Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/_C/__init__.pyi +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_C/_cudnn.pyi +17 -0
- env-llmeval/lib/python3.10/site-packages/torch/_C/_distributed_rpc.pyi +188 -0
- env-llmeval/lib/python3.10/site-packages/torch/_C/_functions.pyi +11 -0
- env-llmeval/lib/python3.10/site-packages/torch/_C/_nn.pyi +86 -0
- env-llmeval/lib/python3.10/site-packages/torch/_C/_nvtx.pyi +6 -0
- env-llmeval/lib/python3.10/site-packages/torch/_C/_onnx.pyi +38 -0
- env-llmeval/lib/python3.10/site-packages/torch/_C/_verbose.pyi +3 -0
- env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__init__.py +18 -0
- env-llmeval/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py +1991 -0
- env-llmeval/lib/python3.10/site-packages/torch/backends/cpu/__init__.py +19 -0
- env-llmeval/lib/python3.10/site-packages/torch/backends/cpu/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/backends/cuda/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/backends/cudnn/__init__.py +205 -0
- env-llmeval/lib/python3.10/site-packages/torch/backends/cudnn/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/backends/cudnn/__pycache__/rnn.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/backends/cudnn/rnn.py +62 -0
- env-llmeval/lib/python3.10/site-packages/torch/bin/torch_shm_manager +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__init__.py +177 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/_constants.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/_experimental.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/_exporter_states.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/_onnx_supported_ops.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/_type_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/errors.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/operators.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_helper.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset11.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset12.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset16.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset18.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset7.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset8.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset9.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_constants.py +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_deprecation.py +64 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_exporter_states.py +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_globals.py +85 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/_beartype.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/exporter.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/io_adapter.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/jit_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/onnx_proto_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/onnxruntime.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/registration.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/_beartype.py +131 -0
- env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/diagnostics/__init__.py +21 -0
env-llmeval/lib/python3.10/site-packages/torch/_C/__init__.pyi
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/_C/_cudnn.pyi
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
from torch.types import _bool, Tuple
|
4 |
+
|
5 |
+
# Defined in torch/csrc/cuda/shared/cudnn.cpp
|
6 |
+
is_cuda: _bool
|
7 |
+
|
8 |
+
def getRuntimeVersion() -> Tuple[int, int, int]: ...
|
9 |
+
def getCompileVersion() -> Tuple[int, int, int]: ...
|
10 |
+
def getVersionInt() -> int: ...
|
11 |
+
|
12 |
+
class RNNMode(int, Enum):
|
13 |
+
value: int
|
14 |
+
rnn_relu = ...
|
15 |
+
rnn_tanh = ...
|
16 |
+
lstm = ...
|
17 |
+
gru = ...
|
env-llmeval/lib/python3.10/site-packages/torch/_C/_distributed_rpc.pyi
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: disable-error-code="type-arg"
|
2 |
+
from datetime import timedelta
|
3 |
+
from typing import Any, Dict, Generic, List, Optional, overload, Tuple, Type, TypeVar
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from . import Future
|
8 |
+
from ._autograd import ProfilerEvent
|
9 |
+
from ._distributed_c10d import Store
|
10 |
+
from ._profiler import ProfilerConfig
|
11 |
+
|
12 |
+
# This module is defined in torch/csrc/distributed/rpc/init.cpp
|
13 |
+
|
14 |
+
_DEFAULT_INIT_METHOD: str
|
15 |
+
_DEFAULT_NUM_WORKER_THREADS: int
|
16 |
+
_UNSET_RPC_TIMEOUT: float
|
17 |
+
_DEFAULT_RPC_TIMEOUT_SEC: float
|
18 |
+
|
19 |
+
_T = TypeVar("_T")
|
20 |
+
|
21 |
+
class RpcBackendOptions:
|
22 |
+
rpc_timeout: float
|
23 |
+
init_method: str
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
rpc_timeout: float = ...,
|
27 |
+
init_method: str = ...,
|
28 |
+
): ...
|
29 |
+
|
30 |
+
class WorkerInfo:
|
31 |
+
def __init__(self, name: str, worker_id: int): ...
|
32 |
+
@property
|
33 |
+
def name(self) -> str: ...
|
34 |
+
@property
|
35 |
+
def id(self) -> int: ...
|
36 |
+
def __eq__(self, other: object) -> bool: ...
|
37 |
+
|
38 |
+
class RpcAgent:
|
39 |
+
def join(self, shutdown: bool = False, timeout: float = 0): ...
|
40 |
+
def sync(self): ...
|
41 |
+
def shutdown(self): ...
|
42 |
+
@overload
|
43 |
+
def get_worker_info(self) -> WorkerInfo: ...
|
44 |
+
@overload
|
45 |
+
def get_worker_info(self, workerName: str) -> WorkerInfo: ...
|
46 |
+
def get_worker_infos(self) -> List[WorkerInfo]: ...
|
47 |
+
def _get_device_map(self, dst: WorkerInfo) -> Dict[torch.device, torch.device]: ...
|
48 |
+
def get_debug_info(self) -> Dict[str, str]: ...
|
49 |
+
def get_metrics(self) -> Dict[str, str]: ...
|
50 |
+
|
51 |
+
class PyRRef(Generic[_T]):
|
52 |
+
def __init__(self, value: _T, type_hint: Any = None) -> None: ...
|
53 |
+
def is_owner(self) -> bool: ...
|
54 |
+
def confirmed_by_owner(self) -> bool: ...
|
55 |
+
def owner(self) -> WorkerInfo: ...
|
56 |
+
def owner_name(self) -> str: ...
|
57 |
+
def to_here(self, timeout: float = ...) -> _T: ...
|
58 |
+
def local_value(self) -> Any: ...
|
59 |
+
def rpc_sync(self, timeout: float = ...) -> Any: ...
|
60 |
+
def rpc_async(self, timeout: float = ...) -> Any: ...
|
61 |
+
def remote(self, timeout: float = ...) -> Any: ...
|
62 |
+
def _serialize(self) -> Tuple: ...
|
63 |
+
@staticmethod
|
64 |
+
def _deserialize(tp: Tuple) -> PyRRef: ...
|
65 |
+
def _get_type(self) -> Type[_T]: ...
|
66 |
+
def _get_future(self) -> Future[_T]: ...
|
67 |
+
def _get_profiling_future(self) -> Future[_T]: ...
|
68 |
+
def _set_profiling_future(self, profilingFuture: Future[_T]): ...
|
69 |
+
|
70 |
+
class _TensorPipeRpcBackendOptionsBase(RpcBackendOptions):
|
71 |
+
num_worker_threads: int
|
72 |
+
device_maps: Dict[str, Dict[torch.device, torch.device]]
|
73 |
+
devices: List[torch.device]
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
num_worker_threads: int,
|
77 |
+
_transports: Optional[List],
|
78 |
+
_channels: Optional[List],
|
79 |
+
rpc_timeout: float = ...,
|
80 |
+
init_method: str = ...,
|
81 |
+
device_maps: Dict[str, Dict[torch.device, torch.device]] = {}, # noqa: B006
|
82 |
+
devices: List[torch.device] = [], # noqa: B006
|
83 |
+
): ...
|
84 |
+
def _set_device_map(
|
85 |
+
self,
|
86 |
+
to: str,
|
87 |
+
device_map: Dict[torch.device, torch.device],
|
88 |
+
): ...
|
89 |
+
|
90 |
+
class TensorPipeAgent(RpcAgent):
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
store: Store,
|
94 |
+
name: str,
|
95 |
+
worker_id: int,
|
96 |
+
world_size: Optional[int],
|
97 |
+
opts: _TensorPipeRpcBackendOptionsBase,
|
98 |
+
reverse_device_maps: Dict[str, Dict[torch.device, torch.device]],
|
99 |
+
devices: List[torch.device],
|
100 |
+
): ...
|
101 |
+
def join(self, shutdown: bool = False, timeout: float = 0): ...
|
102 |
+
def shutdown(self): ...
|
103 |
+
@overload
|
104 |
+
def get_worker_info(self) -> WorkerInfo: ...
|
105 |
+
@overload
|
106 |
+
def get_worker_info(self, workerName: str) -> WorkerInfo: ...
|
107 |
+
@overload
|
108 |
+
def get_worker_info(self, id: int) -> WorkerInfo: ...
|
109 |
+
def get_worker_infos(self) -> List[WorkerInfo]: ...
|
110 |
+
def _get_device_map(self, dst: WorkerInfo) -> Dict[torch.device, torch.device]: ...
|
111 |
+
def _update_group_membership(
|
112 |
+
self,
|
113 |
+
worker_info: WorkerInfo,
|
114 |
+
my_devices: List[torch.device],
|
115 |
+
reverse_device_map: Dict[str, Dict[torch.device, torch.device]],
|
116 |
+
is_join: bool,
|
117 |
+
): ...
|
118 |
+
def _get_backend_options(self) -> _TensorPipeRpcBackendOptionsBase: ...
|
119 |
+
@property
|
120 |
+
def is_static_group(self) -> bool: ...
|
121 |
+
@property
|
122 |
+
def store(self) -> Store: ...
|
123 |
+
|
124 |
+
def _is_current_rpc_agent_set() -> bool: ...
|
125 |
+
def _get_current_rpc_agent() -> RpcAgent: ...
|
126 |
+
def _set_and_start_rpc_agent(agent: RpcAgent): ...
|
127 |
+
def _reset_current_rpc_agent(): ...
|
128 |
+
def _delete_all_user_and_unforked_owner_rrefs(timeout: timedelta = ...): ...
|
129 |
+
def _destroy_rref_context(ignoreRRefLeak: bool): ...
|
130 |
+
def _rref_context_get_debug_info() -> Dict[str, str]: ...
|
131 |
+
def _cleanup_python_rpc_handler(): ...
|
132 |
+
def _invoke_rpc_builtin(
|
133 |
+
dst: WorkerInfo,
|
134 |
+
opName: str,
|
135 |
+
rpcTimeoutSeconds: float,
|
136 |
+
*args: Any,
|
137 |
+
**kwargs: Any,
|
138 |
+
): ...
|
139 |
+
def _invoke_rpc_python_udf(
|
140 |
+
dst: WorkerInfo,
|
141 |
+
pickledPythonUDF: str,
|
142 |
+
tensors: List[torch.Tensor],
|
143 |
+
rpcTimeoutSeconds: float,
|
144 |
+
isAsyncExecution: bool,
|
145 |
+
): ...
|
146 |
+
def _invoke_rpc_torchscript(
|
147 |
+
dstWorkerName: str,
|
148 |
+
qualifiedNameStr: str,
|
149 |
+
argsTuple: Tuple,
|
150 |
+
kwargsDict: Dict,
|
151 |
+
rpcTimeoutSeconds: float,
|
152 |
+
isAsyncExecution: bool,
|
153 |
+
): ...
|
154 |
+
def _invoke_remote_builtin(
|
155 |
+
dst: WorkerInfo,
|
156 |
+
opName: str,
|
157 |
+
rpcTimeoutSeconds: float,
|
158 |
+
*args: Any,
|
159 |
+
**kwargs: Any,
|
160 |
+
): ...
|
161 |
+
def _invoke_remote_python_udf(
|
162 |
+
dst: WorkerInfo,
|
163 |
+
pickledPythonUDF: str,
|
164 |
+
tensors: List[torch.Tensor],
|
165 |
+
rpcTimeoutSeconds: float,
|
166 |
+
isAsyncExecution: bool,
|
167 |
+
): ...
|
168 |
+
def _invoke_remote_torchscript(
|
169 |
+
dstWorkerName: WorkerInfo,
|
170 |
+
qualifiedNameStr: str,
|
171 |
+
rpcTimeoutSeconds: float,
|
172 |
+
isAsyncExecution: bool,
|
173 |
+
*args: Any,
|
174 |
+
**kwargs: Any,
|
175 |
+
): ...
|
176 |
+
def get_rpc_timeout() -> float: ...
|
177 |
+
def enable_gil_profiling(flag: bool): ...
|
178 |
+
def _set_rpc_timeout(rpcTimeoutSeconds: float): ...
|
179 |
+
|
180 |
+
class RemoteProfilerManager:
|
181 |
+
@staticmethod
|
182 |
+
def set_current_profiling_key(key: str): ...
|
183 |
+
|
184 |
+
def _enable_server_process_global_profiler(new_config: ProfilerConfig): ...
|
185 |
+
def _disable_server_process_global_profiler() -> List[List[List[ProfilerEvent]]]: ...
|
186 |
+
def _set_profiler_node_id(default_node_id: int): ...
|
187 |
+
def _enable_jit_rref_pickle(): ...
|
188 |
+
def _disable_jit_rref_pickle(): ...
|
env-llmeval/lib/python3.10/site-packages/torch/_C/_functions.pyi
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import AnyStr, List
|
2 |
+
|
3 |
+
from torch import Tensor
|
4 |
+
|
5 |
+
class UndefinedGrad:
|
6 |
+
def __init__(self) -> None: ...
|
7 |
+
def __call__(self, *inputs: Tensor) -> List[Tensor]: ...
|
8 |
+
|
9 |
+
class DelayedError:
|
10 |
+
def __init__(self, msg: AnyStr, num_inputs: int) -> None: ...
|
11 |
+
def __call__(self, inputs: List[Tensor]) -> List[Tensor]: ...
|
env-llmeval/lib/python3.10/site-packages/torch/_C/_nn.pyi
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: disable-error-code="type-arg"
|
2 |
+
from typing import List, Optional, overload, Sequence, Tuple, Union
|
3 |
+
|
4 |
+
from torch import memory_format, Tensor
|
5 |
+
from torch.types import _bool, _device, _dtype, _int, _size
|
6 |
+
|
7 |
+
# Defined in tools/autograd/templates/python_nn_functions.cpp
|
8 |
+
|
9 |
+
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ...
|
10 |
+
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ...
|
11 |
+
def avg_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, ceil_mode: bool = False, count_include_pad: bool = True, divisor_override: Optional[int] = None) -> Tensor: ...
|
12 |
+
def avg_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, ceil_mode: bool = False, count_include_pad: bool = True, divisor_override: Optional[int] = None) -> Tensor: ...
|
13 |
+
def elu_(input: Tensor, alpha: float = ...) -> Tensor: ...
|
14 |
+
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Union[_int, _size], _random_samples: Tensor) -> Tuple[Tensor, Tensor]: ...
|
15 |
+
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Union[_int, _size], _random_samples: Tensor) -> Tuple[Tensor, Tensor]: ...
|
16 |
+
def gelu(input: Tensor, approximate: str = ...) -> Tensor: ...
|
17 |
+
def hardsigmoid(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ...
|
18 |
+
def hardtanh(input: Tensor, min_val: float = ..., max_val: float = ..., *, out: Optional[Tensor] = None) -> Tensor: ...
|
19 |
+
def hardtanh_(input: Tensor, min_val: float = ..., max_val: float = ...) -> Tensor: ...
|
20 |
+
def leaky_relu(input: Tensor, negative_slope: float = ..., *, out: Optional[Tensor] = None) -> Tensor: ...
|
21 |
+
def leaky_relu_(input: Tensor, negative_slope: float = ...) -> Tensor: ...
|
22 |
+
def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: ...
|
23 |
+
def log_sigmoid(input: Tensor) -> Tensor: ...
|
24 |
+
def one_hot(tensor: Tensor, num_classes: int = ...) -> Tensor: ...
|
25 |
+
def pad(input: Tensor, pad: Sequence[int], mode: str = ..., value: Optional[float] = None) -> Tensor: ...
|
26 |
+
def scaled_dot_product_attention(query: Tensor, key: Tensor, value: Tensor, attn_mask: Optional[Tensor] = None, dropout_p: float = 0.0, is_causal: bool = False, scale: Optional[float] = None) -> Tensor: ...
|
27 |
+
def softplus(input: Tensor, beta: int = ..., threshold: int = ...) -> Tensor: ...
|
28 |
+
def softshrink(input: Tensor, lambd: float = ...) -> Tensor: ...
|
29 |
+
|
30 |
+
# Defined in aten/src/ATen/native/mkldnn/Linear.cpp
|
31 |
+
def mkldnn_linear(input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ...
|
32 |
+
|
33 |
+
# Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp
|
34 |
+
def mkldnn_reorder_conv2d_weight(
|
35 |
+
self: Tensor,
|
36 |
+
padding: List,
|
37 |
+
stride: List,
|
38 |
+
dilatation: List,
|
39 |
+
groups: int,
|
40 |
+
) -> Tensor: ...
|
41 |
+
def mkldnn_reorder_conv3d_weight(
|
42 |
+
self: Tensor,
|
43 |
+
padding: List,
|
44 |
+
stride: List,
|
45 |
+
dilatation: List,
|
46 |
+
groups: int,
|
47 |
+
) -> Tensor: ...
|
48 |
+
|
49 |
+
# Defined in aten/src/ATen/native/mkldnn/Prelu.cpp
|
50 |
+
def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ...
|
51 |
+
|
52 |
+
# Defined at tools/autograd/templates/python_nn_functions.cpp
|
53 |
+
@overload
|
54 |
+
def _parse_to(
|
55 |
+
device: _device,
|
56 |
+
dtype: _dtype,
|
57 |
+
non_blocking: _bool,
|
58 |
+
copy: _bool,
|
59 |
+
*,
|
60 |
+
memory_format: memory_format,
|
61 |
+
) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
62 |
+
@overload
|
63 |
+
def _parse_to(
|
64 |
+
dtype: _dtype,
|
65 |
+
non_blocking: _bool,
|
66 |
+
copy: _bool,
|
67 |
+
*,
|
68 |
+
memory_format: memory_format,
|
69 |
+
) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
70 |
+
@overload
|
71 |
+
def _parse_to(
|
72 |
+
tensor: Tensor,
|
73 |
+
non_blocking: _bool,
|
74 |
+
copy: _bool,
|
75 |
+
*,
|
76 |
+
memory_format: memory_format,
|
77 |
+
) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
78 |
+
|
79 |
+
# Defined in aten/src/ATen/native/PadSequence.cpp
|
80 |
+
def pad_sequence(
|
81 |
+
sequences: List[Tensor],
|
82 |
+
batch_first: bool = False,
|
83 |
+
padding_value: float = ...,
|
84 |
+
) -> Tensor: ...
|
85 |
+
def flatten_dense_tensors(tensors: List[Tensor]) -> Tensor: ...
|
86 |
+
def unflatten_dense_tensors(flat: Tensor, tensors: List[Tensor]) -> List[Tensor]: ...
|
env-llmeval/lib/python3.10/site-packages/torch/_C/_nvtx.pyi
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Defined in torch/csrc/cuda/shared/nvtx.cpp
|
2 |
+
def rangePushA(message: str) -> int: ...
|
3 |
+
def rangePop() -> int: ...
|
4 |
+
def rangeStartA(message: str) -> int: ...
|
5 |
+
def rangeEnd(int) -> None: ...
|
6 |
+
def markA(message: str) -> None: ...
|
env-llmeval/lib/python3.10/site-packages/torch/_C/_onnx.pyi
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Defined in torch/csrc/onnx/init.cpp
|
2 |
+
|
3 |
+
from enum import Enum
|
4 |
+
|
5 |
+
_CAFFE2_ATEN_FALLBACK: bool
|
6 |
+
PRODUCER_VERSION: str
|
7 |
+
|
8 |
+
class TensorProtoDataType(Enum):
|
9 |
+
UNDEFINED = ...
|
10 |
+
FLOAT = ...
|
11 |
+
UINT8 = ...
|
12 |
+
INT8 = ...
|
13 |
+
UINT16 = ...
|
14 |
+
INT16 = ...
|
15 |
+
INT32 = ...
|
16 |
+
INT64 = ...
|
17 |
+
STRING = ...
|
18 |
+
BOOL = ...
|
19 |
+
FLOAT16 = ...
|
20 |
+
DOUBLE = ...
|
21 |
+
UINT32 = ...
|
22 |
+
UINT64 = ...
|
23 |
+
COMPLEX64 = ...
|
24 |
+
COMPLEX128 = ...
|
25 |
+
BFLOAT16 = ...
|
26 |
+
FLOAT8E5M2 = ...
|
27 |
+
FLOAT8E4M3FN = ...
|
28 |
+
|
29 |
+
class OperatorExportTypes(Enum):
|
30 |
+
ONNX = ...
|
31 |
+
ONNX_ATEN = ...
|
32 |
+
ONNX_ATEN_FALLBACK = ...
|
33 |
+
ONNX_FALLTHROUGH = ...
|
34 |
+
|
35 |
+
class TrainingMode(Enum):
|
36 |
+
EVAL = ...
|
37 |
+
PRESERVE = ...
|
38 |
+
TRAINING = ...
|
env-llmeval/lib/python3.10/site-packages/torch/_C/_verbose.pyi
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Defined in torch/csrc/utils/verbose.cpp
|
2 |
+
def mkl_set_verbose(enable: int) -> int: ...
|
3 |
+
def mkldnn_set_verbose(level: int) -> int: ...
|
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from torch._subclasses.fake_tensor import (
|
4 |
+
DynamicOutputShapeException,
|
5 |
+
FakeTensor,
|
6 |
+
FakeTensorMode,
|
7 |
+
UnsupportedFakeTensorException,
|
8 |
+
)
|
9 |
+
|
10 |
+
from torch._subclasses.fake_utils import CrossRefFakeMode
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"FakeTensor",
|
14 |
+
"FakeTensorMode",
|
15 |
+
"UnsupportedFakeTensorException",
|
16 |
+
"DynamicOutputShapeException",
|
17 |
+
"CrossRefFakeMode",
|
18 |
+
]
|
env-llmeval/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py
ADDED
@@ -0,0 +1,1991 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import functools
|
3 |
+
import itertools
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
import traceback
|
8 |
+
import weakref
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, TypeVar, Union
|
11 |
+
from weakref import ReferenceType
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch._custom_op
|
15 |
+
import torch._logging
|
16 |
+
|
17 |
+
from torch._guards import Source
|
18 |
+
from torch._ops import OpOverload
|
19 |
+
from torch._prims_common import (
|
20 |
+
elementwise_dtypes,
|
21 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND,
|
22 |
+
is_boolean_dtype,
|
23 |
+
is_float_dtype,
|
24 |
+
is_integer_dtype,
|
25 |
+
)
|
26 |
+
from torch._subclasses.meta_utils import MetaConverter
|
27 |
+
from torch._utils import render_call
|
28 |
+
from torch.fx.operator_schemas import normalize_function
|
29 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
30 |
+
from torch.overrides import TorchFunctionMode
|
31 |
+
from torch.utils._mode_utils import no_dispatch
|
32 |
+
from torch.utils._python_dispatch import (
|
33 |
+
is_traceable_wrapper_subclass,
|
34 |
+
TorchDispatchMode,
|
35 |
+
)
|
36 |
+
|
37 |
+
from torch.utils._pytree import PyTree, tree_map
|
38 |
+
from torch.utils._stats import count, count_label
|
39 |
+
from torch.utils.weak import WeakIdRef
|
40 |
+
|
41 |
+
DimList = List
|
42 |
+
|
43 |
+
log = logging.getLogger(__name__)
|
44 |
+
not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
|
45 |
+
|
46 |
+
pytree = torch.utils._pytree
|
47 |
+
T = TypeVar("T")
|
48 |
+
TensorWeakRef = Any
|
49 |
+
|
50 |
+
aten = torch._ops.ops.aten
|
51 |
+
|
52 |
+
CONSTANT_NUMEL_LIMIT = 1
|
53 |
+
|
54 |
+
RECURSION_COUNT = 0
|
55 |
+
|
56 |
+
|
57 |
+
# Small helper that increments recursion count, and
|
58 |
+
# resets it when the object goes out of scope. Useful
|
59 |
+
# if you don't want to increase indentation which is
|
60 |
+
# what a context manager would do.
|
61 |
+
class IncrementRecursionCount:
|
62 |
+
def __init__(self):
|
63 |
+
global RECURSION_COUNT
|
64 |
+
RECURSION_COUNT += 1
|
65 |
+
|
66 |
+
def __del__(self):
|
67 |
+
global RECURSION_COUNT
|
68 |
+
RECURSION_COUNT -= 1
|
69 |
+
|
70 |
+
|
71 |
+
@dataclass
|
72 |
+
class UnsupportedFakeTensorException(RuntimeError):
|
73 |
+
reason: str
|
74 |
+
|
75 |
+
|
76 |
+
@dataclass
|
77 |
+
class DynamicOutputShapeException(RuntimeError):
|
78 |
+
func: OpOverload
|
79 |
+
|
80 |
+
|
81 |
+
@dataclass
|
82 |
+
class DataDependentOutputException(RuntimeError):
|
83 |
+
func: OpOverload
|
84 |
+
|
85 |
+
|
86 |
+
@dataclass
|
87 |
+
class UnsupportedOperatorException(RuntimeError):
|
88 |
+
func: OpOverload
|
89 |
+
|
90 |
+
|
91 |
+
_device_not_kwarg_ops = (
|
92 |
+
aten._resize_output_.default,
|
93 |
+
aten._nested_tensor_from_tensor_list.default,
|
94 |
+
aten._nested_tensor_from_tensor_list.out,
|
95 |
+
aten.pin_memory.default,
|
96 |
+
aten.is_pinned.default,
|
97 |
+
aten.to.device,
|
98 |
+
aten.to.prim_Device,
|
99 |
+
aten._pin_memory.default,
|
100 |
+
aten._pin_memory.out,
|
101 |
+
aten._resize_output.default,
|
102 |
+
aten._resize_output.out,
|
103 |
+
)
|
104 |
+
|
105 |
+
# this op is never actually used
|
106 |
+
_non_kwarg_device_constructors = (aten._list_to_tensor,)
|
107 |
+
|
108 |
+
|
109 |
+
# This function indicates if the backend device
|
110 |
+
# supports non-contiguous tensors
|
111 |
+
def is_noncontiguous_supported(device):
|
112 |
+
if device.type == "hpu":
|
113 |
+
return False
|
114 |
+
return True
|
115 |
+
|
116 |
+
|
117 |
+
def contains_tensor_types(type):
|
118 |
+
tensor_type = torch._C.TensorType.get()
|
119 |
+
return type.isSubtypeOf(tensor_type) or any(
|
120 |
+
contains_tensor_types(e) for e in type.containedTypes()
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
_like_tensor_constructors = (
|
125 |
+
aten.empty_like.default,
|
126 |
+
aten.empty_like.out,
|
127 |
+
aten.full_like.default,
|
128 |
+
aten.full_like.out,
|
129 |
+
aten.ones_like.default,
|
130 |
+
aten.ones_like.out,
|
131 |
+
aten.rand_like.default,
|
132 |
+
aten.rand_like.out,
|
133 |
+
aten.randn_like.default,
|
134 |
+
aten.randn_like.out,
|
135 |
+
aten.randint_like.default,
|
136 |
+
aten.randint_like.out,
|
137 |
+
aten.randint_like.low_dtype,
|
138 |
+
aten.randint_like.low_dtype_out,
|
139 |
+
aten.zeros_like.default,
|
140 |
+
aten.zeros_like.out,
|
141 |
+
aten.new_empty.default,
|
142 |
+
aten.new_empty.out,
|
143 |
+
aten.new_empty_strided.default,
|
144 |
+
aten.new_empty_strided.out,
|
145 |
+
aten.new_full.default,
|
146 |
+
aten.new_full.out,
|
147 |
+
aten.new_zeros.default,
|
148 |
+
aten.new_zeros.out,
|
149 |
+
aten.new_ones.default,
|
150 |
+
aten.new_ones.out,
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
@contextlib.contextmanager
|
155 |
+
def unset_fake_temporarily():
|
156 |
+
old = torch._C._unset_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE)
|
157 |
+
try:
|
158 |
+
yield old
|
159 |
+
finally:
|
160 |
+
if old is not None:
|
161 |
+
torch._C._set_dispatch_mode(old)
|
162 |
+
|
163 |
+
|
164 |
+
@functools.lru_cache(None)
|
165 |
+
def _is_tensor_constructor(func: OpOverload):
|
166 |
+
assert isinstance(func, OpOverload)
|
167 |
+
schema = func._schema
|
168 |
+
if any(contains_tensor_types(arg.type) for arg in schema.arguments):
|
169 |
+
return False
|
170 |
+
# TODO: no real reason to restrict multiple outputs
|
171 |
+
return (
|
172 |
+
len(schema.returns) == 1 and schema.returns[0].type is torch._C.TensorType.get()
|
173 |
+
)
|
174 |
+
|
175 |
+
|
176 |
+
def is_fake(x):
|
177 |
+
if isinstance(x, FakeTensor):
|
178 |
+
return True
|
179 |
+
if is_traceable_wrapper_subclass(x):
|
180 |
+
attrs, _ = type(x).__tensor_flatten__(x)
|
181 |
+
flattened_tensors = [getattr(x, attr) for attr in attrs]
|
182 |
+
# need to recurse because we could have nested subclasses
|
183 |
+
all_fake = all(is_fake(x) for x in flattened_tensors)
|
184 |
+
any_fake = any(is_fake(x) for x in flattened_tensors)
|
185 |
+
assert all_fake == any_fake, "got mixed fake and real tensors!"
|
186 |
+
return all_fake
|
187 |
+
elif isinstance(x, torch.Tensor) and torch._is_functional_tensor(x):
|
188 |
+
reapply_views = torch._C._functionalization_reapply_views_tls()
|
189 |
+
unwrapped = torch._C._functorch._unwrap_functional_tensor(x, reapply_views)
|
190 |
+
return is_fake(unwrapped)
|
191 |
+
return False
|
192 |
+
|
193 |
+
|
194 |
+
def maybe_get_fake_mode(t):
|
195 |
+
if isinstance(t, FakeTensor):
|
196 |
+
return t.fake_mode
|
197 |
+
if is_traceable_wrapper_subclass(t):
|
198 |
+
inner_tensor_names, _ = t.__tensor_flatten__()
|
199 |
+
modes = [
|
200 |
+
maybe_get_fake_mode(getattr(t, t_name)) for t_name in inner_tensor_names
|
201 |
+
]
|
202 |
+
m = modes[0]
|
203 |
+
assert all(m is x for x in modes)
|
204 |
+
return m
|
205 |
+
elif isinstance(t, torch.Tensor) and torch._is_functional_tensor(t):
|
206 |
+
reapply_views = torch._C._functionalization_reapply_views_tls()
|
207 |
+
unwrapped = torch._C._functorch._unwrap_functional_tensor(t, reapply_views)
|
208 |
+
return maybe_get_fake_mode(unwrapped)
|
209 |
+
return None
|
210 |
+
|
211 |
+
|
212 |
+
@functools.lru_cache(None)
|
213 |
+
def get_schema_info(func):
|
214 |
+
return torch._C._SchemaInfo(func._schema) # type: ignore[attr-defined]
|
215 |
+
|
216 |
+
|
217 |
+
# many of the decompositions registered to torch/_prims do not at the moment model
|
218 |
+
# aliasing or strides, so as an incremental step, just enable the decompositions in
|
219 |
+
# torch/_decomp/decompositions.py.
|
220 |
+
# decomps are used for aot autograd tracing so we would like to unify on their
|
221 |
+
# implementation and add additional testing to them
|
222 |
+
@functools.lru_cache(None)
|
223 |
+
def torch_decomp_decompositions(func):
|
224 |
+
from torch._decomp import decomposition_table
|
225 |
+
|
226 |
+
decompositions = torch._decomp.decompositions
|
227 |
+
decomp_attrs = [getattr(decompositions, attr) for attr in dir(decompositions)]
|
228 |
+
return decomposition_table[func] in decomp_attrs
|
229 |
+
|
230 |
+
|
231 |
+
def tree_flatten_only(ty: Type[T], tree: PyTree):
|
232 |
+
flat_vals = pytree.tree_leaves(tree)
|
233 |
+
return [elem for elem in flat_vals if isinstance(elem, ty)]
|
234 |
+
|
235 |
+
|
236 |
+
# Similar to `MetaConverter`, this is a class for converting
|
237 |
+
# multiple tensors into fake tensors which share the same view/storage
|
238 |
+
# structure. Like `MetaConverter`, it uses `WeakIdRef` to
|
239 |
+
# hold a weak reference for all memoized tensors.
|
240 |
+
class FakeTensorConverter:
|
241 |
+
@property
|
242 |
+
def tensor_memo(self):
|
243 |
+
return self.meta_converter.tensor_memo
|
244 |
+
|
245 |
+
meta_converter: MetaConverter
|
246 |
+
constant_storage_mapping: Dict[StorageWeakRef, List[ReferenceType]]
|
247 |
+
|
248 |
+
def __init__(self):
|
249 |
+
self.meta_converter = MetaConverter()
|
250 |
+
|
251 |
+
# map from to storage to corresponding constant tensors
|
252 |
+
self.constant_storage_mapping = {}
|
253 |
+
|
254 |
+
def add_constant_storage_mapping(self, fake_tensor):
|
255 |
+
# when you have a constant, aliased tensor:
|
256 |
+
# const_tensor.add_(torch.rand([1]))
|
257 |
+
# all aliases of it must become no longer const
|
258 |
+
assert isinstance(fake_tensor, FakeTensor) and fake_tensor.constant is not None
|
259 |
+
weak_st = StorageWeakRef(fake_tensor.constant._typed_storage())
|
260 |
+
|
261 |
+
# we need a map from a weak storage to all of its corresponding
|
262 |
+
# constant tensors. python doesn't have the weak value equivalent
|
263 |
+
# of defaultdict(list), so we are using a WeakValueDictionary as one
|
264 |
+
if weak_st not in self.constant_storage_mapping:
|
265 |
+
self.constant_storage_mapping[weak_st] = []
|
266 |
+
self.constant_storage_mapping[weak_st].append(weakref.ref(fake_tensor))
|
267 |
+
|
268 |
+
def invalidate_constant_aliases(self, tensor):
|
269 |
+
assert not isinstance(tensor, FakeTensor)
|
270 |
+
|
271 |
+
weak_st = StorageWeakRef(tensor._typed_storage())
|
272 |
+
if weak_st not in self.constant_storage_mapping:
|
273 |
+
return
|
274 |
+
|
275 |
+
for weak_tensor_ref in self.constant_storage_mapping[weak_st]:
|
276 |
+
ten = weak_tensor_ref()
|
277 |
+
if ten is not None:
|
278 |
+
ten._fix_weakref()
|
279 |
+
ten.constant = None
|
280 |
+
|
281 |
+
del self.constant_storage_mapping[weak_st]
|
282 |
+
|
283 |
+
def _get_memo(self, t):
|
284 |
+
if WeakIdRef(t) in self.tensor_memo:
|
285 |
+
out = self.tensor_memo[WeakIdRef(t)]
|
286 |
+
out._fix_weakref()
|
287 |
+
return out
|
288 |
+
return None
|
289 |
+
|
290 |
+
def set_tensor_memo(self, t, v):
|
291 |
+
th = WeakIdRef(t)
|
292 |
+
|
293 |
+
# hold a weak ref to self, otherwise it will be kept alive
|
294 |
+
# by the del_ten closure
|
295 |
+
self_weak_ref = weakref.ref(self)
|
296 |
+
|
297 |
+
def del_ten():
|
298 |
+
self_ref = self_weak_ref()
|
299 |
+
if self_ref is None:
|
300 |
+
return
|
301 |
+
# on shutdown, th may not be in memo
|
302 |
+
self_ref.tensor_memo.pop(th, None)
|
303 |
+
|
304 |
+
weakref.finalize(t, del_ten)
|
305 |
+
self.tensor_memo[th] = v
|
306 |
+
|
307 |
+
def from_real_tensor(
|
308 |
+
self,
|
309 |
+
fake_mode,
|
310 |
+
t,
|
311 |
+
make_constant=False,
|
312 |
+
shape_env=None,
|
313 |
+
*,
|
314 |
+
source=None,
|
315 |
+
symbolic_context=None,
|
316 |
+
memoized_only=False,
|
317 |
+
):
|
318 |
+
# see note [Tensor Fakification and Symbol Caching]
|
319 |
+
if not symbolic_context and not source and shape_env:
|
320 |
+
if tracing_context := torch._guards.TracingContext.try_get():
|
321 |
+
if t in tracing_context.tensor_to_context:
|
322 |
+
symbolic_context = tracing_context.tensor_to_context[t]
|
323 |
+
source = symbolic_context.tensor_source
|
324 |
+
|
325 |
+
maybe_memo = self._get_memo(t)
|
326 |
+
if maybe_memo is not None:
|
327 |
+
return maybe_memo
|
328 |
+
if memoized_only:
|
329 |
+
return None
|
330 |
+
existing_device = t.device
|
331 |
+
# not yet supported in metatensors
|
332 |
+
if t.is_quantized:
|
333 |
+
raise UnsupportedFakeTensorException("quantized nyi in meta tensors")
|
334 |
+
if type(t) is torch.nn.Parameter:
|
335 |
+
assert not make_constant
|
336 |
+
|
337 |
+
def mk_fake_tensor(make_meta_t):
|
338 |
+
# NB: don't use in_kernel_invocation_manager. to
|
339 |
+
# ensure FakeTensor can internally do constant computation
|
340 |
+
# as necessary. Invocation manager is "more correct" as
|
341 |
+
# it works for more operators in make_meta_t, but
|
342 |
+
# invariant is that make_meta_t only calls factories
|
343 |
+
# for which it is not strictly necessary to use the
|
344 |
+
# invocation manager (I think!)
|
345 |
+
with no_dispatch():
|
346 |
+
return FakeTensor(
|
347 |
+
fake_mode,
|
348 |
+
make_meta_t(),
|
349 |
+
existing_device,
|
350 |
+
constant=t if make_constant else None,
|
351 |
+
)
|
352 |
+
|
353 |
+
out = self.meta_converter(
|
354 |
+
t,
|
355 |
+
shape_env=shape_env,
|
356 |
+
callback=mk_fake_tensor,
|
357 |
+
source=source,
|
358 |
+
symbolic_context=symbolic_context,
|
359 |
+
)
|
360 |
+
if out is NotImplemented:
|
361 |
+
raise UnsupportedFakeTensorException("meta converter nyi")
|
362 |
+
if make_constant:
|
363 |
+
self.add_constant_storage_mapping(out)
|
364 |
+
# NB: meta_converter set the memo
|
365 |
+
return out
|
366 |
+
|
367 |
+
# If you specify the device, it MUST be a meta tensor.
|
368 |
+
def from_meta_and_device(self, fake_mode, t, device):
|
369 |
+
assert (
|
370 |
+
t.device.type == "meta"
|
371 |
+
), f"tensor's device must be `meta`, got {t.device.type} instead"
|
372 |
+
maybe_memo = self._get_memo(t)
|
373 |
+
if maybe_memo is not None:
|
374 |
+
return maybe_memo
|
375 |
+
out = FakeTensor(fake_mode, t, device)
|
376 |
+
self.set_tensor_memo(t, out)
|
377 |
+
return out
|
378 |
+
|
379 |
+
# You can have a real tensor that you need to convert into a fake tensor.
|
380 |
+
# If you have a meta tensor already, call from_meta_and_device.
|
381 |
+
#
|
382 |
+
# You're allowed to pass a meta tensor to be turned into a fake
|
383 |
+
# tensor; although an odd thing to do, this can occur if you're doing
|
384 |
+
# cross ref testing and the inner test is already operating on meta tensors.
|
385 |
+
def __call__(
|
386 |
+
self,
|
387 |
+
fake_mode,
|
388 |
+
t,
|
389 |
+
*,
|
390 |
+
make_constant=False,
|
391 |
+
shape_env=None,
|
392 |
+
source=None,
|
393 |
+
symbolic_context=None,
|
394 |
+
memoized_only=False,
|
395 |
+
):
|
396 |
+
return self.from_real_tensor(
|
397 |
+
fake_mode,
|
398 |
+
t,
|
399 |
+
make_constant,
|
400 |
+
shape_env=shape_env,
|
401 |
+
source=source,
|
402 |
+
symbolic_context=symbolic_context,
|
403 |
+
memoized_only=memoized_only,
|
404 |
+
)
|
405 |
+
|
406 |
+
|
407 |
+
op_implementations = []
|
408 |
+
|
409 |
+
|
410 |
+
def register_op_impl(run_impl_check: Union[Callable[[OpOverload], bool], OpOverload]):
|
411 |
+
def impl_decorator(op_impl):
|
412 |
+
global op_implementations
|
413 |
+
if isinstance(run_impl_check, OpOverload):
|
414 |
+
op_implementations.append((lambda func: func == run_impl_check, op_impl))
|
415 |
+
else:
|
416 |
+
op_implementations.append((run_impl_check, op_impl))
|
417 |
+
|
418 |
+
return op_impl
|
419 |
+
|
420 |
+
return impl_decorator
|
421 |
+
|
422 |
+
|
423 |
+
@register_op_impl(
|
424 |
+
lambda func: (_is_tensor_constructor(func) or func in _like_tensor_constructors)
|
425 |
+
)
|
426 |
+
def constructors(fake_mode, func, *args, **kwargs):
|
427 |
+
assert func not in _non_kwarg_device_constructors
|
428 |
+
_, new_kwargs = normalize_function(
|
429 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
430 |
+
)
|
431 |
+
if func in _like_tensor_constructors:
|
432 |
+
default_device = new_kwargs["input"].device
|
433 |
+
# TODO: file issue
|
434 |
+
args = (new_kwargs.pop("input"),)
|
435 |
+
else:
|
436 |
+
# cpu is default device if none is specified
|
437 |
+
default_device = torch.device("cpu")
|
438 |
+
args = ()
|
439 |
+
out_device = new_kwargs.pop("device", None)
|
440 |
+
out_device = out_device if out_device is not None else default_device
|
441 |
+
new_kwargs["device"] = torch.device("meta")
|
442 |
+
# _like constructors have fake tensor inputs (maybe this causes the non-like
|
443 |
+
# to fail? hmmm)
|
444 |
+
with in_kernel_invocation_manager(fake_mode):
|
445 |
+
r = func(*args, **new_kwargs)
|
446 |
+
return FakeTensor(fake_mode, r, out_device)
|
447 |
+
|
448 |
+
|
449 |
+
@register_op_impl(lambda func: func in (aten.to.prim_Device, aten.to.device))
|
450 |
+
def non_kwarg_to(fake_mode, func, *args, **kwargs):
|
451 |
+
_, new_kwargs = normalize_function(
|
452 |
+
func, args, kwargs, normalize_to_only_use_kwargs=True
|
453 |
+
)
|
454 |
+
input_device = new_kwargs["device"]
|
455 |
+
out_device = input_device if input_device else new_kwargs["input"].device
|
456 |
+
new_kwargs["device"] = torch.device("meta")
|
457 |
+
inp = new_kwargs.pop("input")
|
458 |
+
with in_kernel_invocation_manager(fake_mode):
|
459 |
+
r = func(inp, **new_kwargs)
|
460 |
+
# TODO: I think this does the wrong thing if r is inp
|
461 |
+
return fake_mode.fake_tensor_converter.from_meta_and_device(
|
462 |
+
fake_mode, r, out_device
|
463 |
+
)
|
464 |
+
|
465 |
+
|
466 |
+
def stride_incorrect_op(op):
|
467 |
+
if op.namespace not in ("aten", "prims"):
|
468 |
+
return False
|
469 |
+
if op is aten._fft_c2c.default:
|
470 |
+
return False
|
471 |
+
|
472 |
+
op_name = op.name()
|
473 |
+
if "fft" in op_name:
|
474 |
+
return True
|
475 |
+
return False
|
476 |
+
|
477 |
+
|
478 |
+
# These operators have meta implementations with incorrect strides
|
479 |
+
@register_op_impl(stride_incorrect_op)
|
480 |
+
def wordaround_stride_incorrect_op(fake_mode, func, *args, **kwargs):
|
481 |
+
# This is a workaround for meta implmentations with incorrect strides
|
482 |
+
|
483 |
+
def is_symbolic(x):
|
484 |
+
if isinstance(x, FakeTensor):
|
485 |
+
return x._has_symbolic_sizes_strides
|
486 |
+
if isinstance(x, (torch.SymInt, torch.SymFloat, torch.SymBool)):
|
487 |
+
return True
|
488 |
+
return False
|
489 |
+
|
490 |
+
# For static shapes, we can fall back to eager for the real strides
|
491 |
+
if fake_mode.allow_fallback_kernels:
|
492 |
+
require_dynamic = any(
|
493 |
+
is_symbolic(x) for x in itertools.chain(args, kwargs.values())
|
494 |
+
)
|
495 |
+
if not require_dynamic:
|
496 |
+
flat_args, args_spec = pytree.tree_flatten((args, kwargs))
|
497 |
+
return run_fallback_kernel(fake_mode, func, flat_args, args_spec, None)
|
498 |
+
|
499 |
+
raise UnsupportedOperatorException(func)
|
500 |
+
|
501 |
+
|
502 |
+
# Dont default to default device handling,
|
503 |
+
# since the device of `the_template` is ignored
|
504 |
+
@register_op_impl(aten.resize_as_.default)
|
505 |
+
def resize_as_(fake_mode, func, *args, **kwargs):
|
506 |
+
with in_kernel_invocation_manager(fake_mode):
|
507 |
+
return func(*args, **kwargs)
|
508 |
+
|
509 |
+
|
510 |
+
@register_op_impl(aten._sparse_coo_tensor_with_dims_and_tensors.default)
|
511 |
+
def _sparse_coo_tensor_with_dims_and_tensors(fake_mode, func, *args, **kwargs):
|
512 |
+
# TODO: remove me
|
513 |
+
return constructors(fake_mode, func, *args, **kwargs)
|
514 |
+
|
515 |
+
|
516 |
+
# index.Tensor data-dependent in only some conditions
|
517 |
+
@register_op_impl(
|
518 |
+
lambda func: torch.Tag.dynamic_output_shape in func.tags
|
519 |
+
and func
|
520 |
+
not in [aten.index.Tensor, aten.nonzero.default, aten.repeat_interleave.Tensor]
|
521 |
+
)
|
522 |
+
def dyn_shape(fake_mode, func, *args, **kwargs):
|
523 |
+
raise DynamicOutputShapeException(func)
|
524 |
+
|
525 |
+
|
526 |
+
@register_op_impl(lambda func: func is aten.repeat_interleave.Tensor)
|
527 |
+
def repeat_interleave_tensor(fake_mode, func, repeats, output_size=None):
|
528 |
+
if output_size is None:
|
529 |
+
if (
|
530 |
+
fake_mode.shape_env is None
|
531 |
+
or not fake_mode.shape_env.allow_dynamic_output_shape_ops
|
532 |
+
):
|
533 |
+
raise DynamicOutputShapeException(func)
|
534 |
+
|
535 |
+
output_size = fake_mode.shape_env.create_unbacked_symint()
|
536 |
+
|
537 |
+
# Avoid importing sympy at a module level
|
538 |
+
from torch.fx.experimental.symbolic_shapes import _constrain_range_for_size
|
539 |
+
|
540 |
+
_constrain_range_for_size(output_size)
|
541 |
+
# TODO: consider a memo
|
542 |
+
return repeats.new_empty(output_size)
|
543 |
+
|
544 |
+
|
545 |
+
@register_op_impl(lambda func: func is torch.ops.aten._local_scalar_dense.default)
|
546 |
+
def local_scalar_dense(fake_mode, func, arg):
|
547 |
+
if fake_mode.shape_env is None or not fake_mode.shape_env.allow_scalar_outputs:
|
548 |
+
# Without symints/symfloats, cannot handle this
|
549 |
+
raise DataDependentOutputException(func)
|
550 |
+
if is_float_dtype(arg.dtype):
|
551 |
+
return fake_mode.shape_env.create_unbacked_symfloat()
|
552 |
+
elif is_integer_dtype(arg.dtype):
|
553 |
+
return fake_mode.shape_env.create_unbacked_symint()
|
554 |
+
elif is_boolean_dtype(arg.dtype):
|
555 |
+
return fake_mode.shape_env.create_unbacked_symbool()
|
556 |
+
else:
|
557 |
+
raise NotImplementedError(f"local_scalar_dense/item NYI for {arg.dtype}")
|
558 |
+
|
559 |
+
|
560 |
+
@register_op_impl(lambda func: func is torch.ops.aten.nonzero.default)
|
561 |
+
def nonzero(fake_mode, func, arg):
|
562 |
+
if (
|
563 |
+
fake_mode.shape_env is None
|
564 |
+
or not fake_mode.shape_env.allow_dynamic_output_shape_ops
|
565 |
+
):
|
566 |
+
# Without symints/symfloats, cannot handle this
|
567 |
+
raise DynamicOutputShapeException(func)
|
568 |
+
|
569 |
+
if arg.nonzero_memo is None:
|
570 |
+
nnz = fake_mode.shape_env.create_unbacked_symint()
|
571 |
+
|
572 |
+
# This is unsound, but it works well in practice
|
573 |
+
# See https://docs.google.com/document/d/1lFRYAJo5nrfxRhwIzGnfi2pbLpU6T4ytSRSuLJ5qebI/edit#
|
574 |
+
# TODO: Add a config knob to turn off this unsound behavior
|
575 |
+
#
|
576 |
+
# NB: If numel < 2, the bounds here might be COMPLETELY
|
577 |
+
# disjoint with what can actually occur. But this is fine:
|
578 |
+
# remember, the hypothesis is that if your later code works
|
579 |
+
# with N >= 2, it will work with N = 1 and N = 0.
|
580 |
+
maxval = sys.maxsize - 1
|
581 |
+
|
582 |
+
# Avoid importing sympy at a module level
|
583 |
+
from torch.fx.experimental.symbolic_shapes import (
|
584 |
+
_constrain_range_for_size,
|
585 |
+
has_free_symbols,
|
586 |
+
)
|
587 |
+
|
588 |
+
if not has_free_symbols(arg.numel()):
|
589 |
+
# Don't upgrade the range if numel is less than two, since we then
|
590 |
+
# have an empty range which makes things go explodey. We also
|
591 |
+
# don't allow for 2 because that would specialize the unbacked
|
592 |
+
# SymInt to 2, which is also likely to be buggy.
|
593 |
+
if arg.numel() > 2:
|
594 |
+
maxval = int(arg.numel())
|
595 |
+
|
596 |
+
_constrain_range_for_size(nnz, max=maxval)
|
597 |
+
|
598 |
+
arg._nonzero_memo = nnz
|
599 |
+
arg._nonzero_memo_vc = arg._version
|
600 |
+
|
601 |
+
return arg.new_empty((arg.nonzero_memo, arg.dim()), dtype=torch.int64)
|
602 |
+
|
603 |
+
|
604 |
+
@register_op_impl(lambda func: func is torch.ops.aten.masked_select.default)
|
605 |
+
def masked_select(fake_mode, func, self, mask):
|
606 |
+
if (
|
607 |
+
fake_mode.shape_env is None
|
608 |
+
or not fake_mode.shape_env.allow_dynamic_output_shape_ops
|
609 |
+
):
|
610 |
+
# Without symints/symfloats, cannot handle this
|
611 |
+
raise DynamicOutputShapeException(func)
|
612 |
+
|
613 |
+
nnz = fake_mode.shape_env.create_unbacked_symint()
|
614 |
+
|
615 |
+
# see nonzero for commentary
|
616 |
+
maxval = sys.maxsize - 1
|
617 |
+
|
618 |
+
# Avoid importing sympy at a module level
|
619 |
+
from torch.fx.experimental.symbolic_shapes import (
|
620 |
+
_constrain_range_for_size,
|
621 |
+
has_free_symbols,
|
622 |
+
)
|
623 |
+
|
624 |
+
if not has_free_symbols(arg.numel()):
|
625 |
+
if arg.numel() >= 2:
|
626 |
+
maxval = int(arg.numel())
|
627 |
+
|
628 |
+
_constrain_range_for_size(nnz, max=maxval)
|
629 |
+
|
630 |
+
return self.new_empty((nnz,))
|
631 |
+
|
632 |
+
|
633 |
+
# NB: this must be ordered after local_scalar_dense
|
634 |
+
@register_op_impl(lambda func: torch.Tag.data_dependent_output in func.tags)
|
635 |
+
def data_dep(fake_mode, func, *args, **kwargs):
|
636 |
+
raise DataDependentOutputException(func)
|
637 |
+
|
638 |
+
|
639 |
+
# Bool Indices get Expanded as Masks
|
640 |
+
# See: IndexingUtils.h:expandTensors
|
641 |
+
def check_no_bool_index_tensors(func, self, indices):
|
642 |
+
for index in indices:
|
643 |
+
if index is not None and index.dtype in (torch.bool, torch.uint8):
|
644 |
+
raise DynamicOutputShapeException(func)
|
645 |
+
|
646 |
+
|
647 |
+
def run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs):
|
648 |
+
_, new_kwargs = normalize_function(
|
649 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
650 |
+
)
|
651 |
+
|
652 |
+
out_device = new_kwargs["input"].device
|
653 |
+
with in_kernel_invocation_manager(fake_mode):
|
654 |
+
out = func(*args, **kwargs)
|
655 |
+
if not is_noncontiguous_supported(out_device):
|
656 |
+
out = out.new_empty(out.shape)
|
657 |
+
|
658 |
+
if out is new_kwargs["input"]:
|
659 |
+
return out # copy_
|
660 |
+
return FakeTensor(fake_mode, out, out_device)
|
661 |
+
|
662 |
+
|
663 |
+
# Dont default to default device handling,
|
664 |
+
# Since op can take in non-zero sized cpu
|
665 |
+
# index tensors with cuda self
|
666 |
+
@register_op_impl(aten.index.Tensor)
|
667 |
+
def index_tensor(fake_mode, func, *args, **kwargs):
|
668 |
+
from torch._meta_registrations import meta_index_Tensor
|
669 |
+
|
670 |
+
_, new_kwargs = normalize_function(
|
671 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
672 |
+
)
|
673 |
+
|
674 |
+
out_device = new_kwargs["input"].device
|
675 |
+
# ensure nonzero call goes to fake tensor
|
676 |
+
with fake_mode:
|
677 |
+
out = meta_index_Tensor(*args, **kwargs)
|
678 |
+
return out.to(out_device)
|
679 |
+
|
680 |
+
|
681 |
+
# Can take mixed meta/non-meta arguments; the meta registration
|
682 |
+
# will roughly do the right thing even when given real devices
|
683 |
+
@register_op_impl(aten._embedding_bag.default)
|
684 |
+
def embedding_bag(fake_mode, func, *args, **kwargs):
|
685 |
+
from torch._meta_registrations import meta_embedding_bag
|
686 |
+
|
687 |
+
with fake_mode:
|
688 |
+
return meta_embedding_bag(*args, **kwargs)
|
689 |
+
|
690 |
+
|
691 |
+
# takes in multiple-devices, dont default to default device handling
|
692 |
+
@register_op_impl(aten._unsafe_index_put.default)
|
693 |
+
@register_op_impl(aten.copy.default)
|
694 |
+
@register_op_impl(aten.copy_.default)
|
695 |
+
@register_op_impl(aten.slice_scatter.default)
|
696 |
+
def multi_device_op_default(fake_mode, func, *args, **kwargs):
|
697 |
+
return run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs)
|
698 |
+
|
699 |
+
|
700 |
+
# same with multi_device_op_default, but return the input
|
701 |
+
@register_op_impl(aten.copy.out)
|
702 |
+
@register_op_impl(aten.slice_scatter.out)
|
703 |
+
def multi_device_op_out(fake_mode, func, *args, **kwargs):
|
704 |
+
with in_kernel_invocation_manager(fake_mode):
|
705 |
+
out = func(*args, **kwargs)
|
706 |
+
|
707 |
+
_, new_kwargs = normalize_function(
|
708 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
709 |
+
)
|
710 |
+
|
711 |
+
return new_kwargs["input"]
|
712 |
+
|
713 |
+
|
714 |
+
@register_op_impl(aten.index_put.default)
|
715 |
+
@register_op_impl(aten.index_put_.default)
|
716 |
+
def index_put_impl(fake_mode, func, *args, **kwargs):
|
717 |
+
_, new_kwargs = normalize_function(
|
718 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
719 |
+
)
|
720 |
+
|
721 |
+
values = new_kwargs["values"]
|
722 |
+
self_device = new_kwargs["input"].fake_device
|
723 |
+
torch._check(
|
724 |
+
self_device == values.fake_device or (values.ndim == 0 and values.numel() == 1),
|
725 |
+
lambda: f"Mismatching {func} device between self ({self_device}) and values ({values.device})",
|
726 |
+
)
|
727 |
+
|
728 |
+
out = run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs)
|
729 |
+
if func is aten.index_put_.default:
|
730 |
+
return new_kwargs["input"]
|
731 |
+
else:
|
732 |
+
return out
|
733 |
+
|
734 |
+
|
735 |
+
@register_op_impl(lambda fn: fn in _device_not_kwarg_ops)
|
736 |
+
def nyi(fake_mode, func, *args, **kwargs):
|
737 |
+
assert func not in _device_not_kwarg_ops, f"NYI: {func}"
|
738 |
+
|
739 |
+
|
740 |
+
@register_op_impl(
|
741 |
+
lambda func: func in (aten.convolution.default, aten.convolution_backward.default)
|
742 |
+
)
|
743 |
+
def conv(fake_mode, func, *args, **kwargs):
|
744 |
+
_, kwargs = normalize_function(
|
745 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
746 |
+
)
|
747 |
+
device = kwargs["input"].fake_device
|
748 |
+
# need to re-enable mode so the tensors report fake device
|
749 |
+
with fake_mode:
|
750 |
+
# if the input is unsqueezed is done in Convolution.cpp we get segfault
|
751 |
+
k = kwargs["weight"].ndim
|
752 |
+
batch = kwargs["input"].shape[0]
|
753 |
+
|
754 |
+
# Avoid importing sympy at a module level
|
755 |
+
from torch.fx.experimental.symbolic_shapes import has_hint
|
756 |
+
|
757 |
+
if not has_hint(batch):
|
758 |
+
# TODO: We can make this a little more faithful with best effort
|
759 |
+
# channels last detection (but only if it's statically obvious!)
|
760 |
+
mem_fmt = None
|
761 |
+
elif k == 3 and not kwargs["input"].is_mkldnn and not kwargs["input"].is_xpu:
|
762 |
+
mem_fmt = None
|
763 |
+
else:
|
764 |
+
if func is aten.convolution.default:
|
765 |
+
conv_backend = torch._C._select_conv_backend(**kwargs)
|
766 |
+
else:
|
767 |
+
conv_backend = torch._C._select_conv_backend(
|
768 |
+
kwargs["input"],
|
769 |
+
kwargs["weight"],
|
770 |
+
bias=None,
|
771 |
+
stride=kwargs["stride"],
|
772 |
+
padding=kwargs["padding"],
|
773 |
+
dilation=kwargs["dilation"],
|
774 |
+
transposed=kwargs["transposed"],
|
775 |
+
output_padding=kwargs["output_padding"],
|
776 |
+
groups=kwargs["groups"],
|
777 |
+
bias_sizes=kwargs["bias_sizes"],
|
778 |
+
)
|
779 |
+
mem_fmt = torch._C._conv_determine_backend_memory_format(
|
780 |
+
kwargs["input"], kwargs["weight"], conv_backend
|
781 |
+
)
|
782 |
+
|
783 |
+
def convert(t, mem_fmt):
|
784 |
+
if t is None:
|
785 |
+
return t
|
786 |
+
if mem_fmt is not None:
|
787 |
+
t = t.to(memory_format=mem_fmt)
|
788 |
+
return FakeTensor(fake_mode, t, device)
|
789 |
+
|
790 |
+
with in_kernel_invocation_manager(fake_mode):
|
791 |
+
out = func(**kwargs)
|
792 |
+
|
793 |
+
if func is aten.convolution.default:
|
794 |
+
return convert(out, mem_fmt)
|
795 |
+
else:
|
796 |
+
return (
|
797 |
+
convert(out[0], mem_fmt),
|
798 |
+
convert(out[1], mem_fmt),
|
799 |
+
convert(out[2], None),
|
800 |
+
)
|
801 |
+
|
802 |
+
|
803 |
+
FAST_OP_IMPLEMENTATIONS = {}
|
804 |
+
|
805 |
+
|
806 |
+
# Unlike register_op_impl, these don't do the slow iteration for
|
807 |
+
# run_impl_check, and these run BEFORE decompositions
|
808 |
+
def register_fast_op_impl(func: OpOverload):
|
809 |
+
def impl_decorator(op_impl):
|
810 |
+
FAST_OP_IMPLEMENTATIONS[func] = op_impl
|
811 |
+
return op_impl
|
812 |
+
|
813 |
+
return impl_decorator
|
814 |
+
|
815 |
+
|
816 |
+
# infer_size_impl in ExpandUtils
|
817 |
+
def infer_size(a, b):
|
818 |
+
dimsA = len(a)
|
819 |
+
dimsB = len(b)
|
820 |
+
ndim = max(dimsA, dimsB)
|
821 |
+
expandedSizes = [0] * ndim
|
822 |
+
for i in range(ndim - 1, -1, -1):
|
823 |
+
offset = ndim - 1 - i
|
824 |
+
dimA = dimsA - 1 - offset
|
825 |
+
dimB = dimsB - 1 - offset
|
826 |
+
sizeA = a[dimA] if dimA >= 0 else 1
|
827 |
+
sizeB = b[dimB] if dimB >= 0 else 1
|
828 |
+
|
829 |
+
# NB: It is very important to test for broadcasting, before testing
|
830 |
+
# sizeA == sizeB. This is because the broadcasting tests are likely
|
831 |
+
# to be statically known (in particular, if sizeA/sizeB is unbacked
|
832 |
+
# but size-like, we will unsoundly assume they never equal 1), but
|
833 |
+
# the sizeA == sizeB test may not be statically known. However, once
|
834 |
+
# we have established that no broadcasting is happening, the
|
835 |
+
# sizeA == sizeB is now expect_true and we can defer it as a runtime
|
836 |
+
# assert (this works because Python will return the terminal
|
837 |
+
# expression of an or statement as-is, without bool()'ing it; if this
|
838 |
+
# were not the case, we'd need to write this using torch.sym_or() or
|
839 |
+
# something like that).
|
840 |
+
torch._check(
|
841 |
+
sizeA == 1 or sizeB == 1 or sizeA == sizeB,
|
842 |
+
lambda: f"The size of tensor a ({sizeA}) "
|
843 |
+
f"must match the size of tensor b ({sizeB}) "
|
844 |
+
f"at non-singleton dimension {i})",
|
845 |
+
)
|
846 |
+
expandedSizes[i] = sizeB if sizeA == 1 else sizeA
|
847 |
+
return tuple(expandedSizes)
|
848 |
+
|
849 |
+
|
850 |
+
def make_fast_binary_impl(slow_ref):
|
851 |
+
def fast_binary_impl(mode, *args, **kwargs):
|
852 |
+
def slow(msg):
|
853 |
+
count_label(f"slow {msg}")
|
854 |
+
with mode:
|
855 |
+
return slow_ref(*args, **kwargs)
|
856 |
+
|
857 |
+
count_label("attempt fast")
|
858 |
+
|
859 |
+
# Fast path (based off of TensorIterator fast path).
|
860 |
+
# Unfortunately, there is no way to easily deduplicate
|
861 |
+
# this with either the TensorIterator C++ implementation
|
862 |
+
# (which we don't want to SymIntify, and also the algorithm
|
863 |
+
# here is slightly different from TensorIterator to allow
|
864 |
+
# for broadcasting), nor the PrimTorch implementation
|
865 |
+
# (which does not actually implement a fast path.)
|
866 |
+
|
867 |
+
operands = args
|
868 |
+
|
869 |
+
# compute_shape
|
870 |
+
has_scalars = False
|
871 |
+
has_tensors = False
|
872 |
+
final_shape = None
|
873 |
+
for op in operands:
|
874 |
+
shape = op.shape if isinstance(op, torch.Tensor) else ()
|
875 |
+
if len(shape) == 0:
|
876 |
+
has_scalars = True
|
877 |
+
else:
|
878 |
+
has_tensors = True
|
879 |
+
if final_shape is None:
|
880 |
+
final_shape = shape
|
881 |
+
# TODO: Minor optimization: track if the shapes
|
882 |
+
# were equal so you can skip the equality check
|
883 |
+
# below if unnecessary
|
884 |
+
final_shape = infer_size(final_shape, shape)
|
885 |
+
assert final_shape is not None
|
886 |
+
|
887 |
+
# Do some extra safety checks to see if the output
|
888 |
+
# stride is obvious
|
889 |
+
for op in operands:
|
890 |
+
if isinstance(op, torch.Tensor) and op.shape == final_shape:
|
891 |
+
break
|
892 |
+
else:
|
893 |
+
return slow("both tensors nontrivially broadcast")
|
894 |
+
|
895 |
+
# compute_types
|
896 |
+
cpu = torch.device("cpu")
|
897 |
+
common_device = cpu
|
898 |
+
common_dtype = None
|
899 |
+
output_dtype = None
|
900 |
+
has_different_input_dtypes = False
|
901 |
+
for op in operands:
|
902 |
+
if not isinstance(op, torch.Tensor):
|
903 |
+
# Use elementwise_dtypes for the tricky case
|
904 |
+
has_different_input_dtypes = True
|
905 |
+
continue
|
906 |
+
if common_device == cpu and not op.device.type == "cpu":
|
907 |
+
common_device = op.device
|
908 |
+
# Slightly simplified here as target_dtype cannot vary
|
909 |
+
if common_dtype is None:
|
910 |
+
common_dtype = op.dtype
|
911 |
+
elif common_dtype != op.dtype:
|
912 |
+
has_different_input_dtypes = True
|
913 |
+
|
914 |
+
if has_different_input_dtypes:
|
915 |
+
# compute promotion
|
916 |
+
# TODO: we don't need the compute type
|
917 |
+
_, common_dtype = elementwise_dtypes(
|
918 |
+
*operands, type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
|
919 |
+
)
|
920 |
+
|
921 |
+
# check all tensors on same device
|
922 |
+
# cpu scalars are assumed allow
|
923 |
+
current_cpu_scalars_on_non_cpu = 0
|
924 |
+
max_cpu_scalars_on_non_cpu = 1 # hard coded atm
|
925 |
+
for op in operands:
|
926 |
+
if not isinstance(op, torch.Tensor):
|
927 |
+
continue
|
928 |
+
if common_device != cpu and op.dim() == 0 and op.device == cpu:
|
929 |
+
if current_cpu_scalars_on_non_cpu >= max_cpu_scalars_on_non_cpu:
|
930 |
+
return slow("error")
|
931 |
+
current_cpu_scalars_on_non_cpu += 1
|
932 |
+
elif op.device != common_device:
|
933 |
+
return slow("error")
|
934 |
+
|
935 |
+
# compute_fast_setup_type
|
936 |
+
is_contiguous = True
|
937 |
+
is_channels_last = True
|
938 |
+
# TODO: is_non-overlapping_and_dense (not bound from Python
|
939 |
+
# no inplace, no out, everything defined
|
940 |
+
|
941 |
+
if is_noncontiguous_supported(common_device):
|
942 |
+
for op in operands:
|
943 |
+
if not isinstance(op, torch.Tensor):
|
944 |
+
continue
|
945 |
+
is_contiguous = is_contiguous and op.is_contiguous(
|
946 |
+
memory_format=torch.contiguous_format
|
947 |
+
)
|
948 |
+
is_channels_last = is_channels_last and op.is_contiguous(
|
949 |
+
memory_format=torch.channels_last
|
950 |
+
)
|
951 |
+
if is_contiguous:
|
952 |
+
# do contiguous
|
953 |
+
count_label("fast is_contiguous")
|
954 |
+
return FakeTensor(
|
955 |
+
mode,
|
956 |
+
torch.empty(
|
957 |
+
final_shape,
|
958 |
+
dtype=common_dtype,
|
959 |
+
device="meta",
|
960 |
+
memory_format=torch.contiguous_format,
|
961 |
+
),
|
962 |
+
device=common_device,
|
963 |
+
)
|
964 |
+
if is_channels_last:
|
965 |
+
count_label("fast channels_last")
|
966 |
+
# do channels last
|
967 |
+
return FakeTensor(
|
968 |
+
mode,
|
969 |
+
torch.empty(
|
970 |
+
final_shape,
|
971 |
+
dtype=common_dtype,
|
972 |
+
device="meta",
|
973 |
+
memory_format=torch.channels_last,
|
974 |
+
),
|
975 |
+
device=common_device,
|
976 |
+
)
|
977 |
+
|
978 |
+
return slow("no contiguity match")
|
979 |
+
|
980 |
+
return fast_binary_impl
|
981 |
+
|
982 |
+
|
983 |
+
@functools.lru_cache(None)
|
984 |
+
def get_fast_op_impls():
|
985 |
+
import torch._refs
|
986 |
+
|
987 |
+
register_fast_op_impl(torch.ops.aten.add.Tensor)(
|
988 |
+
make_fast_binary_impl(torch._refs.add)
|
989 |
+
)
|
990 |
+
register_fast_op_impl(torch.ops.aten.sub.Tensor)(
|
991 |
+
make_fast_binary_impl(torch._refs.sub)
|
992 |
+
)
|
993 |
+
register_fast_op_impl(torch.ops.aten.mul.Tensor)(make_fast_binary_impl(torch._refs.mul)) # type: ignore[has-type]
|
994 |
+
register_fast_op_impl(torch.ops.aten.div.Tensor)(
|
995 |
+
make_fast_binary_impl(torch._refs.div)
|
996 |
+
)
|
997 |
+
return FAST_OP_IMPLEMENTATIONS
|
998 |
+
|
999 |
+
|
1000 |
+
@functools.lru_cache(None)
|
1001 |
+
def init_cuda_context():
|
1002 |
+
# Backward will error with cuda Fake Tensors if no cuda tensors have been initialized first
|
1003 |
+
if torch.cuda.is_available():
|
1004 |
+
torch.empty(1, device="cuda") if torch.version.hip is None else torch.zeros(
|
1005 |
+
1, device="cuda"
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
|
1009 |
+
@contextlib.contextmanager
|
1010 |
+
def in_kernel_invocation_manager(fake_mode):
|
1011 |
+
# See: note [Fake Tensor Dispatch Keys]
|
1012 |
+
prev_in_kernel = fake_mode.in_kernel_invocation
|
1013 |
+
meta_in_tls = torch._C._meta_in_tls_dispatch_include()
|
1014 |
+
assert meta_in_tls == prev_in_kernel, f"{meta_in_tls}, {prev_in_kernel}"
|
1015 |
+
|
1016 |
+
guard = torch._C._DisableTorchDispatch() # type: ignore[attr-defined]
|
1017 |
+
fake_mode.in_kernel_invocation = True
|
1018 |
+
torch._C._set_meta_in_tls_dispatch_include(True)
|
1019 |
+
try:
|
1020 |
+
yield
|
1021 |
+
finally:
|
1022 |
+
fake_mode.in_kernel_invocation = prev_in_kernel
|
1023 |
+
torch._C._set_meta_in_tls_dispatch_include(prev_in_kernel)
|
1024 |
+
del guard
|
1025 |
+
|
1026 |
+
|
1027 |
+
# Return if the function allows Python numbers to bind to Tensors
|
1028 |
+
def should_allow_numbers_as_tensors(func: OpOverload):
|
1029 |
+
return torch._C._should_allow_numbers_as_tensors(
|
1030 |
+
func.name().split("::")[-1].split(".")[0]
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
|
1034 |
+
class FakeTensorConfig:
|
1035 |
+
debug = os.environ.get("TORCH_FAKE_TENSOR_DEBUG", False)
|
1036 |
+
|
1037 |
+
|
1038 |
+
class FakeTensor(torch.Tensor):
|
1039 |
+
"""
|
1040 |
+
Meta tensors give you the ability to run PyTorch code without having to
|
1041 |
+
actually do computation through tensors allocated on a `meta` device.
|
1042 |
+
Because the device is `meta`, meta tensors do not model device propagation.
|
1043 |
+
FakeTensor extends MetaTensors to also carry an additional `fake_device`
|
1044 |
+
which tracks devices that would have been used.
|
1045 |
+
"""
|
1046 |
+
|
1047 |
+
fake_device: torch.device
|
1048 |
+
fake_mode: "FakeTensorMode"
|
1049 |
+
constant: Optional[torch.Tensor]
|
1050 |
+
|
1051 |
+
# This memorizes the unbacked SymInt representing the number of nonzero
|
1052 |
+
# elements in this tensor. This is helpful if you do something like
|
1053 |
+
# x[mask] and y[mask]; mask.nonzero() gets repeatedly called and should
|
1054 |
+
# give a consistent unbacked SymInt. It needs to be invalidated in the
|
1055 |
+
# same way constant is.
|
1056 |
+
# TODO: Generalize this as needed, e.g., into a trie of memos
|
1057 |
+
_nonzero_memo: Optional[torch.SymInt]
|
1058 |
+
_nonzero_memo_vc: Optional[int]
|
1059 |
+
|
1060 |
+
# Indicates to our torch_dispatch dispatching infra that
|
1061 |
+
# this is an "infra" mode with lower dispatching precedence.
|
1062 |
+
_mode_key = torch._C._TorchDispatchModeKey.FAKE
|
1063 |
+
|
1064 |
+
@property
|
1065 |
+
def nonzero_memo(self):
|
1066 |
+
if self._nonzero_memo is None:
|
1067 |
+
return None
|
1068 |
+
# Version counter based tracking isn't 100% sound but it's close
|
1069 |
+
# enough
|
1070 |
+
if self._nonzero_memo_vc != self._version:
|
1071 |
+
self._nonzero_memo = None
|
1072 |
+
return None
|
1073 |
+
return self._nonzero_memo
|
1074 |
+
|
1075 |
+
@property
|
1076 |
+
def device(self):
|
1077 |
+
if self.fake_mode.in_kernel_invocation:
|
1078 |
+
return torch.device("meta")
|
1079 |
+
else:
|
1080 |
+
return self.fake_device
|
1081 |
+
|
1082 |
+
# Note: [Fake Tensor Dispatch Keys]
|
1083 |
+
# In order to model the behavior of device-specific autocast
|
1084 |
+
# and autograd logic, we update the dispatch keys of FakeTensors
|
1085 |
+
# to reflect their fake device. This includes the BackendComponent
|
1086 |
+
# (DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent
|
1087 |
+
# related Autocast and Autograd keys. __torch__dispatch__ sits below
|
1088 |
+
# Autocast and Autograd, and is only invoked when we are at the
|
1089 |
+
# kernel for the BackendComponent. Then, we add Meta to the
|
1090 |
+
# thread-local dispatch include set to hit the meta kernel
|
1091 |
+
# instead of the kernel of the BackendComponent for the fake device.
|
1092 |
+
# The `device_for_backend_keys` does that below
|
1093 |
+
# NOTE: this probably will not do the right thing for backends
|
1094 |
+
# that have dispatch keys which are higher than the "meta" key:
|
1095 |
+
# https://github.com/pytorch/pytorch/blob/main/c10/core/DispatchKey.h#L189
|
1096 |
+
|
1097 |
+
@staticmethod
|
1098 |
+
def __new__(cls, fake_mode, elem, device, constant=None):
|
1099 |
+
self = torch.Tensor._make_subclass(
|
1100 |
+
cls,
|
1101 |
+
elem,
|
1102 |
+
elem.requires_grad,
|
1103 |
+
dispatch_device=True,
|
1104 |
+
device_for_backend_keys=device,
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
assert elem.device.type == "meta", elem.device.type
|
1108 |
+
device = device if isinstance(device, torch.device) else torch.device(device)
|
1109 |
+
# NB: it is fine, if a little confusing, for device to be meta
|
1110 |
+
# (we are faking a meta tensor in that case). However, it often
|
1111 |
+
# indicates some sort of confusion (e.g., you accidentally passed
|
1112 |
+
# in a meta tensor when you should have passed in the real tensor).
|
1113 |
+
# So by default we disallow meta, and if you are working in a situation
|
1114 |
+
# where it is helpful (e.g., crossref testing) you can turn it back
|
1115 |
+
# on
|
1116 |
+
if not fake_mode.allow_meta:
|
1117 |
+
assert device.type != "meta"
|
1118 |
+
# normalize device.
|
1119 |
+
if device.type == "cuda":
|
1120 |
+
init_cuda_context()
|
1121 |
+
|
1122 |
+
if (
|
1123 |
+
device.type
|
1124 |
+
in ["cuda", "hpu", "xpu", torch._C._get_privateuse1_backend_name()]
|
1125 |
+
and device.index is None
|
1126 |
+
):
|
1127 |
+
device = torch.device(
|
1128 |
+
f"{device.type}:{getattr(torch, device.type).current_device()}"
|
1129 |
+
)
|
1130 |
+
self.fake_device = device # type: ignore[attr-defined]
|
1131 |
+
self.fake_mode = fake_mode # type: ignore[attr-defined]
|
1132 |
+
self.constant = constant # type: ignore[attr-defined]
|
1133 |
+
self._nonzero_memo = None # type: ignore[attr-defined]
|
1134 |
+
self._nonzero_memo_vc = None # type: ignore[attr-defined]
|
1135 |
+
|
1136 |
+
if FakeTensorConfig.debug:
|
1137 |
+
import traceback
|
1138 |
+
|
1139 |
+
self._debug_trace = traceback.extract_stack() # type: ignore[attr-defined]
|
1140 |
+
return self
|
1141 |
+
|
1142 |
+
# In some circumstances, a conventional torch.Tensor constructor
|
1143 |
+
# will get rewritten to call into FakeTensor. We must provide an
|
1144 |
+
# __init__ method that can accept the Python interpreters initialization
|
1145 |
+
# in such a situation; we must also be able to handle direct fake
|
1146 |
+
# tensor construction via FakeTensor().
|
1147 |
+
#
|
1148 |
+
# In particular, the __init__ call will look funny in the following case:
|
1149 |
+
#
|
1150 |
+
# with FakeTensorMode():
|
1151 |
+
# x = torch.Tensor([1, 2, 3])
|
1152 |
+
#
|
1153 |
+
# this desugars into:
|
1154 |
+
#
|
1155 |
+
# with FakeTensorMode():
|
1156 |
+
# x = torch.Tensor.__new__([1, 2, 3])
|
1157 |
+
# # NB: x is a fake tensor, because of the mode!
|
1158 |
+
# x.__init__([1, 2, 3]) # not the normal fake tensor args!
|
1159 |
+
#
|
1160 |
+
def __init__(self, *args, **kwargs):
|
1161 |
+
super().__init__()
|
1162 |
+
|
1163 |
+
@staticmethod
|
1164 |
+
def from_tensor(t, fake_mode):
|
1165 |
+
return fake_mode.from_tensor(t)
|
1166 |
+
|
1167 |
+
@classmethod
|
1168 |
+
@count
|
1169 |
+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
1170 |
+
# need to handle here to avoid infinite recursion
|
1171 |
+
# see [in_kernel_invocation]
|
1172 |
+
if func == torch.ops.prim.device.default:
|
1173 |
+
assert len(args) == 1 and isinstance(args[0], FakeTensor)
|
1174 |
+
if args[0].fake_mode.in_kernel_invocation:
|
1175 |
+
return torch.device("meta")
|
1176 |
+
else:
|
1177 |
+
return args[0].fake_device
|
1178 |
+
|
1179 |
+
# Because fake mode can return NotImplemented (if it sees a subclass
|
1180 |
+
# it doesn't know how to deal with), this test here is important
|
1181 |
+
# because the next dispatch after a fake mode will attempt to use
|
1182 |
+
# subclasses of tensors to dispatch, and any FakeTensor arguments
|
1183 |
+
# will be considered eligible.
|
1184 |
+
unrecognized_types = [
|
1185 |
+
t for t in types if not issubclass(t, FakeTensor) and t is not torch.Tensor
|
1186 |
+
]
|
1187 |
+
if unrecognized_types:
|
1188 |
+
not_implemented_log.debug(
|
1189 |
+
"FakeTensor unrecognized subclass(es): %s", unrecognized_types
|
1190 |
+
)
|
1191 |
+
return NotImplemented
|
1192 |
+
|
1193 |
+
fake_mode = None
|
1194 |
+
for arg in pytree.arg_tree_leaves(*args, **kwargs):
|
1195 |
+
if isinstance(arg, FakeTensor):
|
1196 |
+
fake_mode = arg.fake_mode
|
1197 |
+
break
|
1198 |
+
|
1199 |
+
assert fake_mode is not None
|
1200 |
+
|
1201 |
+
# If the fake mode is already active, don't try to reapply it!
|
1202 |
+
# NotImplemented is the right thing to return here, because the
|
1203 |
+
# typical situation this can occur is if ProxyTensorMode returned a
|
1204 |
+
# NotImplemented because of a not implemented subclass; we may have
|
1205 |
+
# unluckily attempted to hit FakeTensor's dispatch first,
|
1206 |
+
# NotImplemented lets us keep chaining until we find the actual
|
1207 |
+
# subclass
|
1208 |
+
maybe_cur_fake_mode = torch._C._get_dispatch_mode(
|
1209 |
+
torch._C._TorchDispatchModeKey.FAKE
|
1210 |
+
)
|
1211 |
+
if maybe_cur_fake_mode:
|
1212 |
+
not_implemented_log.debug(
|
1213 |
+
"FakeTensor mode already active: %s in %s",
|
1214 |
+
fake_mode,
|
1215 |
+
maybe_cur_fake_mode,
|
1216 |
+
)
|
1217 |
+
return NotImplemented
|
1218 |
+
|
1219 |
+
with fake_mode: # type: ignore[attr-defined]
|
1220 |
+
return func(*args, **kwargs)
|
1221 |
+
|
1222 |
+
@staticmethod
|
1223 |
+
def _find_common_device(func, flat_args) -> Tuple[torch.device, bool]:
|
1224 |
+
# Returns: (common_device, has_scalar_only_inputs)
|
1225 |
+
|
1226 |
+
# cpu - zero-dim tensors can be called in cuda kernels,
|
1227 |
+
# so overwrite the common_device if it the only existing
|
1228 |
+
# device comes from a cpu zero-dim tensor
|
1229 |
+
common_device = None
|
1230 |
+
has_scalar_only_inputs = False
|
1231 |
+
is_cpu_zero_dim = None
|
1232 |
+
|
1233 |
+
def cpu_zero_dim(t):
|
1234 |
+
return t.device.type == "cpu" and t.dim() == 0
|
1235 |
+
|
1236 |
+
def merge_devices(t):
|
1237 |
+
nonlocal common_device
|
1238 |
+
nonlocal is_cpu_zero_dim
|
1239 |
+
if not isinstance(t, FakeTensor):
|
1240 |
+
return
|
1241 |
+
|
1242 |
+
if common_device is None:
|
1243 |
+
common_device = t.device
|
1244 |
+
is_cpu_zero_dim = cpu_zero_dim(t)
|
1245 |
+
return
|
1246 |
+
|
1247 |
+
t_is_cpu_zero_dim = cpu_zero_dim(t)
|
1248 |
+
if t.device == common_device:
|
1249 |
+
if is_cpu_zero_dim:
|
1250 |
+
is_cpu_zero_dim = t_is_cpu_zero_dim
|
1251 |
+
return
|
1252 |
+
|
1253 |
+
# mismatching devices !
|
1254 |
+
# if current tensor is cpu 0 dim, defer to existing device
|
1255 |
+
if t_is_cpu_zero_dim:
|
1256 |
+
return
|
1257 |
+
|
1258 |
+
# current device is from cpu 0 dim tensor, overwrite
|
1259 |
+
if is_cpu_zero_dim:
|
1260 |
+
common_device = t.device
|
1261 |
+
is_cpu_zero_dim = t_is_cpu_zero_dim
|
1262 |
+
return
|
1263 |
+
|
1264 |
+
# mismatching devices of non-zero dim tensors, throw
|
1265 |
+
# This might be valid behavior and need to be explicitly modeled, e.g. reshape_as
|
1266 |
+
raise RuntimeError(
|
1267 |
+
f"Unhandled FakeTensor Device Propagation for {func}, found two different devices {common_device}, {t.device}"
|
1268 |
+
)
|
1269 |
+
|
1270 |
+
for arg in flat_args:
|
1271 |
+
merge_devices(arg)
|
1272 |
+
|
1273 |
+
# some functions that allow Python numbers to bind to Tensors
|
1274 |
+
# if we have failed to find a device, and we're running one of these operators,
|
1275 |
+
# we must have scalar only inputs
|
1276 |
+
if should_allow_numbers_as_tensors(func) and common_device is None:
|
1277 |
+
# ops with scalar only inputs always have result on cpu
|
1278 |
+
has_scalar_only_inputs = True
|
1279 |
+
common_device = torch.device("cpu")
|
1280 |
+
|
1281 |
+
assert common_device is not None, f"Could not find common device for {func}"
|
1282 |
+
|
1283 |
+
return common_device, has_scalar_only_inputs
|
1284 |
+
|
1285 |
+
# We must handle tolist in a special way for FakeTensors here in the case
|
1286 |
+
# where tolist is called from torch dispatch for tensor subclasses.
|
1287 |
+
# Ordinarily, if a program calls .tolist compiling still works because there is
|
1288 |
+
# special handling in dynamo, but for tensor subclasses if .tolist is called
|
1289 |
+
# inside torch dispatch, the .tolist call may be directly on a FakeTensor.
|
1290 |
+
# This would result in an error since wrapper subclasses don't have storage.
|
1291 |
+
# To avoid this, we handle the FakeTensor case by (1) specializing on the size
|
1292 |
+
# of the tensor to create the output Python list, and (2) creating unbacked
|
1293 |
+
# symints for each element of the list.
|
1294 |
+
def tolist(self):
|
1295 |
+
assert self.dim() == 1, "NYI for higher dims"
|
1296 |
+
shape_env = self.fake_mode.shape_env
|
1297 |
+
out = []
|
1298 |
+
# Specialize on the length of the list
|
1299 |
+
for _ in range(self.shape[0]):
|
1300 |
+
s = shape_env.create_unbacked_symint()
|
1301 |
+
# max value?
|
1302 |
+
torch._constrain_as_size(s, min=2)
|
1303 |
+
out.append(s)
|
1304 |
+
return out
|
1305 |
+
|
1306 |
+
__torch_function__ = torch._C._disabled_torch_function_impl
|
1307 |
+
|
1308 |
+
|
1309 |
+
# We keep one instantiation of `fake_tensor_converter` active
|
1310 |
+
# for the duration of `with FakeTensorMode()`.
|
1311 |
+
# This allows accurate storage aliasing across invocation of
|
1312 |
+
# different operators. While this will keep all freshly allocated
|
1313 |
+
# tensors alive during `FakeTensorMode`, there will no be no
|
1314 |
+
# new allocations of Tensors which have non-meta storage so
|
1315 |
+
# memory should not significantly increase.
|
1316 |
+
|
1317 |
+
|
1318 |
+
class FakeTensorMode(TorchDispatchMode):
|
1319 |
+
def __init__(
|
1320 |
+
self,
|
1321 |
+
*,
|
1322 |
+
allow_fallback_kernels=True,
|
1323 |
+
allow_non_fake_inputs=False,
|
1324 |
+
shape_env=None,
|
1325 |
+
static_shapes=None,
|
1326 |
+
):
|
1327 |
+
log.debug("create_mode 0x%x", id(self))
|
1328 |
+
self.allow_fallback_kernels = allow_fallback_kernels
|
1329 |
+
self.fake_tensor_converter = FakeTensorConverter()
|
1330 |
+
if static_shapes is not None:
|
1331 |
+
self.static_shapes = static_shapes
|
1332 |
+
else:
|
1333 |
+
self.static_shapes = shape_env is None
|
1334 |
+
|
1335 |
+
import torch._functorch.config
|
1336 |
+
|
1337 |
+
self.allow_meta = torch._functorch.config.fake_tensor_allow_meta
|
1338 |
+
|
1339 |
+
# A flag that controls, whether we want to invoke ops on mix of
|
1340 |
+
# real weights/global variables and fake inputs
|
1341 |
+
self.allow_non_fake_inputs = allow_non_fake_inputs
|
1342 |
+
|
1343 |
+
# [in_kernel_invocation]
|
1344 |
+
# when FakeTensor is invoked in user code, .device should return
|
1345 |
+
# the fake_device of the tensor so that code such as as `if x.is_cuda`
|
1346 |
+
# or torch.zeros([10, 10], device=x.device) continues to execute as if
|
1347 |
+
# the FakeTensor were real. However, within kernel execution, we return
|
1348 |
+
# the `Meta` device because all computation within the kernels should
|
1349 |
+
# behave as if the Tensors are on meta devices. Kernels should allocate
|
1350 |
+
# new tensors on meta devices, and checks like `is_meta` should return true.
|
1351 |
+
# within python refs, we always return the real device by defining
|
1352 |
+
# the device property
|
1353 |
+
self.in_kernel_invocation = False
|
1354 |
+
|
1355 |
+
# True if we enter'ed and actually enabled fake tensor mode,
|
1356 |
+
# false if it was a no-op. Not thread safe but neither is
|
1357 |
+
# in_kernel_invocation
|
1358 |
+
# If another fake mode was already active when we enter, we also stash it here.
|
1359 |
+
# That way when we exit, we know to re-enable the previous fake mode.
|
1360 |
+
self.enter_stack: List[Tuple[bool, Optional[FakeTensorMode]]] = []
|
1361 |
+
|
1362 |
+
self.shape_env = shape_env
|
1363 |
+
|
1364 |
+
self.stack = "".join(traceback.format_stack())
|
1365 |
+
|
1366 |
+
# Indicates to our torch_dispatch dispatching infra that
|
1367 |
+
# this is an "infra" mode with lower dispatching precedence.
|
1368 |
+
self._mode_key = torch._C._TorchDispatchModeKey.FAKE
|
1369 |
+
|
1370 |
+
# Typically, there is only one fake tensor mode and you test for it by
|
1371 |
+
# doing an isinstance test. However, in some situations, there might be
|
1372 |
+
# TWO fake tensor modes. The canonical example of this is exporting
|
1373 |
+
# a fake model: there is an outer fake mode created by the user, and
|
1374 |
+
# an inner fake mode created by Dynamo. The two phase process is required
|
1375 |
+
# because the outer fake mode typically won't have a ShapeEnv, even if
|
1376 |
+
# the user is interested in exporting with dynamic shapes (so the inner
|
1377 |
+
# fake mode will actually have a ShapeEnv and swap in symbolic sizes.)
|
1378 |
+
#
|
1379 |
+
# In this case, it's insufficient to test only one FakeTensor: you need
|
1380 |
+
# to distinguish between our fake tensor and other fake tensors. That's
|
1381 |
+
# what this function does.
|
1382 |
+
def is_our_fake(self, t):
|
1383 |
+
return isinstance(t, FakeTensor) and t.fake_mode is self
|
1384 |
+
|
1385 |
+
@count
|
1386 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
1387 |
+
# FakeTensorMode should not be set when we're inside of it.
|
1388 |
+
assert (
|
1389 |
+
torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE) is None
|
1390 |
+
), func
|
1391 |
+
try:
|
1392 |
+
return self.dispatch(func, types, args, kwargs)
|
1393 |
+
except TypeError:
|
1394 |
+
log.exception("fake tensor raised TypeError")
|
1395 |
+
raise
|
1396 |
+
|
1397 |
+
# No-op if FakeTensorMode is already in use
|
1398 |
+
def __enter__(self):
|
1399 |
+
maybe_prev_fake_mode = torch._C._unset_dispatch_mode(self._mode_key)
|
1400 |
+
if self is not maybe_prev_fake_mode:
|
1401 |
+
self.enter_stack.append((True, maybe_prev_fake_mode))
|
1402 |
+
return super().__enter__()
|
1403 |
+
else:
|
1404 |
+
# no-op (still need to re-set the fake mode though since we unset it)
|
1405 |
+
torch._C._set_dispatch_mode(self)
|
1406 |
+
self.enter_stack.append((False, None))
|
1407 |
+
return self
|
1408 |
+
|
1409 |
+
def __exit__(self, a, b, c):
|
1410 |
+
live, maybe_prev_fake_mode = self.enter_stack.pop()
|
1411 |
+
if live:
|
1412 |
+
out = super().__exit__(a, b, c)
|
1413 |
+
# Re-enable the previous fake mode, if there was one.
|
1414 |
+
if maybe_prev_fake_mode is not None:
|
1415 |
+
torch._C._set_dispatch_mode(maybe_prev_fake_mode)
|
1416 |
+
|
1417 |
+
def dispatch(self, func, types, args=(), kwargs=None):
|
1418 |
+
kwargs = kwargs if kwargs else {}
|
1419 |
+
log.debug("%s %s %s", func, args, kwargs)
|
1420 |
+
|
1421 |
+
if func == torch.ops.prim.device.default:
|
1422 |
+
# NB: Don't use is_our_fake, just serve the fake information
|
1423 |
+
# as is. Notice we don't use 'self'; we use args[0].fake_mode
|
1424 |
+
# because they may not be the same. It would also be possible
|
1425 |
+
# to return NotImplemented here, in which case the FakeTensor
|
1426 |
+
# handler on args[0] would handle it, but we're being nice and
|
1427 |
+
# short-circuiting quickly.
|
1428 |
+
assert len(args) == 1 and isinstance(args[0], FakeTensor)
|
1429 |
+
if args[0].fake_mode.in_kernel_invocation:
|
1430 |
+
return torch.device("meta")
|
1431 |
+
else:
|
1432 |
+
return args[0].fake_device
|
1433 |
+
elif func is torch.ops.aten.size.default:
|
1434 |
+
return tuple(int(s) for s in args[0].size())
|
1435 |
+
elif func is torch.ops.aten.stride.default:
|
1436 |
+
return tuple(int(s) for s in args[0].stride())
|
1437 |
+
elif func is torch.ops.aten.storage_offset.default:
|
1438 |
+
return int(args[0].storage_offset())
|
1439 |
+
|
1440 |
+
if log.getEffectiveLevel() <= logging.DEBUG:
|
1441 |
+
log.debug(
|
1442 |
+
"%sFakeTensorMode.__torch_dispatch__: %s", " " * RECURSION_COUNT, func
|
1443 |
+
)
|
1444 |
+
incr = IncrementRecursionCount()
|
1445 |
+
|
1446 |
+
# Some attribute queries that can be serviced directly
|
1447 |
+
# See Note [is_coalesced is dispatched]
|
1448 |
+
if func in {
|
1449 |
+
torch.ops.aten.is_coalesced.default,
|
1450 |
+
torch.ops.aten.dense_dim.default,
|
1451 |
+
torch.ops.aten.sparse_dim.default,
|
1452 |
+
}:
|
1453 |
+
# NB: no_dispatch is ok here too, this func is very simple
|
1454 |
+
with in_kernel_invocation_manager(self):
|
1455 |
+
return func(*args, **kwargs)
|
1456 |
+
|
1457 |
+
flat_args, args_spec = pytree.tree_flatten((args, kwargs))
|
1458 |
+
|
1459 |
+
flat_arg_fake_tensors = [
|
1460 |
+
t for t in flat_args if isinstance(t, FakeTensor) and self.is_our_fake(t)
|
1461 |
+
]
|
1462 |
+
has_symbolic_sizes = any(
|
1463 |
+
i._has_symbolic_sizes_strides for i in flat_arg_fake_tensors
|
1464 |
+
) or any(isinstance(a, torch.SymInt) for a in flat_args)
|
1465 |
+
|
1466 |
+
converter = self.fake_tensor_converter
|
1467 |
+
|
1468 |
+
def maybe_to_constant(t):
|
1469 |
+
if isinstance(t, FakeTensor) and self.is_our_fake(t):
|
1470 |
+
return t.constant
|
1471 |
+
else:
|
1472 |
+
return t
|
1473 |
+
|
1474 |
+
# To constant propagate through these functions:
|
1475 |
+
# 1, If this is a lift due to a torch.tensor call,
|
1476 |
+
# the input tensor is guaranteed to be a
|
1477 |
+
# constant, so we keep a copy of the original argument along so
|
1478 |
+
# we can query it if we're asked to item() it at some later point.
|
1479 |
+
# (Note that you can always call a lift fn manually, so we do
|
1480 |
+
# have to check if there are any fake tensors!)
|
1481 |
+
# 2, Some functions that allow Python numbers to bind to Tensors, e.g, torch.div
|
1482 |
+
if (func in self.lift_fns and not flat_arg_fake_tensors) or (
|
1483 |
+
should_allow_numbers_as_tensors(func)
|
1484 |
+
and not has_symbolic_sizes
|
1485 |
+
and not flat_arg_fake_tensors
|
1486 |
+
):
|
1487 |
+
assert all(
|
1488 |
+
t.constant is not None for t in flat_arg_fake_tensors
|
1489 |
+
), f"{func} should not have fake inputs without constants"
|
1490 |
+
const_flat_args = [maybe_to_constant(a) for a in flat_args]
|
1491 |
+
const_args, const_kwargs = pytree.tree_unflatten(const_flat_args, args_spec)
|
1492 |
+
out = func(*const_args, **const_kwargs)
|
1493 |
+
if type(out) is torch.Tensor and self.may_turn_const(out):
|
1494 |
+
# NB: not in_kernel_invocation_manager because we're doing real
|
1495 |
+
# compute here
|
1496 |
+
# NB: no_dispatch() here is VERY DANGEROUS (like, segfault
|
1497 |
+
# dangerous) if this is actually a wrapper subclass tensor,
|
1498 |
+
# therefore the exact type test above
|
1499 |
+
with no_dispatch():
|
1500 |
+
out = out.clone()
|
1501 |
+
return converter(self, out, make_constant=True)
|
1502 |
+
|
1503 |
+
# See [subclass inputs] below
|
1504 |
+
# NB: If you're seeing a mysterious infinite loop involving fake
|
1505 |
+
# tensor, it might be related to this line. Though I'm not sure
|
1506 |
+
# how you'll know to read this comment, as this line won't show up
|
1507 |
+
# in the stack trace.
|
1508 |
+
unrecognized_types = self.check_for_subclass(flat_args)
|
1509 |
+
if unrecognized_types:
|
1510 |
+
not_implemented_log.debug(
|
1511 |
+
"FakeTensorMode unrecognized subclass(es): %s", unrecognized_types
|
1512 |
+
)
|
1513 |
+
return NotImplemented
|
1514 |
+
|
1515 |
+
# if we are in the dispatch mode, we will enter this function even if the inputs
|
1516 |
+
# are not FakeTensors. For now, throw if any non-Fake Tensor inputs
|
1517 |
+
# and just support constructors.
|
1518 |
+
|
1519 |
+
# this is generated from torch.tensor(), which does not use the
|
1520 |
+
# dispatcher, to allow wrapper subclasses to wrap the new tensor
|
1521 |
+
if func in self.lift_fns:
|
1522 |
+
assert len(kwargs) == 0 and len(args) == 1, f"{args} {kwargs}"
|
1523 |
+
|
1524 |
+
if type(args[0]) is torch.Tensor:
|
1525 |
+
return converter(self, args[0])
|
1526 |
+
|
1527 |
+
# Recompute flat_arg_fake_tensors here again in case some of the inputs
|
1528 |
+
# were real tensors and fakified in validate_and_convert_non_fake_tensors
|
1529 |
+
(flat_args, flat_arg_fake_tensors) = self.validate_and_convert_non_fake_tensors(
|
1530 |
+
func, converter, flat_args, args_spec
|
1531 |
+
)
|
1532 |
+
del args, kwargs # Invalidated
|
1533 |
+
|
1534 |
+
# The current constant handling only support tracing systems
|
1535 |
+
# (aot autograd, torchdynamo) where each operation is run consecutively.
|
1536 |
+
# Because each operation is run in order, we can trace out and support
|
1537 |
+
# sequences like: x = torch.tensor(0.); y = x.add_(1)
|
1538 |
+
# Whenver a constant is written to but with inputs that cannot be evaluated
|
1539 |
+
# statically, such as random_(), we invalidate all constants that alias the input
|
1540 |
+
# We will rely on functionalization for use of fake tensors constants as persistent
|
1541 |
+
# objects on an FX Graph.
|
1542 |
+
|
1543 |
+
# We dispatch size/stride/numel on the FakeTensor not its constant, so bail on inplace_view
|
1544 |
+
all_constant = all(e.constant is not None for e in flat_arg_fake_tensors)
|
1545 |
+
if (
|
1546 |
+
torch.Tag.nondeterministic_seeded not in func.tags
|
1547 |
+
and torch.Tag.inplace_view not in func.tags
|
1548 |
+
and all_constant
|
1549 |
+
and len(flat_arg_fake_tensors) != 0
|
1550 |
+
and not has_symbolic_sizes
|
1551 |
+
):
|
1552 |
+
const_flat_args = [maybe_to_constant(a) for a in flat_args]
|
1553 |
+
const_args, const_kwargs = pytree.tree_unflatten(const_flat_args, args_spec)
|
1554 |
+
|
1555 |
+
# NB: not in_kernel_invocation_manager(self) as we want to do REAL
|
1556 |
+
# compute
|
1557 |
+
with no_dispatch():
|
1558 |
+
out = func(*const_args, **const_kwargs)
|
1559 |
+
|
1560 |
+
flat_out = pytree.tree_leaves(out)
|
1561 |
+
flat_out_tensors = [t for t in flat_out if isinstance(t, torch.Tensor)]
|
1562 |
+
all_constant = all(self.may_turn_const(t) for t in flat_out_tensors)
|
1563 |
+
|
1564 |
+
if all_constant:
|
1565 |
+
return pytree.tree_map_only(
|
1566 |
+
torch.Tensor,
|
1567 |
+
lambda t: converter(self, t, make_constant=True),
|
1568 |
+
out,
|
1569 |
+
)
|
1570 |
+
|
1571 |
+
# we weren't able to turn outputs to constants,
|
1572 |
+
# so invalidate all constants that might be aliases of the outputs
|
1573 |
+
for ten in flat_out_tensors:
|
1574 |
+
converter.invalidate_constant_aliases(ten)
|
1575 |
+
|
1576 |
+
# we are falling through to running non constant tensors, any input constant that
|
1577 |
+
# is written to must be invalidated
|
1578 |
+
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
|
1579 |
+
self.invalidate_written_to_constants(func, flat_arg_fake_tensors, args, kwargs)
|
1580 |
+
|
1581 |
+
# Try for fastpath
|
1582 |
+
if has_symbolic_sizes:
|
1583 |
+
fast_impl = get_fast_op_impls().get(func)
|
1584 |
+
if fast_impl is not None:
|
1585 |
+
return fast_impl(self, *args, **kwargs)
|
1586 |
+
|
1587 |
+
# If there's a Python meta, prefer that over the decomposition
|
1588 |
+
from torch._decomp import meta_table as meta_table
|
1589 |
+
|
1590 |
+
if func not in meta_table and not self.cpp_meta_supports_symint(func):
|
1591 |
+
from torch._decomp import decomposition_table
|
1592 |
+
|
1593 |
+
# Prefer Python decompositions over C++ ones
|
1594 |
+
if func in decomposition_table and (
|
1595 |
+
has_symbolic_sizes
|
1596 |
+
or (
|
1597 |
+
# TODO: Remove these exclusions, so that we can remove
|
1598 |
+
# this leg entirely
|
1599 |
+
torch_decomp_decompositions(func)
|
1600 |
+
and all(not e.is_sparse for e in flat_arg_fake_tensors)
|
1601 |
+
)
|
1602 |
+
):
|
1603 |
+
with self:
|
1604 |
+
return decomposition_table[func](*args, **kwargs)
|
1605 |
+
|
1606 |
+
with self:
|
1607 |
+
# Decomposes CompositeImplicitAutograd ops
|
1608 |
+
r = func.decompose(*args, **kwargs)
|
1609 |
+
if r is not NotImplemented:
|
1610 |
+
return r
|
1611 |
+
|
1612 |
+
# prims already wrap FakeTensor inputs to FakeTensor outputs
|
1613 |
+
# and do device logic, we dont need do anything but run them
|
1614 |
+
# and ensure that Meta kernels are dispatched to (see)
|
1615 |
+
# Fake Tensor Dispatch Keys
|
1616 |
+
# TODO - we should be use the prim aten impl
|
1617 |
+
# TODO - fix prims complex ops
|
1618 |
+
if (
|
1619 |
+
"prims::" in func._schema.name
|
1620 |
+
and hasattr(func, "prim_meta_impl")
|
1621 |
+
and not stride_incorrect_op(func)
|
1622 |
+
):
|
1623 |
+
with self:
|
1624 |
+
return func.prim_meta_impl(*args, **kwargs)
|
1625 |
+
|
1626 |
+
# Users can register FakeTensor rules for custom operators
|
1627 |
+
# Call them if they exist.
|
1628 |
+
maybe_abstract_impl = torch._library.simple_registry.singleton.find(
|
1629 |
+
func.name()
|
1630 |
+
).abstract_impl.kernel
|
1631 |
+
if maybe_abstract_impl:
|
1632 |
+
ctx = torch._library.abstract_impl.AbstractImplCtx(self.shape_env, func)
|
1633 |
+
with torch._library.abstract_impl.set_ctx_getter(lambda: ctx), self:
|
1634 |
+
result = maybe_abstract_impl(*args, **kwargs)
|
1635 |
+
return result
|
1636 |
+
|
1637 |
+
# special handling for funcs registered through `register_op_impl`,
|
1638 |
+
# e.g., manipulating args on constructor calls to construct meta tensors
|
1639 |
+
# and then afterwards wrapping them to a FakeTensor
|
1640 |
+
for run_impl_check, op_impl in op_implementations:
|
1641 |
+
if func in (
|
1642 |
+
aten._nested_tensor_from_tensor_list.default,
|
1643 |
+
aten._nested_tensor_from_tensor_list.out,
|
1644 |
+
):
|
1645 |
+
raise UnsupportedOperatorException(
|
1646 |
+
"torch.compile does not support strided NestedTensor"
|
1647 |
+
)
|
1648 |
+
if run_impl_check(func):
|
1649 |
+
op_impl_out = op_impl(self, func, *args, **kwargs)
|
1650 |
+
if op_impl_out != NotImplemented:
|
1651 |
+
return op_impl_out
|
1652 |
+
|
1653 |
+
def can_run_unsafe_fallback(func: OpOverload):
|
1654 |
+
if not self.allow_fallback_kernels:
|
1655 |
+
return False
|
1656 |
+
# It's OK to try the fallback for built-in ops (e.g. aten, prims)
|
1657 |
+
# because we control and test these but the fallback leads to unexpected behavior
|
1658 |
+
# in user-defined custom ops
|
1659 |
+
#
|
1660 |
+
# WARNING: DO NOT add any additional namespaces/operators here if they refer to operators
|
1661 |
+
# outside of the pytorch/pytorch library! Any pre-existing things here
|
1662 |
+
# are either in the pytorch/pytorch library or have been grandfathered in.
|
1663 |
+
# The fallback does not always work and MAY CRASH and emit unreadable error messages
|
1664 |
+
# so it should not be allowed by default.
|
1665 |
+
allowed_namespaces = {
|
1666 |
+
"debugprims",
|
1667 |
+
"prims",
|
1668 |
+
"aten",
|
1669 |
+
"xla",
|
1670 |
+
"vision",
|
1671 |
+
"torchtext",
|
1672 |
+
"torchaudio",
|
1673 |
+
"quantized",
|
1674 |
+
}
|
1675 |
+
grandfathered_ops_FIXME = {
|
1676 |
+
"fbgemm::gmm",
|
1677 |
+
}
|
1678 |
+
return (
|
1679 |
+
func.namespace in allowed_namespaces
|
1680 |
+
or func.name() in grandfathered_ops_FIXME
|
1681 |
+
)
|
1682 |
+
|
1683 |
+
def maybe_run_unsafe_fallback(error=None):
|
1684 |
+
# We infer the meta of a custom ops that return None to just
|
1685 |
+
# return None. custom ops are not allowed to mutate metadata
|
1686 |
+
# of their inputs, so this is safe.
|
1687 |
+
from torch._higher_order_ops.auto_functionalize import (
|
1688 |
+
can_auto_functionalize,
|
1689 |
+
)
|
1690 |
+
|
1691 |
+
if can_auto_functionalize(func):
|
1692 |
+
return None
|
1693 |
+
# no meta kernel registered, fallback to kernel for the device
|
1694 |
+
if has_symbolic_sizes or not can_run_unsafe_fallback(func):
|
1695 |
+
raise UnsupportedOperatorException(func)
|
1696 |
+
if error is None:
|
1697 |
+
error = UnsupportedOperatorException(func)
|
1698 |
+
return run_fallback_kernel(self, func, flat_args, args_spec, error)
|
1699 |
+
|
1700 |
+
# Optimization: If there is no Meta kernel, it takes a surprisingly long
|
1701 |
+
# amount of time to catch the NotImplementedError, so we check it here.
|
1702 |
+
if not torch._C._dispatch_has_computed_kernel_for_dispatch_key(
|
1703 |
+
func.name(), "Meta"
|
1704 |
+
):
|
1705 |
+
return maybe_run_unsafe_fallback()
|
1706 |
+
|
1707 |
+
# run kernel registered to meta for func, which include
|
1708 |
+
# python meta registrations, prims, decomps, and c++ meta fns (structured kernels)
|
1709 |
+
# It's possible that the kernel will return NotImplementedError
|
1710 |
+
try:
|
1711 |
+
with in_kernel_invocation_manager(self):
|
1712 |
+
r = func(*args, **kwargs)
|
1713 |
+
except NotImplementedError as not_implemented_error:
|
1714 |
+
return maybe_run_unsafe_fallback(not_implemented_error)
|
1715 |
+
|
1716 |
+
return self.wrap_meta_outputs_with_default_device_logic(
|
1717 |
+
r, func, flat_args, device=kwargs.get("device")
|
1718 |
+
)
|
1719 |
+
|
1720 |
+
# [subclass inputs]
|
1721 |
+
# Suppose we enable fake tensor mode. This means that fake tensor
|
1722 |
+
# mode will run first. But what if we do an operation that
|
1723 |
+
# involves a tensor subclass that will desugar into normal tensor
|
1724 |
+
# operations? Without returning NotImplemented, fake tensor mode will run first,
|
1725 |
+
# decide that a conversion was made (since there was a non fake
|
1726 |
+
# tensor argument), and report an error that converting non
|
1727 |
+
# fake tensor is not supported. What we actually wanted to happen
|
1728 |
+
# was to give the subclass a chance to figure out what it wants to
|
1729 |
+
# before erroring out. Returning NotImplemented here allows this.
|
1730 |
+
def check_for_subclass(self, flat_args):
|
1731 |
+
def check(x):
|
1732 |
+
return (
|
1733 |
+
isinstance(x, torch.Tensor)
|
1734 |
+
and not isinstance(x, FakeTensor)
|
1735 |
+
and type(x) is not torch.Tensor
|
1736 |
+
and type(x) is not torch.nn.Parameter
|
1737 |
+
)
|
1738 |
+
|
1739 |
+
return [type(x) for x in flat_args if check(x)]
|
1740 |
+
|
1741 |
+
def validate_and_convert_non_fake_tensors(
|
1742 |
+
self, func, converter, flat_args, args_spec
|
1743 |
+
):
|
1744 |
+
"""
|
1745 |
+
Checks if the list of tensors are fake tensors.
|
1746 |
+
If not, try to convert them to fake tensors.
|
1747 |
+
Returns the original args, kwargs, and a flattened list of (args, kwargs) that are fake tensors.
|
1748 |
+
"""
|
1749 |
+
flat_arg_fake_tensors = []
|
1750 |
+
|
1751 |
+
def validate(x):
|
1752 |
+
if not isinstance(x, torch.Tensor):
|
1753 |
+
return x
|
1754 |
+
|
1755 |
+
nonlocal flat_arg_fake_tensors
|
1756 |
+
if not self.is_our_fake(x):
|
1757 |
+
if torch.Tag.inplace_view in func.tags:
|
1758 |
+
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
|
1759 |
+
raise Exception(
|
1760 |
+
f"Can't call metadata mutating ops on non-Fake Tensor inputs. Found in {render_call(func, args, kwargs)}"
|
1761 |
+
)
|
1762 |
+
if not self.allow_non_fake_inputs:
|
1763 |
+
if isinstance(x, FakeTensor) and x.fake_mode is not self:
|
1764 |
+
raise AssertionError("Mixing fake modes NYI")
|
1765 |
+
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
|
1766 |
+
raise Exception(
|
1767 |
+
f"Please convert all Tensors to FakeTensors first or instantiate FakeTensorMode "
|
1768 |
+
f"with 'allow_non_fake_inputs'. Found in {render_call(func, args, kwargs)}"
|
1769 |
+
)
|
1770 |
+
|
1771 |
+
x = converter(self, x)
|
1772 |
+
|
1773 |
+
flat_arg_fake_tensors.append(x)
|
1774 |
+
return x
|
1775 |
+
|
1776 |
+
validated_args = [validate(a) for a in flat_args]
|
1777 |
+
return validated_args, flat_arg_fake_tensors
|
1778 |
+
|
1779 |
+
def wrap_meta_outputs_with_default_device_logic(self, r, func, flat_args, device):
|
1780 |
+
converter = self.fake_tensor_converter
|
1781 |
+
|
1782 |
+
# Lazily initialized, in case there are no tensor returns
|
1783 |
+
common_device = None
|
1784 |
+
has_scalar_only_inputs = False
|
1785 |
+
|
1786 |
+
def wrap(e):
|
1787 |
+
nonlocal common_device
|
1788 |
+
nonlocal has_scalar_only_inputs
|
1789 |
+
|
1790 |
+
if isinstance(e, torch.Tensor) and common_device is None:
|
1791 |
+
(
|
1792 |
+
common_device,
|
1793 |
+
has_scalar_only_inputs,
|
1794 |
+
) = FakeTensor._find_common_device(func, flat_args)
|
1795 |
+
|
1796 |
+
if self.is_our_fake(e):
|
1797 |
+
torch._check(
|
1798 |
+
e.device == common_device,
|
1799 |
+
lambda: f"FakeTensor is wrapped to wrong device, found {e.device}, expected {common_device}",
|
1800 |
+
)
|
1801 |
+
|
1802 |
+
if (
|
1803 |
+
isinstance(e, torch.Tensor)
|
1804 |
+
and not self.is_our_fake(e)
|
1805 |
+
and converter is not None
|
1806 |
+
):
|
1807 |
+
if has_scalar_only_inputs:
|
1808 |
+
# Under FakeTensorMode, op accepts scalar only inputs, such as aten.add/sub/mul/div,
|
1809 |
+
# returns a real scalar tensor on CPU. See TensorMeta() in _prims/__init__.py for details.
|
1810 |
+
# We thus directly convert real tensor to fake tensor.
|
1811 |
+
return converter(self, e)
|
1812 |
+
else:
|
1813 |
+
return converter.from_meta_and_device(
|
1814 |
+
self, e, device or common_device
|
1815 |
+
)
|
1816 |
+
else:
|
1817 |
+
return e
|
1818 |
+
|
1819 |
+
return tree_map(wrap, r)
|
1820 |
+
|
1821 |
+
def cpp_meta_supports_symint(self, func):
|
1822 |
+
if torch.Tag.view_copy in func.tags:
|
1823 |
+
return True
|
1824 |
+
return func in [
|
1825 |
+
aten.empty.memory_format,
|
1826 |
+
aten.empty_strided.default,
|
1827 |
+
aten.as_strided_scatter.default,
|
1828 |
+
aten.as_strided.default,
|
1829 |
+
aten.as_strided_.default,
|
1830 |
+
aten.zeros.default,
|
1831 |
+
aten.detach.default,
|
1832 |
+
aten.view_as_real.default,
|
1833 |
+
aten.view_as_complex.default,
|
1834 |
+
aten.set_.source_Storage_storage_offset,
|
1835 |
+
aten._sparse_coo_tensor_with_dims_and_tensors.default,
|
1836 |
+
]
|
1837 |
+
|
1838 |
+
@property
|
1839 |
+
def lift_fns(self):
|
1840 |
+
return (aten.lift_fresh.default, aten.lift_fresh_copy.default)
|
1841 |
+
|
1842 |
+
def may_turn_const(self, t):
|
1843 |
+
return (
|
1844 |
+
t.numel() <= CONSTANT_NUMEL_LIMIT
|
1845 |
+
and not t.is_sparse
|
1846 |
+
and not self.is_our_fake(t)
|
1847 |
+
and not t.device.type == "meta"
|
1848 |
+
)
|
1849 |
+
|
1850 |
+
def invalidate_written_to_constants(
|
1851 |
+
self, func, flat_arg_fake_tensors, args, kwargs
|
1852 |
+
):
|
1853 |
+
any_constant = any(e.constant is not None for e in flat_arg_fake_tensors)
|
1854 |
+
schema_info = get_schema_info(func)
|
1855 |
+
if any_constant and schema_info.is_mutable():
|
1856 |
+
_, new_kwargs = normalize_function(
|
1857 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
1858 |
+
)
|
1859 |
+
for k, v in new_kwargs.items():
|
1860 |
+
k = k if (k != "input" or schema_info.has_argument(k)) else "self"
|
1861 |
+
if (
|
1862 |
+
self.is_our_fake(v)
|
1863 |
+
and schema_info.is_mutable(k)
|
1864 |
+
and v.constant is not None
|
1865 |
+
):
|
1866 |
+
self.fake_tensor_converter.invalidate_constant_aliases(v.constant)
|
1867 |
+
|
1868 |
+
def from_tensor(
|
1869 |
+
self,
|
1870 |
+
tensor,
|
1871 |
+
*,
|
1872 |
+
static_shapes=None,
|
1873 |
+
source: Optional[Source] = None,
|
1874 |
+
symbolic_context=None,
|
1875 |
+
# Setting this flag will force FakeTensorMode to return `None` if attempting to convert a tensor we have not
|
1876 |
+
# seen before.
|
1877 |
+
memoized_only=False,
|
1878 |
+
):
|
1879 |
+
shape_env = self.shape_env
|
1880 |
+
if static_shapes is None:
|
1881 |
+
static_shapes = self.static_shapes
|
1882 |
+
if static_shapes:
|
1883 |
+
assert (
|
1884 |
+
symbolic_context is None
|
1885 |
+
), "cannot set both static_shapes and symbolic_context"
|
1886 |
+
shape_env = None
|
1887 |
+
# see note [Tensor Fakification and Symbol Caching]
|
1888 |
+
if not symbolic_context and not source and not static_shapes:
|
1889 |
+
if tracing_context := torch._guards.TracingContext.try_get():
|
1890 |
+
if tensor in tracing_context.tensor_to_context:
|
1891 |
+
symbolic_context = tracing_context.tensor_to_context[tensor]
|
1892 |
+
source = symbolic_context.tensor_source
|
1893 |
+
return self.fake_tensor_converter(
|
1894 |
+
self,
|
1895 |
+
tensor,
|
1896 |
+
shape_env=shape_env,
|
1897 |
+
source=source,
|
1898 |
+
symbolic_context=symbolic_context,
|
1899 |
+
memoized_only=memoized_only,
|
1900 |
+
)
|
1901 |
+
|
1902 |
+
|
1903 |
+
# NB: returns fake tensors
|
1904 |
+
def run_fallback_kernel(
|
1905 |
+
fake_mode, func, flat_args, args_spec, orig_not_implemented_exception
|
1906 |
+
):
|
1907 |
+
# these should all be supported, just to be safe
|
1908 |
+
# avoid fallback for operators which inplace modify metadata
|
1909 |
+
# because the input fake tensors would be umodified
|
1910 |
+
if torch.Tag.inplace_view in func.tags:
|
1911 |
+
raise orig_not_implemented_exception
|
1912 |
+
|
1913 |
+
inp_impls = {}
|
1914 |
+
|
1915 |
+
# Don't use in_kernel_invocation_manager(fake_mode) as we want to do
|
1916 |
+
# REAL compute (not with meta device)
|
1917 |
+
with no_dispatch():
|
1918 |
+
|
1919 |
+
def to_real_tensor(e):
|
1920 |
+
if fake_mode.is_our_fake(e):
|
1921 |
+
out = torch.zeros_like(e, device=e.fake_device)
|
1922 |
+
if e.is_sparse:
|
1923 |
+
out._coalesced_(e.is_coalesced())
|
1924 |
+
inp_impls[id(out)] = e
|
1925 |
+
return out
|
1926 |
+
return e
|
1927 |
+
|
1928 |
+
flat_args = [to_real_tensor(a) for a in flat_args]
|
1929 |
+
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
|
1930 |
+
|
1931 |
+
r = func(*args, **kwargs)
|
1932 |
+
|
1933 |
+
tensor_impls = set()
|
1934 |
+
storages = set()
|
1935 |
+
|
1936 |
+
for e in flat_args:
|
1937 |
+
if isinstance(e, torch.Tensor):
|
1938 |
+
if not e.is_sparse:
|
1939 |
+
storages.add(e._typed_storage()._cdata)
|
1940 |
+
|
1941 |
+
# TODO: also check metadata change on inputs
|
1942 |
+
# proper aliasing/metadata relationship between outputs and inputs will
|
1943 |
+
# not be set up, bc of conversion to device, unless we can reuse an
|
1944 |
+
# input impl
|
1945 |
+
|
1946 |
+
def map_out(e):
|
1947 |
+
if id(e) not in inp_impls and (
|
1948 |
+
isinstance(e, torch.Tensor)
|
1949 |
+
and not e.is_sparse
|
1950 |
+
and e._typed_storage()._cdata in storages
|
1951 |
+
):
|
1952 |
+
raise orig_not_implemented_exception
|
1953 |
+
|
1954 |
+
if isinstance(e, torch.Tensor):
|
1955 |
+
if id(e) in inp_impls:
|
1956 |
+
return inp_impls[id(e)]
|
1957 |
+
else:
|
1958 |
+
return fake_mode.fake_tensor_converter(fake_mode, e)
|
1959 |
+
else:
|
1960 |
+
return e
|
1961 |
+
|
1962 |
+
return pytree.tree_map(map_out, r)
|
1963 |
+
|
1964 |
+
|
1965 |
+
# Just for use to allow copying a module to fake tensors,
|
1966 |
+
# does not apply elsewhere
|
1967 |
+
class FakeCopyMode(TorchFunctionMode):
|
1968 |
+
def __init__(self, fake_mode):
|
1969 |
+
self.fake_mode = fake_mode
|
1970 |
+
|
1971 |
+
def __torch_function__(self, func, types, args=(), kwargs=None):
|
1972 |
+
kwargs = kwargs if kwargs else {}
|
1973 |
+
|
1974 |
+
# clone will get called in Parameter deepcopy
|
1975 |
+
if func == torch._C.TensorBase.clone:
|
1976 |
+
return func(
|
1977 |
+
self.fake_mode.from_tensor(args[0], static_shapes=True), **kwargs
|
1978 |
+
)
|
1979 |
+
elif func == torch.Tensor.__deepcopy__:
|
1980 |
+
assert len(args) == 2 and len(kwargs) == 0
|
1981 |
+
tensor, memo = args
|
1982 |
+
|
1983 |
+
if id(tensor) in memo:
|
1984 |
+
return memo[id(tensor)]
|
1985 |
+
|
1986 |
+
out = self.fake_mode.from_tensor(tensor, static_shapes=True)
|
1987 |
+
memo[id(tensor)] = out
|
1988 |
+
return out
|
1989 |
+
else:
|
1990 |
+
with torch._C.DisableTorchFunctionSubclass():
|
1991 |
+
return func(*args, **kwargs)
|
env-llmeval/lib/python3.10/site-packages/torch/backends/cpu/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
"get_cpu_capability",
|
5 |
+
]
|
6 |
+
|
7 |
+
|
8 |
+
def get_cpu_capability() -> str:
|
9 |
+
r"""Return cpu capability as a string value.
|
10 |
+
|
11 |
+
Possible values:
|
12 |
+
- "DEFAULT"
|
13 |
+
- "VSX"
|
14 |
+
- "Z VECTOR"
|
15 |
+
- "NO AVX"
|
16 |
+
- "AVX2"
|
17 |
+
- "AVX512"
|
18 |
+
"""
|
19 |
+
return torch._C._get_cpu_capability()
|
env-llmeval/lib/python3.10/site-packages/torch/backends/cpu/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (540 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/backends/cuda/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/backends/cudnn/__init__.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import warnings
|
4 |
+
from contextlib import contextmanager
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.backends import __allow_nonbracketed_mutation, ContextProp, PropModule
|
8 |
+
|
9 |
+
try:
|
10 |
+
from torch._C import _cudnn
|
11 |
+
except ImportError:
|
12 |
+
_cudnn = None # type: ignore[assignment]
|
13 |
+
|
14 |
+
# Write:
|
15 |
+
#
|
16 |
+
# torch.backends.cudnn.enabled = False
|
17 |
+
#
|
18 |
+
# to globally disable CuDNN/MIOpen
|
19 |
+
|
20 |
+
__cudnn_version = None
|
21 |
+
|
22 |
+
if _cudnn is not None:
|
23 |
+
|
24 |
+
def _init():
|
25 |
+
global __cudnn_version
|
26 |
+
if __cudnn_version is None:
|
27 |
+
__cudnn_version = _cudnn.getVersionInt()
|
28 |
+
runtime_version = _cudnn.getRuntimeVersion()
|
29 |
+
compile_version = _cudnn.getCompileVersion()
|
30 |
+
runtime_major, runtime_minor, _ = runtime_version
|
31 |
+
compile_major, compile_minor, _ = compile_version
|
32 |
+
# Different major versions are always incompatible
|
33 |
+
# Starting with cuDNN 7, minor versions are backwards-compatible
|
34 |
+
# Not sure about MIOpen (ROCm), so always do a strict check
|
35 |
+
if runtime_major != compile_major:
|
36 |
+
cudnn_compatible = False
|
37 |
+
elif runtime_major < 7 or not _cudnn.is_cuda:
|
38 |
+
cudnn_compatible = runtime_minor == compile_minor
|
39 |
+
else:
|
40 |
+
cudnn_compatible = runtime_minor >= compile_minor
|
41 |
+
if not cudnn_compatible:
|
42 |
+
if os.environ.get("PYTORCH_SKIP_CUDNN_COMPATIBILITY_CHECK", "0") == "1":
|
43 |
+
return True
|
44 |
+
base_error_msg = (
|
45 |
+
f"cuDNN version incompatibility: "
|
46 |
+
f"PyTorch was compiled against {compile_version} "
|
47 |
+
f"but found runtime version {runtime_version}. "
|
48 |
+
f"PyTorch already comes bundled with cuDNN. "
|
49 |
+
f"One option to resolving this error is to ensure PyTorch "
|
50 |
+
f"can find the bundled cuDNN. "
|
51 |
+
)
|
52 |
+
|
53 |
+
if "LD_LIBRARY_PATH" in os.environ:
|
54 |
+
ld_library_path = os.environ.get("LD_LIBRARY_PATH", "")
|
55 |
+
if any(
|
56 |
+
substring in ld_library_path for substring in ["cuda", "cudnn"]
|
57 |
+
):
|
58 |
+
raise RuntimeError(
|
59 |
+
f"{base_error_msg}"
|
60 |
+
f"Looks like your LD_LIBRARY_PATH contains incompatible version of cudnn. "
|
61 |
+
f"Please either remove it from the path or install cudnn {compile_version}"
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
raise RuntimeError(
|
65 |
+
f"{base_error_msg}"
|
66 |
+
f"one possibility is that there is a "
|
67 |
+
f"conflicting cuDNN in LD_LIBRARY_PATH."
|
68 |
+
)
|
69 |
+
else:
|
70 |
+
raise RuntimeError(base_error_msg)
|
71 |
+
|
72 |
+
return True
|
73 |
+
|
74 |
+
else:
|
75 |
+
|
76 |
+
def _init():
|
77 |
+
return False
|
78 |
+
|
79 |
+
|
80 |
+
def version():
|
81 |
+
"""Return the version of cuDNN."""
|
82 |
+
if not _init():
|
83 |
+
return None
|
84 |
+
return __cudnn_version
|
85 |
+
|
86 |
+
|
87 |
+
CUDNN_TENSOR_DTYPES = {
|
88 |
+
torch.half,
|
89 |
+
torch.float,
|
90 |
+
torch.double,
|
91 |
+
}
|
92 |
+
|
93 |
+
|
94 |
+
def is_available():
|
95 |
+
r"""Return a bool indicating if CUDNN is currently available."""
|
96 |
+
return torch._C._has_cudnn
|
97 |
+
|
98 |
+
|
99 |
+
def is_acceptable(tensor):
|
100 |
+
if not torch._C._get_cudnn_enabled():
|
101 |
+
return False
|
102 |
+
if tensor.device.type != "cuda" or tensor.dtype not in CUDNN_TENSOR_DTYPES:
|
103 |
+
return False
|
104 |
+
if not is_available():
|
105 |
+
warnings.warn(
|
106 |
+
"PyTorch was compiled without cuDNN/MIOpen support. To use cuDNN/MIOpen, rebuild "
|
107 |
+
"PyTorch making sure the library is visible to the build system."
|
108 |
+
)
|
109 |
+
return False
|
110 |
+
if not _init():
|
111 |
+
warnings.warn(
|
112 |
+
"cuDNN/MIOpen library not found. Check your {libpath}".format(
|
113 |
+
libpath={"darwin": "DYLD_LIBRARY_PATH", "win32": "PATH"}.get(
|
114 |
+
sys.platform, "LD_LIBRARY_PATH"
|
115 |
+
)
|
116 |
+
)
|
117 |
+
)
|
118 |
+
return False
|
119 |
+
return True
|
120 |
+
|
121 |
+
|
122 |
+
def set_flags(
|
123 |
+
_enabled=None,
|
124 |
+
_benchmark=None,
|
125 |
+
_benchmark_limit=None,
|
126 |
+
_deterministic=None,
|
127 |
+
_allow_tf32=None,
|
128 |
+
):
|
129 |
+
orig_flags = (
|
130 |
+
torch._C._get_cudnn_enabled(),
|
131 |
+
torch._C._get_cudnn_benchmark(),
|
132 |
+
None if not is_available() else torch._C._cuda_get_cudnn_benchmark_limit(),
|
133 |
+
torch._C._get_cudnn_deterministic(),
|
134 |
+
torch._C._get_cudnn_allow_tf32(),
|
135 |
+
)
|
136 |
+
if _enabled is not None:
|
137 |
+
torch._C._set_cudnn_enabled(_enabled)
|
138 |
+
if _benchmark is not None:
|
139 |
+
torch._C._set_cudnn_benchmark(_benchmark)
|
140 |
+
if _benchmark_limit is not None and is_available():
|
141 |
+
torch._C._cuda_set_cudnn_benchmark_limit(_benchmark_limit)
|
142 |
+
if _deterministic is not None:
|
143 |
+
torch._C._set_cudnn_deterministic(_deterministic)
|
144 |
+
if _allow_tf32 is not None:
|
145 |
+
torch._C._set_cudnn_allow_tf32(_allow_tf32)
|
146 |
+
return orig_flags
|
147 |
+
|
148 |
+
|
149 |
+
@contextmanager
|
150 |
+
def flags(
|
151 |
+
enabled=False,
|
152 |
+
benchmark=False,
|
153 |
+
benchmark_limit=10,
|
154 |
+
deterministic=False,
|
155 |
+
allow_tf32=True,
|
156 |
+
):
|
157 |
+
with __allow_nonbracketed_mutation():
|
158 |
+
orig_flags = set_flags(
|
159 |
+
enabled, benchmark, benchmark_limit, deterministic, allow_tf32
|
160 |
+
)
|
161 |
+
try:
|
162 |
+
yield
|
163 |
+
finally:
|
164 |
+
# recover the previous values
|
165 |
+
with __allow_nonbracketed_mutation():
|
166 |
+
set_flags(*orig_flags)
|
167 |
+
|
168 |
+
|
169 |
+
# The magic here is to allow us to intercept code like this:
|
170 |
+
#
|
171 |
+
# torch.backends.<cudnn|mkldnn>.enabled = True
|
172 |
+
|
173 |
+
|
174 |
+
class CudnnModule(PropModule):
|
175 |
+
def __init__(self, m, name):
|
176 |
+
super().__init__(m, name)
|
177 |
+
|
178 |
+
enabled = ContextProp(torch._C._get_cudnn_enabled, torch._C._set_cudnn_enabled)
|
179 |
+
deterministic = ContextProp(
|
180 |
+
torch._C._get_cudnn_deterministic, torch._C._set_cudnn_deterministic
|
181 |
+
)
|
182 |
+
benchmark = ContextProp(
|
183 |
+
torch._C._get_cudnn_benchmark, torch._C._set_cudnn_benchmark
|
184 |
+
)
|
185 |
+
benchmark_limit = None
|
186 |
+
if is_available():
|
187 |
+
benchmark_limit = ContextProp(
|
188 |
+
torch._C._cuda_get_cudnn_benchmark_limit,
|
189 |
+
torch._C._cuda_set_cudnn_benchmark_limit,
|
190 |
+
)
|
191 |
+
allow_tf32 = ContextProp(
|
192 |
+
torch._C._get_cudnn_allow_tf32, torch._C._set_cudnn_allow_tf32
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
# This is the sys.modules replacement trick, see
|
197 |
+
# https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
|
198 |
+
sys.modules[__name__] = CudnnModule(sys.modules[__name__], __name__)
|
199 |
+
|
200 |
+
# Add type annotation for the replaced module
|
201 |
+
enabled: bool
|
202 |
+
deterministic: bool
|
203 |
+
benchmark: bool
|
204 |
+
allow_tf32: bool
|
205 |
+
benchmark_limit: int
|
env-llmeval/lib/python3.10/site-packages/torch/backends/cudnn/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.73 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/backends/cudnn/__pycache__/rnn.cpython-310.pyc
ADDED
Binary file (1.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/backends/cudnn/rnn.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.cuda
|
2 |
+
|
3 |
+
try:
|
4 |
+
from torch._C import _cudnn
|
5 |
+
except ImportError:
|
6 |
+
# Uses of all the functions below should be guarded by torch.backends.cudnn.is_available(),
|
7 |
+
# so it's safe to not emit any checks here.
|
8 |
+
_cudnn = None # type: ignore[assignment]
|
9 |
+
|
10 |
+
|
11 |
+
def get_cudnn_mode(mode):
|
12 |
+
if mode == "RNN_RELU":
|
13 |
+
return int(_cudnn.RNNMode.rnn_relu)
|
14 |
+
elif mode == "RNN_TANH":
|
15 |
+
return int(_cudnn.RNNMode.rnn_tanh)
|
16 |
+
elif mode == "LSTM":
|
17 |
+
return int(_cudnn.RNNMode.lstm)
|
18 |
+
elif mode == "GRU":
|
19 |
+
return int(_cudnn.RNNMode.gru)
|
20 |
+
else:
|
21 |
+
raise Exception(f"Unknown mode: {mode}")
|
22 |
+
|
23 |
+
|
24 |
+
# NB: We don't actually need this class anymore (in fact, we could serialize the
|
25 |
+
# dropout state for even better reproducibility), but it is kept for backwards
|
26 |
+
# compatibility for old models.
|
27 |
+
class Unserializable:
|
28 |
+
def __init__(self, inner):
|
29 |
+
self.inner = inner
|
30 |
+
|
31 |
+
def get(self):
|
32 |
+
return self.inner
|
33 |
+
|
34 |
+
def __getstate__(self):
|
35 |
+
# Note: can't return {}, because python2 won't call __setstate__
|
36 |
+
# if the value evaluates to False
|
37 |
+
return "<unserializable>"
|
38 |
+
|
39 |
+
def __setstate__(self, state):
|
40 |
+
self.inner = None
|
41 |
+
|
42 |
+
|
43 |
+
def init_dropout_state(dropout, train, dropout_seed, dropout_state):
|
44 |
+
dropout_desc_name = "desc_" + str(torch.cuda.current_device())
|
45 |
+
dropout_p = dropout if train else 0
|
46 |
+
if (dropout_desc_name not in dropout_state) or (
|
47 |
+
dropout_state[dropout_desc_name].get() is None
|
48 |
+
):
|
49 |
+
if dropout_p == 0:
|
50 |
+
dropout_state[dropout_desc_name] = Unserializable(None)
|
51 |
+
else:
|
52 |
+
dropout_state[dropout_desc_name] = Unserializable(
|
53 |
+
torch._cudnn_init_dropout_state( # type: ignore[call-arg]
|
54 |
+
dropout_p,
|
55 |
+
train,
|
56 |
+
dropout_seed,
|
57 |
+
self_ty=torch.uint8,
|
58 |
+
device=torch.device("cuda"),
|
59 |
+
)
|
60 |
+
)
|
61 |
+
dropout_ts = dropout_state[dropout_desc_name].get()
|
62 |
+
return dropout_ts
|
env-llmeval/lib/python3.10/site-packages/torch/bin/torch_shm_manager
ADDED
Binary file (35.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__init__.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import _C
|
2 |
+
from torch._C import _onnx as _C_onnx
|
3 |
+
from torch._C._onnx import (
|
4 |
+
_CAFFE2_ATEN_FALLBACK,
|
5 |
+
OperatorExportTypes,
|
6 |
+
TensorProtoDataType,
|
7 |
+
TrainingMode,
|
8 |
+
)
|
9 |
+
|
10 |
+
from . import ( # usort:skip. Keep the order instead of sorting lexicographically
|
11 |
+
_deprecation,
|
12 |
+
errors,
|
13 |
+
symbolic_caffe2,
|
14 |
+
symbolic_helper,
|
15 |
+
symbolic_opset7,
|
16 |
+
symbolic_opset8,
|
17 |
+
symbolic_opset9,
|
18 |
+
symbolic_opset10,
|
19 |
+
symbolic_opset11,
|
20 |
+
symbolic_opset12,
|
21 |
+
symbolic_opset13,
|
22 |
+
symbolic_opset14,
|
23 |
+
symbolic_opset15,
|
24 |
+
symbolic_opset16,
|
25 |
+
symbolic_opset17,
|
26 |
+
symbolic_opset18,
|
27 |
+
utils,
|
28 |
+
)
|
29 |
+
|
30 |
+
# TODO(After 1.13 release): Remove the deprecated SymbolicContext
|
31 |
+
from ._exporter_states import ExportTypes, SymbolicContext
|
32 |
+
from ._type_utils import JitScalarType
|
33 |
+
from .errors import CheckerError # Backwards compatibility
|
34 |
+
from .utils import (
|
35 |
+
_optimize_graph,
|
36 |
+
_run_symbolic_function,
|
37 |
+
_run_symbolic_method,
|
38 |
+
export,
|
39 |
+
export_to_pretty_string,
|
40 |
+
is_in_onnx_export,
|
41 |
+
register_custom_op_symbolic,
|
42 |
+
select_model_mode_for_export,
|
43 |
+
unregister_custom_op_symbolic,
|
44 |
+
)
|
45 |
+
|
46 |
+
from ._internal.exporter import ( # usort:skip. needs to be last to avoid circular import
|
47 |
+
DiagnosticOptions,
|
48 |
+
ExportOptions,
|
49 |
+
ONNXProgram,
|
50 |
+
ONNXProgramSerializer,
|
51 |
+
ONNXRuntimeOptions,
|
52 |
+
InvalidExportOptionsError,
|
53 |
+
OnnxExporterError,
|
54 |
+
OnnxRegistry,
|
55 |
+
dynamo_export,
|
56 |
+
enable_fake_mode,
|
57 |
+
)
|
58 |
+
|
59 |
+
from ._internal.onnxruntime import (
|
60 |
+
is_onnxrt_backend_supported,
|
61 |
+
OrtBackend as _OrtBackend,
|
62 |
+
OrtBackendOptions as _OrtBackendOptions,
|
63 |
+
OrtExecutionProvider as _OrtExecutionProvider,
|
64 |
+
)
|
65 |
+
|
66 |
+
__all__ = [
|
67 |
+
# Modules
|
68 |
+
"symbolic_helper",
|
69 |
+
"utils",
|
70 |
+
"errors",
|
71 |
+
# All opsets
|
72 |
+
"symbolic_caffe2",
|
73 |
+
"symbolic_opset7",
|
74 |
+
"symbolic_opset8",
|
75 |
+
"symbolic_opset9",
|
76 |
+
"symbolic_opset10",
|
77 |
+
"symbolic_opset11",
|
78 |
+
"symbolic_opset12",
|
79 |
+
"symbolic_opset13",
|
80 |
+
"symbolic_opset14",
|
81 |
+
"symbolic_opset15",
|
82 |
+
"symbolic_opset16",
|
83 |
+
"symbolic_opset17",
|
84 |
+
"symbolic_opset18",
|
85 |
+
# Enums
|
86 |
+
"ExportTypes",
|
87 |
+
"OperatorExportTypes",
|
88 |
+
"TrainingMode",
|
89 |
+
"TensorProtoDataType",
|
90 |
+
"JitScalarType",
|
91 |
+
# Public functions
|
92 |
+
"export",
|
93 |
+
"export_to_pretty_string",
|
94 |
+
"is_in_onnx_export",
|
95 |
+
"select_model_mode_for_export",
|
96 |
+
"register_custom_op_symbolic",
|
97 |
+
"unregister_custom_op_symbolic",
|
98 |
+
"disable_log",
|
99 |
+
"enable_log",
|
100 |
+
# Errors
|
101 |
+
"CheckerError", # Backwards compatibility
|
102 |
+
# Dynamo Exporter
|
103 |
+
"DiagnosticOptions",
|
104 |
+
"ExportOptions",
|
105 |
+
"ONNXProgram",
|
106 |
+
"ONNXProgramSerializer",
|
107 |
+
"ONNXRuntimeOptions",
|
108 |
+
"InvalidExportOptionsError",
|
109 |
+
"OnnxExporterError",
|
110 |
+
"OnnxRegistry",
|
111 |
+
"dynamo_export",
|
112 |
+
"enable_fake_mode",
|
113 |
+
# DORT / torch.compile
|
114 |
+
"is_onnxrt_backend_supported",
|
115 |
+
]
|
116 |
+
|
117 |
+
# Set namespace for exposed private names
|
118 |
+
ExportTypes.__module__ = "torch.onnx"
|
119 |
+
JitScalarType.__module__ = "torch.onnx"
|
120 |
+
ExportOptions.__module__ = "torch.onnx"
|
121 |
+
ONNXProgram.__module__ = "torch.onnx"
|
122 |
+
ONNXProgramSerializer.__module__ = "torch.onnx"
|
123 |
+
ONNXRuntimeOptions.__module__ = "torch.onnx"
|
124 |
+
dynamo_export.__module__ = "torch.onnx"
|
125 |
+
InvalidExportOptionsError.__module__ = "torch.onnx"
|
126 |
+
OnnxExporterError.__module__ = "torch.onnx"
|
127 |
+
enable_fake_mode.__module__ = "torch.onnx"
|
128 |
+
OnnxRegistry.__module__ = "torch.onnx"
|
129 |
+
DiagnosticOptions.__module__ = "torch.onnx"
|
130 |
+
is_onnxrt_backend_supported.__module__ = "torch.onnx"
|
131 |
+
_OrtExecutionProvider.__module__ = "torch.onnx"
|
132 |
+
_OrtBackendOptions.__module__ = "torch.onnx"
|
133 |
+
_OrtBackend.__module__ = "torch.onnx"
|
134 |
+
|
135 |
+
producer_name = "pytorch"
|
136 |
+
producer_version = _C_onnx.PRODUCER_VERSION
|
137 |
+
|
138 |
+
|
139 |
+
@_deprecation.deprecated(
|
140 |
+
since="1.12.0", removed_in="2.0", instructions="use `torch.onnx.export` instead"
|
141 |
+
)
|
142 |
+
def _export(*args, **kwargs):
|
143 |
+
return utils._export(*args, **kwargs)
|
144 |
+
|
145 |
+
|
146 |
+
# TODO(justinchuby): Deprecate these logging functions in favor of the new diagnostic module.
|
147 |
+
|
148 |
+
# Returns True iff ONNX logging is turned on.
|
149 |
+
is_onnx_log_enabled = _C._jit_is_onnx_log_enabled
|
150 |
+
|
151 |
+
|
152 |
+
def enable_log() -> None:
|
153 |
+
r"""Enables ONNX logging."""
|
154 |
+
_C._jit_set_onnx_log_enabled(True)
|
155 |
+
|
156 |
+
|
157 |
+
def disable_log() -> None:
|
158 |
+
r"""Disables ONNX logging."""
|
159 |
+
_C._jit_set_onnx_log_enabled(False)
|
160 |
+
|
161 |
+
|
162 |
+
"""Sets output stream for ONNX logging.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
stream_name (str, default "stdout"): Only 'stdout' and 'stderr' are supported
|
166 |
+
as ``stream_name``.
|
167 |
+
"""
|
168 |
+
set_log_stream = _C._jit_set_onnx_log_output_stream
|
169 |
+
|
170 |
+
|
171 |
+
"""A simple logging facility for ONNX exporter.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
args: Arguments are converted to string, concatenated together with a newline
|
175 |
+
character appended to the end, and flushed to output stream.
|
176 |
+
"""
|
177 |
+
log = _C._jit_onnx_log
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.98 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/_constants.cpython-310.pyc
ADDED
Binary file (779 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/_experimental.cpython-310.pyc
ADDED
Binary file (1.46 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/_exporter_states.cpython-310.pyc
ADDED
Binary file (1.69 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/_onnx_supported_ops.cpython-310.pyc
ADDED
Binary file (3.78 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/_type_utils.cpython-310.pyc
ADDED
Binary file (9.54 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/errors.cpython-310.pyc
ADDED
Binary file (3.41 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/operators.cpython-310.pyc
ADDED
Binary file (900 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_helper.cpython-310.pyc
ADDED
Binary file (42.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset11.cpython-310.pyc
ADDED
Binary file (34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset12.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset16.cpython-310.pyc
ADDED
Binary file (4.45 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset18.cpython-310.pyc
ADDED
Binary file (1.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset7.cpython-310.pyc
ADDED
Binary file (1.76 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset8.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/__pycache__/symbolic_opset9.cpython-310.pyc
ADDED
Binary file (143 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_constants.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Constant values used in ONNX."""
|
2 |
+
|
3 |
+
ONNX_ARCHIVE_MODEL_PROTO_NAME = "__MODEL_PROTO"
|
4 |
+
|
5 |
+
ONNX_BASE_OPSET = 9
|
6 |
+
ONNX_MIN_OPSET = 7
|
7 |
+
ONNX_MAX_OPSET = 19
|
8 |
+
ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET = 17
|
9 |
+
# ONNX_DEFAULT_OPSET generated by tools/onnx/update_default_opset_version.py
|
10 |
+
ONNX_DEFAULT_OPSET = 17
|
11 |
+
ONNX_CONSTANT_FOLDING_MIN_OPSET = 9
|
12 |
+
|
13 |
+
PYTORCH_GITHUB_ISSUES_URL = "https://github.com/pytorch/pytorch/issues"
|
14 |
+
|
15 |
+
INT64_MAX = 9223372036854775807
|
16 |
+
INT32_MAX = 2147483647
|
17 |
+
INT16_MAX = 32767
|
18 |
+
INT8_MAX = 127
|
19 |
+
UINT8_MAX = 255
|
20 |
+
|
21 |
+
INT64_MIN = -9223372036854775808
|
22 |
+
INT32_MIN = -2147483648
|
23 |
+
INT16_MIN = -32768
|
24 |
+
INT8_MIN = -128
|
25 |
+
UINT8_MIN = 0
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_deprecation.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utility for deprecating functions."""
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import textwrap
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
|
8 |
+
def deprecated(since: str, removed_in: str, instructions: str):
|
9 |
+
"""Marks functions as deprecated.
|
10 |
+
|
11 |
+
It will result in a warning when the function is called and a note in the
|
12 |
+
docstring.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
since: The version when the function was first deprecated.
|
16 |
+
removed_in: The version when the function will be removed.
|
17 |
+
instructions: The action users should take.
|
18 |
+
"""
|
19 |
+
|
20 |
+
def decorator(function):
|
21 |
+
@functools.wraps(function)
|
22 |
+
def wrapper(*args, **kwargs):
|
23 |
+
warnings.warn(
|
24 |
+
f"'{function.__module__}.{function.__name__}' "
|
25 |
+
f"is deprecated in version {since} and will be "
|
26 |
+
f"removed in {removed_in}. Please {instructions}.",
|
27 |
+
category=FutureWarning,
|
28 |
+
stacklevel=2,
|
29 |
+
)
|
30 |
+
return function(*args, **kwargs)
|
31 |
+
|
32 |
+
# Add a deprecation note to the docstring.
|
33 |
+
docstring = function.__doc__ or ""
|
34 |
+
|
35 |
+
# Add a note to the docstring.
|
36 |
+
deprecation_note = textwrap.dedent(
|
37 |
+
f"""\
|
38 |
+
.. deprecated:: {since}
|
39 |
+
Deprecated and will be removed in version {removed_in}.
|
40 |
+
Please {instructions}.
|
41 |
+
"""
|
42 |
+
)
|
43 |
+
|
44 |
+
# Split docstring at first occurrence of newline
|
45 |
+
summary_and_body = docstring.split("\n\n", 1)
|
46 |
+
|
47 |
+
if len(summary_and_body) > 1:
|
48 |
+
summary, body = summary_and_body
|
49 |
+
|
50 |
+
# Dedent the body. We cannot do this with the presence of the summary because
|
51 |
+
# the body contains leading whitespaces when the summary does not.
|
52 |
+
body = textwrap.dedent(body)
|
53 |
+
|
54 |
+
new_docstring_parts = [deprecation_note, "\n\n", summary, body]
|
55 |
+
else:
|
56 |
+
summary = summary_and_body[0]
|
57 |
+
|
58 |
+
new_docstring_parts = [deprecation_note, "\n\n", summary]
|
59 |
+
|
60 |
+
wrapper.__doc__ = "".join(new_docstring_parts)
|
61 |
+
|
62 |
+
return wrapper
|
63 |
+
|
64 |
+
return decorator
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_exporter_states.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import Dict
|
4 |
+
|
5 |
+
from torch import _C
|
6 |
+
|
7 |
+
|
8 |
+
class ExportTypes:
|
9 |
+
r"""Specifies how the ONNX model is stored."""
|
10 |
+
|
11 |
+
PROTOBUF_FILE = "Saves model in the specified protobuf file."
|
12 |
+
ZIP_ARCHIVE = "Saves model in the specified ZIP file (uncompressed)."
|
13 |
+
COMPRESSED_ZIP_ARCHIVE = "Saves model in the specified ZIP file (compressed)."
|
14 |
+
DIRECTORY = "Saves model in the specified folder."
|
15 |
+
|
16 |
+
|
17 |
+
class SymbolicContext:
|
18 |
+
"""Extra context for symbolic functions.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
params_dict (Dict[str, _C.IValue]): Mapping from graph initializer name to IValue.
|
22 |
+
env (Dict[_C.Value, _C.Value]): Mapping from Torch domain graph Value to ONNX domain graph Value.
|
23 |
+
cur_node (_C.Node): Current node being converted to ONNX domain.
|
24 |
+
onnx_block (_C.Block): Current ONNX block that converted nodes are being appended to.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
params_dict: Dict[str, _C.IValue],
|
30 |
+
env: dict,
|
31 |
+
cur_node: _C.Node,
|
32 |
+
onnx_block: _C.Block,
|
33 |
+
):
|
34 |
+
self.params_dict: Dict[str, _C.IValue] = params_dict
|
35 |
+
self.env: Dict[_C.Value, _C.Value] = env
|
36 |
+
# Current node that is being converted.
|
37 |
+
self.cur_node: _C.Node = cur_node
|
38 |
+
# Current onnx block that converted nodes are being appended to.
|
39 |
+
self.onnx_block: _C.Block = onnx_block
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_globals.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Globals used internally by the ONNX exporter.
|
2 |
+
|
3 |
+
Do not use this module outside of `torch.onnx` and its tests.
|
4 |
+
|
5 |
+
Be very judicious when adding any new global variables. Do not create new global
|
6 |
+
variables unless they are absolutely necessary.
|
7 |
+
"""
|
8 |
+
import torch._C._onnx as _C_onnx
|
9 |
+
|
10 |
+
# This module should only depend on _constants and nothing else in torch.onnx to keep
|
11 |
+
# dependency direction clean.
|
12 |
+
from torch.onnx import _constants
|
13 |
+
|
14 |
+
|
15 |
+
class _InternalGlobals:
|
16 |
+
"""Globals used internally by ONNX exporter.
|
17 |
+
|
18 |
+
NOTE: Be very judicious when adding any new variables. Do not create new
|
19 |
+
global variables unless they are absolutely necessary.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self):
|
23 |
+
self._export_onnx_opset_version = _constants.ONNX_DEFAULT_OPSET
|
24 |
+
self._training_mode: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL
|
25 |
+
self._in_onnx_export: bool = False
|
26 |
+
# Whether the user's model is training during export
|
27 |
+
self.export_training: bool = False
|
28 |
+
self.operator_export_type: _C_onnx.OperatorExportTypes = (
|
29 |
+
_C_onnx.OperatorExportTypes.ONNX
|
30 |
+
)
|
31 |
+
self.onnx_shape_inference: bool = True
|
32 |
+
self._autograd_inlining: bool = True
|
33 |
+
|
34 |
+
@property
|
35 |
+
def training_mode(self):
|
36 |
+
"""The training mode for the exporter."""
|
37 |
+
return self._training_mode
|
38 |
+
|
39 |
+
@training_mode.setter
|
40 |
+
def training_mode(self, training_mode: _C_onnx.TrainingMode):
|
41 |
+
if not isinstance(training_mode, _C_onnx.TrainingMode):
|
42 |
+
raise TypeError(
|
43 |
+
"training_mode must be of type 'torch.onnx.TrainingMode'. This is "
|
44 |
+
"likely a bug in torch.onnx."
|
45 |
+
)
|
46 |
+
self._training_mode = training_mode
|
47 |
+
|
48 |
+
@property
|
49 |
+
def export_onnx_opset_version(self) -> int:
|
50 |
+
"""Opset version used during export."""
|
51 |
+
return self._export_onnx_opset_version
|
52 |
+
|
53 |
+
@export_onnx_opset_version.setter
|
54 |
+
def export_onnx_opset_version(self, value: int):
|
55 |
+
supported_versions = range(
|
56 |
+
_constants.ONNX_MIN_OPSET, _constants.ONNX_MAX_OPSET + 1
|
57 |
+
)
|
58 |
+
if value not in supported_versions:
|
59 |
+
raise ValueError(f"Unsupported ONNX opset version: {value}")
|
60 |
+
self._export_onnx_opset_version = value
|
61 |
+
|
62 |
+
@property
|
63 |
+
def in_onnx_export(self) -> bool:
|
64 |
+
"""Whether it is in the middle of ONNX export."""
|
65 |
+
return self._in_onnx_export
|
66 |
+
|
67 |
+
@in_onnx_export.setter
|
68 |
+
def in_onnx_export(self, value: bool):
|
69 |
+
if type(value) is not bool:
|
70 |
+
raise TypeError("in_onnx_export must be a boolean")
|
71 |
+
self._in_onnx_export = value
|
72 |
+
|
73 |
+
@property
|
74 |
+
def autograd_inlining(self) -> bool:
|
75 |
+
"""Whether Autograd must be inlined."""
|
76 |
+
return self._autograd_inlining
|
77 |
+
|
78 |
+
@autograd_inlining.setter
|
79 |
+
def autograd_inlining(self, value: bool):
|
80 |
+
if type(value) is not bool:
|
81 |
+
raise TypeError("autograd_inlining must be a boolean")
|
82 |
+
self._autograd_inlining = value
|
83 |
+
|
84 |
+
|
85 |
+
GLOBALS = _InternalGlobals()
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/_beartype.cpython-310.pyc
ADDED
Binary file (2.92 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/exporter.cpython-310.pyc
ADDED
Binary file (49.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/io_adapter.cpython-310.pyc
ADDED
Binary file (22.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/jit_utils.cpython-310.pyc
ADDED
Binary file (14.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/onnx_proto_utils.cpython-310.pyc
ADDED
Binary file (7.92 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/onnxruntime.cpython-310.pyc
ADDED
Binary file (24.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/__pycache__/registration.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/_beartype.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""An internal wrapper for the beartype library.
|
2 |
+
|
3 |
+
The module returns a no-op decorator when the beartype library is not installed.
|
4 |
+
"""
|
5 |
+
import enum
|
6 |
+
import functools
|
7 |
+
import os
|
8 |
+
import traceback
|
9 |
+
import typing
|
10 |
+
import warnings
|
11 |
+
from types import ModuleType
|
12 |
+
|
13 |
+
try:
|
14 |
+
import beartype as _beartype_lib # type: ignore[import]
|
15 |
+
from beartype import roar as _roar # type: ignore[import]
|
16 |
+
|
17 |
+
# Beartype warns when we import from typing because the types are deprecated
|
18 |
+
# in Python 3.9. But there will be a long time until we can move to using
|
19 |
+
# the native container types for type annotations (when 3.9 is the lowest
|
20 |
+
# supported version). So we silence the warning.
|
21 |
+
warnings.filterwarnings(
|
22 |
+
"ignore",
|
23 |
+
category=_roar.BeartypeDecorHintPep585DeprecationWarning,
|
24 |
+
)
|
25 |
+
|
26 |
+
if _beartype_lib.__version__ == "0.16.0":
|
27 |
+
# beartype 0.16.0 has a bug that causes it to crash when used with
|
28 |
+
# PyTorch. See https://github.com/beartype/beartype/issues/282
|
29 |
+
warnings.warn("beartype 0.16.0 is not supported. Please upgrade to 0.16.1+.")
|
30 |
+
_beartype_lib = None # type: ignore[assignment]
|
31 |
+
except ImportError:
|
32 |
+
_beartype_lib = None # type: ignore[assignment]
|
33 |
+
except Exception as e:
|
34 |
+
# Warn errors that are not import errors (unexpected).
|
35 |
+
warnings.warn(f"{e}")
|
36 |
+
_beartype_lib = None # type: ignore[assignment]
|
37 |
+
|
38 |
+
|
39 |
+
@enum.unique
|
40 |
+
class RuntimeTypeCheckState(enum.Enum):
|
41 |
+
"""Runtime type check state."""
|
42 |
+
|
43 |
+
# Runtime type checking is disabled.
|
44 |
+
DISABLED = enum.auto()
|
45 |
+
# Runtime type checking is enabled but warnings are shown only.
|
46 |
+
WARNINGS = enum.auto()
|
47 |
+
# Runtime type checking is enabled.
|
48 |
+
ERRORS = enum.auto()
|
49 |
+
|
50 |
+
|
51 |
+
class CallHintViolationWarning(UserWarning):
|
52 |
+
"""Warning raised when a type hint is violated during a function call."""
|
53 |
+
|
54 |
+
pass
|
55 |
+
|
56 |
+
|
57 |
+
def _no_op_decorator(func):
|
58 |
+
return func
|
59 |
+
|
60 |
+
|
61 |
+
def _create_beartype_decorator(
|
62 |
+
runtime_check_state: RuntimeTypeCheckState,
|
63 |
+
):
|
64 |
+
# beartype needs to be imported outside of the function and aliased because
|
65 |
+
# this module overwrites the name "beartype".
|
66 |
+
|
67 |
+
if runtime_check_state == RuntimeTypeCheckState.DISABLED:
|
68 |
+
return _no_op_decorator
|
69 |
+
if _beartype_lib is None:
|
70 |
+
# If the beartype library is not installed, return a no-op decorator
|
71 |
+
return _no_op_decorator
|
72 |
+
|
73 |
+
assert isinstance(_beartype_lib, ModuleType)
|
74 |
+
|
75 |
+
if runtime_check_state == RuntimeTypeCheckState.ERRORS:
|
76 |
+
# Enable runtime type checking which errors on any type hint violation.
|
77 |
+
return _beartype_lib.beartype
|
78 |
+
|
79 |
+
# Warnings only
|
80 |
+
def beartype(func):
|
81 |
+
"""Warn on type hint violation."""
|
82 |
+
|
83 |
+
if "return" in func.__annotations__:
|
84 |
+
# Remove the return type from the func function's
|
85 |
+
# annotations so that the beartype decorator does not complain
|
86 |
+
# about the return type.
|
87 |
+
return_type = func.__annotations__["return"]
|
88 |
+
del func.__annotations__["return"]
|
89 |
+
beartyped = _beartype_lib.beartype(func)
|
90 |
+
# Restore the return type to the func function's annotations
|
91 |
+
func.__annotations__["return"] = return_type
|
92 |
+
else:
|
93 |
+
beartyped = _beartype_lib.beartype(func)
|
94 |
+
|
95 |
+
@functools.wraps(func)
|
96 |
+
def _coerce_beartype_exceptions_to_warnings(*args, **kwargs):
|
97 |
+
try:
|
98 |
+
return beartyped(*args, **kwargs)
|
99 |
+
except _roar.BeartypeCallHintParamViolation:
|
100 |
+
# Fall back to the original function if the beartype hint is violated.
|
101 |
+
warnings.warn(
|
102 |
+
traceback.format_exc(),
|
103 |
+
category=CallHintViolationWarning,
|
104 |
+
stacklevel=2,
|
105 |
+
)
|
106 |
+
|
107 |
+
return func(*args, **kwargs) # noqa: B012
|
108 |
+
|
109 |
+
return _coerce_beartype_exceptions_to_warnings
|
110 |
+
|
111 |
+
return beartype
|
112 |
+
|
113 |
+
|
114 |
+
if typing.TYPE_CHECKING:
|
115 |
+
# This is a hack to make mypy play nicely with the beartype decorator.
|
116 |
+
def beartype(func):
|
117 |
+
return func
|
118 |
+
|
119 |
+
else:
|
120 |
+
_TORCH_ONNX_EXPERIMENTAL_RUNTIME_TYPE_CHECK = os.getenv(
|
121 |
+
"TORCH_ONNX_EXPERIMENTAL_RUNTIME_TYPE_CHECK"
|
122 |
+
)
|
123 |
+
if _TORCH_ONNX_EXPERIMENTAL_RUNTIME_TYPE_CHECK == "WARNINGS":
|
124 |
+
_runtime_type_check_state = RuntimeTypeCheckState.WARNINGS
|
125 |
+
elif _TORCH_ONNX_EXPERIMENTAL_RUNTIME_TYPE_CHECK == "DISABLED":
|
126 |
+
_runtime_type_check_state = RuntimeTypeCheckState.DISABLED
|
127 |
+
else:
|
128 |
+
_runtime_type_check_state = RuntimeTypeCheckState.ERRORS
|
129 |
+
beartype = _create_beartype_decorator(_runtime_type_check_state)
|
130 |
+
# Make sure that the beartype decorator is enabled whichever path we took.
|
131 |
+
assert beartype is not None
|
env-llmeval/lib/python3.10/site-packages/torch/onnx/_internal/diagnostics/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._diagnostic import (
|
2 |
+
create_export_diagnostic_context,
|
3 |
+
diagnose,
|
4 |
+
engine,
|
5 |
+
export_context,
|
6 |
+
ExportDiagnosticEngine,
|
7 |
+
TorchScriptOnnxExportDiagnostic,
|
8 |
+
)
|
9 |
+
from ._rules import rules
|
10 |
+
from .infra import levels
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"TorchScriptOnnxExportDiagnostic",
|
14 |
+
"ExportDiagnosticEngine",
|
15 |
+
"rules",
|
16 |
+
"levels",
|
17 |
+
"engine",
|
18 |
+
"export_context",
|
19 |
+
"create_export_diagnostic_context",
|
20 |
+
"diagnose",
|
21 |
+
]
|