Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__init__.py +27 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/add_new_model.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/add_new_model_like.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/convert.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/download.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/env.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/lfs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/pt_to_tf.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/run.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/serving.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/train.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/transformers_cli.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/user.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/add_new_model.py +259 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/add_new_model_like.py +1763 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/convert.py +165 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/download.py +56 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/env.py +143 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/lfs.py +226 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/pt_to_tf.py +425 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/run.py +110 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/serving.py +228 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/train.py +158 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/transformers_cli.py +59 -0
- env-llmeval/lib/python3.10/site-packages/transformers/commands/user.py +197 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/__init__.py +44 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/__pycache__/data_collator.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/data_collator.py +1568 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/__init__.py +23 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/glue.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/language_modeling.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/squad.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/glue.py +161 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/language_modeling.py +530 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/squad.py +229 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/metrics/__init__.py +98 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/metrics/__pycache__/squad_metrics.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/metrics/squad_metrics.py +780 -0
- env-llmeval/lib/python3.10/site-packages/transformers/pipelines/audio_classification.py +215 -0
- env-llmeval/lib/python3.10/site-packages/transformers/pipelines/document_question_answering.py +502 -0
- env-llmeval/lib/python3.10/site-packages/transformers/pipelines/image_classification.py +201 -0
- env-llmeval/lib/python3.10/site-packages/transformers/pipelines/image_segmentation.py +211 -0
- env-llmeval/lib/python3.10/site-packages/transformers/pipelines/image_to_image.py +134 -0
- env-llmeval/lib/python3.10/site-packages/transformers/pipelines/mask_generation.py +285 -0
- env-llmeval/lib/python3.10/site-packages/transformers/pipelines/object_detection.py +187 -0
- env-llmeval/lib/python3.10/site-packages/transformers/pipelines/text_to_audio.py +207 -0
- env-llmeval/lib/python3.10/site-packages/transformers/pipelines/visual_question_answering.py +151 -0
env-llmeval/lib/python3.10/site-packages/transformers/commands/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
|
19 |
+
class BaseTransformersCLICommand(ABC):
|
20 |
+
@staticmethod
|
21 |
+
@abstractmethod
|
22 |
+
def register_subcommand(parser: ArgumentParser):
|
23 |
+
raise NotImplementedError()
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def run(self):
|
27 |
+
raise NotImplementedError()
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (825 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/add_new_model.cpython-310.pyc
ADDED
Binary file (7.11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/add_new_model_like.cpython-310.pyc
ADDED
Binary file (49 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/convert.cpython-310.pyc
ADDED
Binary file (4.64 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/download.cpython-310.pyc
ADDED
Binary file (2.03 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/env.cpython-310.pyc
ADDED
Binary file (4.12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/lfs.cpython-310.pyc
ADDED
Binary file (7.28 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/pt_to_tf.cpython-310.pyc
ADDED
Binary file (12.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/run.cpython-310.pyc
ADDED
Binary file (3.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/serving.cpython-310.pyc
ADDED
Binary file (6.83 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/train.cpython-310.pyc
ADDED
Binary file (4.66 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/transformers_cli.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/__pycache__/user.cpython-310.pyc
ADDED
Binary file (7.31 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/add_new_model.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
import shutil
|
18 |
+
import warnings
|
19 |
+
from argparse import ArgumentParser, Namespace
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import List
|
22 |
+
|
23 |
+
from ..utils import logging
|
24 |
+
from . import BaseTransformersCLICommand
|
25 |
+
|
26 |
+
|
27 |
+
try:
|
28 |
+
from cookiecutter.main import cookiecutter
|
29 |
+
|
30 |
+
_has_cookiecutter = True
|
31 |
+
except ImportError:
|
32 |
+
_has_cookiecutter = False
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
+
|
36 |
+
|
37 |
+
def add_new_model_command_factory(args: Namespace):
|
38 |
+
return AddNewModelCommand(args.testing, args.testing_file, path=args.path)
|
39 |
+
|
40 |
+
|
41 |
+
class AddNewModelCommand(BaseTransformersCLICommand):
|
42 |
+
@staticmethod
|
43 |
+
def register_subcommand(parser: ArgumentParser):
|
44 |
+
add_new_model_parser = parser.add_parser("add-new-model")
|
45 |
+
add_new_model_parser.add_argument("--testing", action="store_true", help="If in testing mode.")
|
46 |
+
add_new_model_parser.add_argument("--testing_file", type=str, help="Configuration file on which to run.")
|
47 |
+
add_new_model_parser.add_argument(
|
48 |
+
"--path", type=str, help="Path to cookiecutter. Should only be used for testing purposes."
|
49 |
+
)
|
50 |
+
add_new_model_parser.set_defaults(func=add_new_model_command_factory)
|
51 |
+
|
52 |
+
def __init__(self, testing: bool, testing_file: str, path=None, *args):
|
53 |
+
self._testing = testing
|
54 |
+
self._testing_file = testing_file
|
55 |
+
self._path = path
|
56 |
+
|
57 |
+
def run(self):
|
58 |
+
warnings.warn(
|
59 |
+
"The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. "
|
60 |
+
"It is not actively maintained anymore, so might give a result that won't pass all tests and quality "
|
61 |
+
"checks, you should use `transformers-cli add-new-model-like` instead."
|
62 |
+
)
|
63 |
+
if not _has_cookiecutter:
|
64 |
+
raise ImportError(
|
65 |
+
"Model creation dependencies are required to use the `add_new_model` command. Install them by running "
|
66 |
+
"the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n"
|
67 |
+
)
|
68 |
+
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
|
69 |
+
directories = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]]
|
70 |
+
if len(directories) > 0:
|
71 |
+
raise ValueError(
|
72 |
+
"Several directories starting with `cookiecutter-template-` in current working directory. "
|
73 |
+
"Please clean your directory by removing all folders starting with `cookiecutter-template-` or "
|
74 |
+
"change your working directory."
|
75 |
+
)
|
76 |
+
|
77 |
+
path_to_transformer_root = (
|
78 |
+
Path(__file__).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent
|
79 |
+
)
|
80 |
+
path_to_cookiecutter = path_to_transformer_root / "templates" / "adding_a_new_model"
|
81 |
+
|
82 |
+
# Execute cookiecutter
|
83 |
+
if not self._testing:
|
84 |
+
cookiecutter(str(path_to_cookiecutter))
|
85 |
+
else:
|
86 |
+
with open(self._testing_file, "r") as configuration_file:
|
87 |
+
testing_configuration = json.load(configuration_file)
|
88 |
+
|
89 |
+
cookiecutter(
|
90 |
+
str(path_to_cookiecutter if self._path is None else self._path),
|
91 |
+
no_input=True,
|
92 |
+
extra_context=testing_configuration,
|
93 |
+
)
|
94 |
+
|
95 |
+
directory = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0]
|
96 |
+
|
97 |
+
# Retrieve configuration
|
98 |
+
with open(directory + "/configuration.json", "r") as configuration_file:
|
99 |
+
configuration = json.load(configuration_file)
|
100 |
+
|
101 |
+
lowercase_model_name = configuration["lowercase_modelname"]
|
102 |
+
generate_tensorflow_pytorch_and_flax = configuration["generate_tensorflow_pytorch_and_flax"]
|
103 |
+
os.remove(f"{directory}/configuration.json")
|
104 |
+
|
105 |
+
output_pytorch = "PyTorch" in generate_tensorflow_pytorch_and_flax
|
106 |
+
output_tensorflow = "TensorFlow" in generate_tensorflow_pytorch_and_flax
|
107 |
+
output_flax = "Flax" in generate_tensorflow_pytorch_and_flax
|
108 |
+
|
109 |
+
model_dir = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"
|
110 |
+
os.makedirs(model_dir, exist_ok=True)
|
111 |
+
os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}", exist_ok=True)
|
112 |
+
|
113 |
+
# Tests require submodules as they have parent imports
|
114 |
+
with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py", "w"):
|
115 |
+
pass
|
116 |
+
|
117 |
+
shutil.move(
|
118 |
+
f"{directory}/__init__.py",
|
119 |
+
f"{model_dir}/__init__.py",
|
120 |
+
)
|
121 |
+
shutil.move(
|
122 |
+
f"{directory}/configuration_{lowercase_model_name}.py",
|
123 |
+
f"{model_dir}/configuration_{lowercase_model_name}.py",
|
124 |
+
)
|
125 |
+
|
126 |
+
def remove_copy_lines(path):
|
127 |
+
with open(path, "r") as f:
|
128 |
+
lines = f.readlines()
|
129 |
+
with open(path, "w") as f:
|
130 |
+
for line in lines:
|
131 |
+
if "# Copied from transformers." not in line:
|
132 |
+
f.write(line)
|
133 |
+
|
134 |
+
if output_pytorch:
|
135 |
+
if not self._testing:
|
136 |
+
remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py")
|
137 |
+
|
138 |
+
shutil.move(
|
139 |
+
f"{directory}/modeling_{lowercase_model_name}.py",
|
140 |
+
f"{model_dir}/modeling_{lowercase_model_name}.py",
|
141 |
+
)
|
142 |
+
|
143 |
+
shutil.move(
|
144 |
+
f"{directory}/test_modeling_{lowercase_model_name}.py",
|
145 |
+
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py",
|
146 |
+
)
|
147 |
+
else:
|
148 |
+
os.remove(f"{directory}/modeling_{lowercase_model_name}.py")
|
149 |
+
os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py")
|
150 |
+
|
151 |
+
if output_tensorflow:
|
152 |
+
if not self._testing:
|
153 |
+
remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py")
|
154 |
+
|
155 |
+
shutil.move(
|
156 |
+
f"{directory}/modeling_tf_{lowercase_model_name}.py",
|
157 |
+
f"{model_dir}/modeling_tf_{lowercase_model_name}.py",
|
158 |
+
)
|
159 |
+
|
160 |
+
shutil.move(
|
161 |
+
f"{directory}/test_modeling_tf_{lowercase_model_name}.py",
|
162 |
+
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py",
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py")
|
166 |
+
os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py")
|
167 |
+
|
168 |
+
if output_flax:
|
169 |
+
if not self._testing:
|
170 |
+
remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py")
|
171 |
+
|
172 |
+
shutil.move(
|
173 |
+
f"{directory}/modeling_flax_{lowercase_model_name}.py",
|
174 |
+
f"{model_dir}/modeling_flax_{lowercase_model_name}.py",
|
175 |
+
)
|
176 |
+
|
177 |
+
shutil.move(
|
178 |
+
f"{directory}/test_modeling_flax_{lowercase_model_name}.py",
|
179 |
+
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py",
|
180 |
+
)
|
181 |
+
else:
|
182 |
+
os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py")
|
183 |
+
os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py")
|
184 |
+
|
185 |
+
shutil.move(
|
186 |
+
f"{directory}/{lowercase_model_name}.md",
|
187 |
+
f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md",
|
188 |
+
)
|
189 |
+
|
190 |
+
shutil.move(
|
191 |
+
f"{directory}/tokenization_{lowercase_model_name}.py",
|
192 |
+
f"{model_dir}/tokenization_{lowercase_model_name}.py",
|
193 |
+
)
|
194 |
+
|
195 |
+
shutil.move(
|
196 |
+
f"{directory}/tokenization_fast_{lowercase_model_name}.py",
|
197 |
+
f"{model_dir}/tokenization_{lowercase_model_name}_fast.py",
|
198 |
+
)
|
199 |
+
|
200 |
+
from os import fdopen, remove
|
201 |
+
from shutil import copymode, move
|
202 |
+
from tempfile import mkstemp
|
203 |
+
|
204 |
+
def replace(original_file: str, line_to_copy_below: str, lines_to_copy: List[str]):
|
205 |
+
# Create temp file
|
206 |
+
fh, abs_path = mkstemp()
|
207 |
+
line_found = False
|
208 |
+
with fdopen(fh, "w") as new_file:
|
209 |
+
with open(original_file) as old_file:
|
210 |
+
for line in old_file:
|
211 |
+
new_file.write(line)
|
212 |
+
if line_to_copy_below in line:
|
213 |
+
line_found = True
|
214 |
+
for line_to_copy in lines_to_copy:
|
215 |
+
new_file.write(line_to_copy)
|
216 |
+
|
217 |
+
if not line_found:
|
218 |
+
raise ValueError(f"Line {line_to_copy_below} was not found in file.")
|
219 |
+
|
220 |
+
# Copy the file permissions from the old file to the new file
|
221 |
+
copymode(original_file, abs_path)
|
222 |
+
# Remove original file
|
223 |
+
remove(original_file)
|
224 |
+
# Move new file
|
225 |
+
move(abs_path, original_file)
|
226 |
+
|
227 |
+
def skip_units(line):
|
228 |
+
return (
|
229 |
+
("generating PyTorch" in line and not output_pytorch)
|
230 |
+
or ("generating TensorFlow" in line and not output_tensorflow)
|
231 |
+
or ("generating Flax" in line and not output_flax)
|
232 |
+
)
|
233 |
+
|
234 |
+
def replace_in_files(path_to_datafile):
|
235 |
+
with open(path_to_datafile) as datafile:
|
236 |
+
lines_to_copy = []
|
237 |
+
skip_file = False
|
238 |
+
skip_snippet = False
|
239 |
+
for line in datafile:
|
240 |
+
if "# To replace in: " in line and "##" not in line:
|
241 |
+
file_to_replace_in = line.split('"')[1]
|
242 |
+
skip_file = skip_units(line)
|
243 |
+
elif "# Below: " in line and "##" not in line:
|
244 |
+
line_to_copy_below = line.split('"')[1]
|
245 |
+
skip_snippet = skip_units(line)
|
246 |
+
elif "# End." in line and "##" not in line:
|
247 |
+
if not skip_file and not skip_snippet:
|
248 |
+
replace(file_to_replace_in, line_to_copy_below, lines_to_copy)
|
249 |
+
|
250 |
+
lines_to_copy = []
|
251 |
+
elif "# Replace with" in line and "##" not in line:
|
252 |
+
lines_to_copy = []
|
253 |
+
elif "##" not in line:
|
254 |
+
lines_to_copy.append(line)
|
255 |
+
|
256 |
+
remove(path_to_datafile)
|
257 |
+
|
258 |
+
replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py")
|
259 |
+
os.rmdir(directory)
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/add_new_model_like.py
ADDED
@@ -0,0 +1,1763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import difflib
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
import re
|
19 |
+
from argparse import ArgumentParser, Namespace
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from datetime import date
|
22 |
+
from itertools import chain
|
23 |
+
from pathlib import Path
|
24 |
+
from typing import Any, Callable, Dict, List, Optional, Pattern, Tuple, Union
|
25 |
+
|
26 |
+
import yaml
|
27 |
+
|
28 |
+
from ..models import auto as auto_module
|
29 |
+
from ..models.auto.configuration_auto import model_type_to_module_name
|
30 |
+
from ..utils import is_flax_available, is_tf_available, is_torch_available, logging
|
31 |
+
from . import BaseTransformersCLICommand
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
+
|
36 |
+
|
37 |
+
CURRENT_YEAR = date.today().year
|
38 |
+
TRANSFORMERS_PATH = Path(__file__).parent.parent
|
39 |
+
REPO_PATH = TRANSFORMERS_PATH.parent.parent
|
40 |
+
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class ModelPatterns:
|
44 |
+
"""
|
45 |
+
Holds the basic information about a new model for the add-new-model-like command.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
model_name (`str`): The model name.
|
49 |
+
checkpoint (`str`): The checkpoint to use for doc examples.
|
50 |
+
model_type (`str`, *optional*):
|
51 |
+
The model type, the identifier used internally in the library like `bert` or `xlm-roberta`. Will default to
|
52 |
+
`model_name` lowercased with spaces replaced with minuses (-).
|
53 |
+
model_lower_cased (`str`, *optional*):
|
54 |
+
The lowercased version of the model name, to use for the module name or function names. Will default to
|
55 |
+
`model_name` lowercased with spaces and minuses replaced with underscores.
|
56 |
+
model_camel_cased (`str`, *optional*):
|
57 |
+
The camel-cased version of the model name, to use for the class names. Will default to `model_name`
|
58 |
+
camel-cased (with spaces and minuses both considered as word separators.
|
59 |
+
model_upper_cased (`str`, *optional*):
|
60 |
+
The uppercased version of the model name, to use for the constant names. Will default to `model_name`
|
61 |
+
uppercased with spaces and minuses replaced with underscores.
|
62 |
+
config_class (`str`, *optional*):
|
63 |
+
The tokenizer class associated with this model. Will default to `"{model_camel_cased}Config"`.
|
64 |
+
tokenizer_class (`str`, *optional*):
|
65 |
+
The tokenizer class associated with this model (leave to `None` for models that don't use a tokenizer).
|
66 |
+
image_processor_class (`str`, *optional*):
|
67 |
+
The image processor class associated with this model (leave to `None` for models that don't use an image
|
68 |
+
processor).
|
69 |
+
feature_extractor_class (`str`, *optional*):
|
70 |
+
The feature extractor class associated with this model (leave to `None` for models that don't use a feature
|
71 |
+
extractor).
|
72 |
+
processor_class (`str`, *optional*):
|
73 |
+
The processor class associated with this model (leave to `None` for models that don't use a processor).
|
74 |
+
"""
|
75 |
+
|
76 |
+
model_name: str
|
77 |
+
checkpoint: str
|
78 |
+
model_type: Optional[str] = None
|
79 |
+
model_lower_cased: Optional[str] = None
|
80 |
+
model_camel_cased: Optional[str] = None
|
81 |
+
model_upper_cased: Optional[str] = None
|
82 |
+
config_class: Optional[str] = None
|
83 |
+
tokenizer_class: Optional[str] = None
|
84 |
+
image_processor_class: Optional[str] = None
|
85 |
+
feature_extractor_class: Optional[str] = None
|
86 |
+
processor_class: Optional[str] = None
|
87 |
+
|
88 |
+
def __post_init__(self):
|
89 |
+
if self.model_type is None:
|
90 |
+
self.model_type = self.model_name.lower().replace(" ", "-")
|
91 |
+
if self.model_lower_cased is None:
|
92 |
+
self.model_lower_cased = self.model_name.lower().replace(" ", "_").replace("-", "_")
|
93 |
+
if self.model_camel_cased is None:
|
94 |
+
# Split the model name on - and space
|
95 |
+
words = self.model_name.split(" ")
|
96 |
+
words = list(chain(*[w.split("-") for w in words]))
|
97 |
+
# Make sure each word is capitalized
|
98 |
+
words = [w[0].upper() + w[1:] for w in words]
|
99 |
+
self.model_camel_cased = "".join(words)
|
100 |
+
if self.model_upper_cased is None:
|
101 |
+
self.model_upper_cased = self.model_name.upper().replace(" ", "_").replace("-", "_")
|
102 |
+
if self.config_class is None:
|
103 |
+
self.config_class = f"{self.model_camel_cased}Config"
|
104 |
+
|
105 |
+
|
106 |
+
ATTRIBUTE_TO_PLACEHOLDER = {
|
107 |
+
"config_class": "[CONFIG_CLASS]",
|
108 |
+
"tokenizer_class": "[TOKENIZER_CLASS]",
|
109 |
+
"image_processor_class": "[IMAGE_PROCESSOR_CLASS]",
|
110 |
+
"feature_extractor_class": "[FEATURE_EXTRACTOR_CLASS]",
|
111 |
+
"processor_class": "[PROCESSOR_CLASS]",
|
112 |
+
"checkpoint": "[CHECKPOINT]",
|
113 |
+
"model_type": "[MODEL_TYPE]",
|
114 |
+
"model_upper_cased": "[MODEL_UPPER_CASED]",
|
115 |
+
"model_camel_cased": "[MODEL_CAMELCASED]",
|
116 |
+
"model_lower_cased": "[MODEL_LOWER_CASED]",
|
117 |
+
"model_name": "[MODEL_NAME]",
|
118 |
+
}
|
119 |
+
|
120 |
+
|
121 |
+
def is_empty_line(line: str) -> bool:
|
122 |
+
"""
|
123 |
+
Determines whether a line is empty or not.
|
124 |
+
"""
|
125 |
+
return len(line) == 0 or line.isspace()
|
126 |
+
|
127 |
+
|
128 |
+
def find_indent(line: str) -> int:
|
129 |
+
"""
|
130 |
+
Returns the number of spaces that start a line indent.
|
131 |
+
"""
|
132 |
+
search = re.search(r"^(\s*)(?:\S|$)", line)
|
133 |
+
if search is None:
|
134 |
+
return 0
|
135 |
+
return len(search.groups()[0])
|
136 |
+
|
137 |
+
|
138 |
+
def parse_module_content(content: str) -> List[str]:
|
139 |
+
"""
|
140 |
+
Parse the content of a module in the list of objects it defines.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
content (`str`): The content to parse
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
`List[str]`: The list of objects defined in the module.
|
147 |
+
"""
|
148 |
+
objects = []
|
149 |
+
current_object = []
|
150 |
+
lines = content.split("\n")
|
151 |
+
# Doc-styler takes everything between two triple quotes in docstrings, so we need a fake """ here to go with this.
|
152 |
+
end_markers = [")", "]", "}", '"""']
|
153 |
+
|
154 |
+
for line in lines:
|
155 |
+
# End of an object
|
156 |
+
is_valid_object = len(current_object) > 0
|
157 |
+
if is_valid_object and len(current_object) == 1:
|
158 |
+
is_valid_object = not current_object[0].startswith("# Copied from")
|
159 |
+
if not is_empty_line(line) and find_indent(line) == 0 and is_valid_object:
|
160 |
+
# Closing parts should be included in current object
|
161 |
+
if line in end_markers:
|
162 |
+
current_object.append(line)
|
163 |
+
objects.append("\n".join(current_object))
|
164 |
+
current_object = []
|
165 |
+
else:
|
166 |
+
objects.append("\n".join(current_object))
|
167 |
+
current_object = [line]
|
168 |
+
else:
|
169 |
+
current_object.append(line)
|
170 |
+
|
171 |
+
# Add last object
|
172 |
+
if len(current_object) > 0:
|
173 |
+
objects.append("\n".join(current_object))
|
174 |
+
|
175 |
+
return objects
|
176 |
+
|
177 |
+
|
178 |
+
def extract_block(content: str, indent_level: int = 0) -> str:
|
179 |
+
"""Return the first block in `content` with the indent level `indent_level`.
|
180 |
+
|
181 |
+
The first line in `content` should be indented at `indent_level` level, otherwise an error will be thrown.
|
182 |
+
|
183 |
+
This method will immediately stop the search when a (non-empty) line with indent level less than `indent_level` is
|
184 |
+
encountered.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
content (`str`): The content to parse
|
188 |
+
indent_level (`int`, *optional*, default to 0): The indent level of the blocks to search for
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
`str`: The first block in `content` with the indent level `indent_level`.
|
192 |
+
"""
|
193 |
+
current_object = []
|
194 |
+
lines = content.split("\n")
|
195 |
+
# Doc-styler takes everything between two triple quotes in docstrings, so we need a fake """ here to go with this.
|
196 |
+
end_markers = [")", "]", "}", '"""']
|
197 |
+
|
198 |
+
for idx, line in enumerate(lines):
|
199 |
+
if idx == 0 and indent_level > 0 and not is_empty_line(line) and find_indent(line) != indent_level:
|
200 |
+
raise ValueError(
|
201 |
+
f"When `indent_level > 0`, the first line in `content` should have indent level {indent_level}. Got "
|
202 |
+
f"{find_indent(line)} instead."
|
203 |
+
)
|
204 |
+
|
205 |
+
if find_indent(line) < indent_level and not is_empty_line(line):
|
206 |
+
break
|
207 |
+
|
208 |
+
# End of an object
|
209 |
+
is_valid_object = len(current_object) > 0
|
210 |
+
if (
|
211 |
+
not is_empty_line(line)
|
212 |
+
and not line.endswith(":")
|
213 |
+
and find_indent(line) == indent_level
|
214 |
+
and is_valid_object
|
215 |
+
):
|
216 |
+
# Closing parts should be included in current object
|
217 |
+
if line.lstrip() in end_markers:
|
218 |
+
current_object.append(line)
|
219 |
+
return "\n".join(current_object)
|
220 |
+
else:
|
221 |
+
current_object.append(line)
|
222 |
+
|
223 |
+
# Add last object
|
224 |
+
if len(current_object) > 0:
|
225 |
+
return "\n".join(current_object)
|
226 |
+
|
227 |
+
|
228 |
+
def add_content_to_text(
|
229 |
+
text: str,
|
230 |
+
content: str,
|
231 |
+
add_after: Optional[Union[str, Pattern]] = None,
|
232 |
+
add_before: Optional[Union[str, Pattern]] = None,
|
233 |
+
exact_match: bool = False,
|
234 |
+
) -> str:
|
235 |
+
"""
|
236 |
+
A utility to add some content inside a given text.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
text (`str`): The text in which we want to insert some content.
|
240 |
+
content (`str`): The content to add.
|
241 |
+
add_after (`str` or `Pattern`):
|
242 |
+
The pattern to test on a line of `text`, the new content is added after the first instance matching it.
|
243 |
+
add_before (`str` or `Pattern`):
|
244 |
+
The pattern to test on a line of `text`, the new content is added before the first instance matching it.
|
245 |
+
exact_match (`bool`, *optional*, defaults to `False`):
|
246 |
+
A line is considered a match with `add_after` or `add_before` if it matches exactly when `exact_match=True`,
|
247 |
+
otherwise, if `add_after`/`add_before` is present in the line.
|
248 |
+
|
249 |
+
<Tip warning={true}>
|
250 |
+
|
251 |
+
The arguments `add_after` and `add_before` are mutually exclusive, and one exactly needs to be provided.
|
252 |
+
|
253 |
+
</Tip>
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
`str`: The text with the new content added if a match was found.
|
257 |
+
"""
|
258 |
+
if add_after is None and add_before is None:
|
259 |
+
raise ValueError("You need to pass either `add_after` or `add_before`")
|
260 |
+
if add_after is not None and add_before is not None:
|
261 |
+
raise ValueError("You can't pass both `add_after` or `add_before`")
|
262 |
+
pattern = add_after if add_before is None else add_before
|
263 |
+
|
264 |
+
def this_is_the_line(line):
|
265 |
+
if isinstance(pattern, Pattern):
|
266 |
+
return pattern.search(line) is not None
|
267 |
+
elif exact_match:
|
268 |
+
return pattern == line
|
269 |
+
else:
|
270 |
+
return pattern in line
|
271 |
+
|
272 |
+
new_lines = []
|
273 |
+
for line in text.split("\n"):
|
274 |
+
if this_is_the_line(line):
|
275 |
+
if add_before is not None:
|
276 |
+
new_lines.append(content)
|
277 |
+
new_lines.append(line)
|
278 |
+
if add_after is not None:
|
279 |
+
new_lines.append(content)
|
280 |
+
else:
|
281 |
+
new_lines.append(line)
|
282 |
+
|
283 |
+
return "\n".join(new_lines)
|
284 |
+
|
285 |
+
|
286 |
+
def add_content_to_file(
|
287 |
+
file_name: Union[str, os.PathLike],
|
288 |
+
content: str,
|
289 |
+
add_after: Optional[Union[str, Pattern]] = None,
|
290 |
+
add_before: Optional[Union[str, Pattern]] = None,
|
291 |
+
exact_match: bool = False,
|
292 |
+
):
|
293 |
+
"""
|
294 |
+
A utility to add some content inside a given file.
|
295 |
+
|
296 |
+
Args:
|
297 |
+
file_name (`str` or `os.PathLike`): The name of the file in which we want to insert some content.
|
298 |
+
content (`str`): The content to add.
|
299 |
+
add_after (`str` or `Pattern`):
|
300 |
+
The pattern to test on a line of `text`, the new content is added after the first instance matching it.
|
301 |
+
add_before (`str` or `Pattern`):
|
302 |
+
The pattern to test on a line of `text`, the new content is added before the first instance matching it.
|
303 |
+
exact_match (`bool`, *optional*, defaults to `False`):
|
304 |
+
A line is considered a match with `add_after` or `add_before` if it matches exactly when `exact_match=True`,
|
305 |
+
otherwise, if `add_after`/`add_before` is present in the line.
|
306 |
+
|
307 |
+
<Tip warning={true}>
|
308 |
+
|
309 |
+
The arguments `add_after` and `add_before` are mutually exclusive, and one exactly needs to be provided.
|
310 |
+
|
311 |
+
</Tip>
|
312 |
+
"""
|
313 |
+
with open(file_name, "r", encoding="utf-8") as f:
|
314 |
+
old_content = f.read()
|
315 |
+
|
316 |
+
new_content = add_content_to_text(
|
317 |
+
old_content, content, add_after=add_after, add_before=add_before, exact_match=exact_match
|
318 |
+
)
|
319 |
+
|
320 |
+
with open(file_name, "w", encoding="utf-8") as f:
|
321 |
+
f.write(new_content)
|
322 |
+
|
323 |
+
|
324 |
+
def replace_model_patterns(
|
325 |
+
text: str, old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns
|
326 |
+
) -> Tuple[str, str]:
|
327 |
+
"""
|
328 |
+
Replace all patterns present in a given text.
|
329 |
+
|
330 |
+
Args:
|
331 |
+
text (`str`): The text to treat.
|
332 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
333 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
334 |
+
|
335 |
+
Returns:
|
336 |
+
`Tuple(str, str)`: A tuple of with the treated text and the replacement actually done in it.
|
337 |
+
"""
|
338 |
+
# The order is crucially important as we will check and replace in that order. For instance the config probably
|
339 |
+
# contains the camel-cased named, but will be treated before.
|
340 |
+
attributes_to_check = ["config_class"]
|
341 |
+
# Add relevant preprocessing classes
|
342 |
+
for attr in ["tokenizer_class", "image_processor_class", "feature_extractor_class", "processor_class"]:
|
343 |
+
if getattr(old_model_patterns, attr) is not None and getattr(new_model_patterns, attr) is not None:
|
344 |
+
attributes_to_check.append(attr)
|
345 |
+
|
346 |
+
# Special cases for checkpoint and model_type
|
347 |
+
if old_model_patterns.checkpoint not in [old_model_patterns.model_type, old_model_patterns.model_lower_cased]:
|
348 |
+
attributes_to_check.append("checkpoint")
|
349 |
+
if old_model_patterns.model_type != old_model_patterns.model_lower_cased:
|
350 |
+
attributes_to_check.append("model_type")
|
351 |
+
else:
|
352 |
+
text = re.sub(
|
353 |
+
rf'(\s*)model_type = "{old_model_patterns.model_type}"',
|
354 |
+
r'\1model_type = "[MODEL_TYPE]"',
|
355 |
+
text,
|
356 |
+
)
|
357 |
+
|
358 |
+
# Special case when the model camel cased and upper cased names are the same for the old model (like for GPT2) but
|
359 |
+
# not the new one. We can't just do a replace in all the text and will need a special regex
|
360 |
+
if old_model_patterns.model_upper_cased == old_model_patterns.model_camel_cased:
|
361 |
+
old_model_value = old_model_patterns.model_upper_cased
|
362 |
+
if re.search(rf"{old_model_value}_[A-Z_]*[^A-Z_]", text) is not None:
|
363 |
+
text = re.sub(rf"{old_model_value}([A-Z_]*)([^a-zA-Z_])", r"[MODEL_UPPER_CASED]\1\2", text)
|
364 |
+
else:
|
365 |
+
attributes_to_check.append("model_upper_cased")
|
366 |
+
|
367 |
+
attributes_to_check.extend(["model_camel_cased", "model_lower_cased", "model_name"])
|
368 |
+
|
369 |
+
# Now let's replace every other attribute by their placeholder
|
370 |
+
for attr in attributes_to_check:
|
371 |
+
text = text.replace(getattr(old_model_patterns, attr), ATTRIBUTE_TO_PLACEHOLDER[attr])
|
372 |
+
|
373 |
+
# Finally we can replace the placeholder byt the new values.
|
374 |
+
replacements = []
|
375 |
+
for attr, placeholder in ATTRIBUTE_TO_PLACEHOLDER.items():
|
376 |
+
if placeholder in text:
|
377 |
+
replacements.append((getattr(old_model_patterns, attr), getattr(new_model_patterns, attr)))
|
378 |
+
text = text.replace(placeholder, getattr(new_model_patterns, attr))
|
379 |
+
|
380 |
+
# If we have two inconsistent replacements, we don't return anything (ex: GPT2->GPT_NEW and GPT2->GPTNew)
|
381 |
+
old_replacement_values = [old for old, new in replacements]
|
382 |
+
if len(set(old_replacement_values)) != len(old_replacement_values):
|
383 |
+
return text, ""
|
384 |
+
|
385 |
+
replacements = simplify_replacements(replacements)
|
386 |
+
replacements = [f"{old}->{new}" for old, new in replacements]
|
387 |
+
return text, ",".join(replacements)
|
388 |
+
|
389 |
+
|
390 |
+
def simplify_replacements(replacements):
|
391 |
+
"""
|
392 |
+
Simplify a list of replacement patterns to make sure there are no needless ones.
|
393 |
+
|
394 |
+
For instance in the sequence "Bert->BertNew, BertConfig->BertNewConfig, bert->bert_new", the replacement
|
395 |
+
"BertConfig->BertNewConfig" is implied by "Bert->BertNew" so not needed.
|
396 |
+
|
397 |
+
Args:
|
398 |
+
replacements (`List[Tuple[str, str]]`): List of patterns (old, new)
|
399 |
+
|
400 |
+
Returns:
|
401 |
+
`List[Tuple[str, str]]`: The list of patterns simplified.
|
402 |
+
"""
|
403 |
+
if len(replacements) <= 1:
|
404 |
+
# Nothing to simplify
|
405 |
+
return replacements
|
406 |
+
|
407 |
+
# Next let's sort replacements by length as a replacement can only "imply" another replacement if it's shorter.
|
408 |
+
replacements.sort(key=lambda x: len(x[0]))
|
409 |
+
|
410 |
+
idx = 0
|
411 |
+
while idx < len(replacements):
|
412 |
+
old, new = replacements[idx]
|
413 |
+
# Loop through all replacements after
|
414 |
+
j = idx + 1
|
415 |
+
while j < len(replacements):
|
416 |
+
old_2, new_2 = replacements[j]
|
417 |
+
# If the replacement is implied by the current one, we can drop it.
|
418 |
+
if old_2.replace(old, new) == new_2:
|
419 |
+
replacements.pop(j)
|
420 |
+
else:
|
421 |
+
j += 1
|
422 |
+
idx += 1
|
423 |
+
|
424 |
+
return replacements
|
425 |
+
|
426 |
+
|
427 |
+
def get_module_from_file(module_file: Union[str, os.PathLike]) -> str:
|
428 |
+
"""
|
429 |
+
Returns the module name corresponding to a module file.
|
430 |
+
"""
|
431 |
+
full_module_path = Path(module_file).absolute()
|
432 |
+
module_parts = full_module_path.with_suffix("").parts
|
433 |
+
|
434 |
+
# Find the first part named transformers, starting from the end.
|
435 |
+
idx = len(module_parts) - 1
|
436 |
+
while idx >= 0 and module_parts[idx] != "transformers":
|
437 |
+
idx -= 1
|
438 |
+
if idx < 0:
|
439 |
+
raise ValueError(f"{module_file} is not a transformers module.")
|
440 |
+
|
441 |
+
return ".".join(module_parts[idx:])
|
442 |
+
|
443 |
+
|
444 |
+
SPECIAL_PATTERNS = {
|
445 |
+
"_CHECKPOINT_FOR_DOC =": "checkpoint",
|
446 |
+
"_CONFIG_FOR_DOC =": "config_class",
|
447 |
+
"_TOKENIZER_FOR_DOC =": "tokenizer_class",
|
448 |
+
"_IMAGE_PROCESSOR_FOR_DOC =": "image_processor_class",
|
449 |
+
"_FEAT_EXTRACTOR_FOR_DOC =": "feature_extractor_class",
|
450 |
+
"_PROCESSOR_FOR_DOC =": "processor_class",
|
451 |
+
}
|
452 |
+
|
453 |
+
|
454 |
+
_re_class_func = re.compile(r"^(?:class|def)\s+([^\s:\(]+)\s*(?:\(|\:)", flags=re.MULTILINE)
|
455 |
+
|
456 |
+
|
457 |
+
def remove_attributes(obj, target_attr):
|
458 |
+
"""Remove `target_attr` in `obj`."""
|
459 |
+
lines = obj.split(os.linesep)
|
460 |
+
|
461 |
+
target_idx = None
|
462 |
+
for idx, line in enumerate(lines):
|
463 |
+
# search for assignment
|
464 |
+
if line.lstrip().startswith(f"{target_attr} = "):
|
465 |
+
target_idx = idx
|
466 |
+
break
|
467 |
+
# search for function/method definition
|
468 |
+
elif line.lstrip().startswith(f"def {target_attr}("):
|
469 |
+
target_idx = idx
|
470 |
+
break
|
471 |
+
|
472 |
+
# target not found
|
473 |
+
if target_idx is None:
|
474 |
+
return obj
|
475 |
+
|
476 |
+
line = lines[target_idx]
|
477 |
+
indent_level = find_indent(line)
|
478 |
+
# forward pass to find the ending of the block (including empty lines)
|
479 |
+
parsed = extract_block("\n".join(lines[target_idx:]), indent_level)
|
480 |
+
num_lines = len(parsed.split("\n"))
|
481 |
+
for idx in range(num_lines):
|
482 |
+
lines[target_idx + idx] = None
|
483 |
+
|
484 |
+
# backward pass to find comments or decorator
|
485 |
+
for idx in range(target_idx - 1, -1, -1):
|
486 |
+
line = lines[idx]
|
487 |
+
if (line.lstrip().startswith("#") or line.lstrip().startswith("@")) and find_indent(line) == indent_level:
|
488 |
+
lines[idx] = None
|
489 |
+
else:
|
490 |
+
break
|
491 |
+
|
492 |
+
new_obj = os.linesep.join([x for x in lines if x is not None])
|
493 |
+
|
494 |
+
return new_obj
|
495 |
+
|
496 |
+
|
497 |
+
def duplicate_module(
|
498 |
+
module_file: Union[str, os.PathLike],
|
499 |
+
old_model_patterns: ModelPatterns,
|
500 |
+
new_model_patterns: ModelPatterns,
|
501 |
+
dest_file: Optional[str] = None,
|
502 |
+
add_copied_from: bool = True,
|
503 |
+
attrs_to_remove: List[str] = None,
|
504 |
+
):
|
505 |
+
"""
|
506 |
+
Create a new module from an existing one and adapting all function and classes names from old patterns to new ones.
|
507 |
+
|
508 |
+
Args:
|
509 |
+
module_file (`str` or `os.PathLike`): Path to the module to duplicate.
|
510 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
511 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
512 |
+
dest_file (`str` or `os.PathLike`, *optional*): Path to the new module.
|
513 |
+
add_copied_from (`bool`, *optional*, defaults to `True`):
|
514 |
+
Whether or not to add `# Copied from` statements in the duplicated module.
|
515 |
+
"""
|
516 |
+
if dest_file is None:
|
517 |
+
dest_file = str(module_file).replace(
|
518 |
+
old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased
|
519 |
+
)
|
520 |
+
|
521 |
+
with open(module_file, "r", encoding="utf-8") as f:
|
522 |
+
content = f.read()
|
523 |
+
|
524 |
+
content = re.sub(r"# Copyright (\d+)\s", f"# Copyright {CURRENT_YEAR} ", content)
|
525 |
+
objects = parse_module_content(content)
|
526 |
+
|
527 |
+
# Loop and treat all objects
|
528 |
+
new_objects = []
|
529 |
+
for obj in objects:
|
530 |
+
# Special cases
|
531 |
+
if "PRETRAINED_CONFIG_ARCHIVE_MAP = {" in obj:
|
532 |
+
# docstyle-ignore
|
533 |
+
obj = (
|
534 |
+
f"{new_model_patterns.model_upper_cased}_PRETRAINED_CONFIG_ARCHIVE_MAP = "
|
535 |
+
+ "{"
|
536 |
+
+ f"""
|
537 |
+
"{new_model_patterns.checkpoint}": "https://huggingface.co/{new_model_patterns.checkpoint}/resolve/main/config.json",
|
538 |
+
"""
|
539 |
+
+ "}\n"
|
540 |
+
)
|
541 |
+
new_objects.append(obj)
|
542 |
+
continue
|
543 |
+
elif "PRETRAINED_MODEL_ARCHIVE_LIST = [" in obj:
|
544 |
+
if obj.startswith("TF_"):
|
545 |
+
prefix = "TF_"
|
546 |
+
elif obj.startswith("FLAX_"):
|
547 |
+
prefix = "FLAX_"
|
548 |
+
else:
|
549 |
+
prefix = ""
|
550 |
+
# docstyle-ignore
|
551 |
+
obj = f"""{prefix}{new_model_patterns.model_upper_cased}_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
552 |
+
"{new_model_patterns.checkpoint}",
|
553 |
+
# See all {new_model_patterns.model_name} models at https://huggingface.co/models?filter={new_model_patterns.model_type}
|
554 |
+
]
|
555 |
+
"""
|
556 |
+
new_objects.append(obj)
|
557 |
+
continue
|
558 |
+
|
559 |
+
special_pattern = False
|
560 |
+
for pattern, attr in SPECIAL_PATTERNS.items():
|
561 |
+
if pattern in obj:
|
562 |
+
obj = obj.replace(getattr(old_model_patterns, attr), getattr(new_model_patterns, attr))
|
563 |
+
new_objects.append(obj)
|
564 |
+
special_pattern = True
|
565 |
+
break
|
566 |
+
|
567 |
+
if special_pattern:
|
568 |
+
continue
|
569 |
+
|
570 |
+
# Regular classes functions
|
571 |
+
old_obj = obj
|
572 |
+
obj, replacement = replace_model_patterns(obj, old_model_patterns, new_model_patterns)
|
573 |
+
has_copied_from = re.search(r"^#\s+Copied from", obj, flags=re.MULTILINE) is not None
|
574 |
+
if add_copied_from and not has_copied_from and _re_class_func.search(obj) is not None and len(replacement) > 0:
|
575 |
+
# Copied from statement must be added just before the class/function definition, which may not be the
|
576 |
+
# first line because of decorators.
|
577 |
+
module_name = get_module_from_file(module_file)
|
578 |
+
old_object_name = _re_class_func.search(old_obj).groups()[0]
|
579 |
+
obj = add_content_to_text(
|
580 |
+
obj, f"# Copied from {module_name}.{old_object_name} with {replacement}", add_before=_re_class_func
|
581 |
+
)
|
582 |
+
# In all cases, we remove Copied from statement with indent on methods.
|
583 |
+
obj = re.sub("\n[ ]+# Copied from [^\n]*\n", "\n", obj)
|
584 |
+
|
585 |
+
new_objects.append(obj)
|
586 |
+
|
587 |
+
content = "\n".join(new_objects)
|
588 |
+
# Remove some attributes that we don't want to copy to the new file(s)
|
589 |
+
if attrs_to_remove is not None:
|
590 |
+
for attr in attrs_to_remove:
|
591 |
+
content = remove_attributes(content, target_attr=attr)
|
592 |
+
|
593 |
+
with open(dest_file, "w", encoding="utf-8") as f:
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def filter_framework_files(
|
598 |
+
files: List[Union[str, os.PathLike]], frameworks: Optional[List[str]] = None
|
599 |
+
) -> List[Union[str, os.PathLike]]:
|
600 |
+
"""
|
601 |
+
Filter a list of files to only keep the ones corresponding to a list of frameworks.
|
602 |
+
|
603 |
+
Args:
|
604 |
+
files (`List[Union[str, os.PathLike]]`): The list of files to filter.
|
605 |
+
frameworks (`List[str]`, *optional*): The list of allowed frameworks.
|
606 |
+
|
607 |
+
Returns:
|
608 |
+
`List[Union[str, os.PathLike]]`: The list of filtered files.
|
609 |
+
"""
|
610 |
+
if frameworks is None:
|
611 |
+
frameworks = get_default_frameworks()
|
612 |
+
|
613 |
+
framework_to_file = {}
|
614 |
+
others = []
|
615 |
+
for f in files:
|
616 |
+
parts = Path(f).name.split("_")
|
617 |
+
if "modeling" not in parts:
|
618 |
+
others.append(f)
|
619 |
+
continue
|
620 |
+
if "tf" in parts:
|
621 |
+
framework_to_file["tf"] = f
|
622 |
+
elif "flax" in parts:
|
623 |
+
framework_to_file["flax"] = f
|
624 |
+
else:
|
625 |
+
framework_to_file["pt"] = f
|
626 |
+
|
627 |
+
return [framework_to_file[f] for f in frameworks if f in framework_to_file] + others
|
628 |
+
|
629 |
+
|
630 |
+
def get_model_files(model_type: str, frameworks: Optional[List[str]] = None) -> Dict[str, Union[Path, List[Path]]]:
|
631 |
+
"""
|
632 |
+
Retrieves all the files associated to a model.
|
633 |
+
|
634 |
+
Args:
|
635 |
+
model_type (`str`): A valid model type (like "bert" or "gpt2")
|
636 |
+
frameworks (`List[str]`, *optional*):
|
637 |
+
If passed, will only keep the model files corresponding to the passed frameworks.
|
638 |
+
|
639 |
+
Returns:
|
640 |
+
`Dict[str, Union[Path, List[Path]]]`: A dictionary with the following keys:
|
641 |
+
- **doc_file** -- The documentation file for the model.
|
642 |
+
- **model_files** -- All the files in the model module.
|
643 |
+
- **test_files** -- The test files for the model.
|
644 |
+
"""
|
645 |
+
module_name = model_type_to_module_name(model_type)
|
646 |
+
|
647 |
+
model_module = TRANSFORMERS_PATH / "models" / module_name
|
648 |
+
model_files = list(model_module.glob("*.py"))
|
649 |
+
model_files = filter_framework_files(model_files, frameworks=frameworks)
|
650 |
+
|
651 |
+
doc_file = REPO_PATH / "docs" / "source" / "en" / "model_doc" / f"{model_type}.md"
|
652 |
+
|
653 |
+
# Basic pattern for test files
|
654 |
+
test_files = [
|
655 |
+
f"test_modeling_{module_name}.py",
|
656 |
+
f"test_modeling_tf_{module_name}.py",
|
657 |
+
f"test_modeling_flax_{module_name}.py",
|
658 |
+
f"test_tokenization_{module_name}.py",
|
659 |
+
f"test_image_processing_{module_name}.py",
|
660 |
+
f"test_feature_extraction_{module_name}.py",
|
661 |
+
f"test_processor_{module_name}.py",
|
662 |
+
]
|
663 |
+
test_files = filter_framework_files(test_files, frameworks=frameworks)
|
664 |
+
# Add the test directory
|
665 |
+
test_files = [REPO_PATH / "tests" / "models" / module_name / f for f in test_files]
|
666 |
+
# Filter by existing files
|
667 |
+
test_files = [f for f in test_files if f.exists()]
|
668 |
+
|
669 |
+
return {"doc_file": doc_file, "model_files": model_files, "module_name": module_name, "test_files": test_files}
|
670 |
+
|
671 |
+
|
672 |
+
_re_checkpoint_for_doc = re.compile(r"^_CHECKPOINT_FOR_DOC\s+=\s+(\S*)\s*$", flags=re.MULTILINE)
|
673 |
+
|
674 |
+
|
675 |
+
def find_base_model_checkpoint(
|
676 |
+
model_type: str, model_files: Optional[Dict[str, Union[Path, List[Path]]]] = None
|
677 |
+
) -> str:
|
678 |
+
"""
|
679 |
+
Finds the model checkpoint used in the docstrings for a given model.
|
680 |
+
|
681 |
+
Args:
|
682 |
+
model_type (`str`): A valid model type (like "bert" or "gpt2")
|
683 |
+
model_files (`Dict[str, Union[Path, List[Path]]`, *optional*):
|
684 |
+
The files associated to `model_type`. Can be passed to speed up the function, otherwise will be computed.
|
685 |
+
|
686 |
+
Returns:
|
687 |
+
`str`: The checkpoint used.
|
688 |
+
"""
|
689 |
+
if model_files is None:
|
690 |
+
model_files = get_model_files(model_type)
|
691 |
+
module_files = model_files["model_files"]
|
692 |
+
for fname in module_files:
|
693 |
+
if "modeling" not in str(fname):
|
694 |
+
continue
|
695 |
+
|
696 |
+
with open(fname, "r", encoding="utf-8") as f:
|
697 |
+
content = f.read()
|
698 |
+
if _re_checkpoint_for_doc.search(content) is not None:
|
699 |
+
checkpoint = _re_checkpoint_for_doc.search(content).groups()[0]
|
700 |
+
# Remove quotes
|
701 |
+
checkpoint = checkpoint.replace('"', "")
|
702 |
+
checkpoint = checkpoint.replace("'", "")
|
703 |
+
return checkpoint
|
704 |
+
|
705 |
+
# TODO: Find some kind of fallback if there is no _CHECKPOINT_FOR_DOC in any of the modeling file.
|
706 |
+
return ""
|
707 |
+
|
708 |
+
|
709 |
+
def get_default_frameworks():
|
710 |
+
"""
|
711 |
+
Returns the list of frameworks (PyTorch, TensorFlow, Flax) that are installed in the environment.
|
712 |
+
"""
|
713 |
+
frameworks = []
|
714 |
+
if is_torch_available():
|
715 |
+
frameworks.append("pt")
|
716 |
+
if is_tf_available():
|
717 |
+
frameworks.append("tf")
|
718 |
+
if is_flax_available():
|
719 |
+
frameworks.append("flax")
|
720 |
+
return frameworks
|
721 |
+
|
722 |
+
|
723 |
+
_re_model_mapping = re.compile("MODEL_([A-Z_]*)MAPPING_NAMES")
|
724 |
+
|
725 |
+
|
726 |
+
def retrieve_model_classes(model_type: str, frameworks: Optional[List[str]] = None) -> Dict[str, List[str]]:
|
727 |
+
"""
|
728 |
+
Retrieve the model classes associated to a given model.
|
729 |
+
|
730 |
+
Args:
|
731 |
+
model_type (`str`): A valid model type (like "bert" or "gpt2")
|
732 |
+
frameworks (`List[str]`, *optional*):
|
733 |
+
The frameworks to look for. Will default to `["pt", "tf", "flax"]`, passing a smaller list will restrict
|
734 |
+
the classes returned.
|
735 |
+
|
736 |
+
Returns:
|
737 |
+
`Dict[str, List[str]]`: A dictionary with one key per framework and the list of model classes associated to
|
738 |
+
that framework as values.
|
739 |
+
"""
|
740 |
+
if frameworks is None:
|
741 |
+
frameworks = get_default_frameworks()
|
742 |
+
|
743 |
+
modules = {
|
744 |
+
"pt": auto_module.modeling_auto if is_torch_available() else None,
|
745 |
+
"tf": auto_module.modeling_tf_auto if is_tf_available() else None,
|
746 |
+
"flax": auto_module.modeling_flax_auto if is_flax_available() else None,
|
747 |
+
}
|
748 |
+
|
749 |
+
model_classes = {}
|
750 |
+
for framework in frameworks:
|
751 |
+
new_model_classes = []
|
752 |
+
if modules[framework] is None:
|
753 |
+
raise ValueError(f"You selected {framework} in the frameworks, but it is not installed.")
|
754 |
+
model_mappings = [attr for attr in dir(modules[framework]) if _re_model_mapping.search(attr) is not None]
|
755 |
+
for model_mapping_name in model_mappings:
|
756 |
+
model_mapping = getattr(modules[framework], model_mapping_name)
|
757 |
+
if model_type in model_mapping:
|
758 |
+
new_model_classes.append(model_mapping[model_type])
|
759 |
+
|
760 |
+
if len(new_model_classes) > 0:
|
761 |
+
# Remove duplicates
|
762 |
+
model_classes[framework] = list(set(new_model_classes))
|
763 |
+
|
764 |
+
return model_classes
|
765 |
+
|
766 |
+
|
767 |
+
def retrieve_info_for_model(model_type, frameworks: Optional[List[str]] = None):
|
768 |
+
"""
|
769 |
+
Retrieves all the information from a given model_type.
|
770 |
+
|
771 |
+
Args:
|
772 |
+
model_type (`str`): A valid model type (like "bert" or "gpt2")
|
773 |
+
frameworks (`List[str]`, *optional*):
|
774 |
+
If passed, will only keep the info corresponding to the passed frameworks.
|
775 |
+
|
776 |
+
Returns:
|
777 |
+
`Dict`: A dictionary with the following keys:
|
778 |
+
- **frameworks** (`List[str]`): The list of frameworks that back this model type.
|
779 |
+
- **model_classes** (`Dict[str, List[str]]`): The model classes implemented for that model type.
|
780 |
+
- **model_files** (`Dict[str, Union[Path, List[Path]]]`): The files associated with that model type.
|
781 |
+
- **model_patterns** (`ModelPatterns`): The various patterns for the model.
|
782 |
+
"""
|
783 |
+
if model_type not in auto_module.MODEL_NAMES_MAPPING:
|
784 |
+
raise ValueError(f"{model_type} is not a valid model type.")
|
785 |
+
|
786 |
+
model_name = auto_module.MODEL_NAMES_MAPPING[model_type]
|
787 |
+
config_class = auto_module.configuration_auto.CONFIG_MAPPING_NAMES[model_type]
|
788 |
+
archive_map = auto_module.configuration_auto.CONFIG_ARCHIVE_MAP_MAPPING_NAMES.get(model_type, None)
|
789 |
+
if model_type in auto_module.tokenization_auto.TOKENIZER_MAPPING_NAMES:
|
790 |
+
tokenizer_classes = auto_module.tokenization_auto.TOKENIZER_MAPPING_NAMES[model_type]
|
791 |
+
tokenizer_class = tokenizer_classes[0] if tokenizer_classes[0] is not None else tokenizer_classes[1]
|
792 |
+
else:
|
793 |
+
tokenizer_class = None
|
794 |
+
image_processor_class = auto_module.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES.get(model_type, None)
|
795 |
+
feature_extractor_class = auto_module.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES.get(model_type, None)
|
796 |
+
processor_class = auto_module.processing_auto.PROCESSOR_MAPPING_NAMES.get(model_type, None)
|
797 |
+
|
798 |
+
model_files = get_model_files(model_type, frameworks=frameworks)
|
799 |
+
model_camel_cased = config_class.replace("Config", "")
|
800 |
+
|
801 |
+
available_frameworks = []
|
802 |
+
for fname in model_files["model_files"]:
|
803 |
+
if "modeling_tf" in str(fname):
|
804 |
+
available_frameworks.append("tf")
|
805 |
+
elif "modeling_flax" in str(fname):
|
806 |
+
available_frameworks.append("flax")
|
807 |
+
elif "modeling" in str(fname):
|
808 |
+
available_frameworks.append("pt")
|
809 |
+
|
810 |
+
if frameworks is None:
|
811 |
+
frameworks = get_default_frameworks()
|
812 |
+
|
813 |
+
frameworks = [f for f in frameworks if f in available_frameworks]
|
814 |
+
|
815 |
+
model_classes = retrieve_model_classes(model_type, frameworks=frameworks)
|
816 |
+
|
817 |
+
# Retrieve model upper-cased name from the constant name of the pretrained archive map.
|
818 |
+
if archive_map is None:
|
819 |
+
model_upper_cased = model_camel_cased.upper()
|
820 |
+
else:
|
821 |
+
parts = archive_map.split("_")
|
822 |
+
idx = 0
|
823 |
+
while idx < len(parts) and parts[idx] != "PRETRAINED":
|
824 |
+
idx += 1
|
825 |
+
if idx < len(parts):
|
826 |
+
model_upper_cased = "_".join(parts[:idx])
|
827 |
+
else:
|
828 |
+
model_upper_cased = model_camel_cased.upper()
|
829 |
+
|
830 |
+
model_patterns = ModelPatterns(
|
831 |
+
model_name,
|
832 |
+
checkpoint=find_base_model_checkpoint(model_type, model_files=model_files),
|
833 |
+
model_type=model_type,
|
834 |
+
model_camel_cased=model_camel_cased,
|
835 |
+
model_lower_cased=model_files["module_name"],
|
836 |
+
model_upper_cased=model_upper_cased,
|
837 |
+
config_class=config_class,
|
838 |
+
tokenizer_class=tokenizer_class,
|
839 |
+
image_processor_class=image_processor_class,
|
840 |
+
feature_extractor_class=feature_extractor_class,
|
841 |
+
processor_class=processor_class,
|
842 |
+
)
|
843 |
+
|
844 |
+
return {
|
845 |
+
"frameworks": frameworks,
|
846 |
+
"model_classes": model_classes,
|
847 |
+
"model_files": model_files,
|
848 |
+
"model_patterns": model_patterns,
|
849 |
+
}
|
850 |
+
|
851 |
+
|
852 |
+
def clean_frameworks_in_init(
|
853 |
+
init_file: Union[str, os.PathLike], frameworks: Optional[List[str]] = None, keep_processing: bool = True
|
854 |
+
):
|
855 |
+
"""
|
856 |
+
Removes all the import lines that don't belong to a given list of frameworks or concern tokenizers/feature
|
857 |
+
extractors/image processors/processors in an init.
|
858 |
+
|
859 |
+
Args:
|
860 |
+
init_file (`str` or `os.PathLike`): The path to the init to treat.
|
861 |
+
frameworks (`List[str]`, *optional*):
|
862 |
+
If passed, this will remove all imports that are subject to a framework not in frameworks
|
863 |
+
keep_processing (`bool`, *optional*, defaults to `True`):
|
864 |
+
Whether or not to keep the preprocessing (tokenizer, feature extractor, image processor, processor) imports
|
865 |
+
in the init.
|
866 |
+
"""
|
867 |
+
if frameworks is None:
|
868 |
+
frameworks = get_default_frameworks()
|
869 |
+
|
870 |
+
names = {"pt": "torch"}
|
871 |
+
to_remove = [names.get(f, f) for f in ["pt", "tf", "flax"] if f not in frameworks]
|
872 |
+
if not keep_processing:
|
873 |
+
to_remove.extend(["sentencepiece", "tokenizers", "vision"])
|
874 |
+
|
875 |
+
if len(to_remove) == 0:
|
876 |
+
# Nothing to do
|
877 |
+
return
|
878 |
+
|
879 |
+
remove_pattern = "|".join(to_remove)
|
880 |
+
re_conditional_imports = re.compile(rf"^\s*if not is_({remove_pattern})_available\(\):\s*$")
|
881 |
+
re_try = re.compile(r"\s*try:")
|
882 |
+
re_else = re.compile(r"\s*else:")
|
883 |
+
re_is_xxx_available = re.compile(rf"is_({remove_pattern})_available")
|
884 |
+
|
885 |
+
with open(init_file, "r", encoding="utf-8") as f:
|
886 |
+
content = f.read()
|
887 |
+
|
888 |
+
lines = content.split("\n")
|
889 |
+
new_lines = []
|
890 |
+
idx = 0
|
891 |
+
while idx < len(lines):
|
892 |
+
# Conditional imports in try-except-else blocks
|
893 |
+
if (re_conditional_imports.search(lines[idx]) is not None) and (re_try.search(lines[idx - 1]) is not None):
|
894 |
+
# Remove the preceding `try:`
|
895 |
+
new_lines.pop()
|
896 |
+
idx += 1
|
897 |
+
# Iterate until `else:`
|
898 |
+
while is_empty_line(lines[idx]) or re_else.search(lines[idx]) is None:
|
899 |
+
idx += 1
|
900 |
+
idx += 1
|
901 |
+
indent = find_indent(lines[idx])
|
902 |
+
while find_indent(lines[idx]) >= indent or is_empty_line(lines[idx]):
|
903 |
+
idx += 1
|
904 |
+
# Remove the import from utils
|
905 |
+
elif re_is_xxx_available.search(lines[idx]) is not None:
|
906 |
+
line = lines[idx]
|
907 |
+
for framework in to_remove:
|
908 |
+
line = line.replace(f", is_{framework}_available", "")
|
909 |
+
line = line.replace(f"is_{framework}_available, ", "")
|
910 |
+
line = line.replace(f"is_{framework}_available,", "")
|
911 |
+
line = line.replace(f"is_{framework}_available", "")
|
912 |
+
|
913 |
+
if len(line.strip()) > 0:
|
914 |
+
new_lines.append(line)
|
915 |
+
idx += 1
|
916 |
+
# Otherwise we keep the line, except if it's a tokenizer import and we don't want to keep it.
|
917 |
+
elif keep_processing or (
|
918 |
+
re.search(r'^\s*"(tokenization|processing|feature_extraction|image_processing)', lines[idx]) is None
|
919 |
+
and re.search(r"^\s*from .(tokenization|processing|feature_extraction|image_processing)", lines[idx])
|
920 |
+
is None
|
921 |
+
):
|
922 |
+
new_lines.append(lines[idx])
|
923 |
+
idx += 1
|
924 |
+
else:
|
925 |
+
idx += 1
|
926 |
+
|
927 |
+
with open(init_file, "w", encoding="utf-8") as f:
|
928 |
+
f.write("\n".join(new_lines))
|
929 |
+
|
930 |
+
|
931 |
+
def add_model_to_main_init(
|
932 |
+
old_model_patterns: ModelPatterns,
|
933 |
+
new_model_patterns: ModelPatterns,
|
934 |
+
frameworks: Optional[List[str]] = None,
|
935 |
+
with_processing: bool = True,
|
936 |
+
):
|
937 |
+
"""
|
938 |
+
Add a model to the main init of Transformers.
|
939 |
+
|
940 |
+
Args:
|
941 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
942 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
943 |
+
frameworks (`List[str]`, *optional*):
|
944 |
+
If specified, only the models implemented in those frameworks will be added.
|
945 |
+
with_processsing (`bool`, *optional*, defaults to `True`):
|
946 |
+
Whether the tokenizer/feature extractor/processor of the model should also be added to the init or not.
|
947 |
+
"""
|
948 |
+
with open(TRANSFORMERS_PATH / "__init__.py", "r", encoding="utf-8") as f:
|
949 |
+
content = f.read()
|
950 |
+
|
951 |
+
lines = content.split("\n")
|
952 |
+
idx = 0
|
953 |
+
new_lines = []
|
954 |
+
framework = None
|
955 |
+
while idx < len(lines):
|
956 |
+
new_framework = False
|
957 |
+
if not is_empty_line(lines[idx]) and find_indent(lines[idx]) == 0:
|
958 |
+
framework = None
|
959 |
+
elif lines[idx].lstrip().startswith("if not is_torch_available"):
|
960 |
+
framework = "pt"
|
961 |
+
new_framework = True
|
962 |
+
elif lines[idx].lstrip().startswith("if not is_tf_available"):
|
963 |
+
framework = "tf"
|
964 |
+
new_framework = True
|
965 |
+
elif lines[idx].lstrip().startswith("if not is_flax_available"):
|
966 |
+
framework = "flax"
|
967 |
+
new_framework = True
|
968 |
+
|
969 |
+
if new_framework:
|
970 |
+
# For a new framework, we need to skip until the else: block to get where the imports are.
|
971 |
+
while lines[idx].strip() != "else:":
|
972 |
+
new_lines.append(lines[idx])
|
973 |
+
idx += 1
|
974 |
+
|
975 |
+
# Skip if we are in a framework not wanted.
|
976 |
+
if framework is not None and frameworks is not None and framework not in frameworks:
|
977 |
+
new_lines.append(lines[idx])
|
978 |
+
idx += 1
|
979 |
+
elif re.search(rf'models.{old_model_patterns.model_lower_cased}( |")', lines[idx]) is not None:
|
980 |
+
block = [lines[idx]]
|
981 |
+
indent = find_indent(lines[idx])
|
982 |
+
idx += 1
|
983 |
+
while find_indent(lines[idx]) > indent:
|
984 |
+
block.append(lines[idx])
|
985 |
+
idx += 1
|
986 |
+
if lines[idx].strip() in [")", "]", "],"]:
|
987 |
+
block.append(lines[idx])
|
988 |
+
idx += 1
|
989 |
+
block = "\n".join(block)
|
990 |
+
new_lines.append(block)
|
991 |
+
|
992 |
+
add_block = True
|
993 |
+
if not with_processing:
|
994 |
+
processing_classes = [
|
995 |
+
old_model_patterns.tokenizer_class,
|
996 |
+
old_model_patterns.image_processor_class,
|
997 |
+
old_model_patterns.feature_extractor_class,
|
998 |
+
old_model_patterns.processor_class,
|
999 |
+
]
|
1000 |
+
# Only keep the ones that are not None
|
1001 |
+
processing_classes = [c for c in processing_classes if c is not None]
|
1002 |
+
for processing_class in processing_classes:
|
1003 |
+
block = block.replace(f' "{processing_class}",', "")
|
1004 |
+
block = block.replace(f', "{processing_class}"', "")
|
1005 |
+
block = block.replace(f" {processing_class},", "")
|
1006 |
+
block = block.replace(f", {processing_class}", "")
|
1007 |
+
|
1008 |
+
if processing_class in block:
|
1009 |
+
add_block = False
|
1010 |
+
if add_block:
|
1011 |
+
new_lines.append(replace_model_patterns(block, old_model_patterns, new_model_patterns)[0])
|
1012 |
+
else:
|
1013 |
+
new_lines.append(lines[idx])
|
1014 |
+
idx += 1
|
1015 |
+
|
1016 |
+
with open(TRANSFORMERS_PATH / "__init__.py", "w", encoding="utf-8") as f:
|
1017 |
+
f.write("\n".join(new_lines))
|
1018 |
+
|
1019 |
+
|
1020 |
+
def insert_tokenizer_in_auto_module(old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns):
|
1021 |
+
"""
|
1022 |
+
Add a tokenizer to the relevant mappings in the auto module.
|
1023 |
+
|
1024 |
+
Args:
|
1025 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
1026 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
1027 |
+
"""
|
1028 |
+
if old_model_patterns.tokenizer_class is None or new_model_patterns.tokenizer_class is None:
|
1029 |
+
return
|
1030 |
+
|
1031 |
+
with open(TRANSFORMERS_PATH / "models" / "auto" / "tokenization_auto.py", "r", encoding="utf-8") as f:
|
1032 |
+
content = f.read()
|
1033 |
+
|
1034 |
+
lines = content.split("\n")
|
1035 |
+
idx = 0
|
1036 |
+
# First we get to the TOKENIZER_MAPPING_NAMES block.
|
1037 |
+
while not lines[idx].startswith(" TOKENIZER_MAPPING_NAMES = OrderedDict("):
|
1038 |
+
idx += 1
|
1039 |
+
idx += 1
|
1040 |
+
|
1041 |
+
# That block will end at this prompt:
|
1042 |
+
while not lines[idx].startswith("TOKENIZER_MAPPING = _LazyAutoMapping"):
|
1043 |
+
# Either all the tokenizer block is defined on one line, in which case, it ends with "),"
|
1044 |
+
if lines[idx].endswith(","):
|
1045 |
+
block = lines[idx]
|
1046 |
+
# Otherwise it takes several lines until we get to a "),"
|
1047 |
+
else:
|
1048 |
+
block = []
|
1049 |
+
while not lines[idx].startswith(" ),"):
|
1050 |
+
block.append(lines[idx])
|
1051 |
+
idx += 1
|
1052 |
+
block = "\n".join(block)
|
1053 |
+
idx += 1
|
1054 |
+
|
1055 |
+
# If we find the model type and tokenizer class in that block, we have the old model tokenizer block
|
1056 |
+
if f'"{old_model_patterns.model_type}"' in block and old_model_patterns.tokenizer_class in block:
|
1057 |
+
break
|
1058 |
+
|
1059 |
+
new_block = block.replace(old_model_patterns.model_type, new_model_patterns.model_type)
|
1060 |
+
new_block = new_block.replace(old_model_patterns.tokenizer_class, new_model_patterns.tokenizer_class)
|
1061 |
+
|
1062 |
+
new_lines = lines[:idx] + [new_block] + lines[idx:]
|
1063 |
+
with open(TRANSFORMERS_PATH / "models" / "auto" / "tokenization_auto.py", "w", encoding="utf-8") as f:
|
1064 |
+
f.write("\n".join(new_lines))
|
1065 |
+
|
1066 |
+
|
1067 |
+
AUTO_CLASSES_PATTERNS = {
|
1068 |
+
"configuration_auto.py": [
|
1069 |
+
' ("{model_type}", "{model_name}"),',
|
1070 |
+
' ("{model_type}", "{config_class}"),',
|
1071 |
+
' ("{model_type}", "{pretrained_archive_map}"),',
|
1072 |
+
],
|
1073 |
+
"feature_extraction_auto.py": [' ("{model_type}", "{feature_extractor_class}"),'],
|
1074 |
+
"image_processing_auto.py": [' ("{model_type}", "{image_processor_class}"),'],
|
1075 |
+
"modeling_auto.py": [' ("{model_type}", "{any_pt_class}"),'],
|
1076 |
+
"modeling_tf_auto.py": [' ("{model_type}", "{any_tf_class}"),'],
|
1077 |
+
"modeling_flax_auto.py": [' ("{model_type}", "{any_flax_class}"),'],
|
1078 |
+
"processing_auto.py": [' ("{model_type}", "{processor_class}"),'],
|
1079 |
+
}
|
1080 |
+
|
1081 |
+
|
1082 |
+
def add_model_to_auto_classes(
|
1083 |
+
old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns, model_classes: Dict[str, List[str]]
|
1084 |
+
):
|
1085 |
+
"""
|
1086 |
+
Add a model to the relevant mappings in the auto module.
|
1087 |
+
|
1088 |
+
Args:
|
1089 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
1090 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
1091 |
+
model_classes (`Dict[str, List[str]]`): A dictionary framework to list of model classes implemented.
|
1092 |
+
"""
|
1093 |
+
for filename in AUTO_CLASSES_PATTERNS:
|
1094 |
+
# Extend patterns with all model classes if necessary
|
1095 |
+
new_patterns = []
|
1096 |
+
for pattern in AUTO_CLASSES_PATTERNS[filename]:
|
1097 |
+
if re.search("any_([a-z]*)_class", pattern) is not None:
|
1098 |
+
framework = re.search("any_([a-z]*)_class", pattern).groups()[0]
|
1099 |
+
if framework in model_classes:
|
1100 |
+
new_patterns.extend(
|
1101 |
+
[
|
1102 |
+
pattern.replace("{" + f"any_{framework}_class" + "}", cls)
|
1103 |
+
for cls in model_classes[framework]
|
1104 |
+
]
|
1105 |
+
)
|
1106 |
+
elif "{config_class}" in pattern:
|
1107 |
+
new_patterns.append(pattern.replace("{config_class}", old_model_patterns.config_class))
|
1108 |
+
elif "{image_processor_class}" in pattern:
|
1109 |
+
if (
|
1110 |
+
old_model_patterns.image_processor_class is not None
|
1111 |
+
and new_model_patterns.image_processor_class is not None
|
1112 |
+
):
|
1113 |
+
new_patterns.append(
|
1114 |
+
pattern.replace("{image_processor_class}", old_model_patterns.image_processor_class)
|
1115 |
+
)
|
1116 |
+
elif "{feature_extractor_class}" in pattern:
|
1117 |
+
if (
|
1118 |
+
old_model_patterns.feature_extractor_class is not None
|
1119 |
+
and new_model_patterns.feature_extractor_class is not None
|
1120 |
+
):
|
1121 |
+
new_patterns.append(
|
1122 |
+
pattern.replace("{feature_extractor_class}", old_model_patterns.feature_extractor_class)
|
1123 |
+
)
|
1124 |
+
elif "{processor_class}" in pattern:
|
1125 |
+
if old_model_patterns.processor_class is not None and new_model_patterns.processor_class is not None:
|
1126 |
+
new_patterns.append(pattern.replace("{processor_class}", old_model_patterns.processor_class))
|
1127 |
+
else:
|
1128 |
+
new_patterns.append(pattern)
|
1129 |
+
|
1130 |
+
# Loop through all patterns.
|
1131 |
+
for pattern in new_patterns:
|
1132 |
+
full_name = TRANSFORMERS_PATH / "models" / "auto" / filename
|
1133 |
+
old_model_line = pattern
|
1134 |
+
new_model_line = pattern
|
1135 |
+
for attr in ["model_type", "model_name"]:
|
1136 |
+
old_model_line = old_model_line.replace("{" + attr + "}", getattr(old_model_patterns, attr))
|
1137 |
+
new_model_line = new_model_line.replace("{" + attr + "}", getattr(new_model_patterns, attr))
|
1138 |
+
if "pretrained_archive_map" in pattern:
|
1139 |
+
old_model_line = old_model_line.replace(
|
1140 |
+
"{pretrained_archive_map}", f"{old_model_patterns.model_upper_cased}_PRETRAINED_CONFIG_ARCHIVE_MAP"
|
1141 |
+
)
|
1142 |
+
new_model_line = new_model_line.replace(
|
1143 |
+
"{pretrained_archive_map}", f"{new_model_patterns.model_upper_cased}_PRETRAINED_CONFIG_ARCHIVE_MAP"
|
1144 |
+
)
|
1145 |
+
|
1146 |
+
new_model_line = new_model_line.replace(
|
1147 |
+
old_model_patterns.model_camel_cased, new_model_patterns.model_camel_cased
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
add_content_to_file(full_name, new_model_line, add_after=old_model_line)
|
1151 |
+
|
1152 |
+
# Tokenizers require special handling
|
1153 |
+
insert_tokenizer_in_auto_module(old_model_patterns, new_model_patterns)
|
1154 |
+
|
1155 |
+
|
1156 |
+
DOC_OVERVIEW_TEMPLATE = """## Overview
|
1157 |
+
|
1158 |
+
The {model_name} model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>.
|
1159 |
+
<INSERT SHORT SUMMARY HERE>
|
1160 |
+
|
1161 |
+
The abstract from the paper is the following:
|
1162 |
+
|
1163 |
+
*<INSERT PAPER ABSTRACT HERE>*
|
1164 |
+
|
1165 |
+
Tips:
|
1166 |
+
|
1167 |
+
<INSERT TIPS ABOUT MODEL HERE>
|
1168 |
+
|
1169 |
+
This model was contributed by [INSERT YOUR HF USERNAME HERE](https://huggingface.co/<INSERT YOUR HF USERNAME HERE>).
|
1170 |
+
The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>).
|
1171 |
+
|
1172 |
+
"""
|
1173 |
+
|
1174 |
+
|
1175 |
+
def duplicate_doc_file(
|
1176 |
+
doc_file: Union[str, os.PathLike],
|
1177 |
+
old_model_patterns: ModelPatterns,
|
1178 |
+
new_model_patterns: ModelPatterns,
|
1179 |
+
dest_file: Optional[Union[str, os.PathLike]] = None,
|
1180 |
+
frameworks: Optional[List[str]] = None,
|
1181 |
+
):
|
1182 |
+
"""
|
1183 |
+
Duplicate a documentation file and adapts it for a new model.
|
1184 |
+
|
1185 |
+
Args:
|
1186 |
+
module_file (`str` or `os.PathLike`): Path to the doc file to duplicate.
|
1187 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
1188 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
1189 |
+
dest_file (`str` or `os.PathLike`, *optional*): Path to the new doc file.
|
1190 |
+
Will default to the a file named `{new_model_patterns.model_type}.md` in the same folder as `module_file`.
|
1191 |
+
frameworks (`List[str]`, *optional*):
|
1192 |
+
If passed, will only keep the model classes corresponding to this list of frameworks in the new doc file.
|
1193 |
+
"""
|
1194 |
+
with open(doc_file, "r", encoding="utf-8") as f:
|
1195 |
+
content = f.read()
|
1196 |
+
|
1197 |
+
content = re.sub(r"<!--\s*Copyright (\d+)\s", f"<!--Copyright {CURRENT_YEAR} ", content)
|
1198 |
+
if frameworks is None:
|
1199 |
+
frameworks = get_default_frameworks()
|
1200 |
+
if dest_file is None:
|
1201 |
+
dest_file = Path(doc_file).parent / f"{new_model_patterns.model_type}.md"
|
1202 |
+
|
1203 |
+
# Parse the doc file in blocks. One block per section/header
|
1204 |
+
lines = content.split("\n")
|
1205 |
+
blocks = []
|
1206 |
+
current_block = []
|
1207 |
+
|
1208 |
+
for line in lines:
|
1209 |
+
if line.startswith("#"):
|
1210 |
+
blocks.append("\n".join(current_block))
|
1211 |
+
current_block = [line]
|
1212 |
+
else:
|
1213 |
+
current_block.append(line)
|
1214 |
+
blocks.append("\n".join(current_block))
|
1215 |
+
|
1216 |
+
new_blocks = []
|
1217 |
+
in_classes = False
|
1218 |
+
for block in blocks:
|
1219 |
+
# Copyright
|
1220 |
+
if not block.startswith("#"):
|
1221 |
+
new_blocks.append(block)
|
1222 |
+
# Main title
|
1223 |
+
elif re.search(r"^#\s+\S+", block) is not None:
|
1224 |
+
new_blocks.append(f"# {new_model_patterns.model_name}\n")
|
1225 |
+
# The config starts the part of the doc with the classes.
|
1226 |
+
elif not in_classes and old_model_patterns.config_class in block.split("\n")[0]:
|
1227 |
+
in_classes = True
|
1228 |
+
new_blocks.append(DOC_OVERVIEW_TEMPLATE.format(model_name=new_model_patterns.model_name))
|
1229 |
+
new_block, _ = replace_model_patterns(block, old_model_patterns, new_model_patterns)
|
1230 |
+
new_blocks.append(new_block)
|
1231 |
+
# In classes
|
1232 |
+
elif in_classes:
|
1233 |
+
in_classes = True
|
1234 |
+
block_title = block.split("\n")[0]
|
1235 |
+
block_class = re.search(r"^#+\s+(\S.*)$", block_title).groups()[0]
|
1236 |
+
new_block, _ = replace_model_patterns(block, old_model_patterns, new_model_patterns)
|
1237 |
+
|
1238 |
+
if "Tokenizer" in block_class:
|
1239 |
+
# We only add the tokenizer if necessary
|
1240 |
+
if old_model_patterns.tokenizer_class != new_model_patterns.tokenizer_class:
|
1241 |
+
new_blocks.append(new_block)
|
1242 |
+
elif "ImageProcessor" in block_class:
|
1243 |
+
# We only add the image processor if necessary
|
1244 |
+
if old_model_patterns.image_processor_class != new_model_patterns.image_processor_class:
|
1245 |
+
new_blocks.append(new_block)
|
1246 |
+
elif "FeatureExtractor" in block_class:
|
1247 |
+
# We only add the feature extractor if necessary
|
1248 |
+
if old_model_patterns.feature_extractor_class != new_model_patterns.feature_extractor_class:
|
1249 |
+
new_blocks.append(new_block)
|
1250 |
+
elif "Processor" in block_class:
|
1251 |
+
# We only add the processor if necessary
|
1252 |
+
if old_model_patterns.processor_class != new_model_patterns.processor_class:
|
1253 |
+
new_blocks.append(new_block)
|
1254 |
+
elif block_class.startswith("Flax"):
|
1255 |
+
# We only add Flax models if in the selected frameworks
|
1256 |
+
if "flax" in frameworks:
|
1257 |
+
new_blocks.append(new_block)
|
1258 |
+
elif block_class.startswith("TF"):
|
1259 |
+
# We only add TF models if in the selected frameworks
|
1260 |
+
if "tf" in frameworks:
|
1261 |
+
new_blocks.append(new_block)
|
1262 |
+
elif len(block_class.split(" ")) == 1:
|
1263 |
+
# We only add PyTorch models if in the selected frameworks
|
1264 |
+
if "pt" in frameworks:
|
1265 |
+
new_blocks.append(new_block)
|
1266 |
+
else:
|
1267 |
+
new_blocks.append(new_block)
|
1268 |
+
|
1269 |
+
with open(dest_file, "w", encoding="utf-8") as f:
|
1270 |
+
f.write("\n".join(new_blocks))
|
1271 |
+
|
1272 |
+
|
1273 |
+
def insert_model_in_doc_toc(old_model_patterns, new_model_patterns):
|
1274 |
+
"""
|
1275 |
+
Insert the new model in the doc TOC, in the same section as the old model.
|
1276 |
+
|
1277 |
+
Args:
|
1278 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
1279 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
1280 |
+
"""
|
1281 |
+
toc_file = REPO_PATH / "docs" / "source" / "en" / "_toctree.yml"
|
1282 |
+
with open(toc_file, "r", encoding="utf8") as f:
|
1283 |
+
content = yaml.safe_load(f)
|
1284 |
+
|
1285 |
+
# Get to the model API doc
|
1286 |
+
api_idx = 0
|
1287 |
+
while content[api_idx]["title"] != "API":
|
1288 |
+
api_idx += 1
|
1289 |
+
api_doc = content[api_idx]["sections"]
|
1290 |
+
|
1291 |
+
model_idx = 0
|
1292 |
+
while api_doc[model_idx]["title"] != "Models":
|
1293 |
+
model_idx += 1
|
1294 |
+
model_doc = api_doc[model_idx]["sections"]
|
1295 |
+
|
1296 |
+
# Find the base model in the Toc
|
1297 |
+
old_model_type = old_model_patterns.model_type
|
1298 |
+
section_idx = 0
|
1299 |
+
while section_idx < len(model_doc):
|
1300 |
+
sections = [entry["local"] for entry in model_doc[section_idx]["sections"]]
|
1301 |
+
if f"model_doc/{old_model_type}" in sections:
|
1302 |
+
break
|
1303 |
+
|
1304 |
+
section_idx += 1
|
1305 |
+
|
1306 |
+
if section_idx == len(model_doc):
|
1307 |
+
old_model = old_model_patterns.model_name
|
1308 |
+
new_model = new_model_patterns.model_name
|
1309 |
+
print(f"Did not find {old_model} in the table of content, so you will need to add {new_model} manually.")
|
1310 |
+
return
|
1311 |
+
|
1312 |
+
# Add the new model in the same toc
|
1313 |
+
toc_entry = {"local": f"model_doc/{new_model_patterns.model_type}", "title": new_model_patterns.model_name}
|
1314 |
+
model_doc[section_idx]["sections"].append(toc_entry)
|
1315 |
+
model_doc[section_idx]["sections"] = sorted(model_doc[section_idx]["sections"], key=lambda s: s["title"].lower())
|
1316 |
+
api_doc[model_idx]["sections"] = model_doc
|
1317 |
+
content[api_idx]["sections"] = api_doc
|
1318 |
+
|
1319 |
+
with open(toc_file, "w", encoding="utf-8") as f:
|
1320 |
+
f.write(yaml.dump(content, allow_unicode=True))
|
1321 |
+
|
1322 |
+
|
1323 |
+
def create_new_model_like(
|
1324 |
+
model_type: str,
|
1325 |
+
new_model_patterns: ModelPatterns,
|
1326 |
+
add_copied_from: bool = True,
|
1327 |
+
frameworks: Optional[List[str]] = None,
|
1328 |
+
old_checkpoint: Optional[str] = None,
|
1329 |
+
):
|
1330 |
+
"""
|
1331 |
+
Creates a new model module like a given model of the Transformers library.
|
1332 |
+
|
1333 |
+
Args:
|
1334 |
+
model_type (`str`): The model type to duplicate (like "bert" or "gpt2")
|
1335 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
1336 |
+
add_copied_from (`bool`, *optional*, defaults to `True`):
|
1337 |
+
Whether or not to add "Copied from" statements to all classes in the new model modeling files.
|
1338 |
+
frameworks (`List[str]`, *optional*):
|
1339 |
+
If passed, will limit the duplicate to the frameworks specified.
|
1340 |
+
old_checkpoint (`str`, *optional*):
|
1341 |
+
The name of the base checkpoint for the old model. Should be passed along when it can't be automatically
|
1342 |
+
recovered from the `model_type`.
|
1343 |
+
"""
|
1344 |
+
# Retrieve all the old model info.
|
1345 |
+
model_info = retrieve_info_for_model(model_type, frameworks=frameworks)
|
1346 |
+
model_files = model_info["model_files"]
|
1347 |
+
old_model_patterns = model_info["model_patterns"]
|
1348 |
+
if old_checkpoint is not None:
|
1349 |
+
old_model_patterns.checkpoint = old_checkpoint
|
1350 |
+
if len(old_model_patterns.checkpoint) == 0:
|
1351 |
+
raise ValueError(
|
1352 |
+
"The old model checkpoint could not be recovered from the model type. Please pass it to the "
|
1353 |
+
"`old_checkpoint` argument."
|
1354 |
+
)
|
1355 |
+
|
1356 |
+
keep_old_processing = True
|
1357 |
+
for processing_attr in ["image_processor_class", "feature_extractor_class", "processor_class", "tokenizer_class"]:
|
1358 |
+
if getattr(old_model_patterns, processing_attr) != getattr(new_model_patterns, processing_attr):
|
1359 |
+
keep_old_processing = False
|
1360 |
+
|
1361 |
+
model_classes = model_info["model_classes"]
|
1362 |
+
|
1363 |
+
# 1. We create the module for our new model.
|
1364 |
+
old_module_name = model_files["module_name"]
|
1365 |
+
module_folder = TRANSFORMERS_PATH / "models" / new_model_patterns.model_lower_cased
|
1366 |
+
os.makedirs(module_folder, exist_ok=True)
|
1367 |
+
|
1368 |
+
files_to_adapt = model_files["model_files"]
|
1369 |
+
if keep_old_processing:
|
1370 |
+
files_to_adapt = [
|
1371 |
+
f
|
1372 |
+
for f in files_to_adapt
|
1373 |
+
if "tokenization" not in str(f)
|
1374 |
+
and "processing" not in str(f)
|
1375 |
+
and "feature_extraction" not in str(f)
|
1376 |
+
and "image_processing" not in str(f)
|
1377 |
+
]
|
1378 |
+
|
1379 |
+
os.makedirs(module_folder, exist_ok=True)
|
1380 |
+
for module_file in files_to_adapt:
|
1381 |
+
new_module_name = module_file.name.replace(
|
1382 |
+
old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased
|
1383 |
+
)
|
1384 |
+
dest_file = module_folder / new_module_name
|
1385 |
+
duplicate_module(
|
1386 |
+
module_file,
|
1387 |
+
old_model_patterns,
|
1388 |
+
new_model_patterns,
|
1389 |
+
dest_file=dest_file,
|
1390 |
+
add_copied_from=add_copied_from and "modeling" in new_module_name,
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
clean_frameworks_in_init(
|
1394 |
+
module_folder / "__init__.py", frameworks=frameworks, keep_processing=not keep_old_processing
|
1395 |
+
)
|
1396 |
+
|
1397 |
+
# 2. We add our new model to the models init and the main init
|
1398 |
+
add_content_to_file(
|
1399 |
+
TRANSFORMERS_PATH / "models" / "__init__.py",
|
1400 |
+
f" {new_model_patterns.model_lower_cased},",
|
1401 |
+
add_after=f" {old_module_name},",
|
1402 |
+
exact_match=True,
|
1403 |
+
)
|
1404 |
+
add_model_to_main_init(
|
1405 |
+
old_model_patterns, new_model_patterns, frameworks=frameworks, with_processing=not keep_old_processing
|
1406 |
+
)
|
1407 |
+
|
1408 |
+
# 3. Add test files
|
1409 |
+
files_to_adapt = model_files["test_files"]
|
1410 |
+
if keep_old_processing:
|
1411 |
+
files_to_adapt = [
|
1412 |
+
f
|
1413 |
+
for f in files_to_adapt
|
1414 |
+
if "tokenization" not in str(f)
|
1415 |
+
and "processor" not in str(f)
|
1416 |
+
and "feature_extraction" not in str(f)
|
1417 |
+
and "image_processing" not in str(f)
|
1418 |
+
]
|
1419 |
+
|
1420 |
+
def disable_fx_test(filename: Path) -> bool:
|
1421 |
+
with open(filename) as fp:
|
1422 |
+
content = fp.read()
|
1423 |
+
new_content = re.sub(r"fx_compatible\s*=\s*True", "fx_compatible = False", content)
|
1424 |
+
with open(filename, "w") as fp:
|
1425 |
+
fp.write(new_content)
|
1426 |
+
return content != new_content
|
1427 |
+
|
1428 |
+
disabled_fx_test = False
|
1429 |
+
|
1430 |
+
tests_folder = REPO_PATH / "tests" / "models" / new_model_patterns.model_lower_cased
|
1431 |
+
os.makedirs(tests_folder, exist_ok=True)
|
1432 |
+
with open(tests_folder / "__init__.py", "w"):
|
1433 |
+
pass
|
1434 |
+
|
1435 |
+
for test_file in files_to_adapt:
|
1436 |
+
new_test_file_name = test_file.name.replace(
|
1437 |
+
old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased
|
1438 |
+
)
|
1439 |
+
dest_file = test_file.parent.parent / new_model_patterns.model_lower_cased / new_test_file_name
|
1440 |
+
duplicate_module(
|
1441 |
+
test_file,
|
1442 |
+
old_model_patterns,
|
1443 |
+
new_model_patterns,
|
1444 |
+
dest_file=dest_file,
|
1445 |
+
add_copied_from=False,
|
1446 |
+
attrs_to_remove=["pipeline_model_mapping", "is_pipeline_test_to_skip"],
|
1447 |
+
)
|
1448 |
+
disabled_fx_test = disabled_fx_test | disable_fx_test(dest_file)
|
1449 |
+
|
1450 |
+
if disabled_fx_test:
|
1451 |
+
print(
|
1452 |
+
"The tests for symbolic tracing with torch.fx were disabled, you can add those once symbolic tracing works"
|
1453 |
+
" for your new model."
|
1454 |
+
)
|
1455 |
+
|
1456 |
+
# 4. Add model to auto classes
|
1457 |
+
add_model_to_auto_classes(old_model_patterns, new_model_patterns, model_classes)
|
1458 |
+
|
1459 |
+
# 5. Add doc file
|
1460 |
+
doc_file = REPO_PATH / "docs" / "source" / "en" / "model_doc" / f"{old_model_patterns.model_type}.md"
|
1461 |
+
duplicate_doc_file(doc_file, old_model_patterns, new_model_patterns, frameworks=frameworks)
|
1462 |
+
insert_model_in_doc_toc(old_model_patterns, new_model_patterns)
|
1463 |
+
|
1464 |
+
# 6. Warn the user for duplicate patterns
|
1465 |
+
if old_model_patterns.model_type == old_model_patterns.checkpoint:
|
1466 |
+
print(
|
1467 |
+
"The model you picked has the same name for the model type and the checkpoint name "
|
1468 |
+
f"({old_model_patterns.model_type}). As a result, it's possible some places where the new checkpoint "
|
1469 |
+
f"should be, you have {new_model_patterns.model_type} instead. You should search for all instances of "
|
1470 |
+
f"{new_model_patterns.model_type} in the new files and check they're not badly used as checkpoints."
|
1471 |
+
)
|
1472 |
+
elif old_model_patterns.model_lower_cased == old_model_patterns.checkpoint:
|
1473 |
+
print(
|
1474 |
+
"The model you picked has the same name for the model type and the checkpoint name "
|
1475 |
+
f"({old_model_patterns.model_lower_cased}). As a result, it's possible some places where the new "
|
1476 |
+
f"checkpoint should be, you have {new_model_patterns.model_lower_cased} instead. You should search for "
|
1477 |
+
f"all instances of {new_model_patterns.model_lower_cased} in the new files and check they're not badly "
|
1478 |
+
"used as checkpoints."
|
1479 |
+
)
|
1480 |
+
if (
|
1481 |
+
old_model_patterns.model_type == old_model_patterns.model_lower_cased
|
1482 |
+
and new_model_patterns.model_type != new_model_patterns.model_lower_cased
|
1483 |
+
):
|
1484 |
+
print(
|
1485 |
+
"The model you picked has the same name for the model type and the lowercased model name "
|
1486 |
+
f"({old_model_patterns.model_lower_cased}). As a result, it's possible some places where the new "
|
1487 |
+
f"model type should be, you have {new_model_patterns.model_lower_cased} instead. You should search for "
|
1488 |
+
f"all instances of {new_model_patterns.model_lower_cased} in the new files and check they're not badly "
|
1489 |
+
"used as the model type."
|
1490 |
+
)
|
1491 |
+
|
1492 |
+
if not keep_old_processing and old_model_patterns.tokenizer_class is not None:
|
1493 |
+
print(
|
1494 |
+
"The constants at the start of the new tokenizer file created needs to be manually fixed. If your new "
|
1495 |
+
"model has a tokenizer fast, you will also need to manually add the converter in the "
|
1496 |
+
"`SLOW_TO_FAST_CONVERTERS` constant of `convert_slow_tokenizer.py`."
|
1497 |
+
)
|
1498 |
+
|
1499 |
+
|
1500 |
+
def add_new_model_like_command_factory(args: Namespace):
|
1501 |
+
return AddNewModelLikeCommand(config_file=args.config_file, path_to_repo=args.path_to_repo)
|
1502 |
+
|
1503 |
+
|
1504 |
+
class AddNewModelLikeCommand(BaseTransformersCLICommand):
|
1505 |
+
@staticmethod
|
1506 |
+
def register_subcommand(parser: ArgumentParser):
|
1507 |
+
add_new_model_like_parser = parser.add_parser("add-new-model-like")
|
1508 |
+
add_new_model_like_parser.add_argument(
|
1509 |
+
"--config_file", type=str, help="A file with all the information for this model creation."
|
1510 |
+
)
|
1511 |
+
add_new_model_like_parser.add_argument(
|
1512 |
+
"--path_to_repo", type=str, help="When not using an editable install, the path to the Transformers repo."
|
1513 |
+
)
|
1514 |
+
add_new_model_like_parser.set_defaults(func=add_new_model_like_command_factory)
|
1515 |
+
|
1516 |
+
def __init__(self, config_file=None, path_to_repo=None, *args):
|
1517 |
+
if config_file is not None:
|
1518 |
+
with open(config_file, "r", encoding="utf-8") as f:
|
1519 |
+
config = json.load(f)
|
1520 |
+
self.old_model_type = config["old_model_type"]
|
1521 |
+
self.model_patterns = ModelPatterns(**config["new_model_patterns"])
|
1522 |
+
self.add_copied_from = config.get("add_copied_from", True)
|
1523 |
+
self.frameworks = config.get("frameworks", get_default_frameworks())
|
1524 |
+
self.old_checkpoint = config.get("old_checkpoint", None)
|
1525 |
+
else:
|
1526 |
+
(
|
1527 |
+
self.old_model_type,
|
1528 |
+
self.model_patterns,
|
1529 |
+
self.add_copied_from,
|
1530 |
+
self.frameworks,
|
1531 |
+
self.old_checkpoint,
|
1532 |
+
) = get_user_input()
|
1533 |
+
|
1534 |
+
self.path_to_repo = path_to_repo
|
1535 |
+
|
1536 |
+
def run(self):
|
1537 |
+
if self.path_to_repo is not None:
|
1538 |
+
# Adapt constants
|
1539 |
+
global TRANSFORMERS_PATH
|
1540 |
+
global REPO_PATH
|
1541 |
+
|
1542 |
+
REPO_PATH = Path(self.path_to_repo)
|
1543 |
+
TRANSFORMERS_PATH = REPO_PATH / "src" / "transformers"
|
1544 |
+
|
1545 |
+
create_new_model_like(
|
1546 |
+
model_type=self.old_model_type,
|
1547 |
+
new_model_patterns=self.model_patterns,
|
1548 |
+
add_copied_from=self.add_copied_from,
|
1549 |
+
frameworks=self.frameworks,
|
1550 |
+
old_checkpoint=self.old_checkpoint,
|
1551 |
+
)
|
1552 |
+
|
1553 |
+
|
1554 |
+
def get_user_field(
|
1555 |
+
question: str,
|
1556 |
+
default_value: Optional[str] = None,
|
1557 |
+
is_valid_answer: Optional[Callable] = None,
|
1558 |
+
convert_to: Optional[Callable] = None,
|
1559 |
+
fallback_message: Optional[str] = None,
|
1560 |
+
) -> Any:
|
1561 |
+
"""
|
1562 |
+
A utility function that asks a question to the user to get an answer, potentially looping until it gets a valid
|
1563 |
+
answer.
|
1564 |
+
|
1565 |
+
Args:
|
1566 |
+
question (`str`): The question to ask the user.
|
1567 |
+
default_value (`str`, *optional*): A potential default value that will be used when the answer is empty.
|
1568 |
+
is_valid_answer (`Callable`, *optional*):
|
1569 |
+
If set, the question will be asked until this function returns `True` on the provided answer.
|
1570 |
+
convert_to (`Callable`, *optional*):
|
1571 |
+
If set, the answer will be passed to this function. If this function raises an error on the procided
|
1572 |
+
answer, the question will be asked again.
|
1573 |
+
fallback_message (`str`, *optional*):
|
1574 |
+
A message that will be displayed each time the question is asked again to the user.
|
1575 |
+
|
1576 |
+
Returns:
|
1577 |
+
`Any`: The answer provided by the user (or the default), passed through the potential conversion function.
|
1578 |
+
"""
|
1579 |
+
if not question.endswith(" "):
|
1580 |
+
question = question + " "
|
1581 |
+
if default_value is not None:
|
1582 |
+
question = f"{question} [{default_value}] "
|
1583 |
+
|
1584 |
+
valid_answer = False
|
1585 |
+
while not valid_answer:
|
1586 |
+
answer = input(question)
|
1587 |
+
if default_value is not None and len(answer) == 0:
|
1588 |
+
answer = default_value
|
1589 |
+
if is_valid_answer is not None:
|
1590 |
+
valid_answer = is_valid_answer(answer)
|
1591 |
+
elif convert_to is not None:
|
1592 |
+
try:
|
1593 |
+
answer = convert_to(answer)
|
1594 |
+
valid_answer = True
|
1595 |
+
except Exception:
|
1596 |
+
valid_answer = False
|
1597 |
+
else:
|
1598 |
+
valid_answer = True
|
1599 |
+
|
1600 |
+
if not valid_answer:
|
1601 |
+
print(fallback_message)
|
1602 |
+
|
1603 |
+
return answer
|
1604 |
+
|
1605 |
+
|
1606 |
+
def convert_to_bool(x: str) -> bool:
|
1607 |
+
"""
|
1608 |
+
Converts a string to a bool.
|
1609 |
+
"""
|
1610 |
+
if x.lower() in ["1", "y", "yes", "true"]:
|
1611 |
+
return True
|
1612 |
+
if x.lower() in ["0", "n", "no", "false"]:
|
1613 |
+
return False
|
1614 |
+
raise ValueError(f"{x} is not a value that can be converted to a bool.")
|
1615 |
+
|
1616 |
+
|
1617 |
+
def get_user_input():
|
1618 |
+
"""
|
1619 |
+
Ask the user for the necessary inputs to add the new model.
|
1620 |
+
"""
|
1621 |
+
model_types = list(auto_module.configuration_auto.MODEL_NAMES_MAPPING.keys())
|
1622 |
+
|
1623 |
+
# Get old model type
|
1624 |
+
valid_model_type = False
|
1625 |
+
while not valid_model_type:
|
1626 |
+
old_model_type = input(
|
1627 |
+
"What is the model you would like to duplicate? Please provide the lowercase `model_type` (e.g. roberta): "
|
1628 |
+
)
|
1629 |
+
if old_model_type in model_types:
|
1630 |
+
valid_model_type = True
|
1631 |
+
else:
|
1632 |
+
print(f"{old_model_type} is not a valid model type.")
|
1633 |
+
near_choices = difflib.get_close_matches(old_model_type, model_types)
|
1634 |
+
if len(near_choices) >= 1:
|
1635 |
+
if len(near_choices) > 1:
|
1636 |
+
near_choices = " or ".join(near_choices)
|
1637 |
+
print(f"Did you mean {near_choices}?")
|
1638 |
+
|
1639 |
+
old_model_info = retrieve_info_for_model(old_model_type)
|
1640 |
+
old_tokenizer_class = old_model_info["model_patterns"].tokenizer_class
|
1641 |
+
old_image_processor_class = old_model_info["model_patterns"].image_processor_class
|
1642 |
+
old_feature_extractor_class = old_model_info["model_patterns"].feature_extractor_class
|
1643 |
+
old_processor_class = old_model_info["model_patterns"].processor_class
|
1644 |
+
old_frameworks = old_model_info["frameworks"]
|
1645 |
+
|
1646 |
+
old_checkpoint = None
|
1647 |
+
if len(old_model_info["model_patterns"].checkpoint) == 0:
|
1648 |
+
old_checkpoint = get_user_field(
|
1649 |
+
"We couldn't find the name of the base checkpoint for that model, please enter it here."
|
1650 |
+
)
|
1651 |
+
|
1652 |
+
model_name = get_user_field(
|
1653 |
+
"What is the name (with no special casing) for your new model in the paper (e.g. RoBERTa)? "
|
1654 |
+
)
|
1655 |
+
default_patterns = ModelPatterns(model_name, model_name)
|
1656 |
+
|
1657 |
+
model_type = get_user_field(
|
1658 |
+
"What identifier would you like to use for the `model_type` of this model? ",
|
1659 |
+
default_value=default_patterns.model_type,
|
1660 |
+
)
|
1661 |
+
model_lower_cased = get_user_field(
|
1662 |
+
"What lowercase name would you like to use for the module (folder) of this model? ",
|
1663 |
+
default_value=default_patterns.model_lower_cased,
|
1664 |
+
)
|
1665 |
+
model_camel_cased = get_user_field(
|
1666 |
+
"What prefix (camel-cased) would you like to use for the model classes of this model (e.g. Roberta)? ",
|
1667 |
+
default_value=default_patterns.model_camel_cased,
|
1668 |
+
)
|
1669 |
+
model_upper_cased = get_user_field(
|
1670 |
+
"What prefix (upper-cased) would you like to use for the constants relative to this model? ",
|
1671 |
+
default_value=default_patterns.model_upper_cased,
|
1672 |
+
)
|
1673 |
+
config_class = get_user_field(
|
1674 |
+
"What will be the name of the config class for this model? ", default_value=f"{model_camel_cased}Config"
|
1675 |
+
)
|
1676 |
+
checkpoint = get_user_field(
|
1677 |
+
"Please give a checkpoint identifier (on the model Hub) for this new model (e.g. facebook/FacebookAI/roberta-base): "
|
1678 |
+
)
|
1679 |
+
|
1680 |
+
old_processing_classes = [
|
1681 |
+
c
|
1682 |
+
for c in [old_image_processor_class, old_feature_extractor_class, old_tokenizer_class, old_processor_class]
|
1683 |
+
if c is not None
|
1684 |
+
]
|
1685 |
+
old_processing_classes = ", ".join(old_processing_classes)
|
1686 |
+
keep_processing = get_user_field(
|
1687 |
+
f"Will your new model use the same processing class as {old_model_type} ({old_processing_classes}) (yes/no)? ",
|
1688 |
+
convert_to=convert_to_bool,
|
1689 |
+
fallback_message="Please answer yes/no, y/n, true/false or 1/0. ",
|
1690 |
+
)
|
1691 |
+
if keep_processing:
|
1692 |
+
image_processor_class = old_image_processor_class
|
1693 |
+
feature_extractor_class = old_feature_extractor_class
|
1694 |
+
processor_class = old_processor_class
|
1695 |
+
tokenizer_class = old_tokenizer_class
|
1696 |
+
else:
|
1697 |
+
if old_tokenizer_class is not None:
|
1698 |
+
tokenizer_class = get_user_field(
|
1699 |
+
"What will be the name of the tokenizer class for this model? ",
|
1700 |
+
default_value=f"{model_camel_cased}Tokenizer",
|
1701 |
+
)
|
1702 |
+
else:
|
1703 |
+
tokenizer_class = None
|
1704 |
+
if old_image_processor_class is not None:
|
1705 |
+
image_processor_class = get_user_field(
|
1706 |
+
"What will be the name of the image processor class for this model? ",
|
1707 |
+
default_value=f"{model_camel_cased}ImageProcessor",
|
1708 |
+
)
|
1709 |
+
else:
|
1710 |
+
image_processor_class = None
|
1711 |
+
if old_feature_extractor_class is not None:
|
1712 |
+
feature_extractor_class = get_user_field(
|
1713 |
+
"What will be the name of the feature extractor class for this model? ",
|
1714 |
+
default_value=f"{model_camel_cased}FeatureExtractor",
|
1715 |
+
)
|
1716 |
+
else:
|
1717 |
+
feature_extractor_class = None
|
1718 |
+
if old_processor_class is not None:
|
1719 |
+
processor_class = get_user_field(
|
1720 |
+
"What will be the name of the processor class for this model? ",
|
1721 |
+
default_value=f"{model_camel_cased}Processor",
|
1722 |
+
)
|
1723 |
+
else:
|
1724 |
+
processor_class = None
|
1725 |
+
|
1726 |
+
model_patterns = ModelPatterns(
|
1727 |
+
model_name,
|
1728 |
+
checkpoint,
|
1729 |
+
model_type=model_type,
|
1730 |
+
model_lower_cased=model_lower_cased,
|
1731 |
+
model_camel_cased=model_camel_cased,
|
1732 |
+
model_upper_cased=model_upper_cased,
|
1733 |
+
config_class=config_class,
|
1734 |
+
tokenizer_class=tokenizer_class,
|
1735 |
+
image_processor_class=image_processor_class,
|
1736 |
+
feature_extractor_class=feature_extractor_class,
|
1737 |
+
processor_class=processor_class,
|
1738 |
+
)
|
1739 |
+
|
1740 |
+
add_copied_from = get_user_field(
|
1741 |
+
"Should we add # Copied from statements when creating the new modeling file (yes/no)? ",
|
1742 |
+
convert_to=convert_to_bool,
|
1743 |
+
default_value="yes",
|
1744 |
+
fallback_message="Please answer yes/no, y/n, true/false or 1/0.",
|
1745 |
+
)
|
1746 |
+
|
1747 |
+
all_frameworks = get_user_field(
|
1748 |
+
"Should we add a version of your new model in all the frameworks implemented by"
|
1749 |
+
f" {old_model_type} ({old_frameworks}) (yes/no)? ",
|
1750 |
+
convert_to=convert_to_bool,
|
1751 |
+
default_value="yes",
|
1752 |
+
fallback_message="Please answer yes/no, y/n, true/false or 1/0.",
|
1753 |
+
)
|
1754 |
+
if all_frameworks:
|
1755 |
+
frameworks = None
|
1756 |
+
else:
|
1757 |
+
frameworks = get_user_field(
|
1758 |
+
"Please enter the list of framworks you want (pt, tf, flax) separated by spaces",
|
1759 |
+
is_valid_answer=lambda x: all(p in ["pt", "tf", "flax"] for p in x.split(" ")),
|
1760 |
+
)
|
1761 |
+
frameworks = list(set(frameworks.split(" ")))
|
1762 |
+
|
1763 |
+
return (old_model_type, model_patterns, add_copied_from, frameworks, old_checkpoint)
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/convert.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser, Namespace
|
16 |
+
|
17 |
+
from ..utils import logging
|
18 |
+
from . import BaseTransformersCLICommand
|
19 |
+
|
20 |
+
|
21 |
+
def convert_command_factory(args: Namespace):
|
22 |
+
"""
|
23 |
+
Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint.
|
24 |
+
|
25 |
+
Returns: ServeCommand
|
26 |
+
"""
|
27 |
+
return ConvertCommand(
|
28 |
+
args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
IMPORT_ERROR_MESSAGE = """
|
33 |
+
transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires
|
34 |
+
TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
class ConvertCommand(BaseTransformersCLICommand):
|
39 |
+
@staticmethod
|
40 |
+
def register_subcommand(parser: ArgumentParser):
|
41 |
+
"""
|
42 |
+
Register this command to argparse so it's available for the transformer-cli
|
43 |
+
|
44 |
+
Args:
|
45 |
+
parser: Root parser to register command-specific arguments
|
46 |
+
"""
|
47 |
+
train_parser = parser.add_parser(
|
48 |
+
"convert",
|
49 |
+
help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.",
|
50 |
+
)
|
51 |
+
train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.")
|
52 |
+
train_parser.add_argument(
|
53 |
+
"--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder."
|
54 |
+
)
|
55 |
+
train_parser.add_argument(
|
56 |
+
"--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output."
|
57 |
+
)
|
58 |
+
train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.")
|
59 |
+
train_parser.add_argument(
|
60 |
+
"--finetuning_task_name",
|
61 |
+
type=str,
|
62 |
+
default=None,
|
63 |
+
help="Optional fine-tuning task name if the TF model was a finetuned model.",
|
64 |
+
)
|
65 |
+
train_parser.set_defaults(func=convert_command_factory)
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
model_type: str,
|
70 |
+
tf_checkpoint: str,
|
71 |
+
pytorch_dump_output: str,
|
72 |
+
config: str,
|
73 |
+
finetuning_task_name: str,
|
74 |
+
*args,
|
75 |
+
):
|
76 |
+
self._logger = logging.get_logger("transformers-cli/converting")
|
77 |
+
|
78 |
+
self._logger.info(f"Loading model {model_type}")
|
79 |
+
self._model_type = model_type
|
80 |
+
self._tf_checkpoint = tf_checkpoint
|
81 |
+
self._pytorch_dump_output = pytorch_dump_output
|
82 |
+
self._config = config
|
83 |
+
self._finetuning_task_name = finetuning_task_name
|
84 |
+
|
85 |
+
def run(self):
|
86 |
+
if self._model_type == "albert":
|
87 |
+
try:
|
88 |
+
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
|
89 |
+
convert_tf_checkpoint_to_pytorch,
|
90 |
+
)
|
91 |
+
except ImportError:
|
92 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
93 |
+
|
94 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
95 |
+
elif self._model_type == "bert":
|
96 |
+
try:
|
97 |
+
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
|
98 |
+
convert_tf_checkpoint_to_pytorch,
|
99 |
+
)
|
100 |
+
except ImportError:
|
101 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
102 |
+
|
103 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
104 |
+
elif self._model_type == "funnel":
|
105 |
+
try:
|
106 |
+
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
|
107 |
+
convert_tf_checkpoint_to_pytorch,
|
108 |
+
)
|
109 |
+
except ImportError:
|
110 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
111 |
+
|
112 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
113 |
+
elif self._model_type == "t5":
|
114 |
+
try:
|
115 |
+
from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
|
116 |
+
except ImportError:
|
117 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
118 |
+
|
119 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
120 |
+
elif self._model_type == "gpt":
|
121 |
+
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
|
122 |
+
convert_openai_checkpoint_to_pytorch,
|
123 |
+
)
|
124 |
+
|
125 |
+
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
126 |
+
elif self._model_type == "gpt2":
|
127 |
+
try:
|
128 |
+
from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import (
|
129 |
+
convert_gpt2_checkpoint_to_pytorch,
|
130 |
+
)
|
131 |
+
except ImportError:
|
132 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
133 |
+
|
134 |
+
convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
135 |
+
elif self._model_type == "xlnet":
|
136 |
+
try:
|
137 |
+
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
|
138 |
+
convert_xlnet_checkpoint_to_pytorch,
|
139 |
+
)
|
140 |
+
except ImportError:
|
141 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
142 |
+
|
143 |
+
convert_xlnet_checkpoint_to_pytorch(
|
144 |
+
self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name
|
145 |
+
)
|
146 |
+
elif self._model_type == "xlm":
|
147 |
+
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
|
148 |
+
convert_xlm_checkpoint_to_pytorch,
|
149 |
+
)
|
150 |
+
|
151 |
+
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
|
152 |
+
elif self._model_type == "lxmert":
|
153 |
+
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
|
154 |
+
convert_lxmert_checkpoint_to_pytorch,
|
155 |
+
)
|
156 |
+
|
157 |
+
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
|
158 |
+
elif self._model_type == "rembert":
|
159 |
+
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
|
160 |
+
convert_rembert_tf_checkpoint_to_pytorch,
|
161 |
+
)
|
162 |
+
|
163 |
+
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
164 |
+
else:
|
165 |
+
raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, t5, xlnet, xlm, lxmert]")
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/download.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser
|
16 |
+
|
17 |
+
from . import BaseTransformersCLICommand
|
18 |
+
|
19 |
+
|
20 |
+
def download_command_factory(args):
|
21 |
+
return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code)
|
22 |
+
|
23 |
+
|
24 |
+
class DownloadCommand(BaseTransformersCLICommand):
|
25 |
+
@staticmethod
|
26 |
+
def register_subcommand(parser: ArgumentParser):
|
27 |
+
download_parser = parser.add_parser("download")
|
28 |
+
download_parser.add_argument(
|
29 |
+
"--cache-dir", type=str, default=None, help="Path to location to store the models"
|
30 |
+
)
|
31 |
+
download_parser.add_argument(
|
32 |
+
"--force", action="store_true", help="Force the model to be download even if already in cache-dir"
|
33 |
+
)
|
34 |
+
download_parser.add_argument(
|
35 |
+
"--trust-remote-code",
|
36 |
+
action="store_true",
|
37 |
+
help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine",
|
38 |
+
)
|
39 |
+
download_parser.add_argument("model", type=str, help="Name of the model to download")
|
40 |
+
download_parser.set_defaults(func=download_command_factory)
|
41 |
+
|
42 |
+
def __init__(self, model: str, cache: str, force: bool, trust_remote_code: bool):
|
43 |
+
self._model = model
|
44 |
+
self._cache = cache
|
45 |
+
self._force = force
|
46 |
+
self._trust_remote_code = trust_remote_code
|
47 |
+
|
48 |
+
def run(self):
|
49 |
+
from ..models.auto import AutoModel, AutoTokenizer
|
50 |
+
|
51 |
+
AutoModel.from_pretrained(
|
52 |
+
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code
|
53 |
+
)
|
54 |
+
AutoTokenizer.from_pretrained(
|
55 |
+
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code
|
56 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/env.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib.util
|
16 |
+
import os
|
17 |
+
import platform
|
18 |
+
from argparse import ArgumentParser
|
19 |
+
|
20 |
+
import huggingface_hub
|
21 |
+
|
22 |
+
from .. import __version__ as version
|
23 |
+
from ..utils import (
|
24 |
+
is_accelerate_available,
|
25 |
+
is_flax_available,
|
26 |
+
is_safetensors_available,
|
27 |
+
is_tf_available,
|
28 |
+
is_torch_available,
|
29 |
+
)
|
30 |
+
from . import BaseTransformersCLICommand
|
31 |
+
|
32 |
+
|
33 |
+
def info_command_factory(_):
|
34 |
+
return EnvironmentCommand()
|
35 |
+
|
36 |
+
|
37 |
+
def download_command_factory(args):
|
38 |
+
return EnvironmentCommand(args.accelerate_config_file)
|
39 |
+
|
40 |
+
|
41 |
+
class EnvironmentCommand(BaseTransformersCLICommand):
|
42 |
+
@staticmethod
|
43 |
+
def register_subcommand(parser: ArgumentParser):
|
44 |
+
download_parser = parser.add_parser("env")
|
45 |
+
download_parser.set_defaults(func=info_command_factory)
|
46 |
+
download_parser.add_argument(
|
47 |
+
"--accelerate-config_file",
|
48 |
+
default=None,
|
49 |
+
help="The accelerate config file to use for the default values in the launching script.",
|
50 |
+
)
|
51 |
+
download_parser.set_defaults(func=download_command_factory)
|
52 |
+
|
53 |
+
def __init__(self, accelerate_config_file, *args) -> None:
|
54 |
+
self._accelerate_config_file = accelerate_config_file
|
55 |
+
|
56 |
+
def run(self):
|
57 |
+
safetensors_version = "not installed"
|
58 |
+
if is_safetensors_available():
|
59 |
+
import safetensors
|
60 |
+
|
61 |
+
safetensors_version = safetensors.__version__
|
62 |
+
elif importlib.util.find_spec("safetensors") is not None:
|
63 |
+
import safetensors
|
64 |
+
|
65 |
+
safetensors_version = f"{safetensors.__version__} but is ignored because of PyTorch version too old."
|
66 |
+
|
67 |
+
accelerate_version = "not installed"
|
68 |
+
accelerate_config = accelerate_config_str = "not found"
|
69 |
+
if is_accelerate_available():
|
70 |
+
import accelerate
|
71 |
+
from accelerate.commands.config import default_config_file, load_config_from_file
|
72 |
+
|
73 |
+
accelerate_version = accelerate.__version__
|
74 |
+
# Get the default from the config file.
|
75 |
+
if self._accelerate_config_file is not None or os.path.isfile(default_config_file):
|
76 |
+
accelerate_config = load_config_from_file(self._accelerate_config_file).to_dict()
|
77 |
+
|
78 |
+
accelerate_config_str = (
|
79 |
+
"\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()])
|
80 |
+
if isinstance(accelerate_config, dict)
|
81 |
+
else f"\t{accelerate_config}"
|
82 |
+
)
|
83 |
+
|
84 |
+
pt_version = "not installed"
|
85 |
+
pt_cuda_available = "NA"
|
86 |
+
if is_torch_available():
|
87 |
+
import torch
|
88 |
+
|
89 |
+
pt_version = torch.__version__
|
90 |
+
pt_cuda_available = torch.cuda.is_available()
|
91 |
+
|
92 |
+
tf_version = "not installed"
|
93 |
+
tf_cuda_available = "NA"
|
94 |
+
if is_tf_available():
|
95 |
+
import tensorflow as tf
|
96 |
+
|
97 |
+
tf_version = tf.__version__
|
98 |
+
try:
|
99 |
+
# deprecated in v2.1
|
100 |
+
tf_cuda_available = tf.test.is_gpu_available()
|
101 |
+
except AttributeError:
|
102 |
+
# returns list of devices, convert to bool
|
103 |
+
tf_cuda_available = bool(tf.config.list_physical_devices("GPU"))
|
104 |
+
|
105 |
+
flax_version = "not installed"
|
106 |
+
jax_version = "not installed"
|
107 |
+
jaxlib_version = "not installed"
|
108 |
+
jax_backend = "NA"
|
109 |
+
if is_flax_available():
|
110 |
+
import flax
|
111 |
+
import jax
|
112 |
+
import jaxlib
|
113 |
+
|
114 |
+
flax_version = flax.__version__
|
115 |
+
jax_version = jax.__version__
|
116 |
+
jaxlib_version = jaxlib.__version__
|
117 |
+
jax_backend = jax.lib.xla_bridge.get_backend().platform
|
118 |
+
|
119 |
+
info = {
|
120 |
+
"`transformers` version": version,
|
121 |
+
"Platform": platform.platform(),
|
122 |
+
"Python version": platform.python_version(),
|
123 |
+
"Huggingface_hub version": huggingface_hub.__version__,
|
124 |
+
"Safetensors version": f"{safetensors_version}",
|
125 |
+
"Accelerate version": f"{accelerate_version}",
|
126 |
+
"Accelerate config": f"{accelerate_config_str}",
|
127 |
+
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
128 |
+
"Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})",
|
129 |
+
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
|
130 |
+
"Jax version": f"{jax_version}",
|
131 |
+
"JaxLib version": f"{jaxlib_version}",
|
132 |
+
"Using GPU in script?": "<fill in>",
|
133 |
+
"Using distributed or parallel set-up in script?": "<fill in>",
|
134 |
+
}
|
135 |
+
|
136 |
+
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
|
137 |
+
print(self.format_dict(info))
|
138 |
+
|
139 |
+
return info
|
140 |
+
|
141 |
+
@staticmethod
|
142 |
+
def format_dict(d):
|
143 |
+
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/lfs.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of a custom transfer agent for the transfer type "multipart" for git-lfs.
|
3 |
+
|
4 |
+
Inspired by: github.com/cbartz/git-lfs-swift-transfer-agent/blob/master/git_lfs_swift_transfer.py
|
5 |
+
|
6 |
+
Spec is: github.com/git-lfs/git-lfs/blob/master/docs/custom-transfers.md
|
7 |
+
|
8 |
+
|
9 |
+
To launch debugger while developing:
|
10 |
+
|
11 |
+
``` [lfs "customtransfer.multipart"]
|
12 |
+
path = /path/to/transformers/.env/bin/python args = -m debugpy --listen 5678 --wait-for-client
|
13 |
+
/path/to/transformers/src/transformers/commands/transformers_cli.py lfs-multipart-upload ```"""
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
import subprocess
|
18 |
+
import sys
|
19 |
+
import warnings
|
20 |
+
from argparse import ArgumentParser
|
21 |
+
from contextlib import AbstractContextManager
|
22 |
+
from typing import Dict, List, Optional
|
23 |
+
|
24 |
+
import requests
|
25 |
+
|
26 |
+
from ..utils import logging
|
27 |
+
from . import BaseTransformersCLICommand
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
31 |
+
|
32 |
+
|
33 |
+
LFS_MULTIPART_UPLOAD_COMMAND = "lfs-multipart-upload"
|
34 |
+
|
35 |
+
|
36 |
+
class LfsCommands(BaseTransformersCLICommand):
|
37 |
+
"""
|
38 |
+
Implementation of a custom transfer agent for the transfer type "multipart" for git-lfs. This lets users upload
|
39 |
+
large files >5GB 🔥. Spec for LFS custom transfer agent is:
|
40 |
+
https://github.com/git-lfs/git-lfs/blob/master/docs/custom-transfers.md
|
41 |
+
|
42 |
+
This introduces two commands to the CLI:
|
43 |
+
|
44 |
+
1. $ transformers-cli lfs-enable-largefiles
|
45 |
+
|
46 |
+
This should be executed once for each model repo that contains a model file >5GB. It's documented in the error
|
47 |
+
message you get if you just try to git push a 5GB file without having enabled it before.
|
48 |
+
|
49 |
+
2. $ transformers-cli lfs-multipart-upload
|
50 |
+
|
51 |
+
This command is called by lfs directly and is not meant to be called by the user.
|
52 |
+
"""
|
53 |
+
|
54 |
+
@staticmethod
|
55 |
+
def register_subcommand(parser: ArgumentParser):
|
56 |
+
enable_parser = parser.add_parser(
|
57 |
+
"lfs-enable-largefiles",
|
58 |
+
help=(
|
59 |
+
"Deprecated: use `huggingface-cli` instead. Configure your repository to enable upload of files > 5GB."
|
60 |
+
),
|
61 |
+
)
|
62 |
+
enable_parser.add_argument("path", type=str, help="Local path to repository you want to configure.")
|
63 |
+
enable_parser.set_defaults(func=lambda args: LfsEnableCommand(args))
|
64 |
+
|
65 |
+
upload_parser = parser.add_parser(
|
66 |
+
LFS_MULTIPART_UPLOAD_COMMAND,
|
67 |
+
help=(
|
68 |
+
"Deprecated: use `huggingface-cli` instead. "
|
69 |
+
"Command will get called by git-lfs, do not call it directly."
|
70 |
+
),
|
71 |
+
)
|
72 |
+
upload_parser.set_defaults(func=lambda args: LfsUploadCommand(args))
|
73 |
+
|
74 |
+
|
75 |
+
class LfsEnableCommand:
|
76 |
+
def __init__(self, args):
|
77 |
+
self.args = args
|
78 |
+
|
79 |
+
def run(self):
|
80 |
+
warnings.warn(
|
81 |
+
"Managing repositories through transformers-cli is deprecated. Please use `huggingface-cli` instead."
|
82 |
+
)
|
83 |
+
local_path = os.path.abspath(self.args.path)
|
84 |
+
if not os.path.isdir(local_path):
|
85 |
+
print("This does not look like a valid git repo.")
|
86 |
+
exit(1)
|
87 |
+
subprocess.run(
|
88 |
+
"git config lfs.customtransfer.multipart.path transformers-cli".split(), check=True, cwd=local_path
|
89 |
+
)
|
90 |
+
subprocess.run(
|
91 |
+
f"git config lfs.customtransfer.multipart.args {LFS_MULTIPART_UPLOAD_COMMAND}".split(),
|
92 |
+
check=True,
|
93 |
+
cwd=local_path,
|
94 |
+
)
|
95 |
+
print("Local repo set up for largefiles")
|
96 |
+
|
97 |
+
|
98 |
+
def write_msg(msg: Dict):
|
99 |
+
"""Write out the message in Line delimited JSON."""
|
100 |
+
msg = json.dumps(msg) + "\n"
|
101 |
+
sys.stdout.write(msg)
|
102 |
+
sys.stdout.flush()
|
103 |
+
|
104 |
+
|
105 |
+
def read_msg() -> Optional[Dict]:
|
106 |
+
"""Read Line delimited JSON from stdin."""
|
107 |
+
msg = json.loads(sys.stdin.readline().strip())
|
108 |
+
|
109 |
+
if "terminate" in (msg.get("type"), msg.get("event")):
|
110 |
+
# terminate message received
|
111 |
+
return None
|
112 |
+
|
113 |
+
if msg.get("event") not in ("download", "upload"):
|
114 |
+
logger.critical("Received unexpected message")
|
115 |
+
sys.exit(1)
|
116 |
+
|
117 |
+
return msg
|
118 |
+
|
119 |
+
|
120 |
+
class FileSlice(AbstractContextManager):
|
121 |
+
"""
|
122 |
+
File-like object that only reads a slice of a file
|
123 |
+
|
124 |
+
Inspired by stackoverflow.com/a/29838711/593036
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __init__(self, filepath: str, seek_from: int, read_limit: int):
|
128 |
+
self.filepath = filepath
|
129 |
+
self.seek_from = seek_from
|
130 |
+
self.read_limit = read_limit
|
131 |
+
self.n_seen = 0
|
132 |
+
|
133 |
+
def __enter__(self):
|
134 |
+
self.f = open(self.filepath, "rb")
|
135 |
+
self.f.seek(self.seek_from)
|
136 |
+
return self
|
137 |
+
|
138 |
+
def __len__(self):
|
139 |
+
total_length = os.fstat(self.f.fileno()).st_size
|
140 |
+
return min(self.read_limit, total_length - self.seek_from)
|
141 |
+
|
142 |
+
def read(self, n=-1):
|
143 |
+
if self.n_seen >= self.read_limit:
|
144 |
+
return b""
|
145 |
+
remaining_amount = self.read_limit - self.n_seen
|
146 |
+
data = self.f.read(remaining_amount if n < 0 else min(n, remaining_amount))
|
147 |
+
self.n_seen += len(data)
|
148 |
+
return data
|
149 |
+
|
150 |
+
def __iter__(self):
|
151 |
+
yield self.read(n=4 * 1024 * 1024)
|
152 |
+
|
153 |
+
def __exit__(self, *args):
|
154 |
+
self.f.close()
|
155 |
+
|
156 |
+
|
157 |
+
class LfsUploadCommand:
|
158 |
+
def __init__(self, args):
|
159 |
+
self.args = args
|
160 |
+
|
161 |
+
def run(self):
|
162 |
+
# Immediately after invoking a custom transfer process, git-lfs
|
163 |
+
# sends initiation data to the process over stdin.
|
164 |
+
# This tells the process useful information about the configuration.
|
165 |
+
init_msg = json.loads(sys.stdin.readline().strip())
|
166 |
+
if not (init_msg.get("event") == "init" and init_msg.get("operation") == "upload"):
|
167 |
+
write_msg({"error": {"code": 32, "message": "Wrong lfs init operation"}})
|
168 |
+
sys.exit(1)
|
169 |
+
|
170 |
+
# The transfer process should use the information it needs from the
|
171 |
+
# initiation structure, and also perform any one-off setup tasks it
|
172 |
+
# needs to do. It should then respond on stdout with a simple empty
|
173 |
+
# confirmation structure, as follows:
|
174 |
+
write_msg({})
|
175 |
+
|
176 |
+
# After the initiation exchange, git-lfs will send any number of
|
177 |
+
# transfer requests to the stdin of the transfer process, in a serial sequence.
|
178 |
+
while True:
|
179 |
+
msg = read_msg()
|
180 |
+
if msg is None:
|
181 |
+
# When all transfers have been processed, git-lfs will send
|
182 |
+
# a terminate event to the stdin of the transfer process.
|
183 |
+
# On receiving this message the transfer process should
|
184 |
+
# clean up and terminate. No response is expected.
|
185 |
+
sys.exit(0)
|
186 |
+
|
187 |
+
oid = msg["oid"]
|
188 |
+
filepath = msg["path"]
|
189 |
+
completion_url = msg["action"]["href"]
|
190 |
+
header = msg["action"]["header"]
|
191 |
+
chunk_size = int(header.pop("chunk_size"))
|
192 |
+
presigned_urls: List[str] = list(header.values())
|
193 |
+
|
194 |
+
parts = []
|
195 |
+
for i, presigned_url in enumerate(presigned_urls):
|
196 |
+
with FileSlice(filepath, seek_from=i * chunk_size, read_limit=chunk_size) as data:
|
197 |
+
r = requests.put(presigned_url, data=data)
|
198 |
+
r.raise_for_status()
|
199 |
+
parts.append(
|
200 |
+
{
|
201 |
+
"etag": r.headers.get("etag"),
|
202 |
+
"partNumber": i + 1,
|
203 |
+
}
|
204 |
+
)
|
205 |
+
# In order to support progress reporting while data is uploading / downloading,
|
206 |
+
# the transfer process should post messages to stdout
|
207 |
+
write_msg(
|
208 |
+
{
|
209 |
+
"event": "progress",
|
210 |
+
"oid": oid,
|
211 |
+
"bytesSoFar": (i + 1) * chunk_size,
|
212 |
+
"bytesSinceLast": chunk_size,
|
213 |
+
}
|
214 |
+
)
|
215 |
+
# Not precise but that's ok.
|
216 |
+
|
217 |
+
r = requests.post(
|
218 |
+
completion_url,
|
219 |
+
json={
|
220 |
+
"oid": oid,
|
221 |
+
"parts": parts,
|
222 |
+
},
|
223 |
+
)
|
224 |
+
r.raise_for_status()
|
225 |
+
|
226 |
+
write_msg({"event": "complete", "oid": oid})
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/pt_to_tf.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import os
|
17 |
+
from argparse import ArgumentParser, Namespace
|
18 |
+
from importlib import import_module
|
19 |
+
|
20 |
+
import huggingface_hub
|
21 |
+
import numpy as np
|
22 |
+
from packaging import version
|
23 |
+
|
24 |
+
from .. import (
|
25 |
+
FEATURE_EXTRACTOR_MAPPING,
|
26 |
+
IMAGE_PROCESSOR_MAPPING,
|
27 |
+
PROCESSOR_MAPPING,
|
28 |
+
TOKENIZER_MAPPING,
|
29 |
+
AutoConfig,
|
30 |
+
AutoFeatureExtractor,
|
31 |
+
AutoImageProcessor,
|
32 |
+
AutoProcessor,
|
33 |
+
AutoTokenizer,
|
34 |
+
is_datasets_available,
|
35 |
+
is_tf_available,
|
36 |
+
is_torch_available,
|
37 |
+
)
|
38 |
+
from ..utils import TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging
|
39 |
+
from . import BaseTransformersCLICommand
|
40 |
+
|
41 |
+
|
42 |
+
if is_tf_available():
|
43 |
+
import tensorflow as tf
|
44 |
+
|
45 |
+
tf.config.experimental.enable_tensor_float_32_execution(False)
|
46 |
+
|
47 |
+
if is_torch_available():
|
48 |
+
import torch
|
49 |
+
|
50 |
+
if is_datasets_available():
|
51 |
+
from datasets import load_dataset
|
52 |
+
|
53 |
+
|
54 |
+
MAX_ERROR = 5e-5 # larger error tolerance than in our internal tests, to avoid flaky user-facing errors
|
55 |
+
|
56 |
+
|
57 |
+
def convert_command_factory(args: Namespace):
|
58 |
+
"""
|
59 |
+
Factory function used to convert a model PyTorch checkpoint in a TensorFlow 2 checkpoint.
|
60 |
+
|
61 |
+
Returns: ServeCommand
|
62 |
+
"""
|
63 |
+
return PTtoTFCommand(
|
64 |
+
args.model_name,
|
65 |
+
args.local_dir,
|
66 |
+
args.max_error,
|
67 |
+
args.new_weights,
|
68 |
+
args.no_pr,
|
69 |
+
args.push,
|
70 |
+
args.extra_commit_description,
|
71 |
+
args.override_model_class,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
class PTtoTFCommand(BaseTransformersCLICommand):
|
76 |
+
@staticmethod
|
77 |
+
def register_subcommand(parser: ArgumentParser):
|
78 |
+
"""
|
79 |
+
Register this command to argparse so it's available for the transformer-cli
|
80 |
+
|
81 |
+
Args:
|
82 |
+
parser: Root parser to register command-specific arguments
|
83 |
+
"""
|
84 |
+
train_parser = parser.add_parser(
|
85 |
+
"pt-to-tf",
|
86 |
+
help=(
|
87 |
+
"CLI tool to run convert a transformers model from a PyTorch checkpoint to a TensorFlow checkpoint."
|
88 |
+
" Can also be used to validate existing weights without opening PRs, with --no-pr."
|
89 |
+
),
|
90 |
+
)
|
91 |
+
train_parser.add_argument(
|
92 |
+
"--model-name",
|
93 |
+
type=str,
|
94 |
+
required=True,
|
95 |
+
help="The model name, including owner/organization, as seen on the hub.",
|
96 |
+
)
|
97 |
+
train_parser.add_argument(
|
98 |
+
"--local-dir",
|
99 |
+
type=str,
|
100 |
+
default="",
|
101 |
+
help="Optional local directory of the model repository. Defaults to /tmp/{model_name}",
|
102 |
+
)
|
103 |
+
train_parser.add_argument(
|
104 |
+
"--max-error",
|
105 |
+
type=float,
|
106 |
+
default=MAX_ERROR,
|
107 |
+
help=(
|
108 |
+
f"Maximum error tolerance. Defaults to {MAX_ERROR}. This flag should be avoided, use at your own risk."
|
109 |
+
),
|
110 |
+
)
|
111 |
+
train_parser.add_argument(
|
112 |
+
"--new-weights",
|
113 |
+
action="store_true",
|
114 |
+
help="Optional flag to create new TensorFlow weights, even if they already exist.",
|
115 |
+
)
|
116 |
+
train_parser.add_argument(
|
117 |
+
"--no-pr", action="store_true", help="Optional flag to NOT open a PR with converted weights."
|
118 |
+
)
|
119 |
+
train_parser.add_argument(
|
120 |
+
"--push",
|
121 |
+
action="store_true",
|
122 |
+
help="Optional flag to push the weights directly to `main` (requires permissions)",
|
123 |
+
)
|
124 |
+
train_parser.add_argument(
|
125 |
+
"--extra-commit-description",
|
126 |
+
type=str,
|
127 |
+
default="",
|
128 |
+
help="Optional additional commit description to use when opening a PR (e.g. to tag the owner).",
|
129 |
+
)
|
130 |
+
train_parser.add_argument(
|
131 |
+
"--override-model-class",
|
132 |
+
type=str,
|
133 |
+
default=None,
|
134 |
+
help="If you think you know better than the auto-detector, you can specify the model class here. "
|
135 |
+
"Can be either an AutoModel class or a specific model class like BertForSequenceClassification.",
|
136 |
+
)
|
137 |
+
train_parser.set_defaults(func=convert_command_factory)
|
138 |
+
|
139 |
+
@staticmethod
|
140 |
+
def find_pt_tf_differences(pt_outputs, tf_outputs):
|
141 |
+
"""
|
142 |
+
Compares the TensorFlow and PyTorch outputs, returning a dictionary with all tensor differences.
|
143 |
+
"""
|
144 |
+
# 1. All output attributes must be the same
|
145 |
+
pt_out_attrs = set(pt_outputs.keys())
|
146 |
+
tf_out_attrs = set(tf_outputs.keys())
|
147 |
+
if pt_out_attrs != tf_out_attrs:
|
148 |
+
raise ValueError(
|
149 |
+
f"The model outputs have different attributes, aborting. (Pytorch: {pt_out_attrs}, TensorFlow:"
|
150 |
+
f" {tf_out_attrs})"
|
151 |
+
)
|
152 |
+
|
153 |
+
# 2. For each output attribute, computes the difference
|
154 |
+
def _find_pt_tf_differences(pt_out, tf_out, differences, attr_name=""):
|
155 |
+
# If the current attribute is a tensor, it is a leaf and we make the comparison. Otherwise, we will dig in
|
156 |
+
# recursivelly, keeping the name of the attribute.
|
157 |
+
if isinstance(pt_out, torch.Tensor):
|
158 |
+
tensor_difference = np.max(np.abs(pt_out.numpy() - tf_out.numpy()))
|
159 |
+
differences[attr_name] = tensor_difference
|
160 |
+
else:
|
161 |
+
root_name = attr_name
|
162 |
+
for i, pt_item in enumerate(pt_out):
|
163 |
+
# If it is a named attribute, we keep the name. Otherwise, just its index.
|
164 |
+
if isinstance(pt_item, str):
|
165 |
+
branch_name = root_name + pt_item
|
166 |
+
tf_item = tf_out[pt_item]
|
167 |
+
pt_item = pt_out[pt_item]
|
168 |
+
else:
|
169 |
+
branch_name = root_name + f"[{i}]"
|
170 |
+
tf_item = tf_out[i]
|
171 |
+
differences = _find_pt_tf_differences(pt_item, tf_item, differences, branch_name)
|
172 |
+
|
173 |
+
return differences
|
174 |
+
|
175 |
+
return _find_pt_tf_differences(pt_outputs, tf_outputs, {})
|
176 |
+
|
177 |
+
def __init__(
|
178 |
+
self,
|
179 |
+
model_name: str,
|
180 |
+
local_dir: str,
|
181 |
+
max_error: float,
|
182 |
+
new_weights: bool,
|
183 |
+
no_pr: bool,
|
184 |
+
push: bool,
|
185 |
+
extra_commit_description: str,
|
186 |
+
override_model_class: str,
|
187 |
+
*args,
|
188 |
+
):
|
189 |
+
self._logger = logging.get_logger("transformers-cli/pt_to_tf")
|
190 |
+
self._model_name = model_name
|
191 |
+
self._local_dir = local_dir if local_dir else os.path.join("/tmp", model_name)
|
192 |
+
self._max_error = max_error
|
193 |
+
self._new_weights = new_weights
|
194 |
+
self._no_pr = no_pr
|
195 |
+
self._push = push
|
196 |
+
self._extra_commit_description = extra_commit_description
|
197 |
+
self._override_model_class = override_model_class
|
198 |
+
|
199 |
+
def get_inputs(self, pt_model, tf_dummy_inputs, config):
|
200 |
+
"""
|
201 |
+
Returns the right inputs for the model, based on its signature.
|
202 |
+
"""
|
203 |
+
|
204 |
+
def _get_audio_input():
|
205 |
+
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
206 |
+
speech_samples = ds.sort("id").select(range(2))[:2]["audio"]
|
207 |
+
raw_samples = [x["array"] for x in speech_samples]
|
208 |
+
return raw_samples
|
209 |
+
|
210 |
+
model_config_class = type(pt_model.config)
|
211 |
+
if model_config_class in PROCESSOR_MAPPING:
|
212 |
+
processor = AutoProcessor.from_pretrained(self._local_dir)
|
213 |
+
if model_config_class in TOKENIZER_MAPPING and processor.tokenizer.pad_token is None:
|
214 |
+
processor.tokenizer.pad_token = processor.tokenizer.eos_token
|
215 |
+
elif model_config_class in IMAGE_PROCESSOR_MAPPING:
|
216 |
+
processor = AutoImageProcessor.from_pretrained(self._local_dir)
|
217 |
+
elif model_config_class in FEATURE_EXTRACTOR_MAPPING:
|
218 |
+
processor = AutoFeatureExtractor.from_pretrained(self._local_dir)
|
219 |
+
elif model_config_class in TOKENIZER_MAPPING:
|
220 |
+
processor = AutoTokenizer.from_pretrained(self._local_dir)
|
221 |
+
if processor.pad_token is None:
|
222 |
+
processor.pad_token = processor.eos_token
|
223 |
+
else:
|
224 |
+
raise ValueError(f"Unknown data processing type (model config type: {model_config_class})")
|
225 |
+
|
226 |
+
model_forward_signature = set(inspect.signature(pt_model.forward).parameters.keys())
|
227 |
+
processor_inputs = {}
|
228 |
+
if "input_ids" in model_forward_signature:
|
229 |
+
processor_inputs.update(
|
230 |
+
{
|
231 |
+
"text": ["Hi there!", "I am a batch with more than one row and different input lengths."],
|
232 |
+
"padding": True,
|
233 |
+
"truncation": True,
|
234 |
+
}
|
235 |
+
)
|
236 |
+
if "pixel_values" in model_forward_signature:
|
237 |
+
sample_images = load_dataset("cifar10", "plain_text", split="test")[:2]["img"]
|
238 |
+
processor_inputs.update({"images": sample_images})
|
239 |
+
if "input_features" in model_forward_signature:
|
240 |
+
feature_extractor_signature = inspect.signature(processor.feature_extractor).parameters
|
241 |
+
# Pad to the largest input length by default but take feature extractor default
|
242 |
+
# padding value if it exists e.g. "max_length" and is not False or None
|
243 |
+
if "padding" in feature_extractor_signature:
|
244 |
+
default_strategy = feature_extractor_signature["padding"].default
|
245 |
+
if default_strategy is not False and default_strategy is not None:
|
246 |
+
padding_strategy = default_strategy
|
247 |
+
else:
|
248 |
+
padding_strategy = True
|
249 |
+
else:
|
250 |
+
padding_strategy = True
|
251 |
+
processor_inputs.update({"audio": _get_audio_input(), "padding": padding_strategy})
|
252 |
+
if "input_values" in model_forward_signature: # Wav2Vec2 audio input
|
253 |
+
processor_inputs.update({"audio": _get_audio_input(), "padding": True})
|
254 |
+
pt_input = processor(**processor_inputs, return_tensors="pt")
|
255 |
+
tf_input = processor(**processor_inputs, return_tensors="tf")
|
256 |
+
|
257 |
+
# Extra input requirements, in addition to the input modality
|
258 |
+
if (
|
259 |
+
config.is_encoder_decoder
|
260 |
+
or (hasattr(pt_model, "encoder") and hasattr(pt_model, "decoder"))
|
261 |
+
or "decoder_input_ids" in tf_dummy_inputs
|
262 |
+
):
|
263 |
+
decoder_input_ids = np.asarray([[1], [1]], dtype=int) * (pt_model.config.decoder_start_token_id or 0)
|
264 |
+
pt_input.update({"decoder_input_ids": torch.tensor(decoder_input_ids)})
|
265 |
+
tf_input.update({"decoder_input_ids": tf.convert_to_tensor(decoder_input_ids)})
|
266 |
+
|
267 |
+
return pt_input, tf_input
|
268 |
+
|
269 |
+
def run(self):
|
270 |
+
# hub version 0.9.0 introduced the possibility of programmatically opening PRs with normal write tokens.
|
271 |
+
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
|
272 |
+
raise ImportError(
|
273 |
+
"The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub"
|
274 |
+
" installation."
|
275 |
+
)
|
276 |
+
else:
|
277 |
+
from huggingface_hub import Repository, create_commit
|
278 |
+
from huggingface_hub._commit_api import CommitOperationAdd
|
279 |
+
|
280 |
+
# Fetch remote data
|
281 |
+
repo = Repository(local_dir=self._local_dir, clone_from=self._model_name)
|
282 |
+
|
283 |
+
# Load config and get the appropriate architecture -- the latter is needed to convert the head's weights
|
284 |
+
config = AutoConfig.from_pretrained(self._local_dir)
|
285 |
+
architectures = config.architectures
|
286 |
+
if self._override_model_class is not None:
|
287 |
+
if self._override_model_class.startswith("TF"):
|
288 |
+
architectures = [self._override_model_class[2:]]
|
289 |
+
else:
|
290 |
+
architectures = [self._override_model_class]
|
291 |
+
try:
|
292 |
+
pt_class = getattr(import_module("transformers"), architectures[0])
|
293 |
+
except AttributeError:
|
294 |
+
raise ValueError(f"Model class {self._override_model_class} not found in transformers.")
|
295 |
+
try:
|
296 |
+
tf_class = getattr(import_module("transformers"), "TF" + architectures[0])
|
297 |
+
except AttributeError:
|
298 |
+
raise ValueError(f"TF model class TF{self._override_model_class} not found in transformers.")
|
299 |
+
elif architectures is None: # No architecture defined -- use auto classes
|
300 |
+
pt_class = getattr(import_module("transformers"), "AutoModel")
|
301 |
+
tf_class = getattr(import_module("transformers"), "TFAutoModel")
|
302 |
+
self._logger.warning("No detected architecture, using AutoModel/TFAutoModel")
|
303 |
+
else: # Architecture defined -- use it
|
304 |
+
if len(architectures) > 1:
|
305 |
+
raise ValueError(f"More than one architecture was found, aborting. (architectures = {architectures})")
|
306 |
+
self._logger.warning(f"Detected architecture: {architectures[0]}")
|
307 |
+
pt_class = getattr(import_module("transformers"), architectures[0])
|
308 |
+
try:
|
309 |
+
tf_class = getattr(import_module("transformers"), "TF" + architectures[0])
|
310 |
+
except AttributeError:
|
311 |
+
raise AttributeError(f"The TensorFlow equivalent of {architectures[0]} doesn't exist in transformers.")
|
312 |
+
|
313 |
+
# Check the TF dummy inputs to see what keys we need in the forward pass
|
314 |
+
tf_from_pt_model = tf_class.from_config(config)
|
315 |
+
tf_dummy_inputs = tf_from_pt_model.dummy_inputs
|
316 |
+
|
317 |
+
del tf_from_pt_model # Try to keep only one model in memory at a time
|
318 |
+
|
319 |
+
# Load the model and get some basic inputs
|
320 |
+
pt_model = pt_class.from_pretrained(self._local_dir)
|
321 |
+
pt_model.eval()
|
322 |
+
|
323 |
+
pt_input, tf_input = self.get_inputs(pt_model, tf_dummy_inputs, config)
|
324 |
+
|
325 |
+
with torch.no_grad():
|
326 |
+
pt_outputs = pt_model(**pt_input, output_hidden_states=True)
|
327 |
+
del pt_model # will no longer be used, and may have a large memory footprint
|
328 |
+
|
329 |
+
tf_from_pt_model = tf_class.from_pretrained(self._local_dir, from_pt=True)
|
330 |
+
tf_from_pt_outputs = tf_from_pt_model(**tf_input, output_hidden_states=True, training=False)
|
331 |
+
|
332 |
+
# Confirms that cross loading PT weights into TF worked.
|
333 |
+
crossload_differences = self.find_pt_tf_differences(pt_outputs, tf_from_pt_outputs)
|
334 |
+
output_differences = {k: v for k, v in crossload_differences.items() if "hidden" not in k}
|
335 |
+
hidden_differences = {k: v for k, v in crossload_differences.items() if "hidden" in k}
|
336 |
+
if len(output_differences) == 0 and architectures is not None:
|
337 |
+
raise ValueError(
|
338 |
+
f"Something went wrong -- the config file has architectures ({architectures}), but no model head"
|
339 |
+
" output was found. All outputs start with 'hidden'"
|
340 |
+
)
|
341 |
+
max_crossload_output_diff = max(output_differences.values()) if output_differences else 0.0
|
342 |
+
max_crossload_hidden_diff = max(hidden_differences.values())
|
343 |
+
if max_crossload_output_diff > self._max_error or max_crossload_hidden_diff > self._max_error:
|
344 |
+
raise ValueError(
|
345 |
+
"The cross-loaded TensorFlow model has different outputs, something went wrong!\n"
|
346 |
+
+ f"\nList of maximum output differences above the threshold ({self._max_error}):\n"
|
347 |
+
+ "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error])
|
348 |
+
+ f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n"
|
349 |
+
+ "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error])
|
350 |
+
)
|
351 |
+
|
352 |
+
# Save the weights in a TF format (if needed) and confirms that the results are still good
|
353 |
+
tf_weights_path = os.path.join(self._local_dir, TF2_WEIGHTS_NAME)
|
354 |
+
tf_weights_index_path = os.path.join(self._local_dir, TF2_WEIGHTS_INDEX_NAME)
|
355 |
+
if (not os.path.exists(tf_weights_path) and not os.path.exists(tf_weights_index_path)) or self._new_weights:
|
356 |
+
tf_from_pt_model.save_pretrained(self._local_dir)
|
357 |
+
del tf_from_pt_model # will no longer be used, and may have a large memory footprint
|
358 |
+
|
359 |
+
tf_model = tf_class.from_pretrained(self._local_dir)
|
360 |
+
tf_outputs = tf_model(**tf_input, output_hidden_states=True)
|
361 |
+
|
362 |
+
conversion_differences = self.find_pt_tf_differences(pt_outputs, tf_outputs)
|
363 |
+
output_differences = {k: v for k, v in conversion_differences.items() if "hidden" not in k}
|
364 |
+
hidden_differences = {k: v for k, v in conversion_differences.items() if "hidden" in k}
|
365 |
+
if len(output_differences) == 0 and architectures is not None:
|
366 |
+
raise ValueError(
|
367 |
+
f"Something went wrong -- the config file has architectures ({architectures}), but no model head"
|
368 |
+
" output was found. All outputs start with 'hidden'"
|
369 |
+
)
|
370 |
+
max_conversion_output_diff = max(output_differences.values()) if output_differences else 0.0
|
371 |
+
max_conversion_hidden_diff = max(hidden_differences.values())
|
372 |
+
if max_conversion_output_diff > self._max_error or max_conversion_hidden_diff > self._max_error:
|
373 |
+
raise ValueError(
|
374 |
+
"The converted TensorFlow model has different outputs, something went wrong!\n"
|
375 |
+
+ f"\nList of maximum output differences above the threshold ({self._max_error}):\n"
|
376 |
+
+ "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error])
|
377 |
+
+ f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n"
|
378 |
+
+ "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error])
|
379 |
+
)
|
380 |
+
|
381 |
+
commit_message = "Update TF weights" if self._new_weights else "Add TF weights"
|
382 |
+
if self._push:
|
383 |
+
repo.git_add(auto_lfs_track=True)
|
384 |
+
repo.git_commit(commit_message)
|
385 |
+
repo.git_push(blocking=True) # this prints a progress bar with the upload
|
386 |
+
self._logger.warning(f"TF weights pushed into {self._model_name}")
|
387 |
+
elif not self._no_pr:
|
388 |
+
self._logger.warning("Uploading the weights into a new PR...")
|
389 |
+
commit_descrition = (
|
390 |
+
"Model converted by the [`transformers`' `pt_to_tf`"
|
391 |
+
" CLI](https://github.com/huggingface/transformers/blob/main/src/transformers/commands/pt_to_tf.py). "
|
392 |
+
"All converted model outputs and hidden layers were validated against its PyTorch counterpart.\n\n"
|
393 |
+
f"Maximum crossload output difference={max_crossload_output_diff:.3e}; "
|
394 |
+
f"Maximum crossload hidden layer difference={max_crossload_hidden_diff:.3e};\n"
|
395 |
+
f"Maximum conversion output difference={max_conversion_output_diff:.3e}; "
|
396 |
+
f"Maximum conversion hidden layer difference={max_conversion_hidden_diff:.3e};\n"
|
397 |
+
)
|
398 |
+
if self._max_error > MAX_ERROR:
|
399 |
+
commit_descrition += (
|
400 |
+
f"\n\nCAUTION: The maximum admissible error was manually increased to {self._max_error}!"
|
401 |
+
)
|
402 |
+
if self._extra_commit_description:
|
403 |
+
commit_descrition += "\n\n" + self._extra_commit_description
|
404 |
+
|
405 |
+
# sharded model -> adds all related files (index and .h5 shards)
|
406 |
+
if os.path.exists(tf_weights_index_path):
|
407 |
+
operations = [
|
408 |
+
CommitOperationAdd(path_in_repo=TF2_WEIGHTS_INDEX_NAME, path_or_fileobj=tf_weights_index_path)
|
409 |
+
]
|
410 |
+
for shard_path in tf.io.gfile.glob(self._local_dir + "/tf_model-*.h5"):
|
411 |
+
operations += [
|
412 |
+
CommitOperationAdd(path_in_repo=os.path.basename(shard_path), path_or_fileobj=shard_path)
|
413 |
+
]
|
414 |
+
else:
|
415 |
+
operations = [CommitOperationAdd(path_in_repo=TF2_WEIGHTS_NAME, path_or_fileobj=tf_weights_path)]
|
416 |
+
|
417 |
+
hub_pr_url = create_commit(
|
418 |
+
repo_id=self._model_name,
|
419 |
+
operations=operations,
|
420 |
+
commit_message=commit_message,
|
421 |
+
commit_description=commit_descrition,
|
422 |
+
repo_type="model",
|
423 |
+
create_pr=True,
|
424 |
+
).pr_url
|
425 |
+
self._logger.warning(f"PR open in {hub_pr_url}")
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/run.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser
|
16 |
+
|
17 |
+
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
|
18 |
+
from ..utils import logging
|
19 |
+
from . import BaseTransformersCLICommand
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
23 |
+
|
24 |
+
|
25 |
+
def try_infer_format_from_ext(path: str):
|
26 |
+
if not path:
|
27 |
+
return "pipe"
|
28 |
+
|
29 |
+
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
|
30 |
+
if path.endswith(ext):
|
31 |
+
return ext
|
32 |
+
|
33 |
+
raise Exception(
|
34 |
+
f"Unable to determine file format from file extension {path}. "
|
35 |
+
f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}"
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def run_command_factory(args):
|
40 |
+
nlp = pipeline(
|
41 |
+
task=args.task,
|
42 |
+
model=args.model if args.model else None,
|
43 |
+
config=args.config,
|
44 |
+
tokenizer=args.tokenizer,
|
45 |
+
device=args.device,
|
46 |
+
)
|
47 |
+
format = try_infer_format_from_ext(args.input) if args.format == "infer" else args.format
|
48 |
+
reader = PipelineDataFormat.from_str(
|
49 |
+
format=format,
|
50 |
+
output_path=args.output,
|
51 |
+
input_path=args.input,
|
52 |
+
column=args.column if args.column else nlp.default_input_names,
|
53 |
+
overwrite=args.overwrite,
|
54 |
+
)
|
55 |
+
return RunCommand(nlp, reader)
|
56 |
+
|
57 |
+
|
58 |
+
class RunCommand(BaseTransformersCLICommand):
|
59 |
+
def __init__(self, nlp: Pipeline, reader: PipelineDataFormat):
|
60 |
+
self._nlp = nlp
|
61 |
+
self._reader = reader
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def register_subcommand(parser: ArgumentParser):
|
65 |
+
run_parser = parser.add_parser("run", help="Run a pipeline through the CLI")
|
66 |
+
run_parser.add_argument("--task", choices=get_supported_tasks(), help="Task to run")
|
67 |
+
run_parser.add_argument("--input", type=str, help="Path to the file to use for inference")
|
68 |
+
run_parser.add_argument("--output", type=str, help="Path to the file that will be used post to write results.")
|
69 |
+
run_parser.add_argument("--model", type=str, help="Name or path to the model to instantiate.")
|
70 |
+
run_parser.add_argument("--config", type=str, help="Name or path to the model's config to instantiate.")
|
71 |
+
run_parser.add_argument(
|
72 |
+
"--tokenizer", type=str, help="Name of the tokenizer to use. (default: same as the model name)"
|
73 |
+
)
|
74 |
+
run_parser.add_argument(
|
75 |
+
"--column",
|
76 |
+
type=str,
|
77 |
+
help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)",
|
78 |
+
)
|
79 |
+
run_parser.add_argument(
|
80 |
+
"--format",
|
81 |
+
type=str,
|
82 |
+
default="infer",
|
83 |
+
choices=PipelineDataFormat.SUPPORTED_FORMATS,
|
84 |
+
help="Input format to read from",
|
85 |
+
)
|
86 |
+
run_parser.add_argument(
|
87 |
+
"--device",
|
88 |
+
type=int,
|
89 |
+
default=-1,
|
90 |
+
help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",
|
91 |
+
)
|
92 |
+
run_parser.add_argument("--overwrite", action="store_true", help="Allow overwriting the output file.")
|
93 |
+
run_parser.set_defaults(func=run_command_factory)
|
94 |
+
|
95 |
+
def run(self):
|
96 |
+
nlp, outputs = self._nlp, []
|
97 |
+
|
98 |
+
for entry in self._reader:
|
99 |
+
output = nlp(**entry) if self._reader.is_multi_columns else nlp(entry)
|
100 |
+
if isinstance(output, dict):
|
101 |
+
outputs.append(output)
|
102 |
+
else:
|
103 |
+
outputs += output
|
104 |
+
|
105 |
+
# Saving data
|
106 |
+
if self._nlp.binary_output:
|
107 |
+
binary_path = self._reader.save_binary(outputs)
|
108 |
+
logger.warning(f"Current pipeline requires output to be in binary format, saving at {binary_path}")
|
109 |
+
else:
|
110 |
+
self._reader.save(outputs)
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/serving.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser, Namespace
|
16 |
+
from typing import Any, List, Optional
|
17 |
+
|
18 |
+
from ..pipelines import Pipeline, get_supported_tasks, pipeline
|
19 |
+
from ..utils import logging
|
20 |
+
from . import BaseTransformersCLICommand
|
21 |
+
|
22 |
+
|
23 |
+
try:
|
24 |
+
from fastapi import Body, FastAPI, HTTPException
|
25 |
+
from fastapi.routing import APIRoute
|
26 |
+
from pydantic import BaseModel
|
27 |
+
from starlette.responses import JSONResponse
|
28 |
+
from uvicorn import run
|
29 |
+
|
30 |
+
_serve_dependencies_installed = True
|
31 |
+
except (ImportError, AttributeError):
|
32 |
+
BaseModel = object
|
33 |
+
|
34 |
+
def Body(*x, **y):
|
35 |
+
pass
|
36 |
+
|
37 |
+
_serve_dependencies_installed = False
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger("transformers-cli/serving")
|
41 |
+
|
42 |
+
|
43 |
+
def serve_command_factory(args: Namespace):
|
44 |
+
"""
|
45 |
+
Factory function used to instantiate serving server from provided command line arguments.
|
46 |
+
|
47 |
+
Returns: ServeCommand
|
48 |
+
"""
|
49 |
+
nlp = pipeline(
|
50 |
+
task=args.task,
|
51 |
+
model=args.model if args.model else None,
|
52 |
+
config=args.config,
|
53 |
+
tokenizer=args.tokenizer,
|
54 |
+
device=args.device,
|
55 |
+
)
|
56 |
+
return ServeCommand(nlp, args.host, args.port, args.workers)
|
57 |
+
|
58 |
+
|
59 |
+
class ServeModelInfoResult(BaseModel):
|
60 |
+
"""
|
61 |
+
Expose model information
|
62 |
+
"""
|
63 |
+
|
64 |
+
infos: dict
|
65 |
+
|
66 |
+
|
67 |
+
class ServeTokenizeResult(BaseModel):
|
68 |
+
"""
|
69 |
+
Tokenize result model
|
70 |
+
"""
|
71 |
+
|
72 |
+
tokens: List[str]
|
73 |
+
tokens_ids: Optional[List[int]]
|
74 |
+
|
75 |
+
|
76 |
+
class ServeDeTokenizeResult(BaseModel):
|
77 |
+
"""
|
78 |
+
DeTokenize result model
|
79 |
+
"""
|
80 |
+
|
81 |
+
text: str
|
82 |
+
|
83 |
+
|
84 |
+
class ServeForwardResult(BaseModel):
|
85 |
+
"""
|
86 |
+
Forward result model
|
87 |
+
"""
|
88 |
+
|
89 |
+
output: Any
|
90 |
+
|
91 |
+
|
92 |
+
class ServeCommand(BaseTransformersCLICommand):
|
93 |
+
@staticmethod
|
94 |
+
def register_subcommand(parser: ArgumentParser):
|
95 |
+
"""
|
96 |
+
Register this command to argparse so it's available for the transformer-cli
|
97 |
+
|
98 |
+
Args:
|
99 |
+
parser: Root parser to register command-specific arguments
|
100 |
+
"""
|
101 |
+
serve_parser = parser.add_parser(
|
102 |
+
"serve", help="CLI tool to run inference requests through REST and GraphQL endpoints."
|
103 |
+
)
|
104 |
+
serve_parser.add_argument(
|
105 |
+
"--task",
|
106 |
+
type=str,
|
107 |
+
choices=get_supported_tasks(),
|
108 |
+
help="The task to run the pipeline on",
|
109 |
+
)
|
110 |
+
serve_parser.add_argument("--host", type=str, default="localhost", help="Interface the server will listen on.")
|
111 |
+
serve_parser.add_argument("--port", type=int, default=8888, help="Port the serving will listen to.")
|
112 |
+
serve_parser.add_argument("--workers", type=int, default=1, help="Number of http workers")
|
113 |
+
serve_parser.add_argument("--model", type=str, help="Model's name or path to stored model.")
|
114 |
+
serve_parser.add_argument("--config", type=str, help="Model's config name or path to stored model.")
|
115 |
+
serve_parser.add_argument("--tokenizer", type=str, help="Tokenizer name to use.")
|
116 |
+
serve_parser.add_argument(
|
117 |
+
"--device",
|
118 |
+
type=int,
|
119 |
+
default=-1,
|
120 |
+
help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",
|
121 |
+
)
|
122 |
+
serve_parser.set_defaults(func=serve_command_factory)
|
123 |
+
|
124 |
+
def __init__(self, pipeline: Pipeline, host: str, port: int, workers: int):
|
125 |
+
self._pipeline = pipeline
|
126 |
+
|
127 |
+
self.host = host
|
128 |
+
self.port = port
|
129 |
+
self.workers = workers
|
130 |
+
|
131 |
+
if not _serve_dependencies_installed:
|
132 |
+
raise RuntimeError(
|
133 |
+
"Using serve command requires FastAPI and uvicorn. "
|
134 |
+
'Please install transformers with [serving]: pip install "transformers[serving]". '
|
135 |
+
"Or install FastAPI and uvicorn separately."
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
logger.info(f"Serving model over {host}:{port}")
|
139 |
+
self._app = FastAPI(
|
140 |
+
routes=[
|
141 |
+
APIRoute(
|
142 |
+
"/",
|
143 |
+
self.model_info,
|
144 |
+
response_model=ServeModelInfoResult,
|
145 |
+
response_class=JSONResponse,
|
146 |
+
methods=["GET"],
|
147 |
+
),
|
148 |
+
APIRoute(
|
149 |
+
"/tokenize",
|
150 |
+
self.tokenize,
|
151 |
+
response_model=ServeTokenizeResult,
|
152 |
+
response_class=JSONResponse,
|
153 |
+
methods=["POST"],
|
154 |
+
),
|
155 |
+
APIRoute(
|
156 |
+
"/detokenize",
|
157 |
+
self.detokenize,
|
158 |
+
response_model=ServeDeTokenizeResult,
|
159 |
+
response_class=JSONResponse,
|
160 |
+
methods=["POST"],
|
161 |
+
),
|
162 |
+
APIRoute(
|
163 |
+
"/forward",
|
164 |
+
self.forward,
|
165 |
+
response_model=ServeForwardResult,
|
166 |
+
response_class=JSONResponse,
|
167 |
+
methods=["POST"],
|
168 |
+
),
|
169 |
+
],
|
170 |
+
timeout=600,
|
171 |
+
)
|
172 |
+
|
173 |
+
def run(self):
|
174 |
+
run(self._app, host=self.host, port=self.port, workers=self.workers)
|
175 |
+
|
176 |
+
def model_info(self):
|
177 |
+
return ServeModelInfoResult(infos=vars(self._pipeline.model.config))
|
178 |
+
|
179 |
+
def tokenize(self, text_input: str = Body(None, embed=True), return_ids: bool = Body(False, embed=True)):
|
180 |
+
"""
|
181 |
+
Tokenize the provided input and eventually returns corresponding tokens id: - **text_input**: String to
|
182 |
+
tokenize - **return_ids**: Boolean flags indicating if the tokens have to be converted to their integer
|
183 |
+
mapping.
|
184 |
+
"""
|
185 |
+
try:
|
186 |
+
tokens_txt = self._pipeline.tokenizer.tokenize(text_input)
|
187 |
+
|
188 |
+
if return_ids:
|
189 |
+
tokens_ids = self._pipeline.tokenizer.convert_tokens_to_ids(tokens_txt)
|
190 |
+
return ServeTokenizeResult(tokens=tokens_txt, tokens_ids=tokens_ids)
|
191 |
+
else:
|
192 |
+
return ServeTokenizeResult(tokens=tokens_txt)
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
raise HTTPException(status_code=500, detail={"model": "", "error": str(e)})
|
196 |
+
|
197 |
+
def detokenize(
|
198 |
+
self,
|
199 |
+
tokens_ids: List[int] = Body(None, embed=True),
|
200 |
+
skip_special_tokens: bool = Body(False, embed=True),
|
201 |
+
cleanup_tokenization_spaces: bool = Body(True, embed=True),
|
202 |
+
):
|
203 |
+
"""
|
204 |
+
Detokenize the provided tokens ids to readable text: - **tokens_ids**: List of tokens ids -
|
205 |
+
**skip_special_tokens**: Flag indicating to not try to decode special tokens - **cleanup_tokenization_spaces**:
|
206 |
+
Flag indicating to remove all leading/trailing spaces and intermediate ones.
|
207 |
+
"""
|
208 |
+
try:
|
209 |
+
decoded_str = self._pipeline.tokenizer.decode(tokens_ids, skip_special_tokens, cleanup_tokenization_spaces)
|
210 |
+
return ServeDeTokenizeResult(model="", text=decoded_str)
|
211 |
+
except Exception as e:
|
212 |
+
raise HTTPException(status_code=500, detail={"model": "", "error": str(e)})
|
213 |
+
|
214 |
+
async def forward(self, inputs=Body(None, embed=True)):
|
215 |
+
"""
|
216 |
+
**inputs**: **attention_mask**: **tokens_type_ids**:
|
217 |
+
"""
|
218 |
+
|
219 |
+
# Check we don't have empty string
|
220 |
+
if len(inputs) == 0:
|
221 |
+
return ServeForwardResult(output=[], attention=[])
|
222 |
+
|
223 |
+
try:
|
224 |
+
# Forward through the model
|
225 |
+
output = self._pipeline(inputs)
|
226 |
+
return ServeForwardResult(output=output)
|
227 |
+
except Exception as e:
|
228 |
+
raise HTTPException(500, {"error": str(e)})
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/train.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
from argparse import ArgumentParser, Namespace
|
17 |
+
|
18 |
+
from ..data import SingleSentenceClassificationProcessor as Processor
|
19 |
+
from ..pipelines import TextClassificationPipeline
|
20 |
+
from ..utils import is_tf_available, is_torch_available, logging
|
21 |
+
from . import BaseTransformersCLICommand
|
22 |
+
|
23 |
+
|
24 |
+
if not is_tf_available() and not is_torch_available():
|
25 |
+
raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")
|
26 |
+
|
27 |
+
# TF training parameters
|
28 |
+
USE_XLA = False
|
29 |
+
USE_AMP = False
|
30 |
+
|
31 |
+
|
32 |
+
def train_command_factory(args: Namespace):
|
33 |
+
"""
|
34 |
+
Factory function used to instantiate training command from provided command line arguments.
|
35 |
+
|
36 |
+
Returns: TrainCommand
|
37 |
+
"""
|
38 |
+
return TrainCommand(args)
|
39 |
+
|
40 |
+
|
41 |
+
class TrainCommand(BaseTransformersCLICommand):
|
42 |
+
@staticmethod
|
43 |
+
def register_subcommand(parser: ArgumentParser):
|
44 |
+
"""
|
45 |
+
Register this command to argparse so it's available for the transformer-cli
|
46 |
+
|
47 |
+
Args:
|
48 |
+
parser: Root parser to register command-specific arguments
|
49 |
+
"""
|
50 |
+
train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.")
|
51 |
+
|
52 |
+
train_parser.add_argument(
|
53 |
+
"--train_data",
|
54 |
+
type=str,
|
55 |
+
required=True,
|
56 |
+
help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",
|
57 |
+
)
|
58 |
+
train_parser.add_argument(
|
59 |
+
"--column_label", type=int, default=0, help="Column of the dataset csv file with example labels."
|
60 |
+
)
|
61 |
+
train_parser.add_argument(
|
62 |
+
"--column_text", type=int, default=1, help="Column of the dataset csv file with example texts."
|
63 |
+
)
|
64 |
+
train_parser.add_argument(
|
65 |
+
"--column_id", type=int, default=2, help="Column of the dataset csv file with example ids."
|
66 |
+
)
|
67 |
+
train_parser.add_argument(
|
68 |
+
"--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)."
|
69 |
+
)
|
70 |
+
|
71 |
+
train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.")
|
72 |
+
train_parser.add_argument(
|
73 |
+
"--validation_split",
|
74 |
+
type=float,
|
75 |
+
default=0.1,
|
76 |
+
help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",
|
77 |
+
)
|
78 |
+
|
79 |
+
train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.")
|
80 |
+
|
81 |
+
train_parser.add_argument(
|
82 |
+
"--task", type=str, default="text_classification", help="Task to train the model on."
|
83 |
+
)
|
84 |
+
train_parser.add_argument(
|
85 |
+
"--model", type=str, default="google-bert/bert-base-uncased", help="Model's name or path to stored model."
|
86 |
+
)
|
87 |
+
train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.")
|
88 |
+
train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.")
|
89 |
+
train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.")
|
90 |
+
train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.")
|
91 |
+
train_parser.set_defaults(func=train_command_factory)
|
92 |
+
|
93 |
+
def __init__(self, args: Namespace):
|
94 |
+
self.logger = logging.get_logger("transformers-cli/training")
|
95 |
+
|
96 |
+
self.framework = "tf" if is_tf_available() else "torch"
|
97 |
+
|
98 |
+
os.makedirs(args.output, exist_ok=True)
|
99 |
+
self.output = args.output
|
100 |
+
|
101 |
+
self.column_label = args.column_label
|
102 |
+
self.column_text = args.column_text
|
103 |
+
self.column_id = args.column_id
|
104 |
+
|
105 |
+
self.logger.info(f"Loading {args.task} pipeline for {args.model}")
|
106 |
+
if args.task == "text_classification":
|
107 |
+
self.pipeline = TextClassificationPipeline.from_pretrained(args.model)
|
108 |
+
elif args.task == "token_classification":
|
109 |
+
raise NotImplementedError
|
110 |
+
elif args.task == "question_answering":
|
111 |
+
raise NotImplementedError
|
112 |
+
|
113 |
+
self.logger.info(f"Loading dataset from {args.train_data}")
|
114 |
+
self.train_dataset = Processor.create_from_csv(
|
115 |
+
args.train_data,
|
116 |
+
column_label=args.column_label,
|
117 |
+
column_text=args.column_text,
|
118 |
+
column_id=args.column_id,
|
119 |
+
skip_first_row=args.skip_first_row,
|
120 |
+
)
|
121 |
+
self.valid_dataset = None
|
122 |
+
if args.validation_data:
|
123 |
+
self.logger.info(f"Loading validation dataset from {args.validation_data}")
|
124 |
+
self.valid_dataset = Processor.create_from_csv(
|
125 |
+
args.validation_data,
|
126 |
+
column_label=args.column_label,
|
127 |
+
column_text=args.column_text,
|
128 |
+
column_id=args.column_id,
|
129 |
+
skip_first_row=args.skip_first_row,
|
130 |
+
)
|
131 |
+
|
132 |
+
self.validation_split = args.validation_split
|
133 |
+
self.train_batch_size = args.train_batch_size
|
134 |
+
self.valid_batch_size = args.valid_batch_size
|
135 |
+
self.learning_rate = args.learning_rate
|
136 |
+
self.adam_epsilon = args.adam_epsilon
|
137 |
+
|
138 |
+
def run(self):
|
139 |
+
if self.framework == "tf":
|
140 |
+
return self.run_tf()
|
141 |
+
return self.run_torch()
|
142 |
+
|
143 |
+
def run_torch(self):
|
144 |
+
raise NotImplementedError
|
145 |
+
|
146 |
+
def run_tf(self):
|
147 |
+
self.pipeline.fit(
|
148 |
+
self.train_dataset,
|
149 |
+
validation_data=self.valid_dataset,
|
150 |
+
validation_split=self.validation_split,
|
151 |
+
learning_rate=self.learning_rate,
|
152 |
+
adam_epsilon=self.adam_epsilon,
|
153 |
+
train_batch_size=self.train_batch_size,
|
154 |
+
valid_batch_size=self.valid_batch_size,
|
155 |
+
)
|
156 |
+
|
157 |
+
# Save trained pipeline
|
158 |
+
self.pipeline.save_pretrained(self.output)
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/transformers_cli.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
from .add_new_model import AddNewModelCommand
|
19 |
+
from .add_new_model_like import AddNewModelLikeCommand
|
20 |
+
from .convert import ConvertCommand
|
21 |
+
from .download import DownloadCommand
|
22 |
+
from .env import EnvironmentCommand
|
23 |
+
from .lfs import LfsCommands
|
24 |
+
from .pt_to_tf import PTtoTFCommand
|
25 |
+
from .run import RunCommand
|
26 |
+
from .serving import ServeCommand
|
27 |
+
from .user import UserCommands
|
28 |
+
|
29 |
+
|
30 |
+
def main():
|
31 |
+
parser = ArgumentParser("Transformers CLI tool", usage="transformers-cli <command> [<args>]")
|
32 |
+
commands_parser = parser.add_subparsers(help="transformers-cli command helpers")
|
33 |
+
|
34 |
+
# Register commands
|
35 |
+
ConvertCommand.register_subcommand(commands_parser)
|
36 |
+
DownloadCommand.register_subcommand(commands_parser)
|
37 |
+
EnvironmentCommand.register_subcommand(commands_parser)
|
38 |
+
RunCommand.register_subcommand(commands_parser)
|
39 |
+
ServeCommand.register_subcommand(commands_parser)
|
40 |
+
UserCommands.register_subcommand(commands_parser)
|
41 |
+
AddNewModelCommand.register_subcommand(commands_parser)
|
42 |
+
AddNewModelLikeCommand.register_subcommand(commands_parser)
|
43 |
+
LfsCommands.register_subcommand(commands_parser)
|
44 |
+
PTtoTFCommand.register_subcommand(commands_parser)
|
45 |
+
|
46 |
+
# Let's go
|
47 |
+
args = parser.parse_args()
|
48 |
+
|
49 |
+
if not hasattr(args, "func"):
|
50 |
+
parser.print_help()
|
51 |
+
exit(1)
|
52 |
+
|
53 |
+
# Run
|
54 |
+
service = args.func(args)
|
55 |
+
service.run()
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
main()
|
env-llmeval/lib/python3.10/site-packages/transformers/commands/user.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import subprocess
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
from typing import List, Union
|
18 |
+
|
19 |
+
from huggingface_hub.hf_api import HfFolder, create_repo, whoami
|
20 |
+
from requests.exceptions import HTTPError
|
21 |
+
|
22 |
+
from . import BaseTransformersCLICommand
|
23 |
+
|
24 |
+
|
25 |
+
class UserCommands(BaseTransformersCLICommand):
|
26 |
+
@staticmethod
|
27 |
+
def register_subcommand(parser: ArgumentParser):
|
28 |
+
login_parser = parser.add_parser("login", help="Log in using the same credentials as on huggingface.co")
|
29 |
+
login_parser.set_defaults(func=lambda args: LoginCommand(args))
|
30 |
+
whoami_parser = parser.add_parser("whoami", help="Find out which huggingface.co account you are logged in as.")
|
31 |
+
whoami_parser.set_defaults(func=lambda args: WhoamiCommand(args))
|
32 |
+
logout_parser = parser.add_parser("logout", help="Log out")
|
33 |
+
logout_parser.set_defaults(func=lambda args: LogoutCommand(args))
|
34 |
+
|
35 |
+
# new system: git-based repo system
|
36 |
+
repo_parser = parser.add_parser(
|
37 |
+
"repo",
|
38 |
+
help="Deprecated: use `huggingface-cli` instead. Commands to interact with your huggingface.co repos.",
|
39 |
+
)
|
40 |
+
repo_subparsers = repo_parser.add_subparsers(
|
41 |
+
help="Deprecated: use `huggingface-cli` instead. huggingface.co repos related commands"
|
42 |
+
)
|
43 |
+
repo_create_parser = repo_subparsers.add_parser(
|
44 |
+
"create", help="Deprecated: use `huggingface-cli` instead. Create a new repo on huggingface.co"
|
45 |
+
)
|
46 |
+
repo_create_parser.add_argument(
|
47 |
+
"name",
|
48 |
+
type=str,
|
49 |
+
help="Name for your model's repo. Will be namespaced under your username to build the model id.",
|
50 |
+
)
|
51 |
+
repo_create_parser.add_argument("--organization", type=str, help="Optional: organization namespace.")
|
52 |
+
repo_create_parser.add_argument("-y", "--yes", action="store_true", help="Optional: answer Yes to the prompt")
|
53 |
+
repo_create_parser.set_defaults(func=lambda args: RepoCreateCommand(args))
|
54 |
+
|
55 |
+
|
56 |
+
class ANSI:
|
57 |
+
"""
|
58 |
+
Helper for en.wikipedia.org/wiki/ANSI_escape_code
|
59 |
+
"""
|
60 |
+
|
61 |
+
_bold = "\u001b[1m"
|
62 |
+
_red = "\u001b[31m"
|
63 |
+
_gray = "\u001b[90m"
|
64 |
+
_reset = "\u001b[0m"
|
65 |
+
|
66 |
+
@classmethod
|
67 |
+
def bold(cls, s):
|
68 |
+
return f"{cls._bold}{s}{cls._reset}"
|
69 |
+
|
70 |
+
@classmethod
|
71 |
+
def red(cls, s):
|
72 |
+
return f"{cls._bold}{cls._red}{s}{cls._reset}"
|
73 |
+
|
74 |
+
@classmethod
|
75 |
+
def gray(cls, s):
|
76 |
+
return f"{cls._gray}{s}{cls._reset}"
|
77 |
+
|
78 |
+
|
79 |
+
def tabulate(rows: List[List[Union[str, int]]], headers: List[str]) -> str:
|
80 |
+
"""
|
81 |
+
Inspired by:
|
82 |
+
|
83 |
+
- stackoverflow.com/a/8356620/593036
|
84 |
+
- stackoverflow.com/questions/9535954/printing-lists-as-tabular-data
|
85 |
+
"""
|
86 |
+
col_widths = [max(len(str(x)) for x in col) for col in zip(*rows, headers)]
|
87 |
+
row_format = ("{{:{}}} " * len(headers)).format(*col_widths)
|
88 |
+
lines = []
|
89 |
+
lines.append(row_format.format(*headers))
|
90 |
+
lines.append(row_format.format(*["-" * w for w in col_widths]))
|
91 |
+
for row in rows:
|
92 |
+
lines.append(row_format.format(*row))
|
93 |
+
return "\n".join(lines)
|
94 |
+
|
95 |
+
|
96 |
+
class BaseUserCommand:
|
97 |
+
def __init__(self, args):
|
98 |
+
self.args = args
|
99 |
+
|
100 |
+
|
101 |
+
class LoginCommand(BaseUserCommand):
|
102 |
+
def run(self):
|
103 |
+
print(
|
104 |
+
ANSI.red(
|
105 |
+
"ERROR! `huggingface-cli login` uses an outdated login mechanism "
|
106 |
+
"that is not compatible with the Hugging Face Hub backend anymore. "
|
107 |
+
"Please use `huggingface-cli login instead."
|
108 |
+
)
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
class WhoamiCommand(BaseUserCommand):
|
113 |
+
def run(self):
|
114 |
+
print(
|
115 |
+
ANSI.red(
|
116 |
+
"WARNING! `transformers-cli whoami` is deprecated and will be removed in v5. Please use "
|
117 |
+
"`huggingface-cli whoami` instead."
|
118 |
+
)
|
119 |
+
)
|
120 |
+
token = HfFolder.get_token()
|
121 |
+
if token is None:
|
122 |
+
print("Not logged in")
|
123 |
+
exit()
|
124 |
+
try:
|
125 |
+
user, orgs = whoami(token)
|
126 |
+
print(user)
|
127 |
+
if orgs:
|
128 |
+
print(ANSI.bold("orgs: "), ",".join(orgs))
|
129 |
+
except HTTPError as e:
|
130 |
+
print(e)
|
131 |
+
print(ANSI.red(e.response.text))
|
132 |
+
exit(1)
|
133 |
+
|
134 |
+
|
135 |
+
class LogoutCommand(BaseUserCommand):
|
136 |
+
def run(self):
|
137 |
+
print(
|
138 |
+
ANSI.red(
|
139 |
+
"ERROR! `transformers-cli logout` uses an outdated logout mechanism "
|
140 |
+
"that is not compatible with the Hugging Face Hub backend anymore. "
|
141 |
+
"Please use `huggingface-cli logout instead."
|
142 |
+
)
|
143 |
+
)
|
144 |
+
|
145 |
+
|
146 |
+
class RepoCreateCommand(BaseUserCommand):
|
147 |
+
def run(self):
|
148 |
+
print(
|
149 |
+
ANSI.red(
|
150 |
+
"WARNING! Managing repositories through transformers-cli is deprecated. "
|
151 |
+
"Please use `huggingface-cli` instead."
|
152 |
+
)
|
153 |
+
)
|
154 |
+
token = HfFolder.get_token()
|
155 |
+
if token is None:
|
156 |
+
print("Not logged in")
|
157 |
+
exit(1)
|
158 |
+
try:
|
159 |
+
stdout = subprocess.check_output(["git", "--version"]).decode("utf-8")
|
160 |
+
print(ANSI.gray(stdout.strip()))
|
161 |
+
except FileNotFoundError:
|
162 |
+
print("Looks like you do not have git installed, please install.")
|
163 |
+
|
164 |
+
try:
|
165 |
+
stdout = subprocess.check_output(["git-lfs", "--version"]).decode("utf-8")
|
166 |
+
print(ANSI.gray(stdout.strip()))
|
167 |
+
except FileNotFoundError:
|
168 |
+
print(
|
169 |
+
ANSI.red(
|
170 |
+
"Looks like you do not have git-lfs installed, please install."
|
171 |
+
" You can install from https://git-lfs.github.com/."
|
172 |
+
" Then run `git lfs install` (you only have to do this once)."
|
173 |
+
)
|
174 |
+
)
|
175 |
+
print("")
|
176 |
+
|
177 |
+
user, _ = whoami(token)
|
178 |
+
namespace = self.args.organization if self.args.organization is not None else user
|
179 |
+
full_name = f"{namespace}/{self.args.name}"
|
180 |
+
print(f"You are about to create {ANSI.bold(full_name)}")
|
181 |
+
|
182 |
+
if not self.args.yes:
|
183 |
+
choice = input("Proceed? [Y/n] ").lower()
|
184 |
+
if not (choice == "" or choice == "y" or choice == "yes"):
|
185 |
+
print("Abort")
|
186 |
+
exit()
|
187 |
+
try:
|
188 |
+
url = create_repo(token, name=self.args.name, organization=self.args.organization)
|
189 |
+
except HTTPError as e:
|
190 |
+
print(e)
|
191 |
+
print(ANSI.red(e.response.text))
|
192 |
+
exit(1)
|
193 |
+
print("\nYour repo now lives at:")
|
194 |
+
print(f" {ANSI.bold(url)}")
|
195 |
+
print("\nYou can clone it locally with the command below, and commit/push as usual.")
|
196 |
+
print(f"\n git clone {url}")
|
197 |
+
print("")
|
env-llmeval/lib/python3.10/site-packages/transformers/data/__init__.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .data_collator import (
|
16 |
+
DataCollatorForLanguageModeling,
|
17 |
+
DataCollatorForPermutationLanguageModeling,
|
18 |
+
DataCollatorForSeq2Seq,
|
19 |
+
DataCollatorForSOP,
|
20 |
+
DataCollatorForTokenClassification,
|
21 |
+
DataCollatorForWholeWordMask,
|
22 |
+
DataCollatorWithPadding,
|
23 |
+
DefaultDataCollator,
|
24 |
+
default_data_collator,
|
25 |
+
)
|
26 |
+
from .metrics import glue_compute_metrics, xnli_compute_metrics
|
27 |
+
from .processors import (
|
28 |
+
DataProcessor,
|
29 |
+
InputExample,
|
30 |
+
InputFeatures,
|
31 |
+
SingleSentenceClassificationProcessor,
|
32 |
+
SquadExample,
|
33 |
+
SquadFeatures,
|
34 |
+
SquadV1Processor,
|
35 |
+
SquadV2Processor,
|
36 |
+
glue_convert_examples_to_features,
|
37 |
+
glue_output_modes,
|
38 |
+
glue_processors,
|
39 |
+
glue_tasks_num_labels,
|
40 |
+
squad_convert_examples_to_features,
|
41 |
+
xnli_output_modes,
|
42 |
+
xnli_processors,
|
43 |
+
xnli_tasks_num_labels,
|
44 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/data/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/data/__pycache__/data_collator.cpython-310.pyc
ADDED
Binary file (46.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/data/data_collator.py
ADDED
@@ -0,0 +1,1568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import random
|
16 |
+
import warnings
|
17 |
+
from collections.abc import Mapping
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from random import randint
|
20 |
+
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ..models.bert import BertTokenizer, BertTokenizerFast
|
25 |
+
from ..tokenization_utils_base import PreTrainedTokenizerBase
|
26 |
+
from ..utils import PaddingStrategy
|
27 |
+
|
28 |
+
|
29 |
+
InputDataClass = NewType("InputDataClass", Any)
|
30 |
+
|
31 |
+
"""
|
32 |
+
A DataCollator is a function that takes a list of samples from a Dataset and collate them into a batch, as a dictionary
|
33 |
+
of PyTorch/TensorFlow tensors or NumPy arrays.
|
34 |
+
"""
|
35 |
+
DataCollator = NewType("DataCollator", Callable[[List[InputDataClass]], Dict[str, Any]])
|
36 |
+
|
37 |
+
|
38 |
+
class DataCollatorMixin:
|
39 |
+
def __call__(self, features, return_tensors=None):
|
40 |
+
if return_tensors is None:
|
41 |
+
return_tensors = self.return_tensors
|
42 |
+
if return_tensors == "tf":
|
43 |
+
return self.tf_call(features)
|
44 |
+
elif return_tensors == "pt":
|
45 |
+
return self.torch_call(features)
|
46 |
+
elif return_tensors == "np":
|
47 |
+
return self.numpy_call(features)
|
48 |
+
else:
|
49 |
+
raise ValueError(f"Framework '{return_tensors}' not recognized!")
|
50 |
+
|
51 |
+
|
52 |
+
def pad_without_fast_tokenizer_warning(tokenizer, *pad_args, **pad_kwargs):
|
53 |
+
"""
|
54 |
+
Pads without triggering the warning about how using the pad function is sub-optimal when using a fast tokenizer.
|
55 |
+
"""
|
56 |
+
|
57 |
+
# To avoid errors when using Feature extractors
|
58 |
+
if not hasattr(tokenizer, "deprecation_warnings"):
|
59 |
+
return tokenizer.pad(*pad_args, **pad_kwargs)
|
60 |
+
|
61 |
+
# Save the state of the warning, then disable it
|
62 |
+
warning_state = tokenizer.deprecation_warnings.get("Asking-to-pad-a-fast-tokenizer", False)
|
63 |
+
tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
|
64 |
+
|
65 |
+
try:
|
66 |
+
padded = tokenizer.pad(*pad_args, **pad_kwargs)
|
67 |
+
finally:
|
68 |
+
# Restore the state of the warning.
|
69 |
+
tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = warning_state
|
70 |
+
|
71 |
+
return padded
|
72 |
+
|
73 |
+
|
74 |
+
def default_data_collator(features: List[InputDataClass], return_tensors="pt") -> Dict[str, Any]:
|
75 |
+
"""
|
76 |
+
Very simple data collator that simply collates batches of dict-like objects and performs special handling for
|
77 |
+
potential keys named:
|
78 |
+
|
79 |
+
- `label`: handles a single value (int or float) per object
|
80 |
+
- `label_ids`: handles a list of values per object
|
81 |
+
|
82 |
+
Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs
|
83 |
+
to the model. See glue and ner for example of how it's useful.
|
84 |
+
"""
|
85 |
+
|
86 |
+
# In this function we'll make the assumption that all `features` in the batch
|
87 |
+
# have the same attributes.
|
88 |
+
# So we will look at the first element as a proxy for what attributes exist
|
89 |
+
# on the whole batch.
|
90 |
+
|
91 |
+
if return_tensors == "pt":
|
92 |
+
return torch_default_data_collator(features)
|
93 |
+
elif return_tensors == "tf":
|
94 |
+
return tf_default_data_collator(features)
|
95 |
+
elif return_tensors == "np":
|
96 |
+
return numpy_default_data_collator(features)
|
97 |
+
|
98 |
+
|
99 |
+
@dataclass
|
100 |
+
class DefaultDataCollator(DataCollatorMixin):
|
101 |
+
"""
|
102 |
+
Very simple data collator that simply collates batches of dict-like objects and performs special handling for
|
103 |
+
potential keys named:
|
104 |
+
|
105 |
+
- `label`: handles a single value (int or float) per object
|
106 |
+
- `label_ids`: handles a list of values per object
|
107 |
+
|
108 |
+
Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs
|
109 |
+
to the model. See glue and ner for example of how it's useful.
|
110 |
+
|
111 |
+
This is an object (like other data collators) rather than a pure function like default_data_collator. This can be
|
112 |
+
helpful if you need to set a return_tensors value at initialization.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
return_tensors (`str`, *optional*, defaults to `"pt"`):
|
116 |
+
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
|
117 |
+
"""
|
118 |
+
|
119 |
+
return_tensors: str = "pt"
|
120 |
+
|
121 |
+
def __call__(self, features: List[Dict[str, Any]], return_tensors=None) -> Dict[str, Any]:
|
122 |
+
if return_tensors is None:
|
123 |
+
return_tensors = self.return_tensors
|
124 |
+
return default_data_collator(features, return_tensors)
|
125 |
+
|
126 |
+
|
127 |
+
def torch_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
|
128 |
+
import torch
|
129 |
+
|
130 |
+
if not isinstance(features[0], Mapping):
|
131 |
+
features = [vars(f) for f in features]
|
132 |
+
first = features[0]
|
133 |
+
batch = {}
|
134 |
+
|
135 |
+
# Special handling for labels.
|
136 |
+
# Ensure that tensor is created with the correct type
|
137 |
+
# (it should be automatically the case, but let's make sure of it.)
|
138 |
+
if "label" in first and first["label"] is not None:
|
139 |
+
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
|
140 |
+
dtype = torch.long if isinstance(label, int) else torch.float
|
141 |
+
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
|
142 |
+
elif "label_ids" in first and first["label_ids"] is not None:
|
143 |
+
if isinstance(first["label_ids"], torch.Tensor):
|
144 |
+
batch["labels"] = torch.stack([f["label_ids"] for f in features])
|
145 |
+
else:
|
146 |
+
dtype = torch.long if isinstance(first["label_ids"][0], int) else torch.float
|
147 |
+
batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype)
|
148 |
+
|
149 |
+
# Handling of all other possible keys.
|
150 |
+
# Again, we will use the first element to figure out which key/values are not None for this model.
|
151 |
+
for k, v in first.items():
|
152 |
+
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
|
153 |
+
if isinstance(v, torch.Tensor):
|
154 |
+
batch[k] = torch.stack([f[k] for f in features])
|
155 |
+
elif isinstance(v, np.ndarray):
|
156 |
+
batch[k] = torch.tensor(np.stack([f[k] for f in features]))
|
157 |
+
else:
|
158 |
+
batch[k] = torch.tensor([f[k] for f in features])
|
159 |
+
|
160 |
+
return batch
|
161 |
+
|
162 |
+
|
163 |
+
def tf_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
|
164 |
+
import tensorflow as tf
|
165 |
+
|
166 |
+
if not isinstance(features[0], Mapping):
|
167 |
+
features = [vars(f) for f in features]
|
168 |
+
first = features[0]
|
169 |
+
batch = {}
|
170 |
+
|
171 |
+
# Special handling for labels.
|
172 |
+
# Ensure that tensor is created with the correct type
|
173 |
+
# (it should be automatically the case, but let's make sure of it.)
|
174 |
+
if "label" in first and first["label"] is not None:
|
175 |
+
label_col_name = "label"
|
176 |
+
elif "label_ids" in first and first["label_ids"] is not None:
|
177 |
+
label_col_name = "label_ids"
|
178 |
+
elif "labels" in first and first["labels"] is not None:
|
179 |
+
label_col_name = "labels"
|
180 |
+
else:
|
181 |
+
label_col_name = None
|
182 |
+
if label_col_name is not None:
|
183 |
+
if isinstance(first[label_col_name], tf.Tensor):
|
184 |
+
dtype = tf.int64 if first[label_col_name].dtype.is_integer else tf.float32
|
185 |
+
elif isinstance(first[label_col_name], np.ndarray) or isinstance(first[label_col_name], np.generic):
|
186 |
+
dtype = tf.int64 if np.issubdtype(first[label_col_name].dtype, np.integer) else tf.float32
|
187 |
+
elif isinstance(first[label_col_name], (tuple, list)):
|
188 |
+
dtype = tf.int64 if isinstance(first[label_col_name][0], int) else tf.float32
|
189 |
+
else:
|
190 |
+
dtype = tf.int64 if isinstance(first[label_col_name], int) else tf.float32
|
191 |
+
batch["labels"] = tf.convert_to_tensor([f[label_col_name] for f in features], dtype=dtype)
|
192 |
+
# Handling of all other possible keys.
|
193 |
+
# Again, we will use the first element to figure out which key/values are not None for this model.
|
194 |
+
for k, v in first.items():
|
195 |
+
if k not in ("label", "label_ids", "labels") and v is not None and not isinstance(v, str):
|
196 |
+
if isinstance(v, (tf.Tensor, np.ndarray)):
|
197 |
+
batch[k] = tf.stack([f[k] for f in features])
|
198 |
+
else:
|
199 |
+
batch[k] = tf.convert_to_tensor([f[k] for f in features])
|
200 |
+
|
201 |
+
return batch
|
202 |
+
|
203 |
+
|
204 |
+
def numpy_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
|
205 |
+
if not isinstance(features[0], Mapping):
|
206 |
+
features = [vars(f) for f in features]
|
207 |
+
first = features[0]
|
208 |
+
batch = {}
|
209 |
+
|
210 |
+
# Special handling for labels.
|
211 |
+
# Ensure that tensor is created with the correct type
|
212 |
+
# (it should be automatically the case, but let's make sure of it.)
|
213 |
+
if "label" in first and first["label"] is not None:
|
214 |
+
label = first["label"].item() if isinstance(first["label"], np.ndarray) else first["label"]
|
215 |
+
dtype = np.int64 if isinstance(label, int) else np.float32
|
216 |
+
batch["labels"] = np.array([f["label"] for f in features], dtype=dtype)
|
217 |
+
elif "label_ids" in first and first["label_ids"] is not None:
|
218 |
+
if isinstance(first["label_ids"], np.ndarray):
|
219 |
+
batch["labels"] = np.stack([f["label_ids"] for f in features])
|
220 |
+
else:
|
221 |
+
dtype = np.int64 if isinstance(first["label_ids"][0], int) else np.float32
|
222 |
+
batch["labels"] = np.array([f["label_ids"] for f in features], dtype=dtype)
|
223 |
+
|
224 |
+
# Handling of all other possible keys.
|
225 |
+
# Again, we will use the first element to figure out which key/values are not None for this model.
|
226 |
+
for k, v in first.items():
|
227 |
+
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
|
228 |
+
if isinstance(v, np.ndarray):
|
229 |
+
batch[k] = np.stack([f[k] for f in features])
|
230 |
+
else:
|
231 |
+
batch[k] = np.array([f[k] for f in features])
|
232 |
+
|
233 |
+
return batch
|
234 |
+
|
235 |
+
|
236 |
+
@dataclass
|
237 |
+
class DataCollatorWithPadding:
|
238 |
+
"""
|
239 |
+
Data collator that will dynamically pad the inputs received.
|
240 |
+
|
241 |
+
Args:
|
242 |
+
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
|
243 |
+
The tokenizer used for encoding the data.
|
244 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
245 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
246 |
+
among:
|
247 |
+
|
248 |
+
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
|
249 |
+
sequence is provided).
|
250 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
251 |
+
acceptable input length for the model if that argument is not provided.
|
252 |
+
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
|
253 |
+
max_length (`int`, *optional*):
|
254 |
+
Maximum length of the returned list and optionally padding length (see above).
|
255 |
+
pad_to_multiple_of (`int`, *optional*):
|
256 |
+
If set will pad the sequence to a multiple of the provided value.
|
257 |
+
|
258 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
259 |
+
7.5 (Volta).
|
260 |
+
return_tensors (`str`, *optional*, defaults to `"pt"`):
|
261 |
+
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
|
262 |
+
"""
|
263 |
+
|
264 |
+
tokenizer: PreTrainedTokenizerBase
|
265 |
+
padding: Union[bool, str, PaddingStrategy] = True
|
266 |
+
max_length: Optional[int] = None
|
267 |
+
pad_to_multiple_of: Optional[int] = None
|
268 |
+
return_tensors: str = "pt"
|
269 |
+
|
270 |
+
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
|
271 |
+
batch = pad_without_fast_tokenizer_warning(
|
272 |
+
self.tokenizer,
|
273 |
+
features,
|
274 |
+
padding=self.padding,
|
275 |
+
max_length=self.max_length,
|
276 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
277 |
+
return_tensors=self.return_tensors,
|
278 |
+
)
|
279 |
+
if "label" in batch:
|
280 |
+
batch["labels"] = batch["label"]
|
281 |
+
del batch["label"]
|
282 |
+
if "label_ids" in batch:
|
283 |
+
batch["labels"] = batch["label_ids"]
|
284 |
+
del batch["label_ids"]
|
285 |
+
return batch
|
286 |
+
|
287 |
+
|
288 |
+
@dataclass
|
289 |
+
class DataCollatorForTokenClassification(DataCollatorMixin):
|
290 |
+
"""
|
291 |
+
Data collator that will dynamically pad the inputs received, as well as the labels.
|
292 |
+
|
293 |
+
Args:
|
294 |
+
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
|
295 |
+
The tokenizer used for encoding the data.
|
296 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
297 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
298 |
+
among:
|
299 |
+
|
300 |
+
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
|
301 |
+
sequence is provided).
|
302 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
303 |
+
acceptable input length for the model if that argument is not provided.
|
304 |
+
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
|
305 |
+
max_length (`int`, *optional*):
|
306 |
+
Maximum length of the returned list and optionally padding length (see above).
|
307 |
+
pad_to_multiple_of (`int`, *optional*):
|
308 |
+
If set will pad the sequence to a multiple of the provided value.
|
309 |
+
|
310 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
311 |
+
7.5 (Volta).
|
312 |
+
label_pad_token_id (`int`, *optional*, defaults to -100):
|
313 |
+
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
314 |
+
return_tensors (`str`, *optional*, defaults to `"pt"`):
|
315 |
+
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
|
316 |
+
"""
|
317 |
+
|
318 |
+
tokenizer: PreTrainedTokenizerBase
|
319 |
+
padding: Union[bool, str, PaddingStrategy] = True
|
320 |
+
max_length: Optional[int] = None
|
321 |
+
pad_to_multiple_of: Optional[int] = None
|
322 |
+
label_pad_token_id: int = -100
|
323 |
+
return_tensors: str = "pt"
|
324 |
+
|
325 |
+
def torch_call(self, features):
|
326 |
+
import torch
|
327 |
+
|
328 |
+
label_name = "label" if "label" in features[0].keys() else "labels"
|
329 |
+
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
330 |
+
|
331 |
+
no_labels_features = [{k: v for k, v in feature.items() if k != label_name} for feature in features]
|
332 |
+
|
333 |
+
batch = pad_without_fast_tokenizer_warning(
|
334 |
+
self.tokenizer,
|
335 |
+
no_labels_features,
|
336 |
+
padding=self.padding,
|
337 |
+
max_length=self.max_length,
|
338 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
339 |
+
return_tensors="pt",
|
340 |
+
)
|
341 |
+
|
342 |
+
if labels is None:
|
343 |
+
return batch
|
344 |
+
|
345 |
+
sequence_length = batch["input_ids"].shape[1]
|
346 |
+
padding_side = self.tokenizer.padding_side
|
347 |
+
|
348 |
+
def to_list(tensor_or_iterable):
|
349 |
+
if isinstance(tensor_or_iterable, torch.Tensor):
|
350 |
+
return tensor_or_iterable.tolist()
|
351 |
+
return list(tensor_or_iterable)
|
352 |
+
|
353 |
+
if padding_side == "right":
|
354 |
+
batch[label_name] = [
|
355 |
+
to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
|
356 |
+
]
|
357 |
+
else:
|
358 |
+
batch[label_name] = [
|
359 |
+
[self.label_pad_token_id] * (sequence_length - len(label)) + to_list(label) for label in labels
|
360 |
+
]
|
361 |
+
|
362 |
+
batch[label_name] = torch.tensor(batch[label_name], dtype=torch.int64)
|
363 |
+
return batch
|
364 |
+
|
365 |
+
def tf_call(self, features):
|
366 |
+
import tensorflow as tf
|
367 |
+
|
368 |
+
label_name = "label" if "label" in features[0].keys() else "labels"
|
369 |
+
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
370 |
+
batch = pad_without_fast_tokenizer_warning(
|
371 |
+
self.tokenizer,
|
372 |
+
features,
|
373 |
+
padding=self.padding,
|
374 |
+
max_length=self.max_length,
|
375 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
376 |
+
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
|
377 |
+
return_tensors="tf" if labels is None else None,
|
378 |
+
)
|
379 |
+
|
380 |
+
if labels is None:
|
381 |
+
return batch
|
382 |
+
|
383 |
+
sequence_length = tf.convert_to_tensor(batch["input_ids"]).shape[1]
|
384 |
+
padding_side = self.tokenizer.padding_side
|
385 |
+
if padding_side == "right":
|
386 |
+
batch["labels"] = [
|
387 |
+
list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
|
388 |
+
]
|
389 |
+
else:
|
390 |
+
batch["labels"] = [
|
391 |
+
[self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels
|
392 |
+
]
|
393 |
+
|
394 |
+
batch = {k: tf.convert_to_tensor(v, dtype=tf.int64) for k, v in batch.items()}
|
395 |
+
return batch
|
396 |
+
|
397 |
+
def numpy_call(self, features):
|
398 |
+
label_name = "label" if "label" in features[0].keys() else "labels"
|
399 |
+
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
400 |
+
batch = pad_without_fast_tokenizer_warning(
|
401 |
+
self.tokenizer,
|
402 |
+
features,
|
403 |
+
padding=self.padding,
|
404 |
+
max_length=self.max_length,
|
405 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
406 |
+
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
|
407 |
+
return_tensors="np" if labels is None else None,
|
408 |
+
)
|
409 |
+
|
410 |
+
if labels is None:
|
411 |
+
return batch
|
412 |
+
|
413 |
+
sequence_length = np.array(batch["input_ids"]).shape[1]
|
414 |
+
padding_side = self.tokenizer.padding_side
|
415 |
+
if padding_side == "right":
|
416 |
+
batch["labels"] = [
|
417 |
+
list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
|
418 |
+
]
|
419 |
+
else:
|
420 |
+
batch["labels"] = [
|
421 |
+
[self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels
|
422 |
+
]
|
423 |
+
|
424 |
+
batch = {k: np.array(v, dtype=np.int64) for k, v in batch.items()}
|
425 |
+
return batch
|
426 |
+
|
427 |
+
|
428 |
+
def _torch_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
|
429 |
+
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
|
430 |
+
import torch
|
431 |
+
|
432 |
+
# Tensorize if necessary.
|
433 |
+
if isinstance(examples[0], (list, tuple, np.ndarray)):
|
434 |
+
examples = [torch.tensor(e, dtype=torch.long) for e in examples]
|
435 |
+
|
436 |
+
length_of_first = examples[0].size(0)
|
437 |
+
|
438 |
+
# Check if padding is necessary.
|
439 |
+
|
440 |
+
are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)
|
441 |
+
if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
|
442 |
+
return torch.stack(examples, dim=0)
|
443 |
+
|
444 |
+
# If yes, check if we have a `pad_token`.
|
445 |
+
if tokenizer._pad_token is None:
|
446 |
+
raise ValueError(
|
447 |
+
"You are attempting to pad samples but the tokenizer you are using"
|
448 |
+
f" ({tokenizer.__class__.__name__}) does not have a pad token."
|
449 |
+
)
|
450 |
+
|
451 |
+
# Creating the full tensor and filling it with our data.
|
452 |
+
max_length = max(x.size(0) for x in examples)
|
453 |
+
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
454 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
455 |
+
result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
|
456 |
+
for i, example in enumerate(examples):
|
457 |
+
if tokenizer.padding_side == "right":
|
458 |
+
result[i, : example.shape[0]] = example
|
459 |
+
else:
|
460 |
+
result[i, -example.shape[0] :] = example
|
461 |
+
return result
|
462 |
+
|
463 |
+
|
464 |
+
def _tf_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
|
465 |
+
import tensorflow as tf
|
466 |
+
|
467 |
+
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
|
468 |
+
# Tensorize if necessary.
|
469 |
+
if isinstance(examples[0], (list, tuple)):
|
470 |
+
examples = [tf.convert_to_tensor(e, dtype=tf.int64) for e in examples]
|
471 |
+
|
472 |
+
# Check if padding is necessary.
|
473 |
+
length_of_first = len(examples[0])
|
474 |
+
are_tensors_same_length = all(len(x) == length_of_first for x in examples)
|
475 |
+
if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
|
476 |
+
return tf.stack(examples, axis=0)
|
477 |
+
|
478 |
+
# If yes, check if we have a `pad_token`.
|
479 |
+
if tokenizer._pad_token is None:
|
480 |
+
raise ValueError(
|
481 |
+
"You are attempting to pad samples but the tokenizer you are using"
|
482 |
+
f" ({tokenizer.__class__.__name__}) does not have a pad token."
|
483 |
+
)
|
484 |
+
|
485 |
+
# Creating the full tensor and filling it with our data.
|
486 |
+
max_length = max(len(x) for x in examples)
|
487 |
+
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
488 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
489 |
+
# result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
|
490 |
+
result = []
|
491 |
+
rank = tf.rank(examples[0])
|
492 |
+
paddings = np.zeros((rank, 2), dtype=np.int32)
|
493 |
+
for example in examples:
|
494 |
+
if tokenizer.padding_side == "right":
|
495 |
+
paddings[0, 1] = max_length - len(example)
|
496 |
+
else:
|
497 |
+
paddings[0, 0] = max_length - len(example)
|
498 |
+
result.append(tf.pad(example, paddings, constant_values=tokenizer.pad_token_id))
|
499 |
+
return tf.stack(result, axis=0)
|
500 |
+
|
501 |
+
|
502 |
+
def _numpy_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
|
503 |
+
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
|
504 |
+
# Tensorize if necessary.
|
505 |
+
if isinstance(examples[0], (list, tuple)):
|
506 |
+
examples = [np.array(e, dtype=np.int64) for e in examples]
|
507 |
+
|
508 |
+
# Check if padding is necessary.
|
509 |
+
length_of_first = len(examples[0])
|
510 |
+
are_tensors_same_length = all(len(x) == length_of_first for x in examples)
|
511 |
+
if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
|
512 |
+
return np.stack(examples, axis=0)
|
513 |
+
|
514 |
+
# If yes, check if we have a `pad_token`.
|
515 |
+
if tokenizer._pad_token is None:
|
516 |
+
raise ValueError(
|
517 |
+
"You are attempting to pad samples but the tokenizer you are using"
|
518 |
+
f" ({tokenizer.__class__.__name__}) does not have a pad token."
|
519 |
+
)
|
520 |
+
|
521 |
+
# Creating the full tensor and filling it with our data.
|
522 |
+
max_length = max(len(x) for x in examples)
|
523 |
+
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
524 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
525 |
+
result = np.full(shape=(len(examples), max_length), fill_value=tokenizer.pad_token_id, dtype=examples[0].dtype)
|
526 |
+
for i, example in enumerate(examples):
|
527 |
+
if tokenizer.padding_side == "right":
|
528 |
+
result[i, : example.shape[0]] = example
|
529 |
+
else:
|
530 |
+
result[i, -example.shape[0] :] = example
|
531 |
+
return result
|
532 |
+
|
533 |
+
|
534 |
+
def tolist(x):
|
535 |
+
if isinstance(x, list):
|
536 |
+
return x
|
537 |
+
elif hasattr(x, "numpy"): # Checks for TF tensors without needing the import
|
538 |
+
x = x.numpy()
|
539 |
+
return x.tolist()
|
540 |
+
|
541 |
+
|
542 |
+
@dataclass
|
543 |
+
class DataCollatorForSeq2Seq:
|
544 |
+
"""
|
545 |
+
Data collator that will dynamically pad the inputs received, as well as the labels.
|
546 |
+
|
547 |
+
Args:
|
548 |
+
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
|
549 |
+
The tokenizer used for encoding the data.
|
550 |
+
model ([`PreTrainedModel`], *optional*):
|
551 |
+
The model that is being trained. If set and has the *prepare_decoder_input_ids_from_labels*, use it to
|
552 |
+
prepare the *decoder_input_ids*
|
553 |
+
|
554 |
+
This is useful when using *label_smoothing* to avoid calculating loss twice.
|
555 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
556 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
557 |
+
among:
|
558 |
+
|
559 |
+
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
|
560 |
+
sequence is provided).
|
561 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
562 |
+
acceptable input length for the model if that argument is not provided.
|
563 |
+
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
|
564 |
+
max_length (`int`, *optional*):
|
565 |
+
Maximum length of the returned list and optionally padding length (see above).
|
566 |
+
pad_to_multiple_of (`int`, *optional*):
|
567 |
+
If set will pad the sequence to a multiple of the provided value.
|
568 |
+
|
569 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
570 |
+
7.5 (Volta).
|
571 |
+
label_pad_token_id (`int`, *optional*, defaults to -100):
|
572 |
+
The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions).
|
573 |
+
return_tensors (`str`, *optional*, defaults to `"pt"`):
|
574 |
+
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
|
575 |
+
"""
|
576 |
+
|
577 |
+
tokenizer: PreTrainedTokenizerBase
|
578 |
+
model: Optional[Any] = None
|
579 |
+
padding: Union[bool, str, PaddingStrategy] = True
|
580 |
+
max_length: Optional[int] = None
|
581 |
+
pad_to_multiple_of: Optional[int] = None
|
582 |
+
label_pad_token_id: int = -100
|
583 |
+
return_tensors: str = "pt"
|
584 |
+
|
585 |
+
def __call__(self, features, return_tensors=None):
|
586 |
+
if return_tensors is None:
|
587 |
+
return_tensors = self.return_tensors
|
588 |
+
labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None
|
589 |
+
# We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the
|
590 |
+
# same length to return tensors.
|
591 |
+
if labels is not None:
|
592 |
+
max_label_length = max(len(l) for l in labels)
|
593 |
+
if self.pad_to_multiple_of is not None:
|
594 |
+
max_label_length = (
|
595 |
+
(max_label_length + self.pad_to_multiple_of - 1)
|
596 |
+
// self.pad_to_multiple_of
|
597 |
+
* self.pad_to_multiple_of
|
598 |
+
)
|
599 |
+
|
600 |
+
padding_side = self.tokenizer.padding_side
|
601 |
+
for feature in features:
|
602 |
+
remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"]))
|
603 |
+
if isinstance(feature["labels"], list):
|
604 |
+
feature["labels"] = (
|
605 |
+
feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"]
|
606 |
+
)
|
607 |
+
elif padding_side == "right":
|
608 |
+
feature["labels"] = np.concatenate([feature["labels"], remainder]).astype(np.int64)
|
609 |
+
else:
|
610 |
+
feature["labels"] = np.concatenate([remainder, feature["labels"]]).astype(np.int64)
|
611 |
+
|
612 |
+
features = pad_without_fast_tokenizer_warning(
|
613 |
+
self.tokenizer,
|
614 |
+
features,
|
615 |
+
padding=self.padding,
|
616 |
+
max_length=self.max_length,
|
617 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
618 |
+
return_tensors=return_tensors,
|
619 |
+
)
|
620 |
+
|
621 |
+
# prepare decoder_input_ids
|
622 |
+
if (
|
623 |
+
labels is not None
|
624 |
+
and self.model is not None
|
625 |
+
and hasattr(self.model, "prepare_decoder_input_ids_from_labels")
|
626 |
+
):
|
627 |
+
decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(labels=features["labels"])
|
628 |
+
features["decoder_input_ids"] = decoder_input_ids
|
629 |
+
|
630 |
+
return features
|
631 |
+
|
632 |
+
|
633 |
+
@dataclass
|
634 |
+
class DataCollatorForLanguageModeling(DataCollatorMixin):
|
635 |
+
"""
|
636 |
+
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
|
637 |
+
are not all of the same length.
|
638 |
+
|
639 |
+
Args:
|
640 |
+
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
|
641 |
+
The tokenizer used for encoding the data.
|
642 |
+
mlm (`bool`, *optional*, defaults to `True`):
|
643 |
+
Whether or not to use masked language modeling. If set to `False`, the labels are the same as the inputs
|
644 |
+
with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for non-masked
|
645 |
+
tokens and the value to predict for the masked token.
|
646 |
+
mlm_probability (`float`, *optional*, defaults to 0.15):
|
647 |
+
The probability with which to (randomly) mask tokens in the input, when `mlm` is set to `True`.
|
648 |
+
pad_to_multiple_of (`int`, *optional*):
|
649 |
+
If set will pad the sequence to a multiple of the provided value.
|
650 |
+
return_tensors (`str`):
|
651 |
+
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
|
652 |
+
|
653 |
+
<Tip>
|
654 |
+
|
655 |
+
For best performance, this data collator should be used with a dataset having items that are dictionaries or
|
656 |
+
BatchEncoding, with the `"special_tokens_mask"` key, as returned by a [`PreTrainedTokenizer`] or a
|
657 |
+
[`PreTrainedTokenizerFast`] with the argument `return_special_tokens_mask=True`.
|
658 |
+
|
659 |
+
</Tip>"""
|
660 |
+
|
661 |
+
tokenizer: PreTrainedTokenizerBase
|
662 |
+
mlm: bool = True
|
663 |
+
mlm_probability: float = 0.15
|
664 |
+
pad_to_multiple_of: Optional[int] = None
|
665 |
+
tf_experimental_compile: bool = False
|
666 |
+
return_tensors: str = "pt"
|
667 |
+
|
668 |
+
def __post_init__(self):
|
669 |
+
if self.mlm and self.tokenizer.mask_token is None:
|
670 |
+
raise ValueError(
|
671 |
+
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
|
672 |
+
"You should pass `mlm=False` to train on causal language modeling instead."
|
673 |
+
)
|
674 |
+
if self.tf_experimental_compile:
|
675 |
+
import tensorflow as tf
|
676 |
+
|
677 |
+
self.tf_mask_tokens = tf.function(self.tf_mask_tokens, jit_compile=True)
|
678 |
+
|
679 |
+
@staticmethod
|
680 |
+
def tf_bernoulli(shape, probability):
|
681 |
+
import tensorflow as tf
|
682 |
+
|
683 |
+
prob_matrix = tf.fill(shape, probability)
|
684 |
+
return tf.cast(prob_matrix - tf.random.uniform(shape, 0, 1) >= 0, tf.bool)
|
685 |
+
|
686 |
+
def tf_mask_tokens(
|
687 |
+
self, inputs: Any, vocab_size, mask_token_id, special_tokens_mask: Optional[Any] = None
|
688 |
+
) -> Tuple[Any, Any]:
|
689 |
+
"""
|
690 |
+
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
|
691 |
+
"""
|
692 |
+
import tensorflow as tf
|
693 |
+
|
694 |
+
mask_token_id = tf.cast(mask_token_id, inputs.dtype)
|
695 |
+
|
696 |
+
input_shape = tf.shape(inputs)
|
697 |
+
# 1 for a special token, 0 for a normal token in the special tokens mask
|
698 |
+
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
|
699 |
+
masked_indices = self.tf_bernoulli(input_shape, self.mlm_probability) & ~special_tokens_mask
|
700 |
+
# Replace unmasked indices with -100 in the labels since we only compute loss on masked tokens
|
701 |
+
labels = tf.where(masked_indices, inputs, -100)
|
702 |
+
|
703 |
+
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
704 |
+
indices_replaced = self.tf_bernoulli(input_shape, 0.8) & masked_indices
|
705 |
+
|
706 |
+
inputs = tf.where(indices_replaced, mask_token_id, inputs)
|
707 |
+
|
708 |
+
# 10% of the time, we replace masked input tokens with random word
|
709 |
+
indices_random = self.tf_bernoulli(input_shape, 0.1) & masked_indices & ~indices_replaced
|
710 |
+
random_words = tf.random.uniform(input_shape, maxval=vocab_size, dtype=inputs.dtype)
|
711 |
+
|
712 |
+
inputs = tf.where(indices_random, random_words, inputs)
|
713 |
+
|
714 |
+
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
715 |
+
return inputs, labels
|
716 |
+
|
717 |
+
def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
|
718 |
+
import tensorflow as tf
|
719 |
+
|
720 |
+
# Handle dict or lists with proper padding and conversion to tensor.
|
721 |
+
if isinstance(examples[0], Mapping):
|
722 |
+
batch = pad_without_fast_tokenizer_warning(
|
723 |
+
self.tokenizer, examples, return_tensors="tf", pad_to_multiple_of=self.pad_to_multiple_of
|
724 |
+
)
|
725 |
+
else:
|
726 |
+
batch = {
|
727 |
+
"input_ids": _tf_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
|
728 |
+
}
|
729 |
+
|
730 |
+
# If special token mask has been preprocessed, pop it from the dict.
|
731 |
+
special_tokens_mask = batch.pop("special_tokens_mask", None)
|
732 |
+
if self.mlm:
|
733 |
+
if special_tokens_mask is None:
|
734 |
+
special_tokens_mask = [
|
735 |
+
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True)
|
736 |
+
for val in batch["input_ids"].numpy().tolist()
|
737 |
+
]
|
738 |
+
# Cannot directly create as bool
|
739 |
+
special_tokens_mask = tf.cast(tf.convert_to_tensor(special_tokens_mask, dtype=tf.int64), tf.bool)
|
740 |
+
else:
|
741 |
+
special_tokens_mask = tf.cast(special_tokens_mask, tf.bool)
|
742 |
+
batch["input_ids"], batch["labels"] = self.tf_mask_tokens(
|
743 |
+
tf.cast(batch["input_ids"], tf.int64),
|
744 |
+
special_tokens_mask=special_tokens_mask,
|
745 |
+
mask_token_id=self.tokenizer.mask_token_id,
|
746 |
+
vocab_size=len(self.tokenizer),
|
747 |
+
)
|
748 |
+
else:
|
749 |
+
labels = batch["input_ids"]
|
750 |
+
if self.tokenizer.pad_token_id is not None:
|
751 |
+
# Replace self.tokenizer.pad_token_id with -100
|
752 |
+
labels = tf.where(labels == self.tokenizer.pad_token_id, -100, labels)
|
753 |
+
else:
|
754 |
+
labels = tf.identity(labels) # Makes a copy, just in case
|
755 |
+
batch["labels"] = labels
|
756 |
+
return batch
|
757 |
+
|
758 |
+
def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
|
759 |
+
# Handle dict or lists with proper padding and conversion to tensor.
|
760 |
+
if isinstance(examples[0], Mapping):
|
761 |
+
batch = pad_without_fast_tokenizer_warning(
|
762 |
+
self.tokenizer, examples, return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of
|
763 |
+
)
|
764 |
+
else:
|
765 |
+
batch = {
|
766 |
+
"input_ids": _torch_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
|
767 |
+
}
|
768 |
+
|
769 |
+
# If special token mask has been preprocessed, pop it from the dict.
|
770 |
+
special_tokens_mask = batch.pop("special_tokens_mask", None)
|
771 |
+
if self.mlm:
|
772 |
+
batch["input_ids"], batch["labels"] = self.torch_mask_tokens(
|
773 |
+
batch["input_ids"], special_tokens_mask=special_tokens_mask
|
774 |
+
)
|
775 |
+
else:
|
776 |
+
labels = batch["input_ids"].clone()
|
777 |
+
if self.tokenizer.pad_token_id is not None:
|
778 |
+
labels[labels == self.tokenizer.pad_token_id] = -100
|
779 |
+
batch["labels"] = labels
|
780 |
+
return batch
|
781 |
+
|
782 |
+
def torch_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]:
|
783 |
+
"""
|
784 |
+
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
|
785 |
+
"""
|
786 |
+
import torch
|
787 |
+
|
788 |
+
labels = inputs.clone()
|
789 |
+
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
|
790 |
+
probability_matrix = torch.full(labels.shape, self.mlm_probability)
|
791 |
+
if special_tokens_mask is None:
|
792 |
+
special_tokens_mask = [
|
793 |
+
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
|
794 |
+
]
|
795 |
+
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
|
796 |
+
else:
|
797 |
+
special_tokens_mask = special_tokens_mask.bool()
|
798 |
+
|
799 |
+
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
|
800 |
+
masked_indices = torch.bernoulli(probability_matrix).bool()
|
801 |
+
labels[~masked_indices] = -100 # We only compute loss on masked tokens
|
802 |
+
|
803 |
+
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
804 |
+
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
|
805 |
+
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
|
806 |
+
|
807 |
+
# 10% of the time, we replace masked input tokens with random word
|
808 |
+
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
809 |
+
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
|
810 |
+
inputs[indices_random] = random_words[indices_random]
|
811 |
+
|
812 |
+
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
813 |
+
return inputs, labels
|
814 |
+
|
815 |
+
def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
|
816 |
+
# Handle dict or lists with proper padding and conversion to tensor.
|
817 |
+
if isinstance(examples[0], Mapping):
|
818 |
+
batch = pad_without_fast_tokenizer_warning(
|
819 |
+
self.tokenizer, examples, return_tensors="np", pad_to_multiple_of=self.pad_to_multiple_of
|
820 |
+
)
|
821 |
+
else:
|
822 |
+
batch = {
|
823 |
+
"input_ids": _numpy_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
|
824 |
+
}
|
825 |
+
|
826 |
+
# If special token mask has been preprocessed, pop it from the dict.
|
827 |
+
special_tokens_mask = batch.pop("special_tokens_mask", None)
|
828 |
+
if self.mlm:
|
829 |
+
batch["input_ids"], batch["labels"] = self.numpy_mask_tokens(
|
830 |
+
batch["input_ids"], special_tokens_mask=special_tokens_mask
|
831 |
+
)
|
832 |
+
else:
|
833 |
+
labels = np.copy(batch["input_ids"])
|
834 |
+
if self.tokenizer.pad_token_id is not None:
|
835 |
+
labels[labels == self.tokenizer.pad_token_id] = -100
|
836 |
+
batch["labels"] = labels
|
837 |
+
return batch
|
838 |
+
|
839 |
+
def numpy_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]:
|
840 |
+
"""
|
841 |
+
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
|
842 |
+
"""
|
843 |
+
labels = np.copy(inputs)
|
844 |
+
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
|
845 |
+
probability_matrix = np.full(labels.shape, self.mlm_probability)
|
846 |
+
if special_tokens_mask is None:
|
847 |
+
special_tokens_mask = [
|
848 |
+
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
|
849 |
+
]
|
850 |
+
special_tokens_mask = np.array(special_tokens_mask, dtype=bool)
|
851 |
+
else:
|
852 |
+
special_tokens_mask = special_tokens_mask.astype(bool)
|
853 |
+
|
854 |
+
probability_matrix[special_tokens_mask] = 0
|
855 |
+
# Numpy doesn't have bernoulli, so we use a binomial with 1 trial
|
856 |
+
masked_indices = np.random.binomial(1, probability_matrix, size=probability_matrix.shape).astype(bool)
|
857 |
+
labels[~masked_indices] = -100 # We only compute loss on masked tokens
|
858 |
+
|
859 |
+
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
860 |
+
indices_replaced = np.random.binomial(1, 0.8, size=labels.shape).astype(bool) & masked_indices
|
861 |
+
inputs[indices_replaced] = self.tokenizer.mask_token_id
|
862 |
+
|
863 |
+
# 10% of the time, we replace masked input tokens with random word
|
864 |
+
# indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
865 |
+
indices_random = (
|
866 |
+
np.random.binomial(1, 0.5, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced
|
867 |
+
)
|
868 |
+
random_words = np.random.randint(
|
869 |
+
low=0, high=len(self.tokenizer), size=np.count_nonzero(indices_random), dtype=np.int64
|
870 |
+
)
|
871 |
+
inputs[indices_random] = random_words
|
872 |
+
|
873 |
+
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
874 |
+
return inputs, labels
|
875 |
+
|
876 |
+
|
877 |
+
@dataclass
|
878 |
+
class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
|
879 |
+
"""
|
880 |
+
Data collator used for language modeling that masks entire words.
|
881 |
+
|
882 |
+
- collates batches of tensors, honoring their tokenizer's pad_token
|
883 |
+
- preprocesses batches for masked language modeling
|
884 |
+
|
885 |
+
<Tip>
|
886 |
+
|
887 |
+
This collator relies on details of the implementation of subword tokenization by [`BertTokenizer`], specifically
|
888 |
+
that subword tokens are prefixed with *##*. For tokenizers that do not adhere to this scheme, this collator will
|
889 |
+
produce an output that is roughly equivalent to [`.DataCollatorForLanguageModeling`].
|
890 |
+
|
891 |
+
</Tip>"""
|
892 |
+
|
893 |
+
def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
|
894 |
+
if isinstance(examples[0], Mapping):
|
895 |
+
input_ids = [e["input_ids"] for e in examples]
|
896 |
+
else:
|
897 |
+
input_ids = examples
|
898 |
+
examples = [{"input_ids": e} for e in examples]
|
899 |
+
|
900 |
+
batch_input = _torch_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
|
901 |
+
|
902 |
+
mask_labels = []
|
903 |
+
for e in examples:
|
904 |
+
ref_tokens = []
|
905 |
+
for id in tolist(e["input_ids"]):
|
906 |
+
token = self.tokenizer._convert_id_to_token(id)
|
907 |
+
ref_tokens.append(token)
|
908 |
+
|
909 |
+
# For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢]
|
910 |
+
if "chinese_ref" in e:
|
911 |
+
ref_pos = tolist(e["chinese_ref"])
|
912 |
+
len_seq = len(e["input_ids"])
|
913 |
+
for i in range(len_seq):
|
914 |
+
if i in ref_pos:
|
915 |
+
ref_tokens[i] = "##" + ref_tokens[i]
|
916 |
+
mask_labels.append(self._whole_word_mask(ref_tokens))
|
917 |
+
batch_mask = _torch_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
|
918 |
+
inputs, labels = self.torch_mask_tokens(batch_input, batch_mask)
|
919 |
+
return {"input_ids": inputs, "labels": labels}
|
920 |
+
|
921 |
+
def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
|
922 |
+
import tensorflow as tf
|
923 |
+
|
924 |
+
if isinstance(examples[0], Mapping):
|
925 |
+
input_ids = [e["input_ids"] for e in examples]
|
926 |
+
else:
|
927 |
+
input_ids = examples
|
928 |
+
examples = [{"input_ids": e} for e in examples]
|
929 |
+
|
930 |
+
batch_input = _tf_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
|
931 |
+
|
932 |
+
mask_labels = []
|
933 |
+
for e in examples:
|
934 |
+
ref_tokens = []
|
935 |
+
for id in tolist(e["input_ids"]):
|
936 |
+
token = self.tokenizer._convert_id_to_token(id)
|
937 |
+
ref_tokens.append(token)
|
938 |
+
|
939 |
+
# For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢]
|
940 |
+
if "chinese_ref" in e:
|
941 |
+
ref_pos = tolist(e["chinese_ref"])
|
942 |
+
len_seq = len(e["input_ids"])
|
943 |
+
for i in range(len_seq):
|
944 |
+
if i in ref_pos:
|
945 |
+
ref_tokens[i] = "##" + ref_tokens[i]
|
946 |
+
mask_labels.append(self._whole_word_mask(ref_tokens))
|
947 |
+
batch_mask = _tf_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
|
948 |
+
inputs, labels = self.tf_mask_tokens(tf.cast(batch_input, tf.int64), batch_mask)
|
949 |
+
return {"input_ids": inputs, "labels": labels}
|
950 |
+
|
951 |
+
def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
|
952 |
+
if isinstance(examples[0], Mapping):
|
953 |
+
input_ids = [e["input_ids"] for e in examples]
|
954 |
+
else:
|
955 |
+
input_ids = examples
|
956 |
+
examples = [{"input_ids": e} for e in examples]
|
957 |
+
|
958 |
+
batch_input = _numpy_collate_batch(input_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
|
959 |
+
|
960 |
+
mask_labels = []
|
961 |
+
for e in examples:
|
962 |
+
ref_tokens = []
|
963 |
+
for id in tolist(e["input_ids"]):
|
964 |
+
token = self.tokenizer._convert_id_to_token(id)
|
965 |
+
ref_tokens.append(token)
|
966 |
+
|
967 |
+
# For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢]
|
968 |
+
if "chinese_ref" in e:
|
969 |
+
ref_pos = tolist(e["chinese_ref"])
|
970 |
+
len_seq = len(e["input_ids"])
|
971 |
+
for i in range(len_seq):
|
972 |
+
if i in ref_pos:
|
973 |
+
ref_tokens[i] = "##" + ref_tokens[i]
|
974 |
+
mask_labels.append(self._whole_word_mask(ref_tokens))
|
975 |
+
batch_mask = _numpy_collate_batch(mask_labels, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
|
976 |
+
inputs, labels = self.numpy_mask_tokens(batch_input, batch_mask)
|
977 |
+
return {"input_ids": inputs, "labels": labels}
|
978 |
+
|
979 |
+
def _whole_word_mask(self, input_tokens: List[str], max_predictions=512):
|
980 |
+
"""
|
981 |
+
Get 0/1 labels for masked tokens with whole word mask proxy
|
982 |
+
"""
|
983 |
+
if not isinstance(self.tokenizer, (BertTokenizer, BertTokenizerFast)):
|
984 |
+
warnings.warn(
|
985 |
+
"DataCollatorForWholeWordMask is only suitable for BertTokenizer-like tokenizers. "
|
986 |
+
"Please refer to the documentation for more information."
|
987 |
+
)
|
988 |
+
|
989 |
+
cand_indexes = []
|
990 |
+
for i, token in enumerate(input_tokens):
|
991 |
+
if token == "[CLS]" or token == "[SEP]":
|
992 |
+
continue
|
993 |
+
|
994 |
+
if len(cand_indexes) >= 1 and token.startswith("##"):
|
995 |
+
cand_indexes[-1].append(i)
|
996 |
+
else:
|
997 |
+
cand_indexes.append([i])
|
998 |
+
|
999 |
+
random.shuffle(cand_indexes)
|
1000 |
+
num_to_predict = min(max_predictions, max(1, int(round(len(input_tokens) * self.mlm_probability))))
|
1001 |
+
masked_lms = []
|
1002 |
+
covered_indexes = set()
|
1003 |
+
for index_set in cand_indexes:
|
1004 |
+
if len(masked_lms) >= num_to_predict:
|
1005 |
+
break
|
1006 |
+
# If adding a whole-word mask would exceed the maximum number of
|
1007 |
+
# predictions, then just skip this candidate.
|
1008 |
+
if len(masked_lms) + len(index_set) > num_to_predict:
|
1009 |
+
continue
|
1010 |
+
is_any_index_covered = False
|
1011 |
+
for index in index_set:
|
1012 |
+
if index in covered_indexes:
|
1013 |
+
is_any_index_covered = True
|
1014 |
+
break
|
1015 |
+
if is_any_index_covered:
|
1016 |
+
continue
|
1017 |
+
for index in index_set:
|
1018 |
+
covered_indexes.add(index)
|
1019 |
+
masked_lms.append(index)
|
1020 |
+
|
1021 |
+
if len(covered_indexes) != len(masked_lms):
|
1022 |
+
raise ValueError("Length of covered_indexes is not equal to length of masked_lms.")
|
1023 |
+
mask_labels = [1 if i in covered_indexes else 0 for i in range(len(input_tokens))]
|
1024 |
+
return mask_labels
|
1025 |
+
|
1026 |
+
def torch_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
|
1027 |
+
"""
|
1028 |
+
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
|
1029 |
+
'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
|
1030 |
+
"""
|
1031 |
+
import torch
|
1032 |
+
|
1033 |
+
if self.tokenizer.mask_token is None:
|
1034 |
+
raise ValueError(
|
1035 |
+
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
|
1036 |
+
" --mlm flag if you want to use this tokenizer."
|
1037 |
+
)
|
1038 |
+
labels = inputs.clone()
|
1039 |
+
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
|
1040 |
+
|
1041 |
+
probability_matrix = mask_labels
|
1042 |
+
|
1043 |
+
special_tokens_mask = [
|
1044 |
+
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
|
1045 |
+
]
|
1046 |
+
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
|
1047 |
+
if self.tokenizer._pad_token is not None:
|
1048 |
+
padding_mask = labels.eq(self.tokenizer.pad_token_id)
|
1049 |
+
probability_matrix.masked_fill_(padding_mask, value=0.0)
|
1050 |
+
|
1051 |
+
masked_indices = probability_matrix.bool()
|
1052 |
+
labels[~masked_indices] = -100 # We only compute loss on masked tokens
|
1053 |
+
|
1054 |
+
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
1055 |
+
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
|
1056 |
+
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
|
1057 |
+
|
1058 |
+
# 10% of the time, we replace masked input tokens with random word
|
1059 |
+
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
1060 |
+
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
|
1061 |
+
inputs[indices_random] = random_words[indices_random]
|
1062 |
+
|
1063 |
+
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
1064 |
+
return inputs, labels
|
1065 |
+
|
1066 |
+
def tf_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
|
1067 |
+
"""
|
1068 |
+
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
|
1069 |
+
'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
|
1070 |
+
"""
|
1071 |
+
import tensorflow as tf
|
1072 |
+
|
1073 |
+
input_shape = tf.shape(inputs)
|
1074 |
+
if self.tokenizer.mask_token is None:
|
1075 |
+
raise ValueError(
|
1076 |
+
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
|
1077 |
+
" --mlm flag if you want to use this tokenizer."
|
1078 |
+
)
|
1079 |
+
labels = tf.identity(inputs)
|
1080 |
+
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
|
1081 |
+
|
1082 |
+
masked_indices = tf.cast(mask_labels, tf.bool)
|
1083 |
+
|
1084 |
+
special_tokens_mask = [
|
1085 |
+
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels
|
1086 |
+
]
|
1087 |
+
masked_indices = masked_indices & ~tf.cast(special_tokens_mask, dtype=tf.bool)
|
1088 |
+
if self.tokenizer._pad_token is not None:
|
1089 |
+
padding_mask = inputs == self.tokenizer.pad_token_id
|
1090 |
+
masked_indices = masked_indices & ~padding_mask
|
1091 |
+
|
1092 |
+
# Replace unmasked indices with -100 in the labels since we only compute loss on masked tokens
|
1093 |
+
labels = tf.where(masked_indices, inputs, -100)
|
1094 |
+
|
1095 |
+
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
1096 |
+
indices_replaced = self.tf_bernoulli(input_shape, 0.8) & masked_indices
|
1097 |
+
|
1098 |
+
inputs = tf.where(indices_replaced, self.tokenizer.mask_token_id, inputs)
|
1099 |
+
|
1100 |
+
# 10% of the time, we replace masked input tokens with random word
|
1101 |
+
indices_random = self.tf_bernoulli(input_shape, 0.5) & masked_indices & ~indices_replaced
|
1102 |
+
random_words = tf.random.uniform(input_shape, maxval=len(self.tokenizer), dtype=tf.int64)
|
1103 |
+
inputs = tf.where(indices_random, random_words, inputs)
|
1104 |
+
|
1105 |
+
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
1106 |
+
return inputs, labels
|
1107 |
+
|
1108 |
+
def numpy_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
|
1109 |
+
"""
|
1110 |
+
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
|
1111 |
+
'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
|
1112 |
+
"""
|
1113 |
+
if self.tokenizer.mask_token is None:
|
1114 |
+
raise ValueError(
|
1115 |
+
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
|
1116 |
+
" --mlm flag if you want to use this tokenizer."
|
1117 |
+
)
|
1118 |
+
labels = np.copy(inputs)
|
1119 |
+
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
|
1120 |
+
|
1121 |
+
masked_indices = mask_labels.astype(bool)
|
1122 |
+
|
1123 |
+
special_tokens_mask = [
|
1124 |
+
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
|
1125 |
+
]
|
1126 |
+
masked_indices[np.array(special_tokens_mask, dtype=bool)] = 0
|
1127 |
+
if self.tokenizer._pad_token is not None:
|
1128 |
+
padding_mask = labels == self.tokenizer.pad_token_id
|
1129 |
+
masked_indices[padding_mask] = 0
|
1130 |
+
|
1131 |
+
labels[~masked_indices] = -100 # We only compute loss on masked tokens
|
1132 |
+
|
1133 |
+
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
1134 |
+
indices_replaced = np.random.binomial(1, 0.8, size=labels.shape).astype(bool) & masked_indices
|
1135 |
+
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
|
1136 |
+
|
1137 |
+
# 10% of the time, we replace masked input tokens with random word
|
1138 |
+
# indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
1139 |
+
indices_random = (
|
1140 |
+
np.random.binomial(1, 0.5, size=labels.shape).astype(bool) & masked_indices & ~indices_replaced
|
1141 |
+
)
|
1142 |
+
random_words = np.random.randint(low=0, high=len(self.tokenizer), size=labels.shape, dtype=np.int64)
|
1143 |
+
inputs[indices_random] = random_words[indices_random]
|
1144 |
+
|
1145 |
+
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
1146 |
+
return inputs, labels
|
1147 |
+
|
1148 |
+
|
1149 |
+
@dataclass
|
1150 |
+
class DataCollatorForSOP(DataCollatorForLanguageModeling):
|
1151 |
+
"""
|
1152 |
+
Data collator used for sentence order prediction task.
|
1153 |
+
|
1154 |
+
- collates batches of tensors, honoring their tokenizer's pad_token
|
1155 |
+
- preprocesses batches for both masked language modeling and sentence order prediction
|
1156 |
+
"""
|
1157 |
+
|
1158 |
+
def __init__(self, *args, **kwargs):
|
1159 |
+
warnings.warn(
|
1160 |
+
"DataCollatorForSOP is deprecated and will be removed in a future version, you can now use "
|
1161 |
+
"DataCollatorForLanguageModeling instead.",
|
1162 |
+
FutureWarning,
|
1163 |
+
)
|
1164 |
+
|
1165 |
+
def __call__(self, examples: List[Dict[str, Any]]) -> Dict[str, Any]:
|
1166 |
+
import torch
|
1167 |
+
from torch.nn.utils.rnn import pad_sequence
|
1168 |
+
|
1169 |
+
input_ids = [example["input_ids"] for example in examples]
|
1170 |
+
input_ids = _torch_collate_batch(input_ids, self.tokenizer)
|
1171 |
+
input_ids, labels, attention_mask = self.mask_tokens(input_ids)
|
1172 |
+
|
1173 |
+
token_type_ids = [example["token_type_ids"] for example in examples]
|
1174 |
+
# size of segment_ids varied because randomness, padding zero to the end as the original implementation
|
1175 |
+
token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
|
1176 |
+
|
1177 |
+
sop_label_list = [example["sentence_order_label"] for example in examples]
|
1178 |
+
sentence_order_label = torch.stack(sop_label_list)
|
1179 |
+
|
1180 |
+
return {
|
1181 |
+
"input_ids": input_ids,
|
1182 |
+
"labels": labels,
|
1183 |
+
"attention_mask": attention_mask,
|
1184 |
+
"token_type_ids": token_type_ids,
|
1185 |
+
"sentence_order_label": sentence_order_label,
|
1186 |
+
}
|
1187 |
+
|
1188 |
+
def mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any]:
|
1189 |
+
"""
|
1190 |
+
Prepare masked tokens inputs/labels/attention_mask for masked language modeling: 80% MASK, 10% random, 10%
|
1191 |
+
original. N-gram not applied yet.
|
1192 |
+
"""
|
1193 |
+
import torch
|
1194 |
+
|
1195 |
+
if self.tokenizer.mask_token is None:
|
1196 |
+
raise ValueError(
|
1197 |
+
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the"
|
1198 |
+
" --mlm flag if you want to use this tokenizer."
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
labels = inputs.clone()
|
1202 |
+
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
|
1203 |
+
probability_matrix = torch.full(labels.shape, self.mlm_probability)
|
1204 |
+
special_tokens_mask = [
|
1205 |
+
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
|
1206 |
+
]
|
1207 |
+
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
|
1208 |
+
if self.tokenizer._pad_token is not None:
|
1209 |
+
padding_mask = labels.eq(self.tokenizer.pad_token_id)
|
1210 |
+
probability_matrix.masked_fill_(padding_mask, value=0.0)
|
1211 |
+
masked_indices = torch.bernoulli(probability_matrix).bool()
|
1212 |
+
# probability be `1` (masked), however in albert model attention mask `0` means masked, revert the value
|
1213 |
+
attention_mask = (~masked_indices).float()
|
1214 |
+
if self.tokenizer._pad_token is not None:
|
1215 |
+
attention_padding_mask = labels.eq(self.tokenizer.pad_token_id)
|
1216 |
+
attention_mask.masked_fill_(attention_padding_mask, value=1.0)
|
1217 |
+
labels[~masked_indices] = -100 # We only compute loss on masked tokens, -100 is default for CE compute
|
1218 |
+
|
1219 |
+
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
1220 |
+
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
|
1221 |
+
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
|
1222 |
+
|
1223 |
+
# 10% of the time, we replace masked input tokens with random word
|
1224 |
+
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
1225 |
+
random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
|
1226 |
+
inputs[indices_random] = random_words[indices_random]
|
1227 |
+
|
1228 |
+
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
1229 |
+
return inputs, labels, attention_mask
|
1230 |
+
|
1231 |
+
|
1232 |
+
@dataclass
|
1233 |
+
class DataCollatorForPermutationLanguageModeling(DataCollatorMixin):
|
1234 |
+
"""
|
1235 |
+
Data collator used for permutation language modeling.
|
1236 |
+
|
1237 |
+
- collates batches of tensors, honoring their tokenizer's pad_token
|
1238 |
+
- preprocesses batches for permutation language modeling with procedures specific to XLNet
|
1239 |
+
"""
|
1240 |
+
|
1241 |
+
tokenizer: PreTrainedTokenizerBase
|
1242 |
+
plm_probability: float = 1 / 6
|
1243 |
+
max_span_length: int = 5 # maximum length of a span of masked tokens
|
1244 |
+
return_tensors: str = "pt"
|
1245 |
+
|
1246 |
+
def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
|
1247 |
+
if isinstance(examples[0], Mapping):
|
1248 |
+
examples = [e["input_ids"] for e in examples]
|
1249 |
+
batch = _torch_collate_batch(examples, self.tokenizer)
|
1250 |
+
inputs, perm_mask, target_mapping, labels = self.torch_mask_tokens(batch)
|
1251 |
+
return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
|
1252 |
+
|
1253 |
+
def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
|
1254 |
+
if isinstance(examples[0], Mapping):
|
1255 |
+
examples = [e["input_ids"] for e in examples]
|
1256 |
+
batch = _tf_collate_batch(examples, self.tokenizer)
|
1257 |
+
inputs, perm_mask, target_mapping, labels = self.tf_mask_tokens(batch)
|
1258 |
+
return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
|
1259 |
+
|
1260 |
+
def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
|
1261 |
+
if isinstance(examples[0], Mapping):
|
1262 |
+
examples = [e["input_ids"] for e in examples]
|
1263 |
+
batch = _numpy_collate_batch(examples, self.tokenizer)
|
1264 |
+
inputs, perm_mask, target_mapping, labels = self.numpy_mask_tokens(batch)
|
1265 |
+
return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
|
1266 |
+
|
1267 |
+
def torch_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
|
1268 |
+
"""
|
1269 |
+
The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
|
1270 |
+
|
1271 |
+
0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
|
1272 |
+
1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
|
1273 |
+
2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be
|
1274 |
+
masked
|
1275 |
+
3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length -
|
1276 |
+
span_length]` and mask tokens `start_index:start_index + span_length`
|
1277 |
+
4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the
|
1278 |
+
sequence to be processed), repeat from Step 1.
|
1279 |
+
"""
|
1280 |
+
import torch
|
1281 |
+
|
1282 |
+
if self.tokenizer.mask_token is None:
|
1283 |
+
raise ValueError(
|
1284 |
+
"This tokenizer does not have a mask token which is necessary for permutation language modeling."
|
1285 |
+
" Please add a mask token if you want to use this tokenizer."
|
1286 |
+
)
|
1287 |
+
|
1288 |
+
if inputs.size(1) % 2 != 0:
|
1289 |
+
raise ValueError(
|
1290 |
+
"This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see"
|
1291 |
+
" relevant comments in source code for details."
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
labels = inputs.clone()
|
1295 |
+
# Creating the mask and target_mapping tensors
|
1296 |
+
masked_indices = torch.full(labels.shape, 0, dtype=torch.bool)
|
1297 |
+
target_mapping = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32)
|
1298 |
+
|
1299 |
+
for i in range(labels.size(0)):
|
1300 |
+
# Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
|
1301 |
+
cur_len = 0
|
1302 |
+
max_len = labels.size(1)
|
1303 |
+
|
1304 |
+
while cur_len < max_len:
|
1305 |
+
# Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
|
1306 |
+
span_length = torch.randint(1, self.max_span_length + 1, (1,)).item()
|
1307 |
+
# Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked
|
1308 |
+
context_length = int(span_length / self.plm_probability)
|
1309 |
+
# Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length`
|
1310 |
+
start_index = cur_len + torch.randint(context_length - span_length + 1, (1,)).item()
|
1311 |
+
masked_indices[i, start_index : start_index + span_length] = 1
|
1312 |
+
# Set `cur_len = cur_len + context_length`
|
1313 |
+
cur_len += context_length
|
1314 |
+
|
1315 |
+
# Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether,
|
1316 |
+
# the i-th predict corresponds to the i-th token.
|
1317 |
+
target_mapping[i] = torch.eye(labels.size(1))
|
1318 |
+
|
1319 |
+
special_tokens_mask = torch.tensor(
|
1320 |
+
[self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()],
|
1321 |
+
dtype=torch.bool,
|
1322 |
+
)
|
1323 |
+
masked_indices.masked_fill_(special_tokens_mask, value=0.0)
|
1324 |
+
if self.tokenizer._pad_token is not None:
|
1325 |
+
padding_mask = labels.eq(self.tokenizer.pad_token_id)
|
1326 |
+
masked_indices.masked_fill_(padding_mask, value=0.0)
|
1327 |
+
|
1328 |
+
# Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc.
|
1329 |
+
non_func_mask = ~(padding_mask | special_tokens_mask)
|
1330 |
+
|
1331 |
+
inputs[masked_indices] = self.tokenizer.mask_token_id
|
1332 |
+
labels[~masked_indices] = -100 # We only compute loss on masked tokens
|
1333 |
+
|
1334 |
+
perm_mask = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32)
|
1335 |
+
|
1336 |
+
for i in range(labels.size(0)):
|
1337 |
+
# Generate permutation indices i.e. sample a random factorisation order for the sequence. This will
|
1338 |
+
# determine which tokens a given token can attend to (encoded in `perm_mask`).
|
1339 |
+
# Note: Length of token sequence being permuted has to be less than or equal to reused sequence length
|
1340 |
+
# (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation,
|
1341 |
+
# we assume that reused length is half of sequence length and permutation length is equal to reused length.
|
1342 |
+
# This requires that the sequence length be even.
|
1343 |
+
|
1344 |
+
# Create a linear factorisation order
|
1345 |
+
perm_index = torch.arange(labels.size(1))
|
1346 |
+
# Split this into two halves, assuming that half the sequence is reused each time
|
1347 |
+
perm_index = perm_index.reshape((-1, labels.size(1) // 2)).transpose(0, 1)
|
1348 |
+
# Permute the two halves such that they do not cross over
|
1349 |
+
perm_index = perm_index[torch.randperm(labels.size(1) // 2)]
|
1350 |
+
# Flatten this out into the desired permuted factorisation order
|
1351 |
+
perm_index = torch.flatten(perm_index.transpose(0, 1))
|
1352 |
+
# Set the permutation indices of non-masked (non-functional) tokens to the
|
1353 |
+
# smallest index (-1) so that:
|
1354 |
+
# (1) They can be seen by all other positions
|
1355 |
+
# (2) They cannot see masked positions, so there won't be information leak
|
1356 |
+
perm_index.masked_fill_(~masked_indices[i] & non_func_mask[i], -1)
|
1357 |
+
# The logic for whether the i-th token can attend on the j-th token based on the factorisation order:
|
1358 |
+
# 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token
|
1359 |
+
# 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token
|
1360 |
+
perm_mask[i] = (
|
1361 |
+
perm_index.reshape((labels.size(1), 1)) <= perm_index.reshape((1, labels.size(1)))
|
1362 |
+
) & masked_indices[i]
|
1363 |
+
|
1364 |
+
return inputs.long(), perm_mask, target_mapping, labels.long()
|
1365 |
+
|
1366 |
+
def tf_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
|
1367 |
+
"""
|
1368 |
+
The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
|
1369 |
+
|
1370 |
+
0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
|
1371 |
+
1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
|
1372 |
+
2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be
|
1373 |
+
masked
|
1374 |
+
3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length -
|
1375 |
+
span_length]` and mask tokens `start_index:start_index + span_length`
|
1376 |
+
4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the
|
1377 |
+
sequence to be processed), repeat from Step 1.
|
1378 |
+
"""
|
1379 |
+
import tensorflow as tf
|
1380 |
+
|
1381 |
+
if self.tokenizer.mask_token is None:
|
1382 |
+
raise ValueError(
|
1383 |
+
"This tokenizer does not have a mask token which is necessary for permutation language modeling."
|
1384 |
+
" Please add a mask token if you want to use this tokenizer."
|
1385 |
+
)
|
1386 |
+
|
1387 |
+
if tf.shape(inputs)[1] % 2 != 0:
|
1388 |
+
raise ValueError(
|
1389 |
+
"This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see"
|
1390 |
+
" relevant comments in source code for details."
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
labels = tf.identity(inputs)
|
1394 |
+
# Creating the mask and target_mapping tensors
|
1395 |
+
masked_indices = np.full(labels.shape.as_list(), 0, dtype=bool)
|
1396 |
+
labels_shape = tf.shape(labels)
|
1397 |
+
target_mapping = np.zeros((labels_shape[0], labels_shape[1], labels_shape[1]), dtype=np.float32)
|
1398 |
+
|
1399 |
+
for i in range(len(labels)):
|
1400 |
+
# Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
|
1401 |
+
cur_len = 0
|
1402 |
+
max_len = tf.shape(labels)[1]
|
1403 |
+
|
1404 |
+
while cur_len < max_len:
|
1405 |
+
# Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
|
1406 |
+
span_length = randint(1, self.max_span_length + 1)
|
1407 |
+
# Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked
|
1408 |
+
context_length = int(span_length / self.plm_probability)
|
1409 |
+
# Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length`
|
1410 |
+
start_index = cur_len + randint(0, context_length - span_length + 1)
|
1411 |
+
masked_indices[i, start_index : start_index + span_length] = 1
|
1412 |
+
# Set `cur_len = cur_len + context_length`
|
1413 |
+
cur_len += context_length
|
1414 |
+
|
1415 |
+
# Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether,
|
1416 |
+
# the i-th predict corresponds to the i-th token.
|
1417 |
+
target_mapping[i] = np.eye(labels_shape[1])
|
1418 |
+
masked_indices = tf.cast(tf.convert_to_tensor(masked_indices), dtype=tf.bool)
|
1419 |
+
target_mapping = tf.convert_to_tensor(target_mapping)
|
1420 |
+
special_tokens_mask = tf.convert_to_tensor(
|
1421 |
+
[
|
1422 |
+
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True)
|
1423 |
+
for val in labels.numpy().tolist()
|
1424 |
+
],
|
1425 |
+
)
|
1426 |
+
special_tokens_mask = tf.cast(special_tokens_mask, dtype=tf.bool)
|
1427 |
+
masked_indices = masked_indices & ~special_tokens_mask
|
1428 |
+
if self.tokenizer._pad_token is not None:
|
1429 |
+
padding_mask = labels == self.tokenizer.pad_token_id
|
1430 |
+
masked_indices = masked_indices & ~padding_mask
|
1431 |
+
|
1432 |
+
# Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc.
|
1433 |
+
non_func_mask = ~(padding_mask | special_tokens_mask)
|
1434 |
+
|
1435 |
+
inputs = tf.where(masked_indices, self.tokenizer.mask_token_id, inputs)
|
1436 |
+
labels = tf.where(masked_indices, labels, -100) # We only compute loss on masked tokens
|
1437 |
+
|
1438 |
+
perm_mask = []
|
1439 |
+
|
1440 |
+
for i in range(len(labels)):
|
1441 |
+
# Generate permutation indices i.e. sample a random factorisation order for the sequence. This will
|
1442 |
+
# determine which tokens a given token can attend to (encoded in `perm_mask`).
|
1443 |
+
# Note: Length of token sequence being permuted has to be less than or equal to reused sequence length
|
1444 |
+
# (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation,
|
1445 |
+
# we assume that reused length is half of sequence length and permutation length is equal to reused length.
|
1446 |
+
# This requires that the sequence length be even.
|
1447 |
+
|
1448 |
+
# Create a linear factorisation order
|
1449 |
+
# tf.range is the equivalent of torch.arange
|
1450 |
+
perm_index = tf.range(labels_shape[1])
|
1451 |
+
# Split this into two halves, assuming that half the sequence is reused each time
|
1452 |
+
perm_index = tf.transpose(tf.reshape(perm_index, (-1, labels_shape[1] // 2)))
|
1453 |
+
# Permute the two halves such that they do not cross over
|
1454 |
+
perm_index = tf.random.shuffle(perm_index) # Shuffles along the first dimension
|
1455 |
+
# Flatten this out into the desired permuted factorisation order
|
1456 |
+
perm_index = tf.reshape(tf.transpose(perm_index), (-1,))
|
1457 |
+
# Set the permutation indices of non-masked (non-functional) tokens to the
|
1458 |
+
# smallest index (-1) so that:
|
1459 |
+
# (1) They can be seen by all other positions
|
1460 |
+
# (2) They cannot see masked positions, so there won't be information leak
|
1461 |
+
perm_index = tf.where(~masked_indices[i] & non_func_mask[i], -1, perm_index)
|
1462 |
+
# The logic for whether the i-th token can attend on the j-th token based on the factorisation order:
|
1463 |
+
# 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token
|
1464 |
+
# 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token
|
1465 |
+
perm_mask.append(
|
1466 |
+
(tf.reshape(perm_index, (labels_shape[1], 1)) <= tf.reshape(perm_index, (1, labels_shape[1])))
|
1467 |
+
& masked_indices[i]
|
1468 |
+
)
|
1469 |
+
perm_mask = tf.stack(perm_mask, axis=0)
|
1470 |
+
|
1471 |
+
return tf.cast(inputs, tf.int64), tf.cast(perm_mask, tf.float32), target_mapping, tf.cast(labels, tf.int64)
|
1472 |
+
|
1473 |
+
def numpy_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
|
1474 |
+
"""
|
1475 |
+
The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
|
1476 |
+
|
1477 |
+
0. Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
|
1478 |
+
1. Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
|
1479 |
+
2. Reserve a context of length `context_length = span_length / plm_probability` to surround span to be
|
1480 |
+
masked
|
1481 |
+
3. Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length -
|
1482 |
+
span_length]` and mask tokens `start_index:start_index + span_length`
|
1483 |
+
4. Set `cur_len = cur_len + context_length`. If `cur_len < max_len` (i.e. there are tokens remaining in the
|
1484 |
+
sequence to be processed), repeat from Step 1.
|
1485 |
+
"""
|
1486 |
+
if self.tokenizer.mask_token is None:
|
1487 |
+
raise ValueError(
|
1488 |
+
"This tokenizer does not have a mask token which is necessary for permutation language modeling."
|
1489 |
+
" Please add a mask token if you want to use this tokenizer."
|
1490 |
+
)
|
1491 |
+
|
1492 |
+
if inputs.shape[1] % 2 != 0:
|
1493 |
+
raise ValueError(
|
1494 |
+
"This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see"
|
1495 |
+
" relevant comments in source code for details."
|
1496 |
+
)
|
1497 |
+
|
1498 |
+
labels = np.copy(inputs)
|
1499 |
+
# Creating the mask and target_mapping tensors
|
1500 |
+
masked_indices = np.full(labels.shape, 0, dtype=bool)
|
1501 |
+
target_mapping = np.zeros((labels.shape[0], labels.shape[1], labels.shape[1]), dtype=np.float32)
|
1502 |
+
|
1503 |
+
for i in range(labels.shape[0]):
|
1504 |
+
# Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far).
|
1505 |
+
cur_len = 0
|
1506 |
+
max_len = labels.shape[1]
|
1507 |
+
|
1508 |
+
while cur_len < max_len:
|
1509 |
+
# Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked)
|
1510 |
+
span_length = randint(1, self.max_span_length + 1)
|
1511 |
+
# Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked
|
1512 |
+
context_length = int(span_length / self.plm_probability)
|
1513 |
+
# Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length`
|
1514 |
+
start_index = cur_len + randint(0, context_length - span_length + 1)
|
1515 |
+
masked_indices[i, start_index : start_index + span_length] = 1
|
1516 |
+
# Set `cur_len = cur_len + context_length`
|
1517 |
+
cur_len += context_length
|
1518 |
+
|
1519 |
+
# Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether,
|
1520 |
+
# the i-th predict corresponds to the i-th token.
|
1521 |
+
target_mapping[i] = np.eye(labels.shape[1])
|
1522 |
+
|
1523 |
+
special_tokens_mask = np.array(
|
1524 |
+
[self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()],
|
1525 |
+
dtype=bool,
|
1526 |
+
)
|
1527 |
+
masked_indices[special_tokens_mask] = 0
|
1528 |
+
if self.tokenizer._pad_token is not None:
|
1529 |
+
padding_mask = labels == self.tokenizer.pad_token_id
|
1530 |
+
masked_indices[padding_mask] = 0.0
|
1531 |
+
|
1532 |
+
# Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc.
|
1533 |
+
non_func_mask = ~(padding_mask | special_tokens_mask)
|
1534 |
+
|
1535 |
+
inputs[masked_indices] = self.tokenizer.mask_token_id
|
1536 |
+
labels[~masked_indices] = -100 # We only compute loss on masked tokens
|
1537 |
+
|
1538 |
+
perm_mask = np.zeros((labels.shape[0], labels.shape[1], labels.shape[1]), dtype=np.float32)
|
1539 |
+
|
1540 |
+
for i in range(labels.shape[0]):
|
1541 |
+
# Generate permutation indices i.e. sample a random factorisation order for the sequence. This will
|
1542 |
+
# determine which tokens a given token can attend to (encoded in `perm_mask`).
|
1543 |
+
# Note: Length of token sequence being permuted has to be less than or equal to reused sequence length
|
1544 |
+
# (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation,
|
1545 |
+
# we assume that reused length is half of sequence length and permutation length is equal to reused length.
|
1546 |
+
# This requires that the sequence length be even.
|
1547 |
+
|
1548 |
+
# Create a linear factorisation order
|
1549 |
+
perm_index = np.arange(labels.shape[1])
|
1550 |
+
# Split this into two halves, assuming that half the sequence is reused each time
|
1551 |
+
perm_index = perm_index.reshape((-1, labels.shape[1] // 2)).T
|
1552 |
+
# Permute the two halves such that they do not cross over
|
1553 |
+
np.random.shuffle(perm_index)
|
1554 |
+
# Flatten this out into the desired permuted factorisation order
|
1555 |
+
perm_index = perm_index.T.flatten()
|
1556 |
+
# Set the permutation indices of non-masked (non-functional) tokens to the
|
1557 |
+
# smallest index (-1) so that:
|
1558 |
+
# (1) They can be seen by all other positions
|
1559 |
+
# (2) They cannot see masked positions, so there won't be information leak
|
1560 |
+
perm_index[~masked_indices[i] & non_func_mask[i]] = -1
|
1561 |
+
# The logic for whether the i-th token can attend on the j-th token based on the factorisation order:
|
1562 |
+
# 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token
|
1563 |
+
# 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token
|
1564 |
+
perm_mask[i] = (
|
1565 |
+
perm_index.reshape((labels.shape[1], 1)) <= perm_index.reshape((1, labels.shape[1]))
|
1566 |
+
) & masked_indices[i]
|
1567 |
+
|
1568 |
+
return inputs.astype(np.int64), perm_mask, target_mapping, labels.astype(np.int64)
|
env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .glue import GlueDataset, GlueDataTrainingArguments
|
16 |
+
from .language_modeling import (
|
17 |
+
LineByLineTextDataset,
|
18 |
+
LineByLineWithRefDataset,
|
19 |
+
LineByLineWithSOPTextDataset,
|
20 |
+
TextDataset,
|
21 |
+
TextDatasetForNextSentencePrediction,
|
22 |
+
)
|
23 |
+
from .squad import SquadDataset, SquadDataTrainingArguments
|
env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (552 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/glue.cpython-310.pyc
ADDED
Binary file (4.87 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/language_modeling.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/squad.cpython-310.pyc
ADDED
Binary file (6.36 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/glue.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import time
|
17 |
+
import warnings
|
18 |
+
from dataclasses import dataclass, field
|
19 |
+
from enum import Enum
|
20 |
+
from typing import List, Optional, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from filelock import FileLock
|
24 |
+
from torch.utils.data import Dataset
|
25 |
+
|
26 |
+
from ...tokenization_utils_base import PreTrainedTokenizerBase
|
27 |
+
from ...utils import logging
|
28 |
+
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
|
29 |
+
from ..processors.utils import InputFeatures
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class GlueDataTrainingArguments:
|
37 |
+
"""
|
38 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
39 |
+
|
40 |
+
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command
|
41 |
+
line.
|
42 |
+
"""
|
43 |
+
|
44 |
+
task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys())})
|
45 |
+
data_dir: str = field(
|
46 |
+
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
|
47 |
+
)
|
48 |
+
max_seq_length: int = field(
|
49 |
+
default=128,
|
50 |
+
metadata={
|
51 |
+
"help": (
|
52 |
+
"The maximum total input sequence length after tokenization. Sequences longer "
|
53 |
+
"than this will be truncated, sequences shorter will be padded."
|
54 |
+
)
|
55 |
+
},
|
56 |
+
)
|
57 |
+
overwrite_cache: bool = field(
|
58 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
59 |
+
)
|
60 |
+
|
61 |
+
def __post_init__(self):
|
62 |
+
self.task_name = self.task_name.lower()
|
63 |
+
|
64 |
+
|
65 |
+
class Split(Enum):
|
66 |
+
train = "train"
|
67 |
+
dev = "dev"
|
68 |
+
test = "test"
|
69 |
+
|
70 |
+
|
71 |
+
class GlueDataset(Dataset):
|
72 |
+
"""
|
73 |
+
This will be superseded by a framework-agnostic approach soon.
|
74 |
+
"""
|
75 |
+
|
76 |
+
args: GlueDataTrainingArguments
|
77 |
+
output_mode: str
|
78 |
+
features: List[InputFeatures]
|
79 |
+
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
args: GlueDataTrainingArguments,
|
83 |
+
tokenizer: PreTrainedTokenizerBase,
|
84 |
+
limit_length: Optional[int] = None,
|
85 |
+
mode: Union[str, Split] = Split.train,
|
86 |
+
cache_dir: Optional[str] = None,
|
87 |
+
):
|
88 |
+
warnings.warn(
|
89 |
+
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
|
90 |
+
"library. You can have a look at this example script for pointers: "
|
91 |
+
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py",
|
92 |
+
FutureWarning,
|
93 |
+
)
|
94 |
+
self.args = args
|
95 |
+
self.processor = glue_processors[args.task_name]()
|
96 |
+
self.output_mode = glue_output_modes[args.task_name]
|
97 |
+
if isinstance(mode, str):
|
98 |
+
try:
|
99 |
+
mode = Split[mode]
|
100 |
+
except KeyError:
|
101 |
+
raise KeyError("mode is not a valid split name")
|
102 |
+
# Load data features from cache or dataset file
|
103 |
+
cached_features_file = os.path.join(
|
104 |
+
cache_dir if cache_dir is not None else args.data_dir,
|
105 |
+
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}",
|
106 |
+
)
|
107 |
+
label_list = self.processor.get_labels()
|
108 |
+
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
|
109 |
+
"RobertaTokenizer",
|
110 |
+
"RobertaTokenizerFast",
|
111 |
+
"XLMRobertaTokenizer",
|
112 |
+
"BartTokenizer",
|
113 |
+
"BartTokenizerFast",
|
114 |
+
):
|
115 |
+
# HACK(label indices are swapped in RoBERTa pretrained model)
|
116 |
+
label_list[1], label_list[2] = label_list[2], label_list[1]
|
117 |
+
self.label_list = label_list
|
118 |
+
|
119 |
+
# Make sure only the first process in distributed training processes the dataset,
|
120 |
+
# and the others will use the cache.
|
121 |
+
lock_path = cached_features_file + ".lock"
|
122 |
+
with FileLock(lock_path):
|
123 |
+
if os.path.exists(cached_features_file) and not args.overwrite_cache:
|
124 |
+
start = time.time()
|
125 |
+
self.features = torch.load(cached_features_file)
|
126 |
+
logger.info(
|
127 |
+
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
128 |
+
)
|
129 |
+
else:
|
130 |
+
logger.info(f"Creating features from dataset file at {args.data_dir}")
|
131 |
+
|
132 |
+
if mode == Split.dev:
|
133 |
+
examples = self.processor.get_dev_examples(args.data_dir)
|
134 |
+
elif mode == Split.test:
|
135 |
+
examples = self.processor.get_test_examples(args.data_dir)
|
136 |
+
else:
|
137 |
+
examples = self.processor.get_train_examples(args.data_dir)
|
138 |
+
if limit_length is not None:
|
139 |
+
examples = examples[:limit_length]
|
140 |
+
self.features = glue_convert_examples_to_features(
|
141 |
+
examples,
|
142 |
+
tokenizer,
|
143 |
+
max_length=args.max_seq_length,
|
144 |
+
label_list=label_list,
|
145 |
+
output_mode=self.output_mode,
|
146 |
+
)
|
147 |
+
start = time.time()
|
148 |
+
torch.save(self.features, cached_features_file)
|
149 |
+
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
|
150 |
+
logger.info(
|
151 |
+
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
152 |
+
)
|
153 |
+
|
154 |
+
def __len__(self):
|
155 |
+
return len(self.features)
|
156 |
+
|
157 |
+
def __getitem__(self, i) -> InputFeatures:
|
158 |
+
return self.features[i]
|
159 |
+
|
160 |
+
def get_labels(self):
|
161 |
+
return self.label_list
|
env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/language_modeling.py
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
import pickle
|
18 |
+
import random
|
19 |
+
import time
|
20 |
+
import warnings
|
21 |
+
from typing import Dict, List, Optional
|
22 |
+
|
23 |
+
import torch
|
24 |
+
from filelock import FileLock
|
25 |
+
from torch.utils.data import Dataset
|
26 |
+
|
27 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
28 |
+
from ...utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
DEPRECATION_WARNING = (
|
35 |
+
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
|
36 |
+
"library. You can have a look at this example script for pointers: {0}"
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
class TextDataset(Dataset):
|
41 |
+
"""
|
42 |
+
This will be superseded by a framework-agnostic approach soon.
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
tokenizer: PreTrainedTokenizer,
|
48 |
+
file_path: str,
|
49 |
+
block_size: int,
|
50 |
+
overwrite_cache=False,
|
51 |
+
cache_dir: Optional[str] = None,
|
52 |
+
):
|
53 |
+
warnings.warn(
|
54 |
+
DEPRECATION_WARNING.format(
|
55 |
+
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
56 |
+
),
|
57 |
+
FutureWarning,
|
58 |
+
)
|
59 |
+
if os.path.isfile(file_path) is False:
|
60 |
+
raise ValueError(f"Input file path {file_path} not found")
|
61 |
+
|
62 |
+
block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False)
|
63 |
+
|
64 |
+
directory, filename = os.path.split(file_path)
|
65 |
+
cached_features_file = os.path.join(
|
66 |
+
cache_dir if cache_dir is not None else directory,
|
67 |
+
f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}",
|
68 |
+
)
|
69 |
+
|
70 |
+
# Make sure only the first process in distributed training processes the dataset,
|
71 |
+
# and the others will use the cache.
|
72 |
+
lock_path = cached_features_file + ".lock"
|
73 |
+
with FileLock(lock_path):
|
74 |
+
if os.path.exists(cached_features_file) and not overwrite_cache:
|
75 |
+
start = time.time()
|
76 |
+
with open(cached_features_file, "rb") as handle:
|
77 |
+
self.examples = pickle.load(handle)
|
78 |
+
logger.info(
|
79 |
+
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
80 |
+
)
|
81 |
+
|
82 |
+
else:
|
83 |
+
logger.info(f"Creating features from dataset file at {directory}")
|
84 |
+
|
85 |
+
self.examples = []
|
86 |
+
with open(file_path, encoding="utf-8") as f:
|
87 |
+
text = f.read()
|
88 |
+
|
89 |
+
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
|
90 |
+
|
91 |
+
for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size
|
92 |
+
self.examples.append(
|
93 |
+
tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size])
|
94 |
+
)
|
95 |
+
# Note that we are losing the last truncated example here for the sake of simplicity (no padding)
|
96 |
+
# If your dataset is small, first you should look for a bigger one :-) and second you
|
97 |
+
# can change this behavior by adding (model specific) padding.
|
98 |
+
|
99 |
+
start = time.time()
|
100 |
+
with open(cached_features_file, "wb") as handle:
|
101 |
+
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
102 |
+
logger.info(
|
103 |
+
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
104 |
+
)
|
105 |
+
|
106 |
+
def __len__(self):
|
107 |
+
return len(self.examples)
|
108 |
+
|
109 |
+
def __getitem__(self, i) -> torch.Tensor:
|
110 |
+
return torch.tensor(self.examples[i], dtype=torch.long)
|
111 |
+
|
112 |
+
|
113 |
+
class LineByLineTextDataset(Dataset):
|
114 |
+
"""
|
115 |
+
This will be superseded by a framework-agnostic approach soon.
|
116 |
+
"""
|
117 |
+
|
118 |
+
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int):
|
119 |
+
warnings.warn(
|
120 |
+
DEPRECATION_WARNING.format(
|
121 |
+
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
122 |
+
),
|
123 |
+
FutureWarning,
|
124 |
+
)
|
125 |
+
if os.path.isfile(file_path) is False:
|
126 |
+
raise ValueError(f"Input file path {file_path} not found")
|
127 |
+
# Here, we do not cache the features, operating under the assumption
|
128 |
+
# that we will soon use fast multithreaded tokenizers from the
|
129 |
+
# `tokenizers` repo everywhere =)
|
130 |
+
logger.info(f"Creating features from dataset file at {file_path}")
|
131 |
+
|
132 |
+
with open(file_path, encoding="utf-8") as f:
|
133 |
+
lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
|
134 |
+
|
135 |
+
batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)
|
136 |
+
self.examples = batch_encoding["input_ids"]
|
137 |
+
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
|
138 |
+
|
139 |
+
def __len__(self):
|
140 |
+
return len(self.examples)
|
141 |
+
|
142 |
+
def __getitem__(self, i) -> Dict[str, torch.tensor]:
|
143 |
+
return self.examples[i]
|
144 |
+
|
145 |
+
|
146 |
+
class LineByLineWithRefDataset(Dataset):
|
147 |
+
"""
|
148 |
+
This will be superseded by a framework-agnostic approach soon.
|
149 |
+
"""
|
150 |
+
|
151 |
+
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str):
|
152 |
+
warnings.warn(
|
153 |
+
DEPRECATION_WARNING.format(
|
154 |
+
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py"
|
155 |
+
),
|
156 |
+
FutureWarning,
|
157 |
+
)
|
158 |
+
if os.path.isfile(file_path) is False:
|
159 |
+
raise ValueError(f"Input file path {file_path} not found")
|
160 |
+
if os.path.isfile(ref_path) is False:
|
161 |
+
raise ValueError(f"Ref file path {file_path} not found")
|
162 |
+
# Here, we do not cache the features, operating under the assumption
|
163 |
+
# that we will soon use fast multithreaded tokenizers from the
|
164 |
+
# `tokenizers` repo everywhere =)
|
165 |
+
logger.info(f"Creating features from dataset file at {file_path}")
|
166 |
+
logger.info(f"Use ref segment results at {ref_path}")
|
167 |
+
with open(file_path, encoding="utf-8") as f:
|
168 |
+
data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line
|
169 |
+
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()]
|
170 |
+
# Get ref inf from file
|
171 |
+
with open(ref_path, encoding="utf-8") as f:
|
172 |
+
ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
|
173 |
+
if len(data) != len(ref):
|
174 |
+
raise ValueError(
|
175 |
+
f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} "
|
176 |
+
f"while length of {ref_path} is {len(ref)}"
|
177 |
+
)
|
178 |
+
|
179 |
+
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size)
|
180 |
+
self.examples = batch_encoding["input_ids"]
|
181 |
+
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
|
182 |
+
|
183 |
+
n = len(self.examples)
|
184 |
+
for i in range(n):
|
185 |
+
self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long)
|
186 |
+
|
187 |
+
def __len__(self):
|
188 |
+
return len(self.examples)
|
189 |
+
|
190 |
+
def __getitem__(self, i) -> Dict[str, torch.tensor]:
|
191 |
+
return self.examples[i]
|
192 |
+
|
193 |
+
|
194 |
+
class LineByLineWithSOPTextDataset(Dataset):
|
195 |
+
"""
|
196 |
+
Dataset for sentence order prediction task, prepare sentence pairs for SOP task
|
197 |
+
"""
|
198 |
+
|
199 |
+
def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int):
|
200 |
+
warnings.warn(
|
201 |
+
DEPRECATION_WARNING.format(
|
202 |
+
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
203 |
+
),
|
204 |
+
FutureWarning,
|
205 |
+
)
|
206 |
+
if os.path.isdir(file_dir) is False:
|
207 |
+
raise ValueError(f"{file_dir} is not a directory")
|
208 |
+
logger.info(f"Creating features from dataset file folder at {file_dir}")
|
209 |
+
self.examples = []
|
210 |
+
# TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed)
|
211 |
+
# file path looks like ./dataset/wiki_1, ./dataset/wiki_2
|
212 |
+
for file_name in os.listdir(file_dir):
|
213 |
+
file_path = os.path.join(file_dir, file_name)
|
214 |
+
if os.path.isfile(file_path) is False:
|
215 |
+
raise ValueError(f"{file_path} is not a file")
|
216 |
+
article_open = False
|
217 |
+
with open(file_path, encoding="utf-8") as f:
|
218 |
+
original_lines = f.readlines()
|
219 |
+
article_lines = []
|
220 |
+
for line in original_lines:
|
221 |
+
if "<doc id=" in line:
|
222 |
+
article_open = True
|
223 |
+
elif "</doc>" in line:
|
224 |
+
article_open = False
|
225 |
+
document = [
|
226 |
+
tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line))
|
227 |
+
for line in article_lines[1:]
|
228 |
+
if (len(line) > 0 and not line.isspace())
|
229 |
+
]
|
230 |
+
|
231 |
+
examples = self.create_examples_from_document(document, block_size, tokenizer)
|
232 |
+
self.examples.extend(examples)
|
233 |
+
article_lines = []
|
234 |
+
else:
|
235 |
+
if article_open:
|
236 |
+
article_lines.append(line)
|
237 |
+
|
238 |
+
logger.info("Dataset parse finished.")
|
239 |
+
|
240 |
+
def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1):
|
241 |
+
"""Creates examples for a single document."""
|
242 |
+
|
243 |
+
# Account for special tokens
|
244 |
+
max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True)
|
245 |
+
|
246 |
+
# We *usually* want to fill up the entire sequence since we are padding
|
247 |
+
# to `block_size` anyways, so short sequences are generally wasted
|
248 |
+
# computation. However, we *sometimes*
|
249 |
+
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
|
250 |
+
# sequences to minimize the mismatch between pretraining and fine-tuning.
|
251 |
+
# The `target_seq_length` is just a rough target however, whereas
|
252 |
+
# `block_size` is a hard limit.
|
253 |
+
target_seq_length = max_num_tokens
|
254 |
+
if random.random() < short_seq_prob:
|
255 |
+
target_seq_length = random.randint(2, max_num_tokens)
|
256 |
+
|
257 |
+
# We DON'T just concatenate all of the tokens from a document into a long
|
258 |
+
# sequence and choose an arbitrary split point because this would make the
|
259 |
+
# next sentence prediction task too easy. Instead, we split the input into
|
260 |
+
# segments "A" and "B" based on the actual "sentences" provided by the user
|
261 |
+
# input.
|
262 |
+
examples = []
|
263 |
+
current_chunk = [] # a buffer stored current working segments
|
264 |
+
current_length = 0
|
265 |
+
i = 0
|
266 |
+
while i < len(document):
|
267 |
+
segment = document[i] # get a segment
|
268 |
+
if not segment:
|
269 |
+
i += 1
|
270 |
+
continue
|
271 |
+
current_chunk.append(segment) # add a segment to current chunk
|
272 |
+
current_length += len(segment) # overall token length
|
273 |
+
# if current length goes to the target length or reaches the end of file, start building token a and b
|
274 |
+
if i == len(document) - 1 or current_length >= target_seq_length:
|
275 |
+
if current_chunk:
|
276 |
+
# `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence.
|
277 |
+
a_end = 1
|
278 |
+
# if current chunk has more than 2 sentences, pick part of it `A` (first) sentence
|
279 |
+
if len(current_chunk) >= 2:
|
280 |
+
a_end = random.randint(1, len(current_chunk) - 1)
|
281 |
+
# token a
|
282 |
+
tokens_a = []
|
283 |
+
for j in range(a_end):
|
284 |
+
tokens_a.extend(current_chunk[j])
|
285 |
+
|
286 |
+
# token b
|
287 |
+
tokens_b = []
|
288 |
+
for j in range(a_end, len(current_chunk)):
|
289 |
+
tokens_b.extend(current_chunk[j])
|
290 |
+
|
291 |
+
if len(tokens_a) == 0 or len(tokens_b) == 0:
|
292 |
+
continue
|
293 |
+
|
294 |
+
# switch tokens_a and tokens_b randomly
|
295 |
+
if random.random() < 0.5:
|
296 |
+
is_next = False
|
297 |
+
tokens_a, tokens_b = tokens_b, tokens_a
|
298 |
+
else:
|
299 |
+
is_next = True
|
300 |
+
|
301 |
+
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
|
302 |
+
"""Truncates a pair of sequences to a maximum sequence length."""
|
303 |
+
while True:
|
304 |
+
total_length = len(tokens_a) + len(tokens_b)
|
305 |
+
if total_length <= max_num_tokens:
|
306 |
+
break
|
307 |
+
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
|
308 |
+
if not (len(trunc_tokens) >= 1):
|
309 |
+
raise ValueError("Sequence length to be truncated must be no less than one")
|
310 |
+
# We want to sometimes truncate from the front and sometimes from the
|
311 |
+
# back to add more randomness and avoid biases.
|
312 |
+
if random.random() < 0.5:
|
313 |
+
del trunc_tokens[0]
|
314 |
+
else:
|
315 |
+
trunc_tokens.pop()
|
316 |
+
|
317 |
+
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
|
318 |
+
if not (len(tokens_a) >= 1):
|
319 |
+
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
|
320 |
+
if not (len(tokens_b) >= 1):
|
321 |
+
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
|
322 |
+
|
323 |
+
# add special tokens
|
324 |
+
input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
|
325 |
+
# add token type ids, 0 for sentence a, 1 for sentence b
|
326 |
+
token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
|
327 |
+
|
328 |
+
example = {
|
329 |
+
"input_ids": torch.tensor(input_ids, dtype=torch.long),
|
330 |
+
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
|
331 |
+
"sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long),
|
332 |
+
}
|
333 |
+
examples.append(example)
|
334 |
+
current_chunk = [] # clear current chunk
|
335 |
+
current_length = 0 # reset current text length
|
336 |
+
i += 1 # go to next line
|
337 |
+
return examples
|
338 |
+
|
339 |
+
def __len__(self):
|
340 |
+
return len(self.examples)
|
341 |
+
|
342 |
+
def __getitem__(self, i) -> Dict[str, torch.tensor]:
|
343 |
+
return self.examples[i]
|
344 |
+
|
345 |
+
|
346 |
+
class TextDatasetForNextSentencePrediction(Dataset):
|
347 |
+
"""
|
348 |
+
This will be superseded by a framework-agnostic approach soon.
|
349 |
+
"""
|
350 |
+
|
351 |
+
def __init__(
|
352 |
+
self,
|
353 |
+
tokenizer: PreTrainedTokenizer,
|
354 |
+
file_path: str,
|
355 |
+
block_size: int,
|
356 |
+
overwrite_cache=False,
|
357 |
+
short_seq_probability=0.1,
|
358 |
+
nsp_probability=0.5,
|
359 |
+
):
|
360 |
+
warnings.warn(
|
361 |
+
DEPRECATION_WARNING.format(
|
362 |
+
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
363 |
+
),
|
364 |
+
FutureWarning,
|
365 |
+
)
|
366 |
+
if not os.path.isfile(file_path):
|
367 |
+
raise ValueError(f"Input file path {file_path} not found")
|
368 |
+
|
369 |
+
self.short_seq_probability = short_seq_probability
|
370 |
+
self.nsp_probability = nsp_probability
|
371 |
+
|
372 |
+
directory, filename = os.path.split(file_path)
|
373 |
+
cached_features_file = os.path.join(
|
374 |
+
directory,
|
375 |
+
f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}",
|
376 |
+
)
|
377 |
+
|
378 |
+
self.tokenizer = tokenizer
|
379 |
+
|
380 |
+
# Make sure only the first process in distributed training processes the dataset,
|
381 |
+
# and the others will use the cache.
|
382 |
+
lock_path = cached_features_file + ".lock"
|
383 |
+
|
384 |
+
# Input file format:
|
385 |
+
# (1) One sentence per line. These should ideally be actual sentences, not
|
386 |
+
# entire paragraphs or arbitrary spans of text. (Because we use the
|
387 |
+
# sentence boundaries for the "next sentence prediction" task).
|
388 |
+
# (2) Blank lines between documents. Document boundaries are needed so
|
389 |
+
# that the "next sentence prediction" task doesn't span between documents.
|
390 |
+
#
|
391 |
+
# Example:
|
392 |
+
# I am very happy.
|
393 |
+
# Here is the second sentence.
|
394 |
+
#
|
395 |
+
# A new document.
|
396 |
+
|
397 |
+
with FileLock(lock_path):
|
398 |
+
if os.path.exists(cached_features_file) and not overwrite_cache:
|
399 |
+
start = time.time()
|
400 |
+
with open(cached_features_file, "rb") as handle:
|
401 |
+
self.examples = pickle.load(handle)
|
402 |
+
logger.info(
|
403 |
+
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
404 |
+
)
|
405 |
+
else:
|
406 |
+
logger.info(f"Creating features from dataset file at {directory}")
|
407 |
+
|
408 |
+
self.documents = [[]]
|
409 |
+
with open(file_path, encoding="utf-8") as f:
|
410 |
+
while True:
|
411 |
+
line = f.readline()
|
412 |
+
if not line:
|
413 |
+
break
|
414 |
+
line = line.strip()
|
415 |
+
|
416 |
+
# Empty lines are used as document delimiters
|
417 |
+
if not line and len(self.documents[-1]) != 0:
|
418 |
+
self.documents.append([])
|
419 |
+
tokens = tokenizer.tokenize(line)
|
420 |
+
tokens = tokenizer.convert_tokens_to_ids(tokens)
|
421 |
+
if tokens:
|
422 |
+
self.documents[-1].append(tokens)
|
423 |
+
|
424 |
+
logger.info(f"Creating examples from {len(self.documents)} documents.")
|
425 |
+
self.examples = []
|
426 |
+
for doc_index, document in enumerate(self.documents):
|
427 |
+
self.create_examples_from_document(document, doc_index, block_size)
|
428 |
+
|
429 |
+
start = time.time()
|
430 |
+
with open(cached_features_file, "wb") as handle:
|
431 |
+
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
432 |
+
logger.info(
|
433 |
+
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
434 |
+
)
|
435 |
+
|
436 |
+
def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int):
|
437 |
+
"""Creates examples for a single document."""
|
438 |
+
|
439 |
+
max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True)
|
440 |
+
|
441 |
+
# We *usually* want to fill up the entire sequence since we are padding
|
442 |
+
# to `block_size` anyways, so short sequences are generally wasted
|
443 |
+
# computation. However, we *sometimes*
|
444 |
+
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
|
445 |
+
# sequences to minimize the mismatch between pretraining and fine-tuning.
|
446 |
+
# The `target_seq_length` is just a rough target however, whereas
|
447 |
+
# `block_size` is a hard limit.
|
448 |
+
target_seq_length = max_num_tokens
|
449 |
+
if random.random() < self.short_seq_probability:
|
450 |
+
target_seq_length = random.randint(2, max_num_tokens)
|
451 |
+
|
452 |
+
current_chunk = [] # a buffer stored current working segments
|
453 |
+
current_length = 0
|
454 |
+
i = 0
|
455 |
+
|
456 |
+
while i < len(document):
|
457 |
+
segment = document[i]
|
458 |
+
current_chunk.append(segment)
|
459 |
+
current_length += len(segment)
|
460 |
+
if i == len(document) - 1 or current_length >= target_seq_length:
|
461 |
+
if current_chunk:
|
462 |
+
# `a_end` is how many segments from `current_chunk` go into the `A`
|
463 |
+
# (first) sentence.
|
464 |
+
a_end = 1
|
465 |
+
if len(current_chunk) >= 2:
|
466 |
+
a_end = random.randint(1, len(current_chunk) - 1)
|
467 |
+
|
468 |
+
tokens_a = []
|
469 |
+
for j in range(a_end):
|
470 |
+
tokens_a.extend(current_chunk[j])
|
471 |
+
|
472 |
+
tokens_b = []
|
473 |
+
|
474 |
+
if len(current_chunk) == 1 or random.random() < self.nsp_probability:
|
475 |
+
is_random_next = True
|
476 |
+
target_b_length = target_seq_length - len(tokens_a)
|
477 |
+
|
478 |
+
# This should rarely go for more than one iteration for large
|
479 |
+
# corpora. However, just to be careful, we try to make sure that
|
480 |
+
# the random document is not the same as the document
|
481 |
+
# we're processing.
|
482 |
+
for _ in range(10):
|
483 |
+
random_document_index = random.randint(0, len(self.documents) - 1)
|
484 |
+
if random_document_index != doc_index:
|
485 |
+
break
|
486 |
+
|
487 |
+
random_document = self.documents[random_document_index]
|
488 |
+
random_start = random.randint(0, len(random_document) - 1)
|
489 |
+
for j in range(random_start, len(random_document)):
|
490 |
+
tokens_b.extend(random_document[j])
|
491 |
+
if len(tokens_b) >= target_b_length:
|
492 |
+
break
|
493 |
+
# We didn't actually use these segments so we "put them back" so
|
494 |
+
# they don't go to waste.
|
495 |
+
num_unused_segments = len(current_chunk) - a_end
|
496 |
+
i -= num_unused_segments
|
497 |
+
# Actual next
|
498 |
+
else:
|
499 |
+
is_random_next = False
|
500 |
+
for j in range(a_end, len(current_chunk)):
|
501 |
+
tokens_b.extend(current_chunk[j])
|
502 |
+
|
503 |
+
if not (len(tokens_a) >= 1):
|
504 |
+
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
|
505 |
+
if not (len(tokens_b) >= 1):
|
506 |
+
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
|
507 |
+
|
508 |
+
# add special tokens
|
509 |
+
input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
|
510 |
+
# add token type ids, 0 for sentence a, 1 for sentence b
|
511 |
+
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
|
512 |
+
|
513 |
+
example = {
|
514 |
+
"input_ids": torch.tensor(input_ids, dtype=torch.long),
|
515 |
+
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
|
516 |
+
"next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long),
|
517 |
+
}
|
518 |
+
|
519 |
+
self.examples.append(example)
|
520 |
+
|
521 |
+
current_chunk = []
|
522 |
+
current_length = 0
|
523 |
+
|
524 |
+
i += 1
|
525 |
+
|
526 |
+
def __len__(self):
|
527 |
+
return len(self.examples)
|
528 |
+
|
529 |
+
def __getitem__(self, i):
|
530 |
+
return self.examples[i]
|
env-llmeval/lib/python3.10/site-packages/transformers/data/datasets/squad.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import time
|
17 |
+
from dataclasses import dataclass, field
|
18 |
+
from enum import Enum
|
19 |
+
from typing import Dict, List, Optional, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from filelock import FileLock
|
23 |
+
from torch.utils.data import Dataset
|
24 |
+
|
25 |
+
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
|
26 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
27 |
+
from ...utils import logging
|
28 |
+
from ..processors.squad import SquadFeatures, SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
|
34 |
+
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class SquadDataTrainingArguments:
|
39 |
+
"""
|
40 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
41 |
+
"""
|
42 |
+
|
43 |
+
model_type: str = field(
|
44 |
+
default=None, metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_TYPES)}
|
45 |
+
)
|
46 |
+
data_dir: str = field(
|
47 |
+
default=None, metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}
|
48 |
+
)
|
49 |
+
max_seq_length: int = field(
|
50 |
+
default=128,
|
51 |
+
metadata={
|
52 |
+
"help": (
|
53 |
+
"The maximum total input sequence length after tokenization. Sequences longer "
|
54 |
+
"than this will be truncated, sequences shorter will be padded."
|
55 |
+
)
|
56 |
+
},
|
57 |
+
)
|
58 |
+
doc_stride: int = field(
|
59 |
+
default=128,
|
60 |
+
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
|
61 |
+
)
|
62 |
+
max_query_length: int = field(
|
63 |
+
default=64,
|
64 |
+
metadata={
|
65 |
+
"help": (
|
66 |
+
"The maximum number of tokens for the question. Questions longer than this will "
|
67 |
+
"be truncated to this length."
|
68 |
+
)
|
69 |
+
},
|
70 |
+
)
|
71 |
+
max_answer_length: int = field(
|
72 |
+
default=30,
|
73 |
+
metadata={
|
74 |
+
"help": (
|
75 |
+
"The maximum length of an answer that can be generated. This is needed because the start "
|
76 |
+
"and end predictions are not conditioned on one another."
|
77 |
+
)
|
78 |
+
},
|
79 |
+
)
|
80 |
+
overwrite_cache: bool = field(
|
81 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
82 |
+
)
|
83 |
+
version_2_with_negative: bool = field(
|
84 |
+
default=False, metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}
|
85 |
+
)
|
86 |
+
null_score_diff_threshold: float = field(
|
87 |
+
default=0.0, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
|
88 |
+
)
|
89 |
+
n_best_size: int = field(
|
90 |
+
default=20, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
|
91 |
+
)
|
92 |
+
lang_id: int = field(
|
93 |
+
default=0,
|
94 |
+
metadata={
|
95 |
+
"help": (
|
96 |
+
"language id of input for language-specific xlm models (see"
|
97 |
+
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
|
98 |
+
)
|
99 |
+
},
|
100 |
+
)
|
101 |
+
threads: int = field(default=1, metadata={"help": "multiple threads for converting example to features"})
|
102 |
+
|
103 |
+
|
104 |
+
class Split(Enum):
|
105 |
+
train = "train"
|
106 |
+
dev = "dev"
|
107 |
+
|
108 |
+
|
109 |
+
class SquadDataset(Dataset):
|
110 |
+
"""
|
111 |
+
This will be superseded by a framework-agnostic approach soon.
|
112 |
+
"""
|
113 |
+
|
114 |
+
args: SquadDataTrainingArguments
|
115 |
+
features: List[SquadFeatures]
|
116 |
+
mode: Split
|
117 |
+
is_language_sensitive: bool
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
args: SquadDataTrainingArguments,
|
122 |
+
tokenizer: PreTrainedTokenizer,
|
123 |
+
limit_length: Optional[int] = None,
|
124 |
+
mode: Union[str, Split] = Split.train,
|
125 |
+
is_language_sensitive: Optional[bool] = False,
|
126 |
+
cache_dir: Optional[str] = None,
|
127 |
+
dataset_format: Optional[str] = "pt",
|
128 |
+
):
|
129 |
+
self.args = args
|
130 |
+
self.is_language_sensitive = is_language_sensitive
|
131 |
+
self.processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
|
132 |
+
if isinstance(mode, str):
|
133 |
+
try:
|
134 |
+
mode = Split[mode]
|
135 |
+
except KeyError:
|
136 |
+
raise KeyError("mode is not a valid split name")
|
137 |
+
self.mode = mode
|
138 |
+
# Load data features from cache or dataset file
|
139 |
+
version_tag = "v2" if args.version_2_with_negative else "v1"
|
140 |
+
cached_features_file = os.path.join(
|
141 |
+
cache_dir if cache_dir is not None else args.data_dir,
|
142 |
+
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}",
|
143 |
+
)
|
144 |
+
|
145 |
+
# Make sure only the first process in distributed training processes the dataset,
|
146 |
+
# and the others will use the cache.
|
147 |
+
lock_path = cached_features_file + ".lock"
|
148 |
+
with FileLock(lock_path):
|
149 |
+
if os.path.exists(cached_features_file) and not args.overwrite_cache:
|
150 |
+
start = time.time()
|
151 |
+
self.old_features = torch.load(cached_features_file)
|
152 |
+
|
153 |
+
# Legacy cache files have only features, while new cache files
|
154 |
+
# will have dataset and examples also.
|
155 |
+
self.features = self.old_features["features"]
|
156 |
+
self.dataset = self.old_features.get("dataset", None)
|
157 |
+
self.examples = self.old_features.get("examples", None)
|
158 |
+
logger.info(
|
159 |
+
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
160 |
+
)
|
161 |
+
|
162 |
+
if self.dataset is None or self.examples is None:
|
163 |
+
logger.warning(
|
164 |
+
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
|
165 |
+
" future run"
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
if mode == Split.dev:
|
169 |
+
self.examples = self.processor.get_dev_examples(args.data_dir)
|
170 |
+
else:
|
171 |
+
self.examples = self.processor.get_train_examples(args.data_dir)
|
172 |
+
|
173 |
+
self.features, self.dataset = squad_convert_examples_to_features(
|
174 |
+
examples=self.examples,
|
175 |
+
tokenizer=tokenizer,
|
176 |
+
max_seq_length=args.max_seq_length,
|
177 |
+
doc_stride=args.doc_stride,
|
178 |
+
max_query_length=args.max_query_length,
|
179 |
+
is_training=mode == Split.train,
|
180 |
+
threads=args.threads,
|
181 |
+
return_dataset=dataset_format,
|
182 |
+
)
|
183 |
+
|
184 |
+
start = time.time()
|
185 |
+
torch.save(
|
186 |
+
{"features": self.features, "dataset": self.dataset, "examples": self.examples},
|
187 |
+
cached_features_file,
|
188 |
+
)
|
189 |
+
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
|
190 |
+
logger.info(
|
191 |
+
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
192 |
+
)
|
193 |
+
|
194 |
+
def __len__(self):
|
195 |
+
return len(self.features)
|
196 |
+
|
197 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
198 |
+
# Convert to Tensors and build dataset
|
199 |
+
feature = self.features[i]
|
200 |
+
|
201 |
+
input_ids = torch.tensor(feature.input_ids, dtype=torch.long)
|
202 |
+
attention_mask = torch.tensor(feature.attention_mask, dtype=torch.long)
|
203 |
+
token_type_ids = torch.tensor(feature.token_type_ids, dtype=torch.long)
|
204 |
+
cls_index = torch.tensor(feature.cls_index, dtype=torch.long)
|
205 |
+
p_mask = torch.tensor(feature.p_mask, dtype=torch.float)
|
206 |
+
is_impossible = torch.tensor(feature.is_impossible, dtype=torch.float)
|
207 |
+
|
208 |
+
inputs = {
|
209 |
+
"input_ids": input_ids,
|
210 |
+
"attention_mask": attention_mask,
|
211 |
+
"token_type_ids": token_type_ids,
|
212 |
+
}
|
213 |
+
|
214 |
+
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
|
215 |
+
del inputs["token_type_ids"]
|
216 |
+
|
217 |
+
if self.args.model_type in ["xlnet", "xlm"]:
|
218 |
+
inputs.update({"cls_index": cls_index, "p_mask": p_mask})
|
219 |
+
if self.args.version_2_with_negative:
|
220 |
+
inputs.update({"is_impossible": is_impossible})
|
221 |
+
if self.is_language_sensitive:
|
222 |
+
inputs.update({"langs": (torch.ones(input_ids.shape, dtype=torch.int64) * self.args.lang_id)})
|
223 |
+
|
224 |
+
if self.mode == Split.train:
|
225 |
+
start_positions = torch.tensor(feature.start_position, dtype=torch.long)
|
226 |
+
end_positions = torch.tensor(feature.end_position, dtype=torch.long)
|
227 |
+
inputs.update({"start_positions": start_positions, "end_positions": end_positions})
|
228 |
+
|
229 |
+
return inputs
|
env-llmeval/lib/python3.10/site-packages/transformers/data/metrics/__init__.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
|
13 |
+
import warnings
|
14 |
+
|
15 |
+
from ...utils import is_sklearn_available, requires_backends
|
16 |
+
|
17 |
+
|
18 |
+
if is_sklearn_available():
|
19 |
+
from scipy.stats import pearsonr, spearmanr
|
20 |
+
from sklearn.metrics import f1_score, matthews_corrcoef
|
21 |
+
|
22 |
+
|
23 |
+
DEPRECATION_WARNING = (
|
24 |
+
"This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate "
|
25 |
+
"library. You can have a look at this example script for pointers: "
|
26 |
+
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
def simple_accuracy(preds, labels):
|
31 |
+
warnings.warn(DEPRECATION_WARNING, FutureWarning)
|
32 |
+
requires_backends(simple_accuracy, "sklearn")
|
33 |
+
return (preds == labels).mean()
|
34 |
+
|
35 |
+
|
36 |
+
def acc_and_f1(preds, labels):
|
37 |
+
warnings.warn(DEPRECATION_WARNING, FutureWarning)
|
38 |
+
requires_backends(acc_and_f1, "sklearn")
|
39 |
+
acc = simple_accuracy(preds, labels)
|
40 |
+
f1 = f1_score(y_true=labels, y_pred=preds)
|
41 |
+
return {
|
42 |
+
"acc": acc,
|
43 |
+
"f1": f1,
|
44 |
+
"acc_and_f1": (acc + f1) / 2,
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
def pearson_and_spearman(preds, labels):
|
49 |
+
warnings.warn(DEPRECATION_WARNING, FutureWarning)
|
50 |
+
requires_backends(pearson_and_spearman, "sklearn")
|
51 |
+
pearson_corr = pearsonr(preds, labels)[0]
|
52 |
+
spearman_corr = spearmanr(preds, labels)[0]
|
53 |
+
return {
|
54 |
+
"pearson": pearson_corr,
|
55 |
+
"spearmanr": spearman_corr,
|
56 |
+
"corr": (pearson_corr + spearman_corr) / 2,
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
def glue_compute_metrics(task_name, preds, labels):
|
61 |
+
warnings.warn(DEPRECATION_WARNING, FutureWarning)
|
62 |
+
requires_backends(glue_compute_metrics, "sklearn")
|
63 |
+
assert len(preds) == len(labels), f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}"
|
64 |
+
if task_name == "cola":
|
65 |
+
return {"mcc": matthews_corrcoef(labels, preds)}
|
66 |
+
elif task_name == "sst-2":
|
67 |
+
return {"acc": simple_accuracy(preds, labels)}
|
68 |
+
elif task_name == "mrpc":
|
69 |
+
return acc_and_f1(preds, labels)
|
70 |
+
elif task_name == "sts-b":
|
71 |
+
return pearson_and_spearman(preds, labels)
|
72 |
+
elif task_name == "qqp":
|
73 |
+
return acc_and_f1(preds, labels)
|
74 |
+
elif task_name == "mnli":
|
75 |
+
return {"mnli/acc": simple_accuracy(preds, labels)}
|
76 |
+
elif task_name == "mnli-mm":
|
77 |
+
return {"mnli-mm/acc": simple_accuracy(preds, labels)}
|
78 |
+
elif task_name == "qnli":
|
79 |
+
return {"acc": simple_accuracy(preds, labels)}
|
80 |
+
elif task_name == "rte":
|
81 |
+
return {"acc": simple_accuracy(preds, labels)}
|
82 |
+
elif task_name == "wnli":
|
83 |
+
return {"acc": simple_accuracy(preds, labels)}
|
84 |
+
elif task_name == "hans":
|
85 |
+
return {"acc": simple_accuracy(preds, labels)}
|
86 |
+
else:
|
87 |
+
raise KeyError(task_name)
|
88 |
+
|
89 |
+
|
90 |
+
def xnli_compute_metrics(task_name, preds, labels):
|
91 |
+
warnings.warn(DEPRECATION_WARNING, FutureWarning)
|
92 |
+
requires_backends(xnli_compute_metrics, "sklearn")
|
93 |
+
if len(preds) != len(labels):
|
94 |
+
raise ValueError(f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}")
|
95 |
+
if task_name == "xnli":
|
96 |
+
return {"acc": simple_accuracy(preds, labels)}
|
97 |
+
else:
|
98 |
+
raise KeyError(task_name)
|
env-llmeval/lib/python3.10/site-packages/transformers/data/metrics/__pycache__/squad_metrics.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/data/metrics/squad_metrics.py
ADDED
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
Very heavily inspired by the official evaluation script for SQuAD version 2.0 which was modified by XLNet authors to
|
16 |
+
update `find_best_threshold` scripts for SQuAD V2.0
|
17 |
+
|
18 |
+
In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an
|
19 |
+
additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted
|
20 |
+
probability that a question is unanswerable.
|
21 |
+
"""
|
22 |
+
|
23 |
+
|
24 |
+
import collections
|
25 |
+
import json
|
26 |
+
import math
|
27 |
+
import re
|
28 |
+
import string
|
29 |
+
|
30 |
+
from ...models.bert import BasicTokenizer
|
31 |
+
from ...utils import logging
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
|
37 |
+
def normalize_answer(s):
|
38 |
+
"""Lower text and remove punctuation, articles and extra whitespace."""
|
39 |
+
|
40 |
+
def remove_articles(text):
|
41 |
+
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
|
42 |
+
return re.sub(regex, " ", text)
|
43 |
+
|
44 |
+
def white_space_fix(text):
|
45 |
+
return " ".join(text.split())
|
46 |
+
|
47 |
+
def remove_punc(text):
|
48 |
+
exclude = set(string.punctuation)
|
49 |
+
return "".join(ch for ch in text if ch not in exclude)
|
50 |
+
|
51 |
+
def lower(text):
|
52 |
+
return text.lower()
|
53 |
+
|
54 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
55 |
+
|
56 |
+
|
57 |
+
def get_tokens(s):
|
58 |
+
if not s:
|
59 |
+
return []
|
60 |
+
return normalize_answer(s).split()
|
61 |
+
|
62 |
+
|
63 |
+
def compute_exact(a_gold, a_pred):
|
64 |
+
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
|
65 |
+
|
66 |
+
|
67 |
+
def compute_f1(a_gold, a_pred):
|
68 |
+
gold_toks = get_tokens(a_gold)
|
69 |
+
pred_toks = get_tokens(a_pred)
|
70 |
+
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
|
71 |
+
num_same = sum(common.values())
|
72 |
+
if len(gold_toks) == 0 or len(pred_toks) == 0:
|
73 |
+
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
|
74 |
+
return int(gold_toks == pred_toks)
|
75 |
+
if num_same == 0:
|
76 |
+
return 0
|
77 |
+
precision = 1.0 * num_same / len(pred_toks)
|
78 |
+
recall = 1.0 * num_same / len(gold_toks)
|
79 |
+
f1 = (2 * precision * recall) / (precision + recall)
|
80 |
+
return f1
|
81 |
+
|
82 |
+
|
83 |
+
def get_raw_scores(examples, preds):
|
84 |
+
"""
|
85 |
+
Computes the exact and f1 scores from the examples and the model predictions
|
86 |
+
"""
|
87 |
+
exact_scores = {}
|
88 |
+
f1_scores = {}
|
89 |
+
|
90 |
+
for example in examples:
|
91 |
+
qas_id = example.qas_id
|
92 |
+
gold_answers = [answer["text"] for answer in example.answers if normalize_answer(answer["text"])]
|
93 |
+
|
94 |
+
if not gold_answers:
|
95 |
+
# For unanswerable questions, only correct answer is empty string
|
96 |
+
gold_answers = [""]
|
97 |
+
|
98 |
+
if qas_id not in preds:
|
99 |
+
print(f"Missing prediction for {qas_id}")
|
100 |
+
continue
|
101 |
+
|
102 |
+
prediction = preds[qas_id]
|
103 |
+
exact_scores[qas_id] = max(compute_exact(a, prediction) for a in gold_answers)
|
104 |
+
f1_scores[qas_id] = max(compute_f1(a, prediction) for a in gold_answers)
|
105 |
+
|
106 |
+
return exact_scores, f1_scores
|
107 |
+
|
108 |
+
|
109 |
+
def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
|
110 |
+
new_scores = {}
|
111 |
+
for qid, s in scores.items():
|
112 |
+
pred_na = na_probs[qid] > na_prob_thresh
|
113 |
+
if pred_na:
|
114 |
+
new_scores[qid] = float(not qid_to_has_ans[qid])
|
115 |
+
else:
|
116 |
+
new_scores[qid] = s
|
117 |
+
return new_scores
|
118 |
+
|
119 |
+
|
120 |
+
def make_eval_dict(exact_scores, f1_scores, qid_list=None):
|
121 |
+
if not qid_list:
|
122 |
+
total = len(exact_scores)
|
123 |
+
return collections.OrderedDict(
|
124 |
+
[
|
125 |
+
("exact", 100.0 * sum(exact_scores.values()) / total),
|
126 |
+
("f1", 100.0 * sum(f1_scores.values()) / total),
|
127 |
+
("total", total),
|
128 |
+
]
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
total = len(qid_list)
|
132 |
+
return collections.OrderedDict(
|
133 |
+
[
|
134 |
+
("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total),
|
135 |
+
("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total),
|
136 |
+
("total", total),
|
137 |
+
]
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
def merge_eval(main_eval, new_eval, prefix):
|
142 |
+
for k in new_eval:
|
143 |
+
main_eval[f"{prefix}_{k}"] = new_eval[k]
|
144 |
+
|
145 |
+
|
146 |
+
def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans):
|
147 |
+
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
|
148 |
+
cur_score = num_no_ans
|
149 |
+
best_score = cur_score
|
150 |
+
best_thresh = 0.0
|
151 |
+
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
|
152 |
+
for i, qid in enumerate(qid_list):
|
153 |
+
if qid not in scores:
|
154 |
+
continue
|
155 |
+
if qid_to_has_ans[qid]:
|
156 |
+
diff = scores[qid]
|
157 |
+
else:
|
158 |
+
if preds[qid]:
|
159 |
+
diff = -1
|
160 |
+
else:
|
161 |
+
diff = 0
|
162 |
+
cur_score += diff
|
163 |
+
if cur_score > best_score:
|
164 |
+
best_score = cur_score
|
165 |
+
best_thresh = na_probs[qid]
|
166 |
+
|
167 |
+
has_ans_score, has_ans_cnt = 0, 0
|
168 |
+
for qid in qid_list:
|
169 |
+
if not qid_to_has_ans[qid]:
|
170 |
+
continue
|
171 |
+
has_ans_cnt += 1
|
172 |
+
|
173 |
+
if qid not in scores:
|
174 |
+
continue
|
175 |
+
has_ans_score += scores[qid]
|
176 |
+
|
177 |
+
return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt
|
178 |
+
|
179 |
+
|
180 |
+
def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
|
181 |
+
best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans)
|
182 |
+
best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans)
|
183 |
+
main_eval["best_exact"] = best_exact
|
184 |
+
main_eval["best_exact_thresh"] = exact_thresh
|
185 |
+
main_eval["best_f1"] = best_f1
|
186 |
+
main_eval["best_f1_thresh"] = f1_thresh
|
187 |
+
main_eval["has_ans_exact"] = has_ans_exact
|
188 |
+
main_eval["has_ans_f1"] = has_ans_f1
|
189 |
+
|
190 |
+
|
191 |
+
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
|
192 |
+
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
|
193 |
+
cur_score = num_no_ans
|
194 |
+
best_score = cur_score
|
195 |
+
best_thresh = 0.0
|
196 |
+
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
|
197 |
+
for _, qid in enumerate(qid_list):
|
198 |
+
if qid not in scores:
|
199 |
+
continue
|
200 |
+
if qid_to_has_ans[qid]:
|
201 |
+
diff = scores[qid]
|
202 |
+
else:
|
203 |
+
if preds[qid]:
|
204 |
+
diff = -1
|
205 |
+
else:
|
206 |
+
diff = 0
|
207 |
+
cur_score += diff
|
208 |
+
if cur_score > best_score:
|
209 |
+
best_score = cur_score
|
210 |
+
best_thresh = na_probs[qid]
|
211 |
+
return 100.0 * best_score / len(scores), best_thresh
|
212 |
+
|
213 |
+
|
214 |
+
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
|
215 |
+
best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
|
216 |
+
best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
|
217 |
+
|
218 |
+
main_eval["best_exact"] = best_exact
|
219 |
+
main_eval["best_exact_thresh"] = exact_thresh
|
220 |
+
main_eval["best_f1"] = best_f1
|
221 |
+
main_eval["best_f1_thresh"] = f1_thresh
|
222 |
+
|
223 |
+
|
224 |
+
def squad_evaluate(examples, preds, no_answer_probs=None, no_answer_probability_threshold=1.0):
|
225 |
+
qas_id_to_has_answer = {example.qas_id: bool(example.answers) for example in examples}
|
226 |
+
has_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if has_answer]
|
227 |
+
no_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if not has_answer]
|
228 |
+
|
229 |
+
if no_answer_probs is None:
|
230 |
+
no_answer_probs = {k: 0.0 for k in preds}
|
231 |
+
|
232 |
+
exact, f1 = get_raw_scores(examples, preds)
|
233 |
+
|
234 |
+
exact_threshold = apply_no_ans_threshold(
|
235 |
+
exact, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold
|
236 |
+
)
|
237 |
+
f1_threshold = apply_no_ans_threshold(f1, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold)
|
238 |
+
|
239 |
+
evaluation = make_eval_dict(exact_threshold, f1_threshold)
|
240 |
+
|
241 |
+
if has_answer_qids:
|
242 |
+
has_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=has_answer_qids)
|
243 |
+
merge_eval(evaluation, has_ans_eval, "HasAns")
|
244 |
+
|
245 |
+
if no_answer_qids:
|
246 |
+
no_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=no_answer_qids)
|
247 |
+
merge_eval(evaluation, no_ans_eval, "NoAns")
|
248 |
+
|
249 |
+
if no_answer_probs:
|
250 |
+
find_all_best_thresh(evaluation, preds, exact, f1, no_answer_probs, qas_id_to_has_answer)
|
251 |
+
|
252 |
+
return evaluation
|
253 |
+
|
254 |
+
|
255 |
+
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
|
256 |
+
"""Project the tokenized prediction back to the original text."""
|
257 |
+
|
258 |
+
# When we created the data, we kept track of the alignment between original
|
259 |
+
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
|
260 |
+
# now `orig_text` contains the span of our original text corresponding to the
|
261 |
+
# span that we predicted.
|
262 |
+
#
|
263 |
+
# However, `orig_text` may contain extra characters that we don't want in
|
264 |
+
# our prediction.
|
265 |
+
#
|
266 |
+
# For example, let's say:
|
267 |
+
# pred_text = steve smith
|
268 |
+
# orig_text = Steve Smith's
|
269 |
+
#
|
270 |
+
# We don't want to return `orig_text` because it contains the extra "'s".
|
271 |
+
#
|
272 |
+
# We don't want to return `pred_text` because it's already been normalized
|
273 |
+
# (the SQuAD eval script also does punctuation stripping/lower casing but
|
274 |
+
# our tokenizer does additional normalization like stripping accent
|
275 |
+
# characters).
|
276 |
+
#
|
277 |
+
# What we really want to return is "Steve Smith".
|
278 |
+
#
|
279 |
+
# Therefore, we have to apply a semi-complicated alignment heuristic between
|
280 |
+
# `pred_text` and `orig_text` to get a character-to-character alignment. This
|
281 |
+
# can fail in certain cases in which case we just return `orig_text`.
|
282 |
+
|
283 |
+
def _strip_spaces(text):
|
284 |
+
ns_chars = []
|
285 |
+
ns_to_s_map = collections.OrderedDict()
|
286 |
+
for i, c in enumerate(text):
|
287 |
+
if c == " ":
|
288 |
+
continue
|
289 |
+
ns_to_s_map[len(ns_chars)] = i
|
290 |
+
ns_chars.append(c)
|
291 |
+
ns_text = "".join(ns_chars)
|
292 |
+
return (ns_text, ns_to_s_map)
|
293 |
+
|
294 |
+
# We first tokenize `orig_text`, strip whitespace from the result
|
295 |
+
# and `pred_text`, and check if they are the same length. If they are
|
296 |
+
# NOT the same length, the heuristic has failed. If they are the same
|
297 |
+
# length, we assume the characters are one-to-one aligned.
|
298 |
+
tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
|
299 |
+
|
300 |
+
tok_text = " ".join(tokenizer.tokenize(orig_text))
|
301 |
+
|
302 |
+
start_position = tok_text.find(pred_text)
|
303 |
+
if start_position == -1:
|
304 |
+
if verbose_logging:
|
305 |
+
logger.info(f"Unable to find text: '{pred_text}' in '{orig_text}'")
|
306 |
+
return orig_text
|
307 |
+
end_position = start_position + len(pred_text) - 1
|
308 |
+
|
309 |
+
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
|
310 |
+
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
|
311 |
+
|
312 |
+
if len(orig_ns_text) != len(tok_ns_text):
|
313 |
+
if verbose_logging:
|
314 |
+
logger.info(f"Length not equal after stripping spaces: '{orig_ns_text}' vs '{tok_ns_text}'")
|
315 |
+
return orig_text
|
316 |
+
|
317 |
+
# We then project the characters in `pred_text` back to `orig_text` using
|
318 |
+
# the character-to-character alignment.
|
319 |
+
tok_s_to_ns_map = {}
|
320 |
+
for i, tok_index in tok_ns_to_s_map.items():
|
321 |
+
tok_s_to_ns_map[tok_index] = i
|
322 |
+
|
323 |
+
orig_start_position = None
|
324 |
+
if start_position in tok_s_to_ns_map:
|
325 |
+
ns_start_position = tok_s_to_ns_map[start_position]
|
326 |
+
if ns_start_position in orig_ns_to_s_map:
|
327 |
+
orig_start_position = orig_ns_to_s_map[ns_start_position]
|
328 |
+
|
329 |
+
if orig_start_position is None:
|
330 |
+
if verbose_logging:
|
331 |
+
logger.info("Couldn't map start position")
|
332 |
+
return orig_text
|
333 |
+
|
334 |
+
orig_end_position = None
|
335 |
+
if end_position in tok_s_to_ns_map:
|
336 |
+
ns_end_position = tok_s_to_ns_map[end_position]
|
337 |
+
if ns_end_position in orig_ns_to_s_map:
|
338 |
+
orig_end_position = orig_ns_to_s_map[ns_end_position]
|
339 |
+
|
340 |
+
if orig_end_position is None:
|
341 |
+
if verbose_logging:
|
342 |
+
logger.info("Couldn't map end position")
|
343 |
+
return orig_text
|
344 |
+
|
345 |
+
output_text = orig_text[orig_start_position : (orig_end_position + 1)]
|
346 |
+
return output_text
|
347 |
+
|
348 |
+
|
349 |
+
def _get_best_indexes(logits, n_best_size):
|
350 |
+
"""Get the n-best logits from a list."""
|
351 |
+
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
|
352 |
+
|
353 |
+
best_indexes = []
|
354 |
+
for i in range(len(index_and_score)):
|
355 |
+
if i >= n_best_size:
|
356 |
+
break
|
357 |
+
best_indexes.append(index_and_score[i][0])
|
358 |
+
return best_indexes
|
359 |
+
|
360 |
+
|
361 |
+
def _compute_softmax(scores):
|
362 |
+
"""Compute softmax probability over raw logits."""
|
363 |
+
if not scores:
|
364 |
+
return []
|
365 |
+
|
366 |
+
max_score = None
|
367 |
+
for score in scores:
|
368 |
+
if max_score is None or score > max_score:
|
369 |
+
max_score = score
|
370 |
+
|
371 |
+
exp_scores = []
|
372 |
+
total_sum = 0.0
|
373 |
+
for score in scores:
|
374 |
+
x = math.exp(score - max_score)
|
375 |
+
exp_scores.append(x)
|
376 |
+
total_sum += x
|
377 |
+
|
378 |
+
probs = []
|
379 |
+
for score in exp_scores:
|
380 |
+
probs.append(score / total_sum)
|
381 |
+
return probs
|
382 |
+
|
383 |
+
|
384 |
+
def compute_predictions_logits(
|
385 |
+
all_examples,
|
386 |
+
all_features,
|
387 |
+
all_results,
|
388 |
+
n_best_size,
|
389 |
+
max_answer_length,
|
390 |
+
do_lower_case,
|
391 |
+
output_prediction_file,
|
392 |
+
output_nbest_file,
|
393 |
+
output_null_log_odds_file,
|
394 |
+
verbose_logging,
|
395 |
+
version_2_with_negative,
|
396 |
+
null_score_diff_threshold,
|
397 |
+
tokenizer,
|
398 |
+
):
|
399 |
+
"""Write final predictions to the json file and log-odds of null if needed."""
|
400 |
+
if output_prediction_file:
|
401 |
+
logger.info(f"Writing predictions to: {output_prediction_file}")
|
402 |
+
if output_nbest_file:
|
403 |
+
logger.info(f"Writing nbest to: {output_nbest_file}")
|
404 |
+
if output_null_log_odds_file and version_2_with_negative:
|
405 |
+
logger.info(f"Writing null_log_odds to: {output_null_log_odds_file}")
|
406 |
+
|
407 |
+
example_index_to_features = collections.defaultdict(list)
|
408 |
+
for feature in all_features:
|
409 |
+
example_index_to_features[feature.example_index].append(feature)
|
410 |
+
|
411 |
+
unique_id_to_result = {}
|
412 |
+
for result in all_results:
|
413 |
+
unique_id_to_result[result.unique_id] = result
|
414 |
+
|
415 |
+
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
|
416 |
+
"PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]
|
417 |
+
)
|
418 |
+
|
419 |
+
all_predictions = collections.OrderedDict()
|
420 |
+
all_nbest_json = collections.OrderedDict()
|
421 |
+
scores_diff_json = collections.OrderedDict()
|
422 |
+
|
423 |
+
for example_index, example in enumerate(all_examples):
|
424 |
+
features = example_index_to_features[example_index]
|
425 |
+
|
426 |
+
prelim_predictions = []
|
427 |
+
# keep track of the minimum score of null start+end of position 0
|
428 |
+
score_null = 1000000 # large and positive
|
429 |
+
min_null_feature_index = 0 # the paragraph slice with min null score
|
430 |
+
null_start_logit = 0 # the start logit at the slice with min null score
|
431 |
+
null_end_logit = 0 # the end logit at the slice with min null score
|
432 |
+
for feature_index, feature in enumerate(features):
|
433 |
+
result = unique_id_to_result[feature.unique_id]
|
434 |
+
start_indexes = _get_best_indexes(result.start_logits, n_best_size)
|
435 |
+
end_indexes = _get_best_indexes(result.end_logits, n_best_size)
|
436 |
+
# if we could have irrelevant answers, get the min score of irrelevant
|
437 |
+
if version_2_with_negative:
|
438 |
+
feature_null_score = result.start_logits[0] + result.end_logits[0]
|
439 |
+
if feature_null_score < score_null:
|
440 |
+
score_null = feature_null_score
|
441 |
+
min_null_feature_index = feature_index
|
442 |
+
null_start_logit = result.start_logits[0]
|
443 |
+
null_end_logit = result.end_logits[0]
|
444 |
+
for start_index in start_indexes:
|
445 |
+
for end_index in end_indexes:
|
446 |
+
# We could hypothetically create invalid predictions, e.g., predict
|
447 |
+
# that the start of the span is in the question. We throw out all
|
448 |
+
# invalid predictions.
|
449 |
+
if start_index >= len(feature.tokens):
|
450 |
+
continue
|
451 |
+
if end_index >= len(feature.tokens):
|
452 |
+
continue
|
453 |
+
if start_index not in feature.token_to_orig_map:
|
454 |
+
continue
|
455 |
+
if end_index not in feature.token_to_orig_map:
|
456 |
+
continue
|
457 |
+
if not feature.token_is_max_context.get(start_index, False):
|
458 |
+
continue
|
459 |
+
if end_index < start_index:
|
460 |
+
continue
|
461 |
+
length = end_index - start_index + 1
|
462 |
+
if length > max_answer_length:
|
463 |
+
continue
|
464 |
+
prelim_predictions.append(
|
465 |
+
_PrelimPrediction(
|
466 |
+
feature_index=feature_index,
|
467 |
+
start_index=start_index,
|
468 |
+
end_index=end_index,
|
469 |
+
start_logit=result.start_logits[start_index],
|
470 |
+
end_logit=result.end_logits[end_index],
|
471 |
+
)
|
472 |
+
)
|
473 |
+
if version_2_with_negative:
|
474 |
+
prelim_predictions.append(
|
475 |
+
_PrelimPrediction(
|
476 |
+
feature_index=min_null_feature_index,
|
477 |
+
start_index=0,
|
478 |
+
end_index=0,
|
479 |
+
start_logit=null_start_logit,
|
480 |
+
end_logit=null_end_logit,
|
481 |
+
)
|
482 |
+
)
|
483 |
+
prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True)
|
484 |
+
|
485 |
+
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
|
486 |
+
"NbestPrediction", ["text", "start_logit", "end_logit"]
|
487 |
+
)
|
488 |
+
|
489 |
+
seen_predictions = {}
|
490 |
+
nbest = []
|
491 |
+
for pred in prelim_predictions:
|
492 |
+
if len(nbest) >= n_best_size:
|
493 |
+
break
|
494 |
+
feature = features[pred.feature_index]
|
495 |
+
if pred.start_index > 0: # this is a non-null prediction
|
496 |
+
tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)]
|
497 |
+
orig_doc_start = feature.token_to_orig_map[pred.start_index]
|
498 |
+
orig_doc_end = feature.token_to_orig_map[pred.end_index]
|
499 |
+
orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)]
|
500 |
+
|
501 |
+
tok_text = tokenizer.convert_tokens_to_string(tok_tokens)
|
502 |
+
|
503 |
+
# tok_text = " ".join(tok_tokens)
|
504 |
+
#
|
505 |
+
# # De-tokenize WordPieces that have been split off.
|
506 |
+
# tok_text = tok_text.replace(" ##", "")
|
507 |
+
# tok_text = tok_text.replace("##", "")
|
508 |
+
|
509 |
+
# Clean whitespace
|
510 |
+
tok_text = tok_text.strip()
|
511 |
+
tok_text = " ".join(tok_text.split())
|
512 |
+
orig_text = " ".join(orig_tokens)
|
513 |
+
|
514 |
+
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
|
515 |
+
if final_text in seen_predictions:
|
516 |
+
continue
|
517 |
+
|
518 |
+
seen_predictions[final_text] = True
|
519 |
+
else:
|
520 |
+
final_text = ""
|
521 |
+
seen_predictions[final_text] = True
|
522 |
+
|
523 |
+
nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit))
|
524 |
+
# if we didn't include the empty option in the n-best, include it
|
525 |
+
if version_2_with_negative:
|
526 |
+
if "" not in seen_predictions:
|
527 |
+
nbest.append(_NbestPrediction(text="", start_logit=null_start_logit, end_logit=null_end_logit))
|
528 |
+
|
529 |
+
# In very rare edge cases we could only have single null prediction.
|
530 |
+
# So we just create a nonce prediction in this case to avoid failure.
|
531 |
+
if len(nbest) == 1:
|
532 |
+
nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
|
533 |
+
|
534 |
+
# In very rare edge cases we could have no valid predictions. So we
|
535 |
+
# just create a nonce prediction in this case to avoid failure.
|
536 |
+
if not nbest:
|
537 |
+
nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
|
538 |
+
|
539 |
+
if len(nbest) < 1:
|
540 |
+
raise ValueError("No valid predictions")
|
541 |
+
|
542 |
+
total_scores = []
|
543 |
+
best_non_null_entry = None
|
544 |
+
for entry in nbest:
|
545 |
+
total_scores.append(entry.start_logit + entry.end_logit)
|
546 |
+
if not best_non_null_entry:
|
547 |
+
if entry.text:
|
548 |
+
best_non_null_entry = entry
|
549 |
+
|
550 |
+
probs = _compute_softmax(total_scores)
|
551 |
+
|
552 |
+
nbest_json = []
|
553 |
+
for i, entry in enumerate(nbest):
|
554 |
+
output = collections.OrderedDict()
|
555 |
+
output["text"] = entry.text
|
556 |
+
output["probability"] = probs[i]
|
557 |
+
output["start_logit"] = entry.start_logit
|
558 |
+
output["end_logit"] = entry.end_logit
|
559 |
+
nbest_json.append(output)
|
560 |
+
|
561 |
+
if len(nbest_json) < 1:
|
562 |
+
raise ValueError("No valid predictions")
|
563 |
+
|
564 |
+
if not version_2_with_negative:
|
565 |
+
all_predictions[example.qas_id] = nbest_json[0]["text"]
|
566 |
+
else:
|
567 |
+
# predict "" iff the null score - the score of best non-null > threshold
|
568 |
+
score_diff = score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit)
|
569 |
+
scores_diff_json[example.qas_id] = score_diff
|
570 |
+
if score_diff > null_score_diff_threshold:
|
571 |
+
all_predictions[example.qas_id] = ""
|
572 |
+
else:
|
573 |
+
all_predictions[example.qas_id] = best_non_null_entry.text
|
574 |
+
all_nbest_json[example.qas_id] = nbest_json
|
575 |
+
|
576 |
+
if output_prediction_file:
|
577 |
+
with open(output_prediction_file, "w") as writer:
|
578 |
+
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
579 |
+
|
580 |
+
if output_nbest_file:
|
581 |
+
with open(output_nbest_file, "w") as writer:
|
582 |
+
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
583 |
+
|
584 |
+
if output_null_log_odds_file and version_2_with_negative:
|
585 |
+
with open(output_null_log_odds_file, "w") as writer:
|
586 |
+
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
587 |
+
|
588 |
+
return all_predictions
|
589 |
+
|
590 |
+
|
591 |
+
def compute_predictions_log_probs(
|
592 |
+
all_examples,
|
593 |
+
all_features,
|
594 |
+
all_results,
|
595 |
+
n_best_size,
|
596 |
+
max_answer_length,
|
597 |
+
output_prediction_file,
|
598 |
+
output_nbest_file,
|
599 |
+
output_null_log_odds_file,
|
600 |
+
start_n_top,
|
601 |
+
end_n_top,
|
602 |
+
version_2_with_negative,
|
603 |
+
tokenizer,
|
604 |
+
verbose_logging,
|
605 |
+
):
|
606 |
+
"""
|
607 |
+
XLNet write prediction logic (more complex than Bert's). Write final predictions to the json file and log-odds of
|
608 |
+
null if needed.
|
609 |
+
|
610 |
+
Requires utils_squad_evaluate.py
|
611 |
+
"""
|
612 |
+
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
|
613 |
+
"PrelimPrediction", ["feature_index", "start_index", "end_index", "start_log_prob", "end_log_prob"]
|
614 |
+
)
|
615 |
+
|
616 |
+
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
|
617 |
+
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"]
|
618 |
+
)
|
619 |
+
|
620 |
+
logger.info(f"Writing predictions to: {output_prediction_file}")
|
621 |
+
|
622 |
+
example_index_to_features = collections.defaultdict(list)
|
623 |
+
for feature in all_features:
|
624 |
+
example_index_to_features[feature.example_index].append(feature)
|
625 |
+
|
626 |
+
unique_id_to_result = {}
|
627 |
+
for result in all_results:
|
628 |
+
unique_id_to_result[result.unique_id] = result
|
629 |
+
|
630 |
+
all_predictions = collections.OrderedDict()
|
631 |
+
all_nbest_json = collections.OrderedDict()
|
632 |
+
scores_diff_json = collections.OrderedDict()
|
633 |
+
|
634 |
+
for example_index, example in enumerate(all_examples):
|
635 |
+
features = example_index_to_features[example_index]
|
636 |
+
|
637 |
+
prelim_predictions = []
|
638 |
+
# keep track of the minimum score of null start+end of position 0
|
639 |
+
score_null = 1000000 # large and positive
|
640 |
+
|
641 |
+
for feature_index, feature in enumerate(features):
|
642 |
+
result = unique_id_to_result[feature.unique_id]
|
643 |
+
|
644 |
+
cur_null_score = result.cls_logits
|
645 |
+
|
646 |
+
# if we could have irrelevant answers, get the min score of irrelevant
|
647 |
+
score_null = min(score_null, cur_null_score)
|
648 |
+
|
649 |
+
for i in range(start_n_top):
|
650 |
+
for j in range(end_n_top):
|
651 |
+
start_log_prob = result.start_logits[i]
|
652 |
+
start_index = result.start_top_index[i]
|
653 |
+
|
654 |
+
j_index = i * end_n_top + j
|
655 |
+
|
656 |
+
end_log_prob = result.end_logits[j_index]
|
657 |
+
end_index = result.end_top_index[j_index]
|
658 |
+
|
659 |
+
# We could hypothetically create invalid predictions, e.g., predict
|
660 |
+
# that the start of the span is in the question. We throw out all
|
661 |
+
# invalid predictions.
|
662 |
+
if start_index >= feature.paragraph_len - 1:
|
663 |
+
continue
|
664 |
+
if end_index >= feature.paragraph_len - 1:
|
665 |
+
continue
|
666 |
+
|
667 |
+
if not feature.token_is_max_context.get(start_index, False):
|
668 |
+
continue
|
669 |
+
if end_index < start_index:
|
670 |
+
continue
|
671 |
+
length = end_index - start_index + 1
|
672 |
+
if length > max_answer_length:
|
673 |
+
continue
|
674 |
+
|
675 |
+
prelim_predictions.append(
|
676 |
+
_PrelimPrediction(
|
677 |
+
feature_index=feature_index,
|
678 |
+
start_index=start_index,
|
679 |
+
end_index=end_index,
|
680 |
+
start_log_prob=start_log_prob,
|
681 |
+
end_log_prob=end_log_prob,
|
682 |
+
)
|
683 |
+
)
|
684 |
+
|
685 |
+
prelim_predictions = sorted(
|
686 |
+
prelim_predictions, key=lambda x: (x.start_log_prob + x.end_log_prob), reverse=True
|
687 |
+
)
|
688 |
+
|
689 |
+
seen_predictions = {}
|
690 |
+
nbest = []
|
691 |
+
for pred in prelim_predictions:
|
692 |
+
if len(nbest) >= n_best_size:
|
693 |
+
break
|
694 |
+
feature = features[pred.feature_index]
|
695 |
+
|
696 |
+
# XLNet un-tokenizer
|
697 |
+
# Let's keep it simple for now and see if we need all this later.
|
698 |
+
#
|
699 |
+
# tok_start_to_orig_index = feature.tok_start_to_orig_index
|
700 |
+
# tok_end_to_orig_index = feature.tok_end_to_orig_index
|
701 |
+
# start_orig_pos = tok_start_to_orig_index[pred.start_index]
|
702 |
+
# end_orig_pos = tok_end_to_orig_index[pred.end_index]
|
703 |
+
# paragraph_text = example.paragraph_text
|
704 |
+
# final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip()
|
705 |
+
|
706 |
+
# Previously used Bert untokenizer
|
707 |
+
tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)]
|
708 |
+
orig_doc_start = feature.token_to_orig_map[pred.start_index]
|
709 |
+
orig_doc_end = feature.token_to_orig_map[pred.end_index]
|
710 |
+
orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)]
|
711 |
+
tok_text = tokenizer.convert_tokens_to_string(tok_tokens)
|
712 |
+
|
713 |
+
# Clean whitespace
|
714 |
+
tok_text = tok_text.strip()
|
715 |
+
tok_text = " ".join(tok_text.split())
|
716 |
+
orig_text = " ".join(orig_tokens)
|
717 |
+
|
718 |
+
if hasattr(tokenizer, "do_lower_case"):
|
719 |
+
do_lower_case = tokenizer.do_lower_case
|
720 |
+
else:
|
721 |
+
do_lower_case = tokenizer.do_lowercase_and_remove_accent
|
722 |
+
|
723 |
+
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
|
724 |
+
|
725 |
+
if final_text in seen_predictions:
|
726 |
+
continue
|
727 |
+
|
728 |
+
seen_predictions[final_text] = True
|
729 |
+
|
730 |
+
nbest.append(
|
731 |
+
_NbestPrediction(text=final_text, start_log_prob=pred.start_log_prob, end_log_prob=pred.end_log_prob)
|
732 |
+
)
|
733 |
+
|
734 |
+
# In very rare edge cases we could have no valid predictions. So we
|
735 |
+
# just create a nonce prediction in this case to avoid failure.
|
736 |
+
if not nbest:
|
737 |
+
nbest.append(_NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6))
|
738 |
+
|
739 |
+
total_scores = []
|
740 |
+
best_non_null_entry = None
|
741 |
+
for entry in nbest:
|
742 |
+
total_scores.append(entry.start_log_prob + entry.end_log_prob)
|
743 |
+
if not best_non_null_entry:
|
744 |
+
best_non_null_entry = entry
|
745 |
+
|
746 |
+
probs = _compute_softmax(total_scores)
|
747 |
+
|
748 |
+
nbest_json = []
|
749 |
+
for i, entry in enumerate(nbest):
|
750 |
+
output = collections.OrderedDict()
|
751 |
+
output["text"] = entry.text
|
752 |
+
output["probability"] = probs[i]
|
753 |
+
output["start_log_prob"] = entry.start_log_prob
|
754 |
+
output["end_log_prob"] = entry.end_log_prob
|
755 |
+
nbest_json.append(output)
|
756 |
+
|
757 |
+
if len(nbest_json) < 1:
|
758 |
+
raise ValueError("No valid predictions")
|
759 |
+
if best_non_null_entry is None:
|
760 |
+
raise ValueError("No valid predictions")
|
761 |
+
|
762 |
+
score_diff = score_null
|
763 |
+
scores_diff_json[example.qas_id] = score_diff
|
764 |
+
# note(zhiliny): always predict best_non_null_entry
|
765 |
+
# and the evaluation script will search for the best threshold
|
766 |
+
all_predictions[example.qas_id] = best_non_null_entry.text
|
767 |
+
|
768 |
+
all_nbest_json[example.qas_id] = nbest_json
|
769 |
+
|
770 |
+
with open(output_prediction_file, "w") as writer:
|
771 |
+
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
772 |
+
|
773 |
+
with open(output_nbest_file, "w") as writer:
|
774 |
+
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
775 |
+
|
776 |
+
if version_2_with_negative:
|
777 |
+
with open(output_null_log_odds_file, "w") as writer:
|
778 |
+
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
779 |
+
|
780 |
+
return all_predictions
|
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/audio_classification.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import subprocess
|
15 |
+
from typing import Union
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import requests
|
19 |
+
|
20 |
+
from ..utils import add_end_docstrings, is_torch_available, is_torchaudio_available, logging
|
21 |
+
from .base import Pipeline, build_pipeline_init_args
|
22 |
+
|
23 |
+
|
24 |
+
if is_torch_available():
|
25 |
+
from ..models.auto.modeling_auto import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
|
31 |
+
"""
|
32 |
+
Helper function to read an audio file through ffmpeg.
|
33 |
+
"""
|
34 |
+
ar = f"{sampling_rate}"
|
35 |
+
ac = "1"
|
36 |
+
format_for_conversion = "f32le"
|
37 |
+
ffmpeg_command = [
|
38 |
+
"ffmpeg",
|
39 |
+
"-i",
|
40 |
+
"pipe:0",
|
41 |
+
"-ac",
|
42 |
+
ac,
|
43 |
+
"-ar",
|
44 |
+
ar,
|
45 |
+
"-f",
|
46 |
+
format_for_conversion,
|
47 |
+
"-hide_banner",
|
48 |
+
"-loglevel",
|
49 |
+
"quiet",
|
50 |
+
"pipe:1",
|
51 |
+
]
|
52 |
+
|
53 |
+
try:
|
54 |
+
ffmpeg_process = subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
|
55 |
+
except FileNotFoundError:
|
56 |
+
raise ValueError("ffmpeg was not found but is required to load audio files from filename")
|
57 |
+
output_stream = ffmpeg_process.communicate(bpayload)
|
58 |
+
out_bytes = output_stream[0]
|
59 |
+
|
60 |
+
audio = np.frombuffer(out_bytes, np.float32)
|
61 |
+
if audio.shape[0] == 0:
|
62 |
+
raise ValueError("Malformed soundfile")
|
63 |
+
return audio
|
64 |
+
|
65 |
+
|
66 |
+
@add_end_docstrings(build_pipeline_init_args(has_feature_extractor=True))
|
67 |
+
class AudioClassificationPipeline(Pipeline):
|
68 |
+
"""
|
69 |
+
Audio classification pipeline using any `AutoModelForAudioClassification`. This pipeline predicts the class of a
|
70 |
+
raw waveform or an audio file. In case of an audio file, ffmpeg should be installed to support multiple audio
|
71 |
+
formats.
|
72 |
+
|
73 |
+
Example:
|
74 |
+
|
75 |
+
```python
|
76 |
+
>>> from transformers import pipeline
|
77 |
+
|
78 |
+
>>> classifier = pipeline(model="superb/wav2vec2-base-superb-ks")
|
79 |
+
>>> classifier("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac")
|
80 |
+
[{'score': 0.997, 'label': '_unknown_'}, {'score': 0.002, 'label': 'left'}, {'score': 0.0, 'label': 'yes'}, {'score': 0.0, 'label': 'down'}, {'score': 0.0, 'label': 'stop'}]
|
81 |
+
```
|
82 |
+
|
83 |
+
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
84 |
+
|
85 |
+
|
86 |
+
This pipeline can currently be loaded from [`pipeline`] using the following task identifier:
|
87 |
+
`"audio-classification"`.
|
88 |
+
|
89 |
+
See the list of available models on
|
90 |
+
[huggingface.co/models](https://huggingface.co/models?filter=audio-classification).
|
91 |
+
"""
|
92 |
+
|
93 |
+
def __init__(self, *args, **kwargs):
|
94 |
+
# Default, might be overriden by the model.config.
|
95 |
+
kwargs["top_k"] = 5
|
96 |
+
super().__init__(*args, **kwargs)
|
97 |
+
|
98 |
+
if self.framework != "pt":
|
99 |
+
raise ValueError(f"The {self.__class__} is only available in PyTorch.")
|
100 |
+
|
101 |
+
self.check_model_type(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES)
|
102 |
+
|
103 |
+
def __call__(
|
104 |
+
self,
|
105 |
+
inputs: Union[np.ndarray, bytes, str],
|
106 |
+
**kwargs,
|
107 |
+
):
|
108 |
+
"""
|
109 |
+
Classify the sequence(s) given as inputs. See the [`AutomaticSpeechRecognitionPipeline`] documentation for more
|
110 |
+
information.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
inputs (`np.ndarray` or `bytes` or `str` or `dict`):
|
114 |
+
The inputs is either :
|
115 |
+
- `str` that is the filename of the audio file, the file will be read at the correct sampling rate
|
116 |
+
to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system.
|
117 |
+
- `bytes` it is supposed to be the content of an audio file and is interpreted by *ffmpeg* in the
|
118 |
+
same way.
|
119 |
+
- (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`)
|
120 |
+
Raw audio at the correct sampling rate (no further check will be done)
|
121 |
+
- `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this
|
122 |
+
pipeline do the resampling. The dict must be either be in the format `{"sampling_rate": int,
|
123 |
+
"raw": np.array}`, or `{"sampling_rate": int, "array": np.array}`, where the key `"raw"` or
|
124 |
+
`"array"` is used to denote the raw audio waveform.
|
125 |
+
top_k (`int`, *optional*, defaults to None):
|
126 |
+
The number of top labels that will be returned by the pipeline. If the provided number is `None` or
|
127 |
+
higher than the number of labels available in the model configuration, it will default to the number of
|
128 |
+
labels.
|
129 |
+
|
130 |
+
Return:
|
131 |
+
A list of `dict` with the following keys:
|
132 |
+
|
133 |
+
- **label** (`str`) -- The label predicted.
|
134 |
+
- **score** (`float`) -- The corresponding probability.
|
135 |
+
"""
|
136 |
+
return super().__call__(inputs, **kwargs)
|
137 |
+
|
138 |
+
def _sanitize_parameters(self, top_k=None, **kwargs):
|
139 |
+
# No parameters on this pipeline right now
|
140 |
+
postprocess_params = {}
|
141 |
+
if top_k is not None:
|
142 |
+
if top_k > self.model.config.num_labels:
|
143 |
+
top_k = self.model.config.num_labels
|
144 |
+
postprocess_params["top_k"] = top_k
|
145 |
+
return {}, {}, postprocess_params
|
146 |
+
|
147 |
+
def preprocess(self, inputs):
|
148 |
+
if isinstance(inputs, str):
|
149 |
+
if inputs.startswith("http://") or inputs.startswith("https://"):
|
150 |
+
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
|
151 |
+
# like http_huggingface_co.png
|
152 |
+
inputs = requests.get(inputs).content
|
153 |
+
else:
|
154 |
+
with open(inputs, "rb") as f:
|
155 |
+
inputs = f.read()
|
156 |
+
|
157 |
+
if isinstance(inputs, bytes):
|
158 |
+
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
|
159 |
+
|
160 |
+
if isinstance(inputs, dict):
|
161 |
+
# Accepting `"array"` which is the key defined in `datasets` for
|
162 |
+
# better integration
|
163 |
+
if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
|
164 |
+
raise ValueError(
|
165 |
+
"When passing a dictionary to AudioClassificationPipeline, the dict needs to contain a "
|
166 |
+
'"raw" key containing the numpy array representing the audio and a "sampling_rate" key, '
|
167 |
+
"containing the sampling_rate associated with that array"
|
168 |
+
)
|
169 |
+
|
170 |
+
_inputs = inputs.pop("raw", None)
|
171 |
+
if _inputs is None:
|
172 |
+
# Remove path which will not be used from `datasets`.
|
173 |
+
inputs.pop("path", None)
|
174 |
+
_inputs = inputs.pop("array", None)
|
175 |
+
in_sampling_rate = inputs.pop("sampling_rate")
|
176 |
+
inputs = _inputs
|
177 |
+
if in_sampling_rate != self.feature_extractor.sampling_rate:
|
178 |
+
import torch
|
179 |
+
|
180 |
+
if is_torchaudio_available():
|
181 |
+
from torchaudio import functional as F
|
182 |
+
else:
|
183 |
+
raise ImportError(
|
184 |
+
"torchaudio is required to resample audio samples in AudioClassificationPipeline. "
|
185 |
+
"The torchaudio package can be installed through: `pip install torchaudio`."
|
186 |
+
)
|
187 |
+
|
188 |
+
inputs = F.resample(
|
189 |
+
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
|
190 |
+
).numpy()
|
191 |
+
|
192 |
+
if not isinstance(inputs, np.ndarray):
|
193 |
+
raise ValueError("We expect a numpy ndarray as input")
|
194 |
+
if len(inputs.shape) != 1:
|
195 |
+
raise ValueError("We expect a single channel audio input for AudioClassificationPipeline")
|
196 |
+
|
197 |
+
processed = self.feature_extractor(
|
198 |
+
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
|
199 |
+
)
|
200 |
+
return processed
|
201 |
+
|
202 |
+
def _forward(self, model_inputs):
|
203 |
+
model_outputs = self.model(**model_inputs)
|
204 |
+
return model_outputs
|
205 |
+
|
206 |
+
def postprocess(self, model_outputs, top_k=5):
|
207 |
+
probs = model_outputs.logits[0].softmax(-1)
|
208 |
+
scores, ids = probs.topk(top_k)
|
209 |
+
|
210 |
+
scores = scores.tolist()
|
211 |
+
ids = ids.tolist()
|
212 |
+
|
213 |
+
labels = [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)]
|
214 |
+
|
215 |
+
return labels
|
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/document_question_answering.py
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The Impira Team and the HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import re
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
from ..utils import (
|
21 |
+
ExplicitEnum,
|
22 |
+
add_end_docstrings,
|
23 |
+
is_pytesseract_available,
|
24 |
+
is_torch_available,
|
25 |
+
is_vision_available,
|
26 |
+
logging,
|
27 |
+
)
|
28 |
+
from .base import ChunkPipeline, build_pipeline_init_args
|
29 |
+
from .question_answering import select_starts_ends
|
30 |
+
|
31 |
+
|
32 |
+
if is_vision_available():
|
33 |
+
from PIL import Image
|
34 |
+
|
35 |
+
from ..image_utils import load_image
|
36 |
+
|
37 |
+
if is_torch_available():
|
38 |
+
import torch
|
39 |
+
|
40 |
+
from ..models.auto.modeling_auto import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES
|
41 |
+
|
42 |
+
TESSERACT_LOADED = False
|
43 |
+
if is_pytesseract_available():
|
44 |
+
TESSERACT_LOADED = True
|
45 |
+
import pytesseract
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
|
50 |
+
# normalize_bbox() and apply_tesseract() are derived from apply_tesseract in models/layoutlmv3/feature_extraction_layoutlmv3.py.
|
51 |
+
# However, because the pipeline may evolve from what layoutlmv3 currently does, it's copied (vs. imported) to avoid creating an
|
52 |
+
# unnecessary dependency.
|
53 |
+
def normalize_box(box, width, height):
|
54 |
+
return [
|
55 |
+
int(1000 * (box[0] / width)),
|
56 |
+
int(1000 * (box[1] / height)),
|
57 |
+
int(1000 * (box[2] / width)),
|
58 |
+
int(1000 * (box[3] / height)),
|
59 |
+
]
|
60 |
+
|
61 |
+
|
62 |
+
def apply_tesseract(image: "Image.Image", lang: Optional[str], tesseract_config: Optional[str]):
|
63 |
+
"""Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes."""
|
64 |
+
# apply OCR
|
65 |
+
data = pytesseract.image_to_data(image, lang=lang, output_type="dict", config=tesseract_config)
|
66 |
+
words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"]
|
67 |
+
|
68 |
+
# filter empty words and corresponding coordinates
|
69 |
+
irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()]
|
70 |
+
words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices]
|
71 |
+
left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices]
|
72 |
+
top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices]
|
73 |
+
width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices]
|
74 |
+
height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices]
|
75 |
+
|
76 |
+
# turn coordinates into (left, top, left+width, top+height) format
|
77 |
+
actual_boxes = []
|
78 |
+
for x, y, w, h in zip(left, top, width, height):
|
79 |
+
actual_box = [x, y, x + w, y + h]
|
80 |
+
actual_boxes.append(actual_box)
|
81 |
+
|
82 |
+
image_width, image_height = image.size
|
83 |
+
|
84 |
+
# finally, normalize the bounding boxes
|
85 |
+
normalized_boxes = []
|
86 |
+
for box in actual_boxes:
|
87 |
+
normalized_boxes.append(normalize_box(box, image_width, image_height))
|
88 |
+
|
89 |
+
if len(words) != len(normalized_boxes):
|
90 |
+
raise ValueError("Not as many words as there are bounding boxes")
|
91 |
+
|
92 |
+
return words, normalized_boxes
|
93 |
+
|
94 |
+
|
95 |
+
class ModelType(ExplicitEnum):
|
96 |
+
LayoutLM = "layoutlm"
|
97 |
+
LayoutLMv2andv3 = "layoutlmv2andv3"
|
98 |
+
VisionEncoderDecoder = "vision_encoder_decoder"
|
99 |
+
|
100 |
+
|
101 |
+
@add_end_docstrings(build_pipeline_init_args(has_image_processor=True, has_tokenizer=True))
|
102 |
+
class DocumentQuestionAnsweringPipeline(ChunkPipeline):
|
103 |
+
# TODO: Update task_summary docs to include an example with document QA and then update the first sentence
|
104 |
+
"""
|
105 |
+
Document Question Answering pipeline using any `AutoModelForDocumentQuestionAnswering`. The inputs/outputs are
|
106 |
+
similar to the (extractive) question answering pipeline; however, the pipeline takes an image (and optional OCR'd
|
107 |
+
words/boxes) as input instead of text context.
|
108 |
+
|
109 |
+
Example:
|
110 |
+
|
111 |
+
```python
|
112 |
+
>>> from transformers import pipeline
|
113 |
+
|
114 |
+
>>> document_qa = pipeline(model="impira/layoutlm-document-qa")
|
115 |
+
>>> document_qa(
|
116 |
+
... image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png",
|
117 |
+
... question="What is the invoice number?",
|
118 |
+
... )
|
119 |
+
[{'score': 0.425, 'answer': 'us-001', 'start': 16, 'end': 16}]
|
120 |
+
```
|
121 |
+
|
122 |
+
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
123 |
+
|
124 |
+
This document question answering pipeline can currently be loaded from [`pipeline`] using the following task
|
125 |
+
identifier: `"document-question-answering"`.
|
126 |
+
|
127 |
+
The models that this pipeline can use are models that have been fine-tuned on a document question answering task.
|
128 |
+
See the up-to-date list of available models on
|
129 |
+
[huggingface.co/models](https://huggingface.co/models?filter=document-question-answering).
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self, *args, **kwargs):
|
133 |
+
super().__init__(*args, **kwargs)
|
134 |
+
if self.tokenizer is not None and not self.tokenizer.__class__.__name__.endswith("Fast"):
|
135 |
+
raise ValueError(
|
136 |
+
"`DocumentQuestionAnsweringPipeline` requires a fast tokenizer, but a slow tokenizer "
|
137 |
+
f"(`{self.tokenizer.__class__.__name__}`) is provided."
|
138 |
+
)
|
139 |
+
|
140 |
+
if self.model.config.__class__.__name__ == "VisionEncoderDecoderConfig":
|
141 |
+
self.model_type = ModelType.VisionEncoderDecoder
|
142 |
+
if self.model.config.encoder.model_type != "donut-swin":
|
143 |
+
raise ValueError("Currently, the only supported VisionEncoderDecoder model is Donut")
|
144 |
+
else:
|
145 |
+
self.check_model_type(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES)
|
146 |
+
if self.model.config.__class__.__name__ == "LayoutLMConfig":
|
147 |
+
self.model_type = ModelType.LayoutLM
|
148 |
+
else:
|
149 |
+
self.model_type = ModelType.LayoutLMv2andv3
|
150 |
+
|
151 |
+
def _sanitize_parameters(
|
152 |
+
self,
|
153 |
+
padding=None,
|
154 |
+
doc_stride=None,
|
155 |
+
max_question_len=None,
|
156 |
+
lang: Optional[str] = None,
|
157 |
+
tesseract_config: Optional[str] = None,
|
158 |
+
max_answer_len=None,
|
159 |
+
max_seq_len=None,
|
160 |
+
top_k=None,
|
161 |
+
handle_impossible_answer=None,
|
162 |
+
timeout=None,
|
163 |
+
**kwargs,
|
164 |
+
):
|
165 |
+
preprocess_params, postprocess_params = {}, {}
|
166 |
+
if padding is not None:
|
167 |
+
preprocess_params["padding"] = padding
|
168 |
+
if doc_stride is not None:
|
169 |
+
preprocess_params["doc_stride"] = doc_stride
|
170 |
+
if max_question_len is not None:
|
171 |
+
preprocess_params["max_question_len"] = max_question_len
|
172 |
+
if max_seq_len is not None:
|
173 |
+
preprocess_params["max_seq_len"] = max_seq_len
|
174 |
+
if lang is not None:
|
175 |
+
preprocess_params["lang"] = lang
|
176 |
+
if tesseract_config is not None:
|
177 |
+
preprocess_params["tesseract_config"] = tesseract_config
|
178 |
+
if timeout is not None:
|
179 |
+
preprocess_params["timeout"] = timeout
|
180 |
+
|
181 |
+
if top_k is not None:
|
182 |
+
if top_k < 1:
|
183 |
+
raise ValueError(f"top_k parameter should be >= 1 (got {top_k})")
|
184 |
+
postprocess_params["top_k"] = top_k
|
185 |
+
if max_answer_len is not None:
|
186 |
+
if max_answer_len < 1:
|
187 |
+
raise ValueError(f"max_answer_len parameter should be >= 1 (got {max_answer_len}")
|
188 |
+
postprocess_params["max_answer_len"] = max_answer_len
|
189 |
+
if handle_impossible_answer is not None:
|
190 |
+
postprocess_params["handle_impossible_answer"] = handle_impossible_answer
|
191 |
+
|
192 |
+
return preprocess_params, {}, postprocess_params
|
193 |
+
|
194 |
+
def __call__(
|
195 |
+
self,
|
196 |
+
image: Union["Image.Image", str],
|
197 |
+
question: Optional[str] = None,
|
198 |
+
word_boxes: Tuple[str, List[float]] = None,
|
199 |
+
**kwargs,
|
200 |
+
):
|
201 |
+
"""
|
202 |
+
Answer the question(s) given as inputs by using the document(s). A document is defined as an image and an
|
203 |
+
optional list of (word, box) tuples which represent the text in the document. If the `word_boxes` are not
|
204 |
+
provided, it will use the Tesseract OCR engine (if available) to extract the words and boxes automatically for
|
205 |
+
LayoutLM-like models which require them as input. For Donut, no OCR is run.
|
206 |
+
|
207 |
+
You can invoke the pipeline several ways:
|
208 |
+
|
209 |
+
- `pipeline(image=image, question=question)`
|
210 |
+
- `pipeline(image=image, question=question, word_boxes=word_boxes)`
|
211 |
+
- `pipeline([{"image": image, "question": question}])`
|
212 |
+
- `pipeline([{"image": image, "question": question, "word_boxes": word_boxes}])`
|
213 |
+
|
214 |
+
Args:
|
215 |
+
image (`str` or `PIL.Image`):
|
216 |
+
The pipeline handles three types of images:
|
217 |
+
|
218 |
+
- A string containing a http link pointing to an image
|
219 |
+
- A string containing a local path to an image
|
220 |
+
- An image loaded in PIL directly
|
221 |
+
|
222 |
+
The pipeline accepts either a single image or a batch of images. If given a single image, it can be
|
223 |
+
broadcasted to multiple questions.
|
224 |
+
question (`str`):
|
225 |
+
A question to ask of the document.
|
226 |
+
word_boxes (`List[str, Tuple[float, float, float, float]]`, *optional*):
|
227 |
+
A list of words and bounding boxes (normalized 0->1000). If you provide this optional input, then the
|
228 |
+
pipeline will use these words and boxes instead of running OCR on the image to derive them for models
|
229 |
+
that need them (e.g. LayoutLM). This allows you to reuse OCR'd results across many invocations of the
|
230 |
+
pipeline without having to re-run it each time.
|
231 |
+
top_k (`int`, *optional*, defaults to 1):
|
232 |
+
The number of answers to return (will be chosen by order of likelihood). Note that we return less than
|
233 |
+
top_k answers if there are not enough options available within the context.
|
234 |
+
doc_stride (`int`, *optional*, defaults to 128):
|
235 |
+
If the words in the document are too long to fit with the question for the model, it will be split in
|
236 |
+
several chunks with some overlap. This argument controls the size of that overlap.
|
237 |
+
max_answer_len (`int`, *optional*, defaults to 15):
|
238 |
+
The maximum length of predicted answers (e.g., only answers with a shorter length are considered).
|
239 |
+
max_seq_len (`int`, *optional*, defaults to 384):
|
240 |
+
The maximum length of the total sentence (context + question) in tokens of each chunk passed to the
|
241 |
+
model. The context will be split in several chunks (using `doc_stride` as overlap) if needed.
|
242 |
+
max_question_len (`int`, *optional*, defaults to 64):
|
243 |
+
The maximum length of the question after tokenization. It will be truncated if needed.
|
244 |
+
handle_impossible_answer (`bool`, *optional*, defaults to `False`):
|
245 |
+
Whether or not we accept impossible as an answer.
|
246 |
+
lang (`str`, *optional*):
|
247 |
+
Language to use while running OCR. Defaults to english.
|
248 |
+
tesseract_config (`str`, *optional*):
|
249 |
+
Additional flags to pass to tesseract while running OCR.
|
250 |
+
timeout (`float`, *optional*, defaults to None):
|
251 |
+
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
|
252 |
+
the call may block forever.
|
253 |
+
|
254 |
+
Return:
|
255 |
+
A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys:
|
256 |
+
|
257 |
+
- **score** (`float`) -- The probability associated to the answer.
|
258 |
+
- **start** (`int`) -- The start word index of the answer (in the OCR'd version of the input or provided
|
259 |
+
`word_boxes`).
|
260 |
+
- **end** (`int`) -- The end word index of the answer (in the OCR'd version of the input or provided
|
261 |
+
`word_boxes`).
|
262 |
+
- **answer** (`str`) -- The answer to the question.
|
263 |
+
- **words** (`list[int]`) -- The index of each word/box pair that is in the answer
|
264 |
+
"""
|
265 |
+
if isinstance(question, str):
|
266 |
+
inputs = {"question": question, "image": image}
|
267 |
+
if word_boxes is not None:
|
268 |
+
inputs["word_boxes"] = word_boxes
|
269 |
+
else:
|
270 |
+
inputs = image
|
271 |
+
return super().__call__(inputs, **kwargs)
|
272 |
+
|
273 |
+
def preprocess(
|
274 |
+
self,
|
275 |
+
input,
|
276 |
+
padding="do_not_pad",
|
277 |
+
doc_stride=None,
|
278 |
+
max_seq_len=None,
|
279 |
+
word_boxes: Tuple[str, List[float]] = None,
|
280 |
+
lang=None,
|
281 |
+
tesseract_config="",
|
282 |
+
timeout=None,
|
283 |
+
):
|
284 |
+
# NOTE: This code mirrors the code in question answering and will be implemented in a follow up PR
|
285 |
+
# to support documents with enough tokens that overflow the model's window
|
286 |
+
if max_seq_len is None:
|
287 |
+
max_seq_len = self.tokenizer.model_max_length
|
288 |
+
|
289 |
+
if doc_stride is None:
|
290 |
+
doc_stride = min(max_seq_len // 2, 256)
|
291 |
+
|
292 |
+
image = None
|
293 |
+
image_features = {}
|
294 |
+
if input.get("image", None) is not None:
|
295 |
+
image = load_image(input["image"], timeout=timeout)
|
296 |
+
if self.image_processor is not None:
|
297 |
+
image_features.update(self.image_processor(images=image, return_tensors=self.framework))
|
298 |
+
elif self.feature_extractor is not None:
|
299 |
+
image_features.update(self.feature_extractor(images=image, return_tensors=self.framework))
|
300 |
+
elif self.model_type == ModelType.VisionEncoderDecoder:
|
301 |
+
raise ValueError("If you are using a VisionEncoderDecoderModel, you must provide a feature extractor")
|
302 |
+
|
303 |
+
words, boxes = None, None
|
304 |
+
if not self.model_type == ModelType.VisionEncoderDecoder:
|
305 |
+
if "word_boxes" in input:
|
306 |
+
words = [x[0] for x in input["word_boxes"]]
|
307 |
+
boxes = [x[1] for x in input["word_boxes"]]
|
308 |
+
elif "words" in image_features and "boxes" in image_features:
|
309 |
+
words = image_features.pop("words")[0]
|
310 |
+
boxes = image_features.pop("boxes")[0]
|
311 |
+
elif image is not None:
|
312 |
+
if not TESSERACT_LOADED:
|
313 |
+
raise ValueError(
|
314 |
+
"If you provide an image without word_boxes, then the pipeline will run OCR using Tesseract,"
|
315 |
+
" but pytesseract is not available"
|
316 |
+
)
|
317 |
+
if TESSERACT_LOADED:
|
318 |
+
words, boxes = apply_tesseract(image, lang=lang, tesseract_config=tesseract_config)
|
319 |
+
else:
|
320 |
+
raise ValueError(
|
321 |
+
"You must provide an image or word_boxes. If you provide an image, the pipeline will automatically"
|
322 |
+
" run OCR to derive words and boxes"
|
323 |
+
)
|
324 |
+
|
325 |
+
if self.tokenizer.padding_side != "right":
|
326 |
+
raise ValueError(
|
327 |
+
"Document question answering only supports tokenizers whose padding side is 'right', not"
|
328 |
+
f" {self.tokenizer.padding_side}"
|
329 |
+
)
|
330 |
+
|
331 |
+
if self.model_type == ModelType.VisionEncoderDecoder:
|
332 |
+
task_prompt = f'<s_docvqa><s_question>{input["question"]}</s_question><s_answer>'
|
333 |
+
# Adapted from https://huggingface.co/spaces/nielsr/donut-docvqa/blob/main/app.py
|
334 |
+
encoding = {
|
335 |
+
"inputs": image_features["pixel_values"],
|
336 |
+
"decoder_input_ids": self.tokenizer(
|
337 |
+
task_prompt, add_special_tokens=False, return_tensors=self.framework
|
338 |
+
).input_ids,
|
339 |
+
"return_dict_in_generate": True,
|
340 |
+
}
|
341 |
+
yield {
|
342 |
+
**encoding,
|
343 |
+
"p_mask": None,
|
344 |
+
"word_ids": None,
|
345 |
+
"words": None,
|
346 |
+
"output_attentions": True,
|
347 |
+
"is_last": True,
|
348 |
+
}
|
349 |
+
else:
|
350 |
+
tokenizer_kwargs = {}
|
351 |
+
if self.model_type == ModelType.LayoutLM:
|
352 |
+
tokenizer_kwargs["text"] = input["question"].split()
|
353 |
+
tokenizer_kwargs["text_pair"] = words
|
354 |
+
tokenizer_kwargs["is_split_into_words"] = True
|
355 |
+
else:
|
356 |
+
tokenizer_kwargs["text"] = [input["question"]]
|
357 |
+
tokenizer_kwargs["text_pair"] = [words]
|
358 |
+
tokenizer_kwargs["boxes"] = [boxes]
|
359 |
+
|
360 |
+
encoding = self.tokenizer(
|
361 |
+
padding=padding,
|
362 |
+
max_length=max_seq_len,
|
363 |
+
stride=doc_stride,
|
364 |
+
return_token_type_ids=True,
|
365 |
+
truncation="only_second",
|
366 |
+
return_overflowing_tokens=True,
|
367 |
+
**tokenizer_kwargs,
|
368 |
+
)
|
369 |
+
# TODO: check why slower `LayoutLMTokenizer` and `LayoutLMv2Tokenizer` don't have this key in outputs
|
370 |
+
# FIXME: ydshieh and/or Narsil
|
371 |
+
encoding.pop("overflow_to_sample_mapping", None) # We do not use this
|
372 |
+
|
373 |
+
num_spans = len(encoding["input_ids"])
|
374 |
+
|
375 |
+
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
|
376 |
+
# We put 0 on the tokens from the context and 1 everywhere else (question and special tokens)
|
377 |
+
# This logic mirrors the logic in the question_answering pipeline
|
378 |
+
p_mask = [[tok != 1 for tok in encoding.sequence_ids(span_id)] for span_id in range(num_spans)]
|
379 |
+
for span_idx in range(num_spans):
|
380 |
+
if self.framework == "pt":
|
381 |
+
span_encoding = {k: torch.tensor(v[span_idx : span_idx + 1]) for (k, v) in encoding.items()}
|
382 |
+
if "pixel_values" in image_features:
|
383 |
+
span_encoding["image"] = image_features["pixel_values"]
|
384 |
+
else:
|
385 |
+
raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline")
|
386 |
+
|
387 |
+
input_ids_span_idx = encoding["input_ids"][span_idx]
|
388 |
+
# keep the cls_token unmasked (some models use it to indicate unanswerable questions)
|
389 |
+
if self.tokenizer.cls_token_id is not None:
|
390 |
+
cls_indices = np.nonzero(np.array(input_ids_span_idx) == self.tokenizer.cls_token_id)[0]
|
391 |
+
for cls_index in cls_indices:
|
392 |
+
p_mask[span_idx][cls_index] = 0
|
393 |
+
|
394 |
+
# For each span, place a bounding box [0,0,0,0] for question and CLS tokens, [1000,1000,1000,1000]
|
395 |
+
# for SEP tokens, and the word's bounding box for words in the original document.
|
396 |
+
if "boxes" not in tokenizer_kwargs:
|
397 |
+
bbox = []
|
398 |
+
for input_id, sequence_id, word_id in zip(
|
399 |
+
encoding.input_ids[span_idx],
|
400 |
+
encoding.sequence_ids(span_idx),
|
401 |
+
encoding.word_ids(span_idx),
|
402 |
+
):
|
403 |
+
if sequence_id == 1:
|
404 |
+
bbox.append(boxes[word_id])
|
405 |
+
elif input_id == self.tokenizer.sep_token_id:
|
406 |
+
bbox.append([1000] * 4)
|
407 |
+
else:
|
408 |
+
bbox.append([0] * 4)
|
409 |
+
|
410 |
+
if self.framework == "pt":
|
411 |
+
span_encoding["bbox"] = torch.tensor(bbox).unsqueeze(0)
|
412 |
+
elif self.framework == "tf":
|
413 |
+
raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline")
|
414 |
+
yield {
|
415 |
+
**span_encoding,
|
416 |
+
"p_mask": p_mask[span_idx],
|
417 |
+
"word_ids": encoding.word_ids(span_idx),
|
418 |
+
"words": words,
|
419 |
+
"is_last": span_idx == num_spans - 1,
|
420 |
+
}
|
421 |
+
|
422 |
+
def _forward(self, model_inputs, **generate_kwargs):
|
423 |
+
p_mask = model_inputs.pop("p_mask", None)
|
424 |
+
word_ids = model_inputs.pop("word_ids", None)
|
425 |
+
words = model_inputs.pop("words", None)
|
426 |
+
is_last = model_inputs.pop("is_last", False)
|
427 |
+
|
428 |
+
if self.model_type == ModelType.VisionEncoderDecoder:
|
429 |
+
model_outputs = self.model.generate(**model_inputs, **generate_kwargs)
|
430 |
+
else:
|
431 |
+
model_outputs = self.model(**model_inputs)
|
432 |
+
|
433 |
+
model_outputs = dict(model_outputs.items())
|
434 |
+
model_outputs["p_mask"] = p_mask
|
435 |
+
model_outputs["word_ids"] = word_ids
|
436 |
+
model_outputs["words"] = words
|
437 |
+
model_outputs["attention_mask"] = model_inputs.get("attention_mask", None)
|
438 |
+
model_outputs["is_last"] = is_last
|
439 |
+
return model_outputs
|
440 |
+
|
441 |
+
def postprocess(self, model_outputs, top_k=1, **kwargs):
|
442 |
+
if self.model_type == ModelType.VisionEncoderDecoder:
|
443 |
+
answers = [self.postprocess_encoder_decoder_single(o) for o in model_outputs]
|
444 |
+
else:
|
445 |
+
answers = self.postprocess_extractive_qa(model_outputs, top_k=top_k, **kwargs)
|
446 |
+
|
447 |
+
answers = sorted(answers, key=lambda x: x.get("score", 0), reverse=True)[:top_k]
|
448 |
+
return answers
|
449 |
+
|
450 |
+
def postprocess_encoder_decoder_single(self, model_outputs, **kwargs):
|
451 |
+
sequence = self.tokenizer.batch_decode(model_outputs["sequences"])[0]
|
452 |
+
|
453 |
+
# TODO: A lot of this logic is specific to Donut and should probably be handled in the tokenizer
|
454 |
+
# (see https://github.com/huggingface/transformers/pull/18414/files#r961747408 for more context).
|
455 |
+
sequence = sequence.replace(self.tokenizer.eos_token, "").replace(self.tokenizer.pad_token, "")
|
456 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
457 |
+
ret = {
|
458 |
+
"answer": None,
|
459 |
+
}
|
460 |
+
|
461 |
+
answer = re.search(r"<s_answer>(.*)</s_answer>", sequence)
|
462 |
+
if answer is not None:
|
463 |
+
ret["answer"] = answer.group(1).strip()
|
464 |
+
return ret
|
465 |
+
|
466 |
+
def postprocess_extractive_qa(
|
467 |
+
self, model_outputs, top_k=1, handle_impossible_answer=False, max_answer_len=15, **kwargs
|
468 |
+
):
|
469 |
+
min_null_score = 1000000 # large and positive
|
470 |
+
answers = []
|
471 |
+
for output in model_outputs:
|
472 |
+
words = output["words"]
|
473 |
+
|
474 |
+
starts, ends, scores, min_null_score = select_starts_ends(
|
475 |
+
start=output["start_logits"],
|
476 |
+
end=output["end_logits"],
|
477 |
+
p_mask=output["p_mask"],
|
478 |
+
attention_mask=output["attention_mask"].numpy()
|
479 |
+
if output.get("attention_mask", None) is not None
|
480 |
+
else None,
|
481 |
+
min_null_score=min_null_score,
|
482 |
+
top_k=top_k,
|
483 |
+
handle_impossible_answer=handle_impossible_answer,
|
484 |
+
max_answer_len=max_answer_len,
|
485 |
+
)
|
486 |
+
word_ids = output["word_ids"]
|
487 |
+
for start, end, score in zip(starts, ends, scores):
|
488 |
+
word_start, word_end = word_ids[start], word_ids[end]
|
489 |
+
if word_start is not None and word_end is not None:
|
490 |
+
answers.append(
|
491 |
+
{
|
492 |
+
"score": float(score),
|
493 |
+
"answer": " ".join(words[word_start : word_end + 1]),
|
494 |
+
"start": word_start,
|
495 |
+
"end": word_end,
|
496 |
+
}
|
497 |
+
)
|
498 |
+
|
499 |
+
if handle_impossible_answer:
|
500 |
+
answers.append({"score": min_null_score, "answer": "", "start": 0, "end": 0})
|
501 |
+
|
502 |
+
return answers
|
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/image_classification.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from ..utils import (
|
6 |
+
ExplicitEnum,
|
7 |
+
add_end_docstrings,
|
8 |
+
is_tf_available,
|
9 |
+
is_torch_available,
|
10 |
+
is_vision_available,
|
11 |
+
logging,
|
12 |
+
requires_backends,
|
13 |
+
)
|
14 |
+
from .base import Pipeline, build_pipeline_init_args
|
15 |
+
|
16 |
+
|
17 |
+
if is_vision_available():
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
from ..image_utils import load_image
|
21 |
+
|
22 |
+
if is_tf_available():
|
23 |
+
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
|
24 |
+
|
25 |
+
if is_torch_available():
|
26 |
+
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
# Copied from transformers.pipelines.text_classification.sigmoid
|
32 |
+
def sigmoid(_outputs):
|
33 |
+
return 1.0 / (1.0 + np.exp(-_outputs))
|
34 |
+
|
35 |
+
|
36 |
+
# Copied from transformers.pipelines.text_classification.softmax
|
37 |
+
def softmax(_outputs):
|
38 |
+
maxes = np.max(_outputs, axis=-1, keepdims=True)
|
39 |
+
shifted_exp = np.exp(_outputs - maxes)
|
40 |
+
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
|
41 |
+
|
42 |
+
|
43 |
+
# Copied from transformers.pipelines.text_classification.ClassificationFunction
|
44 |
+
class ClassificationFunction(ExplicitEnum):
|
45 |
+
SIGMOID = "sigmoid"
|
46 |
+
SOFTMAX = "softmax"
|
47 |
+
NONE = "none"
|
48 |
+
|
49 |
+
|
50 |
+
@add_end_docstrings(
|
51 |
+
build_pipeline_init_args(has_image_processor=True),
|
52 |
+
r"""
|
53 |
+
function_to_apply (`str`, *optional*, defaults to `"default"`):
|
54 |
+
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
|
55 |
+
|
56 |
+
- `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model
|
57 |
+
has several labels, will apply the softmax function on the output.
|
58 |
+
- `"sigmoid"`: Applies the sigmoid function on the output.
|
59 |
+
- `"softmax"`: Applies the softmax function on the output.
|
60 |
+
- `"none"`: Does not apply any function on the output.""",
|
61 |
+
)
|
62 |
+
class ImageClassificationPipeline(Pipeline):
|
63 |
+
"""
|
64 |
+
Image classification pipeline using any `AutoModelForImageClassification`. This pipeline predicts the class of an
|
65 |
+
image.
|
66 |
+
|
67 |
+
Example:
|
68 |
+
|
69 |
+
```python
|
70 |
+
>>> from transformers import pipeline
|
71 |
+
|
72 |
+
>>> classifier = pipeline(model="microsoft/beit-base-patch16-224-pt22k-ft22k")
|
73 |
+
>>> classifier("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
|
74 |
+
[{'score': 0.442, 'label': 'macaw'}, {'score': 0.088, 'label': 'popinjay'}, {'score': 0.075, 'label': 'parrot'}, {'score': 0.073, 'label': 'parodist, lampooner'}, {'score': 0.046, 'label': 'poll, poll_parrot'}]
|
75 |
+
```
|
76 |
+
|
77 |
+
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
78 |
+
|
79 |
+
This image classification pipeline can currently be loaded from [`pipeline`] using the following task identifier:
|
80 |
+
`"image-classification"`.
|
81 |
+
|
82 |
+
See the list of available models on
|
83 |
+
[huggingface.co/models](https://huggingface.co/models?filter=image-classification).
|
84 |
+
"""
|
85 |
+
|
86 |
+
function_to_apply: ClassificationFunction = ClassificationFunction.NONE
|
87 |
+
|
88 |
+
def __init__(self, *args, **kwargs):
|
89 |
+
super().__init__(*args, **kwargs)
|
90 |
+
requires_backends(self, "vision")
|
91 |
+
self.check_model_type(
|
92 |
+
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
|
93 |
+
if self.framework == "tf"
|
94 |
+
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
|
95 |
+
)
|
96 |
+
|
97 |
+
def _sanitize_parameters(self, top_k=None, function_to_apply=None, timeout=None):
|
98 |
+
preprocess_params = {}
|
99 |
+
if timeout is not None:
|
100 |
+
preprocess_params["timeout"] = timeout
|
101 |
+
postprocess_params = {}
|
102 |
+
if top_k is not None:
|
103 |
+
postprocess_params["top_k"] = top_k
|
104 |
+
if isinstance(function_to_apply, str):
|
105 |
+
function_to_apply = ClassificationFunction(function_to_apply.lower())
|
106 |
+
if function_to_apply is not None:
|
107 |
+
postprocess_params["function_to_apply"] = function_to_apply
|
108 |
+
return preprocess_params, {}, postprocess_params
|
109 |
+
|
110 |
+
def __call__(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs):
|
111 |
+
"""
|
112 |
+
Assign labels to the image(s) passed as inputs.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
|
116 |
+
The pipeline handles three types of images:
|
117 |
+
|
118 |
+
- A string containing a http link pointing to an image
|
119 |
+
- A string containing a local path to an image
|
120 |
+
- An image loaded in PIL directly
|
121 |
+
|
122 |
+
The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
|
123 |
+
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
|
124 |
+
images.
|
125 |
+
function_to_apply (`str`, *optional*, defaults to `"default"`):
|
126 |
+
The function to apply to the model outputs in order to retrieve the scores. Accepts four different
|
127 |
+
values:
|
128 |
+
|
129 |
+
If this argument is not specified, then it will apply the following functions according to the number
|
130 |
+
of labels:
|
131 |
+
|
132 |
+
- If the model has a single label, will apply the sigmoid function on the output.
|
133 |
+
- If the model has several labels, will apply the softmax function on the output.
|
134 |
+
|
135 |
+
Possible values are:
|
136 |
+
|
137 |
+
- `"sigmoid"`: Applies the sigmoid function on the output.
|
138 |
+
- `"softmax"`: Applies the softmax function on the output.
|
139 |
+
- `"none"`: Does not apply any function on the output.
|
140 |
+
top_k (`int`, *optional*, defaults to 5):
|
141 |
+
The number of top labels that will be returned by the pipeline. If the provided number is higher than
|
142 |
+
the number of labels available in the model configuration, it will default to the number of labels.
|
143 |
+
timeout (`float`, *optional*, defaults to None):
|
144 |
+
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
|
145 |
+
the call may block forever.
|
146 |
+
|
147 |
+
Return:
|
148 |
+
A dictionary or a list of dictionaries containing result. If the input is a single image, will return a
|
149 |
+
dictionary, if the input is a list of several images, will return a list of dictionaries corresponding to
|
150 |
+
the images.
|
151 |
+
|
152 |
+
The dictionaries contain the following keys:
|
153 |
+
|
154 |
+
- **label** (`str`) -- The label identified by the model.
|
155 |
+
- **score** (`int`) -- The score attributed by the model for that label.
|
156 |
+
"""
|
157 |
+
return super().__call__(images, **kwargs)
|
158 |
+
|
159 |
+
def preprocess(self, image, timeout=None):
|
160 |
+
image = load_image(image, timeout=timeout)
|
161 |
+
model_inputs = self.image_processor(images=image, return_tensors=self.framework)
|
162 |
+
return model_inputs
|
163 |
+
|
164 |
+
def _forward(self, model_inputs):
|
165 |
+
model_outputs = self.model(**model_inputs)
|
166 |
+
return model_outputs
|
167 |
+
|
168 |
+
def postprocess(self, model_outputs, function_to_apply=None, top_k=5):
|
169 |
+
if function_to_apply is None:
|
170 |
+
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
|
171 |
+
function_to_apply = ClassificationFunction.SIGMOID
|
172 |
+
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
|
173 |
+
function_to_apply = ClassificationFunction.SOFTMAX
|
174 |
+
elif hasattr(self.model.config, "function_to_apply") and function_to_apply is None:
|
175 |
+
function_to_apply = self.model.config.function_to_apply
|
176 |
+
else:
|
177 |
+
function_to_apply = ClassificationFunction.NONE
|
178 |
+
|
179 |
+
if top_k > self.model.config.num_labels:
|
180 |
+
top_k = self.model.config.num_labels
|
181 |
+
|
182 |
+
outputs = model_outputs["logits"][0]
|
183 |
+
outputs = outputs.numpy()
|
184 |
+
|
185 |
+
if function_to_apply == ClassificationFunction.SIGMOID:
|
186 |
+
scores = sigmoid(outputs)
|
187 |
+
elif function_to_apply == ClassificationFunction.SOFTMAX:
|
188 |
+
scores = softmax(outputs)
|
189 |
+
elif function_to_apply == ClassificationFunction.NONE:
|
190 |
+
scores = outputs
|
191 |
+
else:
|
192 |
+
raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}")
|
193 |
+
|
194 |
+
dict_scores = [
|
195 |
+
{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores)
|
196 |
+
]
|
197 |
+
dict_scores.sort(key=lambda x: x["score"], reverse=True)
|
198 |
+
if top_k is not None:
|
199 |
+
dict_scores = dict_scores[:top_k]
|
200 |
+
|
201 |
+
return dict_scores
|
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/image_segmentation.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
|
6 |
+
from .base import Pipeline, build_pipeline_init_args
|
7 |
+
|
8 |
+
|
9 |
+
if is_vision_available():
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
from ..image_utils import load_image
|
13 |
+
|
14 |
+
if is_torch_available():
|
15 |
+
from ..models.auto.modeling_auto import (
|
16 |
+
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES,
|
17 |
+
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES,
|
18 |
+
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
|
19 |
+
MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING_NAMES,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
Prediction = Dict[str, Any]
|
27 |
+
Predictions = List[Prediction]
|
28 |
+
|
29 |
+
|
30 |
+
@add_end_docstrings(build_pipeline_init_args(has_image_processor=True))
|
31 |
+
class ImageSegmentationPipeline(Pipeline):
|
32 |
+
"""
|
33 |
+
Image segmentation pipeline using any `AutoModelForXXXSegmentation`. This pipeline predicts masks of objects and
|
34 |
+
their classes.
|
35 |
+
|
36 |
+
Example:
|
37 |
+
|
38 |
+
```python
|
39 |
+
>>> from transformers import pipeline
|
40 |
+
|
41 |
+
>>> segmenter = pipeline(model="facebook/detr-resnet-50-panoptic")
|
42 |
+
>>> segments = segmenter("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
|
43 |
+
>>> len(segments)
|
44 |
+
2
|
45 |
+
|
46 |
+
>>> segments[0]["label"]
|
47 |
+
'bird'
|
48 |
+
|
49 |
+
>>> segments[1]["label"]
|
50 |
+
'bird'
|
51 |
+
|
52 |
+
>>> type(segments[0]["mask"]) # This is a black and white mask showing where is the bird on the original image.
|
53 |
+
<class 'PIL.Image.Image'>
|
54 |
+
|
55 |
+
>>> segments[0]["mask"].size
|
56 |
+
(768, 512)
|
57 |
+
```
|
58 |
+
|
59 |
+
|
60 |
+
This image segmentation pipeline can currently be loaded from [`pipeline`] using the following task identifier:
|
61 |
+
`"image-segmentation"`.
|
62 |
+
|
63 |
+
See the list of available models on
|
64 |
+
[huggingface.co/models](https://huggingface.co/models?filter=image-segmentation).
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self, *args, **kwargs):
|
68 |
+
super().__init__(*args, **kwargs)
|
69 |
+
|
70 |
+
if self.framework == "tf":
|
71 |
+
raise ValueError(f"The {self.__class__} is only available in PyTorch.")
|
72 |
+
|
73 |
+
requires_backends(self, "vision")
|
74 |
+
mapping = MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES.copy()
|
75 |
+
mapping.update(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES)
|
76 |
+
mapping.update(MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES)
|
77 |
+
mapping.update(MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING_NAMES)
|
78 |
+
self.check_model_type(mapping)
|
79 |
+
|
80 |
+
def _sanitize_parameters(self, **kwargs):
|
81 |
+
preprocess_kwargs = {}
|
82 |
+
postprocess_kwargs = {}
|
83 |
+
if "subtask" in kwargs:
|
84 |
+
postprocess_kwargs["subtask"] = kwargs["subtask"]
|
85 |
+
preprocess_kwargs["subtask"] = kwargs["subtask"]
|
86 |
+
if "threshold" in kwargs:
|
87 |
+
postprocess_kwargs["threshold"] = kwargs["threshold"]
|
88 |
+
if "mask_threshold" in kwargs:
|
89 |
+
postprocess_kwargs["mask_threshold"] = kwargs["mask_threshold"]
|
90 |
+
if "overlap_mask_area_threshold" in kwargs:
|
91 |
+
postprocess_kwargs["overlap_mask_area_threshold"] = kwargs["overlap_mask_area_threshold"]
|
92 |
+
if "timeout" in kwargs:
|
93 |
+
preprocess_kwargs["timeout"] = kwargs["timeout"]
|
94 |
+
|
95 |
+
return preprocess_kwargs, {}, postprocess_kwargs
|
96 |
+
|
97 |
+
def __call__(self, images, **kwargs) -> Union[Predictions, List[Prediction]]:
|
98 |
+
"""
|
99 |
+
Perform segmentation (detect masks & classes) in the image(s) passed as inputs.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
|
103 |
+
The pipeline handles three types of images:
|
104 |
+
|
105 |
+
- A string containing an HTTP(S) link pointing to an image
|
106 |
+
- A string containing a local path to an image
|
107 |
+
- An image loaded in PIL directly
|
108 |
+
|
109 |
+
The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the
|
110 |
+
same format: all as HTTP(S) links, all as local paths, or all as PIL images.
|
111 |
+
subtask (`str`, *optional*):
|
112 |
+
Segmentation task to be performed, choose [`semantic`, `instance` and `panoptic`] depending on model
|
113 |
+
capabilities. If not set, the pipeline will attempt tp resolve in the following order:
|
114 |
+
`panoptic`, `instance`, `semantic`.
|
115 |
+
threshold (`float`, *optional*, defaults to 0.9):
|
116 |
+
Probability threshold to filter out predicted masks.
|
117 |
+
mask_threshold (`float`, *optional*, defaults to 0.5):
|
118 |
+
Threshold to use when turning the predicted masks into binary values.
|
119 |
+
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.5):
|
120 |
+
Mask overlap threshold to eliminate small, disconnected segments.
|
121 |
+
timeout (`float`, *optional*, defaults to None):
|
122 |
+
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
|
123 |
+
the call may block forever.
|
124 |
+
|
125 |
+
Return:
|
126 |
+
A dictionary or a list of dictionaries containing the result. If the input is a single image, will return a
|
127 |
+
list of dictionaries, if the input is a list of several images, will return a list of list of dictionaries
|
128 |
+
corresponding to each image.
|
129 |
+
|
130 |
+
The dictionaries contain the mask, label and score (where applicable) of each detected object and contains
|
131 |
+
the following keys:
|
132 |
+
|
133 |
+
- **label** (`str`) -- The class label identified by the model.
|
134 |
+
- **mask** (`PIL.Image`) -- A binary mask of the detected object as a Pil Image of shape (width, height) of
|
135 |
+
the original image. Returns a mask filled with zeros if no object is found.
|
136 |
+
- **score** (*optional* `float`) -- Optionally, when the model is capable of estimating a confidence of the
|
137 |
+
"object" described by the label and the mask.
|
138 |
+
"""
|
139 |
+
return super().__call__(images, **kwargs)
|
140 |
+
|
141 |
+
def preprocess(self, image, subtask=None, timeout=None):
|
142 |
+
image = load_image(image, timeout=timeout)
|
143 |
+
target_size = [(image.height, image.width)]
|
144 |
+
if self.model.config.__class__.__name__ == "OneFormerConfig":
|
145 |
+
if subtask is None:
|
146 |
+
kwargs = {}
|
147 |
+
else:
|
148 |
+
kwargs = {"task_inputs": [subtask]}
|
149 |
+
inputs = self.image_processor(images=[image], return_tensors="pt", **kwargs)
|
150 |
+
inputs["task_inputs"] = self.tokenizer(
|
151 |
+
inputs["task_inputs"],
|
152 |
+
padding="max_length",
|
153 |
+
max_length=self.model.config.task_seq_len,
|
154 |
+
return_tensors=self.framework,
|
155 |
+
)["input_ids"]
|
156 |
+
else:
|
157 |
+
inputs = self.image_processor(images=[image], return_tensors="pt")
|
158 |
+
inputs["target_size"] = target_size
|
159 |
+
return inputs
|
160 |
+
|
161 |
+
def _forward(self, model_inputs):
|
162 |
+
target_size = model_inputs.pop("target_size")
|
163 |
+
model_outputs = self.model(**model_inputs)
|
164 |
+
model_outputs["target_size"] = target_size
|
165 |
+
return model_outputs
|
166 |
+
|
167 |
+
def postprocess(
|
168 |
+
self, model_outputs, subtask=None, threshold=0.9, mask_threshold=0.5, overlap_mask_area_threshold=0.5
|
169 |
+
):
|
170 |
+
fn = None
|
171 |
+
if subtask in {"panoptic", None} and hasattr(self.image_processor, "post_process_panoptic_segmentation"):
|
172 |
+
fn = self.image_processor.post_process_panoptic_segmentation
|
173 |
+
elif subtask in {"instance", None} and hasattr(self.image_processor, "post_process_instance_segmentation"):
|
174 |
+
fn = self.image_processor.post_process_instance_segmentation
|
175 |
+
|
176 |
+
if fn is not None:
|
177 |
+
outputs = fn(
|
178 |
+
model_outputs,
|
179 |
+
threshold=threshold,
|
180 |
+
mask_threshold=mask_threshold,
|
181 |
+
overlap_mask_area_threshold=overlap_mask_area_threshold,
|
182 |
+
target_sizes=model_outputs["target_size"],
|
183 |
+
)[0]
|
184 |
+
|
185 |
+
annotation = []
|
186 |
+
segmentation = outputs["segmentation"]
|
187 |
+
|
188 |
+
for segment in outputs["segments_info"]:
|
189 |
+
mask = (segmentation == segment["id"]) * 255
|
190 |
+
mask = Image.fromarray(mask.numpy().astype(np.uint8), mode="L")
|
191 |
+
label = self.model.config.id2label[segment["label_id"]]
|
192 |
+
score = segment["score"]
|
193 |
+
annotation.append({"score": score, "label": label, "mask": mask})
|
194 |
+
|
195 |
+
elif subtask in {"semantic", None} and hasattr(self.image_processor, "post_process_semantic_segmentation"):
|
196 |
+
outputs = self.image_processor.post_process_semantic_segmentation(
|
197 |
+
model_outputs, target_sizes=model_outputs["target_size"]
|
198 |
+
)[0]
|
199 |
+
|
200 |
+
annotation = []
|
201 |
+
segmentation = outputs.numpy()
|
202 |
+
labels = np.unique(segmentation)
|
203 |
+
|
204 |
+
for label in labels:
|
205 |
+
mask = (segmentation == label) * 255
|
206 |
+
mask = Image.fromarray(mask.astype(np.uint8), mode="L")
|
207 |
+
label = self.model.config.id2label[label]
|
208 |
+
annotation.append({"score": None, "label": label, "mask": mask})
|
209 |
+
else:
|
210 |
+
raise ValueError(f"Subtask {subtask} is not supported for model {type(self.model)}")
|
211 |
+
return annotation
|
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/image_to_image.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import List, Union
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
from ..utils import (
|
19 |
+
add_end_docstrings,
|
20 |
+
is_torch_available,
|
21 |
+
is_vision_available,
|
22 |
+
logging,
|
23 |
+
requires_backends,
|
24 |
+
)
|
25 |
+
from .base import Pipeline, build_pipeline_init_args
|
26 |
+
|
27 |
+
|
28 |
+
if is_vision_available():
|
29 |
+
from PIL import Image
|
30 |
+
|
31 |
+
from ..image_utils import load_image
|
32 |
+
|
33 |
+
if is_torch_available():
|
34 |
+
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
@add_end_docstrings(build_pipeline_init_args(has_image_processor=True))
|
40 |
+
class ImageToImagePipeline(Pipeline):
|
41 |
+
"""
|
42 |
+
Image to Image pipeline using any `AutoModelForImageToImage`. This pipeline generates an image based on a previous
|
43 |
+
image input.
|
44 |
+
|
45 |
+
Example:
|
46 |
+
|
47 |
+
```python
|
48 |
+
>>> from PIL import Image
|
49 |
+
>>> import requests
|
50 |
+
|
51 |
+
>>> from transformers import pipeline
|
52 |
+
|
53 |
+
>>> upscaler = pipeline("image-to-image", model="caidas/swin2SR-classical-sr-x2-64")
|
54 |
+
>>> img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
55 |
+
>>> img = img.resize((64, 64))
|
56 |
+
>>> upscaled_img = upscaler(img)
|
57 |
+
>>> img.size
|
58 |
+
(64, 64)
|
59 |
+
|
60 |
+
>>> upscaled_img.size
|
61 |
+
(144, 144)
|
62 |
+
```
|
63 |
+
|
64 |
+
This image to image pipeline can currently be loaded from [`pipeline`] using the following task identifier:
|
65 |
+
`"image-to-image"`.
|
66 |
+
|
67 |
+
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-to-image).
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, *args, **kwargs):
|
71 |
+
super().__init__(*args, **kwargs)
|
72 |
+
requires_backends(self, "vision")
|
73 |
+
self.check_model_type(MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES)
|
74 |
+
|
75 |
+
def _sanitize_parameters(self, **kwargs):
|
76 |
+
preprocess_params = {}
|
77 |
+
postprocess_params = {}
|
78 |
+
forward_params = {}
|
79 |
+
|
80 |
+
if "timeout" in kwargs:
|
81 |
+
preprocess_params["timeout"] = kwargs["timeout"]
|
82 |
+
if "head_mask" in kwargs:
|
83 |
+
forward_params["head_mask"] = kwargs["head_mask"]
|
84 |
+
|
85 |
+
return preprocess_params, forward_params, postprocess_params
|
86 |
+
|
87 |
+
def __call__(
|
88 |
+
self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs
|
89 |
+
) -> Union["Image.Image", List["Image.Image"]]:
|
90 |
+
"""
|
91 |
+
Transform the image(s) passed as inputs.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
|
95 |
+
The pipeline handles three types of images:
|
96 |
+
|
97 |
+
- A string containing a http link pointing to an image
|
98 |
+
- A string containing a local path to an image
|
99 |
+
- An image loaded in PIL directly
|
100 |
+
|
101 |
+
The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
|
102 |
+
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
|
103 |
+
images.
|
104 |
+
timeout (`float`, *optional*, defaults to None):
|
105 |
+
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and
|
106 |
+
the call may block forever.
|
107 |
+
|
108 |
+
Return:
|
109 |
+
An image (Image.Image) or a list of images (List["Image.Image"]) containing result(s). If the input is a
|
110 |
+
single image, the return will be also a single image, if the input is a list of several images, it will
|
111 |
+
return a list of transformed images.
|
112 |
+
"""
|
113 |
+
return super().__call__(images, **kwargs)
|
114 |
+
|
115 |
+
def _forward(self, model_inputs):
|
116 |
+
model_outputs = self.model(**model_inputs)
|
117 |
+
return model_outputs
|
118 |
+
|
119 |
+
def preprocess(self, image, timeout=None):
|
120 |
+
image = load_image(image, timeout=timeout)
|
121 |
+
inputs = self.image_processor(images=[image], return_tensors="pt")
|
122 |
+
return inputs
|
123 |
+
|
124 |
+
def postprocess(self, model_outputs):
|
125 |
+
images = []
|
126 |
+
if "reconstruction" in model_outputs.keys():
|
127 |
+
outputs = model_outputs.reconstruction
|
128 |
+
for output in outputs:
|
129 |
+
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
130 |
+
output = np.moveaxis(output, source=0, destination=-1)
|
131 |
+
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
132 |
+
images.append(Image.fromarray(output))
|
133 |
+
|
134 |
+
return images if len(images) > 1 else images[0]
|
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/mask_generation.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
from ..image_utils import load_image
|
5 |
+
from ..utils import (
|
6 |
+
add_end_docstrings,
|
7 |
+
is_torch_available,
|
8 |
+
logging,
|
9 |
+
requires_backends,
|
10 |
+
)
|
11 |
+
from .base import ChunkPipeline, build_pipeline_init_args
|
12 |
+
|
13 |
+
|
14 |
+
if is_torch_available():
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING_NAMES
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
@add_end_docstrings(
|
23 |
+
build_pipeline_init_args(has_image_processor=True),
|
24 |
+
r"""
|
25 |
+
points_per_batch (*optional*, int, default to 64):
|
26 |
+
Sets the number of points run simultaneously by the model. Higher numbers may be faster but use more GPU
|
27 |
+
memory.
|
28 |
+
output_bboxes_mask (`bool`, *optional*, default to `False`):
|
29 |
+
Whether or not to output the bounding box predictions.
|
30 |
+
output_rle_masks (`bool`, *optional*, default to `False`):
|
31 |
+
Whether or not to output the masks in `RLE` format""",
|
32 |
+
)
|
33 |
+
class MaskGenerationPipeline(ChunkPipeline):
|
34 |
+
"""
|
35 |
+
Automatic mask generation for images using `SamForMaskGeneration`. This pipeline predicts binary masks for an
|
36 |
+
image, given an image. It is a `ChunkPipeline` because you can seperate the points in a mini-batch in order to
|
37 |
+
avoid OOM issues. Use the `points_per_batch` argument to control the number of points that will be processed at the
|
38 |
+
same time. Default is `64`.
|
39 |
+
|
40 |
+
The pipeline works in 3 steps:
|
41 |
+
1. `preprocess`: A grid of 1024 points evenly separated is generated along with bounding boxes and point
|
42 |
+
labels.
|
43 |
+
For more details on how the points and bounding boxes are created, check the `_generate_crop_boxes`
|
44 |
+
function. The image is also preprocessed using the `image_processor`. This function `yields` a minibatch of
|
45 |
+
`points_per_batch`.
|
46 |
+
|
47 |
+
2. `forward`: feeds the outputs of `preprocess` to the model. The image embedding is computed only once.
|
48 |
+
Calls both `self.model.get_image_embeddings` and makes sure that the gradients are not computed, and the
|
49 |
+
tensors and models are on the same device.
|
50 |
+
|
51 |
+
3. `postprocess`: The most important part of the automatic mask generation happens here. Three steps
|
52 |
+
are induced:
|
53 |
+
- image_processor.postprocess_masks (run on each minibatch loop): takes in the raw output masks,
|
54 |
+
resizes them according
|
55 |
+
to the image size, and transforms there to binary masks.
|
56 |
+
- image_processor.filter_masks (on each minibatch loop): uses both `pred_iou_thresh` and
|
57 |
+
`stability_scores`. Also
|
58 |
+
applies a variety of filters based on non maximum suppression to remove bad masks.
|
59 |
+
- image_processor.postprocess_masks_for_amg applies the NSM on the mask to only keep relevant ones.
|
60 |
+
|
61 |
+
Example:
|
62 |
+
|
63 |
+
```python
|
64 |
+
>>> from transformers import pipeline
|
65 |
+
|
66 |
+
>>> generator = pipeline(model="facebook/sam-vit-base", task="mask-generation")
|
67 |
+
>>> outputs = generator(
|
68 |
+
... "http://images.cocodataset.org/val2017/000000039769.jpg",
|
69 |
+
... )
|
70 |
+
|
71 |
+
>>> outputs = generator(
|
72 |
+
... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", points_per_batch=128
|
73 |
+
... )
|
74 |
+
```
|
75 |
+
|
76 |
+
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
77 |
+
|
78 |
+
This segmentation pipeline can currently be loaded from [`pipeline`] using the following task identifier:
|
79 |
+
`"mask-generation"`.
|
80 |
+
|
81 |
+
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=mask-generation).
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(self, **kwargs):
|
85 |
+
super().__init__(**kwargs)
|
86 |
+
requires_backends(self, "vision")
|
87 |
+
requires_backends(self, "torch")
|
88 |
+
|
89 |
+
if self.framework != "pt":
|
90 |
+
raise ValueError(f"The {self.__class__} is only available in PyTorch.")
|
91 |
+
|
92 |
+
self.check_model_type(MODEL_FOR_MASK_GENERATION_MAPPING_NAMES)
|
93 |
+
|
94 |
+
def _sanitize_parameters(self, **kwargs):
|
95 |
+
preprocess_kwargs = {}
|
96 |
+
postprocess_kwargs = {}
|
97 |
+
forward_params = {}
|
98 |
+
# preprocess args
|
99 |
+
if "points_per_batch" in kwargs:
|
100 |
+
preprocess_kwargs["points_per_batch"] = kwargs["points_per_batch"]
|
101 |
+
if "points_per_crop" in kwargs:
|
102 |
+
preprocess_kwargs["points_per_crop"] = kwargs["points_per_crop"]
|
103 |
+
if "crops_n_layers" in kwargs:
|
104 |
+
preprocess_kwargs["crops_n_layers"] = kwargs["crops_n_layers"]
|
105 |
+
if "crop_overlap_ratio" in kwargs:
|
106 |
+
preprocess_kwargs["crop_overlap_ratio"] = kwargs["crop_overlap_ratio"]
|
107 |
+
if "crop_n_points_downscale_factor" in kwargs:
|
108 |
+
preprocess_kwargs["crop_n_points_downscale_factor"] = kwargs["crop_n_points_downscale_factor"]
|
109 |
+
if "timeout" in kwargs:
|
110 |
+
preprocess_kwargs["timeout"] = kwargs["timeout"]
|
111 |
+
# postprocess args
|
112 |
+
if "pred_iou_thresh" in kwargs:
|
113 |
+
forward_params["pred_iou_thresh"] = kwargs["pred_iou_thresh"]
|
114 |
+
if "stability_score_offset" in kwargs:
|
115 |
+
forward_params["stability_score_offset"] = kwargs["stability_score_offset"]
|
116 |
+
if "mask_threshold" in kwargs:
|
117 |
+
forward_params["mask_threshold"] = kwargs["mask_threshold"]
|
118 |
+
if "stability_score_thresh" in kwargs:
|
119 |
+
forward_params["stability_score_thresh"] = kwargs["stability_score_thresh"]
|
120 |
+
if "crops_nms_thresh" in kwargs:
|
121 |
+
postprocess_kwargs["crops_nms_thresh"] = kwargs["crops_nms_thresh"]
|
122 |
+
if "output_rle_mask" in kwargs:
|
123 |
+
postprocess_kwargs["output_rle_mask"] = kwargs["output_rle_mask"]
|
124 |
+
if "output_bboxes_mask" in kwargs:
|
125 |
+
postprocess_kwargs["output_bboxes_mask"] = kwargs["output_bboxes_mask"]
|
126 |
+
return preprocess_kwargs, forward_params, postprocess_kwargs
|
127 |
+
|
128 |
+
def __call__(self, image, *args, num_workers=None, batch_size=None, **kwargs):
|
129 |
+
"""
|
130 |
+
Generates binary segmentation masks
|
131 |
+
|
132 |
+
Args:
|
133 |
+
inputs (`np.ndarray` or `bytes` or `str` or `dict`):
|
134 |
+
Image or list of images.
|
135 |
+
mask_threshold (`float`, *optional*, defaults to 0.0):
|
136 |
+
Threshold to use when turning the predicted masks into binary values.
|
137 |
+
pred_iou_thresh (`float`, *optional*, defaults to 0.88):
|
138 |
+
A filtering threshold in `[0,1]` applied on the model's predicted mask quality.
|
139 |
+
stability_score_thresh (`float`, *optional*, defaults to 0.95):
|
140 |
+
A filtering threshold in `[0,1]`, using the stability of the mask under changes to the cutoff used to
|
141 |
+
binarize the model's mask predictions.
|
142 |
+
stability_score_offset (`int`, *optional*, defaults to 1):
|
143 |
+
The amount to shift the cutoff when calculated the stability score.
|
144 |
+
crops_nms_thresh (`float`, *optional*, defaults to 0.7):
|
145 |
+
The box IoU cutoff used by non-maximal suppression to filter duplicate masks.
|
146 |
+
crops_n_layers (`int`, *optional*, defaults to 0):
|
147 |
+
If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of
|
148 |
+
layers to run, where each layer has 2**i_layer number of image crops.
|
149 |
+
crop_overlap_ratio (`float`, *optional*, defaults to `512 / 1500`):
|
150 |
+
Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of
|
151 |
+
the image length. Later layers with more crops scale down this overlap.
|
152 |
+
crop_n_points_downscale_factor (`int`, *optional*, defaults to `1`):
|
153 |
+
The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
154 |
+
timeout (`float`, *optional*, defaults to None):
|
155 |
+
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
|
156 |
+
the call may block forever.
|
157 |
+
|
158 |
+
Return:
|
159 |
+
`Dict`: A dictionary with the following keys:
|
160 |
+
- **mask** (`PIL.Image`) -- A binary mask of the detected object as a PIL Image of shape `(width,
|
161 |
+
height)` of the original image. Returns a mask filled with zeros if no object is found.
|
162 |
+
- **score** (*optional* `float`) -- Optionally, when the model is capable of estimating a confidence of
|
163 |
+
the "object" described by the label and the mask.
|
164 |
+
|
165 |
+
"""
|
166 |
+
return super().__call__(image, *args, num_workers=num_workers, batch_size=batch_size, **kwargs)
|
167 |
+
|
168 |
+
def preprocess(
|
169 |
+
self,
|
170 |
+
image,
|
171 |
+
points_per_batch=64,
|
172 |
+
crops_n_layers: int = 0,
|
173 |
+
crop_overlap_ratio: float = 512 / 1500,
|
174 |
+
points_per_crop: Optional[int] = 32,
|
175 |
+
crop_n_points_downscale_factor: Optional[int] = 1,
|
176 |
+
timeout: Optional[float] = None,
|
177 |
+
):
|
178 |
+
image = load_image(image, timeout=timeout)
|
179 |
+
target_size = self.image_processor.size["longest_edge"]
|
180 |
+
crop_boxes, grid_points, cropped_images, input_labels = self.image_processor.generate_crop_boxes(
|
181 |
+
image, target_size, crops_n_layers, crop_overlap_ratio, points_per_crop, crop_n_points_downscale_factor
|
182 |
+
)
|
183 |
+
model_inputs = self.image_processor(images=cropped_images, return_tensors="pt")
|
184 |
+
|
185 |
+
with self.device_placement():
|
186 |
+
if self.framework == "pt":
|
187 |
+
inference_context = self.get_inference_context()
|
188 |
+
with inference_context():
|
189 |
+
model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device)
|
190 |
+
image_embeddings = self.model.get_image_embeddings(model_inputs.pop("pixel_values"))
|
191 |
+
model_inputs["image_embeddings"] = image_embeddings
|
192 |
+
|
193 |
+
n_points = grid_points.shape[1]
|
194 |
+
points_per_batch = points_per_batch if points_per_batch is not None else n_points
|
195 |
+
|
196 |
+
if points_per_batch <= 0:
|
197 |
+
raise ValueError(
|
198 |
+
"Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. "
|
199 |
+
"To return all points at once, set points_per_batch to None"
|
200 |
+
)
|
201 |
+
|
202 |
+
for i in range(0, n_points, points_per_batch):
|
203 |
+
batched_points = grid_points[:, i : i + points_per_batch, :, :]
|
204 |
+
labels = input_labels[:, i : i + points_per_batch]
|
205 |
+
is_last = i == n_points - points_per_batch
|
206 |
+
yield {
|
207 |
+
"input_points": batched_points,
|
208 |
+
"input_labels": labels,
|
209 |
+
"input_boxes": crop_boxes,
|
210 |
+
"is_last": is_last,
|
211 |
+
**model_inputs,
|
212 |
+
}
|
213 |
+
|
214 |
+
def _forward(
|
215 |
+
self,
|
216 |
+
model_inputs,
|
217 |
+
pred_iou_thresh=0.88,
|
218 |
+
stability_score_thresh=0.95,
|
219 |
+
mask_threshold=0,
|
220 |
+
stability_score_offset=1,
|
221 |
+
):
|
222 |
+
input_boxes = model_inputs.pop("input_boxes")
|
223 |
+
is_last = model_inputs.pop("is_last")
|
224 |
+
original_sizes = model_inputs.pop("original_sizes").tolist()
|
225 |
+
reshaped_input_sizes = model_inputs.pop("reshaped_input_sizes").tolist()
|
226 |
+
|
227 |
+
model_outputs = self.model(**model_inputs)
|
228 |
+
|
229 |
+
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
|
230 |
+
low_resolution_masks = model_outputs["pred_masks"]
|
231 |
+
masks = self.image_processor.post_process_masks(
|
232 |
+
low_resolution_masks, original_sizes, reshaped_input_sizes, mask_threshold, binarize=False
|
233 |
+
)
|
234 |
+
iou_scores = model_outputs["iou_scores"]
|
235 |
+
masks, iou_scores, boxes = self.image_processor.filter_masks(
|
236 |
+
masks[0],
|
237 |
+
iou_scores[0],
|
238 |
+
original_sizes[0],
|
239 |
+
input_boxes[0],
|
240 |
+
pred_iou_thresh,
|
241 |
+
stability_score_thresh,
|
242 |
+
mask_threshold,
|
243 |
+
stability_score_offset,
|
244 |
+
)
|
245 |
+
return {
|
246 |
+
"masks": masks,
|
247 |
+
"is_last": is_last,
|
248 |
+
"boxes": boxes,
|
249 |
+
"iou_scores": iou_scores,
|
250 |
+
}
|
251 |
+
|
252 |
+
def postprocess(
|
253 |
+
self,
|
254 |
+
model_outputs,
|
255 |
+
output_rle_mask=False,
|
256 |
+
output_bboxes_mask=False,
|
257 |
+
crops_nms_thresh=0.7,
|
258 |
+
):
|
259 |
+
all_scores = []
|
260 |
+
all_masks = []
|
261 |
+
all_boxes = []
|
262 |
+
for model_output in model_outputs:
|
263 |
+
all_scores.append(model_output.pop("iou_scores"))
|
264 |
+
all_masks.extend(model_output.pop("masks"))
|
265 |
+
all_boxes.append(model_output.pop("boxes"))
|
266 |
+
|
267 |
+
all_scores = torch.cat(all_scores)
|
268 |
+
all_boxes = torch.cat(all_boxes)
|
269 |
+
output_masks, iou_scores, rle_mask, bounding_boxes = self.image_processor.post_process_for_mask_generation(
|
270 |
+
all_masks, all_scores, all_boxes, crops_nms_thresh
|
271 |
+
)
|
272 |
+
|
273 |
+
extra = defaultdict(list)
|
274 |
+
for output in model_outputs:
|
275 |
+
for k, v in output.items():
|
276 |
+
extra[k].append(v)
|
277 |
+
|
278 |
+
optional = {}
|
279 |
+
if output_rle_mask:
|
280 |
+
optional["rle_mask"] = rle_mask
|
281 |
+
|
282 |
+
if output_bboxes_mask:
|
283 |
+
optional["bounding_boxes"] = bounding_boxes
|
284 |
+
|
285 |
+
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
|
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/object_detection.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Union
|
2 |
+
|
3 |
+
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
|
4 |
+
from .base import Pipeline, build_pipeline_init_args
|
5 |
+
|
6 |
+
|
7 |
+
if is_vision_available():
|
8 |
+
from ..image_utils import load_image
|
9 |
+
|
10 |
+
|
11 |
+
if is_torch_available():
|
12 |
+
import torch
|
13 |
+
|
14 |
+
from ..models.auto.modeling_auto import (
|
15 |
+
MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
|
16 |
+
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
|
17 |
+
)
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
Prediction = Dict[str, Any]
|
23 |
+
Predictions = List[Prediction]
|
24 |
+
|
25 |
+
|
26 |
+
@add_end_docstrings(build_pipeline_init_args(has_image_processor=True))
|
27 |
+
class ObjectDetectionPipeline(Pipeline):
|
28 |
+
"""
|
29 |
+
Object detection pipeline using any `AutoModelForObjectDetection`. This pipeline predicts bounding boxes of objects
|
30 |
+
and their classes.
|
31 |
+
|
32 |
+
Example:
|
33 |
+
|
34 |
+
```python
|
35 |
+
>>> from transformers import pipeline
|
36 |
+
|
37 |
+
>>> detector = pipeline(model="facebook/detr-resnet-50")
|
38 |
+
>>> detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
|
39 |
+
[{'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}, {'score': 0.999, 'label': 'bird', 'box': {'xmin': 398, 'ymin': 105, 'xmax': 767, 'ymax': 507}}]
|
40 |
+
|
41 |
+
>>> # x, y are expressed relative to the top left hand corner.
|
42 |
+
```
|
43 |
+
|
44 |
+
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
45 |
+
|
46 |
+
This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier:
|
47 |
+
`"object-detection"`.
|
48 |
+
|
49 |
+
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=object-detection).
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, *args, **kwargs):
|
53 |
+
super().__init__(*args, **kwargs)
|
54 |
+
|
55 |
+
if self.framework == "tf":
|
56 |
+
raise ValueError(f"The {self.__class__} is only available in PyTorch.")
|
57 |
+
|
58 |
+
requires_backends(self, "vision")
|
59 |
+
mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES.copy()
|
60 |
+
mapping.update(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES)
|
61 |
+
self.check_model_type(mapping)
|
62 |
+
|
63 |
+
def _sanitize_parameters(self, **kwargs):
|
64 |
+
preprocess_params = {}
|
65 |
+
if "timeout" in kwargs:
|
66 |
+
preprocess_params["timeout"] = kwargs["timeout"]
|
67 |
+
postprocess_kwargs = {}
|
68 |
+
if "threshold" in kwargs:
|
69 |
+
postprocess_kwargs["threshold"] = kwargs["threshold"]
|
70 |
+
return preprocess_params, {}, postprocess_kwargs
|
71 |
+
|
72 |
+
def __call__(self, *args, **kwargs) -> Union[Predictions, List[Prediction]]:
|
73 |
+
"""
|
74 |
+
Detect objects (bounding boxes & classes) in the image(s) passed as inputs.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
|
78 |
+
The pipeline handles three types of images:
|
79 |
+
|
80 |
+
- A string containing an HTTP(S) link pointing to an image
|
81 |
+
- A string containing a local path to an image
|
82 |
+
- An image loaded in PIL directly
|
83 |
+
|
84 |
+
The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the
|
85 |
+
same format: all as HTTP(S) links, all as local paths, or all as PIL images.
|
86 |
+
threshold (`float`, *optional*, defaults to 0.9):
|
87 |
+
The probability necessary to make a prediction.
|
88 |
+
timeout (`float`, *optional*, defaults to None):
|
89 |
+
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
|
90 |
+
the call may block forever.
|
91 |
+
|
92 |
+
Return:
|
93 |
+
A list of dictionaries or a list of list of dictionaries containing the result. If the input is a single
|
94 |
+
image, will return a list of dictionaries, if the input is a list of several images, will return a list of
|
95 |
+
list of dictionaries corresponding to each image.
|
96 |
+
|
97 |
+
The dictionaries contain the following keys:
|
98 |
+
|
99 |
+
- **label** (`str`) -- The class label identified by the model.
|
100 |
+
- **score** (`float`) -- The score attributed by the model for that label.
|
101 |
+
- **box** (`List[Dict[str, int]]`) -- The bounding box of detected object in image's original size.
|
102 |
+
"""
|
103 |
+
|
104 |
+
return super().__call__(*args, **kwargs)
|
105 |
+
|
106 |
+
def preprocess(self, image, timeout=None):
|
107 |
+
image = load_image(image, timeout=timeout)
|
108 |
+
target_size = torch.IntTensor([[image.height, image.width]])
|
109 |
+
inputs = self.image_processor(images=[image], return_tensors="pt")
|
110 |
+
if self.tokenizer is not None:
|
111 |
+
inputs = self.tokenizer(text=inputs["words"], boxes=inputs["boxes"], return_tensors="pt")
|
112 |
+
inputs["target_size"] = target_size
|
113 |
+
return inputs
|
114 |
+
|
115 |
+
def _forward(self, model_inputs):
|
116 |
+
target_size = model_inputs.pop("target_size")
|
117 |
+
outputs = self.model(**model_inputs)
|
118 |
+
model_outputs = outputs.__class__({"target_size": target_size, **outputs})
|
119 |
+
if self.tokenizer is not None:
|
120 |
+
model_outputs["bbox"] = model_inputs["bbox"]
|
121 |
+
return model_outputs
|
122 |
+
|
123 |
+
def postprocess(self, model_outputs, threshold=0.9):
|
124 |
+
target_size = model_outputs["target_size"]
|
125 |
+
if self.tokenizer is not None:
|
126 |
+
# This is a LayoutLMForTokenClassification variant.
|
127 |
+
# The OCR got the boxes and the model classified the words.
|
128 |
+
height, width = target_size[0].tolist()
|
129 |
+
|
130 |
+
def unnormalize(bbox):
|
131 |
+
return self._get_bounding_box(
|
132 |
+
torch.Tensor(
|
133 |
+
[
|
134 |
+
(width * bbox[0] / 1000),
|
135 |
+
(height * bbox[1] / 1000),
|
136 |
+
(width * bbox[2] / 1000),
|
137 |
+
(height * bbox[3] / 1000),
|
138 |
+
]
|
139 |
+
)
|
140 |
+
)
|
141 |
+
|
142 |
+
scores, classes = model_outputs["logits"].squeeze(0).softmax(dim=-1).max(dim=-1)
|
143 |
+
labels = [self.model.config.id2label[prediction] for prediction in classes.tolist()]
|
144 |
+
boxes = [unnormalize(bbox) for bbox in model_outputs["bbox"].squeeze(0)]
|
145 |
+
keys = ["score", "label", "box"]
|
146 |
+
annotation = [dict(zip(keys, vals)) for vals in zip(scores.tolist(), labels, boxes) if vals[0] > threshold]
|
147 |
+
else:
|
148 |
+
# This is a regular ForObjectDetectionModel
|
149 |
+
raw_annotations = self.image_processor.post_process_object_detection(model_outputs, threshold, target_size)
|
150 |
+
raw_annotation = raw_annotations[0]
|
151 |
+
scores = raw_annotation["scores"]
|
152 |
+
labels = raw_annotation["labels"]
|
153 |
+
boxes = raw_annotation["boxes"]
|
154 |
+
|
155 |
+
raw_annotation["scores"] = scores.tolist()
|
156 |
+
raw_annotation["labels"] = [self.model.config.id2label[label.item()] for label in labels]
|
157 |
+
raw_annotation["boxes"] = [self._get_bounding_box(box) for box in boxes]
|
158 |
+
|
159 |
+
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
|
160 |
+
keys = ["score", "label", "box"]
|
161 |
+
annotation = [
|
162 |
+
dict(zip(keys, vals))
|
163 |
+
for vals in zip(raw_annotation["scores"], raw_annotation["labels"], raw_annotation["boxes"])
|
164 |
+
]
|
165 |
+
|
166 |
+
return annotation
|
167 |
+
|
168 |
+
def _get_bounding_box(self, box: "torch.Tensor") -> Dict[str, int]:
|
169 |
+
"""
|
170 |
+
Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... }
|
171 |
+
|
172 |
+
Args:
|
173 |
+
box (`torch.Tensor`): Tensor containing the coordinates in corners format.
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
bbox (`Dict[str, int]`): Dict containing the coordinates in corners format.
|
177 |
+
"""
|
178 |
+
if self.framework != "pt":
|
179 |
+
raise ValueError("The ObjectDetectionPipeline is only available in PyTorch.")
|
180 |
+
xmin, ymin, xmax, ymax = box.int().tolist()
|
181 |
+
bbox = {
|
182 |
+
"xmin": xmin,
|
183 |
+
"ymin": ymin,
|
184 |
+
"xmax": xmax,
|
185 |
+
"ymax": ymax,
|
186 |
+
}
|
187 |
+
return bbox
|
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/text_to_audio.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.from typing import List, Union
|
14 |
+
from typing import List, Union
|
15 |
+
|
16 |
+
from ..utils import is_torch_available
|
17 |
+
from .base import Pipeline
|
18 |
+
|
19 |
+
|
20 |
+
if is_torch_available():
|
21 |
+
from ..models.auto.modeling_auto import MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING
|
22 |
+
from ..models.speecht5.modeling_speecht5 import SpeechT5HifiGan
|
23 |
+
|
24 |
+
DEFAULT_VOCODER_ID = "microsoft/speecht5_hifigan"
|
25 |
+
|
26 |
+
|
27 |
+
class TextToAudioPipeline(Pipeline):
|
28 |
+
"""
|
29 |
+
Text-to-audio generation pipeline using any `AutoModelForTextToWaveform` or `AutoModelForTextToSpectrogram`. This
|
30 |
+
pipeline generates an audio file from an input text and optional other conditional inputs.
|
31 |
+
|
32 |
+
Example:
|
33 |
+
|
34 |
+
```python
|
35 |
+
>>> from transformers import pipeline
|
36 |
+
|
37 |
+
>>> pipe = pipeline(model="suno/bark-small")
|
38 |
+
>>> output = pipe("Hey it's HuggingFace on the phone!")
|
39 |
+
|
40 |
+
>>> audio = output["audio"]
|
41 |
+
>>> sampling_rate = output["sampling_rate"]
|
42 |
+
```
|
43 |
+
|
44 |
+
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
45 |
+
|
46 |
+
<Tip>
|
47 |
+
|
48 |
+
You can specify parameters passed to the model by using [`TextToAudioPipeline.__call__.forward_params`] or
|
49 |
+
[`TextToAudioPipeline.__call__.generate_kwargs`].
|
50 |
+
|
51 |
+
Example:
|
52 |
+
|
53 |
+
```python
|
54 |
+
>>> from transformers import pipeline
|
55 |
+
|
56 |
+
>>> music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt")
|
57 |
+
|
58 |
+
>>> # diversify the music generation by adding randomness with a high temperature and set a maximum music length
|
59 |
+
>>> generate_kwargs = {
|
60 |
+
... "do_sample": True,
|
61 |
+
... "temperature": 0.7,
|
62 |
+
... "max_new_tokens": 35,
|
63 |
+
... }
|
64 |
+
|
65 |
+
>>> outputs = music_generator("Techno music with high melodic riffs", generate_kwargs=generate_kwargs)
|
66 |
+
```
|
67 |
+
|
68 |
+
</Tip>
|
69 |
+
|
70 |
+
This pipeline can currently be loaded from [`pipeline`] using the following task identifiers: `"text-to-speech"` or
|
71 |
+
`"text-to-audio"`.
|
72 |
+
|
73 |
+
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=text-to-speech).
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self, *args, vocoder=None, sampling_rate=None, **kwargs):
|
77 |
+
super().__init__(*args, **kwargs)
|
78 |
+
|
79 |
+
if self.framework == "tf":
|
80 |
+
raise ValueError("The TextToAudioPipeline is only available in PyTorch.")
|
81 |
+
|
82 |
+
self.vocoder = None
|
83 |
+
if self.model.__class__ in MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING.values():
|
84 |
+
self.vocoder = (
|
85 |
+
SpeechT5HifiGan.from_pretrained(DEFAULT_VOCODER_ID).to(self.model.device)
|
86 |
+
if vocoder is None
|
87 |
+
else vocoder
|
88 |
+
)
|
89 |
+
|
90 |
+
self.sampling_rate = sampling_rate
|
91 |
+
if self.vocoder is not None:
|
92 |
+
self.sampling_rate = self.vocoder.config.sampling_rate
|
93 |
+
|
94 |
+
if self.sampling_rate is None:
|
95 |
+
# get sampling_rate from config and generation config
|
96 |
+
|
97 |
+
config = self.model.config
|
98 |
+
gen_config = self.model.__dict__.get("generation_config", None)
|
99 |
+
if gen_config is not None:
|
100 |
+
config.update(gen_config.to_dict())
|
101 |
+
|
102 |
+
for sampling_rate_name in ["sample_rate", "sampling_rate"]:
|
103 |
+
sampling_rate = getattr(config, sampling_rate_name, None)
|
104 |
+
if sampling_rate is not None:
|
105 |
+
self.sampling_rate = sampling_rate
|
106 |
+
|
107 |
+
def preprocess(self, text, **kwargs):
|
108 |
+
if isinstance(text, str):
|
109 |
+
text = [text]
|
110 |
+
|
111 |
+
if self.model.config.model_type == "bark":
|
112 |
+
# bark Tokenizer is called with BarkProcessor which uses those kwargs
|
113 |
+
new_kwargs = {
|
114 |
+
"max_length": self.model.generation_config.semantic_config.get("max_input_semantic_length", 256),
|
115 |
+
"add_special_tokens": False,
|
116 |
+
"return_attention_mask": True,
|
117 |
+
"return_token_type_ids": False,
|
118 |
+
"padding": "max_length",
|
119 |
+
}
|
120 |
+
|
121 |
+
# priority is given to kwargs
|
122 |
+
new_kwargs.update(kwargs)
|
123 |
+
|
124 |
+
kwargs = new_kwargs
|
125 |
+
|
126 |
+
output = self.tokenizer(text, **kwargs, return_tensors="pt")
|
127 |
+
|
128 |
+
return output
|
129 |
+
|
130 |
+
def _forward(self, model_inputs, **kwargs):
|
131 |
+
# we expect some kwargs to be additional tensors which need to be on the right device
|
132 |
+
kwargs = self._ensure_tensor_on_device(kwargs, device=self.device)
|
133 |
+
forward_params = kwargs["forward_params"]
|
134 |
+
generate_kwargs = kwargs["generate_kwargs"]
|
135 |
+
|
136 |
+
if self.model.can_generate():
|
137 |
+
# we expect some kwargs to be additional tensors which need to be on the right device
|
138 |
+
generate_kwargs = self._ensure_tensor_on_device(generate_kwargs, device=self.device)
|
139 |
+
|
140 |
+
# generate_kwargs get priority over forward_params
|
141 |
+
forward_params.update(generate_kwargs)
|
142 |
+
|
143 |
+
output = self.model.generate(**model_inputs, **forward_params)
|
144 |
+
else:
|
145 |
+
if len(generate_kwargs):
|
146 |
+
raise ValueError(
|
147 |
+
f"""You're using the `TextToAudioPipeline` with a forward-only model, but `generate_kwargs` is non empty.
|
148 |
+
For forward-only TTA models, please use `forward_params` instead of of
|
149 |
+
`generate_kwargs`. For reference, here are the `generate_kwargs` used here:
|
150 |
+
{generate_kwargs.keys()}"""
|
151 |
+
)
|
152 |
+
output = self.model(**model_inputs, **forward_params)[0]
|
153 |
+
|
154 |
+
if self.vocoder is not None:
|
155 |
+
# in that case, the output is a spectrogram that needs to be converted into a waveform
|
156 |
+
output = self.vocoder(output)
|
157 |
+
|
158 |
+
return output
|
159 |
+
|
160 |
+
def __call__(self, text_inputs: Union[str, List[str]], **forward_params):
|
161 |
+
"""
|
162 |
+
Generates speech/audio from the inputs. See the [`TextToAudioPipeline`] documentation for more information.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
text_inputs (`str` or `List[str]`):
|
166 |
+
The text(s) to generate.
|
167 |
+
forward_params (`dict`, *optional*):
|
168 |
+
Parameters passed to the model generation/forward method. `forward_params` are always passed to the
|
169 |
+
underlying model.
|
170 |
+
generate_kwargs (`dict`, *optional*):
|
171 |
+
The dictionary of ad-hoc parametrization of `generate_config` to be used for the generation call. For a
|
172 |
+
complete overview of generate, check the [following
|
173 |
+
guide](https://huggingface.co/docs/transformers/en/main_classes/text_generation). `generate_kwargs` are
|
174 |
+
only passed to the underlying model if the latter is a generative model.
|
175 |
+
|
176 |
+
Return:
|
177 |
+
A `dict` or a list of `dict`: The dictionaries have two keys:
|
178 |
+
|
179 |
+
- **audio** (`np.ndarray` of shape `(nb_channels, audio_length)`) -- The generated audio waveform.
|
180 |
+
- **sampling_rate** (`int`) -- The sampling rate of the generated audio waveform.
|
181 |
+
"""
|
182 |
+
return super().__call__(text_inputs, **forward_params)
|
183 |
+
|
184 |
+
def _sanitize_parameters(
|
185 |
+
self,
|
186 |
+
preprocess_params=None,
|
187 |
+
forward_params=None,
|
188 |
+
generate_kwargs=None,
|
189 |
+
):
|
190 |
+
params = {
|
191 |
+
"forward_params": forward_params if forward_params else {},
|
192 |
+
"generate_kwargs": generate_kwargs if generate_kwargs else {},
|
193 |
+
}
|
194 |
+
|
195 |
+
if preprocess_params is None:
|
196 |
+
preprocess_params = {}
|
197 |
+
postprocess_params = {}
|
198 |
+
|
199 |
+
return preprocess_params, params, postprocess_params
|
200 |
+
|
201 |
+
def postprocess(self, waveform):
|
202 |
+
output_dict = {}
|
203 |
+
|
204 |
+
output_dict["audio"] = waveform.cpu().float().numpy()
|
205 |
+
output_dict["sampling_rate"] = self.sampling_rate
|
206 |
+
|
207 |
+
return output_dict
|
env-llmeval/lib/python3.10/site-packages/transformers/pipelines/visual_question_answering.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
|
3 |
+
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
|
4 |
+
from .base import Pipeline, build_pipeline_init_args
|
5 |
+
|
6 |
+
|
7 |
+
if is_vision_available():
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from ..image_utils import load_image
|
11 |
+
|
12 |
+
if is_torch_available():
|
13 |
+
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
@add_end_docstrings(build_pipeline_init_args(has_tokenizer=True, has_image_processor=True))
|
19 |
+
class VisualQuestionAnsweringPipeline(Pipeline):
|
20 |
+
"""
|
21 |
+
Visual Question Answering pipeline using a `AutoModelForVisualQuestionAnswering`. This pipeline is currently only
|
22 |
+
available in PyTorch.
|
23 |
+
|
24 |
+
Example:
|
25 |
+
|
26 |
+
```python
|
27 |
+
>>> from transformers import pipeline
|
28 |
+
|
29 |
+
>>> oracle = pipeline(model="dandelin/vilt-b32-finetuned-vqa")
|
30 |
+
>>> image_url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/lena.png"
|
31 |
+
>>> oracle(question="What is she wearing ?", image=image_url)
|
32 |
+
[{'score': 0.948, 'answer': 'hat'}, {'score': 0.009, 'answer': 'fedora'}, {'score': 0.003, 'answer': 'clothes'}, {'score': 0.003, 'answer': 'sun hat'}, {'score': 0.002, 'answer': 'nothing'}]
|
33 |
+
|
34 |
+
>>> oracle(question="What is she wearing ?", image=image_url, top_k=1)
|
35 |
+
[{'score': 0.948, 'answer': 'hat'}]
|
36 |
+
|
37 |
+
>>> oracle(question="Is this a person ?", image=image_url, top_k=1)
|
38 |
+
[{'score': 0.993, 'answer': 'yes'}]
|
39 |
+
|
40 |
+
>>> oracle(question="Is this a man ?", image=image_url, top_k=1)
|
41 |
+
[{'score': 0.996, 'answer': 'no'}]
|
42 |
+
```
|
43 |
+
|
44 |
+
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
45 |
+
|
46 |
+
This visual question answering pipeline can currently be loaded from [`pipeline`] using the following task
|
47 |
+
identifiers: `"visual-question-answering", "vqa"`.
|
48 |
+
|
49 |
+
The models that this pipeline can use are models that have been fine-tuned on a visual question answering task. See
|
50 |
+
the up-to-date list of available models on
|
51 |
+
[huggingface.co/models](https://huggingface.co/models?filter=visual-question-answering).
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, *args, **kwargs):
|
55 |
+
super().__init__(*args, **kwargs)
|
56 |
+
self.check_model_type(MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES)
|
57 |
+
|
58 |
+
def _sanitize_parameters(self, top_k=None, padding=None, truncation=None, timeout=None, **kwargs):
|
59 |
+
preprocess_params, postprocess_params = {}, {}
|
60 |
+
if padding is not None:
|
61 |
+
preprocess_params["padding"] = padding
|
62 |
+
if truncation is not None:
|
63 |
+
preprocess_params["truncation"] = truncation
|
64 |
+
if timeout is not None:
|
65 |
+
preprocess_params["timeout"] = timeout
|
66 |
+
if top_k is not None:
|
67 |
+
postprocess_params["top_k"] = top_k
|
68 |
+
return preprocess_params, {}, postprocess_params
|
69 |
+
|
70 |
+
def __call__(self, image: Union["Image.Image", str], question: str = None, **kwargs):
|
71 |
+
r"""
|
72 |
+
Answers open-ended questions about images. The pipeline accepts several types of inputs which are detailed
|
73 |
+
below:
|
74 |
+
|
75 |
+
- `pipeline(image=image, question=question)`
|
76 |
+
- `pipeline({"image": image, "question": question})`
|
77 |
+
- `pipeline([{"image": image, "question": question}])`
|
78 |
+
- `pipeline([{"image": image, "question": question}, {"image": image, "question": question}])`
|
79 |
+
|
80 |
+
Args:
|
81 |
+
image (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
|
82 |
+
The pipeline handles three types of images:
|
83 |
+
|
84 |
+
- A string containing a http link pointing to an image
|
85 |
+
- A string containing a local path to an image
|
86 |
+
- An image loaded in PIL directly
|
87 |
+
|
88 |
+
The pipeline accepts either a single image or a batch of images. If given a single image, it can be
|
89 |
+
broadcasted to multiple questions.
|
90 |
+
question (`str`, `List[str]`):
|
91 |
+
The question(s) asked. If given a single question, it can be broadcasted to multiple images.
|
92 |
+
top_k (`int`, *optional*, defaults to 5):
|
93 |
+
The number of top labels that will be returned by the pipeline. If the provided number is higher than
|
94 |
+
the number of labels available in the model configuration, it will default to the number of labels.
|
95 |
+
timeout (`float`, *optional*, defaults to None):
|
96 |
+
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
|
97 |
+
the call may block forever.
|
98 |
+
Return:
|
99 |
+
A dictionary or a list of dictionaries containing the result. The dictionaries contain the following keys:
|
100 |
+
|
101 |
+
- **label** (`str`) -- The label identified by the model.
|
102 |
+
- **score** (`int`) -- The score attributed by the model for that label.
|
103 |
+
"""
|
104 |
+
if isinstance(image, (Image.Image, str)) and isinstance(question, str):
|
105 |
+
inputs = {"image": image, "question": question}
|
106 |
+
else:
|
107 |
+
"""
|
108 |
+
Supports the following format
|
109 |
+
- {"image": image, "question": question}
|
110 |
+
- [{"image": image, "question": question}]
|
111 |
+
- Generator and datasets
|
112 |
+
"""
|
113 |
+
inputs = image
|
114 |
+
results = super().__call__(inputs, **kwargs)
|
115 |
+
return results
|
116 |
+
|
117 |
+
def preprocess(self, inputs, padding=False, truncation=False, timeout=None):
|
118 |
+
image = load_image(inputs["image"], timeout=timeout)
|
119 |
+
model_inputs = self.tokenizer(
|
120 |
+
inputs["question"], return_tensors=self.framework, padding=padding, truncation=truncation
|
121 |
+
)
|
122 |
+
image_features = self.image_processor(images=image, return_tensors=self.framework)
|
123 |
+
model_inputs.update(image_features)
|
124 |
+
return model_inputs
|
125 |
+
|
126 |
+
def _forward(self, model_inputs, **generate_kwargs):
|
127 |
+
if self.model.can_generate():
|
128 |
+
model_outputs = self.model.generate(**model_inputs, **generate_kwargs)
|
129 |
+
else:
|
130 |
+
model_outputs = self.model(**model_inputs)
|
131 |
+
return model_outputs
|
132 |
+
|
133 |
+
def postprocess(self, model_outputs, top_k=5):
|
134 |
+
if self.model.can_generate():
|
135 |
+
return [
|
136 |
+
{"answer": self.tokenizer.decode(output_ids, skip_special_tokens=True).strip()}
|
137 |
+
for output_ids in model_outputs
|
138 |
+
]
|
139 |
+
else:
|
140 |
+
if top_k > self.model.config.num_labels:
|
141 |
+
top_k = self.model.config.num_labels
|
142 |
+
|
143 |
+
if self.framework == "pt":
|
144 |
+
probs = model_outputs.logits.sigmoid()[0]
|
145 |
+
scores, ids = probs.topk(top_k)
|
146 |
+
else:
|
147 |
+
raise ValueError(f"Unsupported framework: {self.framework}")
|
148 |
+
|
149 |
+
scores = scores.tolist()
|
150 |
+
ids = ids.tolist()
|
151 |
+
return [{"score": score, "answer": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)]
|