applied-ai-018 commited on
Commit
543b8a8
·
verified ·
1 Parent(s): 10f1214

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/__init__.py +4 -0
  2. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/__init__.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/equitable_coloring.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/greedy_coloring.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/equitable_coloring.py +505 -0
  6. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/greedy_coloring.py +564 -0
  7. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/__init__.py +0 -0
  8. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/test_coloring.py +865 -0
  10. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/community/tests/__pycache__/test_utils.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_kernighan_lin.py +91 -0
  12. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_quality.py +138 -0
  13. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_utils.py +28 -0
  14. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/__init__.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/attracting.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/strongly_connected.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_strongly_connected.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_asteroidal.py +23 -0
  24. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_boundary.py +154 -0
  25. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_bridges.py +144 -0
  26. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_broadcasting.py +81 -0
  27. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_chordal.py +129 -0
  28. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_cluster.py +549 -0
  29. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_communicability.py +80 -0
  30. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_covering.py +85 -0
  31. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_cuts.py +172 -0
  32. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_cycles.py +974 -0
  33. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_distance_regular.py +85 -0
  34. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_dominating.py +46 -0
  35. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_efficiency.py +58 -0
  36. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_euler.py +314 -0
  37. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_graph_hashing.py +686 -0
  38. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_graphical.py +163 -0
  39. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_isolate.py +26 -0
  40. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_link_prediction.py +586 -0
  41. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_matching.py +605 -0
  42. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_max_weight_clique.py +181 -0
  43. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_node_classification.py +140 -0
  44. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_non_randomness.py +37 -0
  45. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_polynomials.py +57 -0
  46. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_reciprocity.py +37 -0
  47. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_richclub.py +149 -0
  48. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_similarity.py +946 -0
  49. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_simple_paths.py +792 -0
  50. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_smallworld.py +78 -0
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from networkx.algorithms.coloring.greedy_coloring import *
2
+ from networkx.algorithms.coloring.equitable_coloring import equitable_color
3
+
4
+ __all__ = ["greedy_color", "equitable_color"]
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (387 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/equitable_coloring.cpython-310.pyc ADDED
Binary file (10.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/greedy_coloring.cpython-310.pyc ADDED
Binary file (16.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/equitable_coloring.py ADDED
@@ -0,0 +1,505 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Equitable coloring of graphs with bounded degree.
3
+ """
4
+
5
+ from collections import defaultdict
6
+
7
+ import networkx as nx
8
+
9
+ __all__ = ["equitable_color"]
10
+
11
+
12
+ @nx._dispatchable
13
+ def is_coloring(G, coloring):
14
+ """Determine if the coloring is a valid coloring for the graph G."""
15
+ # Verify that the coloring is valid.
16
+ return all(coloring[s] != coloring[d] for s, d in G.edges)
17
+
18
+
19
+ @nx._dispatchable
20
+ def is_equitable(G, coloring, num_colors=None):
21
+ """Determines if the coloring is valid and equitable for the graph G."""
22
+
23
+ if not is_coloring(G, coloring):
24
+ return False
25
+
26
+ # Verify whether it is equitable.
27
+ color_set_size = defaultdict(int)
28
+ for color in coloring.values():
29
+ color_set_size[color] += 1
30
+
31
+ if num_colors is not None:
32
+ for color in range(num_colors):
33
+ if color not in color_set_size:
34
+ # These colors do not have any vertices attached to them.
35
+ color_set_size[color] = 0
36
+
37
+ # If there are more than 2 distinct values, the coloring cannot be equitable
38
+ all_set_sizes = set(color_set_size.values())
39
+ if len(all_set_sizes) == 0 and num_colors is None: # Was an empty graph
40
+ return True
41
+ elif len(all_set_sizes) == 1:
42
+ return True
43
+ elif len(all_set_sizes) == 2:
44
+ a, b = list(all_set_sizes)
45
+ return abs(a - b) <= 1
46
+ else: # len(all_set_sizes) > 2:
47
+ return False
48
+
49
+
50
+ def make_C_from_F(F):
51
+ C = defaultdict(list)
52
+ for node, color in F.items():
53
+ C[color].append(node)
54
+
55
+ return C
56
+
57
+
58
+ def make_N_from_L_C(L, C):
59
+ nodes = L.keys()
60
+ colors = C.keys()
61
+ return {
62
+ (node, color): sum(1 for v in L[node] if v in C[color])
63
+ for node in nodes
64
+ for color in colors
65
+ }
66
+
67
+
68
+ def make_H_from_C_N(C, N):
69
+ return {
70
+ (c1, c2): sum(1 for node in C[c1] if N[(node, c2)] == 0) for c1 in C for c2 in C
71
+ }
72
+
73
+
74
+ def change_color(u, X, Y, N, H, F, C, L):
75
+ """Change the color of 'u' from X to Y and update N, H, F, C."""
76
+ assert F[u] == X and X != Y
77
+
78
+ # Change the class of 'u' from X to Y
79
+ F[u] = Y
80
+
81
+ for k in C:
82
+ # 'u' witnesses an edge from k -> Y instead of from k -> X now.
83
+ if N[u, k] == 0:
84
+ H[(X, k)] -= 1
85
+ H[(Y, k)] += 1
86
+
87
+ for v in L[u]:
88
+ # 'v' has lost a neighbor in X and gained one in Y
89
+ N[(v, X)] -= 1
90
+ N[(v, Y)] += 1
91
+
92
+ if N[(v, X)] == 0:
93
+ # 'v' witnesses F[v] -> X
94
+ H[(F[v], X)] += 1
95
+
96
+ if N[(v, Y)] == 1:
97
+ # 'v' no longer witnesses F[v] -> Y
98
+ H[(F[v], Y)] -= 1
99
+
100
+ C[X].remove(u)
101
+ C[Y].append(u)
102
+
103
+
104
+ def move_witnesses(src_color, dst_color, N, H, F, C, T_cal, L):
105
+ """Move witness along a path from src_color to dst_color."""
106
+ X = src_color
107
+ while X != dst_color:
108
+ Y = T_cal[X]
109
+ # Move _any_ witness from X to Y = T_cal[X]
110
+ w = next(x for x in C[X] if N[(x, Y)] == 0)
111
+ change_color(w, X, Y, N=N, H=H, F=F, C=C, L=L)
112
+ X = Y
113
+
114
+
115
+ @nx._dispatchable(mutates_input=True)
116
+ def pad_graph(G, num_colors):
117
+ """Add a disconnected complete clique K_p such that the number of nodes in
118
+ the graph becomes a multiple of `num_colors`.
119
+
120
+ Assumes that the graph's nodes are labelled using integers.
121
+
122
+ Returns the number of nodes with each color.
123
+ """
124
+
125
+ n_ = len(G)
126
+ r = num_colors - 1
127
+
128
+ # Ensure that the number of nodes in G is a multiple of (r + 1)
129
+ s = n_ // (r + 1)
130
+ if n_ != s * (r + 1):
131
+ p = (r + 1) - n_ % (r + 1)
132
+ s += 1
133
+
134
+ # Complete graph K_p between (imaginary) nodes [n_, ... , n_ + p]
135
+ K = nx.relabel_nodes(nx.complete_graph(p), {idx: idx + n_ for idx in range(p)})
136
+ G.add_edges_from(K.edges)
137
+
138
+ return s
139
+
140
+
141
+ def procedure_P(V_minus, V_plus, N, H, F, C, L, excluded_colors=None):
142
+ """Procedure P as described in the paper."""
143
+
144
+ if excluded_colors is None:
145
+ excluded_colors = set()
146
+
147
+ A_cal = set()
148
+ T_cal = {}
149
+ R_cal = []
150
+
151
+ # BFS to determine A_cal, i.e. colors reachable from V-
152
+ reachable = [V_minus]
153
+ marked = set(reachable)
154
+ idx = 0
155
+
156
+ while idx < len(reachable):
157
+ pop = reachable[idx]
158
+ idx += 1
159
+
160
+ A_cal.add(pop)
161
+ R_cal.append(pop)
162
+
163
+ # TODO: Checking whether a color has been visited can be made faster by
164
+ # using a look-up table instead of testing for membership in a set by a
165
+ # logarithmic factor.
166
+ next_layer = []
167
+ for k in C:
168
+ if (
169
+ H[(k, pop)] > 0
170
+ and k not in A_cal
171
+ and k not in excluded_colors
172
+ and k not in marked
173
+ ):
174
+ next_layer.append(k)
175
+
176
+ for dst in next_layer:
177
+ # Record that `dst` can reach `pop`
178
+ T_cal[dst] = pop
179
+
180
+ marked.update(next_layer)
181
+ reachable.extend(next_layer)
182
+
183
+ # Variables for the algorithm
184
+ b = len(C) - len(A_cal)
185
+
186
+ if V_plus in A_cal:
187
+ # Easy case: V+ is in A_cal
188
+ # Move one node from V+ to V- using T_cal to find the parents.
189
+ move_witnesses(V_plus, V_minus, N=N, H=H, F=F, C=C, T_cal=T_cal, L=L)
190
+ else:
191
+ # If there is a solo edge, we can resolve the situation by
192
+ # moving witnesses from B to A, making G[A] equitable and then
193
+ # recursively balancing G[B - w] with a different V_minus and
194
+ # but the same V_plus.
195
+
196
+ A_0 = set()
197
+ A_cal_0 = set()
198
+ num_terminal_sets_found = 0
199
+ made_equitable = False
200
+
201
+ for W_1 in R_cal[::-1]:
202
+ for v in C[W_1]:
203
+ X = None
204
+
205
+ for U in C:
206
+ if N[(v, U)] == 0 and U in A_cal and U != W_1:
207
+ X = U
208
+
209
+ # v does not witness an edge in H[A_cal]
210
+ if X is None:
211
+ continue
212
+
213
+ for U in C:
214
+ # Note: Departing from the paper here.
215
+ if N[(v, U)] >= 1 and U not in A_cal:
216
+ X_prime = U
217
+ w = v
218
+
219
+ try:
220
+ # Finding the solo neighbor of w in X_prime
221
+ y = next(
222
+ node
223
+ for node in L[w]
224
+ if F[node] == X_prime and N[(node, W_1)] == 1
225
+ )
226
+ except StopIteration:
227
+ pass
228
+ else:
229
+ W = W_1
230
+
231
+ # Move w from W to X, now X has one extra node.
232
+ change_color(w, W, X, N=N, H=H, F=F, C=C, L=L)
233
+
234
+ # Move witness from X to V_minus, making the coloring
235
+ # equitable.
236
+ move_witnesses(
237
+ src_color=X,
238
+ dst_color=V_minus,
239
+ N=N,
240
+ H=H,
241
+ F=F,
242
+ C=C,
243
+ T_cal=T_cal,
244
+ L=L,
245
+ )
246
+
247
+ # Move y from X_prime to W, making W the correct size.
248
+ change_color(y, X_prime, W, N=N, H=H, F=F, C=C, L=L)
249
+
250
+ # Then call the procedure on G[B - y]
251
+ procedure_P(
252
+ V_minus=X_prime,
253
+ V_plus=V_plus,
254
+ N=N,
255
+ H=H,
256
+ C=C,
257
+ F=F,
258
+ L=L,
259
+ excluded_colors=excluded_colors.union(A_cal),
260
+ )
261
+ made_equitable = True
262
+ break
263
+
264
+ if made_equitable:
265
+ break
266
+ else:
267
+ # No node in W_1 was found such that
268
+ # it had a solo-neighbor.
269
+ A_cal_0.add(W_1)
270
+ A_0.update(C[W_1])
271
+ num_terminal_sets_found += 1
272
+
273
+ if num_terminal_sets_found == b:
274
+ # Otherwise, construct the maximal independent set and find
275
+ # a pair of z_1, z_2 as in Case II.
276
+
277
+ # BFS to determine B_cal': the set of colors reachable from V+
278
+ B_cal_prime = set()
279
+ T_cal_prime = {}
280
+
281
+ reachable = [V_plus]
282
+ marked = set(reachable)
283
+ idx = 0
284
+ while idx < len(reachable):
285
+ pop = reachable[idx]
286
+ idx += 1
287
+
288
+ B_cal_prime.add(pop)
289
+
290
+ # No need to check for excluded_colors here because
291
+ # they only exclude colors from A_cal
292
+ next_layer = [
293
+ k
294
+ for k in C
295
+ if H[(pop, k)] > 0 and k not in B_cal_prime and k not in marked
296
+ ]
297
+
298
+ for dst in next_layer:
299
+ T_cal_prime[pop] = dst
300
+
301
+ marked.update(next_layer)
302
+ reachable.extend(next_layer)
303
+
304
+ # Construct the independent set of G[B']
305
+ I_set = set()
306
+ I_covered = set()
307
+ W_covering = {}
308
+
309
+ B_prime = [node for k in B_cal_prime for node in C[k]]
310
+
311
+ # Add the nodes in V_plus to I first.
312
+ for z in C[V_plus] + B_prime:
313
+ if z in I_covered or F[z] not in B_cal_prime:
314
+ continue
315
+
316
+ I_set.add(z)
317
+ I_covered.add(z)
318
+ I_covered.update(list(L[z]))
319
+
320
+ for w in L[z]:
321
+ if F[w] in A_cal_0 and N[(z, F[w])] == 1:
322
+ if w not in W_covering:
323
+ W_covering[w] = z
324
+ else:
325
+ # Found z1, z2 which have the same solo
326
+ # neighbor in some W
327
+ z_1 = W_covering[w]
328
+ # z_2 = z
329
+
330
+ Z = F[z_1]
331
+ W = F[w]
332
+
333
+ # shift nodes along W, V-
334
+ move_witnesses(
335
+ W, V_minus, N=N, H=H, F=F, C=C, T_cal=T_cal, L=L
336
+ )
337
+
338
+ # shift nodes along V+ to Z
339
+ move_witnesses(
340
+ V_plus,
341
+ Z,
342
+ N=N,
343
+ H=H,
344
+ F=F,
345
+ C=C,
346
+ T_cal=T_cal_prime,
347
+ L=L,
348
+ )
349
+
350
+ # change color of z_1 to W
351
+ change_color(z_1, Z, W, N=N, H=H, F=F, C=C, L=L)
352
+
353
+ # change color of w to some color in B_cal
354
+ W_plus = next(
355
+ k for k in C if N[(w, k)] == 0 and k not in A_cal
356
+ )
357
+ change_color(w, W, W_plus, N=N, H=H, F=F, C=C, L=L)
358
+
359
+ # recurse with G[B \cup W*]
360
+ excluded_colors.update(
361
+ [k for k in C if k != W and k not in B_cal_prime]
362
+ )
363
+ procedure_P(
364
+ V_minus=W,
365
+ V_plus=W_plus,
366
+ N=N,
367
+ H=H,
368
+ C=C,
369
+ F=F,
370
+ L=L,
371
+ excluded_colors=excluded_colors,
372
+ )
373
+
374
+ made_equitable = True
375
+ break
376
+
377
+ if made_equitable:
378
+ break
379
+ else:
380
+ assert False, (
381
+ "Must find a w which is the solo neighbor "
382
+ "of two vertices in B_cal_prime."
383
+ )
384
+
385
+ if made_equitable:
386
+ break
387
+
388
+
389
+ @nx._dispatchable
390
+ def equitable_color(G, num_colors):
391
+ """Provides an equitable coloring for nodes of `G`.
392
+
393
+ Attempts to color a graph using `num_colors` colors, where no neighbors of
394
+ a node can have same color as the node itself and the number of nodes with
395
+ each color differ by at most 1. `num_colors` must be greater than the
396
+ maximum degree of `G`. The algorithm is described in [1]_ and has
397
+ complexity O(num_colors * n**2).
398
+
399
+ Parameters
400
+ ----------
401
+ G : networkX graph
402
+ The nodes of this graph will be colored.
403
+
404
+ num_colors : number of colors to use
405
+ This number must be at least one more than the maximum degree of nodes
406
+ in the graph.
407
+
408
+ Returns
409
+ -------
410
+ A dictionary with keys representing nodes and values representing
411
+ corresponding coloring.
412
+
413
+ Examples
414
+ --------
415
+ >>> G = nx.cycle_graph(4)
416
+ >>> nx.coloring.equitable_color(G, num_colors=3) # doctest: +SKIP
417
+ {0: 2, 1: 1, 2: 2, 3: 0}
418
+
419
+ Raises
420
+ ------
421
+ NetworkXAlgorithmError
422
+ If `num_colors` is not at least the maximum degree of the graph `G`
423
+
424
+ References
425
+ ----------
426
+ .. [1] Kierstead, H. A., Kostochka, A. V., Mydlarz, M., & Szemerédi, E.
427
+ (2010). A fast algorithm for equitable coloring. Combinatorica, 30(2),
428
+ 217-224.
429
+ """
430
+
431
+ # Map nodes to integers for simplicity later.
432
+ nodes_to_int = {}
433
+ int_to_nodes = {}
434
+
435
+ for idx, node in enumerate(G.nodes):
436
+ nodes_to_int[node] = idx
437
+ int_to_nodes[idx] = node
438
+
439
+ G = nx.relabel_nodes(G, nodes_to_int, copy=True)
440
+
441
+ # Basic graph statistics and sanity check.
442
+ if len(G.nodes) > 0:
443
+ r_ = max(G.degree(node) for node in G.nodes)
444
+ else:
445
+ r_ = 0
446
+
447
+ if r_ >= num_colors:
448
+ raise nx.NetworkXAlgorithmError(
449
+ f"Graph has maximum degree {r_}, needs "
450
+ f"{r_ + 1} (> {num_colors}) colors for guaranteed coloring."
451
+ )
452
+
453
+ # Ensure that the number of nodes in G is a multiple of (r + 1)
454
+ pad_graph(G, num_colors)
455
+
456
+ # Starting the algorithm.
457
+ # L = {node: list(G.neighbors(node)) for node in G.nodes}
458
+ L_ = {node: [] for node in G.nodes}
459
+
460
+ # Arbitrary equitable allocation of colors to nodes.
461
+ F = {node: idx % num_colors for idx, node in enumerate(G.nodes)}
462
+
463
+ C = make_C_from_F(F)
464
+
465
+ # The neighborhood is empty initially.
466
+ N = make_N_from_L_C(L_, C)
467
+
468
+ # Currently all nodes witness all edges.
469
+ H = make_H_from_C_N(C, N)
470
+
471
+ # Start of algorithm.
472
+ edges_seen = set()
473
+
474
+ for u in sorted(G.nodes):
475
+ for v in sorted(G.neighbors(u)):
476
+ # Do not double count edges if (v, u) has already been seen.
477
+ if (v, u) in edges_seen:
478
+ continue
479
+
480
+ edges_seen.add((u, v))
481
+
482
+ L_[u].append(v)
483
+ L_[v].append(u)
484
+
485
+ N[(u, F[v])] += 1
486
+ N[(v, F[u])] += 1
487
+
488
+ if F[u] != F[v]:
489
+ # Were 'u' and 'v' witnesses for F[u] -> F[v] or F[v] -> F[u]?
490
+ if N[(u, F[v])] == 1:
491
+ H[F[u], F[v]] -= 1 # u cannot witness an edge between F[u], F[v]
492
+
493
+ if N[(v, F[u])] == 1:
494
+ H[F[v], F[u]] -= 1 # v cannot witness an edge between F[v], F[u]
495
+
496
+ if N[(u, F[u])] != 0:
497
+ # Find the first color where 'u' does not have any neighbors.
498
+ Y = next(k for k in C if N[(u, k)] == 0)
499
+ X = F[u]
500
+ change_color(u, X, Y, N=N, H=H, F=F, C=C, L=L_)
501
+
502
+ # Procedure P
503
+ procedure_P(V_minus=X, V_plus=Y, N=N, H=H, F=F, C=C, L=L_)
504
+
505
+ return {int_to_nodes[x]: F[x] for x in int_to_nodes}
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/greedy_coloring.py ADDED
@@ -0,0 +1,564 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Greedy graph coloring using various strategies.
3
+ """
4
+ import itertools
5
+ from collections import defaultdict, deque
6
+
7
+ import networkx as nx
8
+ from networkx.utils import arbitrary_element, py_random_state
9
+
10
+ __all__ = [
11
+ "greedy_color",
12
+ "strategy_connected_sequential",
13
+ "strategy_connected_sequential_bfs",
14
+ "strategy_connected_sequential_dfs",
15
+ "strategy_independent_set",
16
+ "strategy_largest_first",
17
+ "strategy_random_sequential",
18
+ "strategy_saturation_largest_first",
19
+ "strategy_smallest_last",
20
+ ]
21
+
22
+
23
+ def strategy_largest_first(G, colors):
24
+ """Returns a list of the nodes of ``G`` in decreasing order by
25
+ degree.
26
+
27
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
28
+
29
+ """
30
+ return sorted(G, key=G.degree, reverse=True)
31
+
32
+
33
+ @py_random_state(2)
34
+ def strategy_random_sequential(G, colors, seed=None):
35
+ """Returns a random permutation of the nodes of ``G`` as a list.
36
+
37
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
38
+
39
+ seed : integer, random_state, or None (default)
40
+ Indicator of random number generation state.
41
+ See :ref:`Randomness<randomness>`.
42
+ """
43
+ nodes = list(G)
44
+ seed.shuffle(nodes)
45
+ return nodes
46
+
47
+
48
+ def strategy_smallest_last(G, colors):
49
+ """Returns a deque of the nodes of ``G``, "smallest" last.
50
+
51
+ Specifically, the degrees of each node are tracked in a bucket queue.
52
+ From this, the node of minimum degree is repeatedly popped from the
53
+ graph, updating its neighbors' degrees.
54
+
55
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
56
+
57
+ This implementation of the strategy runs in $O(n + m)$ time
58
+ (ignoring polylogarithmic factors), where $n$ is the number of nodes
59
+ and $m$ is the number of edges.
60
+
61
+ This strategy is related to :func:`strategy_independent_set`: if we
62
+ interpret each node removed as an independent set of size one, then
63
+ this strategy chooses an independent set of size one instead of a
64
+ maximal independent set.
65
+
66
+ """
67
+ H = G.copy()
68
+ result = deque()
69
+
70
+ # Build initial degree list (i.e. the bucket queue data structure)
71
+ degrees = defaultdict(set) # set(), for fast random-access removals
72
+ lbound = float("inf")
73
+ for node, d in H.degree():
74
+ degrees[d].add(node)
75
+ lbound = min(lbound, d) # Lower bound on min-degree.
76
+
77
+ def find_min_degree():
78
+ # Save time by starting the iterator at `lbound`, not 0.
79
+ # The value that we find will be our new `lbound`, which we set later.
80
+ return next(d for d in itertools.count(lbound) if d in degrees)
81
+
82
+ for _ in G:
83
+ # Pop a min-degree node and add it to the list.
84
+ min_degree = find_min_degree()
85
+ u = degrees[min_degree].pop()
86
+ if not degrees[min_degree]: # Clean up the degree list.
87
+ del degrees[min_degree]
88
+ result.appendleft(u)
89
+
90
+ # Update degrees of removed node's neighbors.
91
+ for v in H[u]:
92
+ degree = H.degree(v)
93
+ degrees[degree].remove(v)
94
+ if not degrees[degree]: # Clean up the degree list.
95
+ del degrees[degree]
96
+ degrees[degree - 1].add(v)
97
+
98
+ # Finally, remove the node.
99
+ H.remove_node(u)
100
+ lbound = min_degree - 1 # Subtract 1 in case of tied neighbors.
101
+
102
+ return result
103
+
104
+
105
+ def _maximal_independent_set(G):
106
+ """Returns a maximal independent set of nodes in ``G`` by repeatedly
107
+ choosing an independent node of minimum degree (with respect to the
108
+ subgraph of unchosen nodes).
109
+
110
+ """
111
+ result = set()
112
+ remaining = set(G)
113
+ while remaining:
114
+ G = G.subgraph(remaining)
115
+ v = min(remaining, key=G.degree)
116
+ result.add(v)
117
+ remaining -= set(G[v]) | {v}
118
+ return result
119
+
120
+
121
+ def strategy_independent_set(G, colors):
122
+ """Uses a greedy independent set removal strategy to determine the
123
+ colors.
124
+
125
+ This function updates ``colors`` **in-place** and return ``None``,
126
+ unlike the other strategy functions in this module.
127
+
128
+ This algorithm repeatedly finds and removes a maximal independent
129
+ set, assigning each node in the set an unused color.
130
+
131
+ ``G`` is a NetworkX graph.
132
+
133
+ This strategy is related to :func:`strategy_smallest_last`: in that
134
+ strategy, an independent set of size one is chosen at each step
135
+ instead of a maximal independent set.
136
+
137
+ """
138
+ remaining_nodes = set(G)
139
+ while len(remaining_nodes) > 0:
140
+ nodes = _maximal_independent_set(G.subgraph(remaining_nodes))
141
+ remaining_nodes -= nodes
142
+ yield from nodes
143
+
144
+
145
+ def strategy_connected_sequential_bfs(G, colors):
146
+ """Returns an iterable over nodes in ``G`` in the order given by a
147
+ breadth-first traversal.
148
+
149
+ The generated sequence has the property that for each node except
150
+ the first, at least one neighbor appeared earlier in the sequence.
151
+
152
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
153
+
154
+ """
155
+ return strategy_connected_sequential(G, colors, "bfs")
156
+
157
+
158
+ def strategy_connected_sequential_dfs(G, colors):
159
+ """Returns an iterable over nodes in ``G`` in the order given by a
160
+ depth-first traversal.
161
+
162
+ The generated sequence has the property that for each node except
163
+ the first, at least one neighbor appeared earlier in the sequence.
164
+
165
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
166
+
167
+ """
168
+ return strategy_connected_sequential(G, colors, "dfs")
169
+
170
+
171
+ def strategy_connected_sequential(G, colors, traversal="bfs"):
172
+ """Returns an iterable over nodes in ``G`` in the order given by a
173
+ breadth-first or depth-first traversal.
174
+
175
+ ``traversal`` must be one of the strings ``'dfs'`` or ``'bfs'``,
176
+ representing depth-first traversal or breadth-first traversal,
177
+ respectively.
178
+
179
+ The generated sequence has the property that for each node except
180
+ the first, at least one neighbor appeared earlier in the sequence.
181
+
182
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
183
+
184
+ """
185
+ if traversal == "bfs":
186
+ traverse = nx.bfs_edges
187
+ elif traversal == "dfs":
188
+ traverse = nx.dfs_edges
189
+ else:
190
+ raise nx.NetworkXError(
191
+ "Please specify one of the strings 'bfs' or"
192
+ " 'dfs' for connected sequential ordering"
193
+ )
194
+ for component in nx.connected_components(G):
195
+ source = arbitrary_element(component)
196
+ # Yield the source node, then all the nodes in the specified
197
+ # traversal order.
198
+ yield source
199
+ for _, end in traverse(G.subgraph(component), source):
200
+ yield end
201
+
202
+
203
+ def strategy_saturation_largest_first(G, colors):
204
+ """Iterates over all the nodes of ``G`` in "saturation order" (also
205
+ known as "DSATUR").
206
+
207
+ ``G`` is a NetworkX graph. ``colors`` is a dictionary mapping nodes of
208
+ ``G`` to colors, for those nodes that have already been colored.
209
+
210
+ """
211
+ distinct_colors = {v: set() for v in G}
212
+
213
+ # Add the node color assignments given in colors to the
214
+ # distinct colors set for each neighbor of that node
215
+ for node, color in colors.items():
216
+ for neighbor in G[node]:
217
+ distinct_colors[neighbor].add(color)
218
+
219
+ # Check that the color assignments in colors are valid
220
+ # i.e. no neighboring nodes have the same color
221
+ if len(colors) >= 2:
222
+ for node, color in colors.items():
223
+ if color in distinct_colors[node]:
224
+ raise nx.NetworkXError("Neighboring nodes must have different colors")
225
+
226
+ # If 0 nodes have been colored, simply choose the node of highest degree.
227
+ if not colors:
228
+ node = max(G, key=G.degree)
229
+ yield node
230
+ # Add the color 0 to the distinct colors set for each
231
+ # neighbor of that node.
232
+ for v in G[node]:
233
+ distinct_colors[v].add(0)
234
+
235
+ while len(G) != len(colors):
236
+ # Update the distinct color sets for the neighbors.
237
+ for node, color in colors.items():
238
+ for neighbor in G[node]:
239
+ distinct_colors[neighbor].add(color)
240
+
241
+ # Compute the maximum saturation and the set of nodes that
242
+ # achieve that saturation.
243
+ saturation = {v: len(c) for v, c in distinct_colors.items() if v not in colors}
244
+ # Yield the node with the highest saturation, and break ties by
245
+ # degree.
246
+ node = max(saturation, key=lambda v: (saturation[v], G.degree(v)))
247
+ yield node
248
+
249
+
250
+ #: Dictionary mapping name of a strategy as a string to the strategy function.
251
+ STRATEGIES = {
252
+ "largest_first": strategy_largest_first,
253
+ "random_sequential": strategy_random_sequential,
254
+ "smallest_last": strategy_smallest_last,
255
+ "independent_set": strategy_independent_set,
256
+ "connected_sequential_bfs": strategy_connected_sequential_bfs,
257
+ "connected_sequential_dfs": strategy_connected_sequential_dfs,
258
+ "connected_sequential": strategy_connected_sequential,
259
+ "saturation_largest_first": strategy_saturation_largest_first,
260
+ "DSATUR": strategy_saturation_largest_first,
261
+ }
262
+
263
+
264
+ @nx._dispatchable
265
+ def greedy_color(G, strategy="largest_first", interchange=False):
266
+ """Color a graph using various strategies of greedy graph coloring.
267
+
268
+ Attempts to color a graph using as few colors as possible, where no
269
+ neighbors of a node can have same color as the node itself. The
270
+ given strategy determines the order in which nodes are colored.
271
+
272
+ The strategies are described in [1]_, and smallest-last is based on
273
+ [2]_.
274
+
275
+ Parameters
276
+ ----------
277
+ G : NetworkX graph
278
+
279
+ strategy : string or function(G, colors)
280
+ A function (or a string representing a function) that provides
281
+ the coloring strategy, by returning nodes in the ordering they
282
+ should be colored. ``G`` is the graph, and ``colors`` is a
283
+ dictionary of the currently assigned colors, keyed by nodes. The
284
+ function must return an iterable over all the nodes in ``G``.
285
+
286
+ If the strategy function is an iterator generator (that is, a
287
+ function with ``yield`` statements), keep in mind that the
288
+ ``colors`` dictionary will be updated after each ``yield``, since
289
+ this function chooses colors greedily.
290
+
291
+ If ``strategy`` is a string, it must be one of the following,
292
+ each of which represents one of the built-in strategy functions.
293
+
294
+ * ``'largest_first'``
295
+ * ``'random_sequential'``
296
+ * ``'smallest_last'``
297
+ * ``'independent_set'``
298
+ * ``'connected_sequential_bfs'``
299
+ * ``'connected_sequential_dfs'``
300
+ * ``'connected_sequential'`` (alias for the previous strategy)
301
+ * ``'saturation_largest_first'``
302
+ * ``'DSATUR'`` (alias for the previous strategy)
303
+
304
+ interchange: bool
305
+ Will use the color interchange algorithm described by [3]_ if set
306
+ to ``True``.
307
+
308
+ Note that ``saturation_largest_first`` and ``independent_set``
309
+ do not work with interchange. Furthermore, if you use
310
+ interchange with your own strategy function, you cannot rely
311
+ on the values in the ``colors`` argument.
312
+
313
+ Returns
314
+ -------
315
+ A dictionary with keys representing nodes and values representing
316
+ corresponding coloring.
317
+
318
+ Examples
319
+ --------
320
+ >>> G = nx.cycle_graph(4)
321
+ >>> d = nx.coloring.greedy_color(G, strategy="largest_first")
322
+ >>> d in [{0: 0, 1: 1, 2: 0, 3: 1}, {0: 1, 1: 0, 2: 1, 3: 0}]
323
+ True
324
+
325
+ Raises
326
+ ------
327
+ NetworkXPointlessConcept
328
+ If ``strategy`` is ``saturation_largest_first`` or
329
+ ``independent_set`` and ``interchange`` is ``True``.
330
+
331
+ References
332
+ ----------
333
+ .. [1] Adrian Kosowski, and Krzysztof Manuszewski,
334
+ Classical Coloring of Graphs, Graph Colorings, 2-19, 2004.
335
+ ISBN 0-8218-3458-4.
336
+ .. [2] David W. Matula, and Leland L. Beck, "Smallest-last
337
+ ordering and clustering and graph coloring algorithms." *J. ACM* 30,
338
+ 3 (July 1983), 417–427. <https://doi.org/10.1145/2402.322385>
339
+ .. [3] Maciej M. Sysło, Narsingh Deo, Janusz S. Kowalik,
340
+ Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983.
341
+ ISBN 0-486-45353-7.
342
+
343
+ """
344
+ if len(G) == 0:
345
+ return {}
346
+ # Determine the strategy provided by the caller.
347
+ strategy = STRATEGIES.get(strategy, strategy)
348
+ if not callable(strategy):
349
+ raise nx.NetworkXError(
350
+ f"strategy must be callable or a valid string. {strategy} not valid."
351
+ )
352
+ # Perform some validation on the arguments before executing any
353
+ # strategy functions.
354
+ if interchange:
355
+ if strategy is strategy_independent_set:
356
+ msg = "interchange cannot be used with independent_set"
357
+ raise nx.NetworkXPointlessConcept(msg)
358
+ if strategy is strategy_saturation_largest_first:
359
+ msg = "interchange cannot be used with" " saturation_largest_first"
360
+ raise nx.NetworkXPointlessConcept(msg)
361
+ colors = {}
362
+ nodes = strategy(G, colors)
363
+ if interchange:
364
+ return _greedy_coloring_with_interchange(G, nodes)
365
+ for u in nodes:
366
+ # Set to keep track of colors of neighbors
367
+ nbr_colors = {colors[v] for v in G[u] if v in colors}
368
+ # Find the first unused color.
369
+ for color in itertools.count():
370
+ if color not in nbr_colors:
371
+ break
372
+ # Assign the new color to the current node.
373
+ colors[u] = color
374
+ return colors
375
+
376
+
377
+ # Tools for coloring with interchanges
378
+ class _Node:
379
+ __slots__ = ["node_id", "color", "adj_list", "adj_color"]
380
+
381
+ def __init__(self, node_id, n):
382
+ self.node_id = node_id
383
+ self.color = -1
384
+ self.adj_list = None
385
+ self.adj_color = [None for _ in range(n)]
386
+
387
+ def __repr__(self):
388
+ return (
389
+ f"Node_id: {self.node_id}, Color: {self.color}, "
390
+ f"Adj_list: ({self.adj_list}), adj_color: ({self.adj_color})"
391
+ )
392
+
393
+ def assign_color(self, adj_entry, color):
394
+ adj_entry.col_prev = None
395
+ adj_entry.col_next = self.adj_color[color]
396
+ self.adj_color[color] = adj_entry
397
+ if adj_entry.col_next is not None:
398
+ adj_entry.col_next.col_prev = adj_entry
399
+
400
+ def clear_color(self, adj_entry, color):
401
+ if adj_entry.col_prev is None:
402
+ self.adj_color[color] = adj_entry.col_next
403
+ else:
404
+ adj_entry.col_prev.col_next = adj_entry.col_next
405
+ if adj_entry.col_next is not None:
406
+ adj_entry.col_next.col_prev = adj_entry.col_prev
407
+
408
+ def iter_neighbors(self):
409
+ adj_node = self.adj_list
410
+ while adj_node is not None:
411
+ yield adj_node
412
+ adj_node = adj_node.next
413
+
414
+ def iter_neighbors_color(self, color):
415
+ adj_color_node = self.adj_color[color]
416
+ while adj_color_node is not None:
417
+ yield adj_color_node.node_id
418
+ adj_color_node = adj_color_node.col_next
419
+
420
+
421
+ class _AdjEntry:
422
+ __slots__ = ["node_id", "next", "mate", "col_next", "col_prev"]
423
+
424
+ def __init__(self, node_id):
425
+ self.node_id = node_id
426
+ self.next = None
427
+ self.mate = None
428
+ self.col_next = None
429
+ self.col_prev = None
430
+
431
+ def __repr__(self):
432
+ col_next = None if self.col_next is None else self.col_next.node_id
433
+ col_prev = None if self.col_prev is None else self.col_prev.node_id
434
+ return (
435
+ f"Node_id: {self.node_id}, Next: ({self.next}), "
436
+ f"Mate: ({self.mate.node_id}), "
437
+ f"col_next: ({col_next}), col_prev: ({col_prev})"
438
+ )
439
+
440
+
441
+ def _greedy_coloring_with_interchange(G, nodes):
442
+ """Return a coloring for `original_graph` using interchange approach
443
+
444
+ This procedure is an adaption of the algorithm described by [1]_,
445
+ and is an implementation of coloring with interchange. Please be
446
+ advised, that the datastructures used are rather complex because
447
+ they are optimized to minimize the time spent identifying
448
+ subcomponents of the graph, which are possible candidates for color
449
+ interchange.
450
+
451
+ Parameters
452
+ ----------
453
+ G : NetworkX graph
454
+ The graph to be colored
455
+
456
+ nodes : list
457
+ nodes ordered using the strategy of choice
458
+
459
+ Returns
460
+ -------
461
+ dict :
462
+ A dictionary keyed by node to a color value
463
+
464
+ References
465
+ ----------
466
+ .. [1] Maciej M. Syslo, Narsingh Deo, Janusz S. Kowalik,
467
+ Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983.
468
+ ISBN 0-486-45353-7.
469
+ """
470
+ n = len(G)
471
+
472
+ graph = {node: _Node(node, n) for node in G}
473
+
474
+ for node1, node2 in G.edges():
475
+ adj_entry1 = _AdjEntry(node2)
476
+ adj_entry2 = _AdjEntry(node1)
477
+ adj_entry1.mate = adj_entry2
478
+ adj_entry2.mate = adj_entry1
479
+ node1_head = graph[node1].adj_list
480
+ adj_entry1.next = node1_head
481
+ graph[node1].adj_list = adj_entry1
482
+ node2_head = graph[node2].adj_list
483
+ adj_entry2.next = node2_head
484
+ graph[node2].adj_list = adj_entry2
485
+
486
+ k = 0
487
+ for node in nodes:
488
+ # Find the smallest possible, unused color
489
+ neighbors = graph[node].iter_neighbors()
490
+ col_used = {graph[adj_node.node_id].color for adj_node in neighbors}
491
+ col_used.discard(-1)
492
+ k1 = next(itertools.dropwhile(lambda x: x in col_used, itertools.count()))
493
+
494
+ # k1 is now the lowest available color
495
+ if k1 > k:
496
+ connected = True
497
+ visited = set()
498
+ col1 = -1
499
+ col2 = -1
500
+ while connected and col1 < k:
501
+ col1 += 1
502
+ neighbor_cols = graph[node].iter_neighbors_color(col1)
503
+ col1_adj = list(neighbor_cols)
504
+
505
+ col2 = col1
506
+ while connected and col2 < k:
507
+ col2 += 1
508
+ visited = set(col1_adj)
509
+ frontier = list(col1_adj)
510
+ i = 0
511
+ while i < len(frontier):
512
+ search_node = frontier[i]
513
+ i += 1
514
+ col_opp = col2 if graph[search_node].color == col1 else col1
515
+ neighbor_cols = graph[search_node].iter_neighbors_color(col_opp)
516
+
517
+ for neighbor in neighbor_cols:
518
+ if neighbor not in visited:
519
+ visited.add(neighbor)
520
+ frontier.append(neighbor)
521
+
522
+ # Search if node is not adj to any col2 vertex
523
+ connected = (
524
+ len(
525
+ visited.intersection(graph[node].iter_neighbors_color(col2))
526
+ )
527
+ > 0
528
+ )
529
+
530
+ # If connected is false then we can swap !!!
531
+ if not connected:
532
+ # Update all the nodes in the component
533
+ for search_node in visited:
534
+ graph[search_node].color = (
535
+ col2 if graph[search_node].color == col1 else col1
536
+ )
537
+ col2_adj = graph[search_node].adj_color[col2]
538
+ graph[search_node].adj_color[col2] = graph[search_node].adj_color[
539
+ col1
540
+ ]
541
+ graph[search_node].adj_color[col1] = col2_adj
542
+
543
+ # Update all the neighboring nodes
544
+ for search_node in visited:
545
+ col = graph[search_node].color
546
+ col_opp = col1 if col == col2 else col2
547
+ for adj_node in graph[search_node].iter_neighbors():
548
+ if graph[adj_node.node_id].color != col_opp:
549
+ # Direct reference to entry
550
+ adj_mate = adj_node.mate
551
+ graph[adj_node.node_id].clear_color(adj_mate, col_opp)
552
+ graph[adj_node.node_id].assign_color(adj_mate, col)
553
+ k1 = col1
554
+
555
+ # We can color this node color k1
556
+ graph[node].color = k1
557
+ k = max(k1, k)
558
+
559
+ # Update the neighbors of this node
560
+ for adj_node in graph[node].iter_neighbors():
561
+ adj_mate = adj_node.mate
562
+ graph[adj_node.node_id].assign_color(adj_mate, k1)
563
+
564
+ return {node.node_id: node.color for node in graph.values()}
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (207 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/test_coloring.py ADDED
@@ -0,0 +1,865 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Greedy coloring test suite.
2
+
3
+ """
4
+
5
+ import itertools
6
+
7
+ import pytest
8
+
9
+ import networkx as nx
10
+
11
+ is_coloring = nx.algorithms.coloring.equitable_coloring.is_coloring
12
+ is_equitable = nx.algorithms.coloring.equitable_coloring.is_equitable
13
+
14
+
15
+ ALL_STRATEGIES = [
16
+ "largest_first",
17
+ "random_sequential",
18
+ "smallest_last",
19
+ "independent_set",
20
+ "connected_sequential_bfs",
21
+ "connected_sequential_dfs",
22
+ "connected_sequential",
23
+ "saturation_largest_first",
24
+ "DSATUR",
25
+ ]
26
+
27
+ # List of strategies where interchange=True results in an error
28
+ INTERCHANGE_INVALID = ["independent_set", "saturation_largest_first", "DSATUR"]
29
+
30
+
31
+ class TestColoring:
32
+ def test_basic_cases(self):
33
+ def check_basic_case(graph_func, n_nodes, strategy, interchange):
34
+ graph = graph_func()
35
+ coloring = nx.coloring.greedy_color(
36
+ graph, strategy=strategy, interchange=interchange
37
+ )
38
+ assert verify_length(coloring, n_nodes)
39
+ assert verify_coloring(graph, coloring)
40
+
41
+ for graph_func, n_nodes in BASIC_TEST_CASES.items():
42
+ for interchange in [True, False]:
43
+ for strategy in ALL_STRATEGIES:
44
+ check_basic_case(graph_func, n_nodes, strategy, False)
45
+ if strategy not in INTERCHANGE_INVALID:
46
+ check_basic_case(graph_func, n_nodes, strategy, True)
47
+
48
+ def test_special_cases(self):
49
+ def check_special_case(strategy, graph_func, interchange, colors):
50
+ graph = graph_func()
51
+ coloring = nx.coloring.greedy_color(
52
+ graph, strategy=strategy, interchange=interchange
53
+ )
54
+ if not hasattr(colors, "__len__"):
55
+ colors = [colors]
56
+ assert any(verify_length(coloring, n_colors) for n_colors in colors)
57
+ assert verify_coloring(graph, coloring)
58
+
59
+ for strategy, arglist in SPECIAL_TEST_CASES.items():
60
+ for args in arglist:
61
+ check_special_case(strategy, args[0], args[1], args[2])
62
+
63
+ def test_interchange_invalid(self):
64
+ graph = one_node_graph()
65
+ for strategy in INTERCHANGE_INVALID:
66
+ pytest.raises(
67
+ nx.NetworkXPointlessConcept,
68
+ nx.coloring.greedy_color,
69
+ graph,
70
+ strategy=strategy,
71
+ interchange=True,
72
+ )
73
+
74
+ def test_bad_inputs(self):
75
+ graph = one_node_graph()
76
+ pytest.raises(
77
+ nx.NetworkXError,
78
+ nx.coloring.greedy_color,
79
+ graph,
80
+ strategy="invalid strategy",
81
+ )
82
+
83
+ def test_strategy_as_function(self):
84
+ graph = lf_shc()
85
+ colors_1 = nx.coloring.greedy_color(graph, "largest_first")
86
+ colors_2 = nx.coloring.greedy_color(graph, nx.coloring.strategy_largest_first)
87
+ assert colors_1 == colors_2
88
+
89
+ def test_seed_argument(self):
90
+ graph = lf_shc()
91
+ rs = nx.coloring.strategy_random_sequential
92
+ c1 = nx.coloring.greedy_color(graph, lambda g, c: rs(g, c, seed=1))
93
+ for u, v in graph.edges:
94
+ assert c1[u] != c1[v]
95
+
96
+ def test_is_coloring(self):
97
+ G = nx.Graph()
98
+ G.add_edges_from([(0, 1), (1, 2)])
99
+ coloring = {0: 0, 1: 1, 2: 0}
100
+ assert is_coloring(G, coloring)
101
+
102
+ coloring[0] = 1
103
+ assert not is_coloring(G, coloring)
104
+ assert not is_equitable(G, coloring)
105
+
106
+ def test_is_equitable(self):
107
+ G = nx.Graph()
108
+ G.add_edges_from([(0, 1), (1, 2)])
109
+ coloring = {0: 0, 1: 1, 2: 0}
110
+ assert is_equitable(G, coloring)
111
+
112
+ G.add_edges_from([(2, 3), (2, 4), (2, 5)])
113
+ coloring[3] = 1
114
+ coloring[4] = 1
115
+ coloring[5] = 1
116
+ assert is_coloring(G, coloring)
117
+ assert not is_equitable(G, coloring)
118
+
119
+ def test_num_colors(self):
120
+ G = nx.Graph()
121
+ G.add_edges_from([(0, 1), (0, 2), (0, 3)])
122
+ pytest.raises(nx.NetworkXAlgorithmError, nx.coloring.equitable_color, G, 2)
123
+
124
+ def test_equitable_color(self):
125
+ G = nx.fast_gnp_random_graph(n=10, p=0.2, seed=42)
126
+ coloring = nx.coloring.equitable_color(G, max_degree(G) + 1)
127
+ assert is_equitable(G, coloring)
128
+
129
+ def test_equitable_color_empty(self):
130
+ G = nx.empty_graph()
131
+ coloring = nx.coloring.equitable_color(G, max_degree(G) + 1)
132
+ assert is_equitable(G, coloring)
133
+
134
+ def test_equitable_color_large(self):
135
+ G = nx.fast_gnp_random_graph(100, 0.1, seed=42)
136
+ coloring = nx.coloring.equitable_color(G, max_degree(G) + 1)
137
+ assert is_equitable(G, coloring, num_colors=max_degree(G) + 1)
138
+
139
+ def test_case_V_plus_not_in_A_cal(self):
140
+ # Hand crafted case to avoid the easy case.
141
+ L = {
142
+ 0: [2, 5],
143
+ 1: [3, 4],
144
+ 2: [0, 8],
145
+ 3: [1, 7],
146
+ 4: [1, 6],
147
+ 5: [0, 6],
148
+ 6: [4, 5],
149
+ 7: [3],
150
+ 8: [2],
151
+ }
152
+
153
+ F = {
154
+ # Color 0
155
+ 0: 0,
156
+ 1: 0,
157
+ # Color 1
158
+ 2: 1,
159
+ 3: 1,
160
+ 4: 1,
161
+ 5: 1,
162
+ # Color 2
163
+ 6: 2,
164
+ 7: 2,
165
+ 8: 2,
166
+ }
167
+
168
+ C = nx.algorithms.coloring.equitable_coloring.make_C_from_F(F)
169
+ N = nx.algorithms.coloring.equitable_coloring.make_N_from_L_C(L, C)
170
+ H = nx.algorithms.coloring.equitable_coloring.make_H_from_C_N(C, N)
171
+
172
+ nx.algorithms.coloring.equitable_coloring.procedure_P(
173
+ V_minus=0, V_plus=1, N=N, H=H, F=F, C=C, L=L
174
+ )
175
+ check_state(L=L, N=N, H=H, F=F, C=C)
176
+
177
+ def test_cast_no_solo(self):
178
+ L = {
179
+ 0: [8, 9],
180
+ 1: [10, 11],
181
+ 2: [8],
182
+ 3: [9],
183
+ 4: [10, 11],
184
+ 5: [8],
185
+ 6: [9],
186
+ 7: [10, 11],
187
+ 8: [0, 2, 5],
188
+ 9: [0, 3, 6],
189
+ 10: [1, 4, 7],
190
+ 11: [1, 4, 7],
191
+ }
192
+
193
+ F = {0: 0, 1: 0, 2: 2, 3: 2, 4: 2, 5: 3, 6: 3, 7: 3, 8: 1, 9: 1, 10: 1, 11: 1}
194
+
195
+ C = nx.algorithms.coloring.equitable_coloring.make_C_from_F(F)
196
+ N = nx.algorithms.coloring.equitable_coloring.make_N_from_L_C(L, C)
197
+ H = nx.algorithms.coloring.equitable_coloring.make_H_from_C_N(C, N)
198
+
199
+ nx.algorithms.coloring.equitable_coloring.procedure_P(
200
+ V_minus=0, V_plus=1, N=N, H=H, F=F, C=C, L=L
201
+ )
202
+ check_state(L=L, N=N, H=H, F=F, C=C)
203
+
204
+ def test_hard_prob(self):
205
+ # Tests for two levels of recursion.
206
+ num_colors, s = 5, 5
207
+
208
+ G = nx.Graph()
209
+ G.add_edges_from(
210
+ [
211
+ (0, 10),
212
+ (0, 11),
213
+ (0, 12),
214
+ (0, 23),
215
+ (10, 4),
216
+ (10, 9),
217
+ (10, 20),
218
+ (11, 4),
219
+ (11, 8),
220
+ (11, 16),
221
+ (12, 9),
222
+ (12, 22),
223
+ (12, 23),
224
+ (23, 7),
225
+ (1, 17),
226
+ (1, 18),
227
+ (1, 19),
228
+ (1, 24),
229
+ (17, 5),
230
+ (17, 13),
231
+ (17, 22),
232
+ (18, 5),
233
+ (19, 5),
234
+ (19, 6),
235
+ (19, 8),
236
+ (24, 7),
237
+ (24, 16),
238
+ (2, 4),
239
+ (2, 13),
240
+ (2, 14),
241
+ (2, 15),
242
+ (4, 6),
243
+ (13, 5),
244
+ (13, 21),
245
+ (14, 6),
246
+ (14, 15),
247
+ (15, 6),
248
+ (15, 21),
249
+ (3, 16),
250
+ (3, 20),
251
+ (3, 21),
252
+ (3, 22),
253
+ (16, 8),
254
+ (20, 8),
255
+ (21, 9),
256
+ (22, 7),
257
+ ]
258
+ )
259
+ F = {node: node // s for node in range(num_colors * s)}
260
+ F[s - 1] = num_colors - 1
261
+
262
+ params = make_params_from_graph(G=G, F=F)
263
+
264
+ nx.algorithms.coloring.equitable_coloring.procedure_P(
265
+ V_minus=0, V_plus=num_colors - 1, **params
266
+ )
267
+ check_state(**params)
268
+
269
+ def test_hardest_prob(self):
270
+ # Tests for two levels of recursion.
271
+ num_colors, s = 10, 4
272
+
273
+ G = nx.Graph()
274
+ G.add_edges_from(
275
+ [
276
+ (0, 19),
277
+ (0, 24),
278
+ (0, 29),
279
+ (0, 30),
280
+ (0, 35),
281
+ (19, 3),
282
+ (19, 7),
283
+ (19, 9),
284
+ (19, 15),
285
+ (19, 21),
286
+ (19, 24),
287
+ (19, 30),
288
+ (19, 38),
289
+ (24, 5),
290
+ (24, 11),
291
+ (24, 13),
292
+ (24, 20),
293
+ (24, 30),
294
+ (24, 37),
295
+ (24, 38),
296
+ (29, 6),
297
+ (29, 10),
298
+ (29, 13),
299
+ (29, 15),
300
+ (29, 16),
301
+ (29, 17),
302
+ (29, 20),
303
+ (29, 26),
304
+ (30, 6),
305
+ (30, 10),
306
+ (30, 15),
307
+ (30, 22),
308
+ (30, 23),
309
+ (30, 39),
310
+ (35, 6),
311
+ (35, 9),
312
+ (35, 14),
313
+ (35, 18),
314
+ (35, 22),
315
+ (35, 23),
316
+ (35, 25),
317
+ (35, 27),
318
+ (1, 20),
319
+ (1, 26),
320
+ (1, 31),
321
+ (1, 34),
322
+ (1, 38),
323
+ (20, 4),
324
+ (20, 8),
325
+ (20, 14),
326
+ (20, 18),
327
+ (20, 28),
328
+ (20, 33),
329
+ (26, 7),
330
+ (26, 10),
331
+ (26, 14),
332
+ (26, 18),
333
+ (26, 21),
334
+ (26, 32),
335
+ (26, 39),
336
+ (31, 5),
337
+ (31, 8),
338
+ (31, 13),
339
+ (31, 16),
340
+ (31, 17),
341
+ (31, 21),
342
+ (31, 25),
343
+ (31, 27),
344
+ (34, 7),
345
+ (34, 8),
346
+ (34, 13),
347
+ (34, 18),
348
+ (34, 22),
349
+ (34, 23),
350
+ (34, 25),
351
+ (34, 27),
352
+ (38, 4),
353
+ (38, 9),
354
+ (38, 12),
355
+ (38, 14),
356
+ (38, 21),
357
+ (38, 27),
358
+ (2, 3),
359
+ (2, 18),
360
+ (2, 21),
361
+ (2, 28),
362
+ (2, 32),
363
+ (2, 33),
364
+ (2, 36),
365
+ (2, 37),
366
+ (2, 39),
367
+ (3, 5),
368
+ (3, 9),
369
+ (3, 13),
370
+ (3, 22),
371
+ (3, 23),
372
+ (3, 25),
373
+ (3, 27),
374
+ (18, 6),
375
+ (18, 11),
376
+ (18, 15),
377
+ (18, 39),
378
+ (21, 4),
379
+ (21, 10),
380
+ (21, 14),
381
+ (21, 36),
382
+ (28, 6),
383
+ (28, 10),
384
+ (28, 14),
385
+ (28, 16),
386
+ (28, 17),
387
+ (28, 25),
388
+ (28, 27),
389
+ (32, 5),
390
+ (32, 10),
391
+ (32, 12),
392
+ (32, 16),
393
+ (32, 17),
394
+ (32, 22),
395
+ (32, 23),
396
+ (33, 7),
397
+ (33, 10),
398
+ (33, 12),
399
+ (33, 16),
400
+ (33, 17),
401
+ (33, 25),
402
+ (33, 27),
403
+ (36, 5),
404
+ (36, 8),
405
+ (36, 15),
406
+ (36, 16),
407
+ (36, 17),
408
+ (36, 25),
409
+ (36, 27),
410
+ (37, 5),
411
+ (37, 11),
412
+ (37, 15),
413
+ (37, 16),
414
+ (37, 17),
415
+ (37, 22),
416
+ (37, 23),
417
+ (39, 7),
418
+ (39, 8),
419
+ (39, 15),
420
+ (39, 22),
421
+ (39, 23),
422
+ ]
423
+ )
424
+ F = {node: node // s for node in range(num_colors * s)}
425
+ F[s - 1] = num_colors - 1 # V- = 0, V+ = num_colors - 1
426
+
427
+ params = make_params_from_graph(G=G, F=F)
428
+
429
+ nx.algorithms.coloring.equitable_coloring.procedure_P(
430
+ V_minus=0, V_plus=num_colors - 1, **params
431
+ )
432
+ check_state(**params)
433
+
434
+ def test_strategy_saturation_largest_first(self):
435
+ def color_remaining_nodes(
436
+ G,
437
+ colored_nodes,
438
+ full_color_assignment=None,
439
+ nodes_to_add_between_calls=1,
440
+ ):
441
+ color_assignments = []
442
+ aux_colored_nodes = colored_nodes.copy()
443
+
444
+ node_iterator = nx.algorithms.coloring.greedy_coloring.strategy_saturation_largest_first(
445
+ G, aux_colored_nodes
446
+ )
447
+
448
+ for u in node_iterator:
449
+ # Set to keep track of colors of neighbors
450
+ nbr_colors = {
451
+ aux_colored_nodes[v] for v in G[u] if v in aux_colored_nodes
452
+ }
453
+ # Find the first unused color.
454
+ for color in itertools.count():
455
+ if color not in nbr_colors:
456
+ break
457
+ aux_colored_nodes[u] = color
458
+ color_assignments.append((u, color))
459
+
460
+ # Color nodes between iterations
461
+ for i in range(nodes_to_add_between_calls - 1):
462
+ if not len(color_assignments) + len(colored_nodes) >= len(
463
+ full_color_assignment
464
+ ):
465
+ full_color_assignment_node, color = full_color_assignment[
466
+ len(color_assignments) + len(colored_nodes)
467
+ ]
468
+
469
+ # Assign the new color to the current node.
470
+ aux_colored_nodes[full_color_assignment_node] = color
471
+ color_assignments.append((full_color_assignment_node, color))
472
+
473
+ return color_assignments, aux_colored_nodes
474
+
475
+ for G, _, _ in SPECIAL_TEST_CASES["saturation_largest_first"]:
476
+ G = G()
477
+
478
+ # Check that function still works when nodes are colored between iterations
479
+ for nodes_to_add_between_calls in range(1, 5):
480
+ # Get a full color assignment, (including the order in which nodes were colored)
481
+ colored_nodes = {}
482
+ full_color_assignment, full_colored_nodes = color_remaining_nodes(
483
+ G, colored_nodes
484
+ )
485
+
486
+ # For each node in the color assignment, add it to colored_nodes and re-run the function
487
+ for ind, (node, color) in enumerate(full_color_assignment):
488
+ colored_nodes[node] = color
489
+
490
+ (
491
+ partial_color_assignment,
492
+ partial_colored_nodes,
493
+ ) = color_remaining_nodes(
494
+ G,
495
+ colored_nodes,
496
+ full_color_assignment=full_color_assignment,
497
+ nodes_to_add_between_calls=nodes_to_add_between_calls,
498
+ )
499
+
500
+ # Check that the color assignment and order of remaining nodes are the same
501
+ assert full_color_assignment[ind + 1 :] == partial_color_assignment
502
+ assert full_colored_nodes == partial_colored_nodes
503
+
504
+
505
+ # ############################ Utility functions ############################
506
+ def verify_coloring(graph, coloring):
507
+ for node in graph.nodes():
508
+ if node not in coloring:
509
+ return False
510
+
511
+ color = coloring[node]
512
+ for neighbor in graph.neighbors(node):
513
+ if coloring[neighbor] == color:
514
+ return False
515
+
516
+ return True
517
+
518
+
519
+ def verify_length(coloring, expected):
520
+ coloring = dict_to_sets(coloring)
521
+ return len(coloring) == expected
522
+
523
+
524
+ def dict_to_sets(colors):
525
+ if len(colors) == 0:
526
+ return []
527
+
528
+ k = max(colors.values()) + 1
529
+ sets = [set() for _ in range(k)]
530
+
531
+ for node, color in colors.items():
532
+ sets[color].add(node)
533
+
534
+ return sets
535
+
536
+
537
+ # ############################ Graph Generation ############################
538
+
539
+
540
+ def empty_graph():
541
+ return nx.Graph()
542
+
543
+
544
+ def one_node_graph():
545
+ graph = nx.Graph()
546
+ graph.add_nodes_from([1])
547
+ return graph
548
+
549
+
550
+ def two_node_graph():
551
+ graph = nx.Graph()
552
+ graph.add_nodes_from([1, 2])
553
+ graph.add_edges_from([(1, 2)])
554
+ return graph
555
+
556
+
557
+ def three_node_clique():
558
+ graph = nx.Graph()
559
+ graph.add_nodes_from([1, 2, 3])
560
+ graph.add_edges_from([(1, 2), (1, 3), (2, 3)])
561
+ return graph
562
+
563
+
564
+ def disconnected():
565
+ graph = nx.Graph()
566
+ graph.add_edges_from([(1, 2), (2, 3), (4, 5), (5, 6)])
567
+ return graph
568
+
569
+
570
+ def rs_shc():
571
+ graph = nx.Graph()
572
+ graph.add_nodes_from([1, 2, 3, 4])
573
+ graph.add_edges_from([(1, 2), (2, 3), (3, 4)])
574
+ return graph
575
+
576
+
577
+ def slf_shc():
578
+ graph = nx.Graph()
579
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7])
580
+ graph.add_edges_from(
581
+ [(1, 2), (1, 5), (1, 6), (2, 3), (2, 7), (3, 4), (3, 7), (4, 5), (4, 6), (5, 6)]
582
+ )
583
+ return graph
584
+
585
+
586
+ def slf_hc():
587
+ graph = nx.Graph()
588
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8])
589
+ graph.add_edges_from(
590
+ [
591
+ (1, 2),
592
+ (1, 3),
593
+ (1, 4),
594
+ (1, 5),
595
+ (2, 3),
596
+ (2, 4),
597
+ (2, 6),
598
+ (5, 7),
599
+ (5, 8),
600
+ (6, 7),
601
+ (6, 8),
602
+ (7, 8),
603
+ ]
604
+ )
605
+ return graph
606
+
607
+
608
+ def lf_shc():
609
+ graph = nx.Graph()
610
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6])
611
+ graph.add_edges_from([(6, 1), (1, 4), (4, 3), (3, 2), (2, 5)])
612
+ return graph
613
+
614
+
615
+ def lf_hc():
616
+ graph = nx.Graph()
617
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7])
618
+ graph.add_edges_from(
619
+ [
620
+ (1, 7),
621
+ (1, 6),
622
+ (1, 3),
623
+ (1, 4),
624
+ (7, 2),
625
+ (2, 6),
626
+ (2, 3),
627
+ (2, 5),
628
+ (5, 3),
629
+ (5, 4),
630
+ (4, 3),
631
+ ]
632
+ )
633
+ return graph
634
+
635
+
636
+ def sl_shc():
637
+ graph = nx.Graph()
638
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6])
639
+ graph.add_edges_from(
640
+ [(1, 2), (1, 3), (2, 3), (1, 4), (2, 5), (3, 6), (4, 5), (4, 6), (5, 6)]
641
+ )
642
+ return graph
643
+
644
+
645
+ def sl_hc():
646
+ graph = nx.Graph()
647
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8])
648
+ graph.add_edges_from(
649
+ [
650
+ (1, 2),
651
+ (1, 3),
652
+ (1, 5),
653
+ (1, 7),
654
+ (2, 3),
655
+ (2, 4),
656
+ (2, 8),
657
+ (8, 4),
658
+ (8, 6),
659
+ (8, 7),
660
+ (7, 5),
661
+ (7, 6),
662
+ (3, 4),
663
+ (4, 6),
664
+ (6, 5),
665
+ (5, 3),
666
+ ]
667
+ )
668
+ return graph
669
+
670
+
671
+ def gis_shc():
672
+ graph = nx.Graph()
673
+ graph.add_nodes_from([1, 2, 3, 4])
674
+ graph.add_edges_from([(1, 2), (2, 3), (3, 4)])
675
+ return graph
676
+
677
+
678
+ def gis_hc():
679
+ graph = nx.Graph()
680
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6])
681
+ graph.add_edges_from([(1, 5), (2, 5), (3, 6), (4, 6), (5, 6)])
682
+ return graph
683
+
684
+
685
+ def cs_shc():
686
+ graph = nx.Graph()
687
+ graph.add_nodes_from([1, 2, 3, 4, 5])
688
+ graph.add_edges_from([(1, 2), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5)])
689
+ return graph
690
+
691
+
692
+ def rsi_shc():
693
+ graph = nx.Graph()
694
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6])
695
+ graph.add_edges_from(
696
+ [(1, 2), (1, 5), (1, 6), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6)]
697
+ )
698
+ return graph
699
+
700
+
701
+ def lfi_shc():
702
+ graph = nx.Graph()
703
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7])
704
+ graph.add_edges_from(
705
+ [(1, 2), (1, 5), (1, 6), (2, 3), (2, 7), (3, 4), (3, 7), (4, 5), (4, 6), (5, 6)]
706
+ )
707
+ return graph
708
+
709
+
710
+ def lfi_hc():
711
+ graph = nx.Graph()
712
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8, 9])
713
+ graph.add_edges_from(
714
+ [
715
+ (1, 2),
716
+ (1, 5),
717
+ (1, 6),
718
+ (1, 7),
719
+ (2, 3),
720
+ (2, 8),
721
+ (2, 9),
722
+ (3, 4),
723
+ (3, 8),
724
+ (3, 9),
725
+ (4, 5),
726
+ (4, 6),
727
+ (4, 7),
728
+ (5, 6),
729
+ ]
730
+ )
731
+ return graph
732
+
733
+
734
+ def sli_shc():
735
+ graph = nx.Graph()
736
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7])
737
+ graph.add_edges_from(
738
+ [
739
+ (1, 2),
740
+ (1, 3),
741
+ (1, 5),
742
+ (1, 7),
743
+ (2, 3),
744
+ (2, 6),
745
+ (3, 4),
746
+ (4, 5),
747
+ (4, 6),
748
+ (5, 7),
749
+ (6, 7),
750
+ ]
751
+ )
752
+ return graph
753
+
754
+
755
+ def sli_hc():
756
+ graph = nx.Graph()
757
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8, 9])
758
+ graph.add_edges_from(
759
+ [
760
+ (1, 2),
761
+ (1, 3),
762
+ (1, 4),
763
+ (1, 5),
764
+ (2, 3),
765
+ (2, 7),
766
+ (2, 8),
767
+ (2, 9),
768
+ (3, 6),
769
+ (3, 7),
770
+ (3, 9),
771
+ (4, 5),
772
+ (4, 6),
773
+ (4, 8),
774
+ (4, 9),
775
+ (5, 6),
776
+ (5, 7),
777
+ (5, 8),
778
+ (6, 7),
779
+ (6, 9),
780
+ (7, 8),
781
+ (8, 9),
782
+ ]
783
+ )
784
+ return graph
785
+
786
+
787
+ # --------------------------------------------------------------------------
788
+ # Basic tests for all strategies
789
+ # For each basic graph function, specify the number of expected colors.
790
+ BASIC_TEST_CASES = {
791
+ empty_graph: 0,
792
+ one_node_graph: 1,
793
+ two_node_graph: 2,
794
+ disconnected: 2,
795
+ three_node_clique: 3,
796
+ }
797
+
798
+
799
+ # --------------------------------------------------------------------------
800
+ # Special test cases. Each strategy has a list of tuples of the form
801
+ # (graph function, interchange, valid # of colors)
802
+ SPECIAL_TEST_CASES = {
803
+ "random_sequential": [
804
+ (rs_shc, False, (2, 3)),
805
+ (rs_shc, True, 2),
806
+ (rsi_shc, True, (3, 4)),
807
+ ],
808
+ "saturation_largest_first": [(slf_shc, False, (3, 4)), (slf_hc, False, 4)],
809
+ "largest_first": [
810
+ (lf_shc, False, (2, 3)),
811
+ (lf_hc, False, 4),
812
+ (lf_shc, True, 2),
813
+ (lf_hc, True, 3),
814
+ (lfi_shc, True, (3, 4)),
815
+ (lfi_hc, True, 4),
816
+ ],
817
+ "smallest_last": [
818
+ (sl_shc, False, (3, 4)),
819
+ (sl_hc, False, 5),
820
+ (sl_shc, True, 3),
821
+ (sl_hc, True, 4),
822
+ (sli_shc, True, (3, 4)),
823
+ (sli_hc, True, 5),
824
+ ],
825
+ "independent_set": [(gis_shc, False, (2, 3)), (gis_hc, False, 3)],
826
+ "connected_sequential": [(cs_shc, False, (3, 4)), (cs_shc, True, 3)],
827
+ "connected_sequential_dfs": [(cs_shc, False, (3, 4))],
828
+ }
829
+
830
+
831
+ # --------------------------------------------------------------------------
832
+ # Helper functions to test
833
+ # (graph function, interchange, valid # of colors)
834
+
835
+
836
+ def check_state(L, N, H, F, C):
837
+ s = len(C[0])
838
+ num_colors = len(C.keys())
839
+
840
+ assert all(u in L[v] for u in L for v in L[u])
841
+ assert all(F[u] != F[v] for u in L for v in L[u])
842
+ assert all(len(L[u]) < num_colors for u in L)
843
+ assert all(len(C[x]) == s for x in C)
844
+ assert all(H[(c1, c2)] >= 0 for c1 in C for c2 in C)
845
+ assert all(N[(u, F[u])] == 0 for u in F)
846
+
847
+
848
+ def max_degree(G):
849
+ """Get the maximum degree of any node in G."""
850
+ return max(G.degree(node) for node in G.nodes) if len(G.nodes) > 0 else 0
851
+
852
+
853
+ def make_params_from_graph(G, F):
854
+ """Returns {N, L, H, C} from the given graph."""
855
+ num_nodes = len(G)
856
+ L = {u: [] for u in range(num_nodes)}
857
+ for u, v in G.edges:
858
+ L[u].append(v)
859
+ L[v].append(u)
860
+
861
+ C = nx.algorithms.coloring.equitable_coloring.make_C_from_F(F)
862
+ N = nx.algorithms.coloring.equitable_coloring.make_N_from_L_C(L, C)
863
+ H = nx.algorithms.coloring.equitable_coloring.make_H_from_C_N(C, N)
864
+
865
+ return {"N": N, "F": F, "C": C, "H": H, "L": L}
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/community/tests/__pycache__/test_utils.cpython-310.pyc ADDED
Binary file (1.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_kernighan_lin.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.community.kernighan_lin`
2
+ module.
3
+ """
4
+ from itertools import permutations
5
+
6
+ import pytest
7
+
8
+ import networkx as nx
9
+ from networkx.algorithms.community import kernighan_lin_bisection
10
+
11
+
12
+ def assert_partition_equal(x, y):
13
+ assert set(map(frozenset, x)) == set(map(frozenset, y))
14
+
15
+
16
+ def test_partition():
17
+ G = nx.barbell_graph(3, 0)
18
+ C = kernighan_lin_bisection(G)
19
+ assert_partition_equal(C, [{0, 1, 2}, {3, 4, 5}])
20
+
21
+
22
+ def test_partition_argument():
23
+ G = nx.barbell_graph(3, 0)
24
+ partition = [{0, 1, 2}, {3, 4, 5}]
25
+ C = kernighan_lin_bisection(G, partition)
26
+ assert_partition_equal(C, partition)
27
+
28
+
29
+ def test_partition_argument_non_integer_nodes():
30
+ G = nx.Graph([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")])
31
+ partition = ({"A", "B"}, {"C", "D"})
32
+ C = kernighan_lin_bisection(G, partition)
33
+ assert_partition_equal(C, partition)
34
+
35
+
36
+ def test_seed_argument():
37
+ G = nx.barbell_graph(3, 0)
38
+ C = kernighan_lin_bisection(G, seed=1)
39
+ assert_partition_equal(C, [{0, 1, 2}, {3, 4, 5}])
40
+
41
+
42
+ def test_non_disjoint_partition():
43
+ with pytest.raises(nx.NetworkXError):
44
+ G = nx.barbell_graph(3, 0)
45
+ partition = ({0, 1, 2}, {2, 3, 4, 5})
46
+ kernighan_lin_bisection(G, partition)
47
+
48
+
49
+ def test_too_many_blocks():
50
+ with pytest.raises(nx.NetworkXError):
51
+ G = nx.barbell_graph(3, 0)
52
+ partition = ({0, 1}, {2}, {3, 4, 5})
53
+ kernighan_lin_bisection(G, partition)
54
+
55
+
56
+ def test_multigraph():
57
+ G = nx.cycle_graph(4)
58
+ M = nx.MultiGraph(G.edges())
59
+ M.add_edges_from(G.edges())
60
+ M.remove_edge(1, 2)
61
+ for labels in permutations(range(4)):
62
+ mapping = dict(zip(M, labels))
63
+ A, B = kernighan_lin_bisection(nx.relabel_nodes(M, mapping), seed=0)
64
+ assert_partition_equal(
65
+ [A, B], [{mapping[0], mapping[1]}, {mapping[2], mapping[3]}]
66
+ )
67
+
68
+
69
+ def test_max_iter_argument():
70
+ G = nx.Graph(
71
+ [
72
+ ("A", "B", {"weight": 1}),
73
+ ("A", "C", {"weight": 2}),
74
+ ("A", "D", {"weight": 3}),
75
+ ("A", "E", {"weight": 2}),
76
+ ("A", "F", {"weight": 4}),
77
+ ("B", "C", {"weight": 1}),
78
+ ("B", "D", {"weight": 4}),
79
+ ("B", "E", {"weight": 2}),
80
+ ("B", "F", {"weight": 1}),
81
+ ("C", "D", {"weight": 3}),
82
+ ("C", "E", {"weight": 2}),
83
+ ("C", "F", {"weight": 1}),
84
+ ("D", "E", {"weight": 4}),
85
+ ("D", "F", {"weight": 3}),
86
+ ("E", "F", {"weight": 2}),
87
+ ]
88
+ )
89
+ partition = ({"A", "B", "C"}, {"D", "E", "F"})
90
+ C = kernighan_lin_bisection(G, partition, max_iter=1)
91
+ assert_partition_equal(C, ({"A", "F", "C"}, {"D", "E", "B"}))
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_quality.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.community.quality`
2
+ module.
3
+
4
+ """
5
+ import pytest
6
+
7
+ import networkx as nx
8
+ from networkx import barbell_graph
9
+ from networkx.algorithms.community import modularity, partition_quality
10
+ from networkx.algorithms.community.quality import inter_community_edges
11
+
12
+
13
+ class TestPerformance:
14
+ """Unit tests for the :func:`performance` function."""
15
+
16
+ def test_bad_partition(self):
17
+ """Tests that a poor partition has a low performance measure."""
18
+ G = barbell_graph(3, 0)
19
+ partition = [{0, 1, 4}, {2, 3, 5}]
20
+ assert 8 / 15 == pytest.approx(partition_quality(G, partition)[1], abs=1e-7)
21
+
22
+ def test_good_partition(self):
23
+ """Tests that a good partition has a high performance measure."""
24
+ G = barbell_graph(3, 0)
25
+ partition = [{0, 1, 2}, {3, 4, 5}]
26
+ assert 14 / 15 == pytest.approx(partition_quality(G, partition)[1], abs=1e-7)
27
+
28
+
29
+ class TestCoverage:
30
+ """Unit tests for the :func:`coverage` function."""
31
+
32
+ def test_bad_partition(self):
33
+ """Tests that a poor partition has a low coverage measure."""
34
+ G = barbell_graph(3, 0)
35
+ partition = [{0, 1, 4}, {2, 3, 5}]
36
+ assert 3 / 7 == pytest.approx(partition_quality(G, partition)[0], abs=1e-7)
37
+
38
+ def test_good_partition(self):
39
+ """Tests that a good partition has a high coverage measure."""
40
+ G = barbell_graph(3, 0)
41
+ partition = [{0, 1, 2}, {3, 4, 5}]
42
+ assert 6 / 7 == pytest.approx(partition_quality(G, partition)[0], abs=1e-7)
43
+
44
+
45
+ def test_modularity():
46
+ G = nx.barbell_graph(3, 0)
47
+ C = [{0, 1, 4}, {2, 3, 5}]
48
+ assert (-16 / (14**2)) == pytest.approx(modularity(G, C), abs=1e-7)
49
+ C = [{0, 1, 2}, {3, 4, 5}]
50
+ assert (35 * 2) / (14**2) == pytest.approx(modularity(G, C), abs=1e-7)
51
+
52
+ n = 1000
53
+ G = nx.erdos_renyi_graph(n, 0.09, seed=42, directed=True)
54
+ C = [set(range(n // 2)), set(range(n // 2, n))]
55
+ assert 0.00017154251389292754 == pytest.approx(modularity(G, C), abs=1e-7)
56
+
57
+ G = nx.margulis_gabber_galil_graph(10)
58
+ mid_value = G.number_of_nodes() // 2
59
+ nodes = list(G.nodes)
60
+ C = [set(nodes[:mid_value]), set(nodes[mid_value:])]
61
+ assert 0.13 == pytest.approx(modularity(G, C), abs=1e-7)
62
+
63
+ G = nx.DiGraph()
64
+ G.add_edges_from([(2, 1), (2, 3), (3, 4)])
65
+ C = [{1, 2}, {3, 4}]
66
+ assert 2 / 9 == pytest.approx(modularity(G, C), abs=1e-7)
67
+
68
+
69
+ def test_modularity_resolution():
70
+ G = nx.barbell_graph(3, 0)
71
+ C = [{0, 1, 4}, {2, 3, 5}]
72
+ assert modularity(G, C) == pytest.approx(3 / 7 - 100 / 14**2)
73
+ gamma = 2
74
+ result = modularity(G, C, resolution=gamma)
75
+ assert result == pytest.approx(3 / 7 - gamma * 100 / 14**2)
76
+ gamma = 0.2
77
+ result = modularity(G, C, resolution=gamma)
78
+ assert result == pytest.approx(3 / 7 - gamma * 100 / 14**2)
79
+
80
+ C = [{0, 1, 2}, {3, 4, 5}]
81
+ assert modularity(G, C) == pytest.approx(6 / 7 - 98 / 14**2)
82
+ gamma = 2
83
+ result = modularity(G, C, resolution=gamma)
84
+ assert result == pytest.approx(6 / 7 - gamma * 98 / 14**2)
85
+ gamma = 0.2
86
+ result = modularity(G, C, resolution=gamma)
87
+ assert result == pytest.approx(6 / 7 - gamma * 98 / 14**2)
88
+
89
+ G = nx.barbell_graph(5, 3)
90
+ C = [frozenset(range(5)), frozenset(range(8, 13)), frozenset(range(5, 8))]
91
+ gamma = 1
92
+ result = modularity(G, C, resolution=gamma)
93
+ # This C is maximal for gamma=1: modularity = 0.518229
94
+ assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2)))
95
+ gamma = 2
96
+ result = modularity(G, C, resolution=gamma)
97
+ assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2)))
98
+ gamma = 0.2
99
+ result = modularity(G, C, resolution=gamma)
100
+ assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2)))
101
+
102
+ C = [{0, 1, 2, 3}, {9, 10, 11, 12}, {5, 6, 7}, {4}, {8}]
103
+ gamma = 1
104
+ result = modularity(G, C, resolution=gamma)
105
+ assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2)))
106
+ gamma = 2.5
107
+ result = modularity(G, C, resolution=gamma)
108
+ # This C is maximal for gamma=2.5: modularity = -0.06553819
109
+ assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2)))
110
+ gamma = 0.2
111
+ result = modularity(G, C, resolution=gamma)
112
+ assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2)))
113
+
114
+ C = [frozenset(range(8)), frozenset(range(8, 13))]
115
+ gamma = 1
116
+ result = modularity(G, C, resolution=gamma)
117
+ assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2)))
118
+ gamma = 2
119
+ result = modularity(G, C, resolution=gamma)
120
+ assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2)))
121
+ gamma = 0.3
122
+ result = modularity(G, C, resolution=gamma)
123
+ # This C is maximal for gamma=0.3: modularity = 0.805990
124
+ assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2)))
125
+
126
+
127
+ def test_inter_community_edges_with_digraphs():
128
+ G = nx.complete_graph(2, create_using=nx.DiGraph())
129
+ partition = [{0}, {1}]
130
+ assert inter_community_edges(G, partition) == 2
131
+
132
+ G = nx.complete_graph(10, create_using=nx.DiGraph())
133
+ partition = [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}]
134
+ assert inter_community_edges(G, partition) == 70
135
+
136
+ G = nx.cycle_graph(4, create_using=nx.DiGraph())
137
+ partition = [{0, 1}, {2, 3}]
138
+ assert inter_community_edges(G, partition) == 2
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_utils.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.community.utils` module.
2
+
3
+ """
4
+
5
+ import networkx as nx
6
+
7
+
8
+ def test_is_partition():
9
+ G = nx.empty_graph(3)
10
+ assert nx.community.is_partition(G, [{0, 1}, {2}])
11
+ assert nx.community.is_partition(G, ({0, 1}, {2}))
12
+ assert nx.community.is_partition(G, ([0, 1], [2]))
13
+ assert nx.community.is_partition(G, [[0, 1], [2]])
14
+
15
+
16
+ def test_not_covering():
17
+ G = nx.empty_graph(3)
18
+ assert not nx.community.is_partition(G, [{0}, {1}])
19
+
20
+
21
+ def test_not_disjoint():
22
+ G = nx.empty_graph(3)
23
+ assert not nx.community.is_partition(G, [{0, 1}, {1, 2}])
24
+
25
+
26
+ def test_not_node():
27
+ G = nx.empty_graph(3)
28
+ assert not nx.community.is_partition(G, [{0, 1}, {3}])
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (357 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/attracting.cpython-310.pyc ADDED
Binary file (3.12 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-310.pyc ADDED
Binary file (4.83 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-310.pyc ADDED
Binary file (2.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/strongly_connected.cpython-310.pyc ADDED
Binary file (11.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-310.pyc ADDED
Binary file (4.47 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-310.pyc ADDED
Binary file (2.77 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_strongly_connected.cpython-310.pyc ADDED
Binary file (7.21 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_asteroidal.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+
3
+
4
+ def test_is_at_free():
5
+ is_at_free = nx.asteroidal.is_at_free
6
+
7
+ cycle = nx.cycle_graph(6)
8
+ assert not is_at_free(cycle)
9
+
10
+ path = nx.path_graph(6)
11
+ assert is_at_free(path)
12
+
13
+ small_graph = nx.complete_graph(2)
14
+ assert is_at_free(small_graph)
15
+
16
+ petersen = nx.petersen_graph()
17
+ assert not is_at_free(petersen)
18
+
19
+ clique = nx.complete_graph(6)
20
+ assert is_at_free(clique)
21
+
22
+ line_clique = nx.line_graph(clique)
23
+ assert not is_at_free(line_clique)
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_boundary.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.boundary` module."""
2
+
3
+ from itertools import combinations
4
+
5
+ import pytest
6
+
7
+ import networkx as nx
8
+ from networkx import convert_node_labels_to_integers as cnlti
9
+ from networkx.utils import edges_equal
10
+
11
+
12
+ class TestNodeBoundary:
13
+ """Unit tests for the :func:`~networkx.node_boundary` function."""
14
+
15
+ def test_null_graph(self):
16
+ """Tests that the null graph has empty node boundaries."""
17
+ null = nx.null_graph()
18
+ assert nx.node_boundary(null, []) == set()
19
+ assert nx.node_boundary(null, [], []) == set()
20
+ assert nx.node_boundary(null, [1, 2, 3]) == set()
21
+ assert nx.node_boundary(null, [1, 2, 3], [4, 5, 6]) == set()
22
+ assert nx.node_boundary(null, [1, 2, 3], [3, 4, 5]) == set()
23
+
24
+ def test_path_graph(self):
25
+ P10 = cnlti(nx.path_graph(10), first_label=1)
26
+ assert nx.node_boundary(P10, []) == set()
27
+ assert nx.node_boundary(P10, [], []) == set()
28
+ assert nx.node_boundary(P10, [1, 2, 3]) == {4}
29
+ assert nx.node_boundary(P10, [4, 5, 6]) == {3, 7}
30
+ assert nx.node_boundary(P10, [3, 4, 5, 6, 7]) == {2, 8}
31
+ assert nx.node_boundary(P10, [8, 9, 10]) == {7}
32
+ assert nx.node_boundary(P10, [4, 5, 6], [9, 10]) == set()
33
+
34
+ def test_complete_graph(self):
35
+ K10 = cnlti(nx.complete_graph(10), first_label=1)
36
+ assert nx.node_boundary(K10, []) == set()
37
+ assert nx.node_boundary(K10, [], []) == set()
38
+ assert nx.node_boundary(K10, [1, 2, 3]) == {4, 5, 6, 7, 8, 9, 10}
39
+ assert nx.node_boundary(K10, [4, 5, 6]) == {1, 2, 3, 7, 8, 9, 10}
40
+ assert nx.node_boundary(K10, [3, 4, 5, 6, 7]) == {1, 2, 8, 9, 10}
41
+ assert nx.node_boundary(K10, [4, 5, 6], []) == set()
42
+ assert nx.node_boundary(K10, K10) == set()
43
+ assert nx.node_boundary(K10, [1, 2, 3], [3, 4, 5]) == {4, 5}
44
+
45
+ def test_petersen(self):
46
+ """Check boundaries in the petersen graph
47
+
48
+ cheeger(G,k)=min(|bdy(S)|/|S| for |S|=k, 0<k<=|V(G)|/2)
49
+
50
+ """
51
+
52
+ def cheeger(G, k):
53
+ return min(len(nx.node_boundary(G, nn)) / k for nn in combinations(G, k))
54
+
55
+ P = nx.petersen_graph()
56
+ assert cheeger(P, 1) == pytest.approx(3.00, abs=1e-2)
57
+ assert cheeger(P, 2) == pytest.approx(2.00, abs=1e-2)
58
+ assert cheeger(P, 3) == pytest.approx(1.67, abs=1e-2)
59
+ assert cheeger(P, 4) == pytest.approx(1.00, abs=1e-2)
60
+ assert cheeger(P, 5) == pytest.approx(0.80, abs=1e-2)
61
+
62
+ def test_directed(self):
63
+ """Tests the node boundary of a directed graph."""
64
+ G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)])
65
+ S = {0, 1}
66
+ boundary = nx.node_boundary(G, S)
67
+ expected = {2}
68
+ assert boundary == expected
69
+
70
+ def test_multigraph(self):
71
+ """Tests the node boundary of a multigraph."""
72
+ G = nx.MultiGraph(list(nx.cycle_graph(5).edges()) * 2)
73
+ S = {0, 1}
74
+ boundary = nx.node_boundary(G, S)
75
+ expected = {2, 4}
76
+ assert boundary == expected
77
+
78
+ def test_multidigraph(self):
79
+ """Tests the edge boundary of a multidigraph."""
80
+ edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
81
+ G = nx.MultiDiGraph(edges * 2)
82
+ S = {0, 1}
83
+ boundary = nx.node_boundary(G, S)
84
+ expected = {2}
85
+ assert boundary == expected
86
+
87
+
88
+ class TestEdgeBoundary:
89
+ """Unit tests for the :func:`~networkx.edge_boundary` function."""
90
+
91
+ def test_null_graph(self):
92
+ null = nx.null_graph()
93
+ assert list(nx.edge_boundary(null, [])) == []
94
+ assert list(nx.edge_boundary(null, [], [])) == []
95
+ assert list(nx.edge_boundary(null, [1, 2, 3])) == []
96
+ assert list(nx.edge_boundary(null, [1, 2, 3], [4, 5, 6])) == []
97
+ assert list(nx.edge_boundary(null, [1, 2, 3], [3, 4, 5])) == []
98
+
99
+ def test_path_graph(self):
100
+ P10 = cnlti(nx.path_graph(10), first_label=1)
101
+ assert list(nx.edge_boundary(P10, [])) == []
102
+ assert list(nx.edge_boundary(P10, [], [])) == []
103
+ assert list(nx.edge_boundary(P10, [1, 2, 3])) == [(3, 4)]
104
+ assert sorted(nx.edge_boundary(P10, [4, 5, 6])) == [(4, 3), (6, 7)]
105
+ assert sorted(nx.edge_boundary(P10, [3, 4, 5, 6, 7])) == [(3, 2), (7, 8)]
106
+ assert list(nx.edge_boundary(P10, [8, 9, 10])) == [(8, 7)]
107
+ assert sorted(nx.edge_boundary(P10, [4, 5, 6], [9, 10])) == []
108
+ assert list(nx.edge_boundary(P10, [1, 2, 3], [3, 4, 5])) == [(2, 3), (3, 4)]
109
+
110
+ def test_complete_graph(self):
111
+ K10 = cnlti(nx.complete_graph(10), first_label=1)
112
+
113
+ def ilen(iterable):
114
+ return sum(1 for i in iterable)
115
+
116
+ assert list(nx.edge_boundary(K10, [])) == []
117
+ assert list(nx.edge_boundary(K10, [], [])) == []
118
+ assert ilen(nx.edge_boundary(K10, [1, 2, 3])) == 21
119
+ assert ilen(nx.edge_boundary(K10, [4, 5, 6, 7])) == 24
120
+ assert ilen(nx.edge_boundary(K10, [3, 4, 5, 6, 7])) == 25
121
+ assert ilen(nx.edge_boundary(K10, [8, 9, 10])) == 21
122
+ assert edges_equal(
123
+ nx.edge_boundary(K10, [4, 5, 6], [9, 10]),
124
+ [(4, 9), (4, 10), (5, 9), (5, 10), (6, 9), (6, 10)],
125
+ )
126
+ assert edges_equal(
127
+ nx.edge_boundary(K10, [1, 2, 3], [3, 4, 5]),
128
+ [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)],
129
+ )
130
+
131
+ def test_directed(self):
132
+ """Tests the edge boundary of a directed graph."""
133
+ G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)])
134
+ S = {0, 1}
135
+ boundary = list(nx.edge_boundary(G, S))
136
+ expected = [(1, 2)]
137
+ assert boundary == expected
138
+
139
+ def test_multigraph(self):
140
+ """Tests the edge boundary of a multigraph."""
141
+ G = nx.MultiGraph(list(nx.cycle_graph(5).edges()) * 2)
142
+ S = {0, 1}
143
+ boundary = list(nx.edge_boundary(G, S))
144
+ expected = [(0, 4), (0, 4), (1, 2), (1, 2)]
145
+ assert boundary == expected
146
+
147
+ def test_multidigraph(self):
148
+ """Tests the edge boundary of a multidigraph."""
149
+ edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
150
+ G = nx.MultiDiGraph(edges * 2)
151
+ S = {0, 1}
152
+ boundary = list(nx.edge_boundary(G, S))
153
+ expected = [(1, 2), (1, 2)]
154
+ assert boundary == expected
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_bridges.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for bridge-finding algorithms."""
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+
8
+ class TestBridges:
9
+ """Unit tests for the bridge-finding function."""
10
+
11
+ def test_single_bridge(self):
12
+ edges = [
13
+ # DFS tree edges.
14
+ (1, 2),
15
+ (2, 3),
16
+ (3, 4),
17
+ (3, 5),
18
+ (5, 6),
19
+ (6, 7),
20
+ (7, 8),
21
+ (5, 9),
22
+ (9, 10),
23
+ # Nontree edges.
24
+ (1, 3),
25
+ (1, 4),
26
+ (2, 5),
27
+ (5, 10),
28
+ (6, 8),
29
+ ]
30
+ G = nx.Graph(edges)
31
+ source = 1
32
+ bridges = list(nx.bridges(G, source))
33
+ assert bridges == [(5, 6)]
34
+
35
+ def test_barbell_graph(self):
36
+ # The (3, 0) barbell graph has two triangles joined by a single edge.
37
+ G = nx.barbell_graph(3, 0)
38
+ source = 0
39
+ bridges = list(nx.bridges(G, source))
40
+ assert bridges == [(2, 3)]
41
+
42
+ def test_multiedge_bridge(self):
43
+ edges = [
44
+ (0, 1),
45
+ (0, 2),
46
+ (1, 2),
47
+ (1, 2),
48
+ (2, 3),
49
+ (3, 4),
50
+ (3, 4),
51
+ ]
52
+ G = nx.MultiGraph(edges)
53
+ assert list(nx.bridges(G)) == [(2, 3)]
54
+
55
+
56
+ class TestHasBridges:
57
+ """Unit tests for the has bridges function."""
58
+
59
+ def test_single_bridge(self):
60
+ edges = [
61
+ # DFS tree edges.
62
+ (1, 2),
63
+ (2, 3),
64
+ (3, 4),
65
+ (3, 5),
66
+ (5, 6), # The only bridge edge
67
+ (6, 7),
68
+ (7, 8),
69
+ (5, 9),
70
+ (9, 10),
71
+ # Nontree edges.
72
+ (1, 3),
73
+ (1, 4),
74
+ (2, 5),
75
+ (5, 10),
76
+ (6, 8),
77
+ ]
78
+ G = nx.Graph(edges)
79
+ assert nx.has_bridges(G) # Default root
80
+ assert nx.has_bridges(G, root=1) # arbitrary root in G
81
+
82
+ def test_has_bridges_raises_root_not_in_G(self):
83
+ G = nx.Graph()
84
+ G.add_nodes_from([1, 2, 3])
85
+ with pytest.raises(nx.NodeNotFound):
86
+ nx.has_bridges(G, root=6)
87
+
88
+ def test_multiedge_bridge(self):
89
+ edges = [
90
+ (0, 1),
91
+ (0, 2),
92
+ (1, 2),
93
+ (1, 2),
94
+ (2, 3),
95
+ (3, 4),
96
+ (3, 4),
97
+ ]
98
+ G = nx.MultiGraph(edges)
99
+ assert nx.has_bridges(G)
100
+ # Make every edge a multiedge
101
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
102
+ assert not nx.has_bridges(G)
103
+
104
+ def test_bridges_multiple_components(self):
105
+ G = nx.Graph()
106
+ nx.add_path(G, [0, 1, 2]) # One connected component
107
+ nx.add_path(G, [4, 5, 6]) # Another connected component
108
+ assert list(nx.bridges(G, root=4)) == [(4, 5), (5, 6)]
109
+
110
+
111
+ class TestLocalBridges:
112
+ """Unit tests for the local_bridge function."""
113
+
114
+ @classmethod
115
+ def setup_class(cls):
116
+ cls.BB = nx.barbell_graph(4, 0)
117
+ cls.square = nx.cycle_graph(4)
118
+ cls.tri = nx.cycle_graph(3)
119
+
120
+ def test_nospan(self):
121
+ expected = {(3, 4), (4, 3)}
122
+ assert next(nx.local_bridges(self.BB, with_span=False)) in expected
123
+ assert set(nx.local_bridges(self.square, with_span=False)) == self.square.edges
124
+ assert list(nx.local_bridges(self.tri, with_span=False)) == []
125
+
126
+ def test_no_weight(self):
127
+ inf = float("inf")
128
+ expected = {(3, 4, inf), (4, 3, inf)}
129
+ assert next(nx.local_bridges(self.BB)) in expected
130
+ expected = {(u, v, 3) for u, v in self.square.edges}
131
+ assert set(nx.local_bridges(self.square)) == expected
132
+ assert list(nx.local_bridges(self.tri)) == []
133
+
134
+ def test_weight(self):
135
+ inf = float("inf")
136
+ G = self.square.copy()
137
+
138
+ G.edges[1, 2]["weight"] = 2
139
+ expected = {(u, v, 5 - wt) for u, v, wt in G.edges(data="weight", default=1)}
140
+ assert set(nx.local_bridges(G, weight="weight")) == expected
141
+
142
+ expected = {(u, v, 6) for u, v in G.edges}
143
+ lb = nx.local_bridges(G, weight=lambda u, v, d: 2)
144
+ assert set(lb) == expected
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_broadcasting.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the broadcasting module."""
2
+ import math
3
+
4
+ import networkx as nx
5
+
6
+
7
+ def test_example_tree_broadcast():
8
+ """
9
+ Test the BROADCAST algorithm on the example in the paper titled: "Information Dissemination in Trees"
10
+ """
11
+ edge_list = [
12
+ (0, 1),
13
+ (1, 2),
14
+ (2, 7),
15
+ (3, 4),
16
+ (5, 4),
17
+ (4, 7),
18
+ (6, 7),
19
+ (7, 9),
20
+ (8, 9),
21
+ (9, 13),
22
+ (13, 14),
23
+ (14, 15),
24
+ (14, 16),
25
+ (14, 17),
26
+ (13, 11),
27
+ (11, 10),
28
+ (11, 12),
29
+ (13, 18),
30
+ (18, 19),
31
+ (18, 20),
32
+ ]
33
+ G = nx.Graph(edge_list)
34
+ b_T, b_C = nx.tree_broadcast_center(G)
35
+ assert b_T == 6
36
+ assert b_C == {13, 9}
37
+ # test broadcast time from specific vertex
38
+ assert nx.tree_broadcast_time(G, 17) == 8
39
+ assert nx.tree_broadcast_time(G, 3) == 9
40
+ # test broadcast time of entire tree
41
+ assert nx.tree_broadcast_time(G) == 10
42
+
43
+
44
+ def test_path_broadcast():
45
+ for i in range(2, 12):
46
+ G = nx.path_graph(i)
47
+ b_T, b_C = nx.tree_broadcast_center(G)
48
+ assert b_T == math.ceil(i / 2)
49
+ assert b_C == {
50
+ math.ceil(i / 2),
51
+ math.floor(i / 2),
52
+ math.ceil(i / 2 - 1),
53
+ math.floor(i / 2 - 1),
54
+ }
55
+ assert nx.tree_broadcast_time(G) == i - 1
56
+
57
+
58
+ def test_empty_graph_broadcast():
59
+ H = nx.empty_graph(1)
60
+ b_T, b_C = nx.tree_broadcast_center(H)
61
+ assert b_T == 0
62
+ assert b_C == {0}
63
+ assert nx.tree_broadcast_time(H) == 0
64
+
65
+
66
+ def test_star_broadcast():
67
+ for i in range(4, 12):
68
+ G = nx.star_graph(i)
69
+ b_T, b_C = nx.tree_broadcast_center(G)
70
+ assert b_T == i
71
+ assert b_C == set(G.nodes())
72
+ assert nx.tree_broadcast_time(G) == b_T
73
+
74
+
75
+ def test_binomial_tree_broadcast():
76
+ for i in range(2, 8):
77
+ G = nx.binomial_tree(i)
78
+ b_T, b_C = nx.tree_broadcast_center(G)
79
+ assert b_T == i
80
+ assert b_C == {0, 2 ** (i - 1)}
81
+ assert nx.tree_broadcast_time(G) == 2 * i - 1
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_chordal.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ class TestMCS:
7
+ @classmethod
8
+ def setup_class(cls):
9
+ # simple graph
10
+ connected_chordal_G = nx.Graph()
11
+ connected_chordal_G.add_edges_from(
12
+ [
13
+ (1, 2),
14
+ (1, 3),
15
+ (2, 3),
16
+ (2, 4),
17
+ (3, 4),
18
+ (3, 5),
19
+ (3, 6),
20
+ (4, 5),
21
+ (4, 6),
22
+ (5, 6),
23
+ ]
24
+ )
25
+ cls.connected_chordal_G = connected_chordal_G
26
+
27
+ chordal_G = nx.Graph()
28
+ chordal_G.add_edges_from(
29
+ [
30
+ (1, 2),
31
+ (1, 3),
32
+ (2, 3),
33
+ (2, 4),
34
+ (3, 4),
35
+ (3, 5),
36
+ (3, 6),
37
+ (4, 5),
38
+ (4, 6),
39
+ (5, 6),
40
+ (7, 8),
41
+ ]
42
+ )
43
+ chordal_G.add_node(9)
44
+ cls.chordal_G = chordal_G
45
+
46
+ non_chordal_G = nx.Graph()
47
+ non_chordal_G.add_edges_from([(1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 5)])
48
+ cls.non_chordal_G = non_chordal_G
49
+
50
+ self_loop_G = nx.Graph()
51
+ self_loop_G.add_edges_from([(1, 1)])
52
+ cls.self_loop_G = self_loop_G
53
+
54
+ @pytest.mark.parametrize("G", (nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()))
55
+ def test_is_chordal_not_implemented(self, G):
56
+ with pytest.raises(nx.NetworkXNotImplemented):
57
+ nx.is_chordal(G)
58
+
59
+ def test_is_chordal(self):
60
+ assert not nx.is_chordal(self.non_chordal_G)
61
+ assert nx.is_chordal(self.chordal_G)
62
+ assert nx.is_chordal(self.connected_chordal_G)
63
+ assert nx.is_chordal(nx.Graph())
64
+ assert nx.is_chordal(nx.complete_graph(3))
65
+ assert nx.is_chordal(nx.cycle_graph(3))
66
+ assert not nx.is_chordal(nx.cycle_graph(5))
67
+ assert nx.is_chordal(self.self_loop_G)
68
+
69
+ def test_induced_nodes(self):
70
+ G = nx.generators.classic.path_graph(10)
71
+ Induced_nodes = nx.find_induced_nodes(G, 1, 9, 2)
72
+ assert Induced_nodes == {1, 2, 3, 4, 5, 6, 7, 8, 9}
73
+ pytest.raises(
74
+ nx.NetworkXTreewidthBoundExceeded, nx.find_induced_nodes, G, 1, 9, 1
75
+ )
76
+ Induced_nodes = nx.find_induced_nodes(self.chordal_G, 1, 6)
77
+ assert Induced_nodes == {1, 2, 4, 6}
78
+ pytest.raises(nx.NetworkXError, nx.find_induced_nodes, self.non_chordal_G, 1, 5)
79
+
80
+ def test_graph_treewidth(self):
81
+ with pytest.raises(nx.NetworkXError, match="Input graph is not chordal"):
82
+ nx.chordal_graph_treewidth(self.non_chordal_G)
83
+
84
+ def test_chordal_find_cliques(self):
85
+ cliques = {
86
+ frozenset([9]),
87
+ frozenset([7, 8]),
88
+ frozenset([1, 2, 3]),
89
+ frozenset([2, 3, 4]),
90
+ frozenset([3, 4, 5, 6]),
91
+ }
92
+ assert set(nx.chordal_graph_cliques(self.chordal_G)) == cliques
93
+ with pytest.raises(nx.NetworkXError, match="Input graph is not chordal"):
94
+ set(nx.chordal_graph_cliques(self.non_chordal_G))
95
+ with pytest.raises(nx.NetworkXError, match="Input graph is not chordal"):
96
+ set(nx.chordal_graph_cliques(self.self_loop_G))
97
+
98
+ def test_chordal_find_cliques_path(self):
99
+ G = nx.path_graph(10)
100
+ cliqueset = nx.chordal_graph_cliques(G)
101
+ for u, v in G.edges():
102
+ assert frozenset([u, v]) in cliqueset or frozenset([v, u]) in cliqueset
103
+
104
+ def test_chordal_find_cliquesCC(self):
105
+ cliques = {frozenset([1, 2, 3]), frozenset([2, 3, 4]), frozenset([3, 4, 5, 6])}
106
+ cgc = nx.chordal_graph_cliques
107
+ assert set(cgc(self.connected_chordal_G)) == cliques
108
+
109
+ def test_complete_to_chordal_graph(self):
110
+ fgrg = nx.fast_gnp_random_graph
111
+ test_graphs = [
112
+ nx.barbell_graph(6, 2),
113
+ nx.cycle_graph(15),
114
+ nx.wheel_graph(20),
115
+ nx.grid_graph([10, 4]),
116
+ nx.ladder_graph(15),
117
+ nx.star_graph(5),
118
+ nx.bull_graph(),
119
+ fgrg(20, 0.3, seed=1),
120
+ ]
121
+ for G in test_graphs:
122
+ H, a = nx.complete_to_chordal_graph(G)
123
+ assert nx.is_chordal(H)
124
+ assert len(a) == H.number_of_nodes()
125
+ if nx.is_chordal(G):
126
+ assert G.number_of_edges() == H.number_of_edges()
127
+ assert set(a.values()) == {0}
128
+ else:
129
+ assert len(set(a.values())) == H.number_of_nodes()
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_cluster.py ADDED
@@ -0,0 +1,549 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ class TestTriangles:
7
+ def test_empty(self):
8
+ G = nx.Graph()
9
+ assert list(nx.triangles(G).values()) == []
10
+
11
+ def test_path(self):
12
+ G = nx.path_graph(10)
13
+ assert list(nx.triangles(G).values()) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
14
+ assert nx.triangles(G) == {
15
+ 0: 0,
16
+ 1: 0,
17
+ 2: 0,
18
+ 3: 0,
19
+ 4: 0,
20
+ 5: 0,
21
+ 6: 0,
22
+ 7: 0,
23
+ 8: 0,
24
+ 9: 0,
25
+ }
26
+
27
+ def test_cubical(self):
28
+ G = nx.cubical_graph()
29
+ assert list(nx.triangles(G).values()) == [0, 0, 0, 0, 0, 0, 0, 0]
30
+ assert nx.triangles(G, 1) == 0
31
+ assert list(nx.triangles(G, [1, 2]).values()) == [0, 0]
32
+ assert nx.triangles(G, 1) == 0
33
+ assert nx.triangles(G, [1, 2]) == {1: 0, 2: 0}
34
+
35
+ def test_k5(self):
36
+ G = nx.complete_graph(5)
37
+ assert list(nx.triangles(G).values()) == [6, 6, 6, 6, 6]
38
+ assert sum(nx.triangles(G).values()) / 3 == 10
39
+ assert nx.triangles(G, 1) == 6
40
+ G.remove_edge(1, 2)
41
+ assert list(nx.triangles(G).values()) == [5, 3, 3, 5, 5]
42
+ assert nx.triangles(G, 1) == 3
43
+ G.add_edge(3, 3) # ignore self-edges
44
+ assert list(nx.triangles(G).values()) == [5, 3, 3, 5, 5]
45
+ assert nx.triangles(G, 3) == 5
46
+
47
+
48
+ class TestDirectedClustering:
49
+ def test_clustering(self):
50
+ G = nx.DiGraph()
51
+ assert list(nx.clustering(G).values()) == []
52
+ assert nx.clustering(G) == {}
53
+
54
+ def test_path(self):
55
+ G = nx.path_graph(10, create_using=nx.DiGraph())
56
+ assert list(nx.clustering(G).values()) == [
57
+ 0,
58
+ 0,
59
+ 0,
60
+ 0,
61
+ 0,
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0,
66
+ 0,
67
+ ]
68
+ assert nx.clustering(G) == {
69
+ 0: 0,
70
+ 1: 0,
71
+ 2: 0,
72
+ 3: 0,
73
+ 4: 0,
74
+ 5: 0,
75
+ 6: 0,
76
+ 7: 0,
77
+ 8: 0,
78
+ 9: 0,
79
+ }
80
+ assert nx.clustering(G, 0) == 0
81
+
82
+ def test_k5(self):
83
+ G = nx.complete_graph(5, create_using=nx.DiGraph())
84
+ assert list(nx.clustering(G).values()) == [1, 1, 1, 1, 1]
85
+ assert nx.average_clustering(G) == 1
86
+ G.remove_edge(1, 2)
87
+ assert list(nx.clustering(G).values()) == [
88
+ 11 / 12,
89
+ 1,
90
+ 1,
91
+ 11 / 12,
92
+ 11 / 12,
93
+ ]
94
+ assert nx.clustering(G, [1, 4]) == {1: 1, 4: 11 / 12}
95
+ G.remove_edge(2, 1)
96
+ assert list(nx.clustering(G).values()) == [
97
+ 5 / 6,
98
+ 1,
99
+ 1,
100
+ 5 / 6,
101
+ 5 / 6,
102
+ ]
103
+ assert nx.clustering(G, [1, 4]) == {1: 1, 4: 0.83333333333333337}
104
+ assert nx.clustering(G, 4) == 5 / 6
105
+
106
+ def test_triangle_and_edge(self):
107
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
108
+ G.add_edge(0, 4)
109
+ assert nx.clustering(G)[0] == 1 / 6
110
+
111
+
112
+ class TestDirectedWeightedClustering:
113
+ @classmethod
114
+ def setup_class(cls):
115
+ global np
116
+ np = pytest.importorskip("numpy")
117
+
118
+ def test_clustering(self):
119
+ G = nx.DiGraph()
120
+ assert list(nx.clustering(G, weight="weight").values()) == []
121
+ assert nx.clustering(G) == {}
122
+
123
+ def test_path(self):
124
+ G = nx.path_graph(10, create_using=nx.DiGraph())
125
+ assert list(nx.clustering(G, weight="weight").values()) == [
126
+ 0,
127
+ 0,
128
+ 0,
129
+ 0,
130
+ 0,
131
+ 0,
132
+ 0,
133
+ 0,
134
+ 0,
135
+ 0,
136
+ ]
137
+ assert nx.clustering(G, weight="weight") == {
138
+ 0: 0,
139
+ 1: 0,
140
+ 2: 0,
141
+ 3: 0,
142
+ 4: 0,
143
+ 5: 0,
144
+ 6: 0,
145
+ 7: 0,
146
+ 8: 0,
147
+ 9: 0,
148
+ }
149
+
150
+ def test_k5(self):
151
+ G = nx.complete_graph(5, create_using=nx.DiGraph())
152
+ assert list(nx.clustering(G, weight="weight").values()) == [1, 1, 1, 1, 1]
153
+ assert nx.average_clustering(G, weight="weight") == 1
154
+ G.remove_edge(1, 2)
155
+ assert list(nx.clustering(G, weight="weight").values()) == [
156
+ 11 / 12,
157
+ 1,
158
+ 1,
159
+ 11 / 12,
160
+ 11 / 12,
161
+ ]
162
+ assert nx.clustering(G, [1, 4], weight="weight") == {1: 1, 4: 11 / 12}
163
+ G.remove_edge(2, 1)
164
+ assert list(nx.clustering(G, weight="weight").values()) == [
165
+ 5 / 6,
166
+ 1,
167
+ 1,
168
+ 5 / 6,
169
+ 5 / 6,
170
+ ]
171
+ assert nx.clustering(G, [1, 4], weight="weight") == {
172
+ 1: 1,
173
+ 4: 0.83333333333333337,
174
+ }
175
+
176
+ def test_triangle_and_edge(self):
177
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
178
+ G.add_edge(0, 4, weight=2)
179
+ assert nx.clustering(G)[0] == 1 / 6
180
+ # Relaxed comparisons to allow graphblas-algorithms to pass tests
181
+ np.testing.assert_allclose(nx.clustering(G, weight="weight")[0], 1 / 12)
182
+ np.testing.assert_allclose(nx.clustering(G, 0, weight="weight"), 1 / 12)
183
+
184
+
185
+ class TestWeightedClustering:
186
+ @classmethod
187
+ def setup_class(cls):
188
+ global np
189
+ np = pytest.importorskip("numpy")
190
+
191
+ def test_clustering(self):
192
+ G = nx.Graph()
193
+ assert list(nx.clustering(G, weight="weight").values()) == []
194
+ assert nx.clustering(G) == {}
195
+
196
+ def test_path(self):
197
+ G = nx.path_graph(10)
198
+ assert list(nx.clustering(G, weight="weight").values()) == [
199
+ 0,
200
+ 0,
201
+ 0,
202
+ 0,
203
+ 0,
204
+ 0,
205
+ 0,
206
+ 0,
207
+ 0,
208
+ 0,
209
+ ]
210
+ assert nx.clustering(G, weight="weight") == {
211
+ 0: 0,
212
+ 1: 0,
213
+ 2: 0,
214
+ 3: 0,
215
+ 4: 0,
216
+ 5: 0,
217
+ 6: 0,
218
+ 7: 0,
219
+ 8: 0,
220
+ 9: 0,
221
+ }
222
+
223
+ def test_cubical(self):
224
+ G = nx.cubical_graph()
225
+ assert list(nx.clustering(G, weight="weight").values()) == [
226
+ 0,
227
+ 0,
228
+ 0,
229
+ 0,
230
+ 0,
231
+ 0,
232
+ 0,
233
+ 0,
234
+ ]
235
+ assert nx.clustering(G, 1) == 0
236
+ assert list(nx.clustering(G, [1, 2], weight="weight").values()) == [0, 0]
237
+ assert nx.clustering(G, 1, weight="weight") == 0
238
+ assert nx.clustering(G, [1, 2], weight="weight") == {1: 0, 2: 0}
239
+
240
+ def test_k5(self):
241
+ G = nx.complete_graph(5)
242
+ assert list(nx.clustering(G, weight="weight").values()) == [1, 1, 1, 1, 1]
243
+ assert nx.average_clustering(G, weight="weight") == 1
244
+ G.remove_edge(1, 2)
245
+ assert list(nx.clustering(G, weight="weight").values()) == [
246
+ 5 / 6,
247
+ 1,
248
+ 1,
249
+ 5 / 6,
250
+ 5 / 6,
251
+ ]
252
+ assert nx.clustering(G, [1, 4], weight="weight") == {
253
+ 1: 1,
254
+ 4: 0.83333333333333337,
255
+ }
256
+
257
+ def test_triangle_and_edge(self):
258
+ G = nx.cycle_graph(3)
259
+ G.add_edge(0, 4, weight=2)
260
+ assert nx.clustering(G)[0] == 1 / 3
261
+ np.testing.assert_allclose(nx.clustering(G, weight="weight")[0], 1 / 6)
262
+ np.testing.assert_allclose(nx.clustering(G, 0, weight="weight"), 1 / 6)
263
+
264
+ def test_triangle_and_signed_edge(self):
265
+ G = nx.cycle_graph(3)
266
+ G.add_edge(0, 1, weight=-1)
267
+ G.add_edge(3, 0, weight=0)
268
+ assert nx.clustering(G)[0] == 1 / 3
269
+ assert nx.clustering(G, weight="weight")[0] == -1 / 3
270
+
271
+
272
+ class TestClustering:
273
+ @classmethod
274
+ def setup_class(cls):
275
+ pytest.importorskip("numpy")
276
+
277
+ def test_clustering(self):
278
+ G = nx.Graph()
279
+ assert list(nx.clustering(G).values()) == []
280
+ assert nx.clustering(G) == {}
281
+
282
+ def test_path(self):
283
+ G = nx.path_graph(10)
284
+ assert list(nx.clustering(G).values()) == [
285
+ 0,
286
+ 0,
287
+ 0,
288
+ 0,
289
+ 0,
290
+ 0,
291
+ 0,
292
+ 0,
293
+ 0,
294
+ 0,
295
+ ]
296
+ assert nx.clustering(G) == {
297
+ 0: 0,
298
+ 1: 0,
299
+ 2: 0,
300
+ 3: 0,
301
+ 4: 0,
302
+ 5: 0,
303
+ 6: 0,
304
+ 7: 0,
305
+ 8: 0,
306
+ 9: 0,
307
+ }
308
+
309
+ def test_cubical(self):
310
+ G = nx.cubical_graph()
311
+ assert list(nx.clustering(G).values()) == [0, 0, 0, 0, 0, 0, 0, 0]
312
+ assert nx.clustering(G, 1) == 0
313
+ assert list(nx.clustering(G, [1, 2]).values()) == [0, 0]
314
+ assert nx.clustering(G, 1) == 0
315
+ assert nx.clustering(G, [1, 2]) == {1: 0, 2: 0}
316
+
317
+ def test_k5(self):
318
+ G = nx.complete_graph(5)
319
+ assert list(nx.clustering(G).values()) == [1, 1, 1, 1, 1]
320
+ assert nx.average_clustering(G) == 1
321
+ G.remove_edge(1, 2)
322
+ assert list(nx.clustering(G).values()) == [
323
+ 5 / 6,
324
+ 1,
325
+ 1,
326
+ 5 / 6,
327
+ 5 / 6,
328
+ ]
329
+ assert nx.clustering(G, [1, 4]) == {1: 1, 4: 0.83333333333333337}
330
+
331
+ def test_k5_signed(self):
332
+ G = nx.complete_graph(5)
333
+ assert list(nx.clustering(G).values()) == [1, 1, 1, 1, 1]
334
+ assert nx.average_clustering(G) == 1
335
+ G.remove_edge(1, 2)
336
+ G.add_edge(0, 1, weight=-1)
337
+ assert list(nx.clustering(G, weight="weight").values()) == [
338
+ 1 / 6,
339
+ -1 / 3,
340
+ 1,
341
+ 3 / 6,
342
+ 3 / 6,
343
+ ]
344
+
345
+
346
+ class TestTransitivity:
347
+ def test_transitivity(self):
348
+ G = nx.Graph()
349
+ assert nx.transitivity(G) == 0
350
+
351
+ def test_path(self):
352
+ G = nx.path_graph(10)
353
+ assert nx.transitivity(G) == 0
354
+
355
+ def test_cubical(self):
356
+ G = nx.cubical_graph()
357
+ assert nx.transitivity(G) == 0
358
+
359
+ def test_k5(self):
360
+ G = nx.complete_graph(5)
361
+ assert nx.transitivity(G) == 1
362
+ G.remove_edge(1, 2)
363
+ assert nx.transitivity(G) == 0.875
364
+
365
+
366
+ class TestSquareClustering:
367
+ def test_clustering(self):
368
+ G = nx.Graph()
369
+ assert list(nx.square_clustering(G).values()) == []
370
+ assert nx.square_clustering(G) == {}
371
+
372
+ def test_path(self):
373
+ G = nx.path_graph(10)
374
+ assert list(nx.square_clustering(G).values()) == [
375
+ 0,
376
+ 0,
377
+ 0,
378
+ 0,
379
+ 0,
380
+ 0,
381
+ 0,
382
+ 0,
383
+ 0,
384
+ 0,
385
+ ]
386
+ assert nx.square_clustering(G) == {
387
+ 0: 0,
388
+ 1: 0,
389
+ 2: 0,
390
+ 3: 0,
391
+ 4: 0,
392
+ 5: 0,
393
+ 6: 0,
394
+ 7: 0,
395
+ 8: 0,
396
+ 9: 0,
397
+ }
398
+
399
+ def test_cubical(self):
400
+ G = nx.cubical_graph()
401
+ assert list(nx.square_clustering(G).values()) == [
402
+ 1 / 3,
403
+ 1 / 3,
404
+ 1 / 3,
405
+ 1 / 3,
406
+ 1 / 3,
407
+ 1 / 3,
408
+ 1 / 3,
409
+ 1 / 3,
410
+ ]
411
+ assert list(nx.square_clustering(G, [1, 2]).values()) == [1 / 3, 1 / 3]
412
+ assert nx.square_clustering(G, [1])[1] == 1 / 3
413
+ assert nx.square_clustering(G, 1) == 1 / 3
414
+ assert nx.square_clustering(G, [1, 2]) == {1: 1 / 3, 2: 1 / 3}
415
+
416
+ def test_k5(self):
417
+ G = nx.complete_graph(5)
418
+ assert list(nx.square_clustering(G).values()) == [1, 1, 1, 1, 1]
419
+
420
+ def test_bipartite_k5(self):
421
+ G = nx.complete_bipartite_graph(5, 5)
422
+ assert list(nx.square_clustering(G).values()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
423
+
424
+ def test_lind_square_clustering(self):
425
+ """Test C4 for figure 1 Lind et al (2005)"""
426
+ G = nx.Graph(
427
+ [
428
+ (1, 2),
429
+ (1, 3),
430
+ (1, 6),
431
+ (1, 7),
432
+ (2, 4),
433
+ (2, 5),
434
+ (3, 4),
435
+ (3, 5),
436
+ (6, 7),
437
+ (7, 8),
438
+ (6, 8),
439
+ (7, 9),
440
+ (7, 10),
441
+ (6, 11),
442
+ (6, 12),
443
+ (2, 13),
444
+ (2, 14),
445
+ (3, 15),
446
+ (3, 16),
447
+ ]
448
+ )
449
+ G1 = G.subgraph([1, 2, 3, 4, 5, 13, 14, 15, 16])
450
+ G2 = G.subgraph([1, 6, 7, 8, 9, 10, 11, 12])
451
+ assert nx.square_clustering(G, [1])[1] == 3 / 43
452
+ assert nx.square_clustering(G1, [1])[1] == 2 / 6
453
+ assert nx.square_clustering(G2, [1])[1] == 1 / 5
454
+
455
+ def test_peng_square_clustering(self):
456
+ """Test eq2 for figure 1 Peng et al (2008)"""
457
+ G = nx.Graph([(1, 2), (1, 3), (2, 4), (3, 4), (3, 5), (3, 6)])
458
+ assert nx.square_clustering(G, [1])[1] == 1 / 3
459
+
460
+ def test_self_loops_square_clustering(self):
461
+ G = nx.path_graph(5)
462
+ assert nx.square_clustering(G) == {0: 0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0}
463
+ G.add_edges_from([(0, 0), (1, 1), (2, 2)])
464
+ assert nx.square_clustering(G) == {0: 1, 1: 0.5, 2: 0.2, 3: 0.0, 4: 0}
465
+
466
+
467
+ class TestAverageClustering:
468
+ @classmethod
469
+ def setup_class(cls):
470
+ pytest.importorskip("numpy")
471
+
472
+ def test_empty(self):
473
+ G = nx.Graph()
474
+ with pytest.raises(ZeroDivisionError):
475
+ nx.average_clustering(G)
476
+
477
+ def test_average_clustering(self):
478
+ G = nx.cycle_graph(3)
479
+ G.add_edge(2, 3)
480
+ assert nx.average_clustering(G) == (1 + 1 + 1 / 3) / 4
481
+ assert nx.average_clustering(G, count_zeros=True) == (1 + 1 + 1 / 3) / 4
482
+ assert nx.average_clustering(G, count_zeros=False) == (1 + 1 + 1 / 3) / 3
483
+ assert nx.average_clustering(G, [1, 2, 3]) == (1 + 1 / 3) / 3
484
+ assert nx.average_clustering(G, [1, 2, 3], count_zeros=True) == (1 + 1 / 3) / 3
485
+ assert nx.average_clustering(G, [1, 2, 3], count_zeros=False) == (1 + 1 / 3) / 2
486
+
487
+ def test_average_clustering_signed(self):
488
+ G = nx.cycle_graph(3)
489
+ G.add_edge(2, 3)
490
+ G.add_edge(0, 1, weight=-1)
491
+ assert nx.average_clustering(G, weight="weight") == (-1 - 1 - 1 / 3) / 4
492
+ assert (
493
+ nx.average_clustering(G, weight="weight", count_zeros=True)
494
+ == (-1 - 1 - 1 / 3) / 4
495
+ )
496
+ assert (
497
+ nx.average_clustering(G, weight="weight", count_zeros=False)
498
+ == (-1 - 1 - 1 / 3) / 3
499
+ )
500
+
501
+
502
+ class TestDirectedAverageClustering:
503
+ @classmethod
504
+ def setup_class(cls):
505
+ pytest.importorskip("numpy")
506
+
507
+ def test_empty(self):
508
+ G = nx.DiGraph()
509
+ with pytest.raises(ZeroDivisionError):
510
+ nx.average_clustering(G)
511
+
512
+ def test_average_clustering(self):
513
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
514
+ G.add_edge(2, 3)
515
+ assert nx.average_clustering(G) == (1 + 1 + 1 / 3) / 8
516
+ assert nx.average_clustering(G, count_zeros=True) == (1 + 1 + 1 / 3) / 8
517
+ assert nx.average_clustering(G, count_zeros=False) == (1 + 1 + 1 / 3) / 6
518
+ assert nx.average_clustering(G, [1, 2, 3]) == (1 + 1 / 3) / 6
519
+ assert nx.average_clustering(G, [1, 2, 3], count_zeros=True) == (1 + 1 / 3) / 6
520
+ assert nx.average_clustering(G, [1, 2, 3], count_zeros=False) == (1 + 1 / 3) / 4
521
+
522
+
523
+ class TestGeneralizedDegree:
524
+ def test_generalized_degree(self):
525
+ G = nx.Graph()
526
+ assert nx.generalized_degree(G) == {}
527
+
528
+ def test_path(self):
529
+ G = nx.path_graph(5)
530
+ assert nx.generalized_degree(G, 0) == {0: 1}
531
+ assert nx.generalized_degree(G, 1) == {0: 2}
532
+
533
+ def test_cubical(self):
534
+ G = nx.cubical_graph()
535
+ assert nx.generalized_degree(G, 0) == {0: 3}
536
+
537
+ def test_k5(self):
538
+ G = nx.complete_graph(5)
539
+ assert nx.generalized_degree(G, 0) == {3: 4}
540
+ G.remove_edge(0, 1)
541
+ assert nx.generalized_degree(G, 0) == {2: 3}
542
+ assert nx.generalized_degree(G, [1, 2]) == {1: {2: 3}, 2: {2: 2, 3: 2}}
543
+ assert nx.generalized_degree(G) == {
544
+ 0: {2: 3},
545
+ 1: {2: 3},
546
+ 2: {2: 2, 3: 2},
547
+ 3: {2: 2, 3: 2},
548
+ 4: {2: 2, 3: 2},
549
+ }
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_communicability.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+
3
+ import pytest
4
+
5
+ pytest.importorskip("numpy")
6
+ pytest.importorskip("scipy")
7
+
8
+ import networkx as nx
9
+ from networkx.algorithms.communicability_alg import communicability, communicability_exp
10
+
11
+
12
+ class TestCommunicability:
13
+ def test_communicability(self):
14
+ answer = {
15
+ 0: {0: 1.5430806348152435, 1: 1.1752011936438012},
16
+ 1: {0: 1.1752011936438012, 1: 1.5430806348152435},
17
+ }
18
+ # answer={(0, 0): 1.5430806348152435,
19
+ # (0, 1): 1.1752011936438012,
20
+ # (1, 0): 1.1752011936438012,
21
+ # (1, 1): 1.5430806348152435}
22
+
23
+ result = communicability(nx.path_graph(2))
24
+ for k1, val in result.items():
25
+ for k2 in val:
26
+ assert answer[k1][k2] == pytest.approx(result[k1][k2], abs=1e-7)
27
+
28
+ def test_communicability2(self):
29
+ answer_orig = {
30
+ ("1", "1"): 1.6445956054135658,
31
+ ("1", "Albert"): 0.7430186221096251,
32
+ ("1", "Aric"): 0.7430186221096251,
33
+ ("1", "Dan"): 1.6208126320442937,
34
+ ("1", "Franck"): 0.42639707170035257,
35
+ ("Albert", "1"): 0.7430186221096251,
36
+ ("Albert", "Albert"): 2.4368257358712189,
37
+ ("Albert", "Aric"): 1.4368257358712191,
38
+ ("Albert", "Dan"): 2.0472097037446453,
39
+ ("Albert", "Franck"): 1.8340111678944691,
40
+ ("Aric", "1"): 0.7430186221096251,
41
+ ("Aric", "Albert"): 1.4368257358712191,
42
+ ("Aric", "Aric"): 2.4368257358712193,
43
+ ("Aric", "Dan"): 2.0472097037446457,
44
+ ("Aric", "Franck"): 1.8340111678944691,
45
+ ("Dan", "1"): 1.6208126320442937,
46
+ ("Dan", "Albert"): 2.0472097037446453,
47
+ ("Dan", "Aric"): 2.0472097037446457,
48
+ ("Dan", "Dan"): 3.1306328496328168,
49
+ ("Dan", "Franck"): 1.4860372442192515,
50
+ ("Franck", "1"): 0.42639707170035257,
51
+ ("Franck", "Albert"): 1.8340111678944691,
52
+ ("Franck", "Aric"): 1.8340111678944691,
53
+ ("Franck", "Dan"): 1.4860372442192515,
54
+ ("Franck", "Franck"): 2.3876142275231915,
55
+ }
56
+
57
+ answer = defaultdict(dict)
58
+ for (k1, k2), v in answer_orig.items():
59
+ answer[k1][k2] = v
60
+
61
+ G1 = nx.Graph(
62
+ [
63
+ ("Franck", "Aric"),
64
+ ("Aric", "Dan"),
65
+ ("Dan", "Albert"),
66
+ ("Albert", "Franck"),
67
+ ("Dan", "1"),
68
+ ("Franck", "Albert"),
69
+ ]
70
+ )
71
+
72
+ result = communicability(G1)
73
+ for k1, val in result.items():
74
+ for k2 in val:
75
+ assert answer[k1][k2] == pytest.approx(result[k1][k2], abs=1e-7)
76
+
77
+ result = communicability_exp(G1)
78
+ for k1, val in result.items():
79
+ for k2 in val:
80
+ assert answer[k1][k2] == pytest.approx(result[k1][k2], abs=1e-7)
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_covering.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ class TestMinEdgeCover:
7
+ """Tests for :func:`networkx.algorithms.min_edge_cover`"""
8
+
9
+ def test_empty_graph(self):
10
+ G = nx.Graph()
11
+ assert nx.min_edge_cover(G) == set()
12
+
13
+ def test_graph_with_loop(self):
14
+ G = nx.Graph()
15
+ G.add_edge(0, 0)
16
+ assert nx.min_edge_cover(G) == {(0, 0)}
17
+
18
+ def test_graph_with_isolated_v(self):
19
+ G = nx.Graph()
20
+ G.add_node(1)
21
+ with pytest.raises(
22
+ nx.NetworkXException,
23
+ match="Graph has a node with no edge incident on it, so no edge cover exists.",
24
+ ):
25
+ nx.min_edge_cover(G)
26
+
27
+ def test_graph_single_edge(self):
28
+ G = nx.Graph([(0, 1)])
29
+ assert nx.min_edge_cover(G) in ({(0, 1)}, {(1, 0)})
30
+
31
+ def test_graph_two_edge_path(self):
32
+ G = nx.path_graph(3)
33
+ min_cover = nx.min_edge_cover(G)
34
+ assert len(min_cover) == 2
35
+ for u, v in G.edges:
36
+ assert (u, v) in min_cover or (v, u) in min_cover
37
+
38
+ def test_bipartite_explicit(self):
39
+ G = nx.Graph()
40
+ G.add_nodes_from([1, 2, 3, 4], bipartite=0)
41
+ G.add_nodes_from(["a", "b", "c"], bipartite=1)
42
+ G.add_edges_from([(1, "a"), (1, "b"), (2, "b"), (2, "c"), (3, "c"), (4, "a")])
43
+ # Use bipartite method by prescribing the algorithm
44
+ min_cover = nx.min_edge_cover(
45
+ G, nx.algorithms.bipartite.matching.eppstein_matching
46
+ )
47
+ assert nx.is_edge_cover(G, min_cover)
48
+ assert len(min_cover) == 8
49
+ # Use the default method which is not specialized for bipartite
50
+ min_cover2 = nx.min_edge_cover(G)
51
+ assert nx.is_edge_cover(G, min_cover2)
52
+ assert len(min_cover2) == 4
53
+
54
+ def test_complete_graph_even(self):
55
+ G = nx.complete_graph(10)
56
+ min_cover = nx.min_edge_cover(G)
57
+ assert nx.is_edge_cover(G, min_cover)
58
+ assert len(min_cover) == 5
59
+
60
+ def test_complete_graph_odd(self):
61
+ G = nx.complete_graph(11)
62
+ min_cover = nx.min_edge_cover(G)
63
+ assert nx.is_edge_cover(G, min_cover)
64
+ assert len(min_cover) == 6
65
+
66
+
67
+ class TestIsEdgeCover:
68
+ """Tests for :func:`networkx.algorithms.is_edge_cover`"""
69
+
70
+ def test_empty_graph(self):
71
+ G = nx.Graph()
72
+ assert nx.is_edge_cover(G, set())
73
+
74
+ def test_graph_with_loop(self):
75
+ G = nx.Graph()
76
+ G.add_edge(1, 1)
77
+ assert nx.is_edge_cover(G, {(1, 1)})
78
+
79
+ def test_graph_single_edge(self):
80
+ G = nx.Graph()
81
+ G.add_edge(0, 1)
82
+ assert nx.is_edge_cover(G, {(0, 0), (1, 1)})
83
+ assert nx.is_edge_cover(G, {(0, 1), (1, 0)})
84
+ assert nx.is_edge_cover(G, {(0, 1)})
85
+ assert not nx.is_edge_cover(G, {(0, 0)})
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_cuts.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.cuts` module."""
2
+
3
+
4
+ import networkx as nx
5
+
6
+
7
+ class TestCutSize:
8
+ """Unit tests for the :func:`~networkx.cut_size` function."""
9
+
10
+ def test_symmetric(self):
11
+ """Tests that the cut size is symmetric."""
12
+ G = nx.barbell_graph(3, 0)
13
+ S = {0, 1, 4}
14
+ T = {2, 3, 5}
15
+ assert nx.cut_size(G, S, T) == 4
16
+ assert nx.cut_size(G, T, S) == 4
17
+
18
+ def test_single_edge(self):
19
+ """Tests for a cut of a single edge."""
20
+ G = nx.barbell_graph(3, 0)
21
+ S = {0, 1, 2}
22
+ T = {3, 4, 5}
23
+ assert nx.cut_size(G, S, T) == 1
24
+ assert nx.cut_size(G, T, S) == 1
25
+
26
+ def test_directed(self):
27
+ """Tests that each directed edge is counted once in the cut."""
28
+ G = nx.barbell_graph(3, 0).to_directed()
29
+ S = {0, 1, 2}
30
+ T = {3, 4, 5}
31
+ assert nx.cut_size(G, S, T) == 2
32
+ assert nx.cut_size(G, T, S) == 2
33
+
34
+ def test_directed_symmetric(self):
35
+ """Tests that a cut in a directed graph is symmetric."""
36
+ G = nx.barbell_graph(3, 0).to_directed()
37
+ S = {0, 1, 4}
38
+ T = {2, 3, 5}
39
+ assert nx.cut_size(G, S, T) == 8
40
+ assert nx.cut_size(G, T, S) == 8
41
+
42
+ def test_multigraph(self):
43
+ """Tests that parallel edges are each counted for a cut."""
44
+ G = nx.MultiGraph(["ab", "ab"])
45
+ assert nx.cut_size(G, {"a"}, {"b"}) == 2
46
+
47
+
48
+ class TestVolume:
49
+ """Unit tests for the :func:`~networkx.volume` function."""
50
+
51
+ def test_graph(self):
52
+ G = nx.cycle_graph(4)
53
+ assert nx.volume(G, {0, 1}) == 4
54
+
55
+ def test_digraph(self):
56
+ G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 0)])
57
+ assert nx.volume(G, {0, 1}) == 2
58
+
59
+ def test_multigraph(self):
60
+ edges = list(nx.cycle_graph(4).edges())
61
+ G = nx.MultiGraph(edges * 2)
62
+ assert nx.volume(G, {0, 1}) == 8
63
+
64
+ def test_multidigraph(self):
65
+ edges = [(0, 1), (1, 2), (2, 3), (3, 0)]
66
+ G = nx.MultiDiGraph(edges * 2)
67
+ assert nx.volume(G, {0, 1}) == 4
68
+
69
+ def test_barbell(self):
70
+ G = nx.barbell_graph(3, 0)
71
+ assert nx.volume(G, {0, 1, 2}) == 7
72
+ assert nx.volume(G, {3, 4, 5}) == 7
73
+
74
+
75
+ class TestNormalizedCutSize:
76
+ """Unit tests for the :func:`~networkx.normalized_cut_size` function."""
77
+
78
+ def test_graph(self):
79
+ G = nx.path_graph(4)
80
+ S = {1, 2}
81
+ T = set(G) - S
82
+ size = nx.normalized_cut_size(G, S, T)
83
+ # The cut looks like this: o-{-o--o-}-o
84
+ expected = 2 * ((1 / 4) + (1 / 2))
85
+ assert expected == size
86
+ # Test with no input T
87
+ assert expected == nx.normalized_cut_size(G, S)
88
+
89
+ def test_directed(self):
90
+ G = nx.DiGraph([(0, 1), (1, 2), (2, 3)])
91
+ S = {1, 2}
92
+ T = set(G) - S
93
+ size = nx.normalized_cut_size(G, S, T)
94
+ # The cut looks like this: o-{->o-->o-}->o
95
+ expected = 2 * ((1 / 2) + (1 / 1))
96
+ assert expected == size
97
+ # Test with no input T
98
+ assert expected == nx.normalized_cut_size(G, S)
99
+
100
+
101
+ class TestConductance:
102
+ """Unit tests for the :func:`~networkx.conductance` function."""
103
+
104
+ def test_graph(self):
105
+ G = nx.barbell_graph(5, 0)
106
+ # Consider the singleton sets containing the "bridge" nodes.
107
+ # There is only one cut edge, and each set has volume five.
108
+ S = {4}
109
+ T = {5}
110
+ conductance = nx.conductance(G, S, T)
111
+ expected = 1 / 5
112
+ assert expected == conductance
113
+ # Test with no input T
114
+ G2 = nx.barbell_graph(3, 0)
115
+ # There is only one cut edge, and each set has volume seven.
116
+ S2 = {0, 1, 2}
117
+ assert nx.conductance(G2, S2) == 1 / 7
118
+
119
+
120
+ class TestEdgeExpansion:
121
+ """Unit tests for the :func:`~networkx.edge_expansion` function."""
122
+
123
+ def test_graph(self):
124
+ G = nx.barbell_graph(5, 0)
125
+ S = set(range(5))
126
+ T = set(G) - S
127
+ expansion = nx.edge_expansion(G, S, T)
128
+ expected = 1 / 5
129
+ assert expected == expansion
130
+ # Test with no input T
131
+ assert expected == nx.edge_expansion(G, S)
132
+
133
+
134
+ class TestNodeExpansion:
135
+ """Unit tests for the :func:`~networkx.node_expansion` function."""
136
+
137
+ def test_graph(self):
138
+ G = nx.path_graph(8)
139
+ S = {3, 4, 5}
140
+ expansion = nx.node_expansion(G, S)
141
+ # The neighborhood of S has cardinality five, and S has
142
+ # cardinality three.
143
+ expected = 5 / 3
144
+ assert expected == expansion
145
+
146
+
147
+ class TestBoundaryExpansion:
148
+ """Unit tests for the :func:`~networkx.boundary_expansion` function."""
149
+
150
+ def test_graph(self):
151
+ G = nx.complete_graph(10)
152
+ S = set(range(4))
153
+ expansion = nx.boundary_expansion(G, S)
154
+ # The node boundary of S has cardinality six, and S has
155
+ # cardinality three.
156
+ expected = 6 / 4
157
+ assert expected == expansion
158
+
159
+
160
+ class TestMixingExpansion:
161
+ """Unit tests for the :func:`~networkx.mixing_expansion` function."""
162
+
163
+ def test_graph(self):
164
+ G = nx.barbell_graph(5, 0)
165
+ S = set(range(5))
166
+ T = set(G) - S
167
+ expansion = nx.mixing_expansion(G, S, T)
168
+ # There is one cut edge, and the total number of edges in the
169
+ # graph is twice the total number of edges in a clique of size
170
+ # five, plus one more for the bridge.
171
+ expected = 1 / (2 * (5 * 4 + 1))
172
+ assert expected == expansion
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_cycles.py ADDED
@@ -0,0 +1,974 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import chain, islice, tee
2
+ from math import inf
3
+ from random import shuffle
4
+
5
+ import pytest
6
+
7
+ import networkx as nx
8
+ from networkx.algorithms.traversal.edgedfs import FORWARD, REVERSE
9
+
10
+
11
+ def check_independent(basis):
12
+ if len(basis) == 0:
13
+ return
14
+
15
+ np = pytest.importorskip("numpy")
16
+ sp = pytest.importorskip("scipy") # Required by incidence_matrix
17
+
18
+ H = nx.Graph()
19
+ for b in basis:
20
+ nx.add_cycle(H, b)
21
+ inc = nx.incidence_matrix(H, oriented=True)
22
+ rank = np.linalg.matrix_rank(inc.toarray(), tol=None, hermitian=False)
23
+ assert inc.shape[1] - rank == len(basis)
24
+
25
+
26
+ class TestCycles:
27
+ @classmethod
28
+ def setup_class(cls):
29
+ G = nx.Graph()
30
+ nx.add_cycle(G, [0, 1, 2, 3])
31
+ nx.add_cycle(G, [0, 3, 4, 5])
32
+ nx.add_cycle(G, [0, 1, 6, 7, 8])
33
+ G.add_edge(8, 9)
34
+ cls.G = G
35
+
36
+ def is_cyclic_permutation(self, a, b):
37
+ n = len(a)
38
+ if len(b) != n:
39
+ return False
40
+ l = a + a
41
+ return any(l[i : i + n] == b for i in range(n))
42
+
43
+ def test_cycle_basis(self):
44
+ G = self.G
45
+ cy = nx.cycle_basis(G, 0)
46
+ sort_cy = sorted(sorted(c) for c in cy)
47
+ assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
48
+ cy = nx.cycle_basis(G, 1)
49
+ sort_cy = sorted(sorted(c) for c in cy)
50
+ assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
51
+ cy = nx.cycle_basis(G, 9)
52
+ sort_cy = sorted(sorted(c) for c in cy)
53
+ assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]]
54
+ # test disconnected graphs
55
+ nx.add_cycle(G, "ABC")
56
+ cy = nx.cycle_basis(G, 9)
57
+ sort_cy = sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])]
58
+ assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5], ["A", "B", "C"]]
59
+
60
+ def test_cycle_basis2(self):
61
+ with pytest.raises(nx.NetworkXNotImplemented):
62
+ G = nx.DiGraph()
63
+ cy = nx.cycle_basis(G, 0)
64
+
65
+ def test_cycle_basis3(self):
66
+ with pytest.raises(nx.NetworkXNotImplemented):
67
+ G = nx.MultiGraph()
68
+ cy = nx.cycle_basis(G, 0)
69
+
70
+ def test_cycle_basis_ordered(self):
71
+ # see gh-6654 replace sets with (ordered) dicts
72
+ G = nx.cycle_graph(5)
73
+ G.update(nx.cycle_graph(range(3, 8)))
74
+ cbG = nx.cycle_basis(G)
75
+
76
+ perm = {1: 0, 0: 1} # switch 0 and 1
77
+ H = nx.relabel_nodes(G, perm)
78
+ cbH = [[perm.get(n, n) for n in cyc] for cyc in nx.cycle_basis(H)]
79
+ assert cbG == cbH
80
+
81
+ def test_cycle_basis_self_loop(self):
82
+ """Tests the function for graphs with self loops"""
83
+ G = nx.Graph()
84
+ nx.add_cycle(G, [0, 1, 2, 3])
85
+ nx.add_cycle(G, [0, 0, 6, 2])
86
+ cy = nx.cycle_basis(G)
87
+ sort_cy = sorted(sorted(c) for c in cy)
88
+ assert sort_cy == [[0], [0, 1, 2], [0, 2, 3], [0, 2, 6]]
89
+
90
+ def test_simple_cycles(self):
91
+ edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]
92
+ G = nx.DiGraph(edges)
93
+ cc = sorted(nx.simple_cycles(G))
94
+ ca = [[0], [0, 1, 2], [0, 2], [1, 2], [2]]
95
+ assert len(cc) == len(ca)
96
+ for c in cc:
97
+ assert any(self.is_cyclic_permutation(c, rc) for rc in ca)
98
+
99
+ def test_simple_cycles_singleton(self):
100
+ G = nx.Graph([(0, 0)]) # self-loop
101
+ assert list(nx.simple_cycles(G)) == [[0]]
102
+
103
+ def test_unsortable(self):
104
+ # this test ensures that graphs whose nodes without an intrinsic
105
+ # ordering do not cause issues
106
+ G = nx.DiGraph()
107
+ nx.add_cycle(G, ["a", 1])
108
+ c = list(nx.simple_cycles(G))
109
+ assert len(c) == 1
110
+
111
+ def test_simple_cycles_small(self):
112
+ G = nx.DiGraph()
113
+ nx.add_cycle(G, [1, 2, 3])
114
+ c = sorted(nx.simple_cycles(G))
115
+ assert len(c) == 1
116
+ assert self.is_cyclic_permutation(c[0], [1, 2, 3])
117
+ nx.add_cycle(G, [10, 20, 30])
118
+ cc = sorted(nx.simple_cycles(G))
119
+ assert len(cc) == 2
120
+ ca = [[1, 2, 3], [10, 20, 30]]
121
+ for c in cc:
122
+ assert any(self.is_cyclic_permutation(c, rc) for rc in ca)
123
+
124
+ def test_simple_cycles_empty(self):
125
+ G = nx.DiGraph()
126
+ assert list(nx.simple_cycles(G)) == []
127
+
128
+ def worst_case_graph(self, k):
129
+ # see figure 1 in Johnson's paper
130
+ # this graph has exactly 3k simple cycles
131
+ G = nx.DiGraph()
132
+ for n in range(2, k + 2):
133
+ G.add_edge(1, n)
134
+ G.add_edge(n, k + 2)
135
+ G.add_edge(2 * k + 1, 1)
136
+ for n in range(k + 2, 2 * k + 2):
137
+ G.add_edge(n, 2 * k + 2)
138
+ G.add_edge(n, n + 1)
139
+ G.add_edge(2 * k + 3, k + 2)
140
+ for n in range(2 * k + 3, 3 * k + 3):
141
+ G.add_edge(2 * k + 2, n)
142
+ G.add_edge(n, 3 * k + 3)
143
+ G.add_edge(3 * k + 3, 2 * k + 2)
144
+ return G
145
+
146
+ def test_worst_case_graph(self):
147
+ # see figure 1 in Johnson's paper
148
+ for k in range(3, 10):
149
+ G = self.worst_case_graph(k)
150
+ l = len(list(nx.simple_cycles(G)))
151
+ assert l == 3 * k
152
+
153
+ def test_recursive_simple_and_not(self):
154
+ for k in range(2, 10):
155
+ G = self.worst_case_graph(k)
156
+ cc = sorted(nx.simple_cycles(G))
157
+ rcc = sorted(nx.recursive_simple_cycles(G))
158
+ assert len(cc) == len(rcc)
159
+ for c in cc:
160
+ assert any(self.is_cyclic_permutation(c, r) for r in rcc)
161
+ for rc in rcc:
162
+ assert any(self.is_cyclic_permutation(rc, c) for c in cc)
163
+
164
+ def test_simple_graph_with_reported_bug(self):
165
+ G = nx.DiGraph()
166
+ edges = [
167
+ (0, 2),
168
+ (0, 3),
169
+ (1, 0),
170
+ (1, 3),
171
+ (2, 1),
172
+ (2, 4),
173
+ (3, 2),
174
+ (3, 4),
175
+ (4, 0),
176
+ (4, 1),
177
+ (4, 5),
178
+ (5, 0),
179
+ (5, 1),
180
+ (5, 2),
181
+ (5, 3),
182
+ ]
183
+ G.add_edges_from(edges)
184
+ cc = sorted(nx.simple_cycles(G))
185
+ assert len(cc) == 26
186
+ rcc = sorted(nx.recursive_simple_cycles(G))
187
+ assert len(cc) == len(rcc)
188
+ for c in cc:
189
+ assert any(self.is_cyclic_permutation(c, rc) for rc in rcc)
190
+ for rc in rcc:
191
+ assert any(self.is_cyclic_permutation(rc, c) for c in cc)
192
+
193
+
194
+ def pairwise(iterable):
195
+ a, b = tee(iterable)
196
+ next(b, None)
197
+ return zip(a, b)
198
+
199
+
200
+ def cycle_edges(c):
201
+ return pairwise(chain(c, islice(c, 1)))
202
+
203
+
204
+ def directed_cycle_edgeset(c):
205
+ return frozenset(cycle_edges(c))
206
+
207
+
208
+ def undirected_cycle_edgeset(c):
209
+ if len(c) == 1:
210
+ return frozenset(cycle_edges(c))
211
+ return frozenset(map(frozenset, cycle_edges(c)))
212
+
213
+
214
+ def multigraph_cycle_edgeset(c):
215
+ if len(c) <= 2:
216
+ return frozenset(cycle_edges(c))
217
+ else:
218
+ return frozenset(map(frozenset, cycle_edges(c)))
219
+
220
+
221
+ class TestCycleEnumeration:
222
+ @staticmethod
223
+ def K(n):
224
+ return nx.complete_graph(n)
225
+
226
+ @staticmethod
227
+ def D(n):
228
+ return nx.complete_graph(n).to_directed()
229
+
230
+ @staticmethod
231
+ def edgeset_function(g):
232
+ if g.is_directed():
233
+ return directed_cycle_edgeset
234
+ elif g.is_multigraph():
235
+ return multigraph_cycle_edgeset
236
+ else:
237
+ return undirected_cycle_edgeset
238
+
239
+ def check_cycle(self, g, c, es, cache, source, original_c, length_bound, chordless):
240
+ if length_bound is not None and len(c) > length_bound:
241
+ raise RuntimeError(
242
+ f"computed cycle {original_c} exceeds length bound {length_bound}"
243
+ )
244
+ if source == "computed":
245
+ if es in cache:
246
+ raise RuntimeError(
247
+ f"computed cycle {original_c} has already been found!"
248
+ )
249
+ else:
250
+ cache[es] = tuple(original_c)
251
+ else:
252
+ if es in cache:
253
+ cache.pop(es)
254
+ else:
255
+ raise RuntimeError(f"expected cycle {original_c} was not computed")
256
+
257
+ if not all(g.has_edge(*e) for e in es):
258
+ raise RuntimeError(
259
+ f"{source} claimed cycle {original_c} is not a cycle of g"
260
+ )
261
+ if chordless and len(g.subgraph(c).edges) > len(c):
262
+ raise RuntimeError(f"{source} cycle {original_c} is not chordless")
263
+
264
+ def check_cycle_algorithm(
265
+ self,
266
+ g,
267
+ expected_cycles,
268
+ length_bound=None,
269
+ chordless=False,
270
+ algorithm=None,
271
+ ):
272
+ if algorithm is None:
273
+ algorithm = nx.chordless_cycles if chordless else nx.simple_cycles
274
+
275
+ # note: we shuffle the labels of g to rule out accidentally-correct
276
+ # behavior which occurred during the development of chordless cycle
277
+ # enumeration algorithms
278
+
279
+ relabel = list(range(len(g)))
280
+ shuffle(relabel)
281
+ label = dict(zip(g, relabel))
282
+ unlabel = dict(zip(relabel, g))
283
+ h = nx.relabel_nodes(g, label, copy=True)
284
+
285
+ edgeset = self.edgeset_function(h)
286
+
287
+ params = {}
288
+ if length_bound is not None:
289
+ params["length_bound"] = length_bound
290
+
291
+ cycle_cache = {}
292
+ for c in algorithm(h, **params):
293
+ original_c = [unlabel[x] for x in c]
294
+ es = edgeset(c)
295
+ self.check_cycle(
296
+ h, c, es, cycle_cache, "computed", original_c, length_bound, chordless
297
+ )
298
+
299
+ if isinstance(expected_cycles, int):
300
+ if len(cycle_cache) != expected_cycles:
301
+ raise RuntimeError(
302
+ f"expected {expected_cycles} cycles, got {len(cycle_cache)}"
303
+ )
304
+ return
305
+ for original_c in expected_cycles:
306
+ c = [label[x] for x in original_c]
307
+ es = edgeset(c)
308
+ self.check_cycle(
309
+ h, c, es, cycle_cache, "expected", original_c, length_bound, chordless
310
+ )
311
+
312
+ if len(cycle_cache):
313
+ for c in cycle_cache.values():
314
+ raise RuntimeError(
315
+ f"computed cycle {c} is valid but not in the expected cycle set!"
316
+ )
317
+
318
+ def check_cycle_enumeration_integer_sequence(
319
+ self,
320
+ g_family,
321
+ cycle_counts,
322
+ length_bound=None,
323
+ chordless=False,
324
+ algorithm=None,
325
+ ):
326
+ for g, num_cycles in zip(g_family, cycle_counts):
327
+ self.check_cycle_algorithm(
328
+ g,
329
+ num_cycles,
330
+ length_bound=length_bound,
331
+ chordless=chordless,
332
+ algorithm=algorithm,
333
+ )
334
+
335
+ def test_directed_chordless_cycle_digons(self):
336
+ g = nx.DiGraph()
337
+ nx.add_cycle(g, range(5))
338
+ nx.add_cycle(g, range(5)[::-1])
339
+ g.add_edge(0, 0)
340
+ expected_cycles = [(0,), (1, 2), (2, 3), (3, 4)]
341
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True)
342
+
343
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=2)
344
+
345
+ expected_cycles = [c for c in expected_cycles if len(c) < 2]
346
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=1)
347
+
348
+ def test_directed_chordless_cycle_undirected(self):
349
+ g = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 5), (5, 0), (5, 1), (0, 2)])
350
+ expected_cycles = [(0, 2, 3, 4, 5), (1, 2, 3, 4, 5)]
351
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True)
352
+
353
+ g = nx.DiGraph()
354
+ nx.add_cycle(g, range(5))
355
+ nx.add_cycle(g, range(4, 9))
356
+ g.add_edge(7, 3)
357
+ expected_cycles = [(0, 1, 2, 3, 4), (3, 4, 5, 6, 7), (4, 5, 6, 7, 8)]
358
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True)
359
+
360
+ g.add_edge(3, 7)
361
+ expected_cycles = [(0, 1, 2, 3, 4), (3, 7), (4, 5, 6, 7, 8)]
362
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True)
363
+
364
+ expected_cycles = [(3, 7)]
365
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True, length_bound=4)
366
+
367
+ g.remove_edge(7, 3)
368
+ expected_cycles = [(0, 1, 2, 3, 4), (4, 5, 6, 7, 8)]
369
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True)
370
+
371
+ g = nx.DiGraph((i, j) for i in range(10) for j in range(i))
372
+ expected_cycles = []
373
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True)
374
+
375
+ def test_chordless_cycles_directed(self):
376
+ G = nx.DiGraph()
377
+ nx.add_cycle(G, range(5))
378
+ nx.add_cycle(G, range(4, 12))
379
+ expected = [[*range(5)], [*range(4, 12)]]
380
+ self.check_cycle_algorithm(G, expected, chordless=True)
381
+ self.check_cycle_algorithm(
382
+ G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
383
+ )
384
+
385
+ G.add_edge(7, 3)
386
+ expected.append([*range(3, 8)])
387
+ self.check_cycle_algorithm(G, expected, chordless=True)
388
+ self.check_cycle_algorithm(
389
+ G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
390
+ )
391
+
392
+ G.add_edge(3, 7)
393
+ expected[-1] = [7, 3]
394
+ self.check_cycle_algorithm(G, expected, chordless=True)
395
+ self.check_cycle_algorithm(
396
+ G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
397
+ )
398
+
399
+ expected.pop()
400
+ G.remove_edge(7, 3)
401
+ self.check_cycle_algorithm(G, expected, chordless=True)
402
+ self.check_cycle_algorithm(
403
+ G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
404
+ )
405
+
406
+ def test_directed_chordless_cycle_diclique(self):
407
+ g_family = [self.D(n) for n in range(10)]
408
+ expected_cycles = [(n * n - n) // 2 for n in range(10)]
409
+ self.check_cycle_enumeration_integer_sequence(
410
+ g_family, expected_cycles, chordless=True
411
+ )
412
+
413
+ expected_cycles = [(n * n - n) // 2 for n in range(10)]
414
+ self.check_cycle_enumeration_integer_sequence(
415
+ g_family, expected_cycles, length_bound=2
416
+ )
417
+
418
+ def test_directed_chordless_loop_blockade(self):
419
+ g = nx.DiGraph((i, i) for i in range(10))
420
+ nx.add_cycle(g, range(10))
421
+ expected_cycles = [(i,) for i in range(10)]
422
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True)
423
+
424
+ self.check_cycle_algorithm(g, expected_cycles, length_bound=1)
425
+
426
+ g = nx.MultiDiGraph(g)
427
+ g.add_edges_from((i, i) for i in range(0, 10, 2))
428
+ expected_cycles = [(i,) for i in range(1, 10, 2)]
429
+ self.check_cycle_algorithm(g, expected_cycles, chordless=True)
430
+
431
+ def test_simple_cycles_notable_clique_sequences(self):
432
+ # A000292: Number of labeled graphs on n+3 nodes that are triangles.
433
+ g_family = [self.K(n) for n in range(2, 12)]
434
+ expected = [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220]
435
+ self.check_cycle_enumeration_integer_sequence(
436
+ g_family, expected, length_bound=3
437
+ )
438
+
439
+ def triangles(g, **kwargs):
440
+ yield from (c for c in nx.simple_cycles(g, **kwargs) if len(c) == 3)
441
+
442
+ # directed complete graphs have twice as many triangles thanks to reversal
443
+ g_family = [self.D(n) for n in range(2, 12)]
444
+ expected = [2 * e for e in expected]
445
+ self.check_cycle_enumeration_integer_sequence(
446
+ g_family, expected, length_bound=3, algorithm=triangles
447
+ )
448
+
449
+ def four_cycles(g, **kwargs):
450
+ yield from (c for c in nx.simple_cycles(g, **kwargs) if len(c) == 4)
451
+
452
+ # A050534: the number of 4-cycles in the complete graph K_{n+1}
453
+ expected = [0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990]
454
+ g_family = [self.K(n) for n in range(1, 12)]
455
+ self.check_cycle_enumeration_integer_sequence(
456
+ g_family, expected, length_bound=4, algorithm=four_cycles
457
+ )
458
+
459
+ # directed complete graphs have twice as many 4-cycles thanks to reversal
460
+ expected = [2 * e for e in expected]
461
+ g_family = [self.D(n) for n in range(1, 15)]
462
+ self.check_cycle_enumeration_integer_sequence(
463
+ g_family, expected, length_bound=4, algorithm=four_cycles
464
+ )
465
+
466
+ # A006231: the number of elementary circuits in a complete directed graph with n nodes
467
+ expected = [0, 1, 5, 20, 84, 409, 2365]
468
+ g_family = [self.D(n) for n in range(1, 8)]
469
+ self.check_cycle_enumeration_integer_sequence(g_family, expected)
470
+
471
+ # A002807: Number of cycles in the complete graph on n nodes K_{n}.
472
+ expected = [0, 0, 0, 1, 7, 37, 197, 1172]
473
+ g_family = [self.K(n) for n in range(8)]
474
+ self.check_cycle_enumeration_integer_sequence(g_family, expected)
475
+
476
+ def test_directed_chordless_cycle_parallel_multiedges(self):
477
+ g = nx.MultiGraph()
478
+
479
+ nx.add_cycle(g, range(5))
480
+ expected = [[*range(5)]]
481
+ self.check_cycle_algorithm(g, expected, chordless=True)
482
+
483
+ nx.add_cycle(g, range(5))
484
+ expected = [*cycle_edges(range(5))]
485
+ self.check_cycle_algorithm(g, expected, chordless=True)
486
+
487
+ nx.add_cycle(g, range(5))
488
+ expected = []
489
+ self.check_cycle_algorithm(g, expected, chordless=True)
490
+
491
+ g = nx.MultiDiGraph()
492
+
493
+ nx.add_cycle(g, range(5))
494
+ expected = [[*range(5)]]
495
+ self.check_cycle_algorithm(g, expected, chordless=True)
496
+
497
+ nx.add_cycle(g, range(5))
498
+ self.check_cycle_algorithm(g, [], chordless=True)
499
+
500
+ nx.add_cycle(g, range(5))
501
+ self.check_cycle_algorithm(g, [], chordless=True)
502
+
503
+ g = nx.MultiDiGraph()
504
+
505
+ nx.add_cycle(g, range(5))
506
+ nx.add_cycle(g, range(5)[::-1])
507
+ expected = [*cycle_edges(range(5))]
508
+ self.check_cycle_algorithm(g, expected, chordless=True)
509
+
510
+ nx.add_cycle(g, range(5))
511
+ self.check_cycle_algorithm(g, [], chordless=True)
512
+
513
+ def test_chordless_cycles_graph(self):
514
+ G = nx.Graph()
515
+ nx.add_cycle(G, range(5))
516
+ nx.add_cycle(G, range(4, 12))
517
+ expected = [[*range(5)], [*range(4, 12)]]
518
+ self.check_cycle_algorithm(G, expected, chordless=True)
519
+ self.check_cycle_algorithm(
520
+ G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
521
+ )
522
+
523
+ G.add_edge(7, 3)
524
+ expected.append([*range(3, 8)])
525
+ expected.append([4, 3, 7, 8, 9, 10, 11])
526
+ self.check_cycle_algorithm(G, expected, chordless=True)
527
+ self.check_cycle_algorithm(
528
+ G, [c for c in expected if len(c) <= 5], length_bound=5, chordless=True
529
+ )
530
+
531
+ def test_chordless_cycles_giant_hamiltonian(self):
532
+ # ... o - e - o - e - o ... # o = odd, e = even
533
+ # ... ---/ \-----/ \--- ... # <-- "long" edges
534
+ #
535
+ # each long edge belongs to exactly one triangle, and one giant cycle
536
+ # of length n/2. The remaining edges each belong to a triangle
537
+
538
+ n = 1000
539
+ assert n % 2 == 0
540
+ G = nx.Graph()
541
+ for v in range(n):
542
+ if not v % 2:
543
+ G.add_edge(v, (v + 2) % n)
544
+ G.add_edge(v, (v + 1) % n)
545
+
546
+ expected = [[*range(0, n, 2)]] + [
547
+ [x % n for x in range(i, i + 3)] for i in range(0, n, 2)
548
+ ]
549
+ self.check_cycle_algorithm(G, expected, chordless=True)
550
+ self.check_cycle_algorithm(
551
+ G, [c for c in expected if len(c) <= 3], length_bound=3, chordless=True
552
+ )
553
+
554
+ # ... o -> e -> o -> e -> o ... # o = odd, e = even
555
+ # ... <---/ \---<---/ \---< ... # <-- "long" edges
556
+ #
557
+ # this time, we orient the short and long edges in opposition
558
+ # the cycle structure of this graph is the same, but we need to reverse
559
+ # the long one in our representation. Also, we need to drop the size
560
+ # because our partitioning algorithm uses strongly connected components
561
+ # instead of separating graphs by their strong articulation points
562
+
563
+ n = 100
564
+ assert n % 2 == 0
565
+ G = nx.DiGraph()
566
+ for v in range(n):
567
+ G.add_edge(v, (v + 1) % n)
568
+ if not v % 2:
569
+ G.add_edge((v + 2) % n, v)
570
+
571
+ expected = [[*range(n - 2, -2, -2)]] + [
572
+ [x % n for x in range(i, i + 3)] for i in range(0, n, 2)
573
+ ]
574
+ self.check_cycle_algorithm(G, expected, chordless=True)
575
+ self.check_cycle_algorithm(
576
+ G, [c for c in expected if len(c) <= 3], length_bound=3, chordless=True
577
+ )
578
+
579
+ def test_simple_cycles_acyclic_tournament(self):
580
+ n = 10
581
+ G = nx.DiGraph((x, y) for x in range(n) for y in range(x))
582
+ self.check_cycle_algorithm(G, [])
583
+ self.check_cycle_algorithm(G, [], chordless=True)
584
+
585
+ for k in range(n + 1):
586
+ self.check_cycle_algorithm(G, [], length_bound=k)
587
+ self.check_cycle_algorithm(G, [], length_bound=k, chordless=True)
588
+
589
+ def test_simple_cycles_graph(self):
590
+ testG = nx.cycle_graph(8)
591
+ cyc1 = tuple(range(8))
592
+ self.check_cycle_algorithm(testG, [cyc1])
593
+
594
+ testG.add_edge(4, -1)
595
+ nx.add_path(testG, [3, -2, -3, -4])
596
+ self.check_cycle_algorithm(testG, [cyc1])
597
+
598
+ testG.update(nx.cycle_graph(range(8, 16)))
599
+ cyc2 = tuple(range(8, 16))
600
+ self.check_cycle_algorithm(testG, [cyc1, cyc2])
601
+
602
+ testG.update(nx.cycle_graph(range(4, 12)))
603
+ cyc3 = tuple(range(4, 12))
604
+ expected = {
605
+ (0, 1, 2, 3, 4, 5, 6, 7), # cyc1
606
+ (8, 9, 10, 11, 12, 13, 14, 15), # cyc2
607
+ (4, 5, 6, 7, 8, 9, 10, 11), # cyc3
608
+ (4, 5, 6, 7, 8, 15, 14, 13, 12, 11), # cyc2 + cyc3
609
+ (0, 1, 2, 3, 4, 11, 10, 9, 8, 7), # cyc1 + cyc3
610
+ (0, 1, 2, 3, 4, 11, 12, 13, 14, 15, 8, 7), # cyc1 + cyc2 + cyc3
611
+ }
612
+ self.check_cycle_algorithm(testG, expected)
613
+ assert len(expected) == (2**3 - 1) - 1 # 1 disjoint comb: cyc1 + cyc2
614
+
615
+ # Basis size = 5 (2 loops overlapping gives 5 small loops
616
+ # E
617
+ # / \ Note: A-F = 10-15
618
+ # 1-2-3-4-5
619
+ # / | | \ cyc1=012DAB -- left
620
+ # 0 D F 6 cyc2=234E -- top
621
+ # \ | | / cyc3=45678F -- right
622
+ # B-A-9-8-7 cyc4=89AC -- bottom
623
+ # \ / cyc5=234F89AD -- middle
624
+ # C
625
+ #
626
+ # combinations of 5 basis elements: 2^5 - 1 (one includes no cycles)
627
+ #
628
+ # disjoint combs: (11 total) not simple cycles
629
+ # Any pair not including cyc5 => choose(4, 2) = 6
630
+ # Any triple not including cyc5 => choose(4, 3) = 4
631
+ # Any quad not including cyc5 => choose(4, 4) = 1
632
+ #
633
+ # we expect 31 - 11 = 20 simple cycles
634
+ #
635
+ testG = nx.cycle_graph(12)
636
+ testG.update(nx.cycle_graph([12, 10, 13, 2, 14, 4, 15, 8]).edges)
637
+ expected = (2**5 - 1) - 11 # 11 disjoint combinations
638
+ self.check_cycle_algorithm(testG, expected)
639
+
640
+ def test_simple_cycles_bounded(self):
641
+ # iteratively construct a cluster of nested cycles running in the same direction
642
+ # there should be one cycle of every length
643
+ d = nx.DiGraph()
644
+ expected = []
645
+ for n in range(10):
646
+ nx.add_cycle(d, range(n))
647
+ expected.append(n)
648
+ for k, e in enumerate(expected):
649
+ self.check_cycle_algorithm(d, e, length_bound=k)
650
+
651
+ # iteratively construct a path of undirected cycles, connected at articulation
652
+ # points. there should be one cycle of every length except 2: no digons
653
+ g = nx.Graph()
654
+ top = 0
655
+ expected = []
656
+ for n in range(10):
657
+ expected.append(n if n < 2 else n - 1)
658
+ if n == 2:
659
+ # no digons in undirected graphs
660
+ continue
661
+ nx.add_cycle(g, range(top, top + n))
662
+ top += n
663
+ for k, e in enumerate(expected):
664
+ self.check_cycle_algorithm(g, e, length_bound=k)
665
+
666
+ def test_simple_cycles_bound_corner_cases(self):
667
+ G = nx.cycle_graph(4)
668
+ DG = nx.cycle_graph(4, create_using=nx.DiGraph)
669
+ assert list(nx.simple_cycles(G, length_bound=0)) == []
670
+ assert list(nx.simple_cycles(DG, length_bound=0)) == []
671
+ assert list(nx.chordless_cycles(G, length_bound=0)) == []
672
+ assert list(nx.chordless_cycles(DG, length_bound=0)) == []
673
+
674
+ def test_simple_cycles_bound_error(self):
675
+ with pytest.raises(ValueError):
676
+ G = nx.DiGraph()
677
+ for c in nx.simple_cycles(G, -1):
678
+ assert False
679
+
680
+ with pytest.raises(ValueError):
681
+ G = nx.Graph()
682
+ for c in nx.simple_cycles(G, -1):
683
+ assert False
684
+
685
+ with pytest.raises(ValueError):
686
+ G = nx.Graph()
687
+ for c in nx.chordless_cycles(G, -1):
688
+ assert False
689
+
690
+ with pytest.raises(ValueError):
691
+ G = nx.DiGraph()
692
+ for c in nx.chordless_cycles(G, -1):
693
+ assert False
694
+
695
+ def test_chordless_cycles_clique(self):
696
+ g_family = [self.K(n) for n in range(2, 15)]
697
+ expected = [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364]
698
+ self.check_cycle_enumeration_integer_sequence(
699
+ g_family, expected, chordless=True
700
+ )
701
+
702
+ # directed cliques have as many digons as undirected graphs have edges
703
+ expected = [(n * n - n) // 2 for n in range(15)]
704
+ g_family = [self.D(n) for n in range(15)]
705
+ self.check_cycle_enumeration_integer_sequence(
706
+ g_family, expected, chordless=True
707
+ )
708
+
709
+
710
+ # These tests might fail with hash randomization since they depend on
711
+ # edge_dfs. For more information, see the comments in:
712
+ # networkx/algorithms/traversal/tests/test_edgedfs.py
713
+
714
+
715
+ class TestFindCycle:
716
+ @classmethod
717
+ def setup_class(cls):
718
+ cls.nodes = [0, 1, 2, 3]
719
+ cls.edges = [(-1, 0), (0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]
720
+
721
+ def test_graph_nocycle(self):
722
+ G = nx.Graph(self.edges)
723
+ pytest.raises(nx.exception.NetworkXNoCycle, nx.find_cycle, G, self.nodes)
724
+
725
+ def test_graph_cycle(self):
726
+ G = nx.Graph(self.edges)
727
+ G.add_edge(2, 0)
728
+ x = list(nx.find_cycle(G, self.nodes))
729
+ x_ = [(0, 1), (1, 2), (2, 0)]
730
+ assert x == x_
731
+
732
+ def test_graph_orientation_none(self):
733
+ G = nx.Graph(self.edges)
734
+ G.add_edge(2, 0)
735
+ x = list(nx.find_cycle(G, self.nodes, orientation=None))
736
+ x_ = [(0, 1), (1, 2), (2, 0)]
737
+ assert x == x_
738
+
739
+ def test_graph_orientation_original(self):
740
+ G = nx.Graph(self.edges)
741
+ G.add_edge(2, 0)
742
+ x = list(nx.find_cycle(G, self.nodes, orientation="original"))
743
+ x_ = [(0, 1, FORWARD), (1, 2, FORWARD), (2, 0, FORWARD)]
744
+ assert x == x_
745
+
746
+ def test_digraph(self):
747
+ G = nx.DiGraph(self.edges)
748
+ x = list(nx.find_cycle(G, self.nodes))
749
+ x_ = [(0, 1), (1, 0)]
750
+ assert x == x_
751
+
752
+ def test_digraph_orientation_none(self):
753
+ G = nx.DiGraph(self.edges)
754
+ x = list(nx.find_cycle(G, self.nodes, orientation=None))
755
+ x_ = [(0, 1), (1, 0)]
756
+ assert x == x_
757
+
758
+ def test_digraph_orientation_original(self):
759
+ G = nx.DiGraph(self.edges)
760
+ x = list(nx.find_cycle(G, self.nodes, orientation="original"))
761
+ x_ = [(0, 1, FORWARD), (1, 0, FORWARD)]
762
+ assert x == x_
763
+
764
+ def test_multigraph(self):
765
+ G = nx.MultiGraph(self.edges)
766
+ x = list(nx.find_cycle(G, self.nodes))
767
+ x_ = [(0, 1, 0), (1, 0, 1)] # or (1, 0, 2)
768
+ # Hash randomization...could be any edge.
769
+ assert x[0] == x_[0]
770
+ assert x[1][:2] == x_[1][:2]
771
+
772
+ def test_multidigraph(self):
773
+ G = nx.MultiDiGraph(self.edges)
774
+ x = list(nx.find_cycle(G, self.nodes))
775
+ x_ = [(0, 1, 0), (1, 0, 0)] # (1, 0, 1)
776
+ assert x[0] == x_[0]
777
+ assert x[1][:2] == x_[1][:2]
778
+
779
+ def test_digraph_ignore(self):
780
+ G = nx.DiGraph(self.edges)
781
+ x = list(nx.find_cycle(G, self.nodes, orientation="ignore"))
782
+ x_ = [(0, 1, FORWARD), (1, 0, FORWARD)]
783
+ assert x == x_
784
+
785
+ def test_digraph_reverse(self):
786
+ G = nx.DiGraph(self.edges)
787
+ x = list(nx.find_cycle(G, self.nodes, orientation="reverse"))
788
+ x_ = [(1, 0, REVERSE), (0, 1, REVERSE)]
789
+ assert x == x_
790
+
791
+ def test_multidigraph_ignore(self):
792
+ G = nx.MultiDiGraph(self.edges)
793
+ x = list(nx.find_cycle(G, self.nodes, orientation="ignore"))
794
+ x_ = [(0, 1, 0, FORWARD), (1, 0, 0, FORWARD)] # or (1, 0, 1, 1)
795
+ assert x[0] == x_[0]
796
+ assert x[1][:2] == x_[1][:2]
797
+ assert x[1][3] == x_[1][3]
798
+
799
+ def test_multidigraph_ignore2(self):
800
+ # Loop traversed an edge while ignoring its orientation.
801
+ G = nx.MultiDiGraph([(0, 1), (1, 2), (1, 2)])
802
+ x = list(nx.find_cycle(G, [0, 1, 2], orientation="ignore"))
803
+ x_ = [(1, 2, 0, FORWARD), (1, 2, 1, REVERSE)]
804
+ assert x == x_
805
+
806
+ def test_multidigraph_original(self):
807
+ # Node 2 doesn't need to be searched again from visited from 4.
808
+ # The goal here is to cover the case when 2 to be researched from 4,
809
+ # when 4 is visited from the first time (so we must make sure that 4
810
+ # is not visited from 2, and hence, we respect the edge orientation).
811
+ G = nx.MultiDiGraph([(0, 1), (1, 2), (2, 3), (4, 2)])
812
+ pytest.raises(
813
+ nx.exception.NetworkXNoCycle,
814
+ nx.find_cycle,
815
+ G,
816
+ [0, 1, 2, 3, 4],
817
+ orientation="original",
818
+ )
819
+
820
+ def test_dag(self):
821
+ G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
822
+ pytest.raises(
823
+ nx.exception.NetworkXNoCycle, nx.find_cycle, G, orientation="original"
824
+ )
825
+ x = list(nx.find_cycle(G, orientation="ignore"))
826
+ assert x == [(0, 1, FORWARD), (1, 2, FORWARD), (0, 2, REVERSE)]
827
+
828
+ def test_prev_explored(self):
829
+ # https://github.com/networkx/networkx/issues/2323
830
+
831
+ G = nx.DiGraph()
832
+ G.add_edges_from([(1, 0), (2, 0), (1, 2), (2, 1)])
833
+ pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G, source=0)
834
+ x = list(nx.find_cycle(G, 1))
835
+ x_ = [(1, 2), (2, 1)]
836
+ assert x == x_
837
+
838
+ x = list(nx.find_cycle(G, 2))
839
+ x_ = [(2, 1), (1, 2)]
840
+ assert x == x_
841
+
842
+ x = list(nx.find_cycle(G))
843
+ x_ = [(1, 2), (2, 1)]
844
+ assert x == x_
845
+
846
+ def test_no_cycle(self):
847
+ # https://github.com/networkx/networkx/issues/2439
848
+
849
+ G = nx.DiGraph()
850
+ G.add_edges_from([(1, 2), (2, 0), (3, 1), (3, 2)])
851
+ pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G, source=0)
852
+ pytest.raises(nx.NetworkXNoCycle, nx.find_cycle, G)
853
+
854
+
855
+ def assert_basis_equal(a, b):
856
+ assert sorted(a) == sorted(b)
857
+
858
+
859
+ class TestMinimumCycleBasis:
860
+ @classmethod
861
+ def setup_class(cls):
862
+ T = nx.Graph()
863
+ nx.add_cycle(T, [1, 2, 3, 4], weight=1)
864
+ T.add_edge(2, 4, weight=5)
865
+ cls.diamond_graph = T
866
+
867
+ def test_unweighted_diamond(self):
868
+ mcb = nx.minimum_cycle_basis(self.diamond_graph)
869
+ assert_basis_equal(mcb, [[2, 4, 1], [3, 4, 2]])
870
+
871
+ def test_weighted_diamond(self):
872
+ mcb = nx.minimum_cycle_basis(self.diamond_graph, weight="weight")
873
+ assert_basis_equal(mcb, [[2, 4, 1], [4, 3, 2, 1]])
874
+
875
+ def test_dimensionality(self):
876
+ # checks |MCB|=|E|-|V|+|NC|
877
+ ntrial = 10
878
+ for seed in range(1234, 1234 + ntrial):
879
+ rg = nx.erdos_renyi_graph(10, 0.3, seed=seed)
880
+ nnodes = rg.number_of_nodes()
881
+ nedges = rg.number_of_edges()
882
+ ncomp = nx.number_connected_components(rg)
883
+
884
+ mcb = nx.minimum_cycle_basis(rg)
885
+ assert len(mcb) == nedges - nnodes + ncomp
886
+ check_independent(mcb)
887
+
888
+ def test_complete_graph(self):
889
+ cg = nx.complete_graph(5)
890
+ mcb = nx.minimum_cycle_basis(cg)
891
+ assert all(len(cycle) == 3 for cycle in mcb)
892
+ check_independent(mcb)
893
+
894
+ def test_tree_graph(self):
895
+ tg = nx.balanced_tree(3, 3)
896
+ assert not nx.minimum_cycle_basis(tg)
897
+
898
+ def test_petersen_graph(self):
899
+ G = nx.petersen_graph()
900
+ mcb = list(nx.minimum_cycle_basis(G))
901
+ expected = [
902
+ [4, 9, 7, 5, 0],
903
+ [1, 2, 3, 4, 0],
904
+ [1, 6, 8, 5, 0],
905
+ [4, 3, 8, 5, 0],
906
+ [1, 6, 9, 4, 0],
907
+ [1, 2, 7, 5, 0],
908
+ ]
909
+ assert len(mcb) == len(expected)
910
+ assert all(c in expected for c in mcb)
911
+
912
+ # check that order of the nodes is a path
913
+ for c in mcb:
914
+ assert all(G.has_edge(u, v) for u, v in nx.utils.pairwise(c, cyclic=True))
915
+ # check independence of the basis
916
+ check_independent(mcb)
917
+
918
+ def test_gh6787_variable_weighted_complete_graph(self):
919
+ N = 8
920
+ cg = nx.complete_graph(N)
921
+ cg.add_weighted_edges_from([(u, v, 9) for u, v in cg.edges])
922
+ cg.add_weighted_edges_from([(u, v, 1) for u, v in nx.cycle_graph(N).edges])
923
+ mcb = nx.minimum_cycle_basis(cg, weight="weight")
924
+ check_independent(mcb)
925
+
926
+ def test_gh6787_and_edge_attribute_names(self):
927
+ G = nx.cycle_graph(4)
928
+ G.add_weighted_edges_from([(0, 2, 10), (1, 3, 10)], weight="dist")
929
+ expected = [[1, 3, 0], [3, 2, 1, 0], [1, 2, 0]]
930
+ mcb = list(nx.minimum_cycle_basis(G, weight="dist"))
931
+ assert len(mcb) == len(expected)
932
+ assert all(c in expected for c in mcb)
933
+
934
+ # test not using a weight with weight attributes
935
+ expected = [[1, 3, 0], [1, 2, 0], [3, 2, 0]]
936
+ mcb = list(nx.minimum_cycle_basis(G))
937
+ assert len(mcb) == len(expected)
938
+ assert all(c in expected for c in mcb)
939
+
940
+
941
+ class TestGirth:
942
+ @pytest.mark.parametrize(
943
+ ("G", "expected"),
944
+ (
945
+ (nx.chvatal_graph(), 4),
946
+ (nx.tutte_graph(), 4),
947
+ (nx.petersen_graph(), 5),
948
+ (nx.heawood_graph(), 6),
949
+ (nx.pappus_graph(), 6),
950
+ (nx.random_tree(10, seed=42), inf),
951
+ (nx.empty_graph(10), inf),
952
+ (nx.Graph(chain(cycle_edges(range(5)), cycle_edges(range(6, 10)))), 4),
953
+ (
954
+ nx.Graph(
955
+ [
956
+ (0, 6),
957
+ (0, 8),
958
+ (0, 9),
959
+ (1, 8),
960
+ (2, 8),
961
+ (2, 9),
962
+ (4, 9),
963
+ (5, 9),
964
+ (6, 8),
965
+ (6, 9),
966
+ (7, 8),
967
+ ]
968
+ ),
969
+ 3,
970
+ ),
971
+ ),
972
+ )
973
+ def test_girth(self, G, expected):
974
+ assert nx.girth(G) == expected
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_distance_regular.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx import is_strongly_regular
5
+
6
+
7
+ @pytest.mark.parametrize(
8
+ "f", (nx.is_distance_regular, nx.intersection_array, nx.is_strongly_regular)
9
+ )
10
+ @pytest.mark.parametrize("graph_constructor", (nx.DiGraph, nx.MultiGraph))
11
+ def test_raises_on_directed_and_multigraphs(f, graph_constructor):
12
+ G = graph_constructor([(0, 1), (1, 2)])
13
+ with pytest.raises(nx.NetworkXNotImplemented):
14
+ f(G)
15
+
16
+
17
+ class TestDistanceRegular:
18
+ def test_is_distance_regular(self):
19
+ assert nx.is_distance_regular(nx.icosahedral_graph())
20
+ assert nx.is_distance_regular(nx.petersen_graph())
21
+ assert nx.is_distance_regular(nx.cubical_graph())
22
+ assert nx.is_distance_regular(nx.complete_bipartite_graph(3, 3))
23
+ assert nx.is_distance_regular(nx.tetrahedral_graph())
24
+ assert nx.is_distance_regular(nx.dodecahedral_graph())
25
+ assert nx.is_distance_regular(nx.pappus_graph())
26
+ assert nx.is_distance_regular(nx.heawood_graph())
27
+ assert nx.is_distance_regular(nx.cycle_graph(3))
28
+ # no distance regular
29
+ assert not nx.is_distance_regular(nx.path_graph(4))
30
+
31
+ def test_not_connected(self):
32
+ G = nx.cycle_graph(4)
33
+ nx.add_cycle(G, [5, 6, 7])
34
+ assert not nx.is_distance_regular(G)
35
+
36
+ def test_global_parameters(self):
37
+ b, c = nx.intersection_array(nx.cycle_graph(5))
38
+ g = nx.global_parameters(b, c)
39
+ assert list(g) == [(0, 0, 2), (1, 0, 1), (1, 1, 0)]
40
+ b, c = nx.intersection_array(nx.cycle_graph(3))
41
+ g = nx.global_parameters(b, c)
42
+ assert list(g) == [(0, 0, 2), (1, 1, 0)]
43
+
44
+ def test_intersection_array(self):
45
+ b, c = nx.intersection_array(nx.cycle_graph(5))
46
+ assert b == [2, 1]
47
+ assert c == [1, 1]
48
+ b, c = nx.intersection_array(nx.dodecahedral_graph())
49
+ assert b == [3, 2, 1, 1, 1]
50
+ assert c == [1, 1, 1, 2, 3]
51
+ b, c = nx.intersection_array(nx.icosahedral_graph())
52
+ assert b == [5, 2, 1]
53
+ assert c == [1, 2, 5]
54
+
55
+
56
+ @pytest.mark.parametrize("f", (nx.is_distance_regular, nx.is_strongly_regular))
57
+ def test_empty_graph_raises(f):
58
+ G = nx.Graph()
59
+ with pytest.raises(nx.NetworkXPointlessConcept, match="Graph has no nodes"):
60
+ f(G)
61
+
62
+
63
+ class TestStronglyRegular:
64
+ """Unit tests for the :func:`~networkx.is_strongly_regular`
65
+ function.
66
+
67
+ """
68
+
69
+ def test_cycle_graph(self):
70
+ """Tests that the cycle graph on five vertices is strongly
71
+ regular.
72
+
73
+ """
74
+ G = nx.cycle_graph(5)
75
+ assert is_strongly_regular(G)
76
+
77
+ def test_petersen_graph(self):
78
+ """Tests that the Petersen graph is strongly regular."""
79
+ G = nx.petersen_graph()
80
+ assert is_strongly_regular(G)
81
+
82
+ def test_path_graph(self):
83
+ """Tests that the path graph is not strongly regular."""
84
+ G = nx.path_graph(4)
85
+ assert not is_strongly_regular(G)
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_dominating.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ def test_dominating_set():
7
+ G = nx.gnp_random_graph(100, 0.1)
8
+ D = nx.dominating_set(G)
9
+ assert nx.is_dominating_set(G, D)
10
+ D = nx.dominating_set(G, start_with=0)
11
+ assert nx.is_dominating_set(G, D)
12
+
13
+
14
+ def test_complete():
15
+ """In complete graphs each node is a dominating set.
16
+ Thus the dominating set has to be of cardinality 1.
17
+ """
18
+ K4 = nx.complete_graph(4)
19
+ assert len(nx.dominating_set(K4)) == 1
20
+ K5 = nx.complete_graph(5)
21
+ assert len(nx.dominating_set(K5)) == 1
22
+
23
+
24
+ def test_raise_dominating_set():
25
+ with pytest.raises(nx.NetworkXError):
26
+ G = nx.path_graph(4)
27
+ D = nx.dominating_set(G, start_with=10)
28
+
29
+
30
+ def test_is_dominating_set():
31
+ G = nx.path_graph(4)
32
+ d = {1, 3}
33
+ assert nx.is_dominating_set(G, d)
34
+ d = {0, 2}
35
+ assert nx.is_dominating_set(G, d)
36
+ d = {1}
37
+ assert not nx.is_dominating_set(G, d)
38
+
39
+
40
+ def test_wikipedia_is_dominating_set():
41
+ """Example from https://en.wikipedia.org/wiki/Dominating_set"""
42
+ G = nx.cycle_graph(4)
43
+ G.add_edges_from([(0, 4), (1, 4), (2, 5)])
44
+ assert nx.is_dominating_set(G, {4, 3, 5})
45
+ assert nx.is_dominating_set(G, {0, 2})
46
+ assert nx.is_dominating_set(G, {1, 2})
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_efficiency.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.efficiency` module."""
2
+
3
+ import networkx as nx
4
+
5
+
6
+ class TestEfficiency:
7
+ def setup_method(self):
8
+ # G1 is a disconnected graph
9
+ self.G1 = nx.Graph()
10
+ self.G1.add_nodes_from([1, 2, 3])
11
+ # G2 is a cycle graph
12
+ self.G2 = nx.cycle_graph(4)
13
+ # G3 is the triangle graph with one additional edge
14
+ self.G3 = nx.lollipop_graph(3, 1)
15
+
16
+ def test_efficiency_disconnected_nodes(self):
17
+ """
18
+ When nodes are disconnected, efficiency is 0
19
+ """
20
+ assert nx.efficiency(self.G1, 1, 2) == 0
21
+
22
+ def test_local_efficiency_disconnected_graph(self):
23
+ """
24
+ In a disconnected graph the efficiency is 0
25
+ """
26
+ assert nx.local_efficiency(self.G1) == 0
27
+
28
+ def test_efficiency(self):
29
+ assert nx.efficiency(self.G2, 0, 1) == 1
30
+ assert nx.efficiency(self.G2, 0, 2) == 1 / 2
31
+
32
+ def test_global_efficiency(self):
33
+ assert nx.global_efficiency(self.G2) == 5 / 6
34
+
35
+ def test_global_efficiency_complete_graph(self):
36
+ """
37
+ Tests that the average global efficiency of the complete graph is one.
38
+ """
39
+ for n in range(2, 10):
40
+ G = nx.complete_graph(n)
41
+ assert nx.global_efficiency(G) == 1
42
+
43
+ def test_local_efficiency_complete_graph(self):
44
+ """
45
+ Test that the local efficiency for a complete graph with at least 3
46
+ nodes should be one. For a graph with only 2 nodes, the induced
47
+ subgraph has no edges.
48
+ """
49
+ for n in range(3, 10):
50
+ G = nx.complete_graph(n)
51
+ assert nx.local_efficiency(G) == 1
52
+
53
+ def test_using_ego_graph(self):
54
+ """
55
+ Test that the ego graph is used when computing local efficiency.
56
+ For more information, see GitHub issue #2710.
57
+ """
58
+ assert nx.local_efficiency(self.G3) == 7 / 12
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_euler.py ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+
8
+ @pytest.mark.parametrize("f", (nx.is_eulerian, nx.is_semieulerian))
9
+ def test_empty_graph_raises(f):
10
+ G = nx.Graph()
11
+ with pytest.raises(nx.NetworkXPointlessConcept, match="Connectivity is undefined"):
12
+ f(G)
13
+
14
+
15
+ class TestIsEulerian:
16
+ def test_is_eulerian(self):
17
+ assert nx.is_eulerian(nx.complete_graph(5))
18
+ assert nx.is_eulerian(nx.complete_graph(7))
19
+ assert nx.is_eulerian(nx.hypercube_graph(4))
20
+ assert nx.is_eulerian(nx.hypercube_graph(6))
21
+
22
+ assert not nx.is_eulerian(nx.complete_graph(4))
23
+ assert not nx.is_eulerian(nx.complete_graph(6))
24
+ assert not nx.is_eulerian(nx.hypercube_graph(3))
25
+ assert not nx.is_eulerian(nx.hypercube_graph(5))
26
+
27
+ assert not nx.is_eulerian(nx.petersen_graph())
28
+ assert not nx.is_eulerian(nx.path_graph(4))
29
+
30
+ def test_is_eulerian2(self):
31
+ # not connected
32
+ G = nx.Graph()
33
+ G.add_nodes_from([1, 2, 3])
34
+ assert not nx.is_eulerian(G)
35
+ # not strongly connected
36
+ G = nx.DiGraph()
37
+ G.add_nodes_from([1, 2, 3])
38
+ assert not nx.is_eulerian(G)
39
+ G = nx.MultiDiGraph()
40
+ G.add_edge(1, 2)
41
+ G.add_edge(2, 3)
42
+ G.add_edge(2, 3)
43
+ G.add_edge(3, 1)
44
+ assert not nx.is_eulerian(G)
45
+
46
+
47
+ class TestEulerianCircuit:
48
+ def test_eulerian_circuit_cycle(self):
49
+ G = nx.cycle_graph(4)
50
+
51
+ edges = list(nx.eulerian_circuit(G, source=0))
52
+ nodes = [u for u, v in edges]
53
+ assert nodes == [0, 3, 2, 1]
54
+ assert edges == [(0, 3), (3, 2), (2, 1), (1, 0)]
55
+
56
+ edges = list(nx.eulerian_circuit(G, source=1))
57
+ nodes = [u for u, v in edges]
58
+ assert nodes == [1, 2, 3, 0]
59
+ assert edges == [(1, 2), (2, 3), (3, 0), (0, 1)]
60
+
61
+ G = nx.complete_graph(3)
62
+
63
+ edges = list(nx.eulerian_circuit(G, source=0))
64
+ nodes = [u for u, v in edges]
65
+ assert nodes == [0, 2, 1]
66
+ assert edges == [(0, 2), (2, 1), (1, 0)]
67
+
68
+ edges = list(nx.eulerian_circuit(G, source=1))
69
+ nodes = [u for u, v in edges]
70
+ assert nodes == [1, 2, 0]
71
+ assert edges == [(1, 2), (2, 0), (0, 1)]
72
+
73
+ def test_eulerian_circuit_digraph(self):
74
+ G = nx.DiGraph()
75
+ nx.add_cycle(G, [0, 1, 2, 3])
76
+
77
+ edges = list(nx.eulerian_circuit(G, source=0))
78
+ nodes = [u for u, v in edges]
79
+ assert nodes == [0, 1, 2, 3]
80
+ assert edges == [(0, 1), (1, 2), (2, 3), (3, 0)]
81
+
82
+ edges = list(nx.eulerian_circuit(G, source=1))
83
+ nodes = [u for u, v in edges]
84
+ assert nodes == [1, 2, 3, 0]
85
+ assert edges == [(1, 2), (2, 3), (3, 0), (0, 1)]
86
+
87
+ def test_multigraph(self):
88
+ G = nx.MultiGraph()
89
+ nx.add_cycle(G, [0, 1, 2, 3])
90
+ G.add_edge(1, 2)
91
+ G.add_edge(1, 2)
92
+ edges = list(nx.eulerian_circuit(G, source=0))
93
+ nodes = [u for u, v in edges]
94
+ assert nodes == [0, 3, 2, 1, 2, 1]
95
+ assert edges == [(0, 3), (3, 2), (2, 1), (1, 2), (2, 1), (1, 0)]
96
+
97
+ def test_multigraph_with_keys(self):
98
+ G = nx.MultiGraph()
99
+ nx.add_cycle(G, [0, 1, 2, 3])
100
+ G.add_edge(1, 2)
101
+ G.add_edge(1, 2)
102
+ edges = list(nx.eulerian_circuit(G, source=0, keys=True))
103
+ nodes = [u for u, v, k in edges]
104
+ assert nodes == [0, 3, 2, 1, 2, 1]
105
+ assert edges[:2] == [(0, 3, 0), (3, 2, 0)]
106
+ assert collections.Counter(edges[2:5]) == collections.Counter(
107
+ [(2, 1, 0), (1, 2, 1), (2, 1, 2)]
108
+ )
109
+ assert edges[5:] == [(1, 0, 0)]
110
+
111
+ def test_not_eulerian(self):
112
+ with pytest.raises(nx.NetworkXError):
113
+ f = list(nx.eulerian_circuit(nx.complete_graph(4)))
114
+
115
+
116
+ class TestIsSemiEulerian:
117
+ def test_is_semieulerian(self):
118
+ # Test graphs with Eulerian paths but no cycles return True.
119
+ assert nx.is_semieulerian(nx.path_graph(4))
120
+ G = nx.path_graph(6, create_using=nx.DiGraph)
121
+ assert nx.is_semieulerian(G)
122
+
123
+ # Test graphs with Eulerian cycles return False.
124
+ assert not nx.is_semieulerian(nx.complete_graph(5))
125
+ assert not nx.is_semieulerian(nx.complete_graph(7))
126
+ assert not nx.is_semieulerian(nx.hypercube_graph(4))
127
+ assert not nx.is_semieulerian(nx.hypercube_graph(6))
128
+
129
+
130
+ class TestHasEulerianPath:
131
+ def test_has_eulerian_path_cyclic(self):
132
+ # Test graphs with Eulerian cycles return True.
133
+ assert nx.has_eulerian_path(nx.complete_graph(5))
134
+ assert nx.has_eulerian_path(nx.complete_graph(7))
135
+ assert nx.has_eulerian_path(nx.hypercube_graph(4))
136
+ assert nx.has_eulerian_path(nx.hypercube_graph(6))
137
+
138
+ def test_has_eulerian_path_non_cyclic(self):
139
+ # Test graphs with Eulerian paths but no cycles return True.
140
+ assert nx.has_eulerian_path(nx.path_graph(4))
141
+ G = nx.path_graph(6, create_using=nx.DiGraph)
142
+ assert nx.has_eulerian_path(G)
143
+
144
+ def test_has_eulerian_path_directed_graph(self):
145
+ # Test directed graphs and returns False
146
+ G = nx.DiGraph()
147
+ G.add_edges_from([(0, 1), (1, 2), (0, 2)])
148
+ assert not nx.has_eulerian_path(G)
149
+
150
+ # Test directed graphs without isolated node returns True
151
+ G = nx.DiGraph()
152
+ G.add_edges_from([(0, 1), (1, 2), (2, 0)])
153
+ assert nx.has_eulerian_path(G)
154
+
155
+ # Test directed graphs with isolated node returns False
156
+ G.add_node(3)
157
+ assert not nx.has_eulerian_path(G)
158
+
159
+ @pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
160
+ def test_has_eulerian_path_not_weakly_connected(self, G):
161
+ G.add_edges_from([(0, 1), (2, 3), (3, 2)])
162
+ assert not nx.has_eulerian_path(G)
163
+
164
+ @pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
165
+ def test_has_eulerian_path_unbalancedins_more_than_one(self, G):
166
+ G.add_edges_from([(0, 1), (2, 3)])
167
+ assert not nx.has_eulerian_path(G)
168
+
169
+
170
+ class TestFindPathStart:
171
+ def testfind_path_start(self):
172
+ find_path_start = nx.algorithms.euler._find_path_start
173
+ # Test digraphs return correct starting node.
174
+ G = nx.path_graph(6, create_using=nx.DiGraph)
175
+ assert find_path_start(G) == 0
176
+ edges = [(0, 1), (1, 2), (2, 0), (4, 0)]
177
+ assert find_path_start(nx.DiGraph(edges)) == 4
178
+
179
+ # Test graph with no Eulerian path return None.
180
+ edges = [(0, 1), (1, 2), (2, 3), (2, 4)]
181
+ assert find_path_start(nx.DiGraph(edges)) is None
182
+
183
+
184
+ class TestEulerianPath:
185
+ def test_eulerian_path(self):
186
+ x = [(4, 0), (0, 1), (1, 2), (2, 0)]
187
+ for e1, e2 in zip(x, nx.eulerian_path(nx.DiGraph(x))):
188
+ assert e1 == e2
189
+
190
+ def test_eulerian_path_straight_link(self):
191
+ G = nx.DiGraph()
192
+ result = [(1, 2), (2, 3), (3, 4), (4, 5)]
193
+ G.add_edges_from(result)
194
+ assert result == list(nx.eulerian_path(G))
195
+ assert result == list(nx.eulerian_path(G, source=1))
196
+ with pytest.raises(nx.NetworkXError):
197
+ list(nx.eulerian_path(G, source=3))
198
+ with pytest.raises(nx.NetworkXError):
199
+ list(nx.eulerian_path(G, source=4))
200
+ with pytest.raises(nx.NetworkXError):
201
+ list(nx.eulerian_path(G, source=5))
202
+
203
+ def test_eulerian_path_multigraph(self):
204
+ G = nx.MultiDiGraph()
205
+ result = [(2, 1), (1, 2), (2, 1), (1, 2), (2, 3), (3, 4), (4, 3)]
206
+ G.add_edges_from(result)
207
+ assert result == list(nx.eulerian_path(G))
208
+ assert result == list(nx.eulerian_path(G, source=2))
209
+ with pytest.raises(nx.NetworkXError):
210
+ list(nx.eulerian_path(G, source=3))
211
+ with pytest.raises(nx.NetworkXError):
212
+ list(nx.eulerian_path(G, source=4))
213
+
214
+ def test_eulerian_path_eulerian_circuit(self):
215
+ G = nx.DiGraph()
216
+ result = [(1, 2), (2, 3), (3, 4), (4, 1)]
217
+ result2 = [(2, 3), (3, 4), (4, 1), (1, 2)]
218
+ result3 = [(3, 4), (4, 1), (1, 2), (2, 3)]
219
+ G.add_edges_from(result)
220
+ assert result == list(nx.eulerian_path(G))
221
+ assert result == list(nx.eulerian_path(G, source=1))
222
+ assert result2 == list(nx.eulerian_path(G, source=2))
223
+ assert result3 == list(nx.eulerian_path(G, source=3))
224
+
225
+ def test_eulerian_path_undirected(self):
226
+ G = nx.Graph()
227
+ result = [(1, 2), (2, 3), (3, 4), (4, 5)]
228
+ result2 = [(5, 4), (4, 3), (3, 2), (2, 1)]
229
+ G.add_edges_from(result)
230
+ assert list(nx.eulerian_path(G)) in (result, result2)
231
+ assert result == list(nx.eulerian_path(G, source=1))
232
+ assert result2 == list(nx.eulerian_path(G, source=5))
233
+ with pytest.raises(nx.NetworkXError):
234
+ list(nx.eulerian_path(G, source=3))
235
+ with pytest.raises(nx.NetworkXError):
236
+ list(nx.eulerian_path(G, source=2))
237
+
238
+ def test_eulerian_path_multigraph_undirected(self):
239
+ G = nx.MultiGraph()
240
+ result = [(2, 1), (1, 2), (2, 1), (1, 2), (2, 3), (3, 4)]
241
+ G.add_edges_from(result)
242
+ assert result == list(nx.eulerian_path(G))
243
+ assert result == list(nx.eulerian_path(G, source=2))
244
+ with pytest.raises(nx.NetworkXError):
245
+ list(nx.eulerian_path(G, source=3))
246
+ with pytest.raises(nx.NetworkXError):
247
+ list(nx.eulerian_path(G, source=1))
248
+
249
+ @pytest.mark.parametrize(
250
+ ("graph_type", "result"),
251
+ (
252
+ (nx.MultiGraph, [(0, 1, 0), (1, 0, 1)]),
253
+ (nx.MultiDiGraph, [(0, 1, 0), (1, 0, 0)]),
254
+ ),
255
+ )
256
+ def test_eulerian_with_keys(self, graph_type, result):
257
+ G = graph_type([(0, 1), (1, 0)])
258
+ answer = nx.eulerian_path(G, keys=True)
259
+ assert list(answer) == result
260
+
261
+
262
+ class TestEulerize:
263
+ def test_disconnected(self):
264
+ with pytest.raises(nx.NetworkXError):
265
+ G = nx.from_edgelist([(0, 1), (2, 3)])
266
+ nx.eulerize(G)
267
+
268
+ def test_null_graph(self):
269
+ with pytest.raises(nx.NetworkXPointlessConcept):
270
+ nx.eulerize(nx.Graph())
271
+
272
+ def test_null_multigraph(self):
273
+ with pytest.raises(nx.NetworkXPointlessConcept):
274
+ nx.eulerize(nx.MultiGraph())
275
+
276
+ def test_on_empty_graph(self):
277
+ with pytest.raises(nx.NetworkXError):
278
+ nx.eulerize(nx.empty_graph(3))
279
+
280
+ def test_on_eulerian(self):
281
+ G = nx.cycle_graph(3)
282
+ H = nx.eulerize(G)
283
+ assert nx.is_isomorphic(G, H)
284
+
285
+ def test_on_eulerian_multigraph(self):
286
+ G = nx.MultiGraph(nx.cycle_graph(3))
287
+ G.add_edge(0, 1)
288
+ H = nx.eulerize(G)
289
+ assert nx.is_eulerian(H)
290
+
291
+ def test_on_complete_graph(self):
292
+ G = nx.complete_graph(4)
293
+ assert nx.is_eulerian(nx.eulerize(G))
294
+ assert nx.is_eulerian(nx.eulerize(nx.MultiGraph(G)))
295
+
296
+ def test_on_non_eulerian_graph(self):
297
+ G = nx.cycle_graph(18)
298
+ G.add_edge(0, 18)
299
+ G.add_edge(18, 19)
300
+ G.add_edge(17, 19)
301
+ G.add_edge(4, 20)
302
+ G.add_edge(20, 21)
303
+ G.add_edge(21, 22)
304
+ G.add_edge(22, 23)
305
+ G.add_edge(23, 24)
306
+ G.add_edge(24, 25)
307
+ G.add_edge(25, 26)
308
+ G.add_edge(26, 27)
309
+ G.add_edge(27, 28)
310
+ G.add_edge(28, 13)
311
+ assert not nx.is_eulerian(G)
312
+ G = nx.eulerize(G)
313
+ assert nx.is_eulerian(G)
314
+ assert nx.number_of_edges(G) == 39
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_graph_hashing.py ADDED
@@ -0,0 +1,686 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.generators import directed
5
+
6
+ # Unit tests for the :func:`~networkx.weisfeiler_lehman_graph_hash` function
7
+
8
+
9
+ def test_empty_graph_hash():
10
+ """
11
+ empty graphs should give hashes regardless of other params
12
+ """
13
+ G1 = nx.empty_graph()
14
+ G2 = nx.empty_graph()
15
+
16
+ h1 = nx.weisfeiler_lehman_graph_hash(G1)
17
+ h2 = nx.weisfeiler_lehman_graph_hash(G2)
18
+ h3 = nx.weisfeiler_lehman_graph_hash(G2, edge_attr="edge_attr1")
19
+ h4 = nx.weisfeiler_lehman_graph_hash(G2, node_attr="node_attr1")
20
+ h5 = nx.weisfeiler_lehman_graph_hash(
21
+ G2, edge_attr="edge_attr1", node_attr="node_attr1"
22
+ )
23
+ h6 = nx.weisfeiler_lehman_graph_hash(G2, iterations=10)
24
+
25
+ assert h1 == h2
26
+ assert h1 == h3
27
+ assert h1 == h4
28
+ assert h1 == h5
29
+ assert h1 == h6
30
+
31
+
32
+ def test_directed():
33
+ """
34
+ A directed graph with no bi-directional edges should yield different a graph hash
35
+ to the same graph taken as undirected if there are no hash collisions.
36
+ """
37
+ r = 10
38
+ for i in range(r):
39
+ G_directed = nx.gn_graph(10 + r, seed=100 + i)
40
+ G_undirected = nx.to_undirected(G_directed)
41
+
42
+ h_directed = nx.weisfeiler_lehman_graph_hash(G_directed)
43
+ h_undirected = nx.weisfeiler_lehman_graph_hash(G_undirected)
44
+
45
+ assert h_directed != h_undirected
46
+
47
+
48
+ def test_reversed():
49
+ """
50
+ A directed graph with no bi-directional edges should yield different a graph hash
51
+ to the same graph taken with edge directions reversed if there are no hash collisions.
52
+ Here we test a cycle graph which is the minimal counterexample
53
+ """
54
+ G = nx.cycle_graph(5, create_using=nx.DiGraph)
55
+ nx.set_node_attributes(G, {n: str(n) for n in G.nodes()}, name="label")
56
+
57
+ G_reversed = G.reverse()
58
+
59
+ h = nx.weisfeiler_lehman_graph_hash(G, node_attr="label")
60
+ h_reversed = nx.weisfeiler_lehman_graph_hash(G_reversed, node_attr="label")
61
+
62
+ assert h != h_reversed
63
+
64
+
65
+ def test_isomorphic():
66
+ """
67
+ graph hashes should be invariant to node-relabeling (when the output is reindexed
68
+ by the same mapping)
69
+ """
70
+ n, r = 100, 10
71
+ p = 1.0 / r
72
+ for i in range(1, r + 1):
73
+ G1 = nx.erdos_renyi_graph(n, p * i, seed=200 + i)
74
+ G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()})
75
+
76
+ g1_hash = nx.weisfeiler_lehman_graph_hash(G1)
77
+ g2_hash = nx.weisfeiler_lehman_graph_hash(G2)
78
+
79
+ assert g1_hash == g2_hash
80
+
81
+
82
+ def test_isomorphic_edge_attr():
83
+ """
84
+ Isomorphic graphs with differing edge attributes should yield different graph
85
+ hashes if the 'edge_attr' argument is supplied and populated in the graph,
86
+ and there are no hash collisions.
87
+ The output should still be invariant to node-relabeling
88
+ """
89
+ n, r = 100, 10
90
+ p = 1.0 / r
91
+ for i in range(1, r + 1):
92
+ G1 = nx.erdos_renyi_graph(n, p * i, seed=300 + i)
93
+
94
+ for a, b in G1.edges:
95
+ G1[a][b]["edge_attr1"] = f"{a}-{b}-1"
96
+ G1[a][b]["edge_attr2"] = f"{a}-{b}-2"
97
+
98
+ g1_hash_with_edge_attr1 = nx.weisfeiler_lehman_graph_hash(
99
+ G1, edge_attr="edge_attr1"
100
+ )
101
+ g1_hash_with_edge_attr2 = nx.weisfeiler_lehman_graph_hash(
102
+ G1, edge_attr="edge_attr2"
103
+ )
104
+ g1_hash_no_edge_attr = nx.weisfeiler_lehman_graph_hash(G1, edge_attr=None)
105
+
106
+ assert g1_hash_with_edge_attr1 != g1_hash_no_edge_attr
107
+ assert g1_hash_with_edge_attr2 != g1_hash_no_edge_attr
108
+ assert g1_hash_with_edge_attr1 != g1_hash_with_edge_attr2
109
+
110
+ G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()})
111
+
112
+ g2_hash_with_edge_attr1 = nx.weisfeiler_lehman_graph_hash(
113
+ G2, edge_attr="edge_attr1"
114
+ )
115
+ g2_hash_with_edge_attr2 = nx.weisfeiler_lehman_graph_hash(
116
+ G2, edge_attr="edge_attr2"
117
+ )
118
+
119
+ assert g1_hash_with_edge_attr1 == g2_hash_with_edge_attr1
120
+ assert g1_hash_with_edge_attr2 == g2_hash_with_edge_attr2
121
+
122
+
123
+ def test_missing_edge_attr():
124
+ """
125
+ If the 'edge_attr' argument is supplied but is missing from an edge in the graph,
126
+ we should raise a KeyError
127
+ """
128
+ G = nx.Graph()
129
+ G.add_edges_from([(1, 2, {"edge_attr1": "a"}), (1, 3, {})])
130
+ pytest.raises(KeyError, nx.weisfeiler_lehman_graph_hash, G, edge_attr="edge_attr1")
131
+
132
+
133
+ def test_isomorphic_node_attr():
134
+ """
135
+ Isomorphic graphs with differing node attributes should yield different graph
136
+ hashes if the 'node_attr' argument is supplied and populated in the graph, and
137
+ there are no hash collisions.
138
+ The output should still be invariant to node-relabeling
139
+ """
140
+ n, r = 100, 10
141
+ p = 1.0 / r
142
+ for i in range(1, r + 1):
143
+ G1 = nx.erdos_renyi_graph(n, p * i, seed=400 + i)
144
+
145
+ for u in G1.nodes():
146
+ G1.nodes[u]["node_attr1"] = f"{u}-1"
147
+ G1.nodes[u]["node_attr2"] = f"{u}-2"
148
+
149
+ g1_hash_with_node_attr1 = nx.weisfeiler_lehman_graph_hash(
150
+ G1, node_attr="node_attr1"
151
+ )
152
+ g1_hash_with_node_attr2 = nx.weisfeiler_lehman_graph_hash(
153
+ G1, node_attr="node_attr2"
154
+ )
155
+ g1_hash_no_node_attr = nx.weisfeiler_lehman_graph_hash(G1, node_attr=None)
156
+
157
+ assert g1_hash_with_node_attr1 != g1_hash_no_node_attr
158
+ assert g1_hash_with_node_attr2 != g1_hash_no_node_attr
159
+ assert g1_hash_with_node_attr1 != g1_hash_with_node_attr2
160
+
161
+ G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()})
162
+
163
+ g2_hash_with_node_attr1 = nx.weisfeiler_lehman_graph_hash(
164
+ G2, node_attr="node_attr1"
165
+ )
166
+ g2_hash_with_node_attr2 = nx.weisfeiler_lehman_graph_hash(
167
+ G2, node_attr="node_attr2"
168
+ )
169
+
170
+ assert g1_hash_with_node_attr1 == g2_hash_with_node_attr1
171
+ assert g1_hash_with_node_attr2 == g2_hash_with_node_attr2
172
+
173
+
174
+ def test_missing_node_attr():
175
+ """
176
+ If the 'node_attr' argument is supplied but is missing from a node in the graph,
177
+ we should raise a KeyError
178
+ """
179
+ G = nx.Graph()
180
+ G.add_nodes_from([(1, {"node_attr1": "a"}), (2, {})])
181
+ G.add_edges_from([(1, 2), (2, 3), (3, 1), (1, 4)])
182
+ pytest.raises(KeyError, nx.weisfeiler_lehman_graph_hash, G, node_attr="node_attr1")
183
+
184
+
185
+ def test_isomorphic_edge_attr_and_node_attr():
186
+ """
187
+ Isomorphic graphs with differing node attributes should yield different graph
188
+ hashes if the 'node_attr' and 'edge_attr' argument is supplied and populated in
189
+ the graph, and there are no hash collisions.
190
+ The output should still be invariant to node-relabeling
191
+ """
192
+ n, r = 100, 10
193
+ p = 1.0 / r
194
+ for i in range(1, r + 1):
195
+ G1 = nx.erdos_renyi_graph(n, p * i, seed=500 + i)
196
+
197
+ for u in G1.nodes():
198
+ G1.nodes[u]["node_attr1"] = f"{u}-1"
199
+ G1.nodes[u]["node_attr2"] = f"{u}-2"
200
+
201
+ for a, b in G1.edges:
202
+ G1[a][b]["edge_attr1"] = f"{a}-{b}-1"
203
+ G1[a][b]["edge_attr2"] = f"{a}-{b}-2"
204
+
205
+ g1_hash_edge1_node1 = nx.weisfeiler_lehman_graph_hash(
206
+ G1, edge_attr="edge_attr1", node_attr="node_attr1"
207
+ )
208
+ g1_hash_edge2_node2 = nx.weisfeiler_lehman_graph_hash(
209
+ G1, edge_attr="edge_attr2", node_attr="node_attr2"
210
+ )
211
+ g1_hash_edge1_node2 = nx.weisfeiler_lehman_graph_hash(
212
+ G1, edge_attr="edge_attr1", node_attr="node_attr2"
213
+ )
214
+ g1_hash_no_attr = nx.weisfeiler_lehman_graph_hash(G1)
215
+
216
+ assert g1_hash_edge1_node1 != g1_hash_no_attr
217
+ assert g1_hash_edge2_node2 != g1_hash_no_attr
218
+ assert g1_hash_edge1_node1 != g1_hash_edge2_node2
219
+ assert g1_hash_edge1_node2 != g1_hash_edge2_node2
220
+ assert g1_hash_edge1_node2 != g1_hash_edge1_node1
221
+
222
+ G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()})
223
+
224
+ g2_hash_edge1_node1 = nx.weisfeiler_lehman_graph_hash(
225
+ G2, edge_attr="edge_attr1", node_attr="node_attr1"
226
+ )
227
+ g2_hash_edge2_node2 = nx.weisfeiler_lehman_graph_hash(
228
+ G2, edge_attr="edge_attr2", node_attr="node_attr2"
229
+ )
230
+
231
+ assert g1_hash_edge1_node1 == g2_hash_edge1_node1
232
+ assert g1_hash_edge2_node2 == g2_hash_edge2_node2
233
+
234
+
235
+ def test_digest_size():
236
+ """
237
+ The hash string lengths should be as expected for a variety of graphs and
238
+ digest sizes
239
+ """
240
+ n, r = 100, 10
241
+ p = 1.0 / r
242
+ for i in range(1, r + 1):
243
+ G = nx.erdos_renyi_graph(n, p * i, seed=1000 + i)
244
+
245
+ h16 = nx.weisfeiler_lehman_graph_hash(G)
246
+ h32 = nx.weisfeiler_lehman_graph_hash(G, digest_size=32)
247
+
248
+ assert h16 != h32
249
+ assert len(h16) == 16 * 2
250
+ assert len(h32) == 32 * 2
251
+
252
+
253
+ # Unit tests for the :func:`~networkx.weisfeiler_lehman_hash_subgraphs` function
254
+
255
+
256
+ def is_subiteration(a, b):
257
+ """
258
+ returns True if that each hash sequence in 'a' is a prefix for
259
+ the corresponding sequence indexed by the same node in 'b'.
260
+ """
261
+ return all(b[node][: len(hashes)] == hashes for node, hashes in a.items())
262
+
263
+
264
+ def hexdigest_sizes_correct(a, digest_size):
265
+ """
266
+ returns True if all hex digest sizes are the expected length in a node:subgraph-hashes
267
+ dictionary. Hex digest string length == 2 * bytes digest length since each pair of hex
268
+ digits encodes 1 byte (https://docs.python.org/3/library/hashlib.html)
269
+ """
270
+ hexdigest_size = digest_size * 2
271
+ list_digest_sizes_correct = lambda l: all(len(x) == hexdigest_size for x in l)
272
+ return all(list_digest_sizes_correct(hashes) for hashes in a.values())
273
+
274
+
275
+ def test_empty_graph_subgraph_hash():
276
+ """ "
277
+ empty graphs should give empty dict subgraph hashes regardless of other params
278
+ """
279
+ G = nx.empty_graph()
280
+
281
+ subgraph_hashes1 = nx.weisfeiler_lehman_subgraph_hashes(G)
282
+ subgraph_hashes2 = nx.weisfeiler_lehman_subgraph_hashes(G, edge_attr="edge_attr")
283
+ subgraph_hashes3 = nx.weisfeiler_lehman_subgraph_hashes(G, node_attr="edge_attr")
284
+ subgraph_hashes4 = nx.weisfeiler_lehman_subgraph_hashes(G, iterations=2)
285
+ subgraph_hashes5 = nx.weisfeiler_lehman_subgraph_hashes(G, digest_size=64)
286
+
287
+ assert subgraph_hashes1 == {}
288
+ assert subgraph_hashes2 == {}
289
+ assert subgraph_hashes3 == {}
290
+ assert subgraph_hashes4 == {}
291
+ assert subgraph_hashes5 == {}
292
+
293
+
294
+ def test_directed_subgraph_hash():
295
+ """
296
+ A directed graph with no bi-directional edges should yield different subgraph hashes
297
+ to the same graph taken as undirected, if all hashes don't collide.
298
+ """
299
+ r = 10
300
+ for i in range(r):
301
+ G_directed = nx.gn_graph(10 + r, seed=100 + i)
302
+ G_undirected = nx.to_undirected(G_directed)
303
+
304
+ directed_subgraph_hashes = nx.weisfeiler_lehman_subgraph_hashes(G_directed)
305
+ undirected_subgraph_hashes = nx.weisfeiler_lehman_subgraph_hashes(G_undirected)
306
+
307
+ assert directed_subgraph_hashes != undirected_subgraph_hashes
308
+
309
+
310
+ def test_reversed_subgraph_hash():
311
+ """
312
+ A directed graph with no bi-directional edges should yield different subgraph hashes
313
+ to the same graph taken with edge directions reversed if there are no hash collisions.
314
+ Here we test a cycle graph which is the minimal counterexample
315
+ """
316
+ G = nx.cycle_graph(5, create_using=nx.DiGraph)
317
+ nx.set_node_attributes(G, {n: str(n) for n in G.nodes()}, name="label")
318
+
319
+ G_reversed = G.reverse()
320
+
321
+ h = nx.weisfeiler_lehman_subgraph_hashes(G, node_attr="label")
322
+ h_reversed = nx.weisfeiler_lehman_subgraph_hashes(G_reversed, node_attr="label")
323
+
324
+ assert h != h_reversed
325
+
326
+
327
+ def test_isomorphic_subgraph_hash():
328
+ """
329
+ the subgraph hashes should be invariant to node-relabeling when the output is reindexed
330
+ by the same mapping and all hashes don't collide.
331
+ """
332
+ n, r = 100, 10
333
+ p = 1.0 / r
334
+ for i in range(1, r + 1):
335
+ G1 = nx.erdos_renyi_graph(n, p * i, seed=200 + i)
336
+ G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()})
337
+
338
+ g1_subgraph_hashes = nx.weisfeiler_lehman_subgraph_hashes(G1)
339
+ g2_subgraph_hashes = nx.weisfeiler_lehman_subgraph_hashes(G2)
340
+
341
+ assert g1_subgraph_hashes == {-1 * k: v for k, v in g2_subgraph_hashes.items()}
342
+
343
+
344
+ def test_isomorphic_edge_attr_subgraph_hash():
345
+ """
346
+ Isomorphic graphs with differing edge attributes should yield different subgraph
347
+ hashes if the 'edge_attr' argument is supplied and populated in the graph, and
348
+ all hashes don't collide.
349
+ The output should still be invariant to node-relabeling
350
+ """
351
+ n, r = 100, 10
352
+ p = 1.0 / r
353
+ for i in range(1, r + 1):
354
+ G1 = nx.erdos_renyi_graph(n, p * i, seed=300 + i)
355
+
356
+ for a, b in G1.edges:
357
+ G1[a][b]["edge_attr1"] = f"{a}-{b}-1"
358
+ G1[a][b]["edge_attr2"] = f"{a}-{b}-2"
359
+
360
+ g1_hash_with_edge_attr1 = nx.weisfeiler_lehman_subgraph_hashes(
361
+ G1, edge_attr="edge_attr1"
362
+ )
363
+ g1_hash_with_edge_attr2 = nx.weisfeiler_lehman_subgraph_hashes(
364
+ G1, edge_attr="edge_attr2"
365
+ )
366
+ g1_hash_no_edge_attr = nx.weisfeiler_lehman_subgraph_hashes(G1, edge_attr=None)
367
+
368
+ assert g1_hash_with_edge_attr1 != g1_hash_no_edge_attr
369
+ assert g1_hash_with_edge_attr2 != g1_hash_no_edge_attr
370
+ assert g1_hash_with_edge_attr1 != g1_hash_with_edge_attr2
371
+
372
+ G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()})
373
+
374
+ g2_hash_with_edge_attr1 = nx.weisfeiler_lehman_subgraph_hashes(
375
+ G2, edge_attr="edge_attr1"
376
+ )
377
+ g2_hash_with_edge_attr2 = nx.weisfeiler_lehman_subgraph_hashes(
378
+ G2, edge_attr="edge_attr2"
379
+ )
380
+
381
+ assert g1_hash_with_edge_attr1 == {
382
+ -1 * k: v for k, v in g2_hash_with_edge_attr1.items()
383
+ }
384
+ assert g1_hash_with_edge_attr2 == {
385
+ -1 * k: v for k, v in g2_hash_with_edge_attr2.items()
386
+ }
387
+
388
+
389
+ def test_missing_edge_attr_subgraph_hash():
390
+ """
391
+ If the 'edge_attr' argument is supplied but is missing from an edge in the graph,
392
+ we should raise a KeyError
393
+ """
394
+ G = nx.Graph()
395
+ G.add_edges_from([(1, 2, {"edge_attr1": "a"}), (1, 3, {})])
396
+ pytest.raises(
397
+ KeyError, nx.weisfeiler_lehman_subgraph_hashes, G, edge_attr="edge_attr1"
398
+ )
399
+
400
+
401
+ def test_isomorphic_node_attr_subgraph_hash():
402
+ """
403
+ Isomorphic graphs with differing node attributes should yield different subgraph
404
+ hashes if the 'node_attr' argument is supplied and populated in the graph, and
405
+ all hashes don't collide.
406
+ The output should still be invariant to node-relabeling
407
+ """
408
+ n, r = 100, 10
409
+ p = 1.0 / r
410
+ for i in range(1, r + 1):
411
+ G1 = nx.erdos_renyi_graph(n, p * i, seed=400 + i)
412
+
413
+ for u in G1.nodes():
414
+ G1.nodes[u]["node_attr1"] = f"{u}-1"
415
+ G1.nodes[u]["node_attr2"] = f"{u}-2"
416
+
417
+ g1_hash_with_node_attr1 = nx.weisfeiler_lehman_subgraph_hashes(
418
+ G1, node_attr="node_attr1"
419
+ )
420
+ g1_hash_with_node_attr2 = nx.weisfeiler_lehman_subgraph_hashes(
421
+ G1, node_attr="node_attr2"
422
+ )
423
+ g1_hash_no_node_attr = nx.weisfeiler_lehman_subgraph_hashes(G1, node_attr=None)
424
+
425
+ assert g1_hash_with_node_attr1 != g1_hash_no_node_attr
426
+ assert g1_hash_with_node_attr2 != g1_hash_no_node_attr
427
+ assert g1_hash_with_node_attr1 != g1_hash_with_node_attr2
428
+
429
+ G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()})
430
+
431
+ g2_hash_with_node_attr1 = nx.weisfeiler_lehman_subgraph_hashes(
432
+ G2, node_attr="node_attr1"
433
+ )
434
+ g2_hash_with_node_attr2 = nx.weisfeiler_lehman_subgraph_hashes(
435
+ G2, node_attr="node_attr2"
436
+ )
437
+
438
+ assert g1_hash_with_node_attr1 == {
439
+ -1 * k: v for k, v in g2_hash_with_node_attr1.items()
440
+ }
441
+ assert g1_hash_with_node_attr2 == {
442
+ -1 * k: v for k, v in g2_hash_with_node_attr2.items()
443
+ }
444
+
445
+
446
+ def test_missing_node_attr_subgraph_hash():
447
+ """
448
+ If the 'node_attr' argument is supplied but is missing from a node in the graph,
449
+ we should raise a KeyError
450
+ """
451
+ G = nx.Graph()
452
+ G.add_nodes_from([(1, {"node_attr1": "a"}), (2, {})])
453
+ G.add_edges_from([(1, 2), (2, 3), (3, 1), (1, 4)])
454
+ pytest.raises(
455
+ KeyError, nx.weisfeiler_lehman_subgraph_hashes, G, node_attr="node_attr1"
456
+ )
457
+
458
+
459
+ def test_isomorphic_edge_attr_and_node_attr_subgraph_hash():
460
+ """
461
+ Isomorphic graphs with differing node attributes should yield different subgraph
462
+ hashes if the 'node_attr' and 'edge_attr' argument is supplied and populated in
463
+ the graph, and all hashes don't collide
464
+ The output should still be invariant to node-relabeling
465
+ """
466
+ n, r = 100, 10
467
+ p = 1.0 / r
468
+ for i in range(1, r + 1):
469
+ G1 = nx.erdos_renyi_graph(n, p * i, seed=500 + i)
470
+
471
+ for u in G1.nodes():
472
+ G1.nodes[u]["node_attr1"] = f"{u}-1"
473
+ G1.nodes[u]["node_attr2"] = f"{u}-2"
474
+
475
+ for a, b in G1.edges:
476
+ G1[a][b]["edge_attr1"] = f"{a}-{b}-1"
477
+ G1[a][b]["edge_attr2"] = f"{a}-{b}-2"
478
+
479
+ g1_hash_edge1_node1 = nx.weisfeiler_lehman_subgraph_hashes(
480
+ G1, edge_attr="edge_attr1", node_attr="node_attr1"
481
+ )
482
+ g1_hash_edge2_node2 = nx.weisfeiler_lehman_subgraph_hashes(
483
+ G1, edge_attr="edge_attr2", node_attr="node_attr2"
484
+ )
485
+ g1_hash_edge1_node2 = nx.weisfeiler_lehman_subgraph_hashes(
486
+ G1, edge_attr="edge_attr1", node_attr="node_attr2"
487
+ )
488
+ g1_hash_no_attr = nx.weisfeiler_lehman_subgraph_hashes(G1)
489
+
490
+ assert g1_hash_edge1_node1 != g1_hash_no_attr
491
+ assert g1_hash_edge2_node2 != g1_hash_no_attr
492
+ assert g1_hash_edge1_node1 != g1_hash_edge2_node2
493
+ assert g1_hash_edge1_node2 != g1_hash_edge2_node2
494
+ assert g1_hash_edge1_node2 != g1_hash_edge1_node1
495
+
496
+ G2 = nx.relabel_nodes(G1, {u: -1 * u for u in G1.nodes()})
497
+
498
+ g2_hash_edge1_node1 = nx.weisfeiler_lehman_subgraph_hashes(
499
+ G2, edge_attr="edge_attr1", node_attr="node_attr1"
500
+ )
501
+ g2_hash_edge2_node2 = nx.weisfeiler_lehman_subgraph_hashes(
502
+ G2, edge_attr="edge_attr2", node_attr="node_attr2"
503
+ )
504
+
505
+ assert g1_hash_edge1_node1 == {
506
+ -1 * k: v for k, v in g2_hash_edge1_node1.items()
507
+ }
508
+ assert g1_hash_edge2_node2 == {
509
+ -1 * k: v for k, v in g2_hash_edge2_node2.items()
510
+ }
511
+
512
+
513
+ def test_iteration_depth():
514
+ """
515
+ All nodes should have the correct number of subgraph hashes in the output when
516
+ using degree as initial node labels
517
+ Subsequent iteration depths for the same graph should be additive for each node
518
+ """
519
+ n, r = 100, 10
520
+ p = 1.0 / r
521
+ for i in range(1, r + 1):
522
+ G = nx.erdos_renyi_graph(n, p * i, seed=600 + i)
523
+
524
+ depth3 = nx.weisfeiler_lehman_subgraph_hashes(G, iterations=3)
525
+ depth4 = nx.weisfeiler_lehman_subgraph_hashes(G, iterations=4)
526
+ depth5 = nx.weisfeiler_lehman_subgraph_hashes(G, iterations=5)
527
+
528
+ assert all(len(hashes) == 3 for hashes in depth3.values())
529
+ assert all(len(hashes) == 4 for hashes in depth4.values())
530
+ assert all(len(hashes) == 5 for hashes in depth5.values())
531
+
532
+ assert is_subiteration(depth3, depth4)
533
+ assert is_subiteration(depth4, depth5)
534
+ assert is_subiteration(depth3, depth5)
535
+
536
+
537
+ def test_iteration_depth_edge_attr():
538
+ """
539
+ All nodes should have the correct number of subgraph hashes in the output when
540
+ setting initial node labels empty and using an edge attribute when aggregating
541
+ neighborhoods.
542
+ Subsequent iteration depths for the same graph should be additive for each node
543
+ """
544
+ n, r = 100, 10
545
+ p = 1.0 / r
546
+ for i in range(1, r + 1):
547
+ G = nx.erdos_renyi_graph(n, p * i, seed=700 + i)
548
+
549
+ for a, b in G.edges:
550
+ G[a][b]["edge_attr1"] = f"{a}-{b}-1"
551
+
552
+ depth3 = nx.weisfeiler_lehman_subgraph_hashes(
553
+ G, edge_attr="edge_attr1", iterations=3
554
+ )
555
+ depth4 = nx.weisfeiler_lehman_subgraph_hashes(
556
+ G, edge_attr="edge_attr1", iterations=4
557
+ )
558
+ depth5 = nx.weisfeiler_lehman_subgraph_hashes(
559
+ G, edge_attr="edge_attr1", iterations=5
560
+ )
561
+
562
+ assert all(len(hashes) == 3 for hashes in depth3.values())
563
+ assert all(len(hashes) == 4 for hashes in depth4.values())
564
+ assert all(len(hashes) == 5 for hashes in depth5.values())
565
+
566
+ assert is_subiteration(depth3, depth4)
567
+ assert is_subiteration(depth4, depth5)
568
+ assert is_subiteration(depth3, depth5)
569
+
570
+
571
+ def test_iteration_depth_node_attr():
572
+ """
573
+ All nodes should have the correct number of subgraph hashes in the output when
574
+ setting initial node labels to an attribute.
575
+ Subsequent iteration depths for the same graph should be additive for each node
576
+ """
577
+ n, r = 100, 10
578
+ p = 1.0 / r
579
+ for i in range(1, r + 1):
580
+ G = nx.erdos_renyi_graph(n, p * i, seed=800 + i)
581
+
582
+ for u in G.nodes():
583
+ G.nodes[u]["node_attr1"] = f"{u}-1"
584
+
585
+ depth3 = nx.weisfeiler_lehman_subgraph_hashes(
586
+ G, node_attr="node_attr1", iterations=3
587
+ )
588
+ depth4 = nx.weisfeiler_lehman_subgraph_hashes(
589
+ G, node_attr="node_attr1", iterations=4
590
+ )
591
+ depth5 = nx.weisfeiler_lehman_subgraph_hashes(
592
+ G, node_attr="node_attr1", iterations=5
593
+ )
594
+
595
+ assert all(len(hashes) == 3 for hashes in depth3.values())
596
+ assert all(len(hashes) == 4 for hashes in depth4.values())
597
+ assert all(len(hashes) == 5 for hashes in depth5.values())
598
+
599
+ assert is_subiteration(depth3, depth4)
600
+ assert is_subiteration(depth4, depth5)
601
+ assert is_subiteration(depth3, depth5)
602
+
603
+
604
+ def test_iteration_depth_node_edge_attr():
605
+ """
606
+ All nodes should have the correct number of subgraph hashes in the output when
607
+ setting initial node labels to an attribute and also using an edge attribute when
608
+ aggregating neighborhoods.
609
+ Subsequent iteration depths for the same graph should be additive for each node
610
+ """
611
+ n, r = 100, 10
612
+ p = 1.0 / r
613
+ for i in range(1, r + 1):
614
+ G = nx.erdos_renyi_graph(n, p * i, seed=900 + i)
615
+
616
+ for u in G.nodes():
617
+ G.nodes[u]["node_attr1"] = f"{u}-1"
618
+
619
+ for a, b in G.edges:
620
+ G[a][b]["edge_attr1"] = f"{a}-{b}-1"
621
+
622
+ depth3 = nx.weisfeiler_lehman_subgraph_hashes(
623
+ G, edge_attr="edge_attr1", node_attr="node_attr1", iterations=3
624
+ )
625
+ depth4 = nx.weisfeiler_lehman_subgraph_hashes(
626
+ G, edge_attr="edge_attr1", node_attr="node_attr1", iterations=4
627
+ )
628
+ depth5 = nx.weisfeiler_lehman_subgraph_hashes(
629
+ G, edge_attr="edge_attr1", node_attr="node_attr1", iterations=5
630
+ )
631
+
632
+ assert all(len(hashes) == 3 for hashes in depth3.values())
633
+ assert all(len(hashes) == 4 for hashes in depth4.values())
634
+ assert all(len(hashes) == 5 for hashes in depth5.values())
635
+
636
+ assert is_subiteration(depth3, depth4)
637
+ assert is_subiteration(depth4, depth5)
638
+ assert is_subiteration(depth3, depth5)
639
+
640
+
641
+ def test_digest_size_subgraph_hash():
642
+ """
643
+ The hash string lengths should be as expected for a variety of graphs and
644
+ digest sizes
645
+ """
646
+ n, r = 100, 10
647
+ p = 1.0 / r
648
+ for i in range(1, r + 1):
649
+ G = nx.erdos_renyi_graph(n, p * i, seed=1000 + i)
650
+
651
+ digest_size16_hashes = nx.weisfeiler_lehman_subgraph_hashes(G)
652
+ digest_size32_hashes = nx.weisfeiler_lehman_subgraph_hashes(G, digest_size=32)
653
+
654
+ assert digest_size16_hashes != digest_size32_hashes
655
+
656
+ assert hexdigest_sizes_correct(digest_size16_hashes, 16)
657
+ assert hexdigest_sizes_correct(digest_size32_hashes, 32)
658
+
659
+
660
+ def test_initial_node_labels_subgraph_hash():
661
+ """
662
+ Including the hashed initial label prepends an extra hash to the lists
663
+ """
664
+ G = nx.path_graph(5)
665
+ nx.set_node_attributes(G, {i: int(0 < i < 4) for i in G}, "label")
666
+ # initial node labels:
667
+ # 0--1--1--1--0
668
+
669
+ without_initial_label = nx.weisfeiler_lehman_subgraph_hashes(G, node_attr="label")
670
+ assert all(len(v) == 3 for v in without_initial_label.values())
671
+ # 3 different 1 hop nhds
672
+ assert len({v[0] for v in without_initial_label.values()}) == 3
673
+
674
+ with_initial_label = nx.weisfeiler_lehman_subgraph_hashes(
675
+ G, node_attr="label", include_initial_labels=True
676
+ )
677
+ assert all(len(v) == 4 for v in with_initial_label.values())
678
+ # 2 different initial labels
679
+ assert len({v[0] for v in with_initial_label.values()}) == 2
680
+
681
+ # check hashes match otherwise
682
+ for u in G:
683
+ for a, b in zip(
684
+ with_initial_label[u][1:], without_initial_label[u], strict=True
685
+ ):
686
+ assert a == b
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_graphical.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ def test_valid_degree_sequence1():
7
+ n = 100
8
+ p = 0.3
9
+ for i in range(10):
10
+ G = nx.erdos_renyi_graph(n, p)
11
+ deg = (d for n, d in G.degree())
12
+ assert nx.is_graphical(deg, method="eg")
13
+ assert nx.is_graphical(deg, method="hh")
14
+
15
+
16
+ def test_valid_degree_sequence2():
17
+ n = 100
18
+ for i in range(10):
19
+ G = nx.barabasi_albert_graph(n, 1)
20
+ deg = (d for n, d in G.degree())
21
+ assert nx.is_graphical(deg, method="eg")
22
+ assert nx.is_graphical(deg, method="hh")
23
+
24
+
25
+ def test_string_input():
26
+ pytest.raises(nx.NetworkXException, nx.is_graphical, [], "foo")
27
+ pytest.raises(nx.NetworkXException, nx.is_graphical, ["red"], "hh")
28
+ pytest.raises(nx.NetworkXException, nx.is_graphical, ["red"], "eg")
29
+
30
+
31
+ def test_non_integer_input():
32
+ pytest.raises(nx.NetworkXException, nx.is_graphical, [72.5], "eg")
33
+ pytest.raises(nx.NetworkXException, nx.is_graphical, [72.5], "hh")
34
+
35
+
36
+ def test_negative_input():
37
+ assert not nx.is_graphical([-1], "hh")
38
+ assert not nx.is_graphical([-1], "eg")
39
+
40
+
41
+ class TestAtlas:
42
+ @classmethod
43
+ def setup_class(cls):
44
+ global atlas
45
+ from networkx.generators import atlas
46
+
47
+ cls.GAG = atlas.graph_atlas_g()
48
+
49
+ def test_atlas(self):
50
+ for graph in self.GAG:
51
+ deg = (d for n, d in graph.degree())
52
+ assert nx.is_graphical(deg, method="eg")
53
+ assert nx.is_graphical(deg, method="hh")
54
+
55
+
56
+ def test_small_graph_true():
57
+ z = [5, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
58
+ assert nx.is_graphical(z, method="hh")
59
+ assert nx.is_graphical(z, method="eg")
60
+ z = [10, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2]
61
+ assert nx.is_graphical(z, method="hh")
62
+ assert nx.is_graphical(z, method="eg")
63
+ z = [1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
64
+ assert nx.is_graphical(z, method="hh")
65
+ assert nx.is_graphical(z, method="eg")
66
+
67
+
68
+ def test_small_graph_false():
69
+ z = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
70
+ assert not nx.is_graphical(z, method="hh")
71
+ assert not nx.is_graphical(z, method="eg")
72
+ z = [6, 5, 4, 4, 2, 1, 1, 1]
73
+ assert not nx.is_graphical(z, method="hh")
74
+ assert not nx.is_graphical(z, method="eg")
75
+ z = [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
76
+ assert not nx.is_graphical(z, method="hh")
77
+ assert not nx.is_graphical(z, method="eg")
78
+
79
+
80
+ def test_directed_degree_sequence():
81
+ # Test a range of valid directed degree sequences
82
+ n, r = 100, 10
83
+ p = 1.0 / r
84
+ for i in range(r):
85
+ G = nx.erdos_renyi_graph(n, p * (i + 1), None, True)
86
+ din = (d for n, d in G.in_degree())
87
+ dout = (d for n, d in G.out_degree())
88
+ assert nx.is_digraphical(din, dout)
89
+
90
+
91
+ def test_small_directed_sequences():
92
+ dout = [5, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
93
+ din = [3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1]
94
+ assert nx.is_digraphical(din, dout)
95
+ # Test nongraphical directed sequence
96
+ dout = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
97
+ din = [103, 102, 102, 102, 102, 102, 102, 102, 102, 102]
98
+ assert not nx.is_digraphical(din, dout)
99
+ # Test digraphical small sequence
100
+ dout = [1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
101
+ din = [2, 2, 2, 2, 2, 2, 2, 2, 1, 1]
102
+ assert nx.is_digraphical(din, dout)
103
+ # Test nonmatching sum
104
+ din = [2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1]
105
+ assert not nx.is_digraphical(din, dout)
106
+ # Test for negative integer in sequence
107
+ din = [2, 2, 2, -2, 2, 2, 2, 2, 1, 1, 4]
108
+ assert not nx.is_digraphical(din, dout)
109
+ # Test for noninteger
110
+ din = dout = [1, 1, 1.1, 1]
111
+ assert not nx.is_digraphical(din, dout)
112
+ din = dout = [1, 1, "rer", 1]
113
+ assert not nx.is_digraphical(din, dout)
114
+
115
+
116
+ def test_multi_sequence():
117
+ # Test nongraphical multi sequence
118
+ seq = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1]
119
+ assert not nx.is_multigraphical(seq)
120
+ # Test small graphical multi sequence
121
+ seq = [6, 5, 4, 4, 2, 1, 1, 1]
122
+ assert nx.is_multigraphical(seq)
123
+ # Test for negative integer in sequence
124
+ seq = [6, 5, 4, -4, 2, 1, 1, 1]
125
+ assert not nx.is_multigraphical(seq)
126
+ # Test for sequence with odd sum
127
+ seq = [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
128
+ assert not nx.is_multigraphical(seq)
129
+ # Test for noninteger
130
+ seq = [1, 1, 1.1, 1]
131
+ assert not nx.is_multigraphical(seq)
132
+ seq = [1, 1, "rer", 1]
133
+ assert not nx.is_multigraphical(seq)
134
+
135
+
136
+ def test_pseudo_sequence():
137
+ # Test small valid pseudo sequence
138
+ seq = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1]
139
+ assert nx.is_pseudographical(seq)
140
+ # Test for sequence with odd sum
141
+ seq = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
142
+ assert not nx.is_pseudographical(seq)
143
+ # Test for negative integer in sequence
144
+ seq = [1000, 3, 3, 3, 3, 2, 2, -2, 1, 1]
145
+ assert not nx.is_pseudographical(seq)
146
+ # Test for noninteger
147
+ seq = [1, 1, 1.1, 1]
148
+ assert not nx.is_pseudographical(seq)
149
+ seq = [1, 1, "rer", 1]
150
+ assert not nx.is_pseudographical(seq)
151
+
152
+
153
+ def test_numpy_degree_sequence():
154
+ np = pytest.importorskip("numpy")
155
+ ds = np.array([1, 2, 2, 2, 1], dtype=np.int64)
156
+ assert nx.is_graphical(ds, "eg")
157
+ assert nx.is_graphical(ds, "hh")
158
+ ds = np.array([1, 2, 2, 2, 1], dtype=np.float64)
159
+ assert nx.is_graphical(ds, "eg")
160
+ assert nx.is_graphical(ds, "hh")
161
+ ds = np.array([1.1, 2, 2, 2, 1], dtype=np.float64)
162
+ pytest.raises(nx.NetworkXException, nx.is_graphical, ds, "eg")
163
+ pytest.raises(nx.NetworkXException, nx.is_graphical, ds, "hh")
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_isolate.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.isolates` module."""
2
+
3
+ import networkx as nx
4
+
5
+
6
+ def test_is_isolate():
7
+ G = nx.Graph()
8
+ G.add_edge(0, 1)
9
+ G.add_node(2)
10
+ assert not nx.is_isolate(G, 0)
11
+ assert not nx.is_isolate(G, 1)
12
+ assert nx.is_isolate(G, 2)
13
+
14
+
15
+ def test_isolates():
16
+ G = nx.Graph()
17
+ G.add_edge(0, 1)
18
+ G.add_nodes_from([2, 3])
19
+ assert sorted(nx.isolates(G)) == [2, 3]
20
+
21
+
22
+ def test_number_of_isolates():
23
+ G = nx.Graph()
24
+ G.add_edge(0, 1)
25
+ G.add_nodes_from([2, 3])
26
+ assert nx.number_of_isolates(G) == 2
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_link_prediction.py ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from functools import partial
3
+
4
+ import pytest
5
+
6
+ import networkx as nx
7
+
8
+
9
+ def _test_func(G, ebunch, expected, predict_func, **kwargs):
10
+ result = predict_func(G, ebunch, **kwargs)
11
+ exp_dict = {tuple(sorted([u, v])): score for u, v, score in expected}
12
+ res_dict = {tuple(sorted([u, v])): score for u, v, score in result}
13
+
14
+ assert len(exp_dict) == len(res_dict)
15
+ for p in exp_dict:
16
+ assert exp_dict[p] == pytest.approx(res_dict[p], abs=1e-7)
17
+
18
+
19
+ class TestResourceAllocationIndex:
20
+ @classmethod
21
+ def setup_class(cls):
22
+ cls.func = staticmethod(nx.resource_allocation_index)
23
+ cls.test = partial(_test_func, predict_func=cls.func)
24
+
25
+ def test_K5(self):
26
+ G = nx.complete_graph(5)
27
+ self.test(G, [(0, 1)], [(0, 1, 0.75)])
28
+
29
+ def test_P3(self):
30
+ G = nx.path_graph(3)
31
+ self.test(G, [(0, 2)], [(0, 2, 0.5)])
32
+
33
+ def test_S4(self):
34
+ G = nx.star_graph(4)
35
+ self.test(G, [(1, 2)], [(1, 2, 0.25)])
36
+
37
+ @pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph))
38
+ def test_notimplemented(self, graph_type):
39
+ assert pytest.raises(
40
+ nx.NetworkXNotImplemented, self.func, graph_type([(0, 1), (1, 2)]), [(0, 2)]
41
+ )
42
+
43
+ def test_node_not_found(self):
44
+ G = nx.Graph()
45
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
46
+ assert pytest.raises(nx.NodeNotFound, self.func, G, [(0, 4)])
47
+
48
+ def test_no_common_neighbor(self):
49
+ G = nx.Graph()
50
+ G.add_nodes_from([0, 1])
51
+ self.test(G, [(0, 1)], [(0, 1, 0)])
52
+
53
+ def test_equal_nodes(self):
54
+ G = nx.complete_graph(4)
55
+ self.test(G, [(0, 0)], [(0, 0, 1)])
56
+
57
+ def test_all_nonexistent_edges(self):
58
+ G = nx.Graph()
59
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
60
+ self.test(G, None, [(0, 3, 0.5), (1, 2, 0.5), (1, 3, 0)])
61
+
62
+
63
+ class TestJaccardCoefficient:
64
+ @classmethod
65
+ def setup_class(cls):
66
+ cls.func = staticmethod(nx.jaccard_coefficient)
67
+ cls.test = partial(_test_func, predict_func=cls.func)
68
+
69
+ def test_K5(self):
70
+ G = nx.complete_graph(5)
71
+ self.test(G, [(0, 1)], [(0, 1, 0.6)])
72
+
73
+ def test_P4(self):
74
+ G = nx.path_graph(4)
75
+ self.test(G, [(0, 2)], [(0, 2, 0.5)])
76
+
77
+ @pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph))
78
+ def test_notimplemented(self, graph_type):
79
+ assert pytest.raises(
80
+ nx.NetworkXNotImplemented, self.func, graph_type([(0, 1), (1, 2)]), [(0, 2)]
81
+ )
82
+
83
+ def test_node_not_found(self):
84
+ G = nx.Graph()
85
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
86
+ assert pytest.raises(nx.NodeNotFound, self.func, G, [(0, 4)])
87
+
88
+ def test_no_common_neighbor(self):
89
+ G = nx.Graph()
90
+ G.add_edges_from([(0, 1), (2, 3)])
91
+ self.test(G, [(0, 2)], [(0, 2, 0)])
92
+
93
+ def test_isolated_nodes(self):
94
+ G = nx.Graph()
95
+ G.add_nodes_from([0, 1])
96
+ self.test(G, [(0, 1)], [(0, 1, 0)])
97
+
98
+ def test_all_nonexistent_edges(self):
99
+ G = nx.Graph()
100
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
101
+ self.test(G, None, [(0, 3, 0.5), (1, 2, 0.5), (1, 3, 0)])
102
+
103
+
104
+ class TestAdamicAdarIndex:
105
+ @classmethod
106
+ def setup_class(cls):
107
+ cls.func = staticmethod(nx.adamic_adar_index)
108
+ cls.test = partial(_test_func, predict_func=cls.func)
109
+
110
+ def test_K5(self):
111
+ G = nx.complete_graph(5)
112
+ self.test(G, [(0, 1)], [(0, 1, 3 / math.log(4))])
113
+
114
+ def test_P3(self):
115
+ G = nx.path_graph(3)
116
+ self.test(G, [(0, 2)], [(0, 2, 1 / math.log(2))])
117
+
118
+ def test_S4(self):
119
+ G = nx.star_graph(4)
120
+ self.test(G, [(1, 2)], [(1, 2, 1 / math.log(4))])
121
+
122
+ @pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph))
123
+ def test_notimplemented(self, graph_type):
124
+ assert pytest.raises(
125
+ nx.NetworkXNotImplemented, self.func, graph_type([(0, 1), (1, 2)]), [(0, 2)]
126
+ )
127
+
128
+ def test_node_not_found(self):
129
+ G = nx.Graph()
130
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
131
+ assert pytest.raises(nx.NodeNotFound, self.func, G, [(0, 4)])
132
+
133
+ def test_no_common_neighbor(self):
134
+ G = nx.Graph()
135
+ G.add_nodes_from([0, 1])
136
+ self.test(G, [(0, 1)], [(0, 1, 0)])
137
+
138
+ def test_equal_nodes(self):
139
+ G = nx.complete_graph(4)
140
+ self.test(G, [(0, 0)], [(0, 0, 3 / math.log(3))])
141
+
142
+ def test_all_nonexistent_edges(self):
143
+ G = nx.Graph()
144
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
145
+ self.test(
146
+ G, None, [(0, 3, 1 / math.log(2)), (1, 2, 1 / math.log(2)), (1, 3, 0)]
147
+ )
148
+
149
+
150
+ class TestCommonNeighborCentrality:
151
+ @classmethod
152
+ def setup_class(cls):
153
+ cls.func = staticmethod(nx.common_neighbor_centrality)
154
+ cls.test = partial(_test_func, predict_func=cls.func)
155
+
156
+ def test_K5(self):
157
+ G = nx.complete_graph(5)
158
+ self.test(G, [(0, 1)], [(0, 1, 3.0)], alpha=1)
159
+ self.test(G, [(0, 1)], [(0, 1, 5.0)], alpha=0)
160
+
161
+ def test_P3(self):
162
+ G = nx.path_graph(3)
163
+ self.test(G, [(0, 2)], [(0, 2, 1.25)], alpha=0.5)
164
+
165
+ def test_S4(self):
166
+ G = nx.star_graph(4)
167
+ self.test(G, [(1, 2)], [(1, 2, 1.75)], alpha=0.5)
168
+
169
+ @pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph))
170
+ def test_notimplemented(self, graph_type):
171
+ assert pytest.raises(
172
+ nx.NetworkXNotImplemented, self.func, graph_type([(0, 1), (1, 2)]), [(0, 2)]
173
+ )
174
+
175
+ def test_node_u_not_found(self):
176
+ G = nx.Graph()
177
+ G.add_edges_from([(1, 3), (2, 3)])
178
+ assert pytest.raises(nx.NodeNotFound, self.func, G, [(0, 1)])
179
+
180
+ def test_node_v_not_found(self):
181
+ G = nx.Graph()
182
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
183
+ assert pytest.raises(nx.NodeNotFound, self.func, G, [(0, 4)])
184
+
185
+ def test_no_common_neighbor(self):
186
+ G = nx.Graph()
187
+ G.add_nodes_from([0, 1])
188
+ self.test(G, [(0, 1)], [(0, 1, 0)])
189
+
190
+ def test_equal_nodes(self):
191
+ G = nx.complete_graph(4)
192
+ assert pytest.raises(nx.NetworkXAlgorithmError, self.test, G, [(0, 0)], [])
193
+
194
+ def test_equal_nodes_with_alpha_one_raises_error(self):
195
+ G = nx.complete_graph(4)
196
+ assert pytest.raises(
197
+ nx.NetworkXAlgorithmError, self.test, G, [(0, 0)], [], alpha=1.0
198
+ )
199
+
200
+ def test_all_nonexistent_edges(self):
201
+ G = nx.Graph()
202
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
203
+ self.test(G, None, [(0, 3, 1.5), (1, 2, 1.5), (1, 3, 2 / 3)], alpha=0.5)
204
+
205
+
206
+ class TestPreferentialAttachment:
207
+ @classmethod
208
+ def setup_class(cls):
209
+ cls.func = staticmethod(nx.preferential_attachment)
210
+ cls.test = partial(_test_func, predict_func=cls.func)
211
+
212
+ def test_K5(self):
213
+ G = nx.complete_graph(5)
214
+ self.test(G, [(0, 1)], [(0, 1, 16)])
215
+
216
+ def test_P3(self):
217
+ G = nx.path_graph(3)
218
+ self.test(G, [(0, 1)], [(0, 1, 2)])
219
+
220
+ def test_S4(self):
221
+ G = nx.star_graph(4)
222
+ self.test(G, [(0, 2)], [(0, 2, 4)])
223
+
224
+ @pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph))
225
+ def test_notimplemented(self, graph_type):
226
+ assert pytest.raises(
227
+ nx.NetworkXNotImplemented, self.func, graph_type([(0, 1), (1, 2)]), [(0, 2)]
228
+ )
229
+
230
+ def test_node_not_found(self):
231
+ G = nx.Graph()
232
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
233
+ assert pytest.raises(nx.NodeNotFound, self.func, G, [(0, 4)])
234
+
235
+ def test_zero_degrees(self):
236
+ G = nx.Graph()
237
+ G.add_nodes_from([0, 1])
238
+ self.test(G, [(0, 1)], [(0, 1, 0)])
239
+
240
+ def test_all_nonexistent_edges(self):
241
+ G = nx.Graph()
242
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
243
+ self.test(G, None, [(0, 3, 2), (1, 2, 2), (1, 3, 1)])
244
+
245
+
246
+ class TestCNSoundarajanHopcroft:
247
+ @classmethod
248
+ def setup_class(cls):
249
+ cls.func = staticmethod(nx.cn_soundarajan_hopcroft)
250
+ cls.test = partial(_test_func, predict_func=cls.func, community="community")
251
+
252
+ def test_K5(self):
253
+ G = nx.complete_graph(5)
254
+ G.nodes[0]["community"] = 0
255
+ G.nodes[1]["community"] = 0
256
+ G.nodes[2]["community"] = 0
257
+ G.nodes[3]["community"] = 0
258
+ G.nodes[4]["community"] = 1
259
+ self.test(G, [(0, 1)], [(0, 1, 5)])
260
+
261
+ def test_P3(self):
262
+ G = nx.path_graph(3)
263
+ G.nodes[0]["community"] = 0
264
+ G.nodes[1]["community"] = 1
265
+ G.nodes[2]["community"] = 0
266
+ self.test(G, [(0, 2)], [(0, 2, 1)])
267
+
268
+ def test_S4(self):
269
+ G = nx.star_graph(4)
270
+ G.nodes[0]["community"] = 1
271
+ G.nodes[1]["community"] = 1
272
+ G.nodes[2]["community"] = 1
273
+ G.nodes[3]["community"] = 0
274
+ G.nodes[4]["community"] = 0
275
+ self.test(G, [(1, 2)], [(1, 2, 2)])
276
+
277
+ @pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph))
278
+ def test_notimplemented(self, graph_type):
279
+ G = graph_type([(0, 1), (1, 2)])
280
+ G.add_nodes_from([0, 1, 2], community=0)
281
+ assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
282
+
283
+ def test_node_not_found(self):
284
+ G = nx.Graph()
285
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
286
+ G.nodes[0]["community"] = 0
287
+ G.nodes[1]["community"] = 1
288
+ G.nodes[2]["community"] = 0
289
+ G.nodes[3]["community"] = 0
290
+ assert pytest.raises(nx.NodeNotFound, self.func, G, [(0, 4)])
291
+
292
+ def test_no_common_neighbor(self):
293
+ G = nx.Graph()
294
+ G.add_nodes_from([0, 1])
295
+ G.nodes[0]["community"] = 0
296
+ G.nodes[1]["community"] = 0
297
+ self.test(G, [(0, 1)], [(0, 1, 0)])
298
+
299
+ def test_equal_nodes(self):
300
+ G = nx.complete_graph(3)
301
+ G.nodes[0]["community"] = 0
302
+ G.nodes[1]["community"] = 0
303
+ G.nodes[2]["community"] = 0
304
+ self.test(G, [(0, 0)], [(0, 0, 4)])
305
+
306
+ def test_different_community(self):
307
+ G = nx.Graph()
308
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
309
+ G.nodes[0]["community"] = 0
310
+ G.nodes[1]["community"] = 0
311
+ G.nodes[2]["community"] = 0
312
+ G.nodes[3]["community"] = 1
313
+ self.test(G, [(0, 3)], [(0, 3, 2)])
314
+
315
+ def test_no_community_information(self):
316
+ G = nx.complete_graph(5)
317
+ assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)]))
318
+
319
+ def test_insufficient_community_information(self):
320
+ G = nx.Graph()
321
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
322
+ G.nodes[0]["community"] = 0
323
+ G.nodes[1]["community"] = 0
324
+ G.nodes[3]["community"] = 0
325
+ assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)]))
326
+
327
+ def test_sufficient_community_information(self):
328
+ G = nx.Graph()
329
+ G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)])
330
+ G.nodes[1]["community"] = 0
331
+ G.nodes[2]["community"] = 0
332
+ G.nodes[3]["community"] = 0
333
+ G.nodes[4]["community"] = 0
334
+ self.test(G, [(1, 4)], [(1, 4, 4)])
335
+
336
+ def test_custom_community_attribute_name(self):
337
+ G = nx.Graph()
338
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
339
+ G.nodes[0]["cmty"] = 0
340
+ G.nodes[1]["cmty"] = 0
341
+ G.nodes[2]["cmty"] = 0
342
+ G.nodes[3]["cmty"] = 1
343
+ self.test(G, [(0, 3)], [(0, 3, 2)], community="cmty")
344
+
345
+ def test_all_nonexistent_edges(self):
346
+ G = nx.Graph()
347
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
348
+ G.nodes[0]["community"] = 0
349
+ G.nodes[1]["community"] = 1
350
+ G.nodes[2]["community"] = 0
351
+ G.nodes[3]["community"] = 0
352
+ self.test(G, None, [(0, 3, 2), (1, 2, 1), (1, 3, 0)])
353
+
354
+
355
+ class TestRAIndexSoundarajanHopcroft:
356
+ @classmethod
357
+ def setup_class(cls):
358
+ cls.func = staticmethod(nx.ra_index_soundarajan_hopcroft)
359
+ cls.test = partial(_test_func, predict_func=cls.func, community="community")
360
+
361
+ def test_K5(self):
362
+ G = nx.complete_graph(5)
363
+ G.nodes[0]["community"] = 0
364
+ G.nodes[1]["community"] = 0
365
+ G.nodes[2]["community"] = 0
366
+ G.nodes[3]["community"] = 0
367
+ G.nodes[4]["community"] = 1
368
+ self.test(G, [(0, 1)], [(0, 1, 0.5)])
369
+
370
+ def test_P3(self):
371
+ G = nx.path_graph(3)
372
+ G.nodes[0]["community"] = 0
373
+ G.nodes[1]["community"] = 1
374
+ G.nodes[2]["community"] = 0
375
+ self.test(G, [(0, 2)], [(0, 2, 0)])
376
+
377
+ def test_S4(self):
378
+ G = nx.star_graph(4)
379
+ G.nodes[0]["community"] = 1
380
+ G.nodes[1]["community"] = 1
381
+ G.nodes[2]["community"] = 1
382
+ G.nodes[3]["community"] = 0
383
+ G.nodes[4]["community"] = 0
384
+ self.test(G, [(1, 2)], [(1, 2, 0.25)])
385
+
386
+ @pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph))
387
+ def test_notimplemented(self, graph_type):
388
+ G = graph_type([(0, 1), (1, 2)])
389
+ G.add_nodes_from([0, 1, 2], community=0)
390
+ assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
391
+
392
+ def test_node_not_found(self):
393
+ G = nx.Graph()
394
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
395
+ G.nodes[0]["community"] = 0
396
+ G.nodes[1]["community"] = 1
397
+ G.nodes[2]["community"] = 0
398
+ G.nodes[3]["community"] = 0
399
+ assert pytest.raises(nx.NodeNotFound, self.func, G, [(0, 4)])
400
+
401
+ def test_no_common_neighbor(self):
402
+ G = nx.Graph()
403
+ G.add_nodes_from([0, 1])
404
+ G.nodes[0]["community"] = 0
405
+ G.nodes[1]["community"] = 0
406
+ self.test(G, [(0, 1)], [(0, 1, 0)])
407
+
408
+ def test_equal_nodes(self):
409
+ G = nx.complete_graph(3)
410
+ G.nodes[0]["community"] = 0
411
+ G.nodes[1]["community"] = 0
412
+ G.nodes[2]["community"] = 0
413
+ self.test(G, [(0, 0)], [(0, 0, 1)])
414
+
415
+ def test_different_community(self):
416
+ G = nx.Graph()
417
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
418
+ G.nodes[0]["community"] = 0
419
+ G.nodes[1]["community"] = 0
420
+ G.nodes[2]["community"] = 0
421
+ G.nodes[3]["community"] = 1
422
+ self.test(G, [(0, 3)], [(0, 3, 0)])
423
+
424
+ def test_no_community_information(self):
425
+ G = nx.complete_graph(5)
426
+ assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)]))
427
+
428
+ def test_insufficient_community_information(self):
429
+ G = nx.Graph()
430
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
431
+ G.nodes[0]["community"] = 0
432
+ G.nodes[1]["community"] = 0
433
+ G.nodes[3]["community"] = 0
434
+ assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)]))
435
+
436
+ def test_sufficient_community_information(self):
437
+ G = nx.Graph()
438
+ G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)])
439
+ G.nodes[1]["community"] = 0
440
+ G.nodes[2]["community"] = 0
441
+ G.nodes[3]["community"] = 0
442
+ G.nodes[4]["community"] = 0
443
+ self.test(G, [(1, 4)], [(1, 4, 1)])
444
+
445
+ def test_custom_community_attribute_name(self):
446
+ G = nx.Graph()
447
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
448
+ G.nodes[0]["cmty"] = 0
449
+ G.nodes[1]["cmty"] = 0
450
+ G.nodes[2]["cmty"] = 0
451
+ G.nodes[3]["cmty"] = 1
452
+ self.test(G, [(0, 3)], [(0, 3, 0)], community="cmty")
453
+
454
+ def test_all_nonexistent_edges(self):
455
+ G = nx.Graph()
456
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
457
+ G.nodes[0]["community"] = 0
458
+ G.nodes[1]["community"] = 1
459
+ G.nodes[2]["community"] = 0
460
+ G.nodes[3]["community"] = 0
461
+ self.test(G, None, [(0, 3, 0.5), (1, 2, 0), (1, 3, 0)])
462
+
463
+
464
+ class TestWithinInterCluster:
465
+ @classmethod
466
+ def setup_class(cls):
467
+ cls.delta = 0.001
468
+ cls.func = staticmethod(nx.within_inter_cluster)
469
+ cls.test = partial(
470
+ _test_func, predict_func=cls.func, delta=cls.delta, community="community"
471
+ )
472
+
473
+ def test_K5(self):
474
+ G = nx.complete_graph(5)
475
+ G.nodes[0]["community"] = 0
476
+ G.nodes[1]["community"] = 0
477
+ G.nodes[2]["community"] = 0
478
+ G.nodes[3]["community"] = 0
479
+ G.nodes[4]["community"] = 1
480
+ self.test(G, [(0, 1)], [(0, 1, 2 / (1 + self.delta))])
481
+
482
+ def test_P3(self):
483
+ G = nx.path_graph(3)
484
+ G.nodes[0]["community"] = 0
485
+ G.nodes[1]["community"] = 1
486
+ G.nodes[2]["community"] = 0
487
+ self.test(G, [(0, 2)], [(0, 2, 0)])
488
+
489
+ def test_S4(self):
490
+ G = nx.star_graph(4)
491
+ G.nodes[0]["community"] = 1
492
+ G.nodes[1]["community"] = 1
493
+ G.nodes[2]["community"] = 1
494
+ G.nodes[3]["community"] = 0
495
+ G.nodes[4]["community"] = 0
496
+ self.test(G, [(1, 2)], [(1, 2, 1 / self.delta)])
497
+
498
+ @pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph))
499
+ def test_notimplemented(self, graph_type):
500
+ G = graph_type([(0, 1), (1, 2)])
501
+ G.add_nodes_from([0, 1, 2], community=0)
502
+ assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
503
+
504
+ def test_node_not_found(self):
505
+ G = nx.Graph()
506
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
507
+ G.nodes[0]["community"] = 0
508
+ G.nodes[1]["community"] = 1
509
+ G.nodes[2]["community"] = 0
510
+ G.nodes[3]["community"] = 0
511
+ assert pytest.raises(nx.NodeNotFound, self.func, G, [(0, 4)])
512
+
513
+ def test_no_common_neighbor(self):
514
+ G = nx.Graph()
515
+ G.add_nodes_from([0, 1])
516
+ G.nodes[0]["community"] = 0
517
+ G.nodes[1]["community"] = 0
518
+ self.test(G, [(0, 1)], [(0, 1, 0)])
519
+
520
+ def test_equal_nodes(self):
521
+ G = nx.complete_graph(3)
522
+ G.nodes[0]["community"] = 0
523
+ G.nodes[1]["community"] = 0
524
+ G.nodes[2]["community"] = 0
525
+ self.test(G, [(0, 0)], [(0, 0, 2 / self.delta)])
526
+
527
+ def test_different_community(self):
528
+ G = nx.Graph()
529
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
530
+ G.nodes[0]["community"] = 0
531
+ G.nodes[1]["community"] = 0
532
+ G.nodes[2]["community"] = 0
533
+ G.nodes[3]["community"] = 1
534
+ self.test(G, [(0, 3)], [(0, 3, 0)])
535
+
536
+ def test_no_inter_cluster_common_neighbor(self):
537
+ G = nx.complete_graph(4)
538
+ G.nodes[0]["community"] = 0
539
+ G.nodes[1]["community"] = 0
540
+ G.nodes[2]["community"] = 0
541
+ G.nodes[3]["community"] = 0
542
+ self.test(G, [(0, 3)], [(0, 3, 2 / self.delta)])
543
+
544
+ def test_no_community_information(self):
545
+ G = nx.complete_graph(5)
546
+ assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)]))
547
+
548
+ def test_insufficient_community_information(self):
549
+ G = nx.Graph()
550
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
551
+ G.nodes[0]["community"] = 0
552
+ G.nodes[1]["community"] = 0
553
+ G.nodes[3]["community"] = 0
554
+ assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)]))
555
+
556
+ def test_sufficient_community_information(self):
557
+ G = nx.Graph()
558
+ G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)])
559
+ G.nodes[1]["community"] = 0
560
+ G.nodes[2]["community"] = 0
561
+ G.nodes[3]["community"] = 0
562
+ G.nodes[4]["community"] = 0
563
+ self.test(G, [(1, 4)], [(1, 4, 2 / self.delta)])
564
+
565
+ def test_invalid_delta(self):
566
+ G = nx.complete_graph(3)
567
+ G.add_nodes_from([0, 1, 2], community=0)
568
+ assert pytest.raises(nx.NetworkXAlgorithmError, self.func, G, [(0, 1)], 0)
569
+ assert pytest.raises(nx.NetworkXAlgorithmError, self.func, G, [(0, 1)], -0.5)
570
+
571
+ def test_custom_community_attribute_name(self):
572
+ G = nx.complete_graph(4)
573
+ G.nodes[0]["cmty"] = 0
574
+ G.nodes[1]["cmty"] = 0
575
+ G.nodes[2]["cmty"] = 0
576
+ G.nodes[3]["cmty"] = 0
577
+ self.test(G, [(0, 3)], [(0, 3, 2 / self.delta)], community="cmty")
578
+
579
+ def test_all_nonexistent_edges(self):
580
+ G = nx.Graph()
581
+ G.add_edges_from([(0, 1), (0, 2), (2, 3)])
582
+ G.nodes[0]["community"] = 0
583
+ G.nodes[1]["community"] = 1
584
+ G.nodes[2]["community"] = 0
585
+ G.nodes[3]["community"] = 0
586
+ self.test(G, None, [(0, 3, 1 / self.delta), (1, 2, 0), (1, 3, 0)])
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_matching.py ADDED
@@ -0,0 +1,605 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from itertools import permutations
3
+
4
+ from pytest import raises
5
+
6
+ import networkx as nx
7
+ from networkx.algorithms.matching import matching_dict_to_set
8
+ from networkx.utils import edges_equal
9
+
10
+
11
+ class TestMaxWeightMatching:
12
+ """Unit tests for the
13
+ :func:`~networkx.algorithms.matching.max_weight_matching` function.
14
+
15
+ """
16
+
17
+ def test_trivial1(self):
18
+ """Empty graph"""
19
+ G = nx.Graph()
20
+ assert nx.max_weight_matching(G) == set()
21
+ assert nx.min_weight_matching(G) == set()
22
+
23
+ def test_selfloop(self):
24
+ G = nx.Graph()
25
+ G.add_edge(0, 0, weight=100)
26
+ assert nx.max_weight_matching(G) == set()
27
+ assert nx.min_weight_matching(G) == set()
28
+
29
+ def test_single_edge(self):
30
+ G = nx.Graph()
31
+ G.add_edge(0, 1)
32
+ assert edges_equal(
33
+ nx.max_weight_matching(G), matching_dict_to_set({0: 1, 1: 0})
34
+ )
35
+ assert edges_equal(
36
+ nx.min_weight_matching(G), matching_dict_to_set({0: 1, 1: 0})
37
+ )
38
+
39
+ def test_two_path(self):
40
+ G = nx.Graph()
41
+ G.add_edge("one", "two", weight=10)
42
+ G.add_edge("two", "three", weight=11)
43
+ assert edges_equal(
44
+ nx.max_weight_matching(G),
45
+ matching_dict_to_set({"three": "two", "two": "three"}),
46
+ )
47
+ assert edges_equal(
48
+ nx.min_weight_matching(G),
49
+ matching_dict_to_set({"one": "two", "two": "one"}),
50
+ )
51
+
52
+ def test_path(self):
53
+ G = nx.Graph()
54
+ G.add_edge(1, 2, weight=5)
55
+ G.add_edge(2, 3, weight=11)
56
+ G.add_edge(3, 4, weight=5)
57
+ assert edges_equal(
58
+ nx.max_weight_matching(G), matching_dict_to_set({2: 3, 3: 2})
59
+ )
60
+ assert edges_equal(
61
+ nx.max_weight_matching(G, 1), matching_dict_to_set({1: 2, 2: 1, 3: 4, 4: 3})
62
+ )
63
+ assert edges_equal(
64
+ nx.min_weight_matching(G), matching_dict_to_set({1: 2, 3: 4})
65
+ )
66
+ assert edges_equal(
67
+ nx.min_weight_matching(G, 1), matching_dict_to_set({1: 2, 3: 4})
68
+ )
69
+
70
+ def test_square(self):
71
+ G = nx.Graph()
72
+ G.add_edge(1, 4, weight=2)
73
+ G.add_edge(2, 3, weight=2)
74
+ G.add_edge(1, 2, weight=1)
75
+ G.add_edge(3, 4, weight=4)
76
+ assert edges_equal(
77
+ nx.max_weight_matching(G), matching_dict_to_set({1: 2, 3: 4})
78
+ )
79
+ assert edges_equal(
80
+ nx.min_weight_matching(G), matching_dict_to_set({1: 4, 2: 3})
81
+ )
82
+
83
+ def test_edge_attribute_name(self):
84
+ G = nx.Graph()
85
+ G.add_edge("one", "two", weight=10, abcd=11)
86
+ G.add_edge("two", "three", weight=11, abcd=10)
87
+ assert edges_equal(
88
+ nx.max_weight_matching(G, weight="abcd"),
89
+ matching_dict_to_set({"one": "two", "two": "one"}),
90
+ )
91
+ assert edges_equal(
92
+ nx.min_weight_matching(G, weight="abcd"),
93
+ matching_dict_to_set({"three": "two"}),
94
+ )
95
+
96
+ def test_floating_point_weights(self):
97
+ G = nx.Graph()
98
+ G.add_edge(1, 2, weight=math.pi)
99
+ G.add_edge(2, 3, weight=math.exp(1))
100
+ G.add_edge(1, 3, weight=3.0)
101
+ G.add_edge(1, 4, weight=math.sqrt(2.0))
102
+ assert edges_equal(
103
+ nx.max_weight_matching(G), matching_dict_to_set({1: 4, 2: 3, 3: 2, 4: 1})
104
+ )
105
+ assert edges_equal(
106
+ nx.min_weight_matching(G), matching_dict_to_set({1: 4, 2: 3, 3: 2, 4: 1})
107
+ )
108
+
109
+ def test_negative_weights(self):
110
+ G = nx.Graph()
111
+ G.add_edge(1, 2, weight=2)
112
+ G.add_edge(1, 3, weight=-2)
113
+ G.add_edge(2, 3, weight=1)
114
+ G.add_edge(2, 4, weight=-1)
115
+ G.add_edge(3, 4, weight=-6)
116
+ assert edges_equal(
117
+ nx.max_weight_matching(G), matching_dict_to_set({1: 2, 2: 1})
118
+ )
119
+ assert edges_equal(
120
+ nx.max_weight_matching(G, maxcardinality=True),
121
+ matching_dict_to_set({1: 3, 2: 4, 3: 1, 4: 2}),
122
+ )
123
+ assert edges_equal(
124
+ nx.min_weight_matching(G), matching_dict_to_set({1: 2, 3: 4})
125
+ )
126
+
127
+ def test_s_blossom(self):
128
+ """Create S-blossom and use it for augmentation:"""
129
+ G = nx.Graph()
130
+ G.add_weighted_edges_from([(1, 2, 8), (1, 3, 9), (2, 3, 10), (3, 4, 7)])
131
+ answer = matching_dict_to_set({1: 2, 2: 1, 3: 4, 4: 3})
132
+ assert edges_equal(nx.max_weight_matching(G), answer)
133
+ assert edges_equal(nx.min_weight_matching(G), answer)
134
+
135
+ G.add_weighted_edges_from([(1, 6, 5), (4, 5, 6)])
136
+ answer = matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1})
137
+ assert edges_equal(nx.max_weight_matching(G), answer)
138
+ assert edges_equal(nx.min_weight_matching(G), answer)
139
+
140
+ def test_s_t_blossom(self):
141
+ """Create S-blossom, relabel as T-blossom, use for augmentation:"""
142
+ G = nx.Graph()
143
+ G.add_weighted_edges_from(
144
+ [(1, 2, 9), (1, 3, 8), (2, 3, 10), (1, 4, 5), (4, 5, 4), (1, 6, 3)]
145
+ )
146
+ answer = matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1})
147
+ assert edges_equal(nx.max_weight_matching(G), answer)
148
+ assert edges_equal(nx.min_weight_matching(G), answer)
149
+
150
+ G.add_edge(4, 5, weight=3)
151
+ G.add_edge(1, 6, weight=4)
152
+ assert edges_equal(nx.max_weight_matching(G), answer)
153
+ assert edges_equal(nx.min_weight_matching(G), answer)
154
+
155
+ G.remove_edge(1, 6)
156
+ G.add_edge(3, 6, weight=4)
157
+ answer = matching_dict_to_set({1: 2, 2: 1, 3: 6, 4: 5, 5: 4, 6: 3})
158
+ assert edges_equal(nx.max_weight_matching(G), answer)
159
+ assert edges_equal(nx.min_weight_matching(G), answer)
160
+
161
+ def test_nested_s_blossom(self):
162
+ """Create nested S-blossom, use for augmentation:"""
163
+
164
+ G = nx.Graph()
165
+ G.add_weighted_edges_from(
166
+ [
167
+ (1, 2, 9),
168
+ (1, 3, 9),
169
+ (2, 3, 10),
170
+ (2, 4, 8),
171
+ (3, 5, 8),
172
+ (4, 5, 10),
173
+ (5, 6, 6),
174
+ ]
175
+ )
176
+ dict_format = {1: 3, 2: 4, 3: 1, 4: 2, 5: 6, 6: 5}
177
+ expected = {frozenset(e) for e in matching_dict_to_set(dict_format)}
178
+ answer = {frozenset(e) for e in nx.max_weight_matching(G)}
179
+ assert answer == expected
180
+ answer = {frozenset(e) for e in nx.min_weight_matching(G)}
181
+ assert answer == expected
182
+
183
+ def test_nested_s_blossom_relabel(self):
184
+ """Create S-blossom, relabel as S, include in nested S-blossom:"""
185
+ G = nx.Graph()
186
+ G.add_weighted_edges_from(
187
+ [
188
+ (1, 2, 10),
189
+ (1, 7, 10),
190
+ (2, 3, 12),
191
+ (3, 4, 20),
192
+ (3, 5, 20),
193
+ (4, 5, 25),
194
+ (5, 6, 10),
195
+ (6, 7, 10),
196
+ (7, 8, 8),
197
+ ]
198
+ )
199
+ answer = matching_dict_to_set({1: 2, 2: 1, 3: 4, 4: 3, 5: 6, 6: 5, 7: 8, 8: 7})
200
+ assert edges_equal(nx.max_weight_matching(G), answer)
201
+ assert edges_equal(nx.min_weight_matching(G), answer)
202
+
203
+ def test_nested_s_blossom_expand(self):
204
+ """Create nested S-blossom, augment, expand recursively:"""
205
+ G = nx.Graph()
206
+ G.add_weighted_edges_from(
207
+ [
208
+ (1, 2, 8),
209
+ (1, 3, 8),
210
+ (2, 3, 10),
211
+ (2, 4, 12),
212
+ (3, 5, 12),
213
+ (4, 5, 14),
214
+ (4, 6, 12),
215
+ (5, 7, 12),
216
+ (6, 7, 14),
217
+ (7, 8, 12),
218
+ ]
219
+ )
220
+ answer = matching_dict_to_set({1: 2, 2: 1, 3: 5, 4: 6, 5: 3, 6: 4, 7: 8, 8: 7})
221
+ assert edges_equal(nx.max_weight_matching(G), answer)
222
+ assert edges_equal(nx.min_weight_matching(G), answer)
223
+
224
+ def test_s_blossom_relabel_expand(self):
225
+ """Create S-blossom, relabel as T, expand:"""
226
+ G = nx.Graph()
227
+ G.add_weighted_edges_from(
228
+ [
229
+ (1, 2, 23),
230
+ (1, 5, 22),
231
+ (1, 6, 15),
232
+ (2, 3, 25),
233
+ (3, 4, 22),
234
+ (4, 5, 25),
235
+ (4, 8, 14),
236
+ (5, 7, 13),
237
+ ]
238
+ )
239
+ answer = matching_dict_to_set({1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4})
240
+ assert edges_equal(nx.max_weight_matching(G), answer)
241
+ assert edges_equal(nx.min_weight_matching(G), answer)
242
+
243
+ def test_nested_s_blossom_relabel_expand(self):
244
+ """Create nested S-blossom, relabel as T, expand:"""
245
+ G = nx.Graph()
246
+ G.add_weighted_edges_from(
247
+ [
248
+ (1, 2, 19),
249
+ (1, 3, 20),
250
+ (1, 8, 8),
251
+ (2, 3, 25),
252
+ (2, 4, 18),
253
+ (3, 5, 18),
254
+ (4, 5, 13),
255
+ (4, 7, 7),
256
+ (5, 6, 7),
257
+ ]
258
+ )
259
+ answer = matching_dict_to_set({1: 8, 2: 3, 3: 2, 4: 7, 5: 6, 6: 5, 7: 4, 8: 1})
260
+ assert edges_equal(nx.max_weight_matching(G), answer)
261
+ assert edges_equal(nx.min_weight_matching(G), answer)
262
+
263
+ def test_nasty_blossom1(self):
264
+ """Create blossom, relabel as T in more than one way, expand,
265
+ augment:
266
+ """
267
+ G = nx.Graph()
268
+ G.add_weighted_edges_from(
269
+ [
270
+ (1, 2, 45),
271
+ (1, 5, 45),
272
+ (2, 3, 50),
273
+ (3, 4, 45),
274
+ (4, 5, 50),
275
+ (1, 6, 30),
276
+ (3, 9, 35),
277
+ (4, 8, 35),
278
+ (5, 7, 26),
279
+ (9, 10, 5),
280
+ ]
281
+ )
282
+ ansdict = {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}
283
+ answer = matching_dict_to_set(ansdict)
284
+ assert edges_equal(nx.max_weight_matching(G), answer)
285
+ assert edges_equal(nx.min_weight_matching(G), answer)
286
+
287
+ def test_nasty_blossom2(self):
288
+ """Again but slightly different:"""
289
+ G = nx.Graph()
290
+ G.add_weighted_edges_from(
291
+ [
292
+ (1, 2, 45),
293
+ (1, 5, 45),
294
+ (2, 3, 50),
295
+ (3, 4, 45),
296
+ (4, 5, 50),
297
+ (1, 6, 30),
298
+ (3, 9, 35),
299
+ (4, 8, 26),
300
+ (5, 7, 40),
301
+ (9, 10, 5),
302
+ ]
303
+ )
304
+ ans = {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}
305
+ answer = matching_dict_to_set(ans)
306
+ assert edges_equal(nx.max_weight_matching(G), answer)
307
+ assert edges_equal(nx.min_weight_matching(G), answer)
308
+
309
+ def test_nasty_blossom_least_slack(self):
310
+ """Create blossom, relabel as T, expand such that a new
311
+ least-slack S-to-free dge is produced, augment:
312
+ """
313
+ G = nx.Graph()
314
+ G.add_weighted_edges_from(
315
+ [
316
+ (1, 2, 45),
317
+ (1, 5, 45),
318
+ (2, 3, 50),
319
+ (3, 4, 45),
320
+ (4, 5, 50),
321
+ (1, 6, 30),
322
+ (3, 9, 35),
323
+ (4, 8, 28),
324
+ (5, 7, 26),
325
+ (9, 10, 5),
326
+ ]
327
+ )
328
+ ans = {1: 6, 2: 3, 3: 2, 4: 8, 5: 7, 6: 1, 7: 5, 8: 4, 9: 10, 10: 9}
329
+ answer = matching_dict_to_set(ans)
330
+ assert edges_equal(nx.max_weight_matching(G), answer)
331
+ assert edges_equal(nx.min_weight_matching(G), answer)
332
+
333
+ def test_nasty_blossom_augmenting(self):
334
+ """Create nested blossom, relabel as T in more than one way"""
335
+ # expand outer blossom such that inner blossom ends up on an
336
+ # augmenting path:
337
+ G = nx.Graph()
338
+ G.add_weighted_edges_from(
339
+ [
340
+ (1, 2, 45),
341
+ (1, 7, 45),
342
+ (2, 3, 50),
343
+ (3, 4, 45),
344
+ (4, 5, 95),
345
+ (4, 6, 94),
346
+ (5, 6, 94),
347
+ (6, 7, 50),
348
+ (1, 8, 30),
349
+ (3, 11, 35),
350
+ (5, 9, 36),
351
+ (7, 10, 26),
352
+ (11, 12, 5),
353
+ ]
354
+ )
355
+ ans = {
356
+ 1: 8,
357
+ 2: 3,
358
+ 3: 2,
359
+ 4: 6,
360
+ 5: 9,
361
+ 6: 4,
362
+ 7: 10,
363
+ 8: 1,
364
+ 9: 5,
365
+ 10: 7,
366
+ 11: 12,
367
+ 12: 11,
368
+ }
369
+ answer = matching_dict_to_set(ans)
370
+ assert edges_equal(nx.max_weight_matching(G), answer)
371
+ assert edges_equal(nx.min_weight_matching(G), answer)
372
+
373
+ def test_nasty_blossom_expand_recursively(self):
374
+ """Create nested S-blossom, relabel as S, expand recursively:"""
375
+ G = nx.Graph()
376
+ G.add_weighted_edges_from(
377
+ [
378
+ (1, 2, 40),
379
+ (1, 3, 40),
380
+ (2, 3, 60),
381
+ (2, 4, 55),
382
+ (3, 5, 55),
383
+ (4, 5, 50),
384
+ (1, 8, 15),
385
+ (5, 7, 30),
386
+ (7, 6, 10),
387
+ (8, 10, 10),
388
+ (4, 9, 30),
389
+ ]
390
+ )
391
+ ans = {1: 2, 2: 1, 3: 5, 4: 9, 5: 3, 6: 7, 7: 6, 8: 10, 9: 4, 10: 8}
392
+ answer = matching_dict_to_set(ans)
393
+ assert edges_equal(nx.max_weight_matching(G), answer)
394
+ assert edges_equal(nx.min_weight_matching(G), answer)
395
+
396
+ def test_wrong_graph_type(self):
397
+ error = nx.NetworkXNotImplemented
398
+ raises(error, nx.max_weight_matching, nx.MultiGraph())
399
+ raises(error, nx.max_weight_matching, nx.MultiDiGraph())
400
+ raises(error, nx.max_weight_matching, nx.DiGraph())
401
+ raises(error, nx.min_weight_matching, nx.DiGraph())
402
+
403
+
404
+ class TestIsMatching:
405
+ """Unit tests for the
406
+ :func:`~networkx.algorithms.matching.is_matching` function.
407
+
408
+ """
409
+
410
+ def test_dict(self):
411
+ G = nx.path_graph(4)
412
+ assert nx.is_matching(G, {0: 1, 1: 0, 2: 3, 3: 2})
413
+
414
+ def test_empty_matching(self):
415
+ G = nx.path_graph(4)
416
+ assert nx.is_matching(G, set())
417
+
418
+ def test_single_edge(self):
419
+ G = nx.path_graph(4)
420
+ assert nx.is_matching(G, {(1, 2)})
421
+
422
+ def test_edge_order(self):
423
+ G = nx.path_graph(4)
424
+ assert nx.is_matching(G, {(0, 1), (2, 3)})
425
+ assert nx.is_matching(G, {(1, 0), (2, 3)})
426
+ assert nx.is_matching(G, {(0, 1), (3, 2)})
427
+ assert nx.is_matching(G, {(1, 0), (3, 2)})
428
+
429
+ def test_valid_matching(self):
430
+ G = nx.path_graph(4)
431
+ assert nx.is_matching(G, {(0, 1), (2, 3)})
432
+
433
+ def test_invalid_input(self):
434
+ error = nx.NetworkXError
435
+ G = nx.path_graph(4)
436
+ # edge to node not in G
437
+ raises(error, nx.is_matching, G, {(0, 5), (2, 3)})
438
+ # edge not a 2-tuple
439
+ raises(error, nx.is_matching, G, {(0, 1, 2), (2, 3)})
440
+ raises(error, nx.is_matching, G, {(0,), (2, 3)})
441
+
442
+ def test_selfloops(self):
443
+ error = nx.NetworkXError
444
+ G = nx.path_graph(4)
445
+ # selfloop for node not in G
446
+ raises(error, nx.is_matching, G, {(5, 5), (2, 3)})
447
+ # selfloop edge not in G
448
+ assert not nx.is_matching(G, {(0, 0), (1, 2), (2, 3)})
449
+ # selfloop edge in G
450
+ G.add_edge(0, 0)
451
+ assert not nx.is_matching(G, {(0, 0), (1, 2)})
452
+
453
+ def test_invalid_matching(self):
454
+ G = nx.path_graph(4)
455
+ assert not nx.is_matching(G, {(0, 1), (1, 2), (2, 3)})
456
+
457
+ def test_invalid_edge(self):
458
+ G = nx.path_graph(4)
459
+ assert not nx.is_matching(G, {(0, 3), (1, 2)})
460
+ raises(nx.NetworkXError, nx.is_matching, G, {(0, 55)})
461
+
462
+ G = nx.DiGraph(G.edges)
463
+ assert nx.is_matching(G, {(0, 1)})
464
+ assert not nx.is_matching(G, {(1, 0)})
465
+
466
+
467
+ class TestIsMaximalMatching:
468
+ """Unit tests for the
469
+ :func:`~networkx.algorithms.matching.is_maximal_matching` function.
470
+
471
+ """
472
+
473
+ def test_dict(self):
474
+ G = nx.path_graph(4)
475
+ assert nx.is_maximal_matching(G, {0: 1, 1: 0, 2: 3, 3: 2})
476
+
477
+ def test_invalid_input(self):
478
+ error = nx.NetworkXError
479
+ G = nx.path_graph(4)
480
+ # edge to node not in G
481
+ raises(error, nx.is_maximal_matching, G, {(0, 5)})
482
+ raises(error, nx.is_maximal_matching, G, {(5, 0)})
483
+ # edge not a 2-tuple
484
+ raises(error, nx.is_maximal_matching, G, {(0, 1, 2), (2, 3)})
485
+ raises(error, nx.is_maximal_matching, G, {(0,), (2, 3)})
486
+
487
+ def test_valid(self):
488
+ G = nx.path_graph(4)
489
+ assert nx.is_maximal_matching(G, {(0, 1), (2, 3)})
490
+
491
+ def test_not_matching(self):
492
+ G = nx.path_graph(4)
493
+ assert not nx.is_maximal_matching(G, {(0, 1), (1, 2), (2, 3)})
494
+ assert not nx.is_maximal_matching(G, {(0, 3)})
495
+ G.add_edge(0, 0)
496
+ assert not nx.is_maximal_matching(G, {(0, 0)})
497
+
498
+ def test_not_maximal(self):
499
+ G = nx.path_graph(4)
500
+ assert not nx.is_maximal_matching(G, {(0, 1)})
501
+
502
+
503
+ class TestIsPerfectMatching:
504
+ """Unit tests for the
505
+ :func:`~networkx.algorithms.matching.is_perfect_matching` function.
506
+
507
+ """
508
+
509
+ def test_dict(self):
510
+ G = nx.path_graph(4)
511
+ assert nx.is_perfect_matching(G, {0: 1, 1: 0, 2: 3, 3: 2})
512
+
513
+ def test_valid(self):
514
+ G = nx.path_graph(4)
515
+ assert nx.is_perfect_matching(G, {(0, 1), (2, 3)})
516
+
517
+ def test_valid_not_path(self):
518
+ G = nx.cycle_graph(4)
519
+ G.add_edge(0, 4)
520
+ G.add_edge(1, 4)
521
+ G.add_edge(5, 2)
522
+
523
+ assert nx.is_perfect_matching(G, {(1, 4), (0, 3), (5, 2)})
524
+
525
+ def test_invalid_input(self):
526
+ error = nx.NetworkXError
527
+ G = nx.path_graph(4)
528
+ # edge to node not in G
529
+ raises(error, nx.is_perfect_matching, G, {(0, 5)})
530
+ raises(error, nx.is_perfect_matching, G, {(5, 0)})
531
+ # edge not a 2-tuple
532
+ raises(error, nx.is_perfect_matching, G, {(0, 1, 2), (2, 3)})
533
+ raises(error, nx.is_perfect_matching, G, {(0,), (2, 3)})
534
+
535
+ def test_selfloops(self):
536
+ error = nx.NetworkXError
537
+ G = nx.path_graph(4)
538
+ # selfloop for node not in G
539
+ raises(error, nx.is_perfect_matching, G, {(5, 5), (2, 3)})
540
+ # selfloop edge not in G
541
+ assert not nx.is_perfect_matching(G, {(0, 0), (1, 2), (2, 3)})
542
+ # selfloop edge in G
543
+ G.add_edge(0, 0)
544
+ assert not nx.is_perfect_matching(G, {(0, 0), (1, 2)})
545
+
546
+ def test_not_matching(self):
547
+ G = nx.path_graph(4)
548
+ assert not nx.is_perfect_matching(G, {(0, 3)})
549
+ assert not nx.is_perfect_matching(G, {(0, 1), (1, 2), (2, 3)})
550
+
551
+ def test_maximal_but_not_perfect(self):
552
+ G = nx.cycle_graph(4)
553
+ G.add_edge(0, 4)
554
+ G.add_edge(1, 4)
555
+
556
+ assert not nx.is_perfect_matching(G, {(1, 4), (0, 3)})
557
+
558
+
559
+ class TestMaximalMatching:
560
+ """Unit tests for the
561
+ :func:`~networkx.algorithms.matching.maximal_matching`.
562
+
563
+ """
564
+
565
+ def test_valid_matching(self):
566
+ edges = [(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (3, 6), (5, 6)]
567
+ G = nx.Graph(edges)
568
+ matching = nx.maximal_matching(G)
569
+ assert nx.is_maximal_matching(G, matching)
570
+
571
+ def test_single_edge_matching(self):
572
+ # In the star graph, any maximal matching has just one edge.
573
+ G = nx.star_graph(5)
574
+ matching = nx.maximal_matching(G)
575
+ assert 1 == len(matching)
576
+ assert nx.is_maximal_matching(G, matching)
577
+
578
+ def test_self_loops(self):
579
+ # Create the path graph with two self-loops.
580
+ G = nx.path_graph(3)
581
+ G.add_edges_from([(0, 0), (1, 1)])
582
+ matching = nx.maximal_matching(G)
583
+ assert len(matching) == 1
584
+ # The matching should never include self-loops.
585
+ assert not any(u == v for u, v in matching)
586
+ assert nx.is_maximal_matching(G, matching)
587
+
588
+ def test_ordering(self):
589
+ """Tests that a maximal matching is computed correctly
590
+ regardless of the order in which nodes are added to the graph.
591
+
592
+ """
593
+ for nodes in permutations(range(3)):
594
+ G = nx.Graph()
595
+ G.add_nodes_from(nodes)
596
+ G.add_edges_from([(0, 1), (0, 2)])
597
+ matching = nx.maximal_matching(G)
598
+ assert len(matching) == 1
599
+ assert nx.is_maximal_matching(G, matching)
600
+
601
+ def test_wrong_graph_type(self):
602
+ error = nx.NetworkXNotImplemented
603
+ raises(error, nx.maximal_matching, nx.MultiGraph())
604
+ raises(error, nx.maximal_matching, nx.MultiDiGraph())
605
+ raises(error, nx.maximal_matching, nx.DiGraph())
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_max_weight_clique.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Maximum weight clique test suite.
2
+
3
+ """
4
+
5
+ import pytest
6
+
7
+ import networkx as nx
8
+
9
+
10
+ class TestMaximumWeightClique:
11
+ def test_basic_cases(self):
12
+ def check_basic_case(graph_func, expected_weight, weight_accessor):
13
+ graph = graph_func()
14
+ clique, weight = nx.algorithms.max_weight_clique(graph, weight_accessor)
15
+ assert verify_clique(
16
+ graph, clique, weight, expected_weight, weight_accessor
17
+ )
18
+
19
+ for graph_func, (expected_weight, expected_size) in TEST_CASES.items():
20
+ check_basic_case(graph_func, expected_weight, "weight")
21
+ check_basic_case(graph_func, expected_size, None)
22
+
23
+ def test_key_error(self):
24
+ graph = two_node_graph()
25
+ with pytest.raises(KeyError):
26
+ nx.algorithms.max_weight_clique(graph, "nonexistent-key")
27
+
28
+ def test_error_on_non_integer_weight(self):
29
+ graph = two_node_graph()
30
+ graph.nodes[2]["weight"] = 1.5
31
+ with pytest.raises(ValueError):
32
+ nx.algorithms.max_weight_clique(graph)
33
+
34
+ def test_unaffected_by_self_loops(self):
35
+ graph = two_node_graph()
36
+ graph.add_edge(1, 1)
37
+ graph.add_edge(2, 2)
38
+ clique, weight = nx.algorithms.max_weight_clique(graph, "weight")
39
+ assert verify_clique(graph, clique, weight, 30, "weight")
40
+ graph = three_node_independent_set()
41
+ graph.add_edge(1, 1)
42
+ clique, weight = nx.algorithms.max_weight_clique(graph, "weight")
43
+ assert verify_clique(graph, clique, weight, 20, "weight")
44
+
45
+ def test_30_node_prob(self):
46
+ G = nx.Graph()
47
+ G.add_nodes_from(range(1, 31))
48
+ for i in range(1, 31):
49
+ G.nodes[i]["weight"] = i + 1
50
+ # fmt: off
51
+ G.add_edges_from(
52
+ [
53
+ (1, 12), (1, 13), (1, 15), (1, 16), (1, 18), (1, 19), (1, 20),
54
+ (1, 23), (1, 26), (1, 28), (1, 29), (1, 30), (2, 3), (2, 4),
55
+ (2, 5), (2, 8), (2, 9), (2, 10), (2, 14), (2, 17), (2, 18),
56
+ (2, 21), (2, 22), (2, 23), (2, 27), (3, 9), (3, 15), (3, 21),
57
+ (3, 22), (3, 23), (3, 24), (3, 27), (3, 28), (3, 29), (4, 5),
58
+ (4, 6), (4, 8), (4, 21), (4, 22), (4, 23), (4, 26), (4, 28),
59
+ (4, 30), (5, 6), (5, 8), (5, 9), (5, 13), (5, 14), (5, 15),
60
+ (5, 16), (5, 20), (5, 21), (5, 22), (5, 25), (5, 28), (5, 29),
61
+ (6, 7), (6, 8), (6, 13), (6, 17), (6, 18), (6, 19), (6, 24),
62
+ (6, 26), (6, 27), (6, 28), (6, 29), (7, 12), (7, 14), (7, 15),
63
+ (7, 16), (7, 17), (7, 20), (7, 25), (7, 27), (7, 29), (7, 30),
64
+ (8, 10), (8, 15), (8, 16), (8, 18), (8, 20), (8, 22), (8, 24),
65
+ (8, 26), (8, 27), (8, 28), (8, 30), (9, 11), (9, 12), (9, 13),
66
+ (9, 14), (9, 15), (9, 16), (9, 19), (9, 20), (9, 21), (9, 24),
67
+ (9, 30), (10, 12), (10, 15), (10, 18), (10, 19), (10, 20),
68
+ (10, 22), (10, 23), (10, 24), (10, 26), (10, 27), (10, 29),
69
+ (10, 30), (11, 13), (11, 15), (11, 16), (11, 17), (11, 18),
70
+ (11, 19), (11, 20), (11, 22), (11, 29), (11, 30), (12, 14),
71
+ (12, 17), (12, 18), (12, 19), (12, 20), (12, 21), (12, 23),
72
+ (12, 25), (12, 26), (12, 30), (13, 20), (13, 22), (13, 23),
73
+ (13, 24), (13, 30), (14, 16), (14, 20), (14, 21), (14, 22),
74
+ (14, 23), (14, 25), (14, 26), (14, 27), (14, 29), (14, 30),
75
+ (15, 17), (15, 18), (15, 20), (15, 21), (15, 26), (15, 27),
76
+ (15, 28), (16, 17), (16, 18), (16, 19), (16, 20), (16, 21),
77
+ (16, 29), (16, 30), (17, 18), (17, 21), (17, 22), (17, 25),
78
+ (17, 27), (17, 28), (17, 30), (18, 19), (18, 20), (18, 21),
79
+ (18, 22), (18, 23), (18, 24), (19, 20), (19, 22), (19, 23),
80
+ (19, 24), (19, 25), (19, 27), (19, 30), (20, 21), (20, 23),
81
+ (20, 24), (20, 26), (20, 28), (20, 29), (21, 23), (21, 26),
82
+ (21, 27), (21, 29), (22, 24), (22, 25), (22, 26), (22, 29),
83
+ (23, 25), (23, 30), (24, 25), (24, 26), (25, 27), (25, 29),
84
+ (26, 27), (26, 28), (26, 30), (28, 29), (29, 30),
85
+ ]
86
+ )
87
+ # fmt: on
88
+ clique, weight = nx.algorithms.max_weight_clique(G)
89
+ assert verify_clique(G, clique, weight, 111, "weight")
90
+
91
+
92
+ # ############################ Utility functions ############################
93
+ def verify_clique(
94
+ graph, clique, reported_clique_weight, expected_clique_weight, weight_accessor
95
+ ):
96
+ for node1 in clique:
97
+ for node2 in clique:
98
+ if node1 == node2:
99
+ continue
100
+ if not graph.has_edge(node1, node2):
101
+ return False
102
+
103
+ if weight_accessor is None:
104
+ clique_weight = len(clique)
105
+ else:
106
+ clique_weight = sum(graph.nodes[v]["weight"] for v in clique)
107
+
108
+ if clique_weight != expected_clique_weight:
109
+ return False
110
+ if clique_weight != reported_clique_weight:
111
+ return False
112
+
113
+ return True
114
+
115
+
116
+ # ############################ Graph Generation ############################
117
+
118
+
119
+ def empty_graph():
120
+ return nx.Graph()
121
+
122
+
123
+ def one_node_graph():
124
+ graph = nx.Graph()
125
+ graph.add_nodes_from([1])
126
+ graph.nodes[1]["weight"] = 10
127
+ return graph
128
+
129
+
130
+ def two_node_graph():
131
+ graph = nx.Graph()
132
+ graph.add_nodes_from([1, 2])
133
+ graph.add_edges_from([(1, 2)])
134
+ graph.nodes[1]["weight"] = 10
135
+ graph.nodes[2]["weight"] = 20
136
+ return graph
137
+
138
+
139
+ def three_node_clique():
140
+ graph = nx.Graph()
141
+ graph.add_nodes_from([1, 2, 3])
142
+ graph.add_edges_from([(1, 2), (1, 3), (2, 3)])
143
+ graph.nodes[1]["weight"] = 10
144
+ graph.nodes[2]["weight"] = 20
145
+ graph.nodes[3]["weight"] = 5
146
+ return graph
147
+
148
+
149
+ def three_node_independent_set():
150
+ graph = nx.Graph()
151
+ graph.add_nodes_from([1, 2, 3])
152
+ graph.nodes[1]["weight"] = 10
153
+ graph.nodes[2]["weight"] = 20
154
+ graph.nodes[3]["weight"] = 5
155
+ return graph
156
+
157
+
158
+ def disconnected():
159
+ graph = nx.Graph()
160
+ graph.add_edges_from([(1, 2), (2, 3), (4, 5), (5, 6)])
161
+ graph.nodes[1]["weight"] = 10
162
+ graph.nodes[2]["weight"] = 20
163
+ graph.nodes[3]["weight"] = 5
164
+ graph.nodes[4]["weight"] = 100
165
+ graph.nodes[5]["weight"] = 200
166
+ graph.nodes[6]["weight"] = 50
167
+ return graph
168
+
169
+
170
+ # --------------------------------------------------------------------------
171
+ # Basic tests for all strategies
172
+ # For each basic graph function, specify expected weight of max weight clique
173
+ # and expected size of maximum clique
174
+ TEST_CASES = {
175
+ empty_graph: (0, 0),
176
+ one_node_graph: (10, 1),
177
+ two_node_graph: (30, 2),
178
+ three_node_clique: (35, 3),
179
+ three_node_independent_set: (20, 1),
180
+ disconnected: (300, 2),
181
+ }
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_node_classification.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ pytest.importorskip("numpy")
4
+ pytest.importorskip("scipy")
5
+
6
+ import networkx as nx
7
+ from networkx.algorithms import node_classification
8
+
9
+
10
+ class TestHarmonicFunction:
11
+ def test_path_graph(self):
12
+ G = nx.path_graph(4)
13
+ label_name = "label"
14
+ G.nodes[0][label_name] = "A"
15
+ G.nodes[3][label_name] = "B"
16
+ predicted = node_classification.harmonic_function(G, label_name=label_name)
17
+ assert predicted[0] == "A"
18
+ assert predicted[1] == "A"
19
+ assert predicted[2] == "B"
20
+ assert predicted[3] == "B"
21
+
22
+ def test_no_labels(self):
23
+ with pytest.raises(nx.NetworkXError):
24
+ G = nx.path_graph(4)
25
+ node_classification.harmonic_function(G)
26
+
27
+ def test_no_nodes(self):
28
+ with pytest.raises(nx.NetworkXError):
29
+ G = nx.Graph()
30
+ node_classification.harmonic_function(G)
31
+
32
+ def test_no_edges(self):
33
+ with pytest.raises(nx.NetworkXError):
34
+ G = nx.Graph()
35
+ G.add_node(1)
36
+ G.add_node(2)
37
+ node_classification.harmonic_function(G)
38
+
39
+ def test_digraph(self):
40
+ with pytest.raises(nx.NetworkXNotImplemented):
41
+ G = nx.DiGraph()
42
+ G.add_edge(0, 1)
43
+ G.add_edge(1, 2)
44
+ G.add_edge(2, 3)
45
+ label_name = "label"
46
+ G.nodes[0][label_name] = "A"
47
+ G.nodes[3][label_name] = "B"
48
+ node_classification.harmonic_function(G)
49
+
50
+ def test_one_labeled_node(self):
51
+ G = nx.path_graph(4)
52
+ label_name = "label"
53
+ G.nodes[0][label_name] = "A"
54
+ predicted = node_classification.harmonic_function(G, label_name=label_name)
55
+ assert predicted[0] == "A"
56
+ assert predicted[1] == "A"
57
+ assert predicted[2] == "A"
58
+ assert predicted[3] == "A"
59
+
60
+ def test_nodes_all_labeled(self):
61
+ G = nx.karate_club_graph()
62
+ label_name = "club"
63
+ predicted = node_classification.harmonic_function(G, label_name=label_name)
64
+ for i in range(len(G)):
65
+ assert predicted[i] == G.nodes[i][label_name]
66
+
67
+ def test_labeled_nodes_are_not_changed(self):
68
+ G = nx.karate_club_graph()
69
+ label_name = "club"
70
+ label_removed = {0, 1, 2, 3, 4, 5, 6, 7}
71
+ for i in label_removed:
72
+ del G.nodes[i][label_name]
73
+ predicted = node_classification.harmonic_function(G, label_name=label_name)
74
+ label_not_removed = set(range(len(G))) - label_removed
75
+ for i in label_not_removed:
76
+ assert predicted[i] == G.nodes[i][label_name]
77
+
78
+
79
+ class TestLocalAndGlobalConsistency:
80
+ def test_path_graph(self):
81
+ G = nx.path_graph(4)
82
+ label_name = "label"
83
+ G.nodes[0][label_name] = "A"
84
+ G.nodes[3][label_name] = "B"
85
+ predicted = node_classification.local_and_global_consistency(
86
+ G, label_name=label_name
87
+ )
88
+ assert predicted[0] == "A"
89
+ assert predicted[1] == "A"
90
+ assert predicted[2] == "B"
91
+ assert predicted[3] == "B"
92
+
93
+ def test_no_labels(self):
94
+ with pytest.raises(nx.NetworkXError):
95
+ G = nx.path_graph(4)
96
+ node_classification.local_and_global_consistency(G)
97
+
98
+ def test_no_nodes(self):
99
+ with pytest.raises(nx.NetworkXError):
100
+ G = nx.Graph()
101
+ node_classification.local_and_global_consistency(G)
102
+
103
+ def test_no_edges(self):
104
+ with pytest.raises(nx.NetworkXError):
105
+ G = nx.Graph()
106
+ G.add_node(1)
107
+ G.add_node(2)
108
+ node_classification.local_and_global_consistency(G)
109
+
110
+ def test_digraph(self):
111
+ with pytest.raises(nx.NetworkXNotImplemented):
112
+ G = nx.DiGraph()
113
+ G.add_edge(0, 1)
114
+ G.add_edge(1, 2)
115
+ G.add_edge(2, 3)
116
+ label_name = "label"
117
+ G.nodes[0][label_name] = "A"
118
+ G.nodes[3][label_name] = "B"
119
+ node_classification.harmonic_function(G)
120
+
121
+ def test_one_labeled_node(self):
122
+ G = nx.path_graph(4)
123
+ label_name = "label"
124
+ G.nodes[0][label_name] = "A"
125
+ predicted = node_classification.local_and_global_consistency(
126
+ G, label_name=label_name
127
+ )
128
+ assert predicted[0] == "A"
129
+ assert predicted[1] == "A"
130
+ assert predicted[2] == "A"
131
+ assert predicted[3] == "A"
132
+
133
+ def test_nodes_all_labeled(self):
134
+ G = nx.karate_club_graph()
135
+ label_name = "club"
136
+ predicted = node_classification.local_and_global_consistency(
137
+ G, alpha=0, label_name=label_name
138
+ )
139
+ for i in range(len(G)):
140
+ assert predicted[i] == G.nodes[i][label_name]
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_non_randomness.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+ np = pytest.importorskip("numpy")
6
+
7
+
8
+ @pytest.mark.parametrize(
9
+ "k, weight, expected",
10
+ [
11
+ (None, None, 7.21), # infers 3 communities
12
+ (2, None, 11.7),
13
+ (None, "weight", 25.45),
14
+ (2, "weight", 38.8),
15
+ ],
16
+ )
17
+ def test_non_randomness(k, weight, expected):
18
+ G = nx.karate_club_graph()
19
+ np.testing.assert_almost_equal(
20
+ nx.non_randomness(G, k, weight)[0], expected, decimal=2
21
+ )
22
+
23
+
24
+ def test_non_connected():
25
+ G = nx.Graph()
26
+ G.add_edge(1, 2)
27
+ G.add_node(3)
28
+ with pytest.raises(nx.NetworkXException):
29
+ nx.non_randomness(G)
30
+
31
+
32
+ def test_self_loops():
33
+ G = nx.Graph()
34
+ G.add_edge(1, 2)
35
+ G.add_edge(1, 1)
36
+ with pytest.raises(nx.NetworkXError):
37
+ nx.non_randomness(G)
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_polynomials.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.polynomials` module."""
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+ sympy = pytest.importorskip("sympy")
8
+
9
+
10
+ # Mapping of input graphs to a string representation of their tutte polynomials
11
+ _test_tutte_graphs = {
12
+ nx.complete_graph(1): "1",
13
+ nx.complete_graph(4): "x**3 + 3*x**2 + 4*x*y + 2*x + y**3 + 3*y**2 + 2*y",
14
+ nx.cycle_graph(5): "x**4 + x**3 + x**2 + x + y",
15
+ nx.diamond_graph(): "x**3 + 2*x**2 + 2*x*y + x + y**2 + y",
16
+ }
17
+
18
+ _test_chromatic_graphs = {
19
+ nx.complete_graph(1): "x",
20
+ nx.complete_graph(4): "x**4 - 6*x**3 + 11*x**2 - 6*x",
21
+ nx.cycle_graph(5): "x**5 - 5*x**4 + 10*x**3 - 10*x**2 + 4*x",
22
+ nx.diamond_graph(): "x**4 - 5*x**3 + 8*x**2 - 4*x",
23
+ nx.path_graph(5): "x**5 - 4*x**4 + 6*x**3 - 4*x**2 + x",
24
+ }
25
+
26
+
27
+ @pytest.mark.parametrize(("G", "expected"), _test_tutte_graphs.items())
28
+ def test_tutte_polynomial(G, expected):
29
+ assert nx.tutte_polynomial(G).equals(expected)
30
+
31
+
32
+ @pytest.mark.parametrize("G", _test_tutte_graphs.keys())
33
+ def test_tutte_polynomial_disjoint(G):
34
+ """Tutte polynomial factors into the Tutte polynomials of its components.
35
+ Verify this property with the disjoint union of two copies of the input graph.
36
+ """
37
+ t_g = nx.tutte_polynomial(G)
38
+ H = nx.disjoint_union(G, G)
39
+ t_h = nx.tutte_polynomial(H)
40
+ assert sympy.simplify(t_g * t_g).equals(t_h)
41
+
42
+
43
+ @pytest.mark.parametrize(("G", "expected"), _test_chromatic_graphs.items())
44
+ def test_chromatic_polynomial(G, expected):
45
+ assert nx.chromatic_polynomial(G).equals(expected)
46
+
47
+
48
+ @pytest.mark.parametrize("G", _test_chromatic_graphs.keys())
49
+ def test_chromatic_polynomial_disjoint(G):
50
+ """Chromatic polynomial factors into the Chromatic polynomials of its
51
+ components. Verify this property with the disjoint union of two copies of
52
+ the input graph.
53
+ """
54
+ x_g = nx.chromatic_polynomial(G)
55
+ H = nx.disjoint_union(G, G)
56
+ x_h = nx.chromatic_polynomial(H)
57
+ assert sympy.simplify(x_g * x_g).equals(x_h)
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_reciprocity.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ class TestReciprocity:
7
+ # test overall reciprocity by passing whole graph
8
+ def test_reciprocity_digraph(self):
9
+ DG = nx.DiGraph([(1, 2), (2, 1)])
10
+ reciprocity = nx.reciprocity(DG)
11
+ assert reciprocity == 1.0
12
+
13
+ # test empty graph's overall reciprocity which will throw an error
14
+ def test_overall_reciprocity_empty_graph(self):
15
+ with pytest.raises(nx.NetworkXError):
16
+ DG = nx.DiGraph()
17
+ nx.overall_reciprocity(DG)
18
+
19
+ # test for reciprocity for a list of nodes
20
+ def test_reciprocity_graph_nodes(self):
21
+ DG = nx.DiGraph([(1, 2), (2, 3), (3, 2)])
22
+ reciprocity = nx.reciprocity(DG, [1, 2])
23
+ expected_reciprocity = {1: 0.0, 2: 0.6666666666666666}
24
+ assert reciprocity == expected_reciprocity
25
+
26
+ # test for reciprocity for a single node
27
+ def test_reciprocity_graph_node(self):
28
+ DG = nx.DiGraph([(1, 2), (2, 3), (3, 2)])
29
+ reciprocity = nx.reciprocity(DG, 2)
30
+ assert reciprocity == 0.6666666666666666
31
+
32
+ # test for reciprocity for an isolated node
33
+ def test_reciprocity_graph_isolated_nodes(self):
34
+ with pytest.raises(nx.NetworkXError):
35
+ DG = nx.DiGraph([(1, 2)])
36
+ DG.add_node(4)
37
+ nx.reciprocity(DG, 4)
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_richclub.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ def test_richclub():
7
+ G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (4, 5)])
8
+ rc = nx.richclub.rich_club_coefficient(G, normalized=False)
9
+ assert rc == {0: 12.0 / 30, 1: 8.0 / 12}
10
+
11
+ # test single value
12
+ rc0 = nx.richclub.rich_club_coefficient(G, normalized=False)[0]
13
+ assert rc0 == 12.0 / 30.0
14
+
15
+
16
+ def test_richclub_seed():
17
+ G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (4, 5)])
18
+ rcNorm = nx.richclub.rich_club_coefficient(G, Q=2, seed=1)
19
+ assert rcNorm == {0: 1.0, 1: 1.0}
20
+
21
+
22
+ def test_richclub_normalized():
23
+ G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (4, 5)])
24
+ rcNorm = nx.richclub.rich_club_coefficient(G, Q=2, seed=42)
25
+ assert rcNorm == {0: 1.0, 1: 1.0}
26
+
27
+
28
+ def test_richclub2():
29
+ T = nx.balanced_tree(2, 10)
30
+ rc = nx.richclub.rich_club_coefficient(T, normalized=False)
31
+ assert rc == {
32
+ 0: 4092 / (2047 * 2046.0),
33
+ 1: (2044.0 / (1023 * 1022)),
34
+ 2: (2040.0 / (1022 * 1021)),
35
+ }
36
+
37
+
38
+ def test_richclub3():
39
+ # tests edgecase
40
+ G = nx.karate_club_graph()
41
+ rc = nx.rich_club_coefficient(G, normalized=False)
42
+ assert rc == {
43
+ 0: 156.0 / 1122,
44
+ 1: 154.0 / 1056,
45
+ 2: 110.0 / 462,
46
+ 3: 78.0 / 240,
47
+ 4: 44.0 / 90,
48
+ 5: 22.0 / 42,
49
+ 6: 10.0 / 20,
50
+ 7: 10.0 / 20,
51
+ 8: 10.0 / 20,
52
+ 9: 6.0 / 12,
53
+ 10: 2.0 / 6,
54
+ 11: 2.0 / 6,
55
+ 12: 0.0,
56
+ 13: 0.0,
57
+ 14: 0.0,
58
+ 15: 0.0,
59
+ }
60
+
61
+
62
+ def test_richclub4():
63
+ G = nx.Graph()
64
+ G.add_edges_from(
65
+ [(0, 1), (0, 2), (0, 3), (0, 4), (4, 5), (5, 9), (6, 9), (7, 9), (8, 9)]
66
+ )
67
+ rc = nx.rich_club_coefficient(G, normalized=False)
68
+ assert rc == {0: 18 / 90.0, 1: 6 / 12.0, 2: 0.0, 3: 0.0}
69
+
70
+
71
+ def test_richclub_exception():
72
+ with pytest.raises(nx.NetworkXNotImplemented):
73
+ G = nx.DiGraph()
74
+ nx.rich_club_coefficient(G)
75
+
76
+
77
+ def test_rich_club_exception2():
78
+ with pytest.raises(nx.NetworkXNotImplemented):
79
+ G = nx.MultiGraph()
80
+ nx.rich_club_coefficient(G)
81
+
82
+
83
+ def test_rich_club_selfloop():
84
+ G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
85
+ G.add_edge(1, 1) # self loop
86
+ G.add_edge(1, 2)
87
+ with pytest.raises(
88
+ Exception,
89
+ match="rich_club_coefficient is not implemented for " "graphs with self loops.",
90
+ ):
91
+ nx.rich_club_coefficient(G)
92
+
93
+
94
+ def test_rich_club_leq_3_nodes_unnormalized():
95
+ # edgeless graphs upto 3 nodes
96
+ G = nx.Graph()
97
+ rc = nx.rich_club_coefficient(G, normalized=False)
98
+ assert rc == {}
99
+
100
+ for i in range(3):
101
+ G.add_node(i)
102
+ rc = nx.rich_club_coefficient(G, normalized=False)
103
+ assert rc == {}
104
+
105
+ # 2 nodes, single edge
106
+ G = nx.Graph()
107
+ G.add_edge(0, 1)
108
+ rc = nx.rich_club_coefficient(G, normalized=False)
109
+ assert rc == {0: 1}
110
+
111
+ # 3 nodes, single edge
112
+ G = nx.Graph()
113
+ G.add_nodes_from([0, 1, 2])
114
+ G.add_edge(0, 1)
115
+ rc = nx.rich_club_coefficient(G, normalized=False)
116
+ assert rc == {0: 1}
117
+
118
+ # 3 nodes, 2 edges
119
+ G.add_edge(1, 2)
120
+ rc = nx.rich_club_coefficient(G, normalized=False)
121
+ assert rc == {0: 2 / 3}
122
+
123
+ # 3 nodes, 3 edges
124
+ G.add_edge(0, 2)
125
+ rc = nx.rich_club_coefficient(G, normalized=False)
126
+ assert rc == {0: 1, 1: 1}
127
+
128
+
129
+ def test_rich_club_leq_3_nodes_normalized():
130
+ G = nx.Graph()
131
+ with pytest.raises(
132
+ nx.exception.NetworkXError,
133
+ match="Graph has fewer than four nodes",
134
+ ):
135
+ rc = nx.rich_club_coefficient(G, normalized=True)
136
+
137
+ for i in range(3):
138
+ G.add_node(i)
139
+ with pytest.raises(
140
+ nx.exception.NetworkXError,
141
+ match="Graph has fewer than four nodes",
142
+ ):
143
+ rc = nx.rich_club_coefficient(G, normalized=True)
144
+
145
+
146
+ # def test_richclub2_normalized():
147
+ # T = nx.balanced_tree(2,10)
148
+ # rcNorm = nx.richclub.rich_club_coefficient(T,Q=2)
149
+ # assert_true(rcNorm[0] ==1.0 and rcNorm[1] < 0.9 and rcNorm[2] < 0.9)
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_similarity.py ADDED
@@ -0,0 +1,946 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.algorithms.similarity import (
5
+ graph_edit_distance,
6
+ optimal_edit_paths,
7
+ optimize_graph_edit_distance,
8
+ )
9
+ from networkx.generators.classic import (
10
+ circular_ladder_graph,
11
+ cycle_graph,
12
+ path_graph,
13
+ wheel_graph,
14
+ )
15
+
16
+
17
+ def nmatch(n1, n2):
18
+ return n1 == n2
19
+
20
+
21
+ def ematch(e1, e2):
22
+ return e1 == e2
23
+
24
+
25
+ def getCanonical():
26
+ G = nx.Graph()
27
+ G.add_node("A", label="A")
28
+ G.add_node("B", label="B")
29
+ G.add_node("C", label="C")
30
+ G.add_node("D", label="D")
31
+ G.add_edge("A", "B", label="a-b")
32
+ G.add_edge("B", "C", label="b-c")
33
+ G.add_edge("B", "D", label="b-d")
34
+ return G
35
+
36
+
37
+ class TestSimilarity:
38
+ @classmethod
39
+ def setup_class(cls):
40
+ global np
41
+ np = pytest.importorskip("numpy")
42
+ pytest.importorskip("scipy")
43
+
44
+ def test_graph_edit_distance_roots_and_timeout(self):
45
+ G0 = nx.star_graph(5)
46
+ G1 = G0.copy()
47
+ pytest.raises(ValueError, graph_edit_distance, G0, G1, roots=[2])
48
+ pytest.raises(ValueError, graph_edit_distance, G0, G1, roots=[2, 3, 4])
49
+ pytest.raises(nx.NodeNotFound, graph_edit_distance, G0, G1, roots=(9, 3))
50
+ pytest.raises(nx.NodeNotFound, graph_edit_distance, G0, G1, roots=(3, 9))
51
+ pytest.raises(nx.NodeNotFound, graph_edit_distance, G0, G1, roots=(9, 9))
52
+ assert graph_edit_distance(G0, G1, roots=(1, 2)) == 0
53
+ assert graph_edit_distance(G0, G1, roots=(0, 1)) == 8
54
+ assert graph_edit_distance(G0, G1, roots=(1, 2), timeout=5) == 0
55
+ assert graph_edit_distance(G0, G1, roots=(0, 1), timeout=5) == 8
56
+ assert graph_edit_distance(G0, G1, roots=(0, 1), timeout=0.0001) is None
57
+ # test raise on 0 timeout
58
+ pytest.raises(nx.NetworkXError, graph_edit_distance, G0, G1, timeout=0)
59
+
60
+ def test_graph_edit_distance(self):
61
+ G0 = nx.Graph()
62
+ G1 = path_graph(6)
63
+ G2 = cycle_graph(6)
64
+ G3 = wheel_graph(7)
65
+
66
+ assert graph_edit_distance(G0, G0) == 0
67
+ assert graph_edit_distance(G0, G1) == 11
68
+ assert graph_edit_distance(G1, G0) == 11
69
+ assert graph_edit_distance(G0, G2) == 12
70
+ assert graph_edit_distance(G2, G0) == 12
71
+ assert graph_edit_distance(G0, G3) == 19
72
+ assert graph_edit_distance(G3, G0) == 19
73
+
74
+ assert graph_edit_distance(G1, G1) == 0
75
+ assert graph_edit_distance(G1, G2) == 1
76
+ assert graph_edit_distance(G2, G1) == 1
77
+ assert graph_edit_distance(G1, G3) == 8
78
+ assert graph_edit_distance(G3, G1) == 8
79
+
80
+ assert graph_edit_distance(G2, G2) == 0
81
+ assert graph_edit_distance(G2, G3) == 7
82
+ assert graph_edit_distance(G3, G2) == 7
83
+
84
+ assert graph_edit_distance(G3, G3) == 0
85
+
86
+ def test_graph_edit_distance_node_match(self):
87
+ G1 = cycle_graph(5)
88
+ G2 = cycle_graph(5)
89
+ for n, attr in G1.nodes.items():
90
+ attr["color"] = "red" if n % 2 == 0 else "blue"
91
+ for n, attr in G2.nodes.items():
92
+ attr["color"] = "red" if n % 2 == 1 else "blue"
93
+ assert graph_edit_distance(G1, G2) == 0
94
+ assert (
95
+ graph_edit_distance(
96
+ G1, G2, node_match=lambda n1, n2: n1["color"] == n2["color"]
97
+ )
98
+ == 1
99
+ )
100
+
101
+ def test_graph_edit_distance_edge_match(self):
102
+ G1 = path_graph(6)
103
+ G2 = path_graph(6)
104
+ for e, attr in G1.edges.items():
105
+ attr["color"] = "red" if min(e) % 2 == 0 else "blue"
106
+ for e, attr in G2.edges.items():
107
+ attr["color"] = "red" if min(e) // 3 == 0 else "blue"
108
+ assert graph_edit_distance(G1, G2) == 0
109
+ assert (
110
+ graph_edit_distance(
111
+ G1, G2, edge_match=lambda e1, e2: e1["color"] == e2["color"]
112
+ )
113
+ == 2
114
+ )
115
+
116
+ def test_graph_edit_distance_node_cost(self):
117
+ G1 = path_graph(6)
118
+ G2 = path_graph(6)
119
+ for n, attr in G1.nodes.items():
120
+ attr["color"] = "red" if n % 2 == 0 else "blue"
121
+ for n, attr in G2.nodes.items():
122
+ attr["color"] = "red" if n % 2 == 1 else "blue"
123
+
124
+ def node_subst_cost(uattr, vattr):
125
+ if uattr["color"] == vattr["color"]:
126
+ return 1
127
+ else:
128
+ return 10
129
+
130
+ def node_del_cost(attr):
131
+ if attr["color"] == "blue":
132
+ return 20
133
+ else:
134
+ return 50
135
+
136
+ def node_ins_cost(attr):
137
+ if attr["color"] == "blue":
138
+ return 40
139
+ else:
140
+ return 100
141
+
142
+ assert (
143
+ graph_edit_distance(
144
+ G1,
145
+ G2,
146
+ node_subst_cost=node_subst_cost,
147
+ node_del_cost=node_del_cost,
148
+ node_ins_cost=node_ins_cost,
149
+ )
150
+ == 6
151
+ )
152
+
153
+ def test_graph_edit_distance_edge_cost(self):
154
+ G1 = path_graph(6)
155
+ G2 = path_graph(6)
156
+ for e, attr in G1.edges.items():
157
+ attr["color"] = "red" if min(e) % 2 == 0 else "blue"
158
+ for e, attr in G2.edges.items():
159
+ attr["color"] = "red" if min(e) // 3 == 0 else "blue"
160
+
161
+ def edge_subst_cost(gattr, hattr):
162
+ if gattr["color"] == hattr["color"]:
163
+ return 0.01
164
+ else:
165
+ return 0.1
166
+
167
+ def edge_del_cost(attr):
168
+ if attr["color"] == "blue":
169
+ return 0.2
170
+ else:
171
+ return 0.5
172
+
173
+ def edge_ins_cost(attr):
174
+ if attr["color"] == "blue":
175
+ return 0.4
176
+ else:
177
+ return 1.0
178
+
179
+ assert (
180
+ graph_edit_distance(
181
+ G1,
182
+ G2,
183
+ edge_subst_cost=edge_subst_cost,
184
+ edge_del_cost=edge_del_cost,
185
+ edge_ins_cost=edge_ins_cost,
186
+ )
187
+ == 0.23
188
+ )
189
+
190
+ def test_graph_edit_distance_upper_bound(self):
191
+ G1 = circular_ladder_graph(2)
192
+ G2 = circular_ladder_graph(6)
193
+ assert graph_edit_distance(G1, G2, upper_bound=5) is None
194
+ assert graph_edit_distance(G1, G2, upper_bound=24) == 22
195
+ assert graph_edit_distance(G1, G2) == 22
196
+
197
+ def test_optimal_edit_paths(self):
198
+ G1 = path_graph(3)
199
+ G2 = cycle_graph(3)
200
+ paths, cost = optimal_edit_paths(G1, G2)
201
+ assert cost == 1
202
+ assert len(paths) == 6
203
+
204
+ def canonical(vertex_path, edge_path):
205
+ return (
206
+ tuple(sorted(vertex_path)),
207
+ tuple(sorted(edge_path, key=lambda x: (None in x, x))),
208
+ )
209
+
210
+ expected_paths = [
211
+ (
212
+ [(0, 0), (1, 1), (2, 2)],
213
+ [((0, 1), (0, 1)), ((1, 2), (1, 2)), (None, (0, 2))],
214
+ ),
215
+ (
216
+ [(0, 0), (1, 2), (2, 1)],
217
+ [((0, 1), (0, 2)), ((1, 2), (1, 2)), (None, (0, 1))],
218
+ ),
219
+ (
220
+ [(0, 1), (1, 0), (2, 2)],
221
+ [((0, 1), (0, 1)), ((1, 2), (0, 2)), (None, (1, 2))],
222
+ ),
223
+ (
224
+ [(0, 1), (1, 2), (2, 0)],
225
+ [((0, 1), (1, 2)), ((1, 2), (0, 2)), (None, (0, 1))],
226
+ ),
227
+ (
228
+ [(0, 2), (1, 0), (2, 1)],
229
+ [((0, 1), (0, 2)), ((1, 2), (0, 1)), (None, (1, 2))],
230
+ ),
231
+ (
232
+ [(0, 2), (1, 1), (2, 0)],
233
+ [((0, 1), (1, 2)), ((1, 2), (0, 1)), (None, (0, 2))],
234
+ ),
235
+ ]
236
+ assert {canonical(*p) for p in paths} == {canonical(*p) for p in expected_paths}
237
+
238
+ def test_optimize_graph_edit_distance(self):
239
+ G1 = circular_ladder_graph(2)
240
+ G2 = circular_ladder_graph(6)
241
+ bestcost = 1000
242
+ for cost in optimize_graph_edit_distance(G1, G2):
243
+ assert cost < bestcost
244
+ bestcost = cost
245
+ assert bestcost == 22
246
+
247
+ # def test_graph_edit_distance_bigger(self):
248
+ # G1 = circular_ladder_graph(12)
249
+ # G2 = circular_ladder_graph(16)
250
+ # assert_equal(graph_edit_distance(G1, G2), 22)
251
+
252
+ def test_selfloops(self):
253
+ G0 = nx.Graph()
254
+ G1 = nx.Graph()
255
+ G1.add_edges_from((("A", "A"), ("A", "B")))
256
+ G2 = nx.Graph()
257
+ G2.add_edges_from((("A", "B"), ("B", "B")))
258
+ G3 = nx.Graph()
259
+ G3.add_edges_from((("A", "A"), ("A", "B"), ("B", "B")))
260
+
261
+ assert graph_edit_distance(G0, G0) == 0
262
+ assert graph_edit_distance(G0, G1) == 4
263
+ assert graph_edit_distance(G1, G0) == 4
264
+ assert graph_edit_distance(G0, G2) == 4
265
+ assert graph_edit_distance(G2, G0) == 4
266
+ assert graph_edit_distance(G0, G3) == 5
267
+ assert graph_edit_distance(G3, G0) == 5
268
+
269
+ assert graph_edit_distance(G1, G1) == 0
270
+ assert graph_edit_distance(G1, G2) == 0
271
+ assert graph_edit_distance(G2, G1) == 0
272
+ assert graph_edit_distance(G1, G3) == 1
273
+ assert graph_edit_distance(G3, G1) == 1
274
+
275
+ assert graph_edit_distance(G2, G2) == 0
276
+ assert graph_edit_distance(G2, G3) == 1
277
+ assert graph_edit_distance(G3, G2) == 1
278
+
279
+ assert graph_edit_distance(G3, G3) == 0
280
+
281
+ def test_digraph(self):
282
+ G0 = nx.DiGraph()
283
+ G1 = nx.DiGraph()
284
+ G1.add_edges_from((("A", "B"), ("B", "C"), ("C", "D"), ("D", "A")))
285
+ G2 = nx.DiGraph()
286
+ G2.add_edges_from((("A", "B"), ("B", "C"), ("C", "D"), ("A", "D")))
287
+ G3 = nx.DiGraph()
288
+ G3.add_edges_from((("A", "B"), ("A", "C"), ("B", "D"), ("C", "D")))
289
+
290
+ assert graph_edit_distance(G0, G0) == 0
291
+ assert graph_edit_distance(G0, G1) == 8
292
+ assert graph_edit_distance(G1, G0) == 8
293
+ assert graph_edit_distance(G0, G2) == 8
294
+ assert graph_edit_distance(G2, G0) == 8
295
+ assert graph_edit_distance(G0, G3) == 8
296
+ assert graph_edit_distance(G3, G0) == 8
297
+
298
+ assert graph_edit_distance(G1, G1) == 0
299
+ assert graph_edit_distance(G1, G2) == 2
300
+ assert graph_edit_distance(G2, G1) == 2
301
+ assert graph_edit_distance(G1, G3) == 4
302
+ assert graph_edit_distance(G3, G1) == 4
303
+
304
+ assert graph_edit_distance(G2, G2) == 0
305
+ assert graph_edit_distance(G2, G3) == 2
306
+ assert graph_edit_distance(G3, G2) == 2
307
+
308
+ assert graph_edit_distance(G3, G3) == 0
309
+
310
+ def test_multigraph(self):
311
+ G0 = nx.MultiGraph()
312
+ G1 = nx.MultiGraph()
313
+ G1.add_edges_from((("A", "B"), ("B", "C"), ("A", "C")))
314
+ G2 = nx.MultiGraph()
315
+ G2.add_edges_from((("A", "B"), ("B", "C"), ("B", "C"), ("A", "C")))
316
+ G3 = nx.MultiGraph()
317
+ G3.add_edges_from((("A", "B"), ("B", "C"), ("A", "C"), ("A", "C"), ("A", "C")))
318
+
319
+ assert graph_edit_distance(G0, G0) == 0
320
+ assert graph_edit_distance(G0, G1) == 6
321
+ assert graph_edit_distance(G1, G0) == 6
322
+ assert graph_edit_distance(G0, G2) == 7
323
+ assert graph_edit_distance(G2, G0) == 7
324
+ assert graph_edit_distance(G0, G3) == 8
325
+ assert graph_edit_distance(G3, G0) == 8
326
+
327
+ assert graph_edit_distance(G1, G1) == 0
328
+ assert graph_edit_distance(G1, G2) == 1
329
+ assert graph_edit_distance(G2, G1) == 1
330
+ assert graph_edit_distance(G1, G3) == 2
331
+ assert graph_edit_distance(G3, G1) == 2
332
+
333
+ assert graph_edit_distance(G2, G2) == 0
334
+ assert graph_edit_distance(G2, G3) == 1
335
+ assert graph_edit_distance(G3, G2) == 1
336
+
337
+ assert graph_edit_distance(G3, G3) == 0
338
+
339
+ def test_multidigraph(self):
340
+ G1 = nx.MultiDiGraph()
341
+ G1.add_edges_from(
342
+ (
343
+ ("hardware", "kernel"),
344
+ ("kernel", "hardware"),
345
+ ("kernel", "userspace"),
346
+ ("userspace", "kernel"),
347
+ )
348
+ )
349
+ G2 = nx.MultiDiGraph()
350
+ G2.add_edges_from(
351
+ (
352
+ ("winter", "spring"),
353
+ ("spring", "summer"),
354
+ ("summer", "autumn"),
355
+ ("autumn", "winter"),
356
+ )
357
+ )
358
+
359
+ assert graph_edit_distance(G1, G2) == 5
360
+ assert graph_edit_distance(G2, G1) == 5
361
+
362
+ # by https://github.com/jfbeaumont
363
+ def testCopy(self):
364
+ G = nx.Graph()
365
+ G.add_node("A", label="A")
366
+ G.add_node("B", label="B")
367
+ G.add_edge("A", "B", label="a-b")
368
+ assert (
369
+ graph_edit_distance(G, G.copy(), node_match=nmatch, edge_match=ematch) == 0
370
+ )
371
+
372
+ def testSame(self):
373
+ G1 = nx.Graph()
374
+ G1.add_node("A", label="A")
375
+ G1.add_node("B", label="B")
376
+ G1.add_edge("A", "B", label="a-b")
377
+ G2 = nx.Graph()
378
+ G2.add_node("A", label="A")
379
+ G2.add_node("B", label="B")
380
+ G2.add_edge("A", "B", label="a-b")
381
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 0
382
+
383
+ def testOneEdgeLabelDiff(self):
384
+ G1 = nx.Graph()
385
+ G1.add_node("A", label="A")
386
+ G1.add_node("B", label="B")
387
+ G1.add_edge("A", "B", label="a-b")
388
+ G2 = nx.Graph()
389
+ G2.add_node("A", label="A")
390
+ G2.add_node("B", label="B")
391
+ G2.add_edge("A", "B", label="bad")
392
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1
393
+
394
+ def testOneNodeLabelDiff(self):
395
+ G1 = nx.Graph()
396
+ G1.add_node("A", label="A")
397
+ G1.add_node("B", label="B")
398
+ G1.add_edge("A", "B", label="a-b")
399
+ G2 = nx.Graph()
400
+ G2.add_node("A", label="Z")
401
+ G2.add_node("B", label="B")
402
+ G2.add_edge("A", "B", label="a-b")
403
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1
404
+
405
+ def testOneExtraNode(self):
406
+ G1 = nx.Graph()
407
+ G1.add_node("A", label="A")
408
+ G1.add_node("B", label="B")
409
+ G1.add_edge("A", "B", label="a-b")
410
+ G2 = nx.Graph()
411
+ G2.add_node("A", label="A")
412
+ G2.add_node("B", label="B")
413
+ G2.add_edge("A", "B", label="a-b")
414
+ G2.add_node("C", label="C")
415
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1
416
+
417
+ def testOneExtraEdge(self):
418
+ G1 = nx.Graph()
419
+ G1.add_node("A", label="A")
420
+ G1.add_node("B", label="B")
421
+ G1.add_node("C", label="C")
422
+ G1.add_node("C", label="C")
423
+ G1.add_edge("A", "B", label="a-b")
424
+ G2 = nx.Graph()
425
+ G2.add_node("A", label="A")
426
+ G2.add_node("B", label="B")
427
+ G2.add_node("C", label="C")
428
+ G2.add_edge("A", "B", label="a-b")
429
+ G2.add_edge("A", "C", label="a-c")
430
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1
431
+
432
+ def testOneExtraNodeAndEdge(self):
433
+ G1 = nx.Graph()
434
+ G1.add_node("A", label="A")
435
+ G1.add_node("B", label="B")
436
+ G1.add_edge("A", "B", label="a-b")
437
+ G2 = nx.Graph()
438
+ G2.add_node("A", label="A")
439
+ G2.add_node("B", label="B")
440
+ G2.add_node("C", label="C")
441
+ G2.add_edge("A", "B", label="a-b")
442
+ G2.add_edge("A", "C", label="a-c")
443
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 2
444
+
445
+ def testGraph1(self):
446
+ G1 = getCanonical()
447
+ G2 = nx.Graph()
448
+ G2.add_node("A", label="A")
449
+ G2.add_node("B", label="B")
450
+ G2.add_node("D", label="D")
451
+ G2.add_node("E", label="E")
452
+ G2.add_edge("A", "B", label="a-b")
453
+ G2.add_edge("B", "D", label="b-d")
454
+ G2.add_edge("D", "E", label="d-e")
455
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 3
456
+
457
+ def testGraph2(self):
458
+ G1 = getCanonical()
459
+ G2 = nx.Graph()
460
+ G2.add_node("A", label="A")
461
+ G2.add_node("B", label="B")
462
+ G2.add_node("C", label="C")
463
+ G2.add_node("D", label="D")
464
+ G2.add_node("E", label="E")
465
+ G2.add_edge("A", "B", label="a-b")
466
+ G2.add_edge("B", "C", label="b-c")
467
+ G2.add_edge("C", "D", label="c-d")
468
+ G2.add_edge("C", "E", label="c-e")
469
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 4
470
+
471
+ def testGraph3(self):
472
+ G1 = getCanonical()
473
+ G2 = nx.Graph()
474
+ G2.add_node("A", label="A")
475
+ G2.add_node("B", label="B")
476
+ G2.add_node("C", label="C")
477
+ G2.add_node("D", label="D")
478
+ G2.add_node("E", label="E")
479
+ G2.add_node("F", label="F")
480
+ G2.add_node("G", label="G")
481
+ G2.add_edge("A", "C", label="a-c")
482
+ G2.add_edge("A", "D", label="a-d")
483
+ G2.add_edge("D", "E", label="d-e")
484
+ G2.add_edge("D", "F", label="d-f")
485
+ G2.add_edge("D", "G", label="d-g")
486
+ G2.add_edge("E", "B", label="e-b")
487
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 12
488
+
489
+ def testGraph4(self):
490
+ G1 = getCanonical()
491
+ G2 = nx.Graph()
492
+ G2.add_node("A", label="A")
493
+ G2.add_node("B", label="B")
494
+ G2.add_node("C", label="C")
495
+ G2.add_node("D", label="D")
496
+ G2.add_edge("A", "B", label="a-b")
497
+ G2.add_edge("B", "C", label="b-c")
498
+ G2.add_edge("C", "D", label="c-d")
499
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 2
500
+
501
+ def testGraph4_a(self):
502
+ G1 = getCanonical()
503
+ G2 = nx.Graph()
504
+ G2.add_node("A", label="A")
505
+ G2.add_node("B", label="B")
506
+ G2.add_node("C", label="C")
507
+ G2.add_node("D", label="D")
508
+ G2.add_edge("A", "B", label="a-b")
509
+ G2.add_edge("B", "C", label="b-c")
510
+ G2.add_edge("A", "D", label="a-d")
511
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 2
512
+
513
+ def testGraph4_b(self):
514
+ G1 = getCanonical()
515
+ G2 = nx.Graph()
516
+ G2.add_node("A", label="A")
517
+ G2.add_node("B", label="B")
518
+ G2.add_node("C", label="C")
519
+ G2.add_node("D", label="D")
520
+ G2.add_edge("A", "B", label="a-b")
521
+ G2.add_edge("B", "C", label="b-c")
522
+ G2.add_edge("B", "D", label="bad")
523
+ assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1
524
+
525
+ # note: nx.simrank_similarity_numpy not included because returns np.array
526
+ simrank_algs = [
527
+ nx.simrank_similarity,
528
+ nx.algorithms.similarity._simrank_similarity_python,
529
+ ]
530
+
531
+ @pytest.mark.parametrize("simrank_similarity", simrank_algs)
532
+ def test_simrank_no_source_no_target(self, simrank_similarity):
533
+ G = nx.cycle_graph(5)
534
+ expected = {
535
+ 0: {
536
+ 0: 1,
537
+ 1: 0.3951219505902448,
538
+ 2: 0.5707317069281646,
539
+ 3: 0.5707317069281646,
540
+ 4: 0.3951219505902449,
541
+ },
542
+ 1: {
543
+ 0: 0.3951219505902448,
544
+ 1: 1,
545
+ 2: 0.3951219505902449,
546
+ 3: 0.5707317069281646,
547
+ 4: 0.5707317069281646,
548
+ },
549
+ 2: {
550
+ 0: 0.5707317069281646,
551
+ 1: 0.3951219505902449,
552
+ 2: 1,
553
+ 3: 0.3951219505902449,
554
+ 4: 0.5707317069281646,
555
+ },
556
+ 3: {
557
+ 0: 0.5707317069281646,
558
+ 1: 0.5707317069281646,
559
+ 2: 0.3951219505902449,
560
+ 3: 1,
561
+ 4: 0.3951219505902449,
562
+ },
563
+ 4: {
564
+ 0: 0.3951219505902449,
565
+ 1: 0.5707317069281646,
566
+ 2: 0.5707317069281646,
567
+ 3: 0.3951219505902449,
568
+ 4: 1,
569
+ },
570
+ }
571
+ actual = simrank_similarity(G)
572
+ for k, v in expected.items():
573
+ assert v == pytest.approx(actual[k], abs=1e-2)
574
+
575
+ # For a DiGraph test, use the first graph from the paper cited in
576
+ # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126
577
+ G = nx.DiGraph()
578
+ G.add_node(0, label="Univ")
579
+ G.add_node(1, label="ProfA")
580
+ G.add_node(2, label="ProfB")
581
+ G.add_node(3, label="StudentA")
582
+ G.add_node(4, label="StudentB")
583
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)])
584
+
585
+ expected = {
586
+ 0: {0: 1, 1: 0.0, 2: 0.1323363991265798, 3: 0.0, 4: 0.03387811817640443},
587
+ 1: {0: 0.0, 1: 1, 2: 0.4135512472705618, 3: 0.0, 4: 0.10586911930126384},
588
+ 2: {
589
+ 0: 0.1323363991265798,
590
+ 1: 0.4135512472705618,
591
+ 2: 1,
592
+ 3: 0.04234764772050554,
593
+ 4: 0.08822426608438655,
594
+ },
595
+ 3: {0: 0.0, 1: 0.0, 2: 0.04234764772050554, 3: 1, 4: 0.3308409978164495},
596
+ 4: {
597
+ 0: 0.03387811817640443,
598
+ 1: 0.10586911930126384,
599
+ 2: 0.08822426608438655,
600
+ 3: 0.3308409978164495,
601
+ 4: 1,
602
+ },
603
+ }
604
+ # Use the importance_factor from the paper to get the same numbers.
605
+ actual = simrank_similarity(G, importance_factor=0.8)
606
+ for k, v in expected.items():
607
+ assert v == pytest.approx(actual[k], abs=1e-2)
608
+
609
+ @pytest.mark.parametrize("simrank_similarity", simrank_algs)
610
+ def test_simrank_source_no_target(self, simrank_similarity):
611
+ G = nx.cycle_graph(5)
612
+ expected = {
613
+ 0: 1,
614
+ 1: 0.3951219505902448,
615
+ 2: 0.5707317069281646,
616
+ 3: 0.5707317069281646,
617
+ 4: 0.3951219505902449,
618
+ }
619
+ actual = simrank_similarity(G, source=0)
620
+ assert expected == pytest.approx(actual, abs=1e-2)
621
+
622
+ # For a DiGraph test, use the first graph from the paper cited in
623
+ # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126
624
+ G = nx.DiGraph()
625
+ G.add_node(0, label="Univ")
626
+ G.add_node(1, label="ProfA")
627
+ G.add_node(2, label="ProfB")
628
+ G.add_node(3, label="StudentA")
629
+ G.add_node(4, label="StudentB")
630
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)])
631
+
632
+ expected = {0: 1, 1: 0.0, 2: 0.1323363991265798, 3: 0.0, 4: 0.03387811817640443}
633
+ # Use the importance_factor from the paper to get the same numbers.
634
+ actual = simrank_similarity(G, importance_factor=0.8, source=0)
635
+ assert expected == pytest.approx(actual, abs=1e-2)
636
+
637
+ @pytest.mark.parametrize("simrank_similarity", simrank_algs)
638
+ def test_simrank_noninteger_nodes(self, simrank_similarity):
639
+ G = nx.cycle_graph(5)
640
+ G = nx.relabel_nodes(G, dict(enumerate("abcde")))
641
+ expected = {
642
+ "a": 1,
643
+ "b": 0.3951219505902448,
644
+ "c": 0.5707317069281646,
645
+ "d": 0.5707317069281646,
646
+ "e": 0.3951219505902449,
647
+ }
648
+ actual = simrank_similarity(G, source="a")
649
+ assert expected == pytest.approx(actual, abs=1e-2)
650
+
651
+ # For a DiGraph test, use the first graph from the paper cited in
652
+ # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126
653
+ G = nx.DiGraph()
654
+ G.add_node(0, label="Univ")
655
+ G.add_node(1, label="ProfA")
656
+ G.add_node(2, label="ProfB")
657
+ G.add_node(3, label="StudentA")
658
+ G.add_node(4, label="StudentB")
659
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)])
660
+ node_labels = dict(enumerate(nx.get_node_attributes(G, "label").values()))
661
+ G = nx.relabel_nodes(G, node_labels)
662
+
663
+ expected = {
664
+ "Univ": 1,
665
+ "ProfA": 0.0,
666
+ "ProfB": 0.1323363991265798,
667
+ "StudentA": 0.0,
668
+ "StudentB": 0.03387811817640443,
669
+ }
670
+ # Use the importance_factor from the paper to get the same numbers.
671
+ actual = simrank_similarity(G, importance_factor=0.8, source="Univ")
672
+ assert expected == pytest.approx(actual, abs=1e-2)
673
+
674
+ @pytest.mark.parametrize("simrank_similarity", simrank_algs)
675
+ def test_simrank_source_and_target(self, simrank_similarity):
676
+ G = nx.cycle_graph(5)
677
+ expected = 1
678
+ actual = simrank_similarity(G, source=0, target=0)
679
+ assert expected == pytest.approx(actual, abs=1e-2)
680
+
681
+ # For a DiGraph test, use the first graph from the paper cited in
682
+ # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126
683
+ G = nx.DiGraph()
684
+ G.add_node(0, label="Univ")
685
+ G.add_node(1, label="ProfA")
686
+ G.add_node(2, label="ProfB")
687
+ G.add_node(3, label="StudentA")
688
+ G.add_node(4, label="StudentB")
689
+ G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)])
690
+
691
+ expected = 0.1323363991265798
692
+ # Use the importance_factor from the paper to get the same numbers.
693
+ # Use the pair (0,2) because (0,0) and (0,1) have trivial results.
694
+ actual = simrank_similarity(G, importance_factor=0.8, source=0, target=2)
695
+ assert expected == pytest.approx(actual, abs=1e-5)
696
+
697
+ @pytest.mark.parametrize("alg", simrank_algs)
698
+ def test_simrank_max_iterations(self, alg):
699
+ G = nx.cycle_graph(5)
700
+ pytest.raises(nx.ExceededMaxIterations, alg, G, max_iterations=10)
701
+
702
+ def test_simrank_source_not_found(self):
703
+ G = nx.cycle_graph(5)
704
+ with pytest.raises(nx.NodeNotFound, match="Source node 10 not in G"):
705
+ nx.simrank_similarity(G, source=10)
706
+
707
+ def test_simrank_target_not_found(self):
708
+ G = nx.cycle_graph(5)
709
+ with pytest.raises(nx.NodeNotFound, match="Target node 10 not in G"):
710
+ nx.simrank_similarity(G, target=10)
711
+
712
+ def test_simrank_between_versions(self):
713
+ G = nx.cycle_graph(5)
714
+ # _python tolerance 1e-4
715
+ expected_python_tol4 = {
716
+ 0: 1,
717
+ 1: 0.394512499239852,
718
+ 2: 0.5703550452791322,
719
+ 3: 0.5703550452791323,
720
+ 4: 0.394512499239852,
721
+ }
722
+ # _numpy tolerance 1e-4
723
+ expected_numpy_tol4 = {
724
+ 0: 1.0,
725
+ 1: 0.3947180735764555,
726
+ 2: 0.570482097206368,
727
+ 3: 0.570482097206368,
728
+ 4: 0.3947180735764555,
729
+ }
730
+ actual = nx.simrank_similarity(G, source=0)
731
+ assert expected_numpy_tol4 == pytest.approx(actual, abs=1e-7)
732
+ # versions differ at 1e-4 level but equal at 1e-3
733
+ assert expected_python_tol4 != pytest.approx(actual, abs=1e-4)
734
+ assert expected_python_tol4 == pytest.approx(actual, abs=1e-3)
735
+
736
+ actual = nx.similarity._simrank_similarity_python(G, source=0)
737
+ assert expected_python_tol4 == pytest.approx(actual, abs=1e-7)
738
+ # versions differ at 1e-4 level but equal at 1e-3
739
+ assert expected_numpy_tol4 != pytest.approx(actual, abs=1e-4)
740
+ assert expected_numpy_tol4 == pytest.approx(actual, abs=1e-3)
741
+
742
+ def test_simrank_numpy_no_source_no_target(self):
743
+ G = nx.cycle_graph(5)
744
+ expected = np.array(
745
+ [
746
+ [
747
+ 1.0,
748
+ 0.3947180735764555,
749
+ 0.570482097206368,
750
+ 0.570482097206368,
751
+ 0.3947180735764555,
752
+ ],
753
+ [
754
+ 0.3947180735764555,
755
+ 1.0,
756
+ 0.3947180735764555,
757
+ 0.570482097206368,
758
+ 0.570482097206368,
759
+ ],
760
+ [
761
+ 0.570482097206368,
762
+ 0.3947180735764555,
763
+ 1.0,
764
+ 0.3947180735764555,
765
+ 0.570482097206368,
766
+ ],
767
+ [
768
+ 0.570482097206368,
769
+ 0.570482097206368,
770
+ 0.3947180735764555,
771
+ 1.0,
772
+ 0.3947180735764555,
773
+ ],
774
+ [
775
+ 0.3947180735764555,
776
+ 0.570482097206368,
777
+ 0.570482097206368,
778
+ 0.3947180735764555,
779
+ 1.0,
780
+ ],
781
+ ]
782
+ )
783
+ actual = nx.similarity._simrank_similarity_numpy(G)
784
+ np.testing.assert_allclose(expected, actual, atol=1e-7)
785
+
786
+ def test_simrank_numpy_source_no_target(self):
787
+ G = nx.cycle_graph(5)
788
+ expected = np.array(
789
+ [
790
+ 1.0,
791
+ 0.3947180735764555,
792
+ 0.570482097206368,
793
+ 0.570482097206368,
794
+ 0.3947180735764555,
795
+ ]
796
+ )
797
+ actual = nx.similarity._simrank_similarity_numpy(G, source=0)
798
+ np.testing.assert_allclose(expected, actual, atol=1e-7)
799
+
800
+ def test_simrank_numpy_source_and_target(self):
801
+ G = nx.cycle_graph(5)
802
+ expected = 1.0
803
+ actual = nx.similarity._simrank_similarity_numpy(G, source=0, target=0)
804
+ np.testing.assert_allclose(expected, actual, atol=1e-7)
805
+
806
+ def test_panther_similarity_unweighted(self):
807
+ np.random.seed(42)
808
+
809
+ G = nx.Graph()
810
+ G.add_edge(0, 1)
811
+ G.add_edge(0, 2)
812
+ G.add_edge(0, 3)
813
+ G.add_edge(1, 2)
814
+ G.add_edge(2, 4)
815
+ expected = {3: 0.5, 2: 0.5, 1: 0.5, 4: 0.125}
816
+ sim = nx.panther_similarity(G, 0, path_length=2)
817
+ assert sim == expected
818
+
819
+ def test_panther_similarity_weighted(self):
820
+ np.random.seed(42)
821
+
822
+ G = nx.Graph()
823
+ G.add_edge("v1", "v2", w=5)
824
+ G.add_edge("v1", "v3", w=1)
825
+ G.add_edge("v1", "v4", w=2)
826
+ G.add_edge("v2", "v3", w=0.1)
827
+ G.add_edge("v3", "v5", w=1)
828
+ expected = {"v3": 0.75, "v4": 0.5, "v2": 0.5, "v5": 0.25}
829
+ sim = nx.panther_similarity(G, "v1", path_length=2, weight="w")
830
+ assert sim == expected
831
+
832
+ def test_panther_similarity_source_not_found(self):
833
+ G = nx.Graph()
834
+ G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 2), (2, 4)])
835
+ with pytest.raises(nx.NodeNotFound, match="Source node 10 not in G"):
836
+ nx.panther_similarity(G, source=10)
837
+
838
+ def test_panther_similarity_isolated(self):
839
+ G = nx.Graph()
840
+ G.add_nodes_from(range(5))
841
+ with pytest.raises(
842
+ nx.NetworkXUnfeasible,
843
+ match="Panther similarity is not defined for the isolated source node 1.",
844
+ ):
845
+ nx.panther_similarity(G, source=1)
846
+
847
+ def test_generate_random_paths_unweighted(self):
848
+ index_map = {}
849
+ num_paths = 10
850
+ path_length = 2
851
+ G = nx.Graph()
852
+ G.add_edge(0, 1)
853
+ G.add_edge(0, 2)
854
+ G.add_edge(0, 3)
855
+ G.add_edge(1, 2)
856
+ G.add_edge(2, 4)
857
+ paths = nx.generate_random_paths(
858
+ G, num_paths, path_length=path_length, index_map=index_map, seed=42
859
+ )
860
+ expected_paths = [
861
+ [3, 0, 3],
862
+ [4, 2, 1],
863
+ [2, 1, 0],
864
+ [2, 0, 3],
865
+ [3, 0, 1],
866
+ [3, 0, 1],
867
+ [4, 2, 0],
868
+ [2, 1, 0],
869
+ [3, 0, 2],
870
+ [2, 1, 2],
871
+ ]
872
+ expected_map = {
873
+ 0: {0, 2, 3, 4, 5, 6, 7, 8},
874
+ 1: {1, 2, 4, 5, 7, 9},
875
+ 2: {1, 2, 3, 6, 7, 8, 9},
876
+ 3: {0, 3, 4, 5, 8},
877
+ 4: {1, 6},
878
+ }
879
+
880
+ assert expected_paths == list(paths)
881
+ assert expected_map == index_map
882
+
883
+ def test_generate_random_paths_weighted(self):
884
+ np.random.seed(42)
885
+
886
+ index_map = {}
887
+ num_paths = 10
888
+ path_length = 6
889
+ G = nx.Graph()
890
+ G.add_edge("a", "b", weight=0.6)
891
+ G.add_edge("a", "c", weight=0.2)
892
+ G.add_edge("c", "d", weight=0.1)
893
+ G.add_edge("c", "e", weight=0.7)
894
+ G.add_edge("c", "f", weight=0.9)
895
+ G.add_edge("a", "d", weight=0.3)
896
+ paths = nx.generate_random_paths(
897
+ G, num_paths, path_length=path_length, index_map=index_map
898
+ )
899
+
900
+ expected_paths = [
901
+ ["d", "c", "f", "c", "d", "a", "b"],
902
+ ["e", "c", "f", "c", "f", "c", "e"],
903
+ ["d", "a", "b", "a", "b", "a", "c"],
904
+ ["b", "a", "d", "a", "b", "a", "b"],
905
+ ["d", "a", "b", "a", "b", "a", "d"],
906
+ ["d", "a", "b", "a", "b", "a", "c"],
907
+ ["d", "a", "b", "a", "b", "a", "b"],
908
+ ["f", "c", "f", "c", "f", "c", "e"],
909
+ ["d", "a", "d", "a", "b", "a", "b"],
910
+ ["e", "c", "f", "c", "e", "c", "d"],
911
+ ]
912
+ expected_map = {
913
+ "d": {0, 2, 3, 4, 5, 6, 8, 9},
914
+ "c": {0, 1, 2, 5, 7, 9},
915
+ "f": {0, 1, 9, 7},
916
+ "a": {0, 2, 3, 4, 5, 6, 8},
917
+ "b": {0, 2, 3, 4, 5, 6, 8},
918
+ "e": {1, 9, 7},
919
+ }
920
+
921
+ assert expected_paths == list(paths)
922
+ assert expected_map == index_map
923
+
924
+ def test_symmetry_with_custom_matching(self):
925
+ print("G2 is edge (a,b) and G3 is edge (a,a)")
926
+ print("but node order for G2 is (a,b) while for G3 it is (b,a)")
927
+
928
+ a, b = "A", "B"
929
+ G2 = nx.Graph()
930
+ G2.add_nodes_from((a, b))
931
+ G2.add_edges_from([(a, b)])
932
+ G3 = nx.Graph()
933
+ G3.add_nodes_from((b, a))
934
+ G3.add_edges_from([(a, a)])
935
+ for G in (G2, G3):
936
+ for n in G:
937
+ G.nodes[n]["attr"] = n
938
+ for e in G.edges:
939
+ G.edges[e]["attr"] = e
940
+ match = lambda x, y: x == y
941
+
942
+ print("Starting G2 to G3 GED calculation")
943
+ assert nx.graph_edit_distance(G2, G3, node_match=match, edge_match=match) == 1
944
+
945
+ print("Starting G3 to G2 GED calculation")
946
+ assert nx.graph_edit_distance(G3, G2, node_match=match, edge_match=match) == 1
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_simple_paths.py ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+ from networkx import convert_node_labels_to_integers as cnlti
7
+ from networkx.algorithms.simple_paths import (
8
+ _bidirectional_dijkstra,
9
+ _bidirectional_shortest_path,
10
+ )
11
+ from networkx.utils import arbitrary_element, pairwise
12
+
13
+
14
+ class TestIsSimplePath:
15
+ """Unit tests for the
16
+ :func:`networkx.algorithms.simple_paths.is_simple_path` function.
17
+
18
+ """
19
+
20
+ def test_empty_list(self):
21
+ """Tests that the empty list is not a valid path, since there
22
+ should be a one-to-one correspondence between paths as lists of
23
+ nodes and paths as lists of edges.
24
+
25
+ """
26
+ G = nx.trivial_graph()
27
+ assert not nx.is_simple_path(G, [])
28
+
29
+ def test_trivial_path(self):
30
+ """Tests that the trivial path, a path of length one, is
31
+ considered a simple path in a graph.
32
+
33
+ """
34
+ G = nx.trivial_graph()
35
+ assert nx.is_simple_path(G, [0])
36
+
37
+ def test_trivial_nonpath(self):
38
+ """Tests that a list whose sole element is an object not in the
39
+ graph is not considered a simple path.
40
+
41
+ """
42
+ G = nx.trivial_graph()
43
+ assert not nx.is_simple_path(G, ["not a node"])
44
+
45
+ def test_simple_path(self):
46
+ G = nx.path_graph(2)
47
+ assert nx.is_simple_path(G, [0, 1])
48
+
49
+ def test_non_simple_path(self):
50
+ G = nx.path_graph(2)
51
+ assert not nx.is_simple_path(G, [0, 1, 0])
52
+
53
+ def test_cycle(self):
54
+ G = nx.cycle_graph(3)
55
+ assert not nx.is_simple_path(G, [0, 1, 2, 0])
56
+
57
+ def test_missing_node(self):
58
+ G = nx.path_graph(2)
59
+ assert not nx.is_simple_path(G, [0, 2])
60
+
61
+ def test_missing_starting_node(self):
62
+ G = nx.path_graph(2)
63
+ assert not nx.is_simple_path(G, [2, 0])
64
+
65
+ def test_directed_path(self):
66
+ G = nx.DiGraph([(0, 1), (1, 2)])
67
+ assert nx.is_simple_path(G, [0, 1, 2])
68
+
69
+ def test_directed_non_path(self):
70
+ G = nx.DiGraph([(0, 1), (1, 2)])
71
+ assert not nx.is_simple_path(G, [2, 1, 0])
72
+
73
+ def test_directed_cycle(self):
74
+ G = nx.DiGraph([(0, 1), (1, 2), (2, 0)])
75
+ assert not nx.is_simple_path(G, [0, 1, 2, 0])
76
+
77
+ def test_multigraph(self):
78
+ G = nx.MultiGraph([(0, 1), (0, 1)])
79
+ assert nx.is_simple_path(G, [0, 1])
80
+
81
+ def test_multidigraph(self):
82
+ G = nx.MultiDiGraph([(0, 1), (0, 1), (1, 0), (1, 0)])
83
+ assert nx.is_simple_path(G, [0, 1])
84
+
85
+
86
+ # Tests for all_simple_paths
87
+ def test_all_simple_paths():
88
+ G = nx.path_graph(4)
89
+ paths = nx.all_simple_paths(G, 0, 3)
90
+ assert {tuple(p) for p in paths} == {(0, 1, 2, 3)}
91
+
92
+
93
+ def test_all_simple_paths_with_two_targets_emits_two_paths():
94
+ G = nx.path_graph(4)
95
+ G.add_edge(2, 4)
96
+ paths = nx.all_simple_paths(G, 0, [3, 4])
97
+ assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)}
98
+
99
+
100
+ def test_digraph_all_simple_paths_with_two_targets_emits_two_paths():
101
+ G = nx.path_graph(4, create_using=nx.DiGraph())
102
+ G.add_edge(2, 4)
103
+ paths = nx.all_simple_paths(G, 0, [3, 4])
104
+ assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)}
105
+
106
+
107
+ def test_all_simple_paths_with_two_targets_cutoff():
108
+ G = nx.path_graph(4)
109
+ G.add_edge(2, 4)
110
+ paths = nx.all_simple_paths(G, 0, [3, 4], cutoff=3)
111
+ assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)}
112
+
113
+
114
+ def test_digraph_all_simple_paths_with_two_targets_cutoff():
115
+ G = nx.path_graph(4, create_using=nx.DiGraph())
116
+ G.add_edge(2, 4)
117
+ paths = nx.all_simple_paths(G, 0, [3, 4], cutoff=3)
118
+ assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)}
119
+
120
+
121
+ def test_all_simple_paths_with_two_targets_in_line_emits_two_paths():
122
+ G = nx.path_graph(4)
123
+ paths = nx.all_simple_paths(G, 0, [2, 3])
124
+ assert {tuple(p) for p in paths} == {(0, 1, 2), (0, 1, 2, 3)}
125
+
126
+
127
+ def test_all_simple_paths_ignores_cycle():
128
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
129
+ G.add_edge(1, 3)
130
+ paths = nx.all_simple_paths(G, 0, 3)
131
+ assert {tuple(p) for p in paths} == {(0, 1, 3)}
132
+
133
+
134
+ def test_all_simple_paths_with_two_targets_inside_cycle_emits_two_paths():
135
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
136
+ G.add_edge(1, 3)
137
+ paths = nx.all_simple_paths(G, 0, [2, 3])
138
+ assert {tuple(p) for p in paths} == {(0, 1, 2), (0, 1, 3)}
139
+
140
+
141
+ def test_all_simple_paths_source_target():
142
+ G = nx.path_graph(4)
143
+ assert list(nx.all_simple_paths(G, 1, 1)) == [[1]]
144
+
145
+
146
+ def test_all_simple_paths_cutoff():
147
+ G = nx.complete_graph(4)
148
+ paths = nx.all_simple_paths(G, 0, 1, cutoff=1)
149
+ assert {tuple(p) for p in paths} == {(0, 1)}
150
+ paths = nx.all_simple_paths(G, 0, 1, cutoff=2)
151
+ assert {tuple(p) for p in paths} == {(0, 1), (0, 2, 1), (0, 3, 1)}
152
+
153
+
154
+ def test_all_simple_paths_on_non_trivial_graph():
155
+ """you may need to draw this graph to make sure it is reasonable"""
156
+ G = nx.path_graph(5, create_using=nx.DiGraph())
157
+ G.add_edges_from([(0, 5), (1, 5), (1, 3), (5, 4), (4, 2), (4, 3)])
158
+ paths = nx.all_simple_paths(G, 1, [2, 3])
159
+ assert {tuple(p) for p in paths} == {
160
+ (1, 2),
161
+ (1, 3, 4, 2),
162
+ (1, 5, 4, 2),
163
+ (1, 3),
164
+ (1, 2, 3),
165
+ (1, 5, 4, 3),
166
+ (1, 5, 4, 2, 3),
167
+ }
168
+ paths = nx.all_simple_paths(G, 1, [2, 3], cutoff=3)
169
+ assert {tuple(p) for p in paths} == {
170
+ (1, 2),
171
+ (1, 3, 4, 2),
172
+ (1, 5, 4, 2),
173
+ (1, 3),
174
+ (1, 2, 3),
175
+ (1, 5, 4, 3),
176
+ }
177
+ paths = nx.all_simple_paths(G, 1, [2, 3], cutoff=2)
178
+ assert {tuple(p) for p in paths} == {(1, 2), (1, 3), (1, 2, 3)}
179
+
180
+
181
+ def test_all_simple_paths_multigraph():
182
+ G = nx.MultiGraph([(1, 2), (1, 2)])
183
+ assert list(nx.all_simple_paths(G, 1, 1)) == [[1]]
184
+ nx.add_path(G, [3, 1, 10, 2])
185
+ paths = list(nx.all_simple_paths(G, 1, 2))
186
+ assert len(paths) == 3
187
+ assert {tuple(p) for p in paths} == {(1, 2), (1, 2), (1, 10, 2)}
188
+
189
+
190
+ def test_all_simple_paths_multigraph_with_cutoff():
191
+ G = nx.MultiGraph([(1, 2), (1, 2), (1, 10), (10, 2)])
192
+ paths = list(nx.all_simple_paths(G, 1, 2, cutoff=1))
193
+ assert len(paths) == 2
194
+ assert {tuple(p) for p in paths} == {(1, 2), (1, 2)}
195
+
196
+ # See GitHub issue #6732.
197
+ G = nx.MultiGraph([(0, 1), (0, 2)])
198
+ assert list(nx.all_simple_paths(G, 0, {1, 2}, cutoff=1)) == [[0, 1], [0, 2]]
199
+
200
+
201
+ def test_all_simple_paths_directed():
202
+ G = nx.DiGraph()
203
+ nx.add_path(G, [1, 2, 3])
204
+ nx.add_path(G, [3, 2, 1])
205
+ paths = nx.all_simple_paths(G, 1, 3)
206
+ assert {tuple(p) for p in paths} == {(1, 2, 3)}
207
+
208
+
209
+ def test_all_simple_paths_empty():
210
+ G = nx.path_graph(4)
211
+ paths = nx.all_simple_paths(G, 0, 3, cutoff=2)
212
+ assert list(paths) == []
213
+
214
+
215
+ def test_all_simple_paths_corner_cases():
216
+ assert list(nx.all_simple_paths(nx.empty_graph(2), 0, 0)) == [[0]]
217
+ assert list(nx.all_simple_paths(nx.empty_graph(2), 0, 1)) == []
218
+ assert list(nx.all_simple_paths(nx.path_graph(9), 0, 8, 0)) == []
219
+
220
+
221
+ def test_all_simple_paths_source_in_targets():
222
+ # See GitHub issue #6690.
223
+ G = nx.path_graph(3)
224
+ assert list(nx.all_simple_paths(G, 0, {0, 1, 2})) == [[0], [0, 1], [0, 1, 2]]
225
+
226
+
227
+ def hamiltonian_path(G, source):
228
+ source = arbitrary_element(G)
229
+ neighbors = set(G[source]) - {source}
230
+ n = len(G)
231
+ for target in neighbors:
232
+ for path in nx.all_simple_paths(G, source, target):
233
+ if len(path) == n:
234
+ yield path
235
+
236
+
237
+ def test_hamiltonian_path():
238
+ from itertools import permutations
239
+
240
+ G = nx.complete_graph(4)
241
+ paths = [list(p) for p in hamiltonian_path(G, 0)]
242
+ exact = [[0] + list(p) for p in permutations([1, 2, 3], 3)]
243
+ assert sorted(paths) == sorted(exact)
244
+
245
+
246
+ def test_cutoff_zero():
247
+ G = nx.complete_graph(4)
248
+ paths = nx.all_simple_paths(G, 0, 3, cutoff=0)
249
+ assert [list(p) for p in paths] == []
250
+ paths = nx.all_simple_paths(nx.MultiGraph(G), 0, 3, cutoff=0)
251
+ assert [list(p) for p in paths] == []
252
+
253
+
254
+ def test_source_missing():
255
+ with pytest.raises(nx.NodeNotFound):
256
+ G = nx.Graph()
257
+ nx.add_path(G, [1, 2, 3])
258
+ list(nx.all_simple_paths(nx.MultiGraph(G), 0, 3))
259
+
260
+
261
+ def test_target_missing():
262
+ with pytest.raises(nx.NodeNotFound):
263
+ G = nx.Graph()
264
+ nx.add_path(G, [1, 2, 3])
265
+ list(nx.all_simple_paths(nx.MultiGraph(G), 1, 4))
266
+
267
+
268
+ # Tests for all_simple_edge_paths
269
+ def test_all_simple_edge_paths():
270
+ G = nx.path_graph(4)
271
+ paths = nx.all_simple_edge_paths(G, 0, 3)
272
+ assert {tuple(p) for p in paths} == {((0, 1), (1, 2), (2, 3))}
273
+
274
+
275
+ def test_all_simple_edge_paths_empty_path():
276
+ G = nx.empty_graph(1)
277
+ assert list(nx.all_simple_edge_paths(G, 0, 0)) == [[]]
278
+
279
+
280
+ def test_all_simple_edge_paths_with_two_targets_emits_two_paths():
281
+ G = nx.path_graph(4)
282
+ G.add_edge(2, 4)
283
+ paths = nx.all_simple_edge_paths(G, 0, [3, 4])
284
+ assert {tuple(p) for p in paths} == {
285
+ ((0, 1), (1, 2), (2, 3)),
286
+ ((0, 1), (1, 2), (2, 4)),
287
+ }
288
+
289
+
290
+ def test_digraph_all_simple_edge_paths_with_two_targets_emits_two_paths():
291
+ G = nx.path_graph(4, create_using=nx.DiGraph())
292
+ G.add_edge(2, 4)
293
+ paths = nx.all_simple_edge_paths(G, 0, [3, 4])
294
+ assert {tuple(p) for p in paths} == {
295
+ ((0, 1), (1, 2), (2, 3)),
296
+ ((0, 1), (1, 2), (2, 4)),
297
+ }
298
+
299
+
300
+ def test_all_simple_edge_paths_with_two_targets_cutoff():
301
+ G = nx.path_graph(4)
302
+ G.add_edge(2, 4)
303
+ paths = nx.all_simple_edge_paths(G, 0, [3, 4], cutoff=3)
304
+ assert {tuple(p) for p in paths} == {
305
+ ((0, 1), (1, 2), (2, 3)),
306
+ ((0, 1), (1, 2), (2, 4)),
307
+ }
308
+
309
+
310
+ def test_digraph_all_simple_edge_paths_with_two_targets_cutoff():
311
+ G = nx.path_graph(4, create_using=nx.DiGraph())
312
+ G.add_edge(2, 4)
313
+ paths = nx.all_simple_edge_paths(G, 0, [3, 4], cutoff=3)
314
+ assert {tuple(p) for p in paths} == {
315
+ ((0, 1), (1, 2), (2, 3)),
316
+ ((0, 1), (1, 2), (2, 4)),
317
+ }
318
+
319
+
320
+ def test_all_simple_edge_paths_with_two_targets_in_line_emits_two_paths():
321
+ G = nx.path_graph(4)
322
+ paths = nx.all_simple_edge_paths(G, 0, [2, 3])
323
+ assert {tuple(p) for p in paths} == {((0, 1), (1, 2)), ((0, 1), (1, 2), (2, 3))}
324
+
325
+
326
+ def test_all_simple_edge_paths_ignores_cycle():
327
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
328
+ G.add_edge(1, 3)
329
+ paths = nx.all_simple_edge_paths(G, 0, 3)
330
+ assert {tuple(p) for p in paths} == {((0, 1), (1, 3))}
331
+
332
+
333
+ def test_all_simple_edge_paths_with_two_targets_inside_cycle_emits_two_paths():
334
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
335
+ G.add_edge(1, 3)
336
+ paths = nx.all_simple_edge_paths(G, 0, [2, 3])
337
+ assert {tuple(p) for p in paths} == {((0, 1), (1, 2)), ((0, 1), (1, 3))}
338
+
339
+
340
+ def test_all_simple_edge_paths_source_target():
341
+ G = nx.path_graph(4)
342
+ paths = nx.all_simple_edge_paths(G, 1, 1)
343
+ assert list(paths) == [[]]
344
+
345
+
346
+ def test_all_simple_edge_paths_cutoff():
347
+ G = nx.complete_graph(4)
348
+ paths = nx.all_simple_edge_paths(G, 0, 1, cutoff=1)
349
+ assert {tuple(p) for p in paths} == {((0, 1),)}
350
+ paths = nx.all_simple_edge_paths(G, 0, 1, cutoff=2)
351
+ assert {tuple(p) for p in paths} == {((0, 1),), ((0, 2), (2, 1)), ((0, 3), (3, 1))}
352
+
353
+
354
+ def test_all_simple_edge_paths_on_non_trivial_graph():
355
+ """you may need to draw this graph to make sure it is reasonable"""
356
+ G = nx.path_graph(5, create_using=nx.DiGraph())
357
+ G.add_edges_from([(0, 5), (1, 5), (1, 3), (5, 4), (4, 2), (4, 3)])
358
+ paths = nx.all_simple_edge_paths(G, 1, [2, 3])
359
+ assert {tuple(p) for p in paths} == {
360
+ ((1, 2),),
361
+ ((1, 3), (3, 4), (4, 2)),
362
+ ((1, 5), (5, 4), (4, 2)),
363
+ ((1, 3),),
364
+ ((1, 2), (2, 3)),
365
+ ((1, 5), (5, 4), (4, 3)),
366
+ ((1, 5), (5, 4), (4, 2), (2, 3)),
367
+ }
368
+ paths = nx.all_simple_edge_paths(G, 1, [2, 3], cutoff=3)
369
+ assert {tuple(p) for p in paths} == {
370
+ ((1, 2),),
371
+ ((1, 3), (3, 4), (4, 2)),
372
+ ((1, 5), (5, 4), (4, 2)),
373
+ ((1, 3),),
374
+ ((1, 2), (2, 3)),
375
+ ((1, 5), (5, 4), (4, 3)),
376
+ }
377
+ paths = nx.all_simple_edge_paths(G, 1, [2, 3], cutoff=2)
378
+ assert {tuple(p) for p in paths} == {((1, 2),), ((1, 3),), ((1, 2), (2, 3))}
379
+
380
+
381
+ def test_all_simple_edge_paths_multigraph():
382
+ G = nx.MultiGraph([(1, 2), (1, 2)])
383
+ paths = nx.all_simple_edge_paths(G, 1, 1)
384
+ assert list(paths) == [[]]
385
+ nx.add_path(G, [3, 1, 10, 2])
386
+ paths = list(nx.all_simple_edge_paths(G, 1, 2))
387
+ assert len(paths) == 3
388
+ assert {tuple(p) for p in paths} == {
389
+ ((1, 2, 0),),
390
+ ((1, 2, 1),),
391
+ ((1, 10, 0), (10, 2, 0)),
392
+ }
393
+
394
+
395
+ def test_all_simple_edge_paths_multigraph_with_cutoff():
396
+ G = nx.MultiGraph([(1, 2), (1, 2), (1, 10), (10, 2)])
397
+ paths = list(nx.all_simple_edge_paths(G, 1, 2, cutoff=1))
398
+ assert len(paths) == 2
399
+ assert {tuple(p) for p in paths} == {((1, 2, 0),), ((1, 2, 1),)}
400
+
401
+
402
+ def test_all_simple_edge_paths_directed():
403
+ G = nx.DiGraph()
404
+ nx.add_path(G, [1, 2, 3])
405
+ nx.add_path(G, [3, 2, 1])
406
+ paths = nx.all_simple_edge_paths(G, 1, 3)
407
+ assert {tuple(p) for p in paths} == {((1, 2), (2, 3))}
408
+
409
+
410
+ def test_all_simple_edge_paths_empty():
411
+ G = nx.path_graph(4)
412
+ paths = nx.all_simple_edge_paths(G, 0, 3, cutoff=2)
413
+ assert list(paths) == []
414
+
415
+
416
+ def test_all_simple_edge_paths_corner_cases():
417
+ assert list(nx.all_simple_edge_paths(nx.empty_graph(2), 0, 0)) == [[]]
418
+ assert list(nx.all_simple_edge_paths(nx.empty_graph(2), 0, 1)) == []
419
+ assert list(nx.all_simple_edge_paths(nx.path_graph(9), 0, 8, 0)) == []
420
+
421
+
422
+ def test_all_simple_edge_paths_ignores_self_loop():
423
+ G = nx.Graph([(0, 0), (0, 1), (1, 1), (1, 2)])
424
+ assert list(nx.all_simple_edge_paths(G, 0, 2)) == [[(0, 1), (1, 2)]]
425
+
426
+
427
+ def hamiltonian_edge_path(G, source):
428
+ source = arbitrary_element(G)
429
+ neighbors = set(G[source]) - {source}
430
+ n = len(G)
431
+ for target in neighbors:
432
+ for path in nx.all_simple_edge_paths(G, source, target):
433
+ if len(path) == n - 1:
434
+ yield path
435
+
436
+
437
+ def test_hamiltonian__edge_path():
438
+ from itertools import permutations
439
+
440
+ G = nx.complete_graph(4)
441
+ paths = hamiltonian_edge_path(G, 0)
442
+ exact = [list(pairwise([0] + list(p))) for p in permutations([1, 2, 3], 3)]
443
+ assert sorted(exact) == sorted(paths)
444
+
445
+
446
+ def test_edge_cutoff_zero():
447
+ G = nx.complete_graph(4)
448
+ paths = nx.all_simple_edge_paths(G, 0, 3, cutoff=0)
449
+ assert [list(p) for p in paths] == []
450
+ paths = nx.all_simple_edge_paths(nx.MultiGraph(G), 0, 3, cutoff=0)
451
+ assert [list(p) for p in paths] == []
452
+
453
+
454
+ def test_edge_source_missing():
455
+ with pytest.raises(nx.NodeNotFound):
456
+ G = nx.Graph()
457
+ nx.add_path(G, [1, 2, 3])
458
+ list(nx.all_simple_edge_paths(nx.MultiGraph(G), 0, 3))
459
+
460
+
461
+ def test_edge_target_missing():
462
+ with pytest.raises(nx.NodeNotFound):
463
+ G = nx.Graph()
464
+ nx.add_path(G, [1, 2, 3])
465
+ list(nx.all_simple_edge_paths(nx.MultiGraph(G), 1, 4))
466
+
467
+
468
+ # Tests for shortest_simple_paths
469
+ def test_shortest_simple_paths():
470
+ G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
471
+ paths = nx.shortest_simple_paths(G, 1, 12)
472
+ assert next(paths) == [1, 2, 3, 4, 8, 12]
473
+ assert next(paths) == [1, 5, 6, 7, 8, 12]
474
+ assert [len(path) for path in nx.shortest_simple_paths(G, 1, 12)] == sorted(
475
+ len(path) for path in nx.all_simple_paths(G, 1, 12)
476
+ )
477
+
478
+
479
+ def test_shortest_simple_paths_singleton_path():
480
+ G = nx.empty_graph(3)
481
+ assert list(nx.shortest_simple_paths(G, 0, 0)) == [[0]]
482
+
483
+
484
+ def test_shortest_simple_paths_directed():
485
+ G = nx.cycle_graph(7, create_using=nx.DiGraph())
486
+ paths = nx.shortest_simple_paths(G, 0, 3)
487
+ assert list(paths) == [[0, 1, 2, 3]]
488
+
489
+
490
+ def test_shortest_simple_paths_directed_with_weight_function():
491
+ def cost(u, v, x):
492
+ return 1
493
+
494
+ G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
495
+ paths = nx.shortest_simple_paths(G, 1, 12)
496
+ assert next(paths) == [1, 2, 3, 4, 8, 12]
497
+ assert next(paths) == [1, 5, 6, 7, 8, 12]
498
+ assert [
499
+ len(path) for path in nx.shortest_simple_paths(G, 1, 12, weight=cost)
500
+ ] == sorted(len(path) for path in nx.all_simple_paths(G, 1, 12))
501
+
502
+
503
+ def test_shortest_simple_paths_with_weight_function():
504
+ def cost(u, v, x):
505
+ return 1
506
+
507
+ G = nx.cycle_graph(7, create_using=nx.DiGraph())
508
+ paths = nx.shortest_simple_paths(G, 0, 3, weight=cost)
509
+ assert list(paths) == [[0, 1, 2, 3]]
510
+
511
+
512
+ def test_Greg_Bernstein():
513
+ g1 = nx.Graph()
514
+ g1.add_nodes_from(["N0", "N1", "N2", "N3", "N4"])
515
+ g1.add_edge("N4", "N1", weight=10.0, capacity=50, name="L5")
516
+ g1.add_edge("N4", "N0", weight=7.0, capacity=40, name="L4")
517
+ g1.add_edge("N0", "N1", weight=10.0, capacity=45, name="L1")
518
+ g1.add_edge("N3", "N0", weight=10.0, capacity=50, name="L0")
519
+ g1.add_edge("N2", "N3", weight=12.0, capacity=30, name="L2")
520
+ g1.add_edge("N1", "N2", weight=15.0, capacity=42, name="L3")
521
+ solution = [["N1", "N0", "N3"], ["N1", "N2", "N3"], ["N1", "N4", "N0", "N3"]]
522
+ result = list(nx.shortest_simple_paths(g1, "N1", "N3", weight="weight"))
523
+ assert result == solution
524
+
525
+
526
+ def test_weighted_shortest_simple_path():
527
+ def cost_func(path):
528
+ return sum(G.adj[u][v]["weight"] for (u, v) in zip(path, path[1:]))
529
+
530
+ G = nx.complete_graph(5)
531
+ weight = {(u, v): random.randint(1, 100) for (u, v) in G.edges()}
532
+ nx.set_edge_attributes(G, weight, "weight")
533
+ cost = 0
534
+ for path in nx.shortest_simple_paths(G, 0, 3, weight="weight"):
535
+ this_cost = cost_func(path)
536
+ assert cost <= this_cost
537
+ cost = this_cost
538
+
539
+
540
+ def test_directed_weighted_shortest_simple_path():
541
+ def cost_func(path):
542
+ return sum(G.adj[u][v]["weight"] for (u, v) in zip(path, path[1:]))
543
+
544
+ G = nx.complete_graph(5)
545
+ G = G.to_directed()
546
+ weight = {(u, v): random.randint(1, 100) for (u, v) in G.edges()}
547
+ nx.set_edge_attributes(G, weight, "weight")
548
+ cost = 0
549
+ for path in nx.shortest_simple_paths(G, 0, 3, weight="weight"):
550
+ this_cost = cost_func(path)
551
+ assert cost <= this_cost
552
+ cost = this_cost
553
+
554
+
555
+ def test_weighted_shortest_simple_path_issue2427():
556
+ G = nx.Graph()
557
+ G.add_edge("IN", "OUT", weight=2)
558
+ G.add_edge("IN", "A", weight=1)
559
+ G.add_edge("IN", "B", weight=2)
560
+ G.add_edge("B", "OUT", weight=2)
561
+ assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [
562
+ ["IN", "OUT"],
563
+ ["IN", "B", "OUT"],
564
+ ]
565
+ G = nx.Graph()
566
+ G.add_edge("IN", "OUT", weight=10)
567
+ G.add_edge("IN", "A", weight=1)
568
+ G.add_edge("IN", "B", weight=1)
569
+ G.add_edge("B", "OUT", weight=1)
570
+ assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [
571
+ ["IN", "B", "OUT"],
572
+ ["IN", "OUT"],
573
+ ]
574
+
575
+
576
+ def test_directed_weighted_shortest_simple_path_issue2427():
577
+ G = nx.DiGraph()
578
+ G.add_edge("IN", "OUT", weight=2)
579
+ G.add_edge("IN", "A", weight=1)
580
+ G.add_edge("IN", "B", weight=2)
581
+ G.add_edge("B", "OUT", weight=2)
582
+ assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [
583
+ ["IN", "OUT"],
584
+ ["IN", "B", "OUT"],
585
+ ]
586
+ G = nx.DiGraph()
587
+ G.add_edge("IN", "OUT", weight=10)
588
+ G.add_edge("IN", "A", weight=1)
589
+ G.add_edge("IN", "B", weight=1)
590
+ G.add_edge("B", "OUT", weight=1)
591
+ assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [
592
+ ["IN", "B", "OUT"],
593
+ ["IN", "OUT"],
594
+ ]
595
+
596
+
597
+ def test_weight_name():
598
+ G = nx.cycle_graph(7)
599
+ nx.set_edge_attributes(G, 1, "weight")
600
+ nx.set_edge_attributes(G, 1, "foo")
601
+ G.adj[1][2]["foo"] = 7
602
+ paths = list(nx.shortest_simple_paths(G, 0, 3, weight="foo"))
603
+ solution = [[0, 6, 5, 4, 3], [0, 1, 2, 3]]
604
+ assert paths == solution
605
+
606
+
607
+ def test_ssp_source_missing():
608
+ with pytest.raises(nx.NodeNotFound):
609
+ G = nx.Graph()
610
+ nx.add_path(G, [1, 2, 3])
611
+ list(nx.shortest_simple_paths(G, 0, 3))
612
+
613
+
614
+ def test_ssp_target_missing():
615
+ with pytest.raises(nx.NodeNotFound):
616
+ G = nx.Graph()
617
+ nx.add_path(G, [1, 2, 3])
618
+ list(nx.shortest_simple_paths(G, 1, 4))
619
+
620
+
621
+ def test_ssp_multigraph():
622
+ with pytest.raises(nx.NetworkXNotImplemented):
623
+ G = nx.MultiGraph()
624
+ nx.add_path(G, [1, 2, 3])
625
+ list(nx.shortest_simple_paths(G, 1, 4))
626
+
627
+
628
+ def test_ssp_source_missing2():
629
+ with pytest.raises(nx.NetworkXNoPath):
630
+ G = nx.Graph()
631
+ nx.add_path(G, [0, 1, 2])
632
+ nx.add_path(G, [3, 4, 5])
633
+ list(nx.shortest_simple_paths(G, 0, 3))
634
+
635
+
636
+ def test_bidirectional_shortest_path_restricted_cycle():
637
+ cycle = nx.cycle_graph(7)
638
+ length, path = _bidirectional_shortest_path(cycle, 0, 3)
639
+ assert path == [0, 1, 2, 3]
640
+ length, path = _bidirectional_shortest_path(cycle, 0, 3, ignore_nodes=[1])
641
+ assert path == [0, 6, 5, 4, 3]
642
+
643
+
644
+ def test_bidirectional_shortest_path_restricted_wheel():
645
+ wheel = nx.wheel_graph(6)
646
+ length, path = _bidirectional_shortest_path(wheel, 1, 3)
647
+ assert path in [[1, 0, 3], [1, 2, 3]]
648
+ length, path = _bidirectional_shortest_path(wheel, 1, 3, ignore_nodes=[0])
649
+ assert path == [1, 2, 3]
650
+ length, path = _bidirectional_shortest_path(wheel, 1, 3, ignore_nodes=[0, 2])
651
+ assert path == [1, 5, 4, 3]
652
+ length, path = _bidirectional_shortest_path(
653
+ wheel, 1, 3, ignore_edges=[(1, 0), (5, 0), (2, 3)]
654
+ )
655
+ assert path in [[1, 2, 0, 3], [1, 5, 4, 3]]
656
+
657
+
658
+ def test_bidirectional_shortest_path_restricted_directed_cycle():
659
+ directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph())
660
+ length, path = _bidirectional_shortest_path(directed_cycle, 0, 3)
661
+ assert path == [0, 1, 2, 3]
662
+ pytest.raises(
663
+ nx.NetworkXNoPath,
664
+ _bidirectional_shortest_path,
665
+ directed_cycle,
666
+ 0,
667
+ 3,
668
+ ignore_nodes=[1],
669
+ )
670
+ length, path = _bidirectional_shortest_path(
671
+ directed_cycle, 0, 3, ignore_edges=[(2, 1)]
672
+ )
673
+ assert path == [0, 1, 2, 3]
674
+ pytest.raises(
675
+ nx.NetworkXNoPath,
676
+ _bidirectional_shortest_path,
677
+ directed_cycle,
678
+ 0,
679
+ 3,
680
+ ignore_edges=[(1, 2)],
681
+ )
682
+
683
+
684
+ def test_bidirectional_shortest_path_ignore():
685
+ G = nx.Graph()
686
+ nx.add_path(G, [1, 2])
687
+ nx.add_path(G, [1, 3])
688
+ nx.add_path(G, [1, 4])
689
+ pytest.raises(
690
+ nx.NetworkXNoPath, _bidirectional_shortest_path, G, 1, 2, ignore_nodes=[1]
691
+ )
692
+ pytest.raises(
693
+ nx.NetworkXNoPath, _bidirectional_shortest_path, G, 1, 2, ignore_nodes=[2]
694
+ )
695
+ G = nx.Graph()
696
+ nx.add_path(G, [1, 3])
697
+ nx.add_path(G, [1, 4])
698
+ nx.add_path(G, [3, 2])
699
+ pytest.raises(
700
+ nx.NetworkXNoPath, _bidirectional_shortest_path, G, 1, 2, ignore_nodes=[1, 2]
701
+ )
702
+
703
+
704
+ def validate_path(G, s, t, soln_len, path):
705
+ assert path[0] == s
706
+ assert path[-1] == t
707
+ assert soln_len == sum(
708
+ G[u][v].get("weight", 1) for u, v in zip(path[:-1], path[1:])
709
+ )
710
+
711
+
712
+ def validate_length_path(G, s, t, soln_len, length, path):
713
+ assert soln_len == length
714
+ validate_path(G, s, t, length, path)
715
+
716
+
717
+ def test_bidirectional_dijkstra_restricted():
718
+ XG = nx.DiGraph()
719
+ XG.add_weighted_edges_from(
720
+ [
721
+ ("s", "u", 10),
722
+ ("s", "x", 5),
723
+ ("u", "v", 1),
724
+ ("u", "x", 2),
725
+ ("v", "y", 1),
726
+ ("x", "u", 3),
727
+ ("x", "v", 5),
728
+ ("x", "y", 2),
729
+ ("y", "s", 7),
730
+ ("y", "v", 6),
731
+ ]
732
+ )
733
+
734
+ XG3 = nx.Graph()
735
+ XG3.add_weighted_edges_from(
736
+ [[0, 1, 2], [1, 2, 12], [2, 3, 1], [3, 4, 5], [4, 5, 1], [5, 0, 10]]
737
+ )
738
+ validate_length_path(XG, "s", "v", 9, *_bidirectional_dijkstra(XG, "s", "v"))
739
+ validate_length_path(
740
+ XG, "s", "v", 10, *_bidirectional_dijkstra(XG, "s", "v", ignore_nodes=["u"])
741
+ )
742
+ validate_length_path(
743
+ XG,
744
+ "s",
745
+ "v",
746
+ 11,
747
+ *_bidirectional_dijkstra(XG, "s", "v", ignore_edges=[("s", "x")]),
748
+ )
749
+ pytest.raises(
750
+ nx.NetworkXNoPath,
751
+ _bidirectional_dijkstra,
752
+ XG,
753
+ "s",
754
+ "v",
755
+ ignore_nodes=["u"],
756
+ ignore_edges=[("s", "x")],
757
+ )
758
+ validate_length_path(XG3, 0, 3, 15, *_bidirectional_dijkstra(XG3, 0, 3))
759
+ validate_length_path(
760
+ XG3, 0, 3, 16, *_bidirectional_dijkstra(XG3, 0, 3, ignore_nodes=[1])
761
+ )
762
+ validate_length_path(
763
+ XG3, 0, 3, 16, *_bidirectional_dijkstra(XG3, 0, 3, ignore_edges=[(2, 3)])
764
+ )
765
+ pytest.raises(
766
+ nx.NetworkXNoPath,
767
+ _bidirectional_dijkstra,
768
+ XG3,
769
+ 0,
770
+ 3,
771
+ ignore_nodes=[1],
772
+ ignore_edges=[(5, 4)],
773
+ )
774
+
775
+
776
+ def test_bidirectional_dijkstra_no_path():
777
+ with pytest.raises(nx.NetworkXNoPath):
778
+ G = nx.Graph()
779
+ nx.add_path(G, [1, 2, 3])
780
+ nx.add_path(G, [4, 5, 6])
781
+ _bidirectional_dijkstra(G, 1, 6)
782
+
783
+
784
+ def test_bidirectional_dijkstra_ignore():
785
+ G = nx.Graph()
786
+ nx.add_path(G, [1, 2, 10])
787
+ nx.add_path(G, [1, 3, 10])
788
+ pytest.raises(nx.NetworkXNoPath, _bidirectional_dijkstra, G, 1, 2, ignore_nodes=[1])
789
+ pytest.raises(nx.NetworkXNoPath, _bidirectional_dijkstra, G, 1, 2, ignore_nodes=[2])
790
+ pytest.raises(
791
+ nx.NetworkXNoPath, _bidirectional_dijkstra, G, 1, 2, ignore_nodes=[1, 2]
792
+ )
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_smallworld.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ pytest.importorskip("numpy")
4
+
5
+ import random
6
+
7
+ import networkx as nx
8
+ from networkx import lattice_reference, omega, random_reference, sigma
9
+
10
+ rng = 42
11
+
12
+
13
+ def test_random_reference():
14
+ G = nx.connected_watts_strogatz_graph(50, 6, 0.1, seed=rng)
15
+ Gr = random_reference(G, niter=1, seed=rng)
16
+ C = nx.average_clustering(G)
17
+ Cr = nx.average_clustering(Gr)
18
+ assert C > Cr
19
+
20
+ with pytest.raises(nx.NetworkXError):
21
+ next(random_reference(nx.Graph()))
22
+ with pytest.raises(nx.NetworkXNotImplemented):
23
+ next(random_reference(nx.DiGraph()))
24
+
25
+ H = nx.Graph(((0, 1), (2, 3)))
26
+ Hl = random_reference(H, niter=1, seed=rng)
27
+
28
+
29
+ def test_lattice_reference():
30
+ G = nx.connected_watts_strogatz_graph(50, 6, 1, seed=rng)
31
+ Gl = lattice_reference(G, niter=1, seed=rng)
32
+ L = nx.average_shortest_path_length(G)
33
+ Ll = nx.average_shortest_path_length(Gl)
34
+ assert Ll > L
35
+
36
+ pytest.raises(nx.NetworkXError, lattice_reference, nx.Graph())
37
+ pytest.raises(nx.NetworkXNotImplemented, lattice_reference, nx.DiGraph())
38
+
39
+ H = nx.Graph(((0, 1), (2, 3)))
40
+ Hl = lattice_reference(H, niter=1)
41
+
42
+
43
+ def test_sigma():
44
+ Gs = nx.connected_watts_strogatz_graph(50, 6, 0.1, seed=rng)
45
+ Gr = nx.connected_watts_strogatz_graph(50, 6, 1, seed=rng)
46
+ sigmas = sigma(Gs, niter=1, nrand=2, seed=rng)
47
+ sigmar = sigma(Gr, niter=1, nrand=2, seed=rng)
48
+ assert sigmar < sigmas
49
+
50
+
51
+ def test_omega():
52
+ Gl = nx.connected_watts_strogatz_graph(50, 6, 0, seed=rng)
53
+ Gr = nx.connected_watts_strogatz_graph(50, 6, 1, seed=rng)
54
+ Gs = nx.connected_watts_strogatz_graph(50, 6, 0.1, seed=rng)
55
+ omegal = omega(Gl, niter=1, nrand=1, seed=rng)
56
+ omegar = omega(Gr, niter=1, nrand=1, seed=rng)
57
+ omegas = omega(Gs, niter=1, nrand=1, seed=rng)
58
+ assert omegal < omegas and omegas < omegar
59
+
60
+ # Test that omega lies within the [-1, 1] bounds
61
+ G_barbell = nx.barbell_graph(5, 1)
62
+ G_karate = nx.karate_club_graph()
63
+
64
+ omega_barbell = nx.omega(G_barbell)
65
+ omega_karate = nx.omega(G_karate, nrand=2)
66
+
67
+ omegas = (omegal, omegar, omegas, omega_barbell, omega_karate)
68
+
69
+ for o in omegas:
70
+ assert -1 <= o <= 1
71
+
72
+
73
+ @pytest.mark.parametrize("f", (nx.random_reference, nx.lattice_reference))
74
+ def test_graph_no_edges(f):
75
+ G = nx.Graph()
76
+ G.add_nodes_from([0, 1, 2, 3])
77
+ with pytest.raises(nx.NetworkXError, match="Graph has fewer that 2 edges"):
78
+ f(G)