 offsets and key, item arrays. + + Parameters + ---------- + offsets : array-like or sequence (int32 type) + keys : array-like or sequence (any type) + items : array-like or sequence (any type) + type : DataType, optional + If not specified, a default MapArray with the keys' and items' type is used. + pool : MemoryPool + + Returns + ------- + map_array : MapArray + + Examples + -------- + First, let's understand the structure of our dataset when viewed in a rectangular data model. + The total of 5 respondents answered the question "How much did you like the movie x?". + The value -1 in the integer array means that the value is missing. The boolean array + represents the null bitmask corresponding to the missing values in the integer array. + + >>> import pyarrow as pa + >>> movies_rectangular = np.ma.masked_array([ + ... [10, -1, -1], + ... [8, 4, 5], + ... [-1, 10, 3], + ... [-1, -1, -1], + ... [-1, -1, -1] + ... ], + ... [ + ... [False, True, True], + ... [False, False, False], + ... [True, False, False], + ... [True, True, True], + ... [True, True, True], + ... ]) + + To represent the same data with the MapArray and from_arrays, the data is + formed like this: + + >>> offsets = [ + ... 0, # -- row 1 start + ... 1, # -- row 2 start + ... 4, # -- row 3 start + ... 6, # -- row 4 start + ... 6, # -- row 5 start + ... 6, # -- row 5 end + ... ] + >>> movies = [ + ... "Dark Knight", # ---------------------------------- row 1 + ... "Dark Knight", "Meet the Parents", "Superman", # -- row 2 + ... "Meet the Parents", "Superman", # ----------------- row 3 + ... ] + >>> likings = [ + ... 10, # -------- row 1 + ... 8, 4, 5, # --- row 2 + ... 10, 3 # ------ row 3 + ... ] + >>> pa.MapArray.from_arrays(offsets, movies, likings).to_pandas() + 0 [(Dark Knight, 10)] + 1 [(Dark Knight, 8), (Meet the Parents, 4), (Sup... + 2 [(Meet the Parents, 10), (Superman, 3)] + 3 [] + 4 [] + dtype: object + + If the data in the empty rows needs to be marked as missing, it's possible + to do so by modifying the offsets argument, so that we specify `None` as + the starting positions of the rows we want marked as missing. The end row + offset still has to refer to the existing value from keys (and values): + + >>> offsets = [ + ... 0, # ----- row 1 start + ... 1, # ----- row 2 start + ... 4, # ----- row 3 start + ... None, # -- row 4 start + ... None, # -- row 5 start + ... 6, # ----- row 5 end + ... ] + >>> pa.MapArray.from_arrays(offsets, movies, likings).to_pandas() + 0 [(Dark Knight, 10)] + 1 [(Dark Knight, 8), (Meet the Parents, 4), (Sup... + 2 [(Meet the Parents, 10), (Superman, 3)] + 3 None + 4 None + dtype: object + """ + cdef: + Array _offsets, _keys, _items + shared_ptr[CArray] out + cdef CMemoryPool* cpool = maybe_unbox_memory_pool(pool) + + _offsets = asarray(offsets, type='int32') + _keys = asarray(keys) + _items = asarray(items) + + if type is not None: + with nogil: + out = GetResultValue( + CMapArray.FromArraysAndType( + type.sp_type, _offsets.sp_array, + _keys.sp_array, _items.sp_array, cpool)) + else: + with nogil: + out = GetResultValue( + CMapArray.FromArrays(_offsets.sp_array, + _keys.sp_array, + _items.sp_array, cpool)) + cdef Array result = pyarrow_wrap_array(out) + result.validate() + return result + + @property + def keys(self): + """Flattened array of keys across all maps in array""" + return pyarrow_wrap_array(( self.ap).keys()) + + @property + def items(self): + """Flattened array of items across all maps in array""" + return pyarrow_wrap_array(( self.ap).items()) + + +cdef class FixedSizeListArray(BaseListArray): + """ + Concrete class for Arrow arrays of a fixed size list data type. + """ + + @staticmethod + def from_arrays(values, list_size=None, DataType type=None, mask=None): + """ + Construct FixedSizeListArray from array of values and a list length. + + Parameters + ---------- + values : Array (any type) + list_size : int + The fixed length of the lists. + type : DataType, optional + If not specified, a default ListType with the values' type and + `list_size` length is used. + mask : Array (boolean type), optional + Indicate which values are null (True) or not null (False). + + + Returns + ------- + FixedSizeListArray + + Examples + -------- + + Create from a values array and a list size: + + >>> import pyarrow as pa + >>> values = pa.array([1, 2, 3, 4]) + >>> arr = pa.FixedSizeListArray.from_arrays(values, 2) + >>> arr + + [ + [ + 1, + 2 + ], + [ + 3, + 4 + ] + ] + + Or create from a values array, list size and matching type: + + >>> typ = pa.list_(pa.field("values", pa.int64()), 2) + >>> arr = pa.FixedSizeListArray.from_arrays(values,type=typ) + >>> arr + + [ + [ + 1, + 2 + ], + [ + 3, + 4 + ] + ] + """ + cdef: + Array _values + int32_t _list_size + CResult[shared_ptr[CArray]] c_result + + _values = asarray(values) + + c_mask = c_mask_inverted_from_obj(mask, None) + + if type is not None: + if list_size is not None: + raise ValueError("Cannot specify both list_size and type") + with nogil: + c_result = CFixedSizeListArray.FromArraysAndType( + _values.sp_array, type.sp_type, c_mask) + else: + if list_size is None: + raise ValueError("Should specify one of list_size and type") + _list_size = list_size + with nogil: + c_result = CFixedSizeListArray.FromArrays( + _values.sp_array, _list_size, c_mask) + cdef Array result = pyarrow_wrap_array(GetResultValue(c_result)) + result.validate() + return result + + @property + def values(self): + """ + Return the underlying array of values which backs the + FixedSizeListArray. + + Note even null elements are included. + + Compare with :meth:`flatten`, which returns only the non-null + sub-list values. + + Returns + ------- + values : Array + + See Also + -------- + FixedSizeListArray.flatten : ... + + Examples + -------- + >>> import pyarrow as pa + >>> array = pa.array( + ... [[1, 2], None, [3, None]], + ... type=pa.list_(pa.int32(), 2) + ... ) + >>> array.values + + [ + 1, + 2, + null, + null, + 3, + null + ] + + """ + cdef CFixedSizeListArray* arr = self.ap + return pyarrow_wrap_array(arr.values()) + + +cdef class UnionArray(Array): + """ + Concrete class for Arrow arrays of a Union data type. + """ + + def child(self, int pos): + """ + DEPRECATED, use field() instead. + + Parameters + ---------- + pos : int + The physical index of the union child field (not its type code). + + Returns + ------- + field : pyarrow.Field + The given child field. + """ + import warnings + warnings.warn("child is deprecated, use field", FutureWarning) + return self.field(pos) + + def field(self, int pos): + """ + Return the given child field as an individual array. + + For sparse unions, the returned array has its offset, length, + and null count adjusted. + + For dense unions, the returned array is unchanged. + + Parameters + ---------- + pos : int + The physical index of the union child field (not its type code). + + Returns + ------- + field : Array + The given child field. + """ + cdef shared_ptr[CArray] result + result = ( self.ap).field(pos) + if result != NULL: + return pyarrow_wrap_array(result) + raise KeyError("UnionArray does not have child {}".format(pos)) + + @property + def type_codes(self): + """Get the type codes array.""" + buf = pyarrow_wrap_buffer(( self.ap).type_codes()) + return Array.from_buffers(int8(), len(self), [None, buf]) + + @property + def offsets(self): + """ + Get the value offsets array (dense arrays only). + + Does not account for any slice offset. + """ + if self.type.mode != "dense": + raise ArrowTypeError("Can only get value offsets for dense arrays") + cdef CDenseUnionArray* dense = self.ap + buf = pyarrow_wrap_buffer(dense.value_offsets()) + return Array.from_buffers(int32(), len(self), [None, buf]) + + @staticmethod + def from_dense(Array types, Array value_offsets, list children, + list field_names=None, list type_codes=None): + """ + Construct dense UnionArray from arrays of int8 types, int32 offsets and + children arrays + + Parameters + ---------- + types : Array (int8 type) + value_offsets : Array (int32 type) + children : list + field_names : list + type_codes : list + + Returns + ------- + union_array : UnionArray + """ + cdef: + shared_ptr[CArray] out + vector[shared_ptr[CArray]] c + Array child + vector[c_string] c_field_names + vector[int8_t] c_type_codes + + for child in children: + c.push_back(child.sp_array) + if field_names is not None: + for x in field_names: + c_field_names.push_back(tobytes(x)) + if type_codes is not None: + for x in type_codes: + c_type_codes.push_back(x) + + with nogil: + out = GetResultValue(CDenseUnionArray.Make( + deref(types.ap), deref(value_offsets.ap), c, c_field_names, + c_type_codes)) + + cdef Array result = pyarrow_wrap_array(out) + result.validate() + return result + + @staticmethod + def from_sparse(Array types, list children, list field_names=None, + list type_codes=None): + """ + Construct sparse UnionArray from arrays of int8 types and children + arrays + + Parameters + ---------- + types : Array (int8 type) + children : list + field_names : list + type_codes : list + + Returns + ------- + union_array : UnionArray + """ + cdef: + shared_ptr[CArray] out + vector[shared_ptr[CArray]] c + Array child + vector[c_string] c_field_names + vector[int8_t] c_type_codes + + for child in children: + c.push_back(child.sp_array) + if field_names is not None: + for x in field_names: + c_field_names.push_back(tobytes(x)) + if type_codes is not None: + for x in type_codes: + c_type_codes.push_back(x) + + with nogil: + out = GetResultValue(CSparseUnionArray.Make( + deref(types.ap), c, c_field_names, c_type_codes)) + + cdef Array result = pyarrow_wrap_array(out) + result.validate() + return result + + +cdef class StringArray(Array): + """ + Concrete class for Arrow arrays of string (or utf8) data type. + """ + + @staticmethod + def from_buffers(int length, Buffer value_offsets, Buffer data, + Buffer null_bitmap=None, int null_count=-1, + int offset=0): + """ + Construct a StringArray from value_offsets and data buffers. + If there are nulls in the data, also a null_bitmap and the matching + null_count must be passed. + + Parameters + ---------- + length : int + value_offsets : Buffer + data : Buffer + null_bitmap : Buffer, optional + null_count : int, default 0 + offset : int, default 0 + + Returns + ------- + string_array : StringArray + """ + return Array.from_buffers(utf8(), length, + [null_bitmap, value_offsets, data], + null_count, offset) + + +cdef class LargeStringArray(Array): + """ + Concrete class for Arrow arrays of large string (or utf8) data type. + """ + + @staticmethod + def from_buffers(int length, Buffer value_offsets, Buffer data, + Buffer null_bitmap=None, int null_count=-1, + int offset=0): + """ + Construct a LargeStringArray from value_offsets and data buffers. + If there are nulls in the data, also a null_bitmap and the matching + null_count must be passed. + + Parameters + ---------- + length : int + value_offsets : Buffer + data : Buffer + null_bitmap : Buffer, optional + null_count : int, default 0 + offset : int, default 0 + + Returns + ------- + string_array : StringArray + """ + return Array.from_buffers(large_utf8(), length, + [null_bitmap, value_offsets, data], + null_count, offset) + + +cdef class StringViewArray(Array): + """ + Concrete class for Arrow arrays of string (or utf8) view data type. + """ + + +cdef class BinaryArray(Array): + """ + Concrete class for Arrow arrays of variable-sized binary data type. + """ + @property + def total_values_length(self): + """ + The number of bytes from beginning to end of the data buffer addressed + by the offsets of this BinaryArray. + """ + return ( self.ap).total_values_length() + + +cdef class LargeBinaryArray(Array): + """ + Concrete class for Arrow arrays of large variable-sized binary data type. + """ + @property + def total_values_length(self): + """ + The number of bytes from beginning to end of the data buffer addressed + by the offsets of this LargeBinaryArray. + """ + return ( self.ap).total_values_length() + + +cdef class BinaryViewArray(Array): + """ + Concrete class for Arrow arrays of variable-sized binary view data type. + """ + + +cdef class DictionaryArray(Array): + """ + Concrete class for dictionary-encoded Arrow arrays. + """ + + def dictionary_encode(self): + return self + + def dictionary_decode(self): + """ + Decodes the DictionaryArray to an Array. + """ + return self.dictionary.take(self.indices) + + @property + def dictionary(self): + cdef CDictionaryArray* darr = (self.ap) + + if self._dictionary is None: + self._dictionary = pyarrow_wrap_array(darr.dictionary()) + + return self._dictionary + + @property + def indices(self): + cdef CDictionaryArray* darr = (self.ap) + + if self._indices is None: + self._indices = pyarrow_wrap_array(darr.indices()) + + return self._indices + + @staticmethod + def from_buffers(DataType type, int64_t length, buffers, Array dictionary, + int64_t null_count=-1, int64_t offset=0): + """ + Construct a DictionaryArray from buffers. + + Parameters + ---------- + type : pyarrow.DataType + length : int + The number of values in the array. + buffers : List[Buffer] + The buffers backing the indices array. + dictionary : pyarrow.Array, ndarray or pandas.Series + The array of values referenced by the indices. + null_count : int, default -1 + The number of null entries in the indices array. Negative value means that + the null count is not known. + offset : int, default 0 + The array's logical offset (in values, not in bytes) from the + start of each buffer. + + Returns + ------- + dict_array : DictionaryArray + """ + cdef: + vector[shared_ptr[CBuffer]] c_buffers + shared_ptr[CDataType] c_type + shared_ptr[CArrayData] c_data + shared_ptr[CArray] c_result + + for buf in buffers: + c_buffers.push_back(pyarrow_unwrap_buffer(buf)) + + c_type = pyarrow_unwrap_data_type(type) + + with nogil: + c_data = CArrayData.Make( + c_type, length, c_buffers, null_count, offset) + c_data.get().dictionary = dictionary.sp_array.get().data() + c_result.reset(new CDictionaryArray(c_data)) + + cdef Array result = pyarrow_wrap_array(c_result) + result.validate() + return result + + @staticmethod + def from_arrays(indices, dictionary, mask=None, bint ordered=False, + bint from_pandas=False, bint safe=True, + MemoryPool memory_pool=None): + """ + Construct a DictionaryArray from indices and values. + + Parameters + ---------- + indices : pyarrow.Array, numpy.ndarray or pandas.Series, int type + Non-negative integers referencing the dictionary values by zero + based index. + dictionary : pyarrow.Array, ndarray or pandas.Series + The array of values referenced by the indices. + mask : ndarray or pandas.Series, bool type + True values indicate that indices are actually null. + ordered : bool, default False + Set to True if the category values are ordered. + from_pandas : bool, default False + If True, the indices should be treated as though they originated in + a pandas.Categorical (null encoded as -1). + safe : bool, default True + If True, check that the dictionary indices are in range. + memory_pool : MemoryPool, default None + For memory allocations, if required, otherwise uses default pool. + + Returns + ------- + dict_array : DictionaryArray + """ + cdef: + Array _indices, _dictionary + shared_ptr[CDataType] c_type + shared_ptr[CArray] c_result + + if isinstance(indices, Array): + if mask is not None: + raise NotImplementedError( + "mask not implemented with Arrow array inputs yet") + _indices = indices + else: + if from_pandas: + _indices = _codes_to_indices(indices, mask, None, memory_pool) + else: + _indices = array(indices, mask=mask, memory_pool=memory_pool) + + if isinstance(dictionary, Array): + _dictionary = dictionary + else: + _dictionary = array(dictionary, memory_pool=memory_pool) + + if not isinstance(_indices, IntegerArray): + raise ValueError('Indices must be integer type') + + cdef c_bool c_ordered = ordered + + c_type.reset(new CDictionaryType(_indices.type.sp_type, + _dictionary.sp_array.get().type(), + c_ordered)) + + if safe: + with nogil: + c_result = GetResultValue( + CDictionaryArray.FromArrays(c_type, _indices.sp_array, + _dictionary.sp_array)) + else: + c_result.reset(new CDictionaryArray(c_type, _indices.sp_array, + _dictionary.sp_array)) + + cdef Array result = pyarrow_wrap_array(c_result) + result.validate() + return result + + +cdef class StructArray(Array): + """ + Concrete class for Arrow arrays of a struct data type. + """ + + def field(self, index): + """ + Retrieves the child array belonging to field. + + Parameters + ---------- + index : Union[int, str] + Index / position or name of the field. + + Returns + ------- + result : Array + """ + cdef: + CStructArray* arr = self.ap + shared_ptr[CArray] child + + if isinstance(index, (bytes, str)): + child = arr.GetFieldByName(tobytes(index)) + if child == nullptr: + raise KeyError(index) + elif isinstance(index, int): + child = arr.field( + _normalize_index(index, self.ap.num_fields())) + else: + raise TypeError('Expected integer or string index') + + return pyarrow_wrap_array(child) + + def _flattened_field(self, index, MemoryPool memory_pool=None): + """ + Retrieves the child array belonging to field, + accounting for the parent array null bitmap. + + Parameters + ---------- + index : Union[int, str] + Index / position or name of the field. + memory_pool : MemoryPool, default None + For memory allocations, if required, otherwise use default pool. + + Returns + ------- + result : Array + """ + cdef: + CStructArray* arr = self.ap + shared_ptr[CArray] child + CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) + + if isinstance(index, (bytes, str)): + int_index = self.type.get_field_index(index) + if int_index < 0: + raise KeyError(index) + elif isinstance(index, int): + int_index = _normalize_index(index, self.ap.num_fields()) + else: + raise TypeError('Expected integer or string index') + + child = GetResultValue(arr.GetFlattenedField(int_index, pool)) + return pyarrow_wrap_array(child) + + def flatten(self, MemoryPool memory_pool=None): + """ + Return one individual array for each field in the struct. + + Parameters + ---------- + memory_pool : MemoryPool, default None + For memory allocations, if required, otherwise use default pool. + + Returns + ------- + result : List[Array] + """ + cdef: + vector[shared_ptr[CArray]] arrays + CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) + CStructArray* sarr = self.ap + + with nogil: + arrays = GetResultValue(sarr.Flatten(pool)) + + return [pyarrow_wrap_array(arr) for arr in arrays] + + @staticmethod + def from_arrays(arrays, names=None, fields=None, mask=None, + memory_pool=None): + """ + Construct StructArray from collection of arrays representing + each field in the struct. + + Either field names or field instances must be passed. + + Parameters + ---------- + arrays : sequence of Array + names : List[str] (optional) + Field names for each struct child. + fields : List[Field] (optional) + Field instances for each struct child. + mask : pyarrow.Array[bool] (optional) + Indicate which values are null (True) or not null (False). + memory_pool : MemoryPool (optional) + For memory allocations, if required, otherwise uses default pool. + + Returns + ------- + result : StructArray + """ + cdef: + shared_ptr[CArray] c_array + shared_ptr[CBuffer] c_mask + vector[shared_ptr[CArray]] c_arrays + vector[c_string] c_names + vector[shared_ptr[CField]] c_fields + CResult[shared_ptr[CArray]] c_result + ssize_t num_arrays + ssize_t length + ssize_t i + Field py_field + DataType struct_type + + if names is None and fields is None: + raise ValueError('Must pass either names or fields') + if names is not None and fields is not None: + raise ValueError('Must pass either names or fields, not both') + + c_mask = c_mask_inverted_from_obj(mask, memory_pool) + + arrays = [asarray(x) for x in arrays] + for arr in arrays: + c_array = pyarrow_unwrap_array(arr) + if c_array == nullptr: + raise TypeError(f"Expected Array, got {arr.__class__}") + c_arrays.push_back(c_array) + if names is not None: + for name in names: + c_names.push_back(tobytes(name)) + else: + for item in fields: + if isinstance(item, tuple): + py_field = field(*item) + else: + py_field = item + c_fields.push_back(py_field.sp_field) + + if (c_arrays.size() == 0 and c_names.size() == 0 and + c_fields.size() == 0): + # The C++ side doesn't allow this + if mask is None: + return array([], struct([])) + else: + return array([{}] * len(mask), struct([]), mask=mask) + + if names is not None: + # XXX Cannot pass "nullptr" for a shared_ptr argument: + # https://github.com/cython/cython/issues/3020 + c_result = CStructArray.MakeFromFieldNames( + c_arrays, c_names, c_mask, -1, 0) + else: + c_result = CStructArray.MakeFromFields( + c_arrays, c_fields, c_mask, -1, 0) + cdef Array result = pyarrow_wrap_array(GetResultValue(c_result)) + result.validate() + return result + + def sort(self, order="ascending", by=None, **kwargs): + """ + Sort the StructArray + + Parameters + ---------- + order : str, default "ascending" + Which order to sort values in. + Accepted values are "ascending", "descending". + by : str or None, default None + If to sort the array by one of its fields + or by the whole array. + **kwargs : dict, optional + Additional sorting options. + As allowed by :class:`SortOptions` + + Returns + ------- + result : StructArray + """ + if by is not None: + tosort = self._flattened_field(by) + else: + tosort = self + indices = _pc().sort_indices( + tosort, + options=_pc().SortOptions(sort_keys=[("", order)], **kwargs) + ) + return self.take(indices) + + +cdef class RunEndEncodedArray(Array): + """ + Concrete class for Arrow run-end encoded arrays. + """ + + @staticmethod + def _from_arrays(type, allow_none_for_type, logical_length, run_ends, values, logical_offset): + cdef: + int64_t _logical_length + Array _run_ends + Array _values + int64_t _logical_offset + shared_ptr[CDataType] c_type + shared_ptr[CRunEndEncodedArray] ree_array + + _logical_length = logical_length + _logical_offset = logical_offset + + type = ensure_type(type, allow_none=allow_none_for_type) + if type is not None: + _run_ends = asarray(run_ends, type=type.run_end_type) + _values = asarray(values, type=type.value_type) + c_type = pyarrow_unwrap_data_type(type) + with nogil: + ree_array = GetResultValue(CRunEndEncodedArray.Make( + c_type, _logical_length, _run_ends.sp_array, _values.sp_array, _logical_offset)) + else: + _run_ends = asarray(run_ends) + _values = asarray(values) + with nogil: + ree_array = GetResultValue(CRunEndEncodedArray.MakeFromArrays( + _logical_length, _run_ends.sp_array, _values.sp_array, _logical_offset)) + cdef Array result = pyarrow_wrap_array(ree_array) + result.validate(full=True) + return result + + @staticmethod + def from_arrays(run_ends, values, type=None): + """ + Construct RunEndEncodedArray from run_ends and values arrays. + + Parameters + ---------- + run_ends : Array (int16, int32, or int64 type) + The run_ends array. + values : Array (any type) + The values array. + type : pyarrow.DataType, optional + The run_end_encoded(run_end_type, value_type) array type. + + Returns + ------- + RunEndEncodedArray + """ + logical_length = run_ends[-1] if len(run_ends) > 0 else 0 + return RunEndEncodedArray._from_arrays(type, True, logical_length, + run_ends, values, 0) + + @staticmethod + def from_buffers(DataType type, length, buffers, null_count=-1, offset=0, + children=None): + """ + Construct a RunEndEncodedArray from all the parameters that make up an + Array. + + RunEndEncodedArrays do not have buffers, only children arrays, but this + implementation is needed to satisfy the Array interface. + + Parameters + ---------- + type : DataType + The run_end_encoded(run_end_type, value_type) type. + length : int + The logical length of the run-end encoded array. Expected to match + the last value of the run_ends array (children[0]) minus the offset. + buffers : List[Buffer] + Empty List or [None]. + null_count : int, default -1 + The number of null entries in the array. Run-end encoded arrays + are specified to not have valid bits and null_count always equals 0. + offset : int, default 0 + The array's logical offset (in values, not in bytes) from the + start of each buffer. + children : List[Array] + Nested type children containing the run_ends and values arrays. + + Returns + ------- + RunEndEncodedArray + """ + children = children or [] + + if type.num_fields != len(children): + raise ValueError("RunEndEncodedType's expected number of children " + "({0}) did not match the passed number " + "({1}).".format(type.num_fields, len(children))) + + # buffers are validated as if we needed to pass them to C++, but + # _make_from_arrays will take care of filling in the expected + # buffers array containing a single NULL buffer on the C++ side + if len(buffers) == 0: + buffers = [None] + if buffers[0] is not None: + raise ValueError("RunEndEncodedType expects None as validity " + "bitmap, buffers[0] is not None") + if type.num_buffers != len(buffers): + raise ValueError("RunEndEncodedType's expected number of buffers " + "({0}) did not match the passed number " + "({1}).".format(type.num_buffers, len(buffers))) + + # null_count is also validated as if we needed it + if null_count != -1 and null_count != 0: + raise ValueError("RunEndEncodedType's expected null_count (0) " + "did not match passed number ({0})".format(null_count)) + + return RunEndEncodedArray._from_arrays(type, False, length, children[0], + children[1], offset) + + @property + def run_ends(self): + """ + An array holding the logical indexes of each run-end. + + The physical offset to the array is applied. + """ + cdef CRunEndEncodedArray* ree_array = (self.ap) + return pyarrow_wrap_array(ree_array.run_ends()) + + @property + def values(self): + """ + An array holding the values of each run. + + The physical offset to the array is applied. + """ + cdef CRunEndEncodedArray* ree_array = (self.ap) + return pyarrow_wrap_array(ree_array.values()) + + def find_physical_offset(self): + """ + Find the physical offset of this REE array. + + This is the offset of the run that contains the value of the first + logical element of this array considering its offset. + + This function uses binary-search, so it has a O(log N) cost. + """ + cdef CRunEndEncodedArray* ree_array = (self.ap) + return ree_array.FindPhysicalOffset() + + def find_physical_length(self): + """ + Find the physical length of this REE array. + + The physical length of an REE is the number of physical values (and + run-ends) necessary to represent the logical range of values from offset + to length. + + This function uses binary-search, so it has a O(log N) cost. + """ + cdef CRunEndEncodedArray* ree_array = (self.ap) + return ree_array.FindPhysicalLength() + + +cdef class ExtensionArray(Array): + """ + Concrete class for Arrow extension arrays. + """ + + @property + def storage(self): + cdef: + CExtensionArray* ext_array = (self.ap) + + return pyarrow_wrap_array(ext_array.storage()) + + @staticmethod + def from_storage(BaseExtensionType typ, Array storage): + """ + Construct ExtensionArray from type and storage array. + + Parameters + ---------- + typ : DataType + The extension type for the result array. + storage : Array + The underlying storage for the result array. + + Returns + ------- + ext_array : ExtensionArray + """ + cdef: + shared_ptr[CExtensionArray] ext_array + + if storage.type != typ.storage_type: + raise TypeError("Incompatible storage type {0} " + "for extension type {1}".format(storage.type, typ)) + + ext_array = make_shared[CExtensionArray](typ.sp_type, storage.sp_array) + cdef Array result = pyarrow_wrap_array( ext_array) + result.validate() + return result + + +cdef class FixedShapeTensorArray(ExtensionArray): + """ + Concrete class for fixed shape tensor extension arrays. + + Examples + -------- + Define the extension type for tensor array + + >>> import pyarrow as pa + >>> tensor_type = pa.fixed_shape_tensor(pa.int32(), [2, 2]) + + Create an extension array + + >>> arr = [[1, 2, 3, 4], [10, 20, 30, 40], [100, 200, 300, 400]] + >>> storage = pa.array(arr, pa.list_(pa.int32(), 4)) + >>> pa.ExtensionArray.from_storage(tensor_type, storage) + + [ + [ + 1, + 2, + 3, + 4 + ], + [ + 10, + 20, + 30, + 40 + ], + [ + 100, + 200, + 300, + 400 + ] + ] + """ + + def to_numpy_ndarray(self): + """ + Convert fixed shape tensor extension array to a multi-dimensional numpy.ndarray. + + The resulting ndarray will have (ndim + 1) dimensions. + The size of the first dimension will be the length of the fixed shape tensor array + and the rest of the dimensions will match the permuted shape of the fixed + shape tensor. + + The conversion is zero-copy. + + Returns + ------- + numpy.ndarray + Ndarray representing tensors in the fixed shape tensor array concatenated + along the first dimension. + """ + + return self.to_tensor().to_numpy() + + def to_tensor(self): + """ + Convert fixed shape tensor extension array to a pyarrow.Tensor. + + The resulting Tensor will have (ndim + 1) dimensions. + The size of the first dimension will be the length of the fixed shape tensor array + and the rest of the dimensions will match the permuted shape of the fixed + shape tensor. + + The conversion is zero-copy. + + Returns + ------- + pyarrow.Tensor + Tensor representing tensors in the fixed shape tensor array concatenated + along the first dimension. + """ + + cdef: + CFixedShapeTensorArray* ext_array = (self.ap) + CResult[shared_ptr[CTensor]] ctensor + with nogil: + ctensor = ext_array.ToTensor() + return pyarrow_wrap_tensor(GetResultValue(ctensor)) + + @staticmethod + def from_numpy_ndarray(obj): + """ + Convert numpy tensors (ndarrays) to a fixed shape tensor extension array. + The first dimension of ndarray will become the length of the fixed + shape tensor array. + If input array data is not contiguous a copy will be made. + + Parameters + ---------- + obj : numpy.ndarray + + Examples + -------- + >>> import pyarrow as pa + >>> import numpy as np + >>> arr = np.array( + ... [[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]], + ... dtype=np.float32) + >>> pa.FixedShapeTensorArray.from_numpy_ndarray(arr) + + [ + [ + 1, + 2, + 3, + 4, + 5, + 6 + ], + [ + 1, + 2, + 3, + 4, + 5, + 6 + ] + ] + """ + + if len(obj.shape) < 2: + raise ValueError( + "Cannot convert 1D array or scalar to fixed shape tensor array") + if np.prod(obj.shape) == 0: + raise ValueError("Expected a non-empty ndarray") + + permutation = (-np.array(obj.strides)).argsort(kind='stable') + if permutation[0] != 0: + raise ValueError('First stride needs to be largest to ensure that ' + 'individual tensor data is contiguous in memory.') + + arrow_type = from_numpy_dtype(obj.dtype) + shape = np.take(obj.shape, permutation) + values = np.ravel(obj, order="K") + + return ExtensionArray.from_storage( + fixed_shape_tensor(arrow_type, shape[1:], permutation=permutation[1:] - 1), + FixedSizeListArray.from_arrays(values, shape[1:].prod()) + ) + + +cdef dict _array_classes = { + _Type_NA: NullArray, + _Type_BOOL: BooleanArray, + _Type_UINT8: UInt8Array, + _Type_UINT16: UInt16Array, + _Type_UINT32: UInt32Array, + _Type_UINT64: UInt64Array, + _Type_INT8: Int8Array, + _Type_INT16: Int16Array, + _Type_INT32: Int32Array, + _Type_INT64: Int64Array, + _Type_DATE32: Date32Array, + _Type_DATE64: Date64Array, + _Type_TIMESTAMP: TimestampArray, + _Type_TIME32: Time32Array, + _Type_TIME64: Time64Array, + _Type_DURATION: DurationArray, + _Type_INTERVAL_MONTH_DAY_NANO: MonthDayNanoIntervalArray, + _Type_HALF_FLOAT: HalfFloatArray, + _Type_FLOAT: FloatArray, + _Type_DOUBLE: DoubleArray, + _Type_LIST: ListArray, + _Type_LARGE_LIST: LargeListArray, + _Type_LIST_VIEW: ListViewArray, + _Type_LARGE_LIST_VIEW: LargeListViewArray, + _Type_MAP: MapArray, + _Type_FIXED_SIZE_LIST: FixedSizeListArray, + _Type_SPARSE_UNION: UnionArray, + _Type_DENSE_UNION: UnionArray, + _Type_BINARY: BinaryArray, + _Type_STRING: StringArray, + _Type_LARGE_BINARY: LargeBinaryArray, + _Type_LARGE_STRING: LargeStringArray, + _Type_BINARY_VIEW: BinaryViewArray, + _Type_STRING_VIEW: StringViewArray, + _Type_DICTIONARY: DictionaryArray, + _Type_FIXED_SIZE_BINARY: FixedSizeBinaryArray, + _Type_DECIMAL128: Decimal128Array, + _Type_DECIMAL256: Decimal256Array, + _Type_STRUCT: StructArray, + _Type_RUN_END_ENCODED: RunEndEncodedArray, + _Type_EXTENSION: ExtensionArray, +} + + +cdef inline shared_ptr[CBuffer] c_mask_inverted_from_obj(object mask, MemoryPool pool) except *: + """ + Convert mask array obj to c_mask while also inverting to signify 1 for valid and 0 for null + """ + cdef shared_ptr[CBuffer] c_mask + if mask is None: + c_mask = shared_ptr[CBuffer]() + elif isinstance(mask, Array): + if mask.type.id != Type_BOOL: + raise TypeError('Mask must be a pyarrow.Array of type boolean') + if mask.null_count != 0: + raise ValueError('Mask must not contain nulls') + inverted_mask = _pc().invert(mask, memory_pool=pool) + c_mask = pyarrow_unwrap_buffer(inverted_mask.buffers()[1]) + else: + raise TypeError('Mask must be a pyarrow.Array of type boolean') + return c_mask + + +cdef object get_array_class_from_type( + const shared_ptr[CDataType]& sp_data_type): + cdef CDataType* data_type = sp_data_type.get() + if data_type == NULL: + raise ValueError('Array data type was NULL') + + if data_type.id() == _Type_EXTENSION: + py_ext_data_type = pyarrow_wrap_data_type(sp_data_type) + return py_ext_data_type.__arrow_ext_class__() + else: + return _array_classes[data_type.id()] + + +cdef object get_values(object obj, bint* is_series): + if pandas_api.is_series(obj) or pandas_api.is_index(obj): + result = pandas_api.get_values(obj) + is_series[0] = True + elif isinstance(obj, np.ndarray): + result = obj + is_series[0] = False + else: + result = pandas_api.series(obj, copy=False).values + is_series[0] = False + + return result + + +def concat_arrays(arrays, MemoryPool memory_pool=None): + """ + Concatenate the given arrays. + + The contents of the input arrays are copied into the returned array. + + Raises + ------ + ArrowInvalid + If not all of the arrays have the same type. + + Parameters + ---------- + arrays : iterable of pyarrow.Array + Arrays to concatenate, must be identically typed. + memory_pool : MemoryPool, default None + For memory allocations. If None, the default pool is used. + + Examples + -------- + >>> import pyarrow as pa + >>> arr1 = pa.array([2, 4, 5, 100]) + >>> arr2 = pa.array([2, 4]) + >>> pa.concat_arrays([arr1, arr2]) + + [ + 2, + 4, + 5, + 100, + 2, + 4 + ] + + """ + cdef: + vector[shared_ptr[CArray]] c_arrays + shared_ptr[CArray] c_concatenated + CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) + + for array in arrays: + if not isinstance(array, Array): + raise TypeError("Iterable should contain Array objects, " + "got {0} instead".format(type(array))) + c_arrays.push_back(pyarrow_unwrap_array(array)) + + with nogil: + c_concatenated = GetResultValue(Concatenate(c_arrays, pool)) + + return pyarrow_wrap_array(c_concatenated) + + +def _empty_array(DataType type): + """ + Create empty array of the given type. + """ + if type.id == Type_DICTIONARY: + arr = DictionaryArray.from_arrays( + _empty_array(type.index_type), _empty_array(type.value_type), + ordered=type.ordered) + else: + arr = array([], type=type) + return arr