Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py34_np19.pkl.bz2 +3 -0
- env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py34_np19.pkl.xz +3 -0
- env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py35_np19.pkl.xz +3 -0
- env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py33_np18.pkl +3 -0
- env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py33_np18.pkl_02.npy +3 -0
- env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py33_np18.pkl_04.npy +3 -0
- env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py34_np19.pkl_03.npy +3 -0
- env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py35_np19.pkl_02.npy +3 -0
- env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py35_np19.pkl_04.npy +3 -0
- env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_accumulationbounds.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_euler.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_finite_diff.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_singularities.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_util.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/test_euler.py +74 -0
- env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/test_singularities.py +103 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__init__.py +43 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/coset_table.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/fp_groups.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/free_groups.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/galois.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/generators.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/graycode.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/group_constructs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/group_numbers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/homomorphisms.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/named_groups.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/partitions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/pc_groups.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/perm_groups.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/permutations.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/polyhedron.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/prufer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/rewritingsystem.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/rewritingsystem_fsm.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/schur_number.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/subsets.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/tensor_can.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/testutil.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/util.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/coset_table.py +1255 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/fp_groups.py +1348 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/free_groups.py +1354 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/galois.py +611 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/generators.py +302 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/group_constructs.py +61 -0
- env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/group_numbers.py +118 -0
env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py34_np19.pkl.bz2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f2af67ea667c1f5315ddcab06bfa447005863c1c0fd88bb7e04a0b8acb9a54b
|
3 |
+
size 1021
|
env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py34_np19.pkl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04d7e68907e978b56975f9309492b8849e42a60974beb795c9e93273977f3cd3
|
3 |
+
size 752
|
env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py35_np19.pkl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02cf30d8b196c303662b2dd035d2a58caeb762ae3a82345ffd1274961e7f5aa0
|
3 |
+
size 752
|
env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py33_np18.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3d4cbc690d3ce9e5323a714ea546f32c01ab1710285c420184f6cdf4b26fc25
|
3 |
+
size 691
|
env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py33_np18.pkl_02.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c1cf36cb781fbcc21b953bb0a0b45df092da0eae0e765882e5963ccd70105b1
|
3 |
+
size 120
|
env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py33_np18.pkl_04.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ecbe244294ba93e08479b16c1b9a9411e3569ff660ed0459dca1d241381df05
|
3 |
+
size 104
|
env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py34_np19.pkl_03.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ede9a64a52b25d7db30950956c978ec0b3932b7d14acd5abc63216e64babde7
|
3 |
+
size 307
|
env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py35_np19.pkl_02.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c1cf36cb781fbcc21b953bb0a0b45df092da0eae0e765882e5963ccd70105b1
|
3 |
+
size 120
|
env-llmeval/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.2_pickle_py35_np19.pkl_04.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ecbe244294ba93e08479b16c1b9a9411e3569ff660ed0459dca1d241381df05
|
3 |
+
size 104
|
env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_accumulationbounds.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_euler.cpython-310.pyc
ADDED
Binary file (3.83 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_finite_diff.cpython-310.pyc
ADDED
Binary file (7.47 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_singularities.cpython-310.pyc
ADDED
Binary file (4.69 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_util.cpython-310.pyc
ADDED
Binary file (15.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/test_euler.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.function import (Derivative as D, Function)
|
2 |
+
from sympy.core.relational import Eq
|
3 |
+
from sympy.core.symbol import (Symbol, symbols)
|
4 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
5 |
+
from sympy.testing.pytest import raises
|
6 |
+
from sympy.calculus.euler import euler_equations as euler
|
7 |
+
|
8 |
+
|
9 |
+
def test_euler_interface():
|
10 |
+
x = Function('x')
|
11 |
+
y = Symbol('y')
|
12 |
+
t = Symbol('t')
|
13 |
+
raises(TypeError, lambda: euler())
|
14 |
+
raises(TypeError, lambda: euler(D(x(t), t)*y(t), [x(t), y]))
|
15 |
+
raises(ValueError, lambda: euler(D(x(t), t)*x(y), [x(t), x(y)]))
|
16 |
+
raises(TypeError, lambda: euler(D(x(t), t)**2, x(0)))
|
17 |
+
raises(TypeError, lambda: euler(D(x(t), t)*y(t), [t]))
|
18 |
+
assert euler(D(x(t), t)**2/2, {x(t)}) == [Eq(-D(x(t), t, t), 0)]
|
19 |
+
assert euler(D(x(t), t)**2/2, x(t), {t}) == [Eq(-D(x(t), t, t), 0)]
|
20 |
+
|
21 |
+
|
22 |
+
def test_euler_pendulum():
|
23 |
+
x = Function('x')
|
24 |
+
t = Symbol('t')
|
25 |
+
L = D(x(t), t)**2/2 + cos(x(t))
|
26 |
+
assert euler(L, x(t), t) == [Eq(-sin(x(t)) - D(x(t), t, t), 0)]
|
27 |
+
|
28 |
+
|
29 |
+
def test_euler_henonheiles():
|
30 |
+
x = Function('x')
|
31 |
+
y = Function('y')
|
32 |
+
t = Symbol('t')
|
33 |
+
L = sum(D(z(t), t)**2/2 - z(t)**2/2 for z in [x, y])
|
34 |
+
L += -x(t)**2*y(t) + y(t)**3/3
|
35 |
+
assert euler(L, [x(t), y(t)], t) == [Eq(-2*x(t)*y(t) - x(t) -
|
36 |
+
D(x(t), t, t), 0),
|
37 |
+
Eq(-x(t)**2 + y(t)**2 -
|
38 |
+
y(t) - D(y(t), t, t), 0)]
|
39 |
+
|
40 |
+
|
41 |
+
def test_euler_sineg():
|
42 |
+
psi = Function('psi')
|
43 |
+
t = Symbol('t')
|
44 |
+
x = Symbol('x')
|
45 |
+
L = D(psi(t, x), t)**2/2 - D(psi(t, x), x)**2/2 + cos(psi(t, x))
|
46 |
+
assert euler(L, psi(t, x), [t, x]) == [Eq(-sin(psi(t, x)) -
|
47 |
+
D(psi(t, x), t, t) +
|
48 |
+
D(psi(t, x), x, x), 0)]
|
49 |
+
|
50 |
+
|
51 |
+
def test_euler_high_order():
|
52 |
+
# an example from hep-th/0309038
|
53 |
+
m = Symbol('m')
|
54 |
+
k = Symbol('k')
|
55 |
+
x = Function('x')
|
56 |
+
y = Function('y')
|
57 |
+
t = Symbol('t')
|
58 |
+
L = (m*D(x(t), t)**2/2 + m*D(y(t), t)**2/2 -
|
59 |
+
k*D(x(t), t)*D(y(t), t, t) + k*D(y(t), t)*D(x(t), t, t))
|
60 |
+
assert euler(L, [x(t), y(t)]) == [Eq(2*k*D(y(t), t, t, t) -
|
61 |
+
m*D(x(t), t, t), 0),
|
62 |
+
Eq(-2*k*D(x(t), t, t, t) -
|
63 |
+
m*D(y(t), t, t), 0)]
|
64 |
+
|
65 |
+
w = Symbol('w')
|
66 |
+
L = D(x(t, w), t, w)**2/2
|
67 |
+
assert euler(L) == [Eq(D(x(t, w), t, t, w, w), 0)]
|
68 |
+
|
69 |
+
def test_issue_18653():
|
70 |
+
x, y, z = symbols("x y z")
|
71 |
+
f, g, h = symbols("f g h", cls=Function, args=(x, y))
|
72 |
+
f, g, h = f(), g(), h()
|
73 |
+
expr2 = f.diff(x)*h.diff(z)
|
74 |
+
assert euler(expr2, (f,), (x, y)) == []
|
env-llmeval/lib/python3.10/site-packages/sympy/calculus/tests/test_singularities.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (I, Rational, oo)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.calculus.singularities import (
|
7 |
+
singularities,
|
8 |
+
is_increasing,
|
9 |
+
is_strictly_increasing,
|
10 |
+
is_decreasing,
|
11 |
+
is_strictly_decreasing,
|
12 |
+
is_monotonic
|
13 |
+
)
|
14 |
+
from sympy.sets import Interval, FiniteSet
|
15 |
+
from sympy.testing.pytest import raises
|
16 |
+
from sympy.abc import x, y
|
17 |
+
|
18 |
+
|
19 |
+
def test_singularities():
|
20 |
+
x = Symbol('x')
|
21 |
+
assert singularities(x**2, x) == S.EmptySet
|
22 |
+
assert singularities(x/(x**2 + 3*x + 2), x) == FiniteSet(-2, -1)
|
23 |
+
assert singularities(1/(x**2 + 1), x) == FiniteSet(I, -I)
|
24 |
+
assert singularities(x/(x**3 + 1), x) == \
|
25 |
+
FiniteSet(-1, (1 - sqrt(3) * I) / 2, (1 + sqrt(3) * I) / 2)
|
26 |
+
assert singularities(1/(y**2 + 2*I*y + 1), y) == \
|
27 |
+
FiniteSet(-I + sqrt(2)*I, -I - sqrt(2)*I)
|
28 |
+
|
29 |
+
x = Symbol('x', real=True)
|
30 |
+
assert singularities(1/(x**2 + 1), x) == S.EmptySet
|
31 |
+
assert singularities(exp(1/x), x, S.Reals) == FiniteSet(0)
|
32 |
+
assert singularities(exp(1/x), x, Interval(1, 2)) == S.EmptySet
|
33 |
+
assert singularities(log((x - 2)**2), x, Interval(1, 3)) == FiniteSet(2)
|
34 |
+
raises(NotImplementedError, lambda: singularities(x**-oo, x))
|
35 |
+
|
36 |
+
|
37 |
+
def test_is_increasing():
|
38 |
+
"""Test whether is_increasing returns correct value."""
|
39 |
+
a = Symbol('a', negative=True)
|
40 |
+
|
41 |
+
assert is_increasing(x**3 - 3*x**2 + 4*x, S.Reals)
|
42 |
+
assert is_increasing(-x**2, Interval(-oo, 0))
|
43 |
+
assert not is_increasing(-x**2, Interval(0, oo))
|
44 |
+
assert not is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3))
|
45 |
+
assert is_increasing(x**2 + y, Interval(1, oo), x)
|
46 |
+
assert is_increasing(-x**2*a, Interval(1, oo), x)
|
47 |
+
assert is_increasing(1)
|
48 |
+
|
49 |
+
assert is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3)) is False
|
50 |
+
|
51 |
+
|
52 |
+
def test_is_strictly_increasing():
|
53 |
+
"""Test whether is_strictly_increasing returns correct value."""
|
54 |
+
assert is_strictly_increasing(
|
55 |
+
4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
|
56 |
+
assert is_strictly_increasing(
|
57 |
+
4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
|
58 |
+
assert not is_strictly_increasing(
|
59 |
+
4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
|
60 |
+
assert not is_strictly_increasing(-x**2, Interval(0, oo))
|
61 |
+
assert not is_strictly_decreasing(1)
|
62 |
+
|
63 |
+
assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) is False
|
64 |
+
|
65 |
+
|
66 |
+
def test_is_decreasing():
|
67 |
+
"""Test whether is_decreasing returns correct value."""
|
68 |
+
b = Symbol('b', positive=True)
|
69 |
+
|
70 |
+
assert is_decreasing(1/(x**2 - 3*x), Interval.open(Rational(3,2), 3))
|
71 |
+
assert is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
|
72 |
+
assert is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
|
73 |
+
assert not is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, Rational(3, 2)))
|
74 |
+
assert not is_decreasing(-x**2, Interval(-oo, 0))
|
75 |
+
assert not is_decreasing(-x**2*b, Interval(-oo, 0), x)
|
76 |
+
|
77 |
+
|
78 |
+
def test_is_strictly_decreasing():
|
79 |
+
"""Test whether is_strictly_decreasing returns correct value."""
|
80 |
+
assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
|
81 |
+
assert not is_strictly_decreasing(
|
82 |
+
1/(x**2 - 3*x), Interval.Ropen(-oo, Rational(3, 2)))
|
83 |
+
assert not is_strictly_decreasing(-x**2, Interval(-oo, 0))
|
84 |
+
assert not is_strictly_decreasing(1)
|
85 |
+
assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.open(Rational(3,2), 3))
|
86 |
+
assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
|
87 |
+
|
88 |
+
|
89 |
+
def test_is_monotonic():
|
90 |
+
"""Test whether is_monotonic returns correct value."""
|
91 |
+
assert is_monotonic(1/(x**2 - 3*x), Interval.open(Rational(3,2), 3))
|
92 |
+
assert is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
|
93 |
+
assert is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
|
94 |
+
assert is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
|
95 |
+
assert not is_monotonic(-x**2, S.Reals)
|
96 |
+
assert is_monotonic(x**2 + y + 1, Interval(1, 2), x)
|
97 |
+
raises(NotImplementedError, lambda: is_monotonic(x**2 + y + 1))
|
98 |
+
|
99 |
+
|
100 |
+
def test_issue_23401():
|
101 |
+
x = Symbol('x')
|
102 |
+
expr = (x + 1)/(-1.0e-3*x**2 + 0.1*x + 0.1)
|
103 |
+
assert is_increasing(expr, Interval(1,2), x)
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__init__.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.permutations import Permutation, Cycle
|
2 |
+
from sympy.combinatorics.prufer import Prufer
|
3 |
+
from sympy.combinatorics.generators import cyclic, alternating, symmetric, dihedral
|
4 |
+
from sympy.combinatorics.subsets import Subset
|
5 |
+
from sympy.combinatorics.partitions import (Partition, IntegerPartition,
|
6 |
+
RGS_rank, RGS_unrank, RGS_enum)
|
7 |
+
from sympy.combinatorics.polyhedron import (Polyhedron, tetrahedron, cube,
|
8 |
+
octahedron, dodecahedron, icosahedron)
|
9 |
+
from sympy.combinatorics.perm_groups import PermutationGroup, Coset, SymmetricPermutationGroup
|
10 |
+
from sympy.combinatorics.group_constructs import DirectProduct
|
11 |
+
from sympy.combinatorics.graycode import GrayCode
|
12 |
+
from sympy.combinatorics.named_groups import (SymmetricGroup, DihedralGroup,
|
13 |
+
CyclicGroup, AlternatingGroup, AbelianGroup, RubikGroup)
|
14 |
+
from sympy.combinatorics.pc_groups import PolycyclicGroup, Collector
|
15 |
+
from sympy.combinatorics.free_groups import free_group
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
'Permutation', 'Cycle',
|
19 |
+
|
20 |
+
'Prufer',
|
21 |
+
|
22 |
+
'cyclic', 'alternating', 'symmetric', 'dihedral',
|
23 |
+
|
24 |
+
'Subset',
|
25 |
+
|
26 |
+
'Partition', 'IntegerPartition', 'RGS_rank', 'RGS_unrank', 'RGS_enum',
|
27 |
+
|
28 |
+
'Polyhedron', 'tetrahedron', 'cube', 'octahedron', 'dodecahedron',
|
29 |
+
'icosahedron',
|
30 |
+
|
31 |
+
'PermutationGroup', 'Coset', 'SymmetricPermutationGroup',
|
32 |
+
|
33 |
+
'DirectProduct',
|
34 |
+
|
35 |
+
'GrayCode',
|
36 |
+
|
37 |
+
'SymmetricGroup', 'DihedralGroup', 'CyclicGroup', 'AlternatingGroup',
|
38 |
+
'AbelianGroup', 'RubikGroup',
|
39 |
+
|
40 |
+
'PolycyclicGroup', 'Collector',
|
41 |
+
|
42 |
+
'free_group',
|
43 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.61 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/coset_table.cpython-310.pyc
ADDED
Binary file (34.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/fp_groups.cpython-310.pyc
ADDED
Binary file (38.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/free_groups.cpython-310.pyc
ADDED
Binary file (38.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/galois.cpython-310.pyc
ADDED
Binary file (17.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/generators.cpython-310.pyc
ADDED
Binary file (8.28 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/graycode.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/group_constructs.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/group_numbers.cpython-310.pyc
ADDED
Binary file (3.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/homomorphisms.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/named_groups.cpython-310.pyc
ADDED
Binary file (8.14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/partitions.cpython-310.pyc
ADDED
Binary file (21.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/pc_groups.cpython-310.pyc
ADDED
Binary file (20 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/perm_groups.cpython-310.pyc
ADDED
Binary file (153 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/permutations.cpython-310.pyc
ADDED
Binary file (89.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/polyhedron.cpython-310.pyc
ADDED
Binary file (33.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/prufer.cpython-310.pyc
ADDED
Binary file (12.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/rewritingsystem.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/rewritingsystem_fsm.cpython-310.pyc
ADDED
Binary file (3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/schur_number.cpython-310.pyc
ADDED
Binary file (5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/subsets.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/tensor_can.cpython-310.pyc
ADDED
Binary file (37.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/testutil.cpython-310.pyc
ADDED
Binary file (9.76 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/util.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/coset_table.py
ADDED
@@ -0,0 +1,1255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.free_groups import free_group
|
2 |
+
from sympy.printing.defaults import DefaultPrinting
|
3 |
+
|
4 |
+
from itertools import chain, product
|
5 |
+
from bisect import bisect_left
|
6 |
+
|
7 |
+
|
8 |
+
###############################################################################
|
9 |
+
# COSET TABLE #
|
10 |
+
###############################################################################
|
11 |
+
|
12 |
+
class CosetTable(DefaultPrinting):
|
13 |
+
# coset_table: Mathematically a coset table
|
14 |
+
# represented using a list of lists
|
15 |
+
# alpha: Mathematically a coset (precisely, a live coset)
|
16 |
+
# represented by an integer between i with 1 <= i <= n
|
17 |
+
# alpha in c
|
18 |
+
# x: Mathematically an element of "A" (set of generators and
|
19 |
+
# their inverses), represented using "FpGroupElement"
|
20 |
+
# fp_grp: Finitely Presented Group with < X|R > as presentation.
|
21 |
+
# H: subgroup of fp_grp.
|
22 |
+
# NOTE: We start with H as being only a list of words in generators
|
23 |
+
# of "fp_grp". Since `.subgroup` method has not been implemented.
|
24 |
+
|
25 |
+
r"""
|
26 |
+
|
27 |
+
Properties
|
28 |
+
==========
|
29 |
+
|
30 |
+
[1] `0 \in \Omega` and `\tau(1) = \epsilon`
|
31 |
+
[2] `\alpha^x = \beta \Leftrightarrow \beta^{x^{-1}} = \alpha`
|
32 |
+
[3] If `\alpha^x = \beta`, then `H \tau(\alpha)x = H \tau(\beta)`
|
33 |
+
[4] `\forall \alpha \in \Omega, 1^{\tau(\alpha)} = \alpha`
|
34 |
+
|
35 |
+
References
|
36 |
+
==========
|
37 |
+
|
38 |
+
.. [1] Holt, D., Eick, B., O'Brien, E.
|
39 |
+
"Handbook of Computational Group Theory"
|
40 |
+
|
41 |
+
.. [2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
|
42 |
+
Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490.
|
43 |
+
"Implementation and Analysis of the Todd-Coxeter Algorithm"
|
44 |
+
|
45 |
+
"""
|
46 |
+
# default limit for the number of cosets allowed in a
|
47 |
+
# coset enumeration.
|
48 |
+
coset_table_max_limit = 4096000
|
49 |
+
# limit for the current instance
|
50 |
+
coset_table_limit = None
|
51 |
+
# maximum size of deduction stack above or equal to
|
52 |
+
# which it is emptied
|
53 |
+
max_stack_size = 100
|
54 |
+
|
55 |
+
def __init__(self, fp_grp, subgroup, max_cosets=None):
|
56 |
+
if not max_cosets:
|
57 |
+
max_cosets = CosetTable.coset_table_max_limit
|
58 |
+
self.fp_group = fp_grp
|
59 |
+
self.subgroup = subgroup
|
60 |
+
self.coset_table_limit = max_cosets
|
61 |
+
# "p" is setup independent of Omega and n
|
62 |
+
self.p = [0]
|
63 |
+
# a list of the form `[gen_1, gen_1^{-1}, ... , gen_k, gen_k^{-1}]`
|
64 |
+
self.A = list(chain.from_iterable((gen, gen**-1) \
|
65 |
+
for gen in self.fp_group.generators))
|
66 |
+
#P[alpha, x] Only defined when alpha^x is defined.
|
67 |
+
self.P = [[None]*len(self.A)]
|
68 |
+
# the mathematical coset table which is a list of lists
|
69 |
+
self.table = [[None]*len(self.A)]
|
70 |
+
self.A_dict = {x: self.A.index(x) for x in self.A}
|
71 |
+
self.A_dict_inv = {}
|
72 |
+
for x, index in self.A_dict.items():
|
73 |
+
if index % 2 == 0:
|
74 |
+
self.A_dict_inv[x] = self.A_dict[x] + 1
|
75 |
+
else:
|
76 |
+
self.A_dict_inv[x] = self.A_dict[x] - 1
|
77 |
+
# used in the coset-table based method of coset enumeration. Each of
|
78 |
+
# the element is called a "deduction" which is the form (alpha, x) whenever
|
79 |
+
# a value is assigned to alpha^x during a definition or "deduction process"
|
80 |
+
self.deduction_stack = []
|
81 |
+
# Attributes for modified methods.
|
82 |
+
H = self.subgroup
|
83 |
+
self._grp = free_group(', ' .join(["a_%d" % i for i in range(len(H))]))[0]
|
84 |
+
self.P = [[None]*len(self.A)]
|
85 |
+
self.p_p = {}
|
86 |
+
|
87 |
+
@property
|
88 |
+
def omega(self):
|
89 |
+
"""Set of live cosets. """
|
90 |
+
return [coset for coset in range(len(self.p)) if self.p[coset] == coset]
|
91 |
+
|
92 |
+
def copy(self):
|
93 |
+
"""
|
94 |
+
Return a shallow copy of Coset Table instance ``self``.
|
95 |
+
|
96 |
+
"""
|
97 |
+
self_copy = self.__class__(self.fp_group, self.subgroup)
|
98 |
+
self_copy.table = [list(perm_rep) for perm_rep in self.table]
|
99 |
+
self_copy.p = list(self.p)
|
100 |
+
self_copy.deduction_stack = list(self.deduction_stack)
|
101 |
+
return self_copy
|
102 |
+
|
103 |
+
def __str__(self):
|
104 |
+
return "Coset Table on %s with %s as subgroup generators" \
|
105 |
+
% (self.fp_group, self.subgroup)
|
106 |
+
|
107 |
+
__repr__ = __str__
|
108 |
+
|
109 |
+
@property
|
110 |
+
def n(self):
|
111 |
+
"""The number `n` represents the length of the sublist containing the
|
112 |
+
live cosets.
|
113 |
+
|
114 |
+
"""
|
115 |
+
if not self.table:
|
116 |
+
return 0
|
117 |
+
return max(self.omega) + 1
|
118 |
+
|
119 |
+
# Pg. 152 [1]
|
120 |
+
def is_complete(self):
|
121 |
+
r"""
|
122 |
+
The coset table is called complete if it has no undefined entries
|
123 |
+
on the live cosets; that is, `\alpha^x` is defined for all
|
124 |
+
`\alpha \in \Omega` and `x \in A`.
|
125 |
+
|
126 |
+
"""
|
127 |
+
return not any(None in self.table[coset] for coset in self.omega)
|
128 |
+
|
129 |
+
# Pg. 153 [1]
|
130 |
+
def define(self, alpha, x, modified=False):
|
131 |
+
r"""
|
132 |
+
This routine is used in the relator-based strategy of Todd-Coxeter
|
133 |
+
algorithm if some `\alpha^x` is undefined. We check whether there is
|
134 |
+
space available for defining a new coset. If there is enough space
|
135 |
+
then we remedy this by adjoining a new coset `\beta` to `\Omega`
|
136 |
+
(i.e to set of live cosets) and put that equal to `\alpha^x`, then
|
137 |
+
make an assignment satisfying Property[1]. If there is not enough space
|
138 |
+
then we halt the Coset Table creation. The maximum amount of space that
|
139 |
+
can be used by Coset Table can be manipulated using the class variable
|
140 |
+
``CosetTable.coset_table_max_limit``.
|
141 |
+
|
142 |
+
See Also
|
143 |
+
========
|
144 |
+
|
145 |
+
define_c
|
146 |
+
|
147 |
+
"""
|
148 |
+
A = self.A
|
149 |
+
table = self.table
|
150 |
+
len_table = len(table)
|
151 |
+
if len_table >= self.coset_table_limit:
|
152 |
+
# abort the further generation of cosets
|
153 |
+
raise ValueError("the coset enumeration has defined more than "
|
154 |
+
"%s cosets. Try with a greater value max number of cosets "
|
155 |
+
% self.coset_table_limit)
|
156 |
+
table.append([None]*len(A))
|
157 |
+
self.P.append([None]*len(self.A))
|
158 |
+
# beta is the new coset generated
|
159 |
+
beta = len_table
|
160 |
+
self.p.append(beta)
|
161 |
+
table[alpha][self.A_dict[x]] = beta
|
162 |
+
table[beta][self.A_dict_inv[x]] = alpha
|
163 |
+
# P[alpha][x] = epsilon, P[beta][x**-1] = epsilon
|
164 |
+
if modified:
|
165 |
+
self.P[alpha][self.A_dict[x]] = self._grp.identity
|
166 |
+
self.P[beta][self.A_dict_inv[x]] = self._grp.identity
|
167 |
+
self.p_p[beta] = self._grp.identity
|
168 |
+
|
169 |
+
def define_c(self, alpha, x):
|
170 |
+
r"""
|
171 |
+
A variation of ``define`` routine, described on Pg. 165 [1], used in
|
172 |
+
the coset table-based strategy of Todd-Coxeter algorithm. It differs
|
173 |
+
from ``define`` routine in that for each definition it also adds the
|
174 |
+
tuple `(\alpha, x)` to the deduction stack.
|
175 |
+
|
176 |
+
See Also
|
177 |
+
========
|
178 |
+
|
179 |
+
define
|
180 |
+
|
181 |
+
"""
|
182 |
+
A = self.A
|
183 |
+
table = self.table
|
184 |
+
len_table = len(table)
|
185 |
+
if len_table >= self.coset_table_limit:
|
186 |
+
# abort the further generation of cosets
|
187 |
+
raise ValueError("the coset enumeration has defined more than "
|
188 |
+
"%s cosets. Try with a greater value max number of cosets "
|
189 |
+
% self.coset_table_limit)
|
190 |
+
table.append([None]*len(A))
|
191 |
+
# beta is the new coset generated
|
192 |
+
beta = len_table
|
193 |
+
self.p.append(beta)
|
194 |
+
table[alpha][self.A_dict[x]] = beta
|
195 |
+
table[beta][self.A_dict_inv[x]] = alpha
|
196 |
+
# append to deduction stack
|
197 |
+
self.deduction_stack.append((alpha, x))
|
198 |
+
|
199 |
+
def scan_c(self, alpha, word):
|
200 |
+
"""
|
201 |
+
A variation of ``scan`` routine, described on pg. 165 of [1], which
|
202 |
+
puts at tuple, whenever a deduction occurs, to deduction stack.
|
203 |
+
|
204 |
+
See Also
|
205 |
+
========
|
206 |
+
|
207 |
+
scan, scan_check, scan_and_fill, scan_and_fill_c
|
208 |
+
|
209 |
+
"""
|
210 |
+
# alpha is an integer representing a "coset"
|
211 |
+
# since scanning can be in two cases
|
212 |
+
# 1. for alpha=0 and w in Y (i.e generating set of H)
|
213 |
+
# 2. alpha in Omega (set of live cosets), w in R (relators)
|
214 |
+
A_dict = self.A_dict
|
215 |
+
A_dict_inv = self.A_dict_inv
|
216 |
+
table = self.table
|
217 |
+
f = alpha
|
218 |
+
i = 0
|
219 |
+
r = len(word)
|
220 |
+
b = alpha
|
221 |
+
j = r - 1
|
222 |
+
# list of union of generators and their inverses
|
223 |
+
while i <= j and table[f][A_dict[word[i]]] is not None:
|
224 |
+
f = table[f][A_dict[word[i]]]
|
225 |
+
i += 1
|
226 |
+
if i > j:
|
227 |
+
if f != b:
|
228 |
+
self.coincidence_c(f, b)
|
229 |
+
return
|
230 |
+
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
|
231 |
+
b = table[b][A_dict_inv[word[j]]]
|
232 |
+
j -= 1
|
233 |
+
if j < i:
|
234 |
+
# we have an incorrect completed scan with coincidence f ~ b
|
235 |
+
# run the "coincidence" routine
|
236 |
+
self.coincidence_c(f, b)
|
237 |
+
elif j == i:
|
238 |
+
# deduction process
|
239 |
+
table[f][A_dict[word[i]]] = b
|
240 |
+
table[b][A_dict_inv[word[i]]] = f
|
241 |
+
self.deduction_stack.append((f, word[i]))
|
242 |
+
# otherwise scan is incomplete and yields no information
|
243 |
+
|
244 |
+
# alpha, beta coincide, i.e. alpha, beta represent the pair of cosets where
|
245 |
+
# coincidence occurs
|
246 |
+
def coincidence_c(self, alpha, beta):
|
247 |
+
"""
|
248 |
+
A variation of ``coincidence`` routine used in the coset-table based
|
249 |
+
method of coset enumeration. The only difference being on addition of
|
250 |
+
a new coset in coset table(i.e new coset introduction), then it is
|
251 |
+
appended to ``deduction_stack``.
|
252 |
+
|
253 |
+
See Also
|
254 |
+
========
|
255 |
+
|
256 |
+
coincidence
|
257 |
+
|
258 |
+
"""
|
259 |
+
A_dict = self.A_dict
|
260 |
+
A_dict_inv = self.A_dict_inv
|
261 |
+
table = self.table
|
262 |
+
# behaves as a queue
|
263 |
+
q = []
|
264 |
+
self.merge(alpha, beta, q)
|
265 |
+
while len(q) > 0:
|
266 |
+
gamma = q.pop(0)
|
267 |
+
for x in A_dict:
|
268 |
+
delta = table[gamma][A_dict[x]]
|
269 |
+
if delta is not None:
|
270 |
+
table[delta][A_dict_inv[x]] = None
|
271 |
+
# only line of difference from ``coincidence`` routine
|
272 |
+
self.deduction_stack.append((delta, x**-1))
|
273 |
+
mu = self.rep(gamma)
|
274 |
+
nu = self.rep(delta)
|
275 |
+
if table[mu][A_dict[x]] is not None:
|
276 |
+
self.merge(nu, table[mu][A_dict[x]], q)
|
277 |
+
elif table[nu][A_dict_inv[x]] is not None:
|
278 |
+
self.merge(mu, table[nu][A_dict_inv[x]], q)
|
279 |
+
else:
|
280 |
+
table[mu][A_dict[x]] = nu
|
281 |
+
table[nu][A_dict_inv[x]] = mu
|
282 |
+
|
283 |
+
def scan(self, alpha, word, y=None, fill=False, modified=False):
|
284 |
+
r"""
|
285 |
+
``scan`` performs a scanning process on the input ``word``.
|
286 |
+
It first locates the largest prefix ``s`` of ``word`` for which
|
287 |
+
`\alpha^s` is defined (i.e is not ``None``), ``s`` may be empty. Let
|
288 |
+
``word=sv``, let ``t`` be the longest suffix of ``v`` for which
|
289 |
+
`\alpha^{t^{-1}}` is defined, and let ``v=ut``. Then three
|
290 |
+
possibilities are there:
|
291 |
+
|
292 |
+
1. If ``t=v``, then we say that the scan completes, and if, in addition
|
293 |
+
`\alpha^s = \alpha^{t^{-1}}`, then we say that the scan completes
|
294 |
+
correctly.
|
295 |
+
|
296 |
+
2. It can also happen that scan does not complete, but `|u|=1`; that
|
297 |
+
is, the word ``u`` consists of a single generator `x \in A`. In that
|
298 |
+
case, if `\alpha^s = \beta` and `\alpha^{t^{-1}} = \gamma`, then we can
|
299 |
+
set `\beta^x = \gamma` and `\gamma^{x^{-1}} = \beta`. These assignments
|
300 |
+
are known as deductions and enable the scan to complete correctly.
|
301 |
+
|
302 |
+
3. See ``coicidence`` routine for explanation of third condition.
|
303 |
+
|
304 |
+
Notes
|
305 |
+
=====
|
306 |
+
|
307 |
+
The code for the procedure of scanning `\alpha \in \Omega`
|
308 |
+
under `w \in A*` is defined on pg. 155 [1]
|
309 |
+
|
310 |
+
See Also
|
311 |
+
========
|
312 |
+
|
313 |
+
scan_c, scan_check, scan_and_fill, scan_and_fill_c
|
314 |
+
|
315 |
+
Scan and Fill
|
316 |
+
=============
|
317 |
+
|
318 |
+
Performed when the default argument fill=True.
|
319 |
+
|
320 |
+
Modified Scan
|
321 |
+
=============
|
322 |
+
|
323 |
+
Performed when the default argument modified=True
|
324 |
+
|
325 |
+
"""
|
326 |
+
# alpha is an integer representing a "coset"
|
327 |
+
# since scanning can be in two cases
|
328 |
+
# 1. for alpha=0 and w in Y (i.e generating set of H)
|
329 |
+
# 2. alpha in Omega (set of live cosets), w in R (relators)
|
330 |
+
A_dict = self.A_dict
|
331 |
+
A_dict_inv = self.A_dict_inv
|
332 |
+
table = self.table
|
333 |
+
f = alpha
|
334 |
+
i = 0
|
335 |
+
r = len(word)
|
336 |
+
b = alpha
|
337 |
+
j = r - 1
|
338 |
+
b_p = y
|
339 |
+
if modified:
|
340 |
+
f_p = self._grp.identity
|
341 |
+
flag = 0
|
342 |
+
while fill or flag == 0:
|
343 |
+
flag = 1
|
344 |
+
while i <= j and table[f][A_dict[word[i]]] is not None:
|
345 |
+
if modified:
|
346 |
+
f_p = f_p*self.P[f][A_dict[word[i]]]
|
347 |
+
f = table[f][A_dict[word[i]]]
|
348 |
+
i += 1
|
349 |
+
if i > j:
|
350 |
+
if f != b:
|
351 |
+
if modified:
|
352 |
+
self.modified_coincidence(f, b, f_p**-1*y)
|
353 |
+
else:
|
354 |
+
self.coincidence(f, b)
|
355 |
+
return
|
356 |
+
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
|
357 |
+
if modified:
|
358 |
+
b_p = b_p*self.P[b][self.A_dict_inv[word[j]]]
|
359 |
+
b = table[b][A_dict_inv[word[j]]]
|
360 |
+
j -= 1
|
361 |
+
if j < i:
|
362 |
+
# we have an incorrect completed scan with coincidence f ~ b
|
363 |
+
# run the "coincidence" routine
|
364 |
+
if modified:
|
365 |
+
self.modified_coincidence(f, b, f_p**-1*b_p)
|
366 |
+
else:
|
367 |
+
self.coincidence(f, b)
|
368 |
+
elif j == i:
|
369 |
+
# deduction process
|
370 |
+
table[f][A_dict[word[i]]] = b
|
371 |
+
table[b][A_dict_inv[word[i]]] = f
|
372 |
+
if modified:
|
373 |
+
self.P[f][self.A_dict[word[i]]] = f_p**-1*b_p
|
374 |
+
self.P[b][self.A_dict_inv[word[i]]] = b_p**-1*f_p
|
375 |
+
return
|
376 |
+
elif fill:
|
377 |
+
self.define(f, word[i], modified=modified)
|
378 |
+
# otherwise scan is incomplete and yields no information
|
379 |
+
|
380 |
+
# used in the low-index subgroups algorithm
|
381 |
+
def scan_check(self, alpha, word):
|
382 |
+
r"""
|
383 |
+
Another version of ``scan`` routine, described on, it checks whether
|
384 |
+
`\alpha` scans correctly under `word`, it is a straightforward
|
385 |
+
modification of ``scan``. ``scan_check`` returns ``False`` (rather than
|
386 |
+
calling ``coincidence``) if the scan completes incorrectly; otherwise
|
387 |
+
it returns ``True``.
|
388 |
+
|
389 |
+
See Also
|
390 |
+
========
|
391 |
+
|
392 |
+
scan, scan_c, scan_and_fill, scan_and_fill_c
|
393 |
+
|
394 |
+
"""
|
395 |
+
# alpha is an integer representing a "coset"
|
396 |
+
# since scanning can be in two cases
|
397 |
+
# 1. for alpha=0 and w in Y (i.e generating set of H)
|
398 |
+
# 2. alpha in Omega (set of live cosets), w in R (relators)
|
399 |
+
A_dict = self.A_dict
|
400 |
+
A_dict_inv = self.A_dict_inv
|
401 |
+
table = self.table
|
402 |
+
f = alpha
|
403 |
+
i = 0
|
404 |
+
r = len(word)
|
405 |
+
b = alpha
|
406 |
+
j = r - 1
|
407 |
+
while i <= j and table[f][A_dict[word[i]]] is not None:
|
408 |
+
f = table[f][A_dict[word[i]]]
|
409 |
+
i += 1
|
410 |
+
if i > j:
|
411 |
+
return f == b
|
412 |
+
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
|
413 |
+
b = table[b][A_dict_inv[word[j]]]
|
414 |
+
j -= 1
|
415 |
+
if j < i:
|
416 |
+
# we have an incorrect completed scan with coincidence f ~ b
|
417 |
+
# return False, instead of calling coincidence routine
|
418 |
+
return False
|
419 |
+
elif j == i:
|
420 |
+
# deduction process
|
421 |
+
table[f][A_dict[word[i]]] = b
|
422 |
+
table[b][A_dict_inv[word[i]]] = f
|
423 |
+
return True
|
424 |
+
|
425 |
+
def merge(self, k, lamda, q, w=None, modified=False):
|
426 |
+
"""
|
427 |
+
Merge two classes with representatives ``k`` and ``lamda``, described
|
428 |
+
on Pg. 157 [1] (for pseudocode), start by putting ``p[k] = lamda``.
|
429 |
+
It is more efficient to choose the new representative from the larger
|
430 |
+
of the two classes being merged, i.e larger among ``k`` and ``lamda``.
|
431 |
+
procedure ``merge`` performs the merging operation, adds the deleted
|
432 |
+
class representative to the queue ``q``.
|
433 |
+
|
434 |
+
Parameters
|
435 |
+
==========
|
436 |
+
|
437 |
+
'k', 'lamda' being the two class representatives to be merged.
|
438 |
+
|
439 |
+
Notes
|
440 |
+
=====
|
441 |
+
|
442 |
+
Pg. 86-87 [1] contains a description of this method.
|
443 |
+
|
444 |
+
See Also
|
445 |
+
========
|
446 |
+
|
447 |
+
coincidence, rep
|
448 |
+
|
449 |
+
"""
|
450 |
+
p = self.p
|
451 |
+
rep = self.rep
|
452 |
+
phi = rep(k, modified=modified)
|
453 |
+
psi = rep(lamda, modified=modified)
|
454 |
+
if phi != psi:
|
455 |
+
mu = min(phi, psi)
|
456 |
+
v = max(phi, psi)
|
457 |
+
p[v] = mu
|
458 |
+
if modified:
|
459 |
+
if v == phi:
|
460 |
+
self.p_p[phi] = self.p_p[k]**-1*w*self.p_p[lamda]
|
461 |
+
else:
|
462 |
+
self.p_p[psi] = self.p_p[lamda]**-1*w**-1*self.p_p[k]
|
463 |
+
q.append(v)
|
464 |
+
|
465 |
+
def rep(self, k, modified=False):
|
466 |
+
r"""
|
467 |
+
Parameters
|
468 |
+
==========
|
469 |
+
|
470 |
+
`k \in [0 \ldots n-1]`, as for ``self`` only array ``p`` is used
|
471 |
+
|
472 |
+
Returns
|
473 |
+
=======
|
474 |
+
|
475 |
+
Representative of the class containing ``k``.
|
476 |
+
|
477 |
+
Returns the representative of `\sim` class containing ``k``, it also
|
478 |
+
makes some modification to array ``p`` of ``self`` to ease further
|
479 |
+
computations, described on Pg. 157 [1].
|
480 |
+
|
481 |
+
The information on classes under `\sim` is stored in array `p` of
|
482 |
+
``self`` argument, which will always satisfy the property:
|
483 |
+
|
484 |
+
`p[\alpha] \sim \alpha` and `p[\alpha]=\alpha \iff \alpha=rep(\alpha)`
|
485 |
+
`\forall \in [0 \ldots n-1]`.
|
486 |
+
|
487 |
+
So, for `\alpha \in [0 \ldots n-1]`, we find `rep(self, \alpha)` by
|
488 |
+
continually replacing `\alpha` by `p[\alpha]` until it becomes
|
489 |
+
constant (i.e satisfies `p[\alpha] = \alpha`):w
|
490 |
+
|
491 |
+
To increase the efficiency of later ``rep`` calculations, whenever we
|
492 |
+
find `rep(self, \alpha)=\beta`, we set
|
493 |
+
`p[\gamma] = \beta \forall \gamma \in p-chain` from `\alpha` to `\beta`
|
494 |
+
|
495 |
+
Notes
|
496 |
+
=====
|
497 |
+
|
498 |
+
``rep`` routine is also described on Pg. 85-87 [1] in Atkinson's
|
499 |
+
algorithm, this results from the fact that ``coincidence`` routine
|
500 |
+
introduces functionality similar to that introduced by the
|
501 |
+
``minimal_block`` routine on Pg. 85-87 [1].
|
502 |
+
|
503 |
+
See Also
|
504 |
+
========
|
505 |
+
|
506 |
+
coincidence, merge
|
507 |
+
|
508 |
+
"""
|
509 |
+
p = self.p
|
510 |
+
lamda = k
|
511 |
+
rho = p[lamda]
|
512 |
+
if modified:
|
513 |
+
s = p[:]
|
514 |
+
while rho != lamda:
|
515 |
+
if modified:
|
516 |
+
s[rho] = lamda
|
517 |
+
lamda = rho
|
518 |
+
rho = p[lamda]
|
519 |
+
if modified:
|
520 |
+
rho = s[lamda]
|
521 |
+
while rho != k:
|
522 |
+
mu = rho
|
523 |
+
rho = s[mu]
|
524 |
+
p[rho] = lamda
|
525 |
+
self.p_p[rho] = self.p_p[rho]*self.p_p[mu]
|
526 |
+
else:
|
527 |
+
mu = k
|
528 |
+
rho = p[mu]
|
529 |
+
while rho != lamda:
|
530 |
+
p[mu] = lamda
|
531 |
+
mu = rho
|
532 |
+
rho = p[mu]
|
533 |
+
return lamda
|
534 |
+
|
535 |
+
# alpha, beta coincide, i.e. alpha, beta represent the pair of cosets
|
536 |
+
# where coincidence occurs
|
537 |
+
def coincidence(self, alpha, beta, w=None, modified=False):
|
538 |
+
r"""
|
539 |
+
The third situation described in ``scan`` routine is handled by this
|
540 |
+
routine, described on Pg. 156-161 [1].
|
541 |
+
|
542 |
+
The unfortunate situation when the scan completes but not correctly,
|
543 |
+
then ``coincidence`` routine is run. i.e when for some `i` with
|
544 |
+
`1 \le i \le r+1`, we have `w=st` with `s = x_1 x_2 \dots x_{i-1}`,
|
545 |
+
`t = x_i x_{i+1} \dots x_r`, and `\beta = \alpha^s` and
|
546 |
+
`\gamma = \alpha^{t-1}` are defined but unequal. This means that
|
547 |
+
`\beta` and `\gamma` represent the same coset of `H` in `G`. Described
|
548 |
+
on Pg. 156 [1]. ``rep``
|
549 |
+
|
550 |
+
See Also
|
551 |
+
========
|
552 |
+
|
553 |
+
scan
|
554 |
+
|
555 |
+
"""
|
556 |
+
A_dict = self.A_dict
|
557 |
+
A_dict_inv = self.A_dict_inv
|
558 |
+
table = self.table
|
559 |
+
# behaves as a queue
|
560 |
+
q = []
|
561 |
+
if modified:
|
562 |
+
self.modified_merge(alpha, beta, w, q)
|
563 |
+
else:
|
564 |
+
self.merge(alpha, beta, q)
|
565 |
+
while len(q) > 0:
|
566 |
+
gamma = q.pop(0)
|
567 |
+
for x in A_dict:
|
568 |
+
delta = table[gamma][A_dict[x]]
|
569 |
+
if delta is not None:
|
570 |
+
table[delta][A_dict_inv[x]] = None
|
571 |
+
mu = self.rep(gamma, modified=modified)
|
572 |
+
nu = self.rep(delta, modified=modified)
|
573 |
+
if table[mu][A_dict[x]] is not None:
|
574 |
+
if modified:
|
575 |
+
v = self.p_p[delta]**-1*self.P[gamma][self.A_dict[x]]**-1
|
576 |
+
v = v*self.p_p[gamma]*self.P[mu][self.A_dict[x]]
|
577 |
+
self.modified_merge(nu, table[mu][self.A_dict[x]], v, q)
|
578 |
+
else:
|
579 |
+
self.merge(nu, table[mu][A_dict[x]], q)
|
580 |
+
elif table[nu][A_dict_inv[x]] is not None:
|
581 |
+
if modified:
|
582 |
+
v = self.p_p[gamma]**-1*self.P[gamma][self.A_dict[x]]
|
583 |
+
v = v*self.p_p[delta]*self.P[mu][self.A_dict_inv[x]]
|
584 |
+
self.modified_merge(mu, table[nu][self.A_dict_inv[x]], v, q)
|
585 |
+
else:
|
586 |
+
self.merge(mu, table[nu][A_dict_inv[x]], q)
|
587 |
+
else:
|
588 |
+
table[mu][A_dict[x]] = nu
|
589 |
+
table[nu][A_dict_inv[x]] = mu
|
590 |
+
if modified:
|
591 |
+
v = self.p_p[gamma]**-1*self.P[gamma][self.A_dict[x]]*self.p_p[delta]
|
592 |
+
self.P[mu][self.A_dict[x]] = v
|
593 |
+
self.P[nu][self.A_dict_inv[x]] = v**-1
|
594 |
+
|
595 |
+
# method used in the HLT strategy
|
596 |
+
def scan_and_fill(self, alpha, word):
|
597 |
+
"""
|
598 |
+
A modified version of ``scan`` routine used in the relator-based
|
599 |
+
method of coset enumeration, described on pg. 162-163 [1], which
|
600 |
+
follows the idea that whenever the procedure is called and the scan
|
601 |
+
is incomplete then it makes new definitions to enable the scan to
|
602 |
+
complete; i.e it fills in the gaps in the scan of the relator or
|
603 |
+
subgroup generator.
|
604 |
+
|
605 |
+
"""
|
606 |
+
self.scan(alpha, word, fill=True)
|
607 |
+
|
608 |
+
def scan_and_fill_c(self, alpha, word):
|
609 |
+
"""
|
610 |
+
A modified version of ``scan`` routine, described on Pg. 165 second
|
611 |
+
para. [1], with modification similar to that of ``scan_anf_fill`` the
|
612 |
+
only difference being it calls the coincidence procedure used in the
|
613 |
+
coset-table based method i.e. the routine ``coincidence_c`` is used.
|
614 |
+
|
615 |
+
See Also
|
616 |
+
========
|
617 |
+
|
618 |
+
scan, scan_and_fill
|
619 |
+
|
620 |
+
"""
|
621 |
+
A_dict = self.A_dict
|
622 |
+
A_dict_inv = self.A_dict_inv
|
623 |
+
table = self.table
|
624 |
+
r = len(word)
|
625 |
+
f = alpha
|
626 |
+
i = 0
|
627 |
+
b = alpha
|
628 |
+
j = r - 1
|
629 |
+
# loop until it has filled the alpha row in the table.
|
630 |
+
while True:
|
631 |
+
# do the forward scanning
|
632 |
+
while i <= j and table[f][A_dict[word[i]]] is not None:
|
633 |
+
f = table[f][A_dict[word[i]]]
|
634 |
+
i += 1
|
635 |
+
if i > j:
|
636 |
+
if f != b:
|
637 |
+
self.coincidence_c(f, b)
|
638 |
+
return
|
639 |
+
# forward scan was incomplete, scan backwards
|
640 |
+
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
|
641 |
+
b = table[b][A_dict_inv[word[j]]]
|
642 |
+
j -= 1
|
643 |
+
if j < i:
|
644 |
+
self.coincidence_c(f, b)
|
645 |
+
elif j == i:
|
646 |
+
table[f][A_dict[word[i]]] = b
|
647 |
+
table[b][A_dict_inv[word[i]]] = f
|
648 |
+
self.deduction_stack.append((f, word[i]))
|
649 |
+
else:
|
650 |
+
self.define_c(f, word[i])
|
651 |
+
|
652 |
+
# method used in the HLT strategy
|
653 |
+
def look_ahead(self):
|
654 |
+
"""
|
655 |
+
When combined with the HLT method this is known as HLT+Lookahead
|
656 |
+
method of coset enumeration, described on pg. 164 [1]. Whenever
|
657 |
+
``define`` aborts due to lack of space available this procedure is
|
658 |
+
executed. This routine helps in recovering space resulting from
|
659 |
+
"coincidence" of cosets.
|
660 |
+
|
661 |
+
"""
|
662 |
+
R = self.fp_group.relators
|
663 |
+
p = self.p
|
664 |
+
# complete scan all relators under all cosets(obviously live)
|
665 |
+
# without making new definitions
|
666 |
+
for beta in self.omega:
|
667 |
+
for w in R:
|
668 |
+
self.scan(beta, w)
|
669 |
+
if p[beta] < beta:
|
670 |
+
break
|
671 |
+
|
672 |
+
# Pg. 166
|
673 |
+
def process_deductions(self, R_c_x, R_c_x_inv):
|
674 |
+
"""
|
675 |
+
Processes the deductions that have been pushed onto ``deduction_stack``,
|
676 |
+
described on Pg. 166 [1] and is used in coset-table based enumeration.
|
677 |
+
|
678 |
+
See Also
|
679 |
+
========
|
680 |
+
|
681 |
+
deduction_stack
|
682 |
+
|
683 |
+
"""
|
684 |
+
p = self.p
|
685 |
+
table = self.table
|
686 |
+
while len(self.deduction_stack) > 0:
|
687 |
+
if len(self.deduction_stack) >= CosetTable.max_stack_size:
|
688 |
+
self.look_ahead()
|
689 |
+
del self.deduction_stack[:]
|
690 |
+
continue
|
691 |
+
else:
|
692 |
+
alpha, x = self.deduction_stack.pop()
|
693 |
+
if p[alpha] == alpha:
|
694 |
+
for w in R_c_x:
|
695 |
+
self.scan_c(alpha, w)
|
696 |
+
if p[alpha] < alpha:
|
697 |
+
break
|
698 |
+
beta = table[alpha][self.A_dict[x]]
|
699 |
+
if beta is not None and p[beta] == beta:
|
700 |
+
for w in R_c_x_inv:
|
701 |
+
self.scan_c(beta, w)
|
702 |
+
if p[beta] < beta:
|
703 |
+
break
|
704 |
+
|
705 |
+
def process_deductions_check(self, R_c_x, R_c_x_inv):
|
706 |
+
"""
|
707 |
+
A variation of ``process_deductions``, this calls ``scan_check``
|
708 |
+
wherever ``process_deductions`` calls ``scan``, described on Pg. [1].
|
709 |
+
|
710 |
+
See Also
|
711 |
+
========
|
712 |
+
|
713 |
+
process_deductions
|
714 |
+
|
715 |
+
"""
|
716 |
+
table = self.table
|
717 |
+
while len(self.deduction_stack) > 0:
|
718 |
+
alpha, x = self.deduction_stack.pop()
|
719 |
+
for w in R_c_x:
|
720 |
+
if not self.scan_check(alpha, w):
|
721 |
+
return False
|
722 |
+
beta = table[alpha][self.A_dict[x]]
|
723 |
+
if beta is not None:
|
724 |
+
for w in R_c_x_inv:
|
725 |
+
if not self.scan_check(beta, w):
|
726 |
+
return False
|
727 |
+
return True
|
728 |
+
|
729 |
+
def switch(self, beta, gamma):
|
730 |
+
r"""Switch the elements `\beta, \gamma \in \Omega` of ``self``, used
|
731 |
+
by the ``standardize`` procedure, described on Pg. 167 [1].
|
732 |
+
|
733 |
+
See Also
|
734 |
+
========
|
735 |
+
|
736 |
+
standardize
|
737 |
+
|
738 |
+
"""
|
739 |
+
A = self.A
|
740 |
+
A_dict = self.A_dict
|
741 |
+
table = self.table
|
742 |
+
for x in A:
|
743 |
+
z = table[gamma][A_dict[x]]
|
744 |
+
table[gamma][A_dict[x]] = table[beta][A_dict[x]]
|
745 |
+
table[beta][A_dict[x]] = z
|
746 |
+
for alpha in range(len(self.p)):
|
747 |
+
if self.p[alpha] == alpha:
|
748 |
+
if table[alpha][A_dict[x]] == beta:
|
749 |
+
table[alpha][A_dict[x]] = gamma
|
750 |
+
elif table[alpha][A_dict[x]] == gamma:
|
751 |
+
table[alpha][A_dict[x]] = beta
|
752 |
+
|
753 |
+
def standardize(self):
|
754 |
+
r"""
|
755 |
+
A coset table is standardized if when running through the cosets and
|
756 |
+
within each coset through the generator images (ignoring generator
|
757 |
+
inverses), the cosets appear in order of the integers
|
758 |
+
`0, 1, \dots, n`. "Standardize" reorders the elements of `\Omega`
|
759 |
+
such that, if we scan the coset table first by elements of `\Omega`
|
760 |
+
and then by elements of A, then the cosets occur in ascending order.
|
761 |
+
``standardize()`` is used at the end of an enumeration to permute the
|
762 |
+
cosets so that they occur in some sort of standard order.
|
763 |
+
|
764 |
+
Notes
|
765 |
+
=====
|
766 |
+
|
767 |
+
procedure is described on pg. 167-168 [1], it also makes use of the
|
768 |
+
``switch`` routine to replace by smaller integer value.
|
769 |
+
|
770 |
+
Examples
|
771 |
+
========
|
772 |
+
|
773 |
+
>>> from sympy.combinatorics import free_group
|
774 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
|
775 |
+
>>> F, x, y = free_group("x, y")
|
776 |
+
|
777 |
+
# Example 5.3 from [1]
|
778 |
+
>>> f = FpGroup(F, [x**2*y**2, x**3*y**5])
|
779 |
+
>>> C = coset_enumeration_r(f, [])
|
780 |
+
>>> C.compress()
|
781 |
+
>>> C.table
|
782 |
+
[[1, 3, 1, 3], [2, 0, 2, 0], [3, 1, 3, 1], [0, 2, 0, 2]]
|
783 |
+
>>> C.standardize()
|
784 |
+
>>> C.table
|
785 |
+
[[1, 2, 1, 2], [3, 0, 3, 0], [0, 3, 0, 3], [2, 1, 2, 1]]
|
786 |
+
|
787 |
+
"""
|
788 |
+
A = self.A
|
789 |
+
A_dict = self.A_dict
|
790 |
+
gamma = 1
|
791 |
+
for alpha, x in product(range(self.n), A):
|
792 |
+
beta = self.table[alpha][A_dict[x]]
|
793 |
+
if beta >= gamma:
|
794 |
+
if beta > gamma:
|
795 |
+
self.switch(gamma, beta)
|
796 |
+
gamma += 1
|
797 |
+
if gamma == self.n:
|
798 |
+
return
|
799 |
+
|
800 |
+
# Compression of a Coset Table
|
801 |
+
def compress(self):
|
802 |
+
"""Removes the non-live cosets from the coset table, described on
|
803 |
+
pg. 167 [1].
|
804 |
+
|
805 |
+
"""
|
806 |
+
gamma = -1
|
807 |
+
A = self.A
|
808 |
+
A_dict = self.A_dict
|
809 |
+
A_dict_inv = self.A_dict_inv
|
810 |
+
table = self.table
|
811 |
+
chi = tuple([i for i in range(len(self.p)) if self.p[i] != i])
|
812 |
+
for alpha in self.omega:
|
813 |
+
gamma += 1
|
814 |
+
if gamma != alpha:
|
815 |
+
# replace alpha by gamma in coset table
|
816 |
+
for x in A:
|
817 |
+
beta = table[alpha][A_dict[x]]
|
818 |
+
table[gamma][A_dict[x]] = beta
|
819 |
+
table[beta][A_dict_inv[x]] == gamma
|
820 |
+
# all the cosets in the table are live cosets
|
821 |
+
self.p = list(range(gamma + 1))
|
822 |
+
# delete the useless columns
|
823 |
+
del table[len(self.p):]
|
824 |
+
# re-define values
|
825 |
+
for row in table:
|
826 |
+
for j in range(len(self.A)):
|
827 |
+
row[j] -= bisect_left(chi, row[j])
|
828 |
+
|
829 |
+
def conjugates(self, R):
|
830 |
+
R_c = list(chain.from_iterable((rel.cyclic_conjugates(), \
|
831 |
+
(rel**-1).cyclic_conjugates()) for rel in R))
|
832 |
+
R_set = set()
|
833 |
+
for conjugate in R_c:
|
834 |
+
R_set = R_set.union(conjugate)
|
835 |
+
R_c_list = []
|
836 |
+
for x in self.A:
|
837 |
+
r = {word for word in R_set if word[0] == x}
|
838 |
+
R_c_list.append(r)
|
839 |
+
R_set.difference_update(r)
|
840 |
+
return R_c_list
|
841 |
+
|
842 |
+
def coset_representative(self, coset):
|
843 |
+
'''
|
844 |
+
Compute the coset representative of a given coset.
|
845 |
+
|
846 |
+
Examples
|
847 |
+
========
|
848 |
+
|
849 |
+
>>> from sympy.combinatorics import free_group
|
850 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
|
851 |
+
>>> F, x, y = free_group("x, y")
|
852 |
+
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
|
853 |
+
>>> C = coset_enumeration_r(f, [x])
|
854 |
+
>>> C.compress()
|
855 |
+
>>> C.table
|
856 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
|
857 |
+
>>> C.coset_representative(0)
|
858 |
+
<identity>
|
859 |
+
>>> C.coset_representative(1)
|
860 |
+
y
|
861 |
+
>>> C.coset_representative(2)
|
862 |
+
y**-1
|
863 |
+
|
864 |
+
'''
|
865 |
+
for x in self.A:
|
866 |
+
gamma = self.table[coset][self.A_dict[x]]
|
867 |
+
if coset == 0:
|
868 |
+
return self.fp_group.identity
|
869 |
+
if gamma < coset:
|
870 |
+
return self.coset_representative(gamma)*x**-1
|
871 |
+
|
872 |
+
##############################
|
873 |
+
# Modified Methods #
|
874 |
+
##############################
|
875 |
+
|
876 |
+
def modified_define(self, alpha, x):
|
877 |
+
r"""
|
878 |
+
Define a function p_p from from [1..n] to A* as
|
879 |
+
an additional component of the modified coset table.
|
880 |
+
|
881 |
+
Parameters
|
882 |
+
==========
|
883 |
+
|
884 |
+
\alpha \in \Omega
|
885 |
+
x \in A*
|
886 |
+
|
887 |
+
See Also
|
888 |
+
========
|
889 |
+
|
890 |
+
define
|
891 |
+
|
892 |
+
"""
|
893 |
+
self.define(alpha, x, modified=True)
|
894 |
+
|
895 |
+
def modified_scan(self, alpha, w, y, fill=False):
|
896 |
+
r"""
|
897 |
+
Parameters
|
898 |
+
==========
|
899 |
+
\alpha \in \Omega
|
900 |
+
w \in A*
|
901 |
+
y \in (YUY^-1)
|
902 |
+
fill -- `modified_scan_and_fill` when set to True.
|
903 |
+
|
904 |
+
See Also
|
905 |
+
========
|
906 |
+
|
907 |
+
scan
|
908 |
+
"""
|
909 |
+
self.scan(alpha, w, y=y, fill=fill, modified=True)
|
910 |
+
|
911 |
+
def modified_scan_and_fill(self, alpha, w, y):
|
912 |
+
self.modified_scan(alpha, w, y, fill=True)
|
913 |
+
|
914 |
+
def modified_merge(self, k, lamda, w, q):
|
915 |
+
r"""
|
916 |
+
Parameters
|
917 |
+
==========
|
918 |
+
|
919 |
+
'k', 'lamda' -- the two class representatives to be merged.
|
920 |
+
q -- queue of length l of elements to be deleted from `\Omega` *.
|
921 |
+
w -- Word in (YUY^-1)
|
922 |
+
|
923 |
+
See Also
|
924 |
+
========
|
925 |
+
|
926 |
+
merge
|
927 |
+
"""
|
928 |
+
self.merge(k, lamda, q, w=w, modified=True)
|
929 |
+
|
930 |
+
def modified_rep(self, k):
|
931 |
+
r"""
|
932 |
+
Parameters
|
933 |
+
==========
|
934 |
+
|
935 |
+
`k \in [0 \ldots n-1]`
|
936 |
+
|
937 |
+
See Also
|
938 |
+
========
|
939 |
+
|
940 |
+
rep
|
941 |
+
"""
|
942 |
+
self.rep(k, modified=True)
|
943 |
+
|
944 |
+
def modified_coincidence(self, alpha, beta, w):
|
945 |
+
r"""
|
946 |
+
Parameters
|
947 |
+
==========
|
948 |
+
|
949 |
+
A coincident pair `\alpha, \beta \in \Omega, w \in Y \cup Y^{-1}`
|
950 |
+
|
951 |
+
See Also
|
952 |
+
========
|
953 |
+
|
954 |
+
coincidence
|
955 |
+
|
956 |
+
"""
|
957 |
+
self.coincidence(alpha, beta, w=w, modified=True)
|
958 |
+
|
959 |
+
###############################################################################
|
960 |
+
# COSET ENUMERATION #
|
961 |
+
###############################################################################
|
962 |
+
|
963 |
+
# relator-based method
|
964 |
+
def coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None,
|
965 |
+
incomplete=False, modified=False):
|
966 |
+
"""
|
967 |
+
This is easier of the two implemented methods of coset enumeration.
|
968 |
+
and is often called the HLT method, after Hazelgrove, Leech, Trotter
|
969 |
+
The idea is that we make use of ``scan_and_fill`` makes new definitions
|
970 |
+
whenever the scan is incomplete to enable the scan to complete; this way
|
971 |
+
we fill in the gaps in the scan of the relator or subgroup generator,
|
972 |
+
that's why the name relator-based method.
|
973 |
+
|
974 |
+
An instance of `CosetTable` for `fp_grp` can be passed as the keyword
|
975 |
+
argument `draft` in which case the coset enumeration will start with
|
976 |
+
that instance and attempt to complete it.
|
977 |
+
|
978 |
+
When `incomplete` is `True` and the function is unable to complete for
|
979 |
+
some reason, the partially complete table will be returned.
|
980 |
+
|
981 |
+
# TODO: complete the docstring
|
982 |
+
|
983 |
+
See Also
|
984 |
+
========
|
985 |
+
|
986 |
+
scan_and_fill,
|
987 |
+
|
988 |
+
Examples
|
989 |
+
========
|
990 |
+
|
991 |
+
>>> from sympy.combinatorics.free_groups import free_group
|
992 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
|
993 |
+
>>> F, x, y = free_group("x, y")
|
994 |
+
|
995 |
+
# Example 5.1 from [1]
|
996 |
+
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
|
997 |
+
>>> C = coset_enumeration_r(f, [x])
|
998 |
+
>>> for i in range(len(C.p)):
|
999 |
+
... if C.p[i] == i:
|
1000 |
+
... print(C.table[i])
|
1001 |
+
[0, 0, 1, 2]
|
1002 |
+
[1, 1, 2, 0]
|
1003 |
+
[2, 2, 0, 1]
|
1004 |
+
>>> C.p
|
1005 |
+
[0, 1, 2, 1, 1]
|
1006 |
+
|
1007 |
+
# Example from exercises Q2 [1]
|
1008 |
+
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
|
1009 |
+
>>> C = coset_enumeration_r(f, [])
|
1010 |
+
>>> C.compress(); C.standardize()
|
1011 |
+
>>> C.table
|
1012 |
+
[[1, 2, 3, 4],
|
1013 |
+
[5, 0, 6, 7],
|
1014 |
+
[0, 5, 7, 6],
|
1015 |
+
[7, 6, 5, 0],
|
1016 |
+
[6, 7, 0, 5],
|
1017 |
+
[2, 1, 4, 3],
|
1018 |
+
[3, 4, 2, 1],
|
1019 |
+
[4, 3, 1, 2]]
|
1020 |
+
|
1021 |
+
# Example 5.2
|
1022 |
+
>>> f = FpGroup(F, [x**2, y**3, (x*y)**3])
|
1023 |
+
>>> Y = [x*y]
|
1024 |
+
>>> C = coset_enumeration_r(f, Y)
|
1025 |
+
>>> for i in range(len(C.p)):
|
1026 |
+
... if C.p[i] == i:
|
1027 |
+
... print(C.table[i])
|
1028 |
+
[1, 1, 2, 1]
|
1029 |
+
[0, 0, 0, 2]
|
1030 |
+
[3, 3, 1, 0]
|
1031 |
+
[2, 2, 3, 3]
|
1032 |
+
|
1033 |
+
# Example 5.3
|
1034 |
+
>>> f = FpGroup(F, [x**2*y**2, x**3*y**5])
|
1035 |
+
>>> Y = []
|
1036 |
+
>>> C = coset_enumeration_r(f, Y)
|
1037 |
+
>>> for i in range(len(C.p)):
|
1038 |
+
... if C.p[i] == i:
|
1039 |
+
... print(C.table[i])
|
1040 |
+
[1, 3, 1, 3]
|
1041 |
+
[2, 0, 2, 0]
|
1042 |
+
[3, 1, 3, 1]
|
1043 |
+
[0, 2, 0, 2]
|
1044 |
+
|
1045 |
+
# Example 5.4
|
1046 |
+
>>> F, a, b, c, d, e = free_group("a, b, c, d, e")
|
1047 |
+
>>> f = FpGroup(F, [a*b*c**-1, b*c*d**-1, c*d*e**-1, d*e*a**-1, e*a*b**-1])
|
1048 |
+
>>> Y = [a]
|
1049 |
+
>>> C = coset_enumeration_r(f, Y)
|
1050 |
+
>>> for i in range(len(C.p)):
|
1051 |
+
... if C.p[i] == i:
|
1052 |
+
... print(C.table[i])
|
1053 |
+
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
1054 |
+
|
1055 |
+
# example of "compress" method
|
1056 |
+
>>> C.compress()
|
1057 |
+
>>> C.table
|
1058 |
+
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
|
1059 |
+
|
1060 |
+
# Exercises Pg. 161, Q2.
|
1061 |
+
>>> F, x, y = free_group("x, y")
|
1062 |
+
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
|
1063 |
+
>>> Y = []
|
1064 |
+
>>> C = coset_enumeration_r(f, Y)
|
1065 |
+
>>> C.compress()
|
1066 |
+
>>> C.standardize()
|
1067 |
+
>>> C.table
|
1068 |
+
[[1, 2, 3, 4],
|
1069 |
+
[5, 0, 6, 7],
|
1070 |
+
[0, 5, 7, 6],
|
1071 |
+
[7, 6, 5, 0],
|
1072 |
+
[6, 7, 0, 5],
|
1073 |
+
[2, 1, 4, 3],
|
1074 |
+
[3, 4, 2, 1],
|
1075 |
+
[4, 3, 1, 2]]
|
1076 |
+
|
1077 |
+
# John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
|
1078 |
+
# Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490
|
1079 |
+
# from 1973chwd.pdf
|
1080 |
+
# Table 1. Ex. 1
|
1081 |
+
>>> F, r, s, t = free_group("r, s, t")
|
1082 |
+
>>> E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2])
|
1083 |
+
>>> C = coset_enumeration_r(E1, [r])
|
1084 |
+
>>> for i in range(len(C.p)):
|
1085 |
+
... if C.p[i] == i:
|
1086 |
+
... print(C.table[i])
|
1087 |
+
[0, 0, 0, 0, 0, 0]
|
1088 |
+
|
1089 |
+
Ex. 2
|
1090 |
+
>>> F, a, b = free_group("a, b")
|
1091 |
+
>>> Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5])
|
1092 |
+
>>> C = coset_enumeration_r(Cox, [a])
|
1093 |
+
>>> index = 0
|
1094 |
+
>>> for i in range(len(C.p)):
|
1095 |
+
... if C.p[i] == i:
|
1096 |
+
... index += 1
|
1097 |
+
>>> index
|
1098 |
+
500
|
1099 |
+
|
1100 |
+
# Ex. 3
|
1101 |
+
>>> F, a, b = free_group("a, b")
|
1102 |
+
>>> B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \
|
1103 |
+
(a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4])
|
1104 |
+
>>> C = coset_enumeration_r(B_2_4, [a])
|
1105 |
+
>>> index = 0
|
1106 |
+
>>> for i in range(len(C.p)):
|
1107 |
+
... if C.p[i] == i:
|
1108 |
+
... index += 1
|
1109 |
+
>>> index
|
1110 |
+
1024
|
1111 |
+
|
1112 |
+
References
|
1113 |
+
==========
|
1114 |
+
|
1115 |
+
.. [1] Holt, D., Eick, B., O'Brien, E.
|
1116 |
+
"Handbook of computational group theory"
|
1117 |
+
|
1118 |
+
"""
|
1119 |
+
# 1. Initialize a coset table C for < X|R >
|
1120 |
+
C = CosetTable(fp_grp, Y, max_cosets=max_cosets)
|
1121 |
+
# Define coset table methods.
|
1122 |
+
if modified:
|
1123 |
+
_scan_and_fill = C.modified_scan_and_fill
|
1124 |
+
_define = C.modified_define
|
1125 |
+
else:
|
1126 |
+
_scan_and_fill = C.scan_and_fill
|
1127 |
+
_define = C.define
|
1128 |
+
if draft:
|
1129 |
+
C.table = draft.table[:]
|
1130 |
+
C.p = draft.p[:]
|
1131 |
+
R = fp_grp.relators
|
1132 |
+
A_dict = C.A_dict
|
1133 |
+
p = C.p
|
1134 |
+
for i in range(len(Y)):
|
1135 |
+
if modified:
|
1136 |
+
_scan_and_fill(0, Y[i], C._grp.generators[i])
|
1137 |
+
else:
|
1138 |
+
_scan_and_fill(0, Y[i])
|
1139 |
+
alpha = 0
|
1140 |
+
while alpha < C.n:
|
1141 |
+
if p[alpha] == alpha:
|
1142 |
+
try:
|
1143 |
+
for w in R:
|
1144 |
+
if modified:
|
1145 |
+
_scan_and_fill(alpha, w, C._grp.identity)
|
1146 |
+
else:
|
1147 |
+
_scan_and_fill(alpha, w)
|
1148 |
+
# if alpha was eliminated during the scan then break
|
1149 |
+
if p[alpha] < alpha:
|
1150 |
+
break
|
1151 |
+
if p[alpha] == alpha:
|
1152 |
+
for x in A_dict:
|
1153 |
+
if C.table[alpha][A_dict[x]] is None:
|
1154 |
+
_define(alpha, x)
|
1155 |
+
except ValueError as e:
|
1156 |
+
if incomplete:
|
1157 |
+
return C
|
1158 |
+
raise e
|
1159 |
+
alpha += 1
|
1160 |
+
return C
|
1161 |
+
|
1162 |
+
def modified_coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None,
|
1163 |
+
incomplete=False):
|
1164 |
+
r"""
|
1165 |
+
Introduce a new set of symbols y \in Y that correspond to the
|
1166 |
+
generators of the subgroup. Store the elements of Y as a
|
1167 |
+
word P[\alpha, x] and compute the coset table similar to that of
|
1168 |
+
the regular coset enumeration methods.
|
1169 |
+
|
1170 |
+
Examples
|
1171 |
+
========
|
1172 |
+
|
1173 |
+
>>> from sympy.combinatorics.free_groups import free_group
|
1174 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup
|
1175 |
+
>>> from sympy.combinatorics.coset_table import modified_coset_enumeration_r
|
1176 |
+
>>> F, x, y = free_group("x, y")
|
1177 |
+
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
|
1178 |
+
>>> C = modified_coset_enumeration_r(f, [x])
|
1179 |
+
>>> C.table
|
1180 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1], [None, 1, None, None], [1, 3, None, None]]
|
1181 |
+
|
1182 |
+
See Also
|
1183 |
+
========
|
1184 |
+
|
1185 |
+
coset_enumertation_r
|
1186 |
+
|
1187 |
+
References
|
1188 |
+
==========
|
1189 |
+
|
1190 |
+
.. [1] Holt, D., Eick, B., O'Brien, E.,
|
1191 |
+
"Handbook of Computational Group Theory",
|
1192 |
+
Section 5.3.2
|
1193 |
+
"""
|
1194 |
+
return coset_enumeration_r(fp_grp, Y, max_cosets=max_cosets, draft=draft,
|
1195 |
+
incomplete=incomplete, modified=True)
|
1196 |
+
|
1197 |
+
# Pg. 166
|
1198 |
+
# coset-table based method
|
1199 |
+
def coset_enumeration_c(fp_grp, Y, max_cosets=None, draft=None,
|
1200 |
+
incomplete=False):
|
1201 |
+
"""
|
1202 |
+
>>> from sympy.combinatorics.free_groups import free_group
|
1203 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_c
|
1204 |
+
>>> F, x, y = free_group("x, y")
|
1205 |
+
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
|
1206 |
+
>>> C = coset_enumeration_c(f, [x])
|
1207 |
+
>>> C.table
|
1208 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
|
1209 |
+
|
1210 |
+
"""
|
1211 |
+
# Initialize a coset table C for < X|R >
|
1212 |
+
X = fp_grp.generators
|
1213 |
+
R = fp_grp.relators
|
1214 |
+
C = CosetTable(fp_grp, Y, max_cosets=max_cosets)
|
1215 |
+
if draft:
|
1216 |
+
C.table = draft.table[:]
|
1217 |
+
C.p = draft.p[:]
|
1218 |
+
C.deduction_stack = draft.deduction_stack
|
1219 |
+
for alpha, x in product(range(len(C.table)), X):
|
1220 |
+
if C.table[alpha][C.A_dict[x]] is not None:
|
1221 |
+
C.deduction_stack.append((alpha, x))
|
1222 |
+
A = C.A
|
1223 |
+
# replace all the elements by cyclic reductions
|
1224 |
+
R_cyc_red = [rel.identity_cyclic_reduction() for rel in R]
|
1225 |
+
R_c = list(chain.from_iterable((rel.cyclic_conjugates(), (rel**-1).cyclic_conjugates()) \
|
1226 |
+
for rel in R_cyc_red))
|
1227 |
+
R_set = set()
|
1228 |
+
for conjugate in R_c:
|
1229 |
+
R_set = R_set.union(conjugate)
|
1230 |
+
# a list of subsets of R_c whose words start with "x".
|
1231 |
+
R_c_list = []
|
1232 |
+
for x in C.A:
|
1233 |
+
r = {word for word in R_set if word[0] == x}
|
1234 |
+
R_c_list.append(r)
|
1235 |
+
R_set.difference_update(r)
|
1236 |
+
for w in Y:
|
1237 |
+
C.scan_and_fill_c(0, w)
|
1238 |
+
for x in A:
|
1239 |
+
C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]])
|
1240 |
+
alpha = 0
|
1241 |
+
while alpha < len(C.table):
|
1242 |
+
if C.p[alpha] == alpha:
|
1243 |
+
try:
|
1244 |
+
for x in C.A:
|
1245 |
+
if C.p[alpha] != alpha:
|
1246 |
+
break
|
1247 |
+
if C.table[alpha][C.A_dict[x]] is None:
|
1248 |
+
C.define_c(alpha, x)
|
1249 |
+
C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]])
|
1250 |
+
except ValueError as e:
|
1251 |
+
if incomplete:
|
1252 |
+
return C
|
1253 |
+
raise e
|
1254 |
+
alpha += 1
|
1255 |
+
return C
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/fp_groups.py
ADDED
@@ -0,0 +1,1348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Finitely Presented Groups and its algorithms. """
|
2 |
+
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.core.symbol import symbols
|
5 |
+
from sympy.combinatorics.free_groups import (FreeGroup, FreeGroupElement,
|
6 |
+
free_group)
|
7 |
+
from sympy.combinatorics.rewritingsystem import RewritingSystem
|
8 |
+
from sympy.combinatorics.coset_table import (CosetTable,
|
9 |
+
coset_enumeration_r,
|
10 |
+
coset_enumeration_c)
|
11 |
+
from sympy.combinatorics import PermutationGroup
|
12 |
+
from sympy.matrices.normalforms import invariant_factors
|
13 |
+
from sympy.matrices import Matrix
|
14 |
+
from sympy.polys.polytools import gcd
|
15 |
+
from sympy.printing.defaults import DefaultPrinting
|
16 |
+
from sympy.utilities import public
|
17 |
+
from sympy.utilities.magic import pollute
|
18 |
+
|
19 |
+
from itertools import product
|
20 |
+
|
21 |
+
|
22 |
+
@public
|
23 |
+
def fp_group(fr_grp, relators=()):
|
24 |
+
_fp_group = FpGroup(fr_grp, relators)
|
25 |
+
return (_fp_group,) + tuple(_fp_group._generators)
|
26 |
+
|
27 |
+
@public
|
28 |
+
def xfp_group(fr_grp, relators=()):
|
29 |
+
_fp_group = FpGroup(fr_grp, relators)
|
30 |
+
return (_fp_group, _fp_group._generators)
|
31 |
+
|
32 |
+
# Does not work. Both symbols and pollute are undefined. Never tested.
|
33 |
+
@public
|
34 |
+
def vfp_group(fr_grpm, relators):
|
35 |
+
_fp_group = FpGroup(symbols, relators)
|
36 |
+
pollute([sym.name for sym in _fp_group.symbols], _fp_group.generators)
|
37 |
+
return _fp_group
|
38 |
+
|
39 |
+
|
40 |
+
def _parse_relators(rels):
|
41 |
+
"""Parse the passed relators."""
|
42 |
+
return rels
|
43 |
+
|
44 |
+
|
45 |
+
###############################################################################
|
46 |
+
# FINITELY PRESENTED GROUPS #
|
47 |
+
###############################################################################
|
48 |
+
|
49 |
+
|
50 |
+
class FpGroup(DefaultPrinting):
|
51 |
+
"""
|
52 |
+
The FpGroup would take a FreeGroup and a list/tuple of relators, the
|
53 |
+
relators would be specified in such a way that each of them be equal to the
|
54 |
+
identity of the provided free group.
|
55 |
+
|
56 |
+
"""
|
57 |
+
is_group = True
|
58 |
+
is_FpGroup = True
|
59 |
+
is_PermutationGroup = False
|
60 |
+
|
61 |
+
def __init__(self, fr_grp, relators):
|
62 |
+
relators = _parse_relators(relators)
|
63 |
+
self.free_group = fr_grp
|
64 |
+
self.relators = relators
|
65 |
+
self.generators = self._generators()
|
66 |
+
self.dtype = type("FpGroupElement", (FpGroupElement,), {"group": self})
|
67 |
+
|
68 |
+
# CosetTable instance on identity subgroup
|
69 |
+
self._coset_table = None
|
70 |
+
# returns whether coset table on identity subgroup
|
71 |
+
# has been standardized
|
72 |
+
self._is_standardized = False
|
73 |
+
|
74 |
+
self._order = None
|
75 |
+
self._center = None
|
76 |
+
|
77 |
+
self._rewriting_system = RewritingSystem(self)
|
78 |
+
self._perm_isomorphism = None
|
79 |
+
return
|
80 |
+
|
81 |
+
def _generators(self):
|
82 |
+
return self.free_group.generators
|
83 |
+
|
84 |
+
def make_confluent(self):
|
85 |
+
'''
|
86 |
+
Try to make the group's rewriting system confluent
|
87 |
+
|
88 |
+
'''
|
89 |
+
self._rewriting_system.make_confluent()
|
90 |
+
return
|
91 |
+
|
92 |
+
def reduce(self, word):
|
93 |
+
'''
|
94 |
+
Return the reduced form of `word` in `self` according to the group's
|
95 |
+
rewriting system. If it's confluent, the reduced form is the unique normal
|
96 |
+
form of the word in the group.
|
97 |
+
|
98 |
+
'''
|
99 |
+
return self._rewriting_system.reduce(word)
|
100 |
+
|
101 |
+
def equals(self, word1, word2):
|
102 |
+
'''
|
103 |
+
Compare `word1` and `word2` for equality in the group
|
104 |
+
using the group's rewriting system. If the system is
|
105 |
+
confluent, the returned answer is necessarily correct.
|
106 |
+
(If it is not, `False` could be returned in some cases
|
107 |
+
where in fact `word1 == word2`)
|
108 |
+
|
109 |
+
'''
|
110 |
+
if self.reduce(word1*word2**-1) == self.identity:
|
111 |
+
return True
|
112 |
+
elif self._rewriting_system.is_confluent:
|
113 |
+
return False
|
114 |
+
return None
|
115 |
+
|
116 |
+
@property
|
117 |
+
def identity(self):
|
118 |
+
return self.free_group.identity
|
119 |
+
|
120 |
+
def __contains__(self, g):
|
121 |
+
return g in self.free_group
|
122 |
+
|
123 |
+
def subgroup(self, gens, C=None, homomorphism=False):
|
124 |
+
'''
|
125 |
+
Return the subgroup generated by `gens` using the
|
126 |
+
Reidemeister-Schreier algorithm
|
127 |
+
homomorphism -- When set to True, return a dictionary containing the images
|
128 |
+
of the presentation generators in the original group.
|
129 |
+
|
130 |
+
Examples
|
131 |
+
========
|
132 |
+
|
133 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup
|
134 |
+
>>> from sympy.combinatorics import free_group
|
135 |
+
>>> F, x, y = free_group("x, y")
|
136 |
+
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
|
137 |
+
>>> H = [x*y, x**-1*y**-1*x*y*x]
|
138 |
+
>>> K, T = f.subgroup(H, homomorphism=True)
|
139 |
+
>>> T(K.generators)
|
140 |
+
[x*y, x**-1*y**2*x**-1]
|
141 |
+
|
142 |
+
'''
|
143 |
+
|
144 |
+
if not all(isinstance(g, FreeGroupElement) for g in gens):
|
145 |
+
raise ValueError("Generators must be `FreeGroupElement`s")
|
146 |
+
if not all(g.group == self.free_group for g in gens):
|
147 |
+
raise ValueError("Given generators are not members of the group")
|
148 |
+
if homomorphism:
|
149 |
+
g, rels, _gens = reidemeister_presentation(self, gens, C=C, homomorphism=True)
|
150 |
+
else:
|
151 |
+
g, rels = reidemeister_presentation(self, gens, C=C)
|
152 |
+
if g:
|
153 |
+
g = FpGroup(g[0].group, rels)
|
154 |
+
else:
|
155 |
+
g = FpGroup(free_group('')[0], [])
|
156 |
+
if homomorphism:
|
157 |
+
from sympy.combinatorics.homomorphisms import homomorphism
|
158 |
+
return g, homomorphism(g, self, g.generators, _gens, check=False)
|
159 |
+
return g
|
160 |
+
|
161 |
+
def coset_enumeration(self, H, strategy="relator_based", max_cosets=None,
|
162 |
+
draft=None, incomplete=False):
|
163 |
+
"""
|
164 |
+
Return an instance of ``coset table``, when Todd-Coxeter algorithm is
|
165 |
+
run over the ``self`` with ``H`` as subgroup, using ``strategy``
|
166 |
+
argument as strategy. The returned coset table is compressed but not
|
167 |
+
standardized.
|
168 |
+
|
169 |
+
An instance of `CosetTable` for `fp_grp` can be passed as the keyword
|
170 |
+
argument `draft` in which case the coset enumeration will start with
|
171 |
+
that instance and attempt to complete it.
|
172 |
+
|
173 |
+
When `incomplete` is `True` and the function is unable to complete for
|
174 |
+
some reason, the partially complete table will be returned.
|
175 |
+
|
176 |
+
"""
|
177 |
+
if not max_cosets:
|
178 |
+
max_cosets = CosetTable.coset_table_max_limit
|
179 |
+
if strategy == 'relator_based':
|
180 |
+
C = coset_enumeration_r(self, H, max_cosets=max_cosets,
|
181 |
+
draft=draft, incomplete=incomplete)
|
182 |
+
else:
|
183 |
+
C = coset_enumeration_c(self, H, max_cosets=max_cosets,
|
184 |
+
draft=draft, incomplete=incomplete)
|
185 |
+
if C.is_complete():
|
186 |
+
C.compress()
|
187 |
+
return C
|
188 |
+
|
189 |
+
def standardize_coset_table(self):
|
190 |
+
"""
|
191 |
+
Standardized the coset table ``self`` and makes the internal variable
|
192 |
+
``_is_standardized`` equal to ``True``.
|
193 |
+
|
194 |
+
"""
|
195 |
+
self._coset_table.standardize()
|
196 |
+
self._is_standardized = True
|
197 |
+
|
198 |
+
def coset_table(self, H, strategy="relator_based", max_cosets=None,
|
199 |
+
draft=None, incomplete=False):
|
200 |
+
"""
|
201 |
+
Return the mathematical coset table of ``self`` in ``H``.
|
202 |
+
|
203 |
+
"""
|
204 |
+
if not H:
|
205 |
+
if self._coset_table is not None:
|
206 |
+
if not self._is_standardized:
|
207 |
+
self.standardize_coset_table()
|
208 |
+
else:
|
209 |
+
C = self.coset_enumeration([], strategy, max_cosets=max_cosets,
|
210 |
+
draft=draft, incomplete=incomplete)
|
211 |
+
self._coset_table = C
|
212 |
+
self.standardize_coset_table()
|
213 |
+
return self._coset_table.table
|
214 |
+
else:
|
215 |
+
C = self.coset_enumeration(H, strategy, max_cosets=max_cosets,
|
216 |
+
draft=draft, incomplete=incomplete)
|
217 |
+
C.standardize()
|
218 |
+
return C.table
|
219 |
+
|
220 |
+
def order(self, strategy="relator_based"):
|
221 |
+
"""
|
222 |
+
Returns the order of the finitely presented group ``self``. It uses
|
223 |
+
the coset enumeration with identity group as subgroup, i.e ``H=[]``.
|
224 |
+
|
225 |
+
Examples
|
226 |
+
========
|
227 |
+
|
228 |
+
>>> from sympy.combinatorics import free_group
|
229 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup
|
230 |
+
>>> F, x, y = free_group("x, y")
|
231 |
+
>>> f = FpGroup(F, [x, y**2])
|
232 |
+
>>> f.order(strategy="coset_table_based")
|
233 |
+
2
|
234 |
+
|
235 |
+
"""
|
236 |
+
if self._order is not None:
|
237 |
+
return self._order
|
238 |
+
if self._coset_table is not None:
|
239 |
+
self._order = len(self._coset_table.table)
|
240 |
+
elif len(self.relators) == 0:
|
241 |
+
self._order = self.free_group.order()
|
242 |
+
elif len(self.generators) == 1:
|
243 |
+
self._order = abs(gcd([r.array_form[0][1] for r in self.relators]))
|
244 |
+
elif self._is_infinite():
|
245 |
+
self._order = S.Infinity
|
246 |
+
else:
|
247 |
+
gens, C = self._finite_index_subgroup()
|
248 |
+
if C:
|
249 |
+
ind = len(C.table)
|
250 |
+
self._order = ind*self.subgroup(gens, C=C).order()
|
251 |
+
else:
|
252 |
+
self._order = self.index([])
|
253 |
+
return self._order
|
254 |
+
|
255 |
+
def _is_infinite(self):
|
256 |
+
'''
|
257 |
+
Test if the group is infinite. Return `True` if the test succeeds
|
258 |
+
and `None` otherwise
|
259 |
+
|
260 |
+
'''
|
261 |
+
used_gens = set()
|
262 |
+
for r in self.relators:
|
263 |
+
used_gens.update(r.contains_generators())
|
264 |
+
if not set(self.generators) <= used_gens:
|
265 |
+
return True
|
266 |
+
# Abelianisation test: check is the abelianisation is infinite
|
267 |
+
abelian_rels = []
|
268 |
+
for rel in self.relators:
|
269 |
+
abelian_rels.append([rel.exponent_sum(g) for g in self.generators])
|
270 |
+
m = Matrix(Matrix(abelian_rels))
|
271 |
+
if 0 in invariant_factors(m):
|
272 |
+
return True
|
273 |
+
else:
|
274 |
+
return None
|
275 |
+
|
276 |
+
|
277 |
+
def _finite_index_subgroup(self, s=None):
|
278 |
+
'''
|
279 |
+
Find the elements of `self` that generate a finite index subgroup
|
280 |
+
and, if found, return the list of elements and the coset table of `self` by
|
281 |
+
the subgroup, otherwise return `(None, None)`
|
282 |
+
|
283 |
+
'''
|
284 |
+
gen = self.most_frequent_generator()
|
285 |
+
rels = list(self.generators)
|
286 |
+
rels.extend(self.relators)
|
287 |
+
if not s:
|
288 |
+
if len(self.generators) == 2:
|
289 |
+
s = [gen] + [g for g in self.generators if g != gen]
|
290 |
+
else:
|
291 |
+
rand = self.free_group.identity
|
292 |
+
i = 0
|
293 |
+
while ((rand in rels or rand**-1 in rels or rand.is_identity)
|
294 |
+
and i<10):
|
295 |
+
rand = self.random()
|
296 |
+
i += 1
|
297 |
+
s = [gen, rand] + [g for g in self.generators if g != gen]
|
298 |
+
mid = (len(s)+1)//2
|
299 |
+
half1 = s[:mid]
|
300 |
+
half2 = s[mid:]
|
301 |
+
draft1 = None
|
302 |
+
draft2 = None
|
303 |
+
m = 200
|
304 |
+
C = None
|
305 |
+
while not C and (m/2 < CosetTable.coset_table_max_limit):
|
306 |
+
m = min(m, CosetTable.coset_table_max_limit)
|
307 |
+
draft1 = self.coset_enumeration(half1, max_cosets=m,
|
308 |
+
draft=draft1, incomplete=True)
|
309 |
+
if draft1.is_complete():
|
310 |
+
C = draft1
|
311 |
+
half = half1
|
312 |
+
else:
|
313 |
+
draft2 = self.coset_enumeration(half2, max_cosets=m,
|
314 |
+
draft=draft2, incomplete=True)
|
315 |
+
if draft2.is_complete():
|
316 |
+
C = draft2
|
317 |
+
half = half2
|
318 |
+
if not C:
|
319 |
+
m *= 2
|
320 |
+
if not C:
|
321 |
+
return None, None
|
322 |
+
C.compress()
|
323 |
+
return half, C
|
324 |
+
|
325 |
+
def most_frequent_generator(self):
|
326 |
+
gens = self.generators
|
327 |
+
rels = self.relators
|
328 |
+
freqs = [sum([r.generator_count(g) for r in rels]) for g in gens]
|
329 |
+
return gens[freqs.index(max(freqs))]
|
330 |
+
|
331 |
+
def random(self):
|
332 |
+
import random
|
333 |
+
r = self.free_group.identity
|
334 |
+
for i in range(random.randint(2,3)):
|
335 |
+
r = r*random.choice(self.generators)**random.choice([1,-1])
|
336 |
+
return r
|
337 |
+
|
338 |
+
def index(self, H, strategy="relator_based"):
|
339 |
+
"""
|
340 |
+
Return the index of subgroup ``H`` in group ``self``.
|
341 |
+
|
342 |
+
Examples
|
343 |
+
========
|
344 |
+
|
345 |
+
>>> from sympy.combinatorics import free_group
|
346 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup
|
347 |
+
>>> F, x, y = free_group("x, y")
|
348 |
+
>>> f = FpGroup(F, [x**5, y**4, y*x*y**3*x**3])
|
349 |
+
>>> f.index([x])
|
350 |
+
4
|
351 |
+
|
352 |
+
"""
|
353 |
+
# TODO: use |G:H| = |G|/|H| (currently H can't be made into a group)
|
354 |
+
# when we know |G| and |H|
|
355 |
+
|
356 |
+
if H == []:
|
357 |
+
return self.order()
|
358 |
+
else:
|
359 |
+
C = self.coset_enumeration(H, strategy)
|
360 |
+
return len(C.table)
|
361 |
+
|
362 |
+
def __str__(self):
|
363 |
+
if self.free_group.rank > 30:
|
364 |
+
str_form = "<fp group with %s generators>" % self.free_group.rank
|
365 |
+
else:
|
366 |
+
str_form = "<fp group on the generators %s>" % str(self.generators)
|
367 |
+
return str_form
|
368 |
+
|
369 |
+
__repr__ = __str__
|
370 |
+
|
371 |
+
#==============================================================================
|
372 |
+
# PERMUTATION GROUP METHODS
|
373 |
+
#==============================================================================
|
374 |
+
|
375 |
+
def _to_perm_group(self):
|
376 |
+
'''
|
377 |
+
Return an isomorphic permutation group and the isomorphism.
|
378 |
+
The implementation is dependent on coset enumeration so
|
379 |
+
will only terminate for finite groups.
|
380 |
+
|
381 |
+
'''
|
382 |
+
from sympy.combinatorics import Permutation
|
383 |
+
from sympy.combinatorics.homomorphisms import homomorphism
|
384 |
+
if self.order() is S.Infinity:
|
385 |
+
raise NotImplementedError("Permutation presentation of infinite "
|
386 |
+
"groups is not implemented")
|
387 |
+
if self._perm_isomorphism:
|
388 |
+
T = self._perm_isomorphism
|
389 |
+
P = T.image()
|
390 |
+
else:
|
391 |
+
C = self.coset_table([])
|
392 |
+
gens = self.generators
|
393 |
+
images = [[C[i][2*gens.index(g)] for i in range(len(C))] for g in gens]
|
394 |
+
images = [Permutation(i) for i in images]
|
395 |
+
P = PermutationGroup(images)
|
396 |
+
T = homomorphism(self, P, gens, images, check=False)
|
397 |
+
self._perm_isomorphism = T
|
398 |
+
return P, T
|
399 |
+
|
400 |
+
def _perm_group_list(self, method_name, *args):
|
401 |
+
'''
|
402 |
+
Given the name of a `PermutationGroup` method (returning a subgroup
|
403 |
+
or a list of subgroups) and (optionally) additional arguments it takes,
|
404 |
+
return a list or a list of lists containing the generators of this (or
|
405 |
+
these) subgroups in terms of the generators of `self`.
|
406 |
+
|
407 |
+
'''
|
408 |
+
P, T = self._to_perm_group()
|
409 |
+
perm_result = getattr(P, method_name)(*args)
|
410 |
+
single = False
|
411 |
+
if isinstance(perm_result, PermutationGroup):
|
412 |
+
perm_result, single = [perm_result], True
|
413 |
+
result = []
|
414 |
+
for group in perm_result:
|
415 |
+
gens = group.generators
|
416 |
+
result.append(T.invert(gens))
|
417 |
+
return result[0] if single else result
|
418 |
+
|
419 |
+
def derived_series(self):
|
420 |
+
'''
|
421 |
+
Return the list of lists containing the generators
|
422 |
+
of the subgroups in the derived series of `self`.
|
423 |
+
|
424 |
+
'''
|
425 |
+
return self._perm_group_list('derived_series')
|
426 |
+
|
427 |
+
def lower_central_series(self):
|
428 |
+
'''
|
429 |
+
Return the list of lists containing the generators
|
430 |
+
of the subgroups in the lower central series of `self`.
|
431 |
+
|
432 |
+
'''
|
433 |
+
return self._perm_group_list('lower_central_series')
|
434 |
+
|
435 |
+
def center(self):
|
436 |
+
'''
|
437 |
+
Return the list of generators of the center of `self`.
|
438 |
+
|
439 |
+
'''
|
440 |
+
return self._perm_group_list('center')
|
441 |
+
|
442 |
+
|
443 |
+
def derived_subgroup(self):
|
444 |
+
'''
|
445 |
+
Return the list of generators of the derived subgroup of `self`.
|
446 |
+
|
447 |
+
'''
|
448 |
+
return self._perm_group_list('derived_subgroup')
|
449 |
+
|
450 |
+
|
451 |
+
def centralizer(self, other):
|
452 |
+
'''
|
453 |
+
Return the list of generators of the centralizer of `other`
|
454 |
+
(a list of elements of `self`) in `self`.
|
455 |
+
|
456 |
+
'''
|
457 |
+
T = self._to_perm_group()[1]
|
458 |
+
other = T(other)
|
459 |
+
return self._perm_group_list('centralizer', other)
|
460 |
+
|
461 |
+
def normal_closure(self, other):
|
462 |
+
'''
|
463 |
+
Return the list of generators of the normal closure of `other`
|
464 |
+
(a list of elements of `self`) in `self`.
|
465 |
+
|
466 |
+
'''
|
467 |
+
T = self._to_perm_group()[1]
|
468 |
+
other = T(other)
|
469 |
+
return self._perm_group_list('normal_closure', other)
|
470 |
+
|
471 |
+
def _perm_property(self, attr):
|
472 |
+
'''
|
473 |
+
Given an attribute of a `PermutationGroup`, return
|
474 |
+
its value for a permutation group isomorphic to `self`.
|
475 |
+
|
476 |
+
'''
|
477 |
+
P = self._to_perm_group()[0]
|
478 |
+
return getattr(P, attr)
|
479 |
+
|
480 |
+
@property
|
481 |
+
def is_abelian(self):
|
482 |
+
'''
|
483 |
+
Check if `self` is abelian.
|
484 |
+
|
485 |
+
'''
|
486 |
+
return self._perm_property("is_abelian")
|
487 |
+
|
488 |
+
@property
|
489 |
+
def is_nilpotent(self):
|
490 |
+
'''
|
491 |
+
Check if `self` is nilpotent.
|
492 |
+
|
493 |
+
'''
|
494 |
+
return self._perm_property("is_nilpotent")
|
495 |
+
|
496 |
+
@property
|
497 |
+
def is_solvable(self):
|
498 |
+
'''
|
499 |
+
Check if `self` is solvable.
|
500 |
+
|
501 |
+
'''
|
502 |
+
return self._perm_property("is_solvable")
|
503 |
+
|
504 |
+
@property
|
505 |
+
def elements(self):
|
506 |
+
'''
|
507 |
+
List the elements of `self`.
|
508 |
+
|
509 |
+
'''
|
510 |
+
P, T = self._to_perm_group()
|
511 |
+
return T.invert(P._elements)
|
512 |
+
|
513 |
+
@property
|
514 |
+
def is_cyclic(self):
|
515 |
+
"""
|
516 |
+
Return ``True`` if group is Cyclic.
|
517 |
+
|
518 |
+
"""
|
519 |
+
if len(self.generators) <= 1:
|
520 |
+
return True
|
521 |
+
try:
|
522 |
+
P, T = self._to_perm_group()
|
523 |
+
except NotImplementedError:
|
524 |
+
raise NotImplementedError("Check for infinite Cyclic group "
|
525 |
+
"is not implemented")
|
526 |
+
return P.is_cyclic
|
527 |
+
|
528 |
+
def abelian_invariants(self):
|
529 |
+
"""
|
530 |
+
Return Abelian Invariants of a group.
|
531 |
+
"""
|
532 |
+
try:
|
533 |
+
P, T = self._to_perm_group()
|
534 |
+
except NotImplementedError:
|
535 |
+
raise NotImplementedError("abelian invariants is not implemented"
|
536 |
+
"for infinite group")
|
537 |
+
return P.abelian_invariants()
|
538 |
+
|
539 |
+
def composition_series(self):
|
540 |
+
"""
|
541 |
+
Return subnormal series of maximum length for a group.
|
542 |
+
"""
|
543 |
+
try:
|
544 |
+
P, T = self._to_perm_group()
|
545 |
+
except NotImplementedError:
|
546 |
+
raise NotImplementedError("composition series is not implemented"
|
547 |
+
"for infinite group")
|
548 |
+
return P.composition_series()
|
549 |
+
|
550 |
+
|
551 |
+
class FpSubgroup(DefaultPrinting):
|
552 |
+
'''
|
553 |
+
The class implementing a subgroup of an FpGroup or a FreeGroup
|
554 |
+
(only finite index subgroups are supported at this point). This
|
555 |
+
is to be used if one wishes to check if an element of the original
|
556 |
+
group belongs to the subgroup
|
557 |
+
|
558 |
+
'''
|
559 |
+
def __init__(self, G, gens, normal=False):
|
560 |
+
super().__init__()
|
561 |
+
self.parent = G
|
562 |
+
self.generators = list({g for g in gens if g != G.identity})
|
563 |
+
self._min_words = None #for use in __contains__
|
564 |
+
self.C = None
|
565 |
+
self.normal = normal
|
566 |
+
|
567 |
+
def __contains__(self, g):
|
568 |
+
|
569 |
+
if isinstance(self.parent, FreeGroup):
|
570 |
+
if self._min_words is None:
|
571 |
+
# make _min_words - a list of subwords such that
|
572 |
+
# g is in the subgroup if and only if it can be
|
573 |
+
# partitioned into these subwords. Infinite families of
|
574 |
+
# subwords are presented by tuples, e.g. (r, w)
|
575 |
+
# stands for the family of subwords r*w**n*r**-1
|
576 |
+
|
577 |
+
def _process(w):
|
578 |
+
# this is to be used before adding new words
|
579 |
+
# into _min_words; if the word w is not cyclically
|
580 |
+
# reduced, it will generate an infinite family of
|
581 |
+
# subwords so should be written as a tuple;
|
582 |
+
# if it is, w**-1 should be added to the list
|
583 |
+
# as well
|
584 |
+
p, r = w.cyclic_reduction(removed=True)
|
585 |
+
if not r.is_identity:
|
586 |
+
return [(r, p)]
|
587 |
+
else:
|
588 |
+
return [w, w**-1]
|
589 |
+
|
590 |
+
# make the initial list
|
591 |
+
gens = []
|
592 |
+
for w in self.generators:
|
593 |
+
if self.normal:
|
594 |
+
w = w.cyclic_reduction()
|
595 |
+
gens.extend(_process(w))
|
596 |
+
|
597 |
+
for w1 in gens:
|
598 |
+
for w2 in gens:
|
599 |
+
# if w1 and w2 are equal or are inverses, continue
|
600 |
+
if w1 == w2 or (not isinstance(w1, tuple)
|
601 |
+
and w1**-1 == w2):
|
602 |
+
continue
|
603 |
+
|
604 |
+
# if the start of one word is the inverse of the
|
605 |
+
# end of the other, their multiple should be added
|
606 |
+
# to _min_words because of cancellation
|
607 |
+
if isinstance(w1, tuple):
|
608 |
+
# start, end
|
609 |
+
s1, s2 = w1[0][0], w1[0][0]**-1
|
610 |
+
else:
|
611 |
+
s1, s2 = w1[0], w1[len(w1)-1]
|
612 |
+
|
613 |
+
if isinstance(w2, tuple):
|
614 |
+
# start, end
|
615 |
+
r1, r2 = w2[0][0], w2[0][0]**-1
|
616 |
+
else:
|
617 |
+
r1, r2 = w2[0], w2[len(w1)-1]
|
618 |
+
|
619 |
+
# p1 and p2 are w1 and w2 or, in case when
|
620 |
+
# w1 or w2 is an infinite family, a representative
|
621 |
+
p1, p2 = w1, w2
|
622 |
+
if isinstance(w1, tuple):
|
623 |
+
p1 = w1[0]*w1[1]*w1[0]**-1
|
624 |
+
if isinstance(w2, tuple):
|
625 |
+
p2 = w2[0]*w2[1]*w2[0]**-1
|
626 |
+
|
627 |
+
# add the product of the words to the list is necessary
|
628 |
+
if r1**-1 == s2 and not (p1*p2).is_identity:
|
629 |
+
new = _process(p1*p2)
|
630 |
+
if new not in gens:
|
631 |
+
gens.extend(new)
|
632 |
+
|
633 |
+
if r2**-1 == s1 and not (p2*p1).is_identity:
|
634 |
+
new = _process(p2*p1)
|
635 |
+
if new not in gens:
|
636 |
+
gens.extend(new)
|
637 |
+
|
638 |
+
self._min_words = gens
|
639 |
+
|
640 |
+
min_words = self._min_words
|
641 |
+
|
642 |
+
def _is_subword(w):
|
643 |
+
# check if w is a word in _min_words or one of
|
644 |
+
# the infinite families in it
|
645 |
+
w, r = w.cyclic_reduction(removed=True)
|
646 |
+
if r.is_identity or self.normal:
|
647 |
+
return w in min_words
|
648 |
+
else:
|
649 |
+
t = [s[1] for s in min_words if isinstance(s, tuple)
|
650 |
+
and s[0] == r]
|
651 |
+
return [s for s in t if w.power_of(s)] != []
|
652 |
+
|
653 |
+
# store the solution of words for which the result of
|
654 |
+
# _word_break (below) is known
|
655 |
+
known = {}
|
656 |
+
|
657 |
+
def _word_break(w):
|
658 |
+
# check if w can be written as a product of words
|
659 |
+
# in min_words
|
660 |
+
if len(w) == 0:
|
661 |
+
return True
|
662 |
+
i = 0
|
663 |
+
while i < len(w):
|
664 |
+
i += 1
|
665 |
+
prefix = w.subword(0, i)
|
666 |
+
if not _is_subword(prefix):
|
667 |
+
continue
|
668 |
+
rest = w.subword(i, len(w))
|
669 |
+
if rest not in known:
|
670 |
+
known[rest] = _word_break(rest)
|
671 |
+
if known[rest]:
|
672 |
+
return True
|
673 |
+
return False
|
674 |
+
|
675 |
+
if self.normal:
|
676 |
+
g = g.cyclic_reduction()
|
677 |
+
return _word_break(g)
|
678 |
+
else:
|
679 |
+
if self.C is None:
|
680 |
+
C = self.parent.coset_enumeration(self.generators)
|
681 |
+
self.C = C
|
682 |
+
i = 0
|
683 |
+
C = self.C
|
684 |
+
for j in range(len(g)):
|
685 |
+
i = C.table[i][C.A_dict[g[j]]]
|
686 |
+
return i == 0
|
687 |
+
|
688 |
+
def order(self):
|
689 |
+
if not self.generators:
|
690 |
+
return S.One
|
691 |
+
if isinstance(self.parent, FreeGroup):
|
692 |
+
return S.Infinity
|
693 |
+
if self.C is None:
|
694 |
+
C = self.parent.coset_enumeration(self.generators)
|
695 |
+
self.C = C
|
696 |
+
# This is valid because `len(self.C.table)` (the index of the subgroup)
|
697 |
+
# will always be finite - otherwise coset enumeration doesn't terminate
|
698 |
+
return self.parent.order()/len(self.C.table)
|
699 |
+
|
700 |
+
def to_FpGroup(self):
|
701 |
+
if isinstance(self.parent, FreeGroup):
|
702 |
+
gen_syms = [('x_%d'%i) for i in range(len(self.generators))]
|
703 |
+
return free_group(', '.join(gen_syms))[0]
|
704 |
+
return self.parent.subgroup(C=self.C)
|
705 |
+
|
706 |
+
def __str__(self):
|
707 |
+
if len(self.generators) > 30:
|
708 |
+
str_form = "<fp subgroup with %s generators>" % len(self.generators)
|
709 |
+
else:
|
710 |
+
str_form = "<fp subgroup on the generators %s>" % str(self.generators)
|
711 |
+
return str_form
|
712 |
+
|
713 |
+
__repr__ = __str__
|
714 |
+
|
715 |
+
|
716 |
+
###############################################################################
|
717 |
+
# LOW INDEX SUBGROUPS #
|
718 |
+
###############################################################################
|
719 |
+
|
720 |
+
def low_index_subgroups(G, N, Y=()):
|
721 |
+
"""
|
722 |
+
Implements the Low Index Subgroups algorithm, i.e find all subgroups of
|
723 |
+
``G`` upto a given index ``N``. This implements the method described in
|
724 |
+
[Sim94]. This procedure involves a backtrack search over incomplete Coset
|
725 |
+
Tables, rather than over forced coincidences.
|
726 |
+
|
727 |
+
Parameters
|
728 |
+
==========
|
729 |
+
|
730 |
+
G: An FpGroup < X|R >
|
731 |
+
N: positive integer, representing the maximum index value for subgroups
|
732 |
+
Y: (an optional argument) specifying a list of subgroup generators, such
|
733 |
+
that each of the resulting subgroup contains the subgroup generated by Y.
|
734 |
+
|
735 |
+
Examples
|
736 |
+
========
|
737 |
+
|
738 |
+
>>> from sympy.combinatorics import free_group
|
739 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, low_index_subgroups
|
740 |
+
>>> F, x, y = free_group("x, y")
|
741 |
+
>>> f = FpGroup(F, [x**2, y**3, (x*y)**4])
|
742 |
+
>>> L = low_index_subgroups(f, 4)
|
743 |
+
>>> for coset_table in L:
|
744 |
+
... print(coset_table.table)
|
745 |
+
[[0, 0, 0, 0]]
|
746 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]]
|
747 |
+
[[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]]
|
748 |
+
[[1, 1, 0, 0], [0, 0, 1, 1]]
|
749 |
+
|
750 |
+
References
|
751 |
+
==========
|
752 |
+
|
753 |
+
.. [1] Holt, D., Eick, B., O'Brien, E.
|
754 |
+
"Handbook of Computational Group Theory"
|
755 |
+
Section 5.4
|
756 |
+
|
757 |
+
.. [2] Marston Conder and Peter Dobcsanyi
|
758 |
+
"Applications and Adaptions of the Low Index Subgroups Procedure"
|
759 |
+
|
760 |
+
"""
|
761 |
+
C = CosetTable(G, [])
|
762 |
+
R = G.relators
|
763 |
+
# length chosen for the length of the short relators
|
764 |
+
len_short_rel = 5
|
765 |
+
# elements of R2 only checked at the last step for complete
|
766 |
+
# coset tables
|
767 |
+
R2 = {rel for rel in R if len(rel) > len_short_rel}
|
768 |
+
# elements of R1 are used in inner parts of the process to prune
|
769 |
+
# branches of the search tree,
|
770 |
+
R1 = {rel.identity_cyclic_reduction() for rel in set(R) - R2}
|
771 |
+
R1_c_list = C.conjugates(R1)
|
772 |
+
S = []
|
773 |
+
descendant_subgroups(S, C, R1_c_list, C.A[0], R2, N, Y)
|
774 |
+
return S
|
775 |
+
|
776 |
+
|
777 |
+
def descendant_subgroups(S, C, R1_c_list, x, R2, N, Y):
|
778 |
+
A_dict = C.A_dict
|
779 |
+
A_dict_inv = C.A_dict_inv
|
780 |
+
if C.is_complete():
|
781 |
+
# if C is complete then it only needs to test
|
782 |
+
# whether the relators in R2 are satisfied
|
783 |
+
for w, alpha in product(R2, C.omega):
|
784 |
+
if not C.scan_check(alpha, w):
|
785 |
+
return
|
786 |
+
# relators in R2 are satisfied, append the table to list
|
787 |
+
S.append(C)
|
788 |
+
else:
|
789 |
+
# find the first undefined entry in Coset Table
|
790 |
+
for alpha, x in product(range(len(C.table)), C.A):
|
791 |
+
if C.table[alpha][A_dict[x]] is None:
|
792 |
+
# this is "x" in pseudo-code (using "y" makes it clear)
|
793 |
+
undefined_coset, undefined_gen = alpha, x
|
794 |
+
break
|
795 |
+
# for filling up the undefine entry we try all possible values
|
796 |
+
# of beta in Omega or beta = n where beta^(undefined_gen^-1) is undefined
|
797 |
+
reach = C.omega + [C.n]
|
798 |
+
for beta in reach:
|
799 |
+
if beta < N:
|
800 |
+
if beta == C.n or C.table[beta][A_dict_inv[undefined_gen]] is None:
|
801 |
+
try_descendant(S, C, R1_c_list, R2, N, undefined_coset, \
|
802 |
+
undefined_gen, beta, Y)
|
803 |
+
|
804 |
+
|
805 |
+
def try_descendant(S, C, R1_c_list, R2, N, alpha, x, beta, Y):
|
806 |
+
r"""
|
807 |
+
Solves the problem of trying out each individual possibility
|
808 |
+
for `\alpha^x.
|
809 |
+
|
810 |
+
"""
|
811 |
+
D = C.copy()
|
812 |
+
if beta == D.n and beta < N:
|
813 |
+
D.table.append([None]*len(D.A))
|
814 |
+
D.p.append(beta)
|
815 |
+
D.table[alpha][D.A_dict[x]] = beta
|
816 |
+
D.table[beta][D.A_dict_inv[x]] = alpha
|
817 |
+
D.deduction_stack.append((alpha, x))
|
818 |
+
if not D.process_deductions_check(R1_c_list[D.A_dict[x]], \
|
819 |
+
R1_c_list[D.A_dict_inv[x]]):
|
820 |
+
return
|
821 |
+
for w in Y:
|
822 |
+
if not D.scan_check(0, w):
|
823 |
+
return
|
824 |
+
if first_in_class(D, Y):
|
825 |
+
descendant_subgroups(S, D, R1_c_list, x, R2, N, Y)
|
826 |
+
|
827 |
+
|
828 |
+
def first_in_class(C, Y=()):
|
829 |
+
"""
|
830 |
+
Checks whether the subgroup ``H=G1`` corresponding to the Coset Table
|
831 |
+
could possibly be the canonical representative of its conjugacy class.
|
832 |
+
|
833 |
+
Parameters
|
834 |
+
==========
|
835 |
+
|
836 |
+
C: CosetTable
|
837 |
+
|
838 |
+
Returns
|
839 |
+
=======
|
840 |
+
|
841 |
+
bool: True/False
|
842 |
+
|
843 |
+
If this returns False, then no descendant of C can have that property, and
|
844 |
+
so we can abandon C. If it returns True, then we need to process further
|
845 |
+
the node of the search tree corresponding to C, and so we call
|
846 |
+
``descendant_subgroups`` recursively on C.
|
847 |
+
|
848 |
+
Examples
|
849 |
+
========
|
850 |
+
|
851 |
+
>>> from sympy.combinatorics import free_group
|
852 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, first_in_class
|
853 |
+
>>> F, x, y = free_group("x, y")
|
854 |
+
>>> f = FpGroup(F, [x**2, y**3, (x*y)**4])
|
855 |
+
>>> C = CosetTable(f, [])
|
856 |
+
>>> C.table = [[0, 0, None, None]]
|
857 |
+
>>> first_in_class(C)
|
858 |
+
True
|
859 |
+
>>> C.table = [[1, 1, 1, None], [0, 0, None, 1]]; C.p = [0, 1]
|
860 |
+
>>> first_in_class(C)
|
861 |
+
True
|
862 |
+
>>> C.table = [[1, 1, 2, 1], [0, 0, 0, None], [None, None, None, 0]]
|
863 |
+
>>> C.p = [0, 1, 2]
|
864 |
+
>>> first_in_class(C)
|
865 |
+
False
|
866 |
+
>>> C.table = [[1, 1, 1, 2], [0, 0, 2, 0], [2, None, 0, 1]]
|
867 |
+
>>> first_in_class(C)
|
868 |
+
False
|
869 |
+
|
870 |
+
# TODO:: Sims points out in [Sim94] that performance can be improved by
|
871 |
+
# remembering some of the information computed by ``first_in_class``. If
|
872 |
+
# the ``continue alpha`` statement is executed at line 14, then the same thing
|
873 |
+
# will happen for that value of alpha in any descendant of the table C, and so
|
874 |
+
# the values the values of alpha for which this occurs could profitably be
|
875 |
+
# stored and passed through to the descendants of C. Of course this would
|
876 |
+
# make the code more complicated.
|
877 |
+
|
878 |
+
# The code below is taken directly from the function on page 208 of [Sim94]
|
879 |
+
# nu[alpha]
|
880 |
+
|
881 |
+
"""
|
882 |
+
n = C.n
|
883 |
+
# lamda is the largest numbered point in Omega_c_alpha which is currently defined
|
884 |
+
lamda = -1
|
885 |
+
# for alpha in Omega_c, nu[alpha] is the point in Omega_c_alpha corresponding to alpha
|
886 |
+
nu = [None]*n
|
887 |
+
# for alpha in Omega_c_alpha, mu[alpha] is the point in Omega_c corresponding to alpha
|
888 |
+
mu = [None]*n
|
889 |
+
# mutually nu and mu are the mutually-inverse equivalence maps between
|
890 |
+
# Omega_c_alpha and Omega_c
|
891 |
+
next_alpha = False
|
892 |
+
# For each 0!=alpha in [0 .. nc-1], we start by constructing the equivalent
|
893 |
+
# standardized coset table C_alpha corresponding to H_alpha
|
894 |
+
for alpha in range(1, n):
|
895 |
+
# reset nu to "None" after previous value of alpha
|
896 |
+
for beta in range(lamda+1):
|
897 |
+
nu[mu[beta]] = None
|
898 |
+
# we only want to reject our current table in favour of a preceding
|
899 |
+
# table in the ordering in which 1 is replaced by alpha, if the subgroup
|
900 |
+
# G_alpha corresponding to this preceding table definitely contains the
|
901 |
+
# given subgroup
|
902 |
+
for w in Y:
|
903 |
+
# TODO: this should support input of a list of general words
|
904 |
+
# not just the words which are in "A" (i.e gen and gen^-1)
|
905 |
+
if C.table[alpha][C.A_dict[w]] != alpha:
|
906 |
+
# continue with alpha
|
907 |
+
next_alpha = True
|
908 |
+
break
|
909 |
+
if next_alpha:
|
910 |
+
next_alpha = False
|
911 |
+
continue
|
912 |
+
# try alpha as the new point 0 in Omega_C_alpha
|
913 |
+
mu[0] = alpha
|
914 |
+
nu[alpha] = 0
|
915 |
+
# compare corresponding entries in C and C_alpha
|
916 |
+
lamda = 0
|
917 |
+
for beta in range(n):
|
918 |
+
for x in C.A:
|
919 |
+
gamma = C.table[beta][C.A_dict[x]]
|
920 |
+
delta = C.table[mu[beta]][C.A_dict[x]]
|
921 |
+
# if either of the entries is undefined,
|
922 |
+
# we move with next alpha
|
923 |
+
if gamma is None or delta is None:
|
924 |
+
# continue with alpha
|
925 |
+
next_alpha = True
|
926 |
+
break
|
927 |
+
if nu[delta] is None:
|
928 |
+
# delta becomes the next point in Omega_C_alpha
|
929 |
+
lamda += 1
|
930 |
+
nu[delta] = lamda
|
931 |
+
mu[lamda] = delta
|
932 |
+
if nu[delta] < gamma:
|
933 |
+
return False
|
934 |
+
if nu[delta] > gamma:
|
935 |
+
# continue with alpha
|
936 |
+
next_alpha = True
|
937 |
+
break
|
938 |
+
if next_alpha:
|
939 |
+
next_alpha = False
|
940 |
+
break
|
941 |
+
return True
|
942 |
+
|
943 |
+
#========================================================================
|
944 |
+
# Simplifying Presentation
|
945 |
+
#========================================================================
|
946 |
+
|
947 |
+
def simplify_presentation(*args, change_gens=False):
|
948 |
+
'''
|
949 |
+
For an instance of `FpGroup`, return a simplified isomorphic copy of
|
950 |
+
the group (e.g. remove redundant generators or relators). Alternatively,
|
951 |
+
a list of generators and relators can be passed in which case the
|
952 |
+
simplified lists will be returned.
|
953 |
+
|
954 |
+
By default, the generators of the group are unchanged. If you would
|
955 |
+
like to remove redundant generators, set the keyword argument
|
956 |
+
`change_gens = True`.
|
957 |
+
|
958 |
+
'''
|
959 |
+
if len(args) == 1:
|
960 |
+
if not isinstance(args[0], FpGroup):
|
961 |
+
raise TypeError("The argument must be an instance of FpGroup")
|
962 |
+
G = args[0]
|
963 |
+
gens, rels = simplify_presentation(G.generators, G.relators,
|
964 |
+
change_gens=change_gens)
|
965 |
+
if gens:
|
966 |
+
return FpGroup(gens[0].group, rels)
|
967 |
+
return FpGroup(FreeGroup([]), [])
|
968 |
+
elif len(args) == 2:
|
969 |
+
gens, rels = args[0][:], args[1][:]
|
970 |
+
if not gens:
|
971 |
+
return gens, rels
|
972 |
+
identity = gens[0].group.identity
|
973 |
+
else:
|
974 |
+
if len(args) == 0:
|
975 |
+
m = "Not enough arguments"
|
976 |
+
else:
|
977 |
+
m = "Too many arguments"
|
978 |
+
raise RuntimeError(m)
|
979 |
+
|
980 |
+
prev_gens = []
|
981 |
+
prev_rels = []
|
982 |
+
while not set(prev_rels) == set(rels):
|
983 |
+
prev_rels = rels
|
984 |
+
while change_gens and not set(prev_gens) == set(gens):
|
985 |
+
prev_gens = gens
|
986 |
+
gens, rels = elimination_technique_1(gens, rels, identity)
|
987 |
+
rels = _simplify_relators(rels, identity)
|
988 |
+
|
989 |
+
if change_gens:
|
990 |
+
syms = [g.array_form[0][0] for g in gens]
|
991 |
+
F = free_group(syms)[0]
|
992 |
+
identity = F.identity
|
993 |
+
gens = F.generators
|
994 |
+
subs = dict(zip(syms, gens))
|
995 |
+
for j, r in enumerate(rels):
|
996 |
+
a = r.array_form
|
997 |
+
rel = identity
|
998 |
+
for sym, p in a:
|
999 |
+
rel = rel*subs[sym]**p
|
1000 |
+
rels[j] = rel
|
1001 |
+
return gens, rels
|
1002 |
+
|
1003 |
+
def _simplify_relators(rels, identity):
|
1004 |
+
"""Relies upon ``_simplification_technique_1`` for its functioning. """
|
1005 |
+
rels = rels[:]
|
1006 |
+
|
1007 |
+
rels = list(set(_simplification_technique_1(rels)))
|
1008 |
+
rels.sort()
|
1009 |
+
rels = [r.identity_cyclic_reduction() for r in rels]
|
1010 |
+
try:
|
1011 |
+
rels.remove(identity)
|
1012 |
+
except ValueError:
|
1013 |
+
pass
|
1014 |
+
return rels
|
1015 |
+
|
1016 |
+
# Pg 350, section 2.5.1 from [2]
|
1017 |
+
def elimination_technique_1(gens, rels, identity):
|
1018 |
+
rels = rels[:]
|
1019 |
+
# the shorter relators are examined first so that generators selected for
|
1020 |
+
# elimination will have shorter strings as equivalent
|
1021 |
+
rels.sort()
|
1022 |
+
gens = gens[:]
|
1023 |
+
redundant_gens = {}
|
1024 |
+
redundant_rels = []
|
1025 |
+
used_gens = set()
|
1026 |
+
# examine each relator in relator list for any generator occurring exactly
|
1027 |
+
# once
|
1028 |
+
for rel in rels:
|
1029 |
+
# don't look for a redundant generator in a relator which
|
1030 |
+
# depends on previously found ones
|
1031 |
+
contained_gens = rel.contains_generators()
|
1032 |
+
if any(g in contained_gens for g in redundant_gens):
|
1033 |
+
continue
|
1034 |
+
contained_gens = list(contained_gens)
|
1035 |
+
contained_gens.sort(reverse = True)
|
1036 |
+
for gen in contained_gens:
|
1037 |
+
if rel.generator_count(gen) == 1 and gen not in used_gens:
|
1038 |
+
k = rel.exponent_sum(gen)
|
1039 |
+
gen_index = rel.index(gen**k)
|
1040 |
+
bk = rel.subword(gen_index + 1, len(rel))
|
1041 |
+
fw = rel.subword(0, gen_index)
|
1042 |
+
chi = bk*fw
|
1043 |
+
redundant_gens[gen] = chi**(-1*k)
|
1044 |
+
used_gens.update(chi.contains_generators())
|
1045 |
+
redundant_rels.append(rel)
|
1046 |
+
break
|
1047 |
+
rels = [r for r in rels if r not in redundant_rels]
|
1048 |
+
# eliminate the redundant generators from remaining relators
|
1049 |
+
rels = [r.eliminate_words(redundant_gens, _all = True).identity_cyclic_reduction() for r in rels]
|
1050 |
+
rels = list(set(rels))
|
1051 |
+
try:
|
1052 |
+
rels.remove(identity)
|
1053 |
+
except ValueError:
|
1054 |
+
pass
|
1055 |
+
gens = [g for g in gens if g not in redundant_gens]
|
1056 |
+
return gens, rels
|
1057 |
+
|
1058 |
+
def _simplification_technique_1(rels):
|
1059 |
+
"""
|
1060 |
+
All relators are checked to see if they are of the form `gen^n`. If any
|
1061 |
+
such relators are found then all other relators are processed for strings
|
1062 |
+
in the `gen` known order.
|
1063 |
+
|
1064 |
+
Examples
|
1065 |
+
========
|
1066 |
+
|
1067 |
+
>>> from sympy.combinatorics import free_group
|
1068 |
+
>>> from sympy.combinatorics.fp_groups import _simplification_technique_1
|
1069 |
+
>>> F, x, y = free_group("x, y")
|
1070 |
+
>>> w1 = [x**2*y**4, x**3]
|
1071 |
+
>>> _simplification_technique_1(w1)
|
1072 |
+
[x**-1*y**4, x**3]
|
1073 |
+
|
1074 |
+
>>> w2 = [x**2*y**-4*x**5, x**3, x**2*y**8, y**5]
|
1075 |
+
>>> _simplification_technique_1(w2)
|
1076 |
+
[x**-1*y*x**-1, x**3, x**-1*y**-2, y**5]
|
1077 |
+
|
1078 |
+
>>> w3 = [x**6*y**4, x**4]
|
1079 |
+
>>> _simplification_technique_1(w3)
|
1080 |
+
[x**2*y**4, x**4]
|
1081 |
+
|
1082 |
+
"""
|
1083 |
+
rels = rels[:]
|
1084 |
+
# dictionary with "gen: n" where gen^n is one of the relators
|
1085 |
+
exps = {}
|
1086 |
+
for i in range(len(rels)):
|
1087 |
+
rel = rels[i]
|
1088 |
+
if rel.number_syllables() == 1:
|
1089 |
+
g = rel[0]
|
1090 |
+
exp = abs(rel.array_form[0][1])
|
1091 |
+
if rel.array_form[0][1] < 0:
|
1092 |
+
rels[i] = rels[i]**-1
|
1093 |
+
g = g**-1
|
1094 |
+
if g in exps:
|
1095 |
+
exp = gcd(exp, exps[g].array_form[0][1])
|
1096 |
+
exps[g] = g**exp
|
1097 |
+
|
1098 |
+
one_syllables_words = exps.values()
|
1099 |
+
# decrease some of the exponents in relators, making use of the single
|
1100 |
+
# syllable relators
|
1101 |
+
for i in range(len(rels)):
|
1102 |
+
rel = rels[i]
|
1103 |
+
if rel in one_syllables_words:
|
1104 |
+
continue
|
1105 |
+
rel = rel.eliminate_words(one_syllables_words, _all = True)
|
1106 |
+
# if rels[i] contains g**n where abs(n) is greater than half of the power p
|
1107 |
+
# of g in exps, g**n can be replaced by g**(n-p) (or g**(p-n) if n<0)
|
1108 |
+
for g in rel.contains_generators():
|
1109 |
+
if g in exps:
|
1110 |
+
exp = exps[g].array_form[0][1]
|
1111 |
+
max_exp = (exp + 1)//2
|
1112 |
+
rel = rel.eliminate_word(g**(max_exp), g**(max_exp-exp), _all = True)
|
1113 |
+
rel = rel.eliminate_word(g**(-max_exp), g**(-(max_exp-exp)), _all = True)
|
1114 |
+
rels[i] = rel
|
1115 |
+
rels = [r.identity_cyclic_reduction() for r in rels]
|
1116 |
+
return rels
|
1117 |
+
|
1118 |
+
|
1119 |
+
###############################################################################
|
1120 |
+
# SUBGROUP PRESENTATIONS #
|
1121 |
+
###############################################################################
|
1122 |
+
|
1123 |
+
# Pg 175 [1]
|
1124 |
+
def define_schreier_generators(C, homomorphism=False):
|
1125 |
+
'''
|
1126 |
+
Parameters
|
1127 |
+
==========
|
1128 |
+
|
1129 |
+
C -- Coset table.
|
1130 |
+
homomorphism -- When set to True, return a dictionary containing the images
|
1131 |
+
of the presentation generators in the original group.
|
1132 |
+
'''
|
1133 |
+
y = []
|
1134 |
+
gamma = 1
|
1135 |
+
f = C.fp_group
|
1136 |
+
X = f.generators
|
1137 |
+
if homomorphism:
|
1138 |
+
# `_gens` stores the elements of the parent group to
|
1139 |
+
# to which the schreier generators correspond to.
|
1140 |
+
_gens = {}
|
1141 |
+
# compute the schreier Traversal
|
1142 |
+
tau = {}
|
1143 |
+
tau[0] = f.identity
|
1144 |
+
C.P = [[None]*len(C.A) for i in range(C.n)]
|
1145 |
+
for alpha, x in product(C.omega, C.A):
|
1146 |
+
beta = C.table[alpha][C.A_dict[x]]
|
1147 |
+
if beta == gamma:
|
1148 |
+
C.P[alpha][C.A_dict[x]] = "<identity>"
|
1149 |
+
C.P[beta][C.A_dict_inv[x]] = "<identity>"
|
1150 |
+
gamma += 1
|
1151 |
+
if homomorphism:
|
1152 |
+
tau[beta] = tau[alpha]*x
|
1153 |
+
elif x in X and C.P[alpha][C.A_dict[x]] is None:
|
1154 |
+
y_alpha_x = '%s_%s' % (x, alpha)
|
1155 |
+
y.append(y_alpha_x)
|
1156 |
+
C.P[alpha][C.A_dict[x]] = y_alpha_x
|
1157 |
+
if homomorphism:
|
1158 |
+
_gens[y_alpha_x] = tau[alpha]*x*tau[beta]**-1
|
1159 |
+
grp_gens = list(free_group(', '.join(y)))
|
1160 |
+
C._schreier_free_group = grp_gens.pop(0)
|
1161 |
+
C._schreier_generators = grp_gens
|
1162 |
+
if homomorphism:
|
1163 |
+
C._schreier_gen_elem = _gens
|
1164 |
+
# replace all elements of P by, free group elements
|
1165 |
+
for i, j in product(range(len(C.P)), range(len(C.A))):
|
1166 |
+
# if equals "<identity>", replace by identity element
|
1167 |
+
if C.P[i][j] == "<identity>":
|
1168 |
+
C.P[i][j] = C._schreier_free_group.identity
|
1169 |
+
elif isinstance(C.P[i][j], str):
|
1170 |
+
r = C._schreier_generators[y.index(C.P[i][j])]
|
1171 |
+
C.P[i][j] = r
|
1172 |
+
beta = C.table[i][j]
|
1173 |
+
C.P[beta][j + 1] = r**-1
|
1174 |
+
|
1175 |
+
def reidemeister_relators(C):
|
1176 |
+
R = C.fp_group.relators
|
1177 |
+
rels = [rewrite(C, coset, word) for word in R for coset in range(C.n)]
|
1178 |
+
order_1_gens = {i for i in rels if len(i) == 1}
|
1179 |
+
|
1180 |
+
# remove all the order 1 generators from relators
|
1181 |
+
rels = list(filter(lambda rel: rel not in order_1_gens, rels))
|
1182 |
+
|
1183 |
+
# replace order 1 generators by identity element in reidemeister relators
|
1184 |
+
for i in range(len(rels)):
|
1185 |
+
w = rels[i]
|
1186 |
+
w = w.eliminate_words(order_1_gens, _all=True)
|
1187 |
+
rels[i] = w
|
1188 |
+
|
1189 |
+
C._schreier_generators = [i for i in C._schreier_generators
|
1190 |
+
if not (i in order_1_gens or i**-1 in order_1_gens)]
|
1191 |
+
|
1192 |
+
# Tietze transformation 1 i.e TT_1
|
1193 |
+
# remove cyclic conjugate elements from relators
|
1194 |
+
i = 0
|
1195 |
+
while i < len(rels):
|
1196 |
+
w = rels[i]
|
1197 |
+
j = i + 1
|
1198 |
+
while j < len(rels):
|
1199 |
+
if w.is_cyclic_conjugate(rels[j]):
|
1200 |
+
del rels[j]
|
1201 |
+
else:
|
1202 |
+
j += 1
|
1203 |
+
i += 1
|
1204 |
+
|
1205 |
+
C._reidemeister_relators = rels
|
1206 |
+
|
1207 |
+
|
1208 |
+
def rewrite(C, alpha, w):
|
1209 |
+
"""
|
1210 |
+
Parameters
|
1211 |
+
==========
|
1212 |
+
|
1213 |
+
C: CosetTable
|
1214 |
+
alpha: A live coset
|
1215 |
+
w: A word in `A*`
|
1216 |
+
|
1217 |
+
Returns
|
1218 |
+
=======
|
1219 |
+
|
1220 |
+
rho(tau(alpha), w)
|
1221 |
+
|
1222 |
+
Examples
|
1223 |
+
========
|
1224 |
+
|
1225 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, define_schreier_generators, rewrite
|
1226 |
+
>>> from sympy.combinatorics import free_group
|
1227 |
+
>>> F, x, y = free_group("x, y")
|
1228 |
+
>>> f = FpGroup(F, [x**2, y**3, (x*y)**6])
|
1229 |
+
>>> C = CosetTable(f, [])
|
1230 |
+
>>> C.table = [[1, 1, 2, 3], [0, 0, 4, 5], [4, 4, 3, 0], [5, 5, 0, 2], [2, 2, 5, 1], [3, 3, 1, 4]]
|
1231 |
+
>>> C.p = [0, 1, 2, 3, 4, 5]
|
1232 |
+
>>> define_schreier_generators(C)
|
1233 |
+
>>> rewrite(C, 0, (x*y)**6)
|
1234 |
+
x_4*y_2*x_3*x_1*x_2*y_4*x_5
|
1235 |
+
|
1236 |
+
"""
|
1237 |
+
v = C._schreier_free_group.identity
|
1238 |
+
for i in range(len(w)):
|
1239 |
+
x_i = w[i]
|
1240 |
+
v = v*C.P[alpha][C.A_dict[x_i]]
|
1241 |
+
alpha = C.table[alpha][C.A_dict[x_i]]
|
1242 |
+
return v
|
1243 |
+
|
1244 |
+
# Pg 350, section 2.5.2 from [2]
|
1245 |
+
def elimination_technique_2(C):
|
1246 |
+
"""
|
1247 |
+
This technique eliminates one generator at a time. Heuristically this
|
1248 |
+
seems superior in that we may select for elimination the generator with
|
1249 |
+
shortest equivalent string at each stage.
|
1250 |
+
|
1251 |
+
>>> from sympy.combinatorics import free_group
|
1252 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r, \
|
1253 |
+
reidemeister_relators, define_schreier_generators, elimination_technique_2
|
1254 |
+
>>> F, x, y = free_group("x, y")
|
1255 |
+
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2]); H = [x*y, x**-1*y**-1*x*y*x]
|
1256 |
+
>>> C = coset_enumeration_r(f, H)
|
1257 |
+
>>> C.compress(); C.standardize()
|
1258 |
+
>>> define_schreier_generators(C)
|
1259 |
+
>>> reidemeister_relators(C)
|
1260 |
+
>>> elimination_technique_2(C)
|
1261 |
+
([y_1, y_2], [y_2**-3, y_2*y_1*y_2*y_1*y_2*y_1, y_1**2])
|
1262 |
+
|
1263 |
+
"""
|
1264 |
+
rels = C._reidemeister_relators
|
1265 |
+
rels.sort(reverse=True)
|
1266 |
+
gens = C._schreier_generators
|
1267 |
+
for i in range(len(gens) - 1, -1, -1):
|
1268 |
+
rel = rels[i]
|
1269 |
+
for j in range(len(gens) - 1, -1, -1):
|
1270 |
+
gen = gens[j]
|
1271 |
+
if rel.generator_count(gen) == 1:
|
1272 |
+
k = rel.exponent_sum(gen)
|
1273 |
+
gen_index = rel.index(gen**k)
|
1274 |
+
bk = rel.subword(gen_index + 1, len(rel))
|
1275 |
+
fw = rel.subword(0, gen_index)
|
1276 |
+
rep_by = (bk*fw)**(-1*k)
|
1277 |
+
del rels[i]; del gens[j]
|
1278 |
+
for l in range(len(rels)):
|
1279 |
+
rels[l] = rels[l].eliminate_word(gen, rep_by)
|
1280 |
+
break
|
1281 |
+
C._reidemeister_relators = rels
|
1282 |
+
C._schreier_generators = gens
|
1283 |
+
return C._schreier_generators, C._reidemeister_relators
|
1284 |
+
|
1285 |
+
def reidemeister_presentation(fp_grp, H, C=None, homomorphism=False):
|
1286 |
+
"""
|
1287 |
+
Parameters
|
1288 |
+
==========
|
1289 |
+
|
1290 |
+
fp_group: A finitely presented group, an instance of FpGroup
|
1291 |
+
H: A subgroup whose presentation is to be found, given as a list
|
1292 |
+
of words in generators of `fp_grp`
|
1293 |
+
homomorphism: When set to True, return a homomorphism from the subgroup
|
1294 |
+
to the parent group
|
1295 |
+
|
1296 |
+
Examples
|
1297 |
+
========
|
1298 |
+
|
1299 |
+
>>> from sympy.combinatorics import free_group
|
1300 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, reidemeister_presentation
|
1301 |
+
>>> F, x, y = free_group("x, y")
|
1302 |
+
|
1303 |
+
Example 5.6 Pg. 177 from [1]
|
1304 |
+
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
|
1305 |
+
>>> H = [x*y, x**-1*y**-1*x*y*x]
|
1306 |
+
>>> reidemeister_presentation(f, H)
|
1307 |
+
((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1))
|
1308 |
+
|
1309 |
+
Example 5.8 Pg. 183 from [1]
|
1310 |
+
>>> f = FpGroup(F, [x**3, y**3, (x*y)**3])
|
1311 |
+
>>> H = [x*y, x*y**-1]
|
1312 |
+
>>> reidemeister_presentation(f, H)
|
1313 |
+
((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0))
|
1314 |
+
|
1315 |
+
Exercises Q2. Pg 187 from [1]
|
1316 |
+
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
|
1317 |
+
>>> H = [x]
|
1318 |
+
>>> reidemeister_presentation(f, H)
|
1319 |
+
((x_0,), (x_0**4,))
|
1320 |
+
|
1321 |
+
Example 5.9 Pg. 183 from [1]
|
1322 |
+
>>> f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2])
|
1323 |
+
>>> H = [x]
|
1324 |
+
>>> reidemeister_presentation(f, H)
|
1325 |
+
((x_0,), (x_0**6,))
|
1326 |
+
|
1327 |
+
"""
|
1328 |
+
if not C:
|
1329 |
+
C = coset_enumeration_r(fp_grp, H)
|
1330 |
+
C.compress(); C.standardize()
|
1331 |
+
define_schreier_generators(C, homomorphism=homomorphism)
|
1332 |
+
reidemeister_relators(C)
|
1333 |
+
gens, rels = C._schreier_generators, C._reidemeister_relators
|
1334 |
+
gens, rels = simplify_presentation(gens, rels, change_gens=True)
|
1335 |
+
|
1336 |
+
C.schreier_generators = tuple(gens)
|
1337 |
+
C.reidemeister_relators = tuple(rels)
|
1338 |
+
|
1339 |
+
if homomorphism:
|
1340 |
+
_gens = []
|
1341 |
+
for gen in gens:
|
1342 |
+
_gens.append(C._schreier_gen_elem[str(gen)])
|
1343 |
+
return C.schreier_generators, C.reidemeister_relators, _gens
|
1344 |
+
|
1345 |
+
return C.schreier_generators, C.reidemeister_relators
|
1346 |
+
|
1347 |
+
|
1348 |
+
FpGroupElement = FreeGroupElement
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/free_groups.py
ADDED
@@ -0,0 +1,1354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from sympy.core import S
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
from sympy.core.symbol import Symbol, symbols as _symbols
|
6 |
+
from sympy.core.sympify import CantSympify
|
7 |
+
from sympy.printing.defaults import DefaultPrinting
|
8 |
+
from sympy.utilities import public
|
9 |
+
from sympy.utilities.iterables import flatten, is_sequence
|
10 |
+
from sympy.utilities.magic import pollute
|
11 |
+
from sympy.utilities.misc import as_int
|
12 |
+
|
13 |
+
|
14 |
+
@public
|
15 |
+
def free_group(symbols):
|
16 |
+
"""Construct a free group returning ``(FreeGroup, (f_0, f_1, ..., f_(n-1))``.
|
17 |
+
|
18 |
+
Parameters
|
19 |
+
==========
|
20 |
+
|
21 |
+
symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)
|
22 |
+
|
23 |
+
Examples
|
24 |
+
========
|
25 |
+
|
26 |
+
>>> from sympy.combinatorics import free_group
|
27 |
+
>>> F, x, y, z = free_group("x, y, z")
|
28 |
+
>>> F
|
29 |
+
<free group on the generators (x, y, z)>
|
30 |
+
>>> x**2*y**-1
|
31 |
+
x**2*y**-1
|
32 |
+
>>> type(_)
|
33 |
+
<class 'sympy.combinatorics.free_groups.FreeGroupElement'>
|
34 |
+
|
35 |
+
"""
|
36 |
+
_free_group = FreeGroup(symbols)
|
37 |
+
return (_free_group,) + tuple(_free_group.generators)
|
38 |
+
|
39 |
+
@public
|
40 |
+
def xfree_group(symbols):
|
41 |
+
"""Construct a free group returning ``(FreeGroup, (f_0, f_1, ..., f_(n-1)))``.
|
42 |
+
|
43 |
+
Parameters
|
44 |
+
==========
|
45 |
+
|
46 |
+
symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)
|
47 |
+
|
48 |
+
Examples
|
49 |
+
========
|
50 |
+
|
51 |
+
>>> from sympy.combinatorics.free_groups import xfree_group
|
52 |
+
>>> F, (x, y, z) = xfree_group("x, y, z")
|
53 |
+
>>> F
|
54 |
+
<free group on the generators (x, y, z)>
|
55 |
+
>>> y**2*x**-2*z**-1
|
56 |
+
y**2*x**-2*z**-1
|
57 |
+
>>> type(_)
|
58 |
+
<class 'sympy.combinatorics.free_groups.FreeGroupElement'>
|
59 |
+
|
60 |
+
"""
|
61 |
+
_free_group = FreeGroup(symbols)
|
62 |
+
return (_free_group, _free_group.generators)
|
63 |
+
|
64 |
+
@public
|
65 |
+
def vfree_group(symbols):
|
66 |
+
"""Construct a free group and inject ``f_0, f_1, ..., f_(n-1)`` as symbols
|
67 |
+
into the global namespace.
|
68 |
+
|
69 |
+
Parameters
|
70 |
+
==========
|
71 |
+
|
72 |
+
symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)
|
73 |
+
|
74 |
+
Examples
|
75 |
+
========
|
76 |
+
|
77 |
+
>>> from sympy.combinatorics.free_groups import vfree_group
|
78 |
+
>>> vfree_group("x, y, z")
|
79 |
+
<free group on the generators (x, y, z)>
|
80 |
+
>>> x**2*y**-2*z # noqa: F821
|
81 |
+
x**2*y**-2*z
|
82 |
+
>>> type(_)
|
83 |
+
<class 'sympy.combinatorics.free_groups.FreeGroupElement'>
|
84 |
+
|
85 |
+
"""
|
86 |
+
_free_group = FreeGroup(symbols)
|
87 |
+
pollute([sym.name for sym in _free_group.symbols], _free_group.generators)
|
88 |
+
return _free_group
|
89 |
+
|
90 |
+
|
91 |
+
def _parse_symbols(symbols):
|
92 |
+
if not symbols:
|
93 |
+
return ()
|
94 |
+
if isinstance(symbols, str):
|
95 |
+
return _symbols(symbols, seq=True)
|
96 |
+
elif isinstance(symbols, (Expr, FreeGroupElement)):
|
97 |
+
return (symbols,)
|
98 |
+
elif is_sequence(symbols):
|
99 |
+
if all(isinstance(s, str) for s in symbols):
|
100 |
+
return _symbols(symbols)
|
101 |
+
elif all(isinstance(s, Expr) for s in symbols):
|
102 |
+
return symbols
|
103 |
+
raise ValueError("The type of `symbols` must be one of the following: "
|
104 |
+
"a str, Symbol/Expr or a sequence of "
|
105 |
+
"one of these types")
|
106 |
+
|
107 |
+
|
108 |
+
##############################################################################
|
109 |
+
# FREE GROUP #
|
110 |
+
##############################################################################
|
111 |
+
|
112 |
+
_free_group_cache: dict[int, FreeGroup] = {}
|
113 |
+
|
114 |
+
class FreeGroup(DefaultPrinting):
|
115 |
+
"""
|
116 |
+
Free group with finite or infinite number of generators. Its input API
|
117 |
+
is that of a str, Symbol/Expr or a sequence of one of
|
118 |
+
these types (which may be empty)
|
119 |
+
|
120 |
+
See Also
|
121 |
+
========
|
122 |
+
|
123 |
+
sympy.polys.rings.PolyRing
|
124 |
+
|
125 |
+
References
|
126 |
+
==========
|
127 |
+
|
128 |
+
.. [1] https://www.gap-system.org/Manuals/doc/ref/chap37.html
|
129 |
+
|
130 |
+
.. [2] https://en.wikipedia.org/wiki/Free_group
|
131 |
+
|
132 |
+
"""
|
133 |
+
is_associative = True
|
134 |
+
is_group = True
|
135 |
+
is_FreeGroup = True
|
136 |
+
is_PermutationGroup = False
|
137 |
+
relators: list[Expr] = []
|
138 |
+
|
139 |
+
def __new__(cls, symbols):
|
140 |
+
symbols = tuple(_parse_symbols(symbols))
|
141 |
+
rank = len(symbols)
|
142 |
+
_hash = hash((cls.__name__, symbols, rank))
|
143 |
+
obj = _free_group_cache.get(_hash)
|
144 |
+
|
145 |
+
if obj is None:
|
146 |
+
obj = object.__new__(cls)
|
147 |
+
obj._hash = _hash
|
148 |
+
obj._rank = rank
|
149 |
+
# dtype method is used to create new instances of FreeGroupElement
|
150 |
+
obj.dtype = type("FreeGroupElement", (FreeGroupElement,), {"group": obj})
|
151 |
+
obj.symbols = symbols
|
152 |
+
obj.generators = obj._generators()
|
153 |
+
obj._gens_set = set(obj.generators)
|
154 |
+
for symbol, generator in zip(obj.symbols, obj.generators):
|
155 |
+
if isinstance(symbol, Symbol):
|
156 |
+
name = symbol.name
|
157 |
+
if hasattr(obj, name):
|
158 |
+
setattr(obj, name, generator)
|
159 |
+
|
160 |
+
_free_group_cache[_hash] = obj
|
161 |
+
|
162 |
+
return obj
|
163 |
+
|
164 |
+
def _generators(group):
|
165 |
+
"""Returns the generators of the FreeGroup.
|
166 |
+
|
167 |
+
Examples
|
168 |
+
========
|
169 |
+
|
170 |
+
>>> from sympy.combinatorics import free_group
|
171 |
+
>>> F, x, y, z = free_group("x, y, z")
|
172 |
+
>>> F.generators
|
173 |
+
(x, y, z)
|
174 |
+
|
175 |
+
"""
|
176 |
+
gens = []
|
177 |
+
for sym in group.symbols:
|
178 |
+
elm = ((sym, 1),)
|
179 |
+
gens.append(group.dtype(elm))
|
180 |
+
return tuple(gens)
|
181 |
+
|
182 |
+
def clone(self, symbols=None):
|
183 |
+
return self.__class__(symbols or self.symbols)
|
184 |
+
|
185 |
+
def __contains__(self, i):
|
186 |
+
"""Return True if ``i`` is contained in FreeGroup."""
|
187 |
+
if not isinstance(i, FreeGroupElement):
|
188 |
+
return False
|
189 |
+
group = i.group
|
190 |
+
return self == group
|
191 |
+
|
192 |
+
def __hash__(self):
|
193 |
+
return self._hash
|
194 |
+
|
195 |
+
def __len__(self):
|
196 |
+
return self.rank
|
197 |
+
|
198 |
+
def __str__(self):
|
199 |
+
if self.rank > 30:
|
200 |
+
str_form = "<free group with %s generators>" % self.rank
|
201 |
+
else:
|
202 |
+
str_form = "<free group on the generators "
|
203 |
+
gens = self.generators
|
204 |
+
str_form += str(gens) + ">"
|
205 |
+
return str_form
|
206 |
+
|
207 |
+
__repr__ = __str__
|
208 |
+
|
209 |
+
def __getitem__(self, index):
|
210 |
+
symbols = self.symbols[index]
|
211 |
+
return self.clone(symbols=symbols)
|
212 |
+
|
213 |
+
def __eq__(self, other):
|
214 |
+
"""No ``FreeGroup`` is equal to any "other" ``FreeGroup``.
|
215 |
+
"""
|
216 |
+
return self is other
|
217 |
+
|
218 |
+
def index(self, gen):
|
219 |
+
"""Return the index of the generator `gen` from ``(f_0, ..., f_(n-1))``.
|
220 |
+
|
221 |
+
Examples
|
222 |
+
========
|
223 |
+
|
224 |
+
>>> from sympy.combinatorics import free_group
|
225 |
+
>>> F, x, y = free_group("x, y")
|
226 |
+
>>> F.index(y)
|
227 |
+
1
|
228 |
+
>>> F.index(x)
|
229 |
+
0
|
230 |
+
|
231 |
+
"""
|
232 |
+
if isinstance(gen, self.dtype):
|
233 |
+
return self.generators.index(gen)
|
234 |
+
else:
|
235 |
+
raise ValueError("expected a generator of Free Group %s, got %s" % (self, gen))
|
236 |
+
|
237 |
+
def order(self):
|
238 |
+
"""Return the order of the free group.
|
239 |
+
|
240 |
+
Examples
|
241 |
+
========
|
242 |
+
|
243 |
+
>>> from sympy.combinatorics import free_group
|
244 |
+
>>> F, x, y = free_group("x, y")
|
245 |
+
>>> F.order()
|
246 |
+
oo
|
247 |
+
|
248 |
+
>>> free_group("")[0].order()
|
249 |
+
1
|
250 |
+
|
251 |
+
"""
|
252 |
+
if self.rank == 0:
|
253 |
+
return S.One
|
254 |
+
else:
|
255 |
+
return S.Infinity
|
256 |
+
|
257 |
+
@property
|
258 |
+
def elements(self):
|
259 |
+
"""
|
260 |
+
Return the elements of the free group.
|
261 |
+
|
262 |
+
Examples
|
263 |
+
========
|
264 |
+
|
265 |
+
>>> from sympy.combinatorics import free_group
|
266 |
+
>>> (z,) = free_group("")
|
267 |
+
>>> z.elements
|
268 |
+
{<identity>}
|
269 |
+
|
270 |
+
"""
|
271 |
+
if self.rank == 0:
|
272 |
+
# A set containing Identity element of `FreeGroup` self is returned
|
273 |
+
return {self.identity}
|
274 |
+
else:
|
275 |
+
raise ValueError("Group contains infinitely many elements"
|
276 |
+
", hence cannot be represented")
|
277 |
+
|
278 |
+
@property
|
279 |
+
def rank(self):
|
280 |
+
r"""
|
281 |
+
In group theory, the `rank` of a group `G`, denoted `G.rank`,
|
282 |
+
can refer to the smallest cardinality of a generating set
|
283 |
+
for G, that is
|
284 |
+
|
285 |
+
\operatorname{rank}(G)=\min\{ |X|: X\subseteq G, \left\langle X\right\rangle =G\}.
|
286 |
+
|
287 |
+
"""
|
288 |
+
return self._rank
|
289 |
+
|
290 |
+
@property
|
291 |
+
def is_abelian(self):
|
292 |
+
"""Returns if the group is Abelian.
|
293 |
+
|
294 |
+
Examples
|
295 |
+
========
|
296 |
+
|
297 |
+
>>> from sympy.combinatorics import free_group
|
298 |
+
>>> f, x, y, z = free_group("x y z")
|
299 |
+
>>> f.is_abelian
|
300 |
+
False
|
301 |
+
|
302 |
+
"""
|
303 |
+
return self.rank in (0, 1)
|
304 |
+
|
305 |
+
@property
|
306 |
+
def identity(self):
|
307 |
+
"""Returns the identity element of free group."""
|
308 |
+
return self.dtype()
|
309 |
+
|
310 |
+
def contains(self, g):
|
311 |
+
"""Tests if Free Group element ``g`` belong to self, ``G``.
|
312 |
+
|
313 |
+
In mathematical terms any linear combination of generators
|
314 |
+
of a Free Group is contained in it.
|
315 |
+
|
316 |
+
Examples
|
317 |
+
========
|
318 |
+
|
319 |
+
>>> from sympy.combinatorics import free_group
|
320 |
+
>>> f, x, y, z = free_group("x y z")
|
321 |
+
>>> f.contains(x**3*y**2)
|
322 |
+
True
|
323 |
+
|
324 |
+
"""
|
325 |
+
if not isinstance(g, FreeGroupElement):
|
326 |
+
return False
|
327 |
+
elif self != g.group:
|
328 |
+
return False
|
329 |
+
else:
|
330 |
+
return True
|
331 |
+
|
332 |
+
def center(self):
|
333 |
+
"""Returns the center of the free group `self`."""
|
334 |
+
return {self.identity}
|
335 |
+
|
336 |
+
|
337 |
+
############################################################################
|
338 |
+
# FreeGroupElement #
|
339 |
+
############################################################################
|
340 |
+
|
341 |
+
|
342 |
+
class FreeGroupElement(CantSympify, DefaultPrinting, tuple):
|
343 |
+
"""Used to create elements of FreeGroup. It cannot be used directly to
|
344 |
+
create a free group element. It is called by the `dtype` method of the
|
345 |
+
`FreeGroup` class.
|
346 |
+
|
347 |
+
"""
|
348 |
+
is_assoc_word = True
|
349 |
+
|
350 |
+
def new(self, init):
|
351 |
+
return self.__class__(init)
|
352 |
+
|
353 |
+
_hash = None
|
354 |
+
|
355 |
+
def __hash__(self):
|
356 |
+
_hash = self._hash
|
357 |
+
if _hash is None:
|
358 |
+
self._hash = _hash = hash((self.group, frozenset(tuple(self))))
|
359 |
+
return _hash
|
360 |
+
|
361 |
+
def copy(self):
|
362 |
+
return self.new(self)
|
363 |
+
|
364 |
+
@property
|
365 |
+
def is_identity(self):
|
366 |
+
if self.array_form == ():
|
367 |
+
return True
|
368 |
+
else:
|
369 |
+
return False
|
370 |
+
|
371 |
+
@property
|
372 |
+
def array_form(self):
|
373 |
+
"""
|
374 |
+
SymPy provides two different internal kinds of representation
|
375 |
+
of associative words. The first one is called the `array_form`
|
376 |
+
which is a tuple containing `tuples` as its elements, where the
|
377 |
+
size of each tuple is two. At the first position the tuple
|
378 |
+
contains the `symbol-generator`, while at the second position
|
379 |
+
of tuple contains the exponent of that generator at the position.
|
380 |
+
Since elements (i.e. words) do not commute, the indexing of tuple
|
381 |
+
makes that property to stay.
|
382 |
+
|
383 |
+
The structure in ``array_form`` of ``FreeGroupElement`` is of form:
|
384 |
+
|
385 |
+
``( ( symbol_of_gen, exponent ), ( , ), ... ( , ) )``
|
386 |
+
|
387 |
+
Examples
|
388 |
+
========
|
389 |
+
|
390 |
+
>>> from sympy.combinatorics import free_group
|
391 |
+
>>> f, x, y, z = free_group("x y z")
|
392 |
+
>>> (x*z).array_form
|
393 |
+
((x, 1), (z, 1))
|
394 |
+
>>> (x**2*z*y*x**2).array_form
|
395 |
+
((x, 2), (z, 1), (y, 1), (x, 2))
|
396 |
+
|
397 |
+
See Also
|
398 |
+
========
|
399 |
+
|
400 |
+
letter_repr
|
401 |
+
|
402 |
+
"""
|
403 |
+
return tuple(self)
|
404 |
+
|
405 |
+
@property
|
406 |
+
def letter_form(self):
|
407 |
+
"""
|
408 |
+
The letter representation of a ``FreeGroupElement`` is a tuple
|
409 |
+
of generator symbols, with each entry corresponding to a group
|
410 |
+
generator. Inverses of the generators are represented by
|
411 |
+
negative generator symbols.
|
412 |
+
|
413 |
+
Examples
|
414 |
+
========
|
415 |
+
|
416 |
+
>>> from sympy.combinatorics import free_group
|
417 |
+
>>> f, a, b, c, d = free_group("a b c d")
|
418 |
+
>>> (a**3).letter_form
|
419 |
+
(a, a, a)
|
420 |
+
>>> (a**2*d**-2*a*b**-4).letter_form
|
421 |
+
(a, a, -d, -d, a, -b, -b, -b, -b)
|
422 |
+
>>> (a**-2*b**3*d).letter_form
|
423 |
+
(-a, -a, b, b, b, d)
|
424 |
+
|
425 |
+
See Also
|
426 |
+
========
|
427 |
+
|
428 |
+
array_form
|
429 |
+
|
430 |
+
"""
|
431 |
+
return tuple(flatten([(i,)*j if j > 0 else (-i,)*(-j)
|
432 |
+
for i, j in self.array_form]))
|
433 |
+
|
434 |
+
def __getitem__(self, i):
|
435 |
+
group = self.group
|
436 |
+
r = self.letter_form[i]
|
437 |
+
if r.is_Symbol:
|
438 |
+
return group.dtype(((r, 1),))
|
439 |
+
else:
|
440 |
+
return group.dtype(((-r, -1),))
|
441 |
+
|
442 |
+
def index(self, gen):
|
443 |
+
if len(gen) != 1:
|
444 |
+
raise ValueError()
|
445 |
+
return (self.letter_form).index(gen.letter_form[0])
|
446 |
+
|
447 |
+
@property
|
448 |
+
def letter_form_elm(self):
|
449 |
+
"""
|
450 |
+
"""
|
451 |
+
group = self.group
|
452 |
+
r = self.letter_form
|
453 |
+
return [group.dtype(((elm,1),)) if elm.is_Symbol \
|
454 |
+
else group.dtype(((-elm,-1),)) for elm in r]
|
455 |
+
|
456 |
+
@property
|
457 |
+
def ext_rep(self):
|
458 |
+
"""This is called the External Representation of ``FreeGroupElement``
|
459 |
+
"""
|
460 |
+
return tuple(flatten(self.array_form))
|
461 |
+
|
462 |
+
def __contains__(self, gen):
|
463 |
+
return gen.array_form[0][0] in tuple([r[0] for r in self.array_form])
|
464 |
+
|
465 |
+
def __str__(self):
|
466 |
+
if self.is_identity:
|
467 |
+
return "<identity>"
|
468 |
+
|
469 |
+
str_form = ""
|
470 |
+
array_form = self.array_form
|
471 |
+
for i in range(len(array_form)):
|
472 |
+
if i == len(array_form) - 1:
|
473 |
+
if array_form[i][1] == 1:
|
474 |
+
str_form += str(array_form[i][0])
|
475 |
+
else:
|
476 |
+
str_form += str(array_form[i][0]) + \
|
477 |
+
"**" + str(array_form[i][1])
|
478 |
+
else:
|
479 |
+
if array_form[i][1] == 1:
|
480 |
+
str_form += str(array_form[i][0]) + "*"
|
481 |
+
else:
|
482 |
+
str_form += str(array_form[i][0]) + \
|
483 |
+
"**" + str(array_form[i][1]) + "*"
|
484 |
+
return str_form
|
485 |
+
|
486 |
+
__repr__ = __str__
|
487 |
+
|
488 |
+
def __pow__(self, n):
|
489 |
+
n = as_int(n)
|
490 |
+
group = self.group
|
491 |
+
if n == 0:
|
492 |
+
return group.identity
|
493 |
+
|
494 |
+
if n < 0:
|
495 |
+
n = -n
|
496 |
+
return (self.inverse())**n
|
497 |
+
|
498 |
+
result = self
|
499 |
+
for i in range(n - 1):
|
500 |
+
result = result*self
|
501 |
+
# this method can be improved instead of just returning the
|
502 |
+
# multiplication of elements
|
503 |
+
return result
|
504 |
+
|
505 |
+
def __mul__(self, other):
|
506 |
+
"""Returns the product of elements belonging to the same ``FreeGroup``.
|
507 |
+
|
508 |
+
Examples
|
509 |
+
========
|
510 |
+
|
511 |
+
>>> from sympy.combinatorics import free_group
|
512 |
+
>>> f, x, y, z = free_group("x y z")
|
513 |
+
>>> x*y**2*y**-4
|
514 |
+
x*y**-2
|
515 |
+
>>> z*y**-2
|
516 |
+
z*y**-2
|
517 |
+
>>> x**2*y*y**-1*x**-2
|
518 |
+
<identity>
|
519 |
+
|
520 |
+
"""
|
521 |
+
group = self.group
|
522 |
+
if not isinstance(other, group.dtype):
|
523 |
+
raise TypeError("only FreeGroup elements of same FreeGroup can "
|
524 |
+
"be multiplied")
|
525 |
+
if self.is_identity:
|
526 |
+
return other
|
527 |
+
if other.is_identity:
|
528 |
+
return self
|
529 |
+
r = list(self.array_form + other.array_form)
|
530 |
+
zero_mul_simp(r, len(self.array_form) - 1)
|
531 |
+
return group.dtype(tuple(r))
|
532 |
+
|
533 |
+
def __truediv__(self, other):
|
534 |
+
group = self.group
|
535 |
+
if not isinstance(other, group.dtype):
|
536 |
+
raise TypeError("only FreeGroup elements of same FreeGroup can "
|
537 |
+
"be multiplied")
|
538 |
+
return self*(other.inverse())
|
539 |
+
|
540 |
+
def __rtruediv__(self, other):
|
541 |
+
group = self.group
|
542 |
+
if not isinstance(other, group.dtype):
|
543 |
+
raise TypeError("only FreeGroup elements of same FreeGroup can "
|
544 |
+
"be multiplied")
|
545 |
+
return other*(self.inverse())
|
546 |
+
|
547 |
+
def __add__(self, other):
|
548 |
+
return NotImplemented
|
549 |
+
|
550 |
+
def inverse(self):
|
551 |
+
"""
|
552 |
+
Returns the inverse of a ``FreeGroupElement`` element
|
553 |
+
|
554 |
+
Examples
|
555 |
+
========
|
556 |
+
|
557 |
+
>>> from sympy.combinatorics import free_group
|
558 |
+
>>> f, x, y, z = free_group("x y z")
|
559 |
+
>>> x.inverse()
|
560 |
+
x**-1
|
561 |
+
>>> (x*y).inverse()
|
562 |
+
y**-1*x**-1
|
563 |
+
|
564 |
+
"""
|
565 |
+
group = self.group
|
566 |
+
r = tuple([(i, -j) for i, j in self.array_form[::-1]])
|
567 |
+
return group.dtype(r)
|
568 |
+
|
569 |
+
def order(self):
|
570 |
+
"""Find the order of a ``FreeGroupElement``.
|
571 |
+
|
572 |
+
Examples
|
573 |
+
========
|
574 |
+
|
575 |
+
>>> from sympy.combinatorics import free_group
|
576 |
+
>>> f, x, y = free_group("x y")
|
577 |
+
>>> (x**2*y*y**-1*x**-2).order()
|
578 |
+
1
|
579 |
+
|
580 |
+
"""
|
581 |
+
if self.is_identity:
|
582 |
+
return S.One
|
583 |
+
else:
|
584 |
+
return S.Infinity
|
585 |
+
|
586 |
+
def commutator(self, other):
|
587 |
+
"""
|
588 |
+
Return the commutator of `self` and `x`: ``~x*~self*x*self``
|
589 |
+
|
590 |
+
"""
|
591 |
+
group = self.group
|
592 |
+
if not isinstance(other, group.dtype):
|
593 |
+
raise ValueError("commutator of only FreeGroupElement of the same "
|
594 |
+
"FreeGroup exists")
|
595 |
+
else:
|
596 |
+
return self.inverse()*other.inverse()*self*other
|
597 |
+
|
598 |
+
def eliminate_words(self, words, _all=False, inverse=True):
|
599 |
+
'''
|
600 |
+
Replace each subword from the dictionary `words` by words[subword].
|
601 |
+
If words is a list, replace the words by the identity.
|
602 |
+
|
603 |
+
'''
|
604 |
+
again = True
|
605 |
+
new = self
|
606 |
+
if isinstance(words, dict):
|
607 |
+
while again:
|
608 |
+
again = False
|
609 |
+
for sub in words:
|
610 |
+
prev = new
|
611 |
+
new = new.eliminate_word(sub, words[sub], _all=_all, inverse=inverse)
|
612 |
+
if new != prev:
|
613 |
+
again = True
|
614 |
+
else:
|
615 |
+
while again:
|
616 |
+
again = False
|
617 |
+
for sub in words:
|
618 |
+
prev = new
|
619 |
+
new = new.eliminate_word(sub, _all=_all, inverse=inverse)
|
620 |
+
if new != prev:
|
621 |
+
again = True
|
622 |
+
return new
|
623 |
+
|
624 |
+
def eliminate_word(self, gen, by=None, _all=False, inverse=True):
|
625 |
+
"""
|
626 |
+
For an associative word `self`, a subword `gen`, and an associative
|
627 |
+
word `by` (identity by default), return the associative word obtained by
|
628 |
+
replacing each occurrence of `gen` in `self` by `by`. If `_all = True`,
|
629 |
+
the occurrences of `gen` that may appear after the first substitution will
|
630 |
+
also be replaced and so on until no occurrences are found. This might not
|
631 |
+
always terminate (e.g. `(x).eliminate_word(x, x**2, _all=True)`).
|
632 |
+
|
633 |
+
Examples
|
634 |
+
========
|
635 |
+
|
636 |
+
>>> from sympy.combinatorics import free_group
|
637 |
+
>>> f, x, y = free_group("x y")
|
638 |
+
>>> w = x**5*y*x**2*y**-4*x
|
639 |
+
>>> w.eliminate_word( x, x**2 )
|
640 |
+
x**10*y*x**4*y**-4*x**2
|
641 |
+
>>> w.eliminate_word( x, y**-1 )
|
642 |
+
y**-11
|
643 |
+
>>> w.eliminate_word(x**5)
|
644 |
+
y*x**2*y**-4*x
|
645 |
+
>>> w.eliminate_word(x*y, y)
|
646 |
+
x**4*y*x**2*y**-4*x
|
647 |
+
|
648 |
+
See Also
|
649 |
+
========
|
650 |
+
substituted_word
|
651 |
+
|
652 |
+
"""
|
653 |
+
if by is None:
|
654 |
+
by = self.group.identity
|
655 |
+
if self.is_independent(gen) or gen == by:
|
656 |
+
return self
|
657 |
+
if gen == self:
|
658 |
+
return by
|
659 |
+
if gen**-1 == by:
|
660 |
+
_all = False
|
661 |
+
word = self
|
662 |
+
l = len(gen)
|
663 |
+
|
664 |
+
try:
|
665 |
+
i = word.subword_index(gen)
|
666 |
+
k = 1
|
667 |
+
except ValueError:
|
668 |
+
if not inverse:
|
669 |
+
return word
|
670 |
+
try:
|
671 |
+
i = word.subword_index(gen**-1)
|
672 |
+
k = -1
|
673 |
+
except ValueError:
|
674 |
+
return word
|
675 |
+
|
676 |
+
word = word.subword(0, i)*by**k*word.subword(i+l, len(word)).eliminate_word(gen, by)
|
677 |
+
|
678 |
+
if _all:
|
679 |
+
return word.eliminate_word(gen, by, _all=True, inverse=inverse)
|
680 |
+
else:
|
681 |
+
return word
|
682 |
+
|
683 |
+
def __len__(self):
|
684 |
+
"""
|
685 |
+
For an associative word `self`, returns the number of letters in it.
|
686 |
+
|
687 |
+
Examples
|
688 |
+
========
|
689 |
+
|
690 |
+
>>> from sympy.combinatorics import free_group
|
691 |
+
>>> f, a, b = free_group("a b")
|
692 |
+
>>> w = a**5*b*a**2*b**-4*a
|
693 |
+
>>> len(w)
|
694 |
+
13
|
695 |
+
>>> len(a**17)
|
696 |
+
17
|
697 |
+
>>> len(w**0)
|
698 |
+
0
|
699 |
+
|
700 |
+
"""
|
701 |
+
return sum(abs(j) for (i, j) in self)
|
702 |
+
|
703 |
+
def __eq__(self, other):
|
704 |
+
"""
|
705 |
+
Two associative words are equal if they are words over the
|
706 |
+
same alphabet and if they are sequences of the same letters.
|
707 |
+
This is equivalent to saying that the external representations
|
708 |
+
of the words are equal.
|
709 |
+
There is no "universal" empty word, every alphabet has its own
|
710 |
+
empty word.
|
711 |
+
|
712 |
+
Examples
|
713 |
+
========
|
714 |
+
|
715 |
+
>>> from sympy.combinatorics import free_group
|
716 |
+
>>> f, swapnil0, swapnil1 = free_group("swapnil0 swapnil1")
|
717 |
+
>>> f
|
718 |
+
<free group on the generators (swapnil0, swapnil1)>
|
719 |
+
>>> g, swap0, swap1 = free_group("swap0 swap1")
|
720 |
+
>>> g
|
721 |
+
<free group on the generators (swap0, swap1)>
|
722 |
+
|
723 |
+
>>> swapnil0 == swapnil1
|
724 |
+
False
|
725 |
+
>>> swapnil0*swapnil1 == swapnil1/swapnil1*swapnil0*swapnil1
|
726 |
+
True
|
727 |
+
>>> swapnil0*swapnil1 == swapnil1*swapnil0
|
728 |
+
False
|
729 |
+
>>> swapnil1**0 == swap0**0
|
730 |
+
False
|
731 |
+
|
732 |
+
"""
|
733 |
+
group = self.group
|
734 |
+
if not isinstance(other, group.dtype):
|
735 |
+
return False
|
736 |
+
return tuple.__eq__(self, other)
|
737 |
+
|
738 |
+
def __lt__(self, other):
|
739 |
+
"""
|
740 |
+
The ordering of associative words is defined by length and
|
741 |
+
lexicography (this ordering is called short-lex ordering), that
|
742 |
+
is, shorter words are smaller than longer words, and words of the
|
743 |
+
same length are compared w.r.t. the lexicographical ordering induced
|
744 |
+
by the ordering of generators. Generators are sorted according
|
745 |
+
to the order in which they were created. If the generators are
|
746 |
+
invertible then each generator `g` is larger than its inverse `g^{-1}`,
|
747 |
+
and `g^{-1}` is larger than every generator that is smaller than `g`.
|
748 |
+
|
749 |
+
Examples
|
750 |
+
========
|
751 |
+
|
752 |
+
>>> from sympy.combinatorics import free_group
|
753 |
+
>>> f, a, b = free_group("a b")
|
754 |
+
>>> b < a
|
755 |
+
False
|
756 |
+
>>> a < a.inverse()
|
757 |
+
False
|
758 |
+
|
759 |
+
"""
|
760 |
+
group = self.group
|
761 |
+
if not isinstance(other, group.dtype):
|
762 |
+
raise TypeError("only FreeGroup elements of same FreeGroup can "
|
763 |
+
"be compared")
|
764 |
+
l = len(self)
|
765 |
+
m = len(other)
|
766 |
+
# implement lenlex order
|
767 |
+
if l < m:
|
768 |
+
return True
|
769 |
+
elif l > m:
|
770 |
+
return False
|
771 |
+
for i in range(l):
|
772 |
+
a = self[i].array_form[0]
|
773 |
+
b = other[i].array_form[0]
|
774 |
+
p = group.symbols.index(a[0])
|
775 |
+
q = group.symbols.index(b[0])
|
776 |
+
if p < q:
|
777 |
+
return True
|
778 |
+
elif p > q:
|
779 |
+
return False
|
780 |
+
elif a[1] < b[1]:
|
781 |
+
return True
|
782 |
+
elif a[1] > b[1]:
|
783 |
+
return False
|
784 |
+
return False
|
785 |
+
|
786 |
+
def __le__(self, other):
|
787 |
+
return (self == other or self < other)
|
788 |
+
|
789 |
+
def __gt__(self, other):
|
790 |
+
"""
|
791 |
+
|
792 |
+
Examples
|
793 |
+
========
|
794 |
+
|
795 |
+
>>> from sympy.combinatorics import free_group
|
796 |
+
>>> f, x, y, z = free_group("x y z")
|
797 |
+
>>> y**2 > x**2
|
798 |
+
True
|
799 |
+
>>> y*z > z*y
|
800 |
+
False
|
801 |
+
>>> x > x.inverse()
|
802 |
+
True
|
803 |
+
|
804 |
+
"""
|
805 |
+
group = self.group
|
806 |
+
if not isinstance(other, group.dtype):
|
807 |
+
raise TypeError("only FreeGroup elements of same FreeGroup can "
|
808 |
+
"be compared")
|
809 |
+
return not self <= other
|
810 |
+
|
811 |
+
def __ge__(self, other):
|
812 |
+
return not self < other
|
813 |
+
|
814 |
+
def exponent_sum(self, gen):
|
815 |
+
"""
|
816 |
+
For an associative word `self` and a generator or inverse of generator
|
817 |
+
`gen`, ``exponent_sum`` returns the number of times `gen` appears in
|
818 |
+
`self` minus the number of times its inverse appears in `self`. If
|
819 |
+
neither `gen` nor its inverse occur in `self` then 0 is returned.
|
820 |
+
|
821 |
+
Examples
|
822 |
+
========
|
823 |
+
|
824 |
+
>>> from sympy.combinatorics import free_group
|
825 |
+
>>> F, x, y = free_group("x, y")
|
826 |
+
>>> w = x**2*y**3
|
827 |
+
>>> w.exponent_sum(x)
|
828 |
+
2
|
829 |
+
>>> w.exponent_sum(x**-1)
|
830 |
+
-2
|
831 |
+
>>> w = x**2*y**4*x**-3
|
832 |
+
>>> w.exponent_sum(x)
|
833 |
+
-1
|
834 |
+
|
835 |
+
See Also
|
836 |
+
========
|
837 |
+
|
838 |
+
generator_count
|
839 |
+
|
840 |
+
"""
|
841 |
+
if len(gen) != 1:
|
842 |
+
raise ValueError("gen must be a generator or inverse of a generator")
|
843 |
+
s = gen.array_form[0]
|
844 |
+
return s[1]*sum([i[1] for i in self.array_form if i[0] == s[0]])
|
845 |
+
|
846 |
+
def generator_count(self, gen):
|
847 |
+
"""
|
848 |
+
For an associative word `self` and a generator `gen`,
|
849 |
+
``generator_count`` returns the multiplicity of generator
|
850 |
+
`gen` in `self`.
|
851 |
+
|
852 |
+
Examples
|
853 |
+
========
|
854 |
+
|
855 |
+
>>> from sympy.combinatorics import free_group
|
856 |
+
>>> F, x, y = free_group("x, y")
|
857 |
+
>>> w = x**2*y**3
|
858 |
+
>>> w.generator_count(x)
|
859 |
+
2
|
860 |
+
>>> w = x**2*y**4*x**-3
|
861 |
+
>>> w.generator_count(x)
|
862 |
+
5
|
863 |
+
|
864 |
+
See Also
|
865 |
+
========
|
866 |
+
|
867 |
+
exponent_sum
|
868 |
+
|
869 |
+
"""
|
870 |
+
if len(gen) != 1 or gen.array_form[0][1] < 0:
|
871 |
+
raise ValueError("gen must be a generator")
|
872 |
+
s = gen.array_form[0]
|
873 |
+
return s[1]*sum([abs(i[1]) for i in self.array_form if i[0] == s[0]])
|
874 |
+
|
875 |
+
def subword(self, from_i, to_j, strict=True):
|
876 |
+
"""
|
877 |
+
For an associative word `self` and two positive integers `from_i` and
|
878 |
+
`to_j`, `subword` returns the subword of `self` that begins at position
|
879 |
+
`from_i` and ends at `to_j - 1`, indexing is done with origin 0.
|
880 |
+
|
881 |
+
Examples
|
882 |
+
========
|
883 |
+
|
884 |
+
>>> from sympy.combinatorics import free_group
|
885 |
+
>>> f, a, b = free_group("a b")
|
886 |
+
>>> w = a**5*b*a**2*b**-4*a
|
887 |
+
>>> w.subword(2, 6)
|
888 |
+
a**3*b
|
889 |
+
|
890 |
+
"""
|
891 |
+
group = self.group
|
892 |
+
if not strict:
|
893 |
+
from_i = max(from_i, 0)
|
894 |
+
to_j = min(len(self), to_j)
|
895 |
+
if from_i < 0 or to_j > len(self):
|
896 |
+
raise ValueError("`from_i`, `to_j` must be positive and no greater than "
|
897 |
+
"the length of associative word")
|
898 |
+
if to_j <= from_i:
|
899 |
+
return group.identity
|
900 |
+
else:
|
901 |
+
letter_form = self.letter_form[from_i: to_j]
|
902 |
+
array_form = letter_form_to_array_form(letter_form, group)
|
903 |
+
return group.dtype(array_form)
|
904 |
+
|
905 |
+
def subword_index(self, word, start = 0):
|
906 |
+
'''
|
907 |
+
Find the index of `word` in `self`.
|
908 |
+
|
909 |
+
Examples
|
910 |
+
========
|
911 |
+
|
912 |
+
>>> from sympy.combinatorics import free_group
|
913 |
+
>>> f, a, b = free_group("a b")
|
914 |
+
>>> w = a**2*b*a*b**3
|
915 |
+
>>> w.subword_index(a*b*a*b)
|
916 |
+
1
|
917 |
+
|
918 |
+
'''
|
919 |
+
l = len(word)
|
920 |
+
self_lf = self.letter_form
|
921 |
+
word_lf = word.letter_form
|
922 |
+
index = None
|
923 |
+
for i in range(start,len(self_lf)-l+1):
|
924 |
+
if self_lf[i:i+l] == word_lf:
|
925 |
+
index = i
|
926 |
+
break
|
927 |
+
if index is not None:
|
928 |
+
return index
|
929 |
+
else:
|
930 |
+
raise ValueError("The given word is not a subword of self")
|
931 |
+
|
932 |
+
def is_dependent(self, word):
|
933 |
+
"""
|
934 |
+
Examples
|
935 |
+
========
|
936 |
+
|
937 |
+
>>> from sympy.combinatorics import free_group
|
938 |
+
>>> F, x, y = free_group("x, y")
|
939 |
+
>>> (x**4*y**-3).is_dependent(x**4*y**-2)
|
940 |
+
True
|
941 |
+
>>> (x**2*y**-1).is_dependent(x*y)
|
942 |
+
False
|
943 |
+
>>> (x*y**2*x*y**2).is_dependent(x*y**2)
|
944 |
+
True
|
945 |
+
>>> (x**12).is_dependent(x**-4)
|
946 |
+
True
|
947 |
+
|
948 |
+
See Also
|
949 |
+
========
|
950 |
+
|
951 |
+
is_independent
|
952 |
+
|
953 |
+
"""
|
954 |
+
try:
|
955 |
+
return self.subword_index(word) is not None
|
956 |
+
except ValueError:
|
957 |
+
pass
|
958 |
+
try:
|
959 |
+
return self.subword_index(word**-1) is not None
|
960 |
+
except ValueError:
|
961 |
+
return False
|
962 |
+
|
963 |
+
def is_independent(self, word):
|
964 |
+
"""
|
965 |
+
|
966 |
+
See Also
|
967 |
+
========
|
968 |
+
|
969 |
+
is_dependent
|
970 |
+
|
971 |
+
"""
|
972 |
+
return not self.is_dependent(word)
|
973 |
+
|
974 |
+
def contains_generators(self):
|
975 |
+
"""
|
976 |
+
Examples
|
977 |
+
========
|
978 |
+
|
979 |
+
>>> from sympy.combinatorics import free_group
|
980 |
+
>>> F, x, y, z = free_group("x, y, z")
|
981 |
+
>>> (x**2*y**-1).contains_generators()
|
982 |
+
{x, y}
|
983 |
+
>>> (x**3*z).contains_generators()
|
984 |
+
{x, z}
|
985 |
+
|
986 |
+
"""
|
987 |
+
group = self.group
|
988 |
+
gens = set()
|
989 |
+
for syllable in self.array_form:
|
990 |
+
gens.add(group.dtype(((syllable[0], 1),)))
|
991 |
+
return set(gens)
|
992 |
+
|
993 |
+
def cyclic_subword(self, from_i, to_j):
|
994 |
+
group = self.group
|
995 |
+
l = len(self)
|
996 |
+
letter_form = self.letter_form
|
997 |
+
period1 = int(from_i/l)
|
998 |
+
if from_i >= l:
|
999 |
+
from_i -= l*period1
|
1000 |
+
to_j -= l*period1
|
1001 |
+
diff = to_j - from_i
|
1002 |
+
word = letter_form[from_i: to_j]
|
1003 |
+
period2 = int(to_j/l) - 1
|
1004 |
+
word += letter_form*period2 + letter_form[:diff-l+from_i-l*period2]
|
1005 |
+
word = letter_form_to_array_form(word, group)
|
1006 |
+
return group.dtype(word)
|
1007 |
+
|
1008 |
+
def cyclic_conjugates(self):
|
1009 |
+
"""Returns a words which are cyclic to the word `self`.
|
1010 |
+
|
1011 |
+
Examples
|
1012 |
+
========
|
1013 |
+
|
1014 |
+
>>> from sympy.combinatorics import free_group
|
1015 |
+
>>> F, x, y = free_group("x, y")
|
1016 |
+
>>> w = x*y*x*y*x
|
1017 |
+
>>> w.cyclic_conjugates()
|
1018 |
+
{x*y*x**2*y, x**2*y*x*y, y*x*y*x**2, y*x**2*y*x, x*y*x*y*x}
|
1019 |
+
>>> s = x*y*x**2*y*x
|
1020 |
+
>>> s.cyclic_conjugates()
|
1021 |
+
{x**2*y*x**2*y, y*x**2*y*x**2, x*y*x**2*y*x}
|
1022 |
+
|
1023 |
+
References
|
1024 |
+
==========
|
1025 |
+
|
1026 |
+
.. [1] https://planetmath.org/cyclicpermutation
|
1027 |
+
|
1028 |
+
"""
|
1029 |
+
return {self.cyclic_subword(i, i+len(self)) for i in range(len(self))}
|
1030 |
+
|
1031 |
+
def is_cyclic_conjugate(self, w):
|
1032 |
+
"""
|
1033 |
+
Checks whether words ``self``, ``w`` are cyclic conjugates.
|
1034 |
+
|
1035 |
+
Examples
|
1036 |
+
========
|
1037 |
+
|
1038 |
+
>>> from sympy.combinatorics import free_group
|
1039 |
+
>>> F, x, y = free_group("x, y")
|
1040 |
+
>>> w1 = x**2*y**5
|
1041 |
+
>>> w2 = x*y**5*x
|
1042 |
+
>>> w1.is_cyclic_conjugate(w2)
|
1043 |
+
True
|
1044 |
+
>>> w3 = x**-1*y**5*x**-1
|
1045 |
+
>>> w3.is_cyclic_conjugate(w2)
|
1046 |
+
False
|
1047 |
+
|
1048 |
+
"""
|
1049 |
+
l1 = len(self)
|
1050 |
+
l2 = len(w)
|
1051 |
+
if l1 != l2:
|
1052 |
+
return False
|
1053 |
+
w1 = self.identity_cyclic_reduction()
|
1054 |
+
w2 = w.identity_cyclic_reduction()
|
1055 |
+
letter1 = w1.letter_form
|
1056 |
+
letter2 = w2.letter_form
|
1057 |
+
str1 = ' '.join(map(str, letter1))
|
1058 |
+
str2 = ' '.join(map(str, letter2))
|
1059 |
+
if len(str1) != len(str2):
|
1060 |
+
return False
|
1061 |
+
|
1062 |
+
return str1 in str2 + ' ' + str2
|
1063 |
+
|
1064 |
+
def number_syllables(self):
|
1065 |
+
"""Returns the number of syllables of the associative word `self`.
|
1066 |
+
|
1067 |
+
Examples
|
1068 |
+
========
|
1069 |
+
|
1070 |
+
>>> from sympy.combinatorics import free_group
|
1071 |
+
>>> f, swapnil0, swapnil1 = free_group("swapnil0 swapnil1")
|
1072 |
+
>>> (swapnil1**3*swapnil0*swapnil1**-1).number_syllables()
|
1073 |
+
3
|
1074 |
+
|
1075 |
+
"""
|
1076 |
+
return len(self.array_form)
|
1077 |
+
|
1078 |
+
def exponent_syllable(self, i):
|
1079 |
+
"""
|
1080 |
+
Returns the exponent of the `i`-th syllable of the associative word
|
1081 |
+
`self`.
|
1082 |
+
|
1083 |
+
Examples
|
1084 |
+
========
|
1085 |
+
|
1086 |
+
>>> from sympy.combinatorics import free_group
|
1087 |
+
>>> f, a, b = free_group("a b")
|
1088 |
+
>>> w = a**5*b*a**2*b**-4*a
|
1089 |
+
>>> w.exponent_syllable( 2 )
|
1090 |
+
2
|
1091 |
+
|
1092 |
+
"""
|
1093 |
+
return self.array_form[i][1]
|
1094 |
+
|
1095 |
+
def generator_syllable(self, i):
|
1096 |
+
"""
|
1097 |
+
Returns the symbol of the generator that is involved in the
|
1098 |
+
i-th syllable of the associative word `self`.
|
1099 |
+
|
1100 |
+
Examples
|
1101 |
+
========
|
1102 |
+
|
1103 |
+
>>> from sympy.combinatorics import free_group
|
1104 |
+
>>> f, a, b = free_group("a b")
|
1105 |
+
>>> w = a**5*b*a**2*b**-4*a
|
1106 |
+
>>> w.generator_syllable( 3 )
|
1107 |
+
b
|
1108 |
+
|
1109 |
+
"""
|
1110 |
+
return self.array_form[i][0]
|
1111 |
+
|
1112 |
+
def sub_syllables(self, from_i, to_j):
|
1113 |
+
"""
|
1114 |
+
`sub_syllables` returns the subword of the associative word `self` that
|
1115 |
+
consists of syllables from positions `from_to` to `to_j`, where
|
1116 |
+
`from_to` and `to_j` must be positive integers and indexing is done
|
1117 |
+
with origin 0.
|
1118 |
+
|
1119 |
+
Examples
|
1120 |
+
========
|
1121 |
+
|
1122 |
+
>>> from sympy.combinatorics import free_group
|
1123 |
+
>>> f, a, b = free_group("a, b")
|
1124 |
+
>>> w = a**5*b*a**2*b**-4*a
|
1125 |
+
>>> w.sub_syllables(1, 2)
|
1126 |
+
b
|
1127 |
+
>>> w.sub_syllables(3, 3)
|
1128 |
+
<identity>
|
1129 |
+
|
1130 |
+
"""
|
1131 |
+
if not isinstance(from_i, int) or not isinstance(to_j, int):
|
1132 |
+
raise ValueError("both arguments should be integers")
|
1133 |
+
group = self.group
|
1134 |
+
if to_j <= from_i:
|
1135 |
+
return group.identity
|
1136 |
+
else:
|
1137 |
+
r = tuple(self.array_form[from_i: to_j])
|
1138 |
+
return group.dtype(r)
|
1139 |
+
|
1140 |
+
def substituted_word(self, from_i, to_j, by):
|
1141 |
+
"""
|
1142 |
+
Returns the associative word obtained by replacing the subword of
|
1143 |
+
`self` that begins at position `from_i` and ends at position `to_j - 1`
|
1144 |
+
by the associative word `by`. `from_i` and `to_j` must be positive
|
1145 |
+
integers, indexing is done with origin 0. In other words,
|
1146 |
+
`w.substituted_word(w, from_i, to_j, by)` is the product of the three
|
1147 |
+
words: `w.subword(0, from_i)`, `by`, and
|
1148 |
+
`w.subword(to_j len(w))`.
|
1149 |
+
|
1150 |
+
See Also
|
1151 |
+
========
|
1152 |
+
|
1153 |
+
eliminate_word
|
1154 |
+
|
1155 |
+
"""
|
1156 |
+
lw = len(self)
|
1157 |
+
if from_i >= to_j or from_i > lw or to_j > lw:
|
1158 |
+
raise ValueError("values should be within bounds")
|
1159 |
+
|
1160 |
+
# otherwise there are four possibilities
|
1161 |
+
|
1162 |
+
# first if from=1 and to=lw then
|
1163 |
+
if from_i == 0 and to_j == lw:
|
1164 |
+
return by
|
1165 |
+
elif from_i == 0: # second if from_i=1 (and to_j < lw) then
|
1166 |
+
return by*self.subword(to_j, lw)
|
1167 |
+
elif to_j == lw: # third if to_j=1 (and from_i > 1) then
|
1168 |
+
return self.subword(0, from_i)*by
|
1169 |
+
else: # finally
|
1170 |
+
return self.subword(0, from_i)*by*self.subword(to_j, lw)
|
1171 |
+
|
1172 |
+
def is_cyclically_reduced(self):
|
1173 |
+
r"""Returns whether the word is cyclically reduced or not.
|
1174 |
+
A word is cyclically reduced if by forming the cycle of the
|
1175 |
+
word, the word is not reduced, i.e a word w = `a_1 ... a_n`
|
1176 |
+
is called cyclically reduced if `a_1 \ne a_n^{-1}`.
|
1177 |
+
|
1178 |
+
Examples
|
1179 |
+
========
|
1180 |
+
|
1181 |
+
>>> from sympy.combinatorics import free_group
|
1182 |
+
>>> F, x, y = free_group("x, y")
|
1183 |
+
>>> (x**2*y**-1*x**-1).is_cyclically_reduced()
|
1184 |
+
False
|
1185 |
+
>>> (y*x**2*y**2).is_cyclically_reduced()
|
1186 |
+
True
|
1187 |
+
|
1188 |
+
"""
|
1189 |
+
if not self:
|
1190 |
+
return True
|
1191 |
+
return self[0] != self[-1]**-1
|
1192 |
+
|
1193 |
+
def identity_cyclic_reduction(self):
|
1194 |
+
"""Return a unique cyclically reduced version of the word.
|
1195 |
+
|
1196 |
+
Examples
|
1197 |
+
========
|
1198 |
+
|
1199 |
+
>>> from sympy.combinatorics import free_group
|
1200 |
+
>>> F, x, y = free_group("x, y")
|
1201 |
+
>>> (x**2*y**2*x**-1).identity_cyclic_reduction()
|
1202 |
+
x*y**2
|
1203 |
+
>>> (x**-3*y**-1*x**5).identity_cyclic_reduction()
|
1204 |
+
x**2*y**-1
|
1205 |
+
|
1206 |
+
References
|
1207 |
+
==========
|
1208 |
+
|
1209 |
+
.. [1] https://planetmath.org/cyclicallyreduced
|
1210 |
+
|
1211 |
+
"""
|
1212 |
+
word = self.copy()
|
1213 |
+
group = self.group
|
1214 |
+
while not word.is_cyclically_reduced():
|
1215 |
+
exp1 = word.exponent_syllable(0)
|
1216 |
+
exp2 = word.exponent_syllable(-1)
|
1217 |
+
r = exp1 + exp2
|
1218 |
+
if r == 0:
|
1219 |
+
rep = word.array_form[1: word.number_syllables() - 1]
|
1220 |
+
else:
|
1221 |
+
rep = ((word.generator_syllable(0), exp1 + exp2),) + \
|
1222 |
+
word.array_form[1: word.number_syllables() - 1]
|
1223 |
+
word = group.dtype(rep)
|
1224 |
+
return word
|
1225 |
+
|
1226 |
+
def cyclic_reduction(self, removed=False):
|
1227 |
+
"""Return a cyclically reduced version of the word. Unlike
|
1228 |
+
`identity_cyclic_reduction`, this will not cyclically permute
|
1229 |
+
the reduced word - just remove the "unreduced" bits on either
|
1230 |
+
side of it. Compare the examples with those of
|
1231 |
+
`identity_cyclic_reduction`.
|
1232 |
+
|
1233 |
+
When `removed` is `True`, return a tuple `(word, r)` where
|
1234 |
+
self `r` is such that before the reduction the word was either
|
1235 |
+
`r*word*r**-1`.
|
1236 |
+
|
1237 |
+
Examples
|
1238 |
+
========
|
1239 |
+
|
1240 |
+
>>> from sympy.combinatorics import free_group
|
1241 |
+
>>> F, x, y = free_group("x, y")
|
1242 |
+
>>> (x**2*y**2*x**-1).cyclic_reduction()
|
1243 |
+
x*y**2
|
1244 |
+
>>> (x**-3*y**-1*x**5).cyclic_reduction()
|
1245 |
+
y**-1*x**2
|
1246 |
+
>>> (x**-3*y**-1*x**5).cyclic_reduction(removed=True)
|
1247 |
+
(y**-1*x**2, x**-3)
|
1248 |
+
|
1249 |
+
"""
|
1250 |
+
word = self.copy()
|
1251 |
+
g = self.group.identity
|
1252 |
+
while not word.is_cyclically_reduced():
|
1253 |
+
exp1 = abs(word.exponent_syllable(0))
|
1254 |
+
exp2 = abs(word.exponent_syllable(-1))
|
1255 |
+
exp = min(exp1, exp2)
|
1256 |
+
start = word[0]**abs(exp)
|
1257 |
+
end = word[-1]**abs(exp)
|
1258 |
+
word = start**-1*word*end**-1
|
1259 |
+
g = g*start
|
1260 |
+
if removed:
|
1261 |
+
return word, g
|
1262 |
+
return word
|
1263 |
+
|
1264 |
+
def power_of(self, other):
|
1265 |
+
'''
|
1266 |
+
Check if `self == other**n` for some integer n.
|
1267 |
+
|
1268 |
+
Examples
|
1269 |
+
========
|
1270 |
+
|
1271 |
+
>>> from sympy.combinatorics import free_group
|
1272 |
+
>>> F, x, y = free_group("x, y")
|
1273 |
+
>>> ((x*y)**2).power_of(x*y)
|
1274 |
+
True
|
1275 |
+
>>> (x**-3*y**-2*x**3).power_of(x**-3*y*x**3)
|
1276 |
+
True
|
1277 |
+
|
1278 |
+
'''
|
1279 |
+
if self.is_identity:
|
1280 |
+
return True
|
1281 |
+
|
1282 |
+
l = len(other)
|
1283 |
+
if l == 1:
|
1284 |
+
# self has to be a power of one generator
|
1285 |
+
gens = self.contains_generators()
|
1286 |
+
s = other in gens or other**-1 in gens
|
1287 |
+
return len(gens) == 1 and s
|
1288 |
+
|
1289 |
+
# if self is not cyclically reduced and it is a power of other,
|
1290 |
+
# other isn't cyclically reduced and the parts removed during
|
1291 |
+
# their reduction must be equal
|
1292 |
+
reduced, r1 = self.cyclic_reduction(removed=True)
|
1293 |
+
if not r1.is_identity:
|
1294 |
+
other, r2 = other.cyclic_reduction(removed=True)
|
1295 |
+
if r1 == r2:
|
1296 |
+
return reduced.power_of(other)
|
1297 |
+
return False
|
1298 |
+
|
1299 |
+
if len(self) < l or len(self) % l:
|
1300 |
+
return False
|
1301 |
+
|
1302 |
+
prefix = self.subword(0, l)
|
1303 |
+
if prefix == other or prefix**-1 == other:
|
1304 |
+
rest = self.subword(l, len(self))
|
1305 |
+
return rest.power_of(other)
|
1306 |
+
return False
|
1307 |
+
|
1308 |
+
|
1309 |
+
def letter_form_to_array_form(array_form, group):
|
1310 |
+
"""
|
1311 |
+
This method converts a list given with possible repetitions of elements in
|
1312 |
+
it. It returns a new list such that repetitions of consecutive elements is
|
1313 |
+
removed and replace with a tuple element of size two such that the first
|
1314 |
+
index contains `value` and the second index contains the number of
|
1315 |
+
consecutive repetitions of `value`.
|
1316 |
+
|
1317 |
+
"""
|
1318 |
+
a = list(array_form[:])
|
1319 |
+
new_array = []
|
1320 |
+
n = 1
|
1321 |
+
symbols = group.symbols
|
1322 |
+
for i in range(len(a)):
|
1323 |
+
if i == len(a) - 1:
|
1324 |
+
if a[i] == a[i - 1]:
|
1325 |
+
if (-a[i]) in symbols:
|
1326 |
+
new_array.append((-a[i], -n))
|
1327 |
+
else:
|
1328 |
+
new_array.append((a[i], n))
|
1329 |
+
else:
|
1330 |
+
if (-a[i]) in symbols:
|
1331 |
+
new_array.append((-a[i], -1))
|
1332 |
+
else:
|
1333 |
+
new_array.append((a[i], 1))
|
1334 |
+
return new_array
|
1335 |
+
elif a[i] == a[i + 1]:
|
1336 |
+
n += 1
|
1337 |
+
else:
|
1338 |
+
if (-a[i]) in symbols:
|
1339 |
+
new_array.append((-a[i], -n))
|
1340 |
+
else:
|
1341 |
+
new_array.append((a[i], n))
|
1342 |
+
n = 1
|
1343 |
+
|
1344 |
+
|
1345 |
+
def zero_mul_simp(l, index):
|
1346 |
+
"""Used to combine two reduced words."""
|
1347 |
+
while index >=0 and index < len(l) - 1 and l[index][0] == l[index + 1][0]:
|
1348 |
+
exp = l[index][1] + l[index + 1][1]
|
1349 |
+
base = l[index][0]
|
1350 |
+
l[index] = (base, exp)
|
1351 |
+
del l[index + 1]
|
1352 |
+
if l[index][1] == 0:
|
1353 |
+
del l[index]
|
1354 |
+
index -= 1
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/galois.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
Construct transitive subgroups of symmetric groups, useful in Galois theory.
|
3 |
+
|
4 |
+
Besides constructing instances of the :py:class:`~.PermutationGroup` class to
|
5 |
+
represent the transitive subgroups of $S_n$ for small $n$, this module provides
|
6 |
+
*names* for these groups.
|
7 |
+
|
8 |
+
In some applications, it may be preferable to know the name of a group,
|
9 |
+
rather than receive an instance of the :py:class:`~.PermutationGroup`
|
10 |
+
class, and then have to do extra work to determine which group it is, by
|
11 |
+
checking various properties.
|
12 |
+
|
13 |
+
Names are instances of ``Enum`` classes defined in this module. With a name in
|
14 |
+
hand, the name's ``get_perm_group`` method can then be used to retrieve a
|
15 |
+
:py:class:`~.PermutationGroup`.
|
16 |
+
|
17 |
+
The names used for groups in this module are taken from [1].
|
18 |
+
|
19 |
+
References
|
20 |
+
==========
|
21 |
+
|
22 |
+
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*.
|
23 |
+
|
24 |
+
"""
|
25 |
+
|
26 |
+
from collections import defaultdict
|
27 |
+
from enum import Enum
|
28 |
+
import itertools
|
29 |
+
|
30 |
+
from sympy.combinatorics.named_groups import (
|
31 |
+
SymmetricGroup, AlternatingGroup, CyclicGroup, DihedralGroup,
|
32 |
+
set_symmetric_group_properties, set_alternating_group_properties,
|
33 |
+
)
|
34 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
35 |
+
from sympy.combinatorics.permutations import Permutation
|
36 |
+
|
37 |
+
|
38 |
+
class S1TransitiveSubgroups(Enum):
|
39 |
+
"""
|
40 |
+
Names for the transitive subgroups of S1.
|
41 |
+
"""
|
42 |
+
S1 = "S1"
|
43 |
+
|
44 |
+
def get_perm_group(self):
|
45 |
+
return SymmetricGroup(1)
|
46 |
+
|
47 |
+
|
48 |
+
class S2TransitiveSubgroups(Enum):
|
49 |
+
"""
|
50 |
+
Names for the transitive subgroups of S2.
|
51 |
+
"""
|
52 |
+
S2 = "S2"
|
53 |
+
|
54 |
+
def get_perm_group(self):
|
55 |
+
return SymmetricGroup(2)
|
56 |
+
|
57 |
+
|
58 |
+
class S3TransitiveSubgroups(Enum):
|
59 |
+
"""
|
60 |
+
Names for the transitive subgroups of S3.
|
61 |
+
"""
|
62 |
+
A3 = "A3"
|
63 |
+
S3 = "S3"
|
64 |
+
|
65 |
+
def get_perm_group(self):
|
66 |
+
if self == S3TransitiveSubgroups.A3:
|
67 |
+
return AlternatingGroup(3)
|
68 |
+
elif self == S3TransitiveSubgroups.S3:
|
69 |
+
return SymmetricGroup(3)
|
70 |
+
|
71 |
+
|
72 |
+
class S4TransitiveSubgroups(Enum):
|
73 |
+
"""
|
74 |
+
Names for the transitive subgroups of S4.
|
75 |
+
"""
|
76 |
+
C4 = "C4"
|
77 |
+
V = "V"
|
78 |
+
D4 = "D4"
|
79 |
+
A4 = "A4"
|
80 |
+
S4 = "S4"
|
81 |
+
|
82 |
+
def get_perm_group(self):
|
83 |
+
if self == S4TransitiveSubgroups.C4:
|
84 |
+
return CyclicGroup(4)
|
85 |
+
elif self == S4TransitiveSubgroups.V:
|
86 |
+
return four_group()
|
87 |
+
elif self == S4TransitiveSubgroups.D4:
|
88 |
+
return DihedralGroup(4)
|
89 |
+
elif self == S4TransitiveSubgroups.A4:
|
90 |
+
return AlternatingGroup(4)
|
91 |
+
elif self == S4TransitiveSubgroups.S4:
|
92 |
+
return SymmetricGroup(4)
|
93 |
+
|
94 |
+
|
95 |
+
class S5TransitiveSubgroups(Enum):
|
96 |
+
"""
|
97 |
+
Names for the transitive subgroups of S5.
|
98 |
+
"""
|
99 |
+
C5 = "C5"
|
100 |
+
D5 = "D5"
|
101 |
+
M20 = "M20"
|
102 |
+
A5 = "A5"
|
103 |
+
S5 = "S5"
|
104 |
+
|
105 |
+
def get_perm_group(self):
|
106 |
+
if self == S5TransitiveSubgroups.C5:
|
107 |
+
return CyclicGroup(5)
|
108 |
+
elif self == S5TransitiveSubgroups.D5:
|
109 |
+
return DihedralGroup(5)
|
110 |
+
elif self == S5TransitiveSubgroups.M20:
|
111 |
+
return M20()
|
112 |
+
elif self == S5TransitiveSubgroups.A5:
|
113 |
+
return AlternatingGroup(5)
|
114 |
+
elif self == S5TransitiveSubgroups.S5:
|
115 |
+
return SymmetricGroup(5)
|
116 |
+
|
117 |
+
|
118 |
+
class S6TransitiveSubgroups(Enum):
|
119 |
+
"""
|
120 |
+
Names for the transitive subgroups of S6.
|
121 |
+
"""
|
122 |
+
C6 = "C6"
|
123 |
+
S3 = "S3"
|
124 |
+
D6 = "D6"
|
125 |
+
A4 = "A4"
|
126 |
+
G18 = "G18"
|
127 |
+
A4xC2 = "A4 x C2"
|
128 |
+
S4m = "S4-"
|
129 |
+
S4p = "S4+"
|
130 |
+
G36m = "G36-"
|
131 |
+
G36p = "G36+"
|
132 |
+
S4xC2 = "S4 x C2"
|
133 |
+
PSL2F5 = "PSL2(F5)"
|
134 |
+
G72 = "G72"
|
135 |
+
PGL2F5 = "PGL2(F5)"
|
136 |
+
A6 = "A6"
|
137 |
+
S6 = "S6"
|
138 |
+
|
139 |
+
def get_perm_group(self):
|
140 |
+
if self == S6TransitiveSubgroups.C6:
|
141 |
+
return CyclicGroup(6)
|
142 |
+
elif self == S6TransitiveSubgroups.S3:
|
143 |
+
return S3_in_S6()
|
144 |
+
elif self == S6TransitiveSubgroups.D6:
|
145 |
+
return DihedralGroup(6)
|
146 |
+
elif self == S6TransitiveSubgroups.A4:
|
147 |
+
return A4_in_S6()
|
148 |
+
elif self == S6TransitiveSubgroups.G18:
|
149 |
+
return G18()
|
150 |
+
elif self == S6TransitiveSubgroups.A4xC2:
|
151 |
+
return A4xC2()
|
152 |
+
elif self == S6TransitiveSubgroups.S4m:
|
153 |
+
return S4m()
|
154 |
+
elif self == S6TransitiveSubgroups.S4p:
|
155 |
+
return S4p()
|
156 |
+
elif self == S6TransitiveSubgroups.G36m:
|
157 |
+
return G36m()
|
158 |
+
elif self == S6TransitiveSubgroups.G36p:
|
159 |
+
return G36p()
|
160 |
+
elif self == S6TransitiveSubgroups.S4xC2:
|
161 |
+
return S4xC2()
|
162 |
+
elif self == S6TransitiveSubgroups.PSL2F5:
|
163 |
+
return PSL2F5()
|
164 |
+
elif self == S6TransitiveSubgroups.G72:
|
165 |
+
return G72()
|
166 |
+
elif self == S6TransitiveSubgroups.PGL2F5:
|
167 |
+
return PGL2F5()
|
168 |
+
elif self == S6TransitiveSubgroups.A6:
|
169 |
+
return AlternatingGroup(6)
|
170 |
+
elif self == S6TransitiveSubgroups.S6:
|
171 |
+
return SymmetricGroup(6)
|
172 |
+
|
173 |
+
|
174 |
+
def four_group():
|
175 |
+
"""
|
176 |
+
Return a representation of the Klein four-group as a transitive subgroup
|
177 |
+
of S4.
|
178 |
+
"""
|
179 |
+
return PermutationGroup(
|
180 |
+
Permutation(0, 1)(2, 3),
|
181 |
+
Permutation(0, 2)(1, 3)
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
def M20():
|
186 |
+
"""
|
187 |
+
Return a representation of the metacyclic group M20, a transitive subgroup
|
188 |
+
of S5 that is one of the possible Galois groups for polys of degree 5.
|
189 |
+
|
190 |
+
Notes
|
191 |
+
=====
|
192 |
+
|
193 |
+
See [1], Page 323.
|
194 |
+
|
195 |
+
"""
|
196 |
+
G = PermutationGroup(Permutation(0, 1, 2, 3, 4), Permutation(1, 2, 4, 3))
|
197 |
+
G._degree = 5
|
198 |
+
G._order = 20
|
199 |
+
G._is_transitive = True
|
200 |
+
G._is_sym = False
|
201 |
+
G._is_alt = False
|
202 |
+
G._is_cyclic = False
|
203 |
+
G._is_dihedral = False
|
204 |
+
return G
|
205 |
+
|
206 |
+
|
207 |
+
def S3_in_S6():
|
208 |
+
"""
|
209 |
+
Return a representation of S3 as a transitive subgroup of S6.
|
210 |
+
|
211 |
+
Notes
|
212 |
+
=====
|
213 |
+
|
214 |
+
The representation is found by viewing the group as the symmetries of a
|
215 |
+
triangular prism.
|
216 |
+
|
217 |
+
"""
|
218 |
+
G = PermutationGroup(Permutation(0, 1, 2)(3, 4, 5), Permutation(0, 3)(2, 4)(1, 5))
|
219 |
+
set_symmetric_group_properties(G, 3, 6)
|
220 |
+
return G
|
221 |
+
|
222 |
+
|
223 |
+
def A4_in_S6():
|
224 |
+
"""
|
225 |
+
Return a representation of A4 as a transitive subgroup of S6.
|
226 |
+
|
227 |
+
Notes
|
228 |
+
=====
|
229 |
+
|
230 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
231 |
+
|
232 |
+
"""
|
233 |
+
G = PermutationGroup(Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 1, 2)(3, 5, 4))
|
234 |
+
set_alternating_group_properties(G, 4, 6)
|
235 |
+
return G
|
236 |
+
|
237 |
+
|
238 |
+
def S4m():
|
239 |
+
"""
|
240 |
+
Return a representation of the S4- transitive subgroup of S6.
|
241 |
+
|
242 |
+
Notes
|
243 |
+
=====
|
244 |
+
|
245 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
246 |
+
|
247 |
+
"""
|
248 |
+
G = PermutationGroup(Permutation(1, 4, 5, 3), Permutation(0, 4)(1, 5)(2, 3))
|
249 |
+
set_symmetric_group_properties(G, 4, 6)
|
250 |
+
return G
|
251 |
+
|
252 |
+
|
253 |
+
def S4p():
|
254 |
+
"""
|
255 |
+
Return a representation of the S4+ transitive subgroup of S6.
|
256 |
+
|
257 |
+
Notes
|
258 |
+
=====
|
259 |
+
|
260 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
261 |
+
|
262 |
+
"""
|
263 |
+
G = PermutationGroup(Permutation(0, 2, 4, 1)(3, 5), Permutation(0, 3)(4, 5))
|
264 |
+
set_symmetric_group_properties(G, 4, 6)
|
265 |
+
return G
|
266 |
+
|
267 |
+
|
268 |
+
def A4xC2():
|
269 |
+
"""
|
270 |
+
Return a representation of the (A4 x C2) transitive subgroup of S6.
|
271 |
+
|
272 |
+
Notes
|
273 |
+
=====
|
274 |
+
|
275 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
276 |
+
|
277 |
+
"""
|
278 |
+
return PermutationGroup(
|
279 |
+
Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 1, 2)(3, 5, 4),
|
280 |
+
Permutation(5)(2, 4))
|
281 |
+
|
282 |
+
|
283 |
+
def S4xC2():
|
284 |
+
"""
|
285 |
+
Return a representation of the (S4 x C2) transitive subgroup of S6.
|
286 |
+
|
287 |
+
Notes
|
288 |
+
=====
|
289 |
+
|
290 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
291 |
+
|
292 |
+
"""
|
293 |
+
return PermutationGroup(
|
294 |
+
Permutation(1, 4, 5, 3), Permutation(0, 4)(1, 5)(2, 3),
|
295 |
+
Permutation(1, 4)(3, 5))
|
296 |
+
|
297 |
+
|
298 |
+
def G18():
|
299 |
+
"""
|
300 |
+
Return a representation of the group G18, a transitive subgroup of S6
|
301 |
+
isomorphic to the semidirect product of C3^2 with C2.
|
302 |
+
|
303 |
+
Notes
|
304 |
+
=====
|
305 |
+
|
306 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
307 |
+
|
308 |
+
"""
|
309 |
+
return PermutationGroup(
|
310 |
+
Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
|
311 |
+
Permutation(0, 4)(1, 5)(2, 3))
|
312 |
+
|
313 |
+
|
314 |
+
def G36m():
|
315 |
+
"""
|
316 |
+
Return a representation of the group G36-, a transitive subgroup of S6
|
317 |
+
isomorphic to the semidirect product of C3^2 with C2^2.
|
318 |
+
|
319 |
+
Notes
|
320 |
+
=====
|
321 |
+
|
322 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
323 |
+
|
324 |
+
"""
|
325 |
+
return PermutationGroup(
|
326 |
+
Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
|
327 |
+
Permutation(1, 2)(3, 5), Permutation(0, 4)(1, 5)(2, 3))
|
328 |
+
|
329 |
+
|
330 |
+
def G36p():
|
331 |
+
"""
|
332 |
+
Return a representation of the group G36+, a transitive subgroup of S6
|
333 |
+
isomorphic to the semidirect product of C3^2 with C4.
|
334 |
+
|
335 |
+
Notes
|
336 |
+
=====
|
337 |
+
|
338 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
339 |
+
|
340 |
+
"""
|
341 |
+
return PermutationGroup(
|
342 |
+
Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
|
343 |
+
Permutation(0, 5, 2, 3)(1, 4))
|
344 |
+
|
345 |
+
|
346 |
+
def G72():
|
347 |
+
"""
|
348 |
+
Return a representation of the group G72, a transitive subgroup of S6
|
349 |
+
isomorphic to the semidirect product of C3^2 with D4.
|
350 |
+
|
351 |
+
Notes
|
352 |
+
=====
|
353 |
+
|
354 |
+
See [1], Page 325.
|
355 |
+
|
356 |
+
"""
|
357 |
+
return PermutationGroup(
|
358 |
+
Permutation(5)(0, 1, 2),
|
359 |
+
Permutation(0, 4, 1, 3)(2, 5), Permutation(0, 3)(1, 4)(2, 5))
|
360 |
+
|
361 |
+
|
362 |
+
def PSL2F5():
|
363 |
+
r"""
|
364 |
+
Return a representation of the group $PSL_2(\mathbb{F}_5)$, as a transitive
|
365 |
+
subgroup of S6, isomorphic to $A_5$.
|
366 |
+
|
367 |
+
Notes
|
368 |
+
=====
|
369 |
+
|
370 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
371 |
+
|
372 |
+
"""
|
373 |
+
G = PermutationGroup(
|
374 |
+
Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 4, 3, 1, 5))
|
375 |
+
set_alternating_group_properties(G, 5, 6)
|
376 |
+
return G
|
377 |
+
|
378 |
+
|
379 |
+
def PGL2F5():
|
380 |
+
r"""
|
381 |
+
Return a representation of the group $PGL_2(\mathbb{F}_5)$, as a transitive
|
382 |
+
subgroup of S6, isomorphic to $S_5$.
|
383 |
+
|
384 |
+
Notes
|
385 |
+
=====
|
386 |
+
|
387 |
+
See [1], Page 325.
|
388 |
+
|
389 |
+
"""
|
390 |
+
G = PermutationGroup(
|
391 |
+
Permutation(0, 1, 2, 3, 4), Permutation(0, 5)(1, 2)(3, 4))
|
392 |
+
set_symmetric_group_properties(G, 5, 6)
|
393 |
+
return G
|
394 |
+
|
395 |
+
|
396 |
+
def find_transitive_subgroups_of_S6(*targets, print_report=False):
|
397 |
+
r"""
|
398 |
+
Search for certain transitive subgroups of $S_6$.
|
399 |
+
|
400 |
+
The symmetric group $S_6$ has 16 different transitive subgroups, up to
|
401 |
+
conjugacy. Some are more easily constructed than others. For example, the
|
402 |
+
dihedral group $D_6$ is immediately found, but it is not at all obvious how
|
403 |
+
to realize $S_4$ or $S_5$ *transitively* within $S_6$.
|
404 |
+
|
405 |
+
In some cases there are well-known constructions that can be used. For
|
406 |
+
example, $S_5$ is isomorphic to $PGL_2(\mathbb{F}_5)$, which acts in a
|
407 |
+
natural way on the projective line $P^1(\mathbb{F}_5)$, a set of order 6.
|
408 |
+
|
409 |
+
In absence of such special constructions however, we can simply search for
|
410 |
+
generators. For example, transitive instances of $A_4$ and $S_4$ can be
|
411 |
+
found within $S_6$ in this way.
|
412 |
+
|
413 |
+
Once we are engaged in such searches, it may then be easier (if less
|
414 |
+
elegant) to find even those groups like $S_5$ that do have special
|
415 |
+
constructions, by mere search.
|
416 |
+
|
417 |
+
This function locates generators for transitive instances in $S_6$ of the
|
418 |
+
following subgroups:
|
419 |
+
|
420 |
+
* $A_4$
|
421 |
+
* $S_4^-$ ($S_4$ not contained within $A_6$)
|
422 |
+
* $S_4^+$ ($S_4$ contained within $A_6$)
|
423 |
+
* $A_4 \times C_2$
|
424 |
+
* $S_4 \times C_2$
|
425 |
+
* $G_{18} = C_3^2 \rtimes C_2$
|
426 |
+
* $G_{36}^- = C_3^2 \rtimes C_2^2$
|
427 |
+
* $G_{36}^+ = C_3^2 \rtimes C_4$
|
428 |
+
* $G_{72} = C_3^2 \rtimes D_4$
|
429 |
+
* $A_5$
|
430 |
+
* $S_5$
|
431 |
+
|
432 |
+
Note: Each of these groups also has a dedicated function in this module
|
433 |
+
that returns the group immediately, using generators that were found by
|
434 |
+
this search procedure.
|
435 |
+
|
436 |
+
The search procedure serves as a record of how these generators were
|
437 |
+
found. Also, due to randomness in the generation of the elements of
|
438 |
+
permutation groups, it can be called again, in order to (probably) get
|
439 |
+
different generators for the same groups.
|
440 |
+
|
441 |
+
Parameters
|
442 |
+
==========
|
443 |
+
|
444 |
+
targets : list of :py:class:`~.S6TransitiveSubgroups` values
|
445 |
+
The groups you want to find.
|
446 |
+
|
447 |
+
print_report : bool (default False)
|
448 |
+
If True, print to stdout the generators found for each group.
|
449 |
+
|
450 |
+
Returns
|
451 |
+
=======
|
452 |
+
|
453 |
+
dict
|
454 |
+
mapping each name in *targets* to the :py:class:`~.PermutationGroup`
|
455 |
+
that was found
|
456 |
+
|
457 |
+
References
|
458 |
+
==========
|
459 |
+
|
460 |
+
.. [2] https://en.wikipedia.org/wiki/Projective_linear_group#Exceptional_isomorphisms
|
461 |
+
.. [3] https://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups#PGL(2,5)
|
462 |
+
|
463 |
+
"""
|
464 |
+
def elts_by_order(G):
|
465 |
+
"""Sort the elements of a group by their order. """
|
466 |
+
elts = defaultdict(list)
|
467 |
+
for g in G.elements:
|
468 |
+
elts[g.order()].append(g)
|
469 |
+
return elts
|
470 |
+
|
471 |
+
def order_profile(G, name=None):
|
472 |
+
"""Determine how many elements a group has, of each order. """
|
473 |
+
elts = elts_by_order(G)
|
474 |
+
profile = {o:len(e) for o, e in elts.items()}
|
475 |
+
if name:
|
476 |
+
print(f'{name}: ' + ' '.join(f'{len(profile[r])}@{r}' for r in sorted(profile.keys())))
|
477 |
+
return profile
|
478 |
+
|
479 |
+
S6 = SymmetricGroup(6)
|
480 |
+
A6 = AlternatingGroup(6)
|
481 |
+
S6_by_order = elts_by_order(S6)
|
482 |
+
|
483 |
+
def search(existing_gens, needed_gen_orders, order, alt=None, profile=None, anti_profile=None):
|
484 |
+
"""
|
485 |
+
Find a transitive subgroup of S6.
|
486 |
+
|
487 |
+
Parameters
|
488 |
+
==========
|
489 |
+
|
490 |
+
existing_gens : list of Permutation
|
491 |
+
Optionally empty list of generators that must be in the group.
|
492 |
+
|
493 |
+
needed_gen_orders : list of positive int
|
494 |
+
Nonempty list of the orders of the additional generators that are
|
495 |
+
to be found.
|
496 |
+
|
497 |
+
order: int
|
498 |
+
The order of the group being sought.
|
499 |
+
|
500 |
+
alt: bool, None
|
501 |
+
If True, require the group to be contained in A6.
|
502 |
+
If False, require the group not to be contained in A6.
|
503 |
+
|
504 |
+
profile : dict
|
505 |
+
If given, the group's order profile must equal this.
|
506 |
+
|
507 |
+
anti_profile : dict
|
508 |
+
If given, the group's order profile must *not* equal this.
|
509 |
+
|
510 |
+
"""
|
511 |
+
for gens in itertools.product(*[S6_by_order[n] for n in needed_gen_orders]):
|
512 |
+
if len(set(gens)) < len(gens):
|
513 |
+
continue
|
514 |
+
G = PermutationGroup(existing_gens + list(gens))
|
515 |
+
if G.order() == order and G.is_transitive():
|
516 |
+
if alt is not None and G.is_subgroup(A6) != alt:
|
517 |
+
continue
|
518 |
+
if profile and order_profile(G) != profile:
|
519 |
+
continue
|
520 |
+
if anti_profile and order_profile(G) == anti_profile:
|
521 |
+
continue
|
522 |
+
return G
|
523 |
+
|
524 |
+
def match_known_group(G, alt=None):
|
525 |
+
needed = [g.order() for g in G.generators]
|
526 |
+
return search([], needed, G.order(), alt=alt, profile=order_profile(G))
|
527 |
+
|
528 |
+
found = {}
|
529 |
+
|
530 |
+
def finish_up(name, G):
|
531 |
+
found[name] = G
|
532 |
+
if print_report:
|
533 |
+
print("=" * 40)
|
534 |
+
print(f"{name}:")
|
535 |
+
print(G.generators)
|
536 |
+
|
537 |
+
if S6TransitiveSubgroups.A4 in targets or S6TransitiveSubgroups.A4xC2 in targets:
|
538 |
+
A4_in_S6 = match_known_group(AlternatingGroup(4))
|
539 |
+
finish_up(S6TransitiveSubgroups.A4, A4_in_S6)
|
540 |
+
|
541 |
+
if S6TransitiveSubgroups.S4m in targets or S6TransitiveSubgroups.S4xC2 in targets:
|
542 |
+
S4m_in_S6 = match_known_group(SymmetricGroup(4), alt=False)
|
543 |
+
finish_up(S6TransitiveSubgroups.S4m, S4m_in_S6)
|
544 |
+
|
545 |
+
if S6TransitiveSubgroups.S4p in targets:
|
546 |
+
S4p_in_S6 = match_known_group(SymmetricGroup(4), alt=True)
|
547 |
+
finish_up(S6TransitiveSubgroups.S4p, S4p_in_S6)
|
548 |
+
|
549 |
+
if S6TransitiveSubgroups.A4xC2 in targets:
|
550 |
+
A4xC2_in_S6 = search(A4_in_S6.generators, [2], 24, anti_profile=order_profile(SymmetricGroup(4)))
|
551 |
+
finish_up(S6TransitiveSubgroups.A4xC2, A4xC2_in_S6)
|
552 |
+
|
553 |
+
if S6TransitiveSubgroups.S4xC2 in targets:
|
554 |
+
S4xC2_in_S6 = search(S4m_in_S6.generators, [2], 48)
|
555 |
+
finish_up(S6TransitiveSubgroups.S4xC2, S4xC2_in_S6)
|
556 |
+
|
557 |
+
# For the normal factor N = C3^2 in any of the G_n subgroups, we take one
|
558 |
+
# obvious instance of C3^2 in S6:
|
559 |
+
N_gens = [Permutation(5)(0, 1, 2), Permutation(5)(3, 4, 5)]
|
560 |
+
|
561 |
+
if S6TransitiveSubgroups.G18 in targets:
|
562 |
+
G18_in_S6 = search(N_gens, [2], 18)
|
563 |
+
finish_up(S6TransitiveSubgroups.G18, G18_in_S6)
|
564 |
+
|
565 |
+
if S6TransitiveSubgroups.G36m in targets:
|
566 |
+
G36m_in_S6 = search(N_gens, [2, 2], 36, alt=False)
|
567 |
+
finish_up(S6TransitiveSubgroups.G36m, G36m_in_S6)
|
568 |
+
|
569 |
+
if S6TransitiveSubgroups.G36p in targets:
|
570 |
+
G36p_in_S6 = search(N_gens, [4], 36, alt=True)
|
571 |
+
finish_up(S6TransitiveSubgroups.G36p, G36p_in_S6)
|
572 |
+
|
573 |
+
if S6TransitiveSubgroups.G72 in targets:
|
574 |
+
G72_in_S6 = search(N_gens, [4, 2], 72)
|
575 |
+
finish_up(S6TransitiveSubgroups.G72, G72_in_S6)
|
576 |
+
|
577 |
+
# The PSL2(F5) and PGL2(F5) subgroups are isomorphic to A5 and S5, resp.
|
578 |
+
|
579 |
+
if S6TransitiveSubgroups.PSL2F5 in targets:
|
580 |
+
PSL2F5_in_S6 = match_known_group(AlternatingGroup(5))
|
581 |
+
finish_up(S6TransitiveSubgroups.PSL2F5, PSL2F5_in_S6)
|
582 |
+
|
583 |
+
if S6TransitiveSubgroups.PGL2F5 in targets:
|
584 |
+
PGL2F5_in_S6 = match_known_group(SymmetricGroup(5))
|
585 |
+
finish_up(S6TransitiveSubgroups.PGL2F5, PGL2F5_in_S6)
|
586 |
+
|
587 |
+
# There is little need to "search" for any of the groups C6, S3, D6, A6,
|
588 |
+
# or S6, since they all have obvious realizations within S6. However, we
|
589 |
+
# support them here just in case a random representation is desired.
|
590 |
+
|
591 |
+
if S6TransitiveSubgroups.C6 in targets:
|
592 |
+
C6 = match_known_group(CyclicGroup(6))
|
593 |
+
finish_up(S6TransitiveSubgroups.C6, C6)
|
594 |
+
|
595 |
+
if S6TransitiveSubgroups.S3 in targets:
|
596 |
+
S3 = match_known_group(SymmetricGroup(3))
|
597 |
+
finish_up(S6TransitiveSubgroups.S3, S3)
|
598 |
+
|
599 |
+
if S6TransitiveSubgroups.D6 in targets:
|
600 |
+
D6 = match_known_group(DihedralGroup(6))
|
601 |
+
finish_up(S6TransitiveSubgroups.D6, D6)
|
602 |
+
|
603 |
+
if S6TransitiveSubgroups.A6 in targets:
|
604 |
+
A6 = match_known_group(A6)
|
605 |
+
finish_up(S6TransitiveSubgroups.A6, A6)
|
606 |
+
|
607 |
+
if S6TransitiveSubgroups.S6 in targets:
|
608 |
+
S6 = match_known_group(S6)
|
609 |
+
finish_up(S6TransitiveSubgroups.S6, S6)
|
610 |
+
|
611 |
+
return found
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/generators.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.permutations import Permutation
|
2 |
+
from sympy.core.symbol import symbols
|
3 |
+
from sympy.matrices import Matrix
|
4 |
+
from sympy.utilities.iterables import variations, rotate_left
|
5 |
+
|
6 |
+
|
7 |
+
def symmetric(n):
|
8 |
+
"""
|
9 |
+
Generates the symmetric group of order n, Sn.
|
10 |
+
|
11 |
+
Examples
|
12 |
+
========
|
13 |
+
|
14 |
+
>>> from sympy.combinatorics.generators import symmetric
|
15 |
+
>>> list(symmetric(3))
|
16 |
+
[(2), (1 2), (2)(0 1), (0 1 2), (0 2 1), (0 2)]
|
17 |
+
"""
|
18 |
+
for perm in variations(range(n), n):
|
19 |
+
yield Permutation(perm)
|
20 |
+
|
21 |
+
|
22 |
+
def cyclic(n):
|
23 |
+
"""
|
24 |
+
Generates the cyclic group of order n, Cn.
|
25 |
+
|
26 |
+
Examples
|
27 |
+
========
|
28 |
+
|
29 |
+
>>> from sympy.combinatorics.generators import cyclic
|
30 |
+
>>> list(cyclic(5))
|
31 |
+
[(4), (0 1 2 3 4), (0 2 4 1 3),
|
32 |
+
(0 3 1 4 2), (0 4 3 2 1)]
|
33 |
+
|
34 |
+
See Also
|
35 |
+
========
|
36 |
+
|
37 |
+
dihedral
|
38 |
+
"""
|
39 |
+
gen = list(range(n))
|
40 |
+
for i in range(n):
|
41 |
+
yield Permutation(gen)
|
42 |
+
gen = rotate_left(gen, 1)
|
43 |
+
|
44 |
+
|
45 |
+
def alternating(n):
|
46 |
+
"""
|
47 |
+
Generates the alternating group of order n, An.
|
48 |
+
|
49 |
+
Examples
|
50 |
+
========
|
51 |
+
|
52 |
+
>>> from sympy.combinatorics.generators import alternating
|
53 |
+
>>> list(alternating(3))
|
54 |
+
[(2), (0 1 2), (0 2 1)]
|
55 |
+
"""
|
56 |
+
for perm in variations(range(n), n):
|
57 |
+
p = Permutation(perm)
|
58 |
+
if p.is_even:
|
59 |
+
yield p
|
60 |
+
|
61 |
+
|
62 |
+
def dihedral(n):
|
63 |
+
"""
|
64 |
+
Generates the dihedral group of order 2n, Dn.
|
65 |
+
|
66 |
+
The result is given as a subgroup of Sn, except for the special cases n=1
|
67 |
+
(the group S2) and n=2 (the Klein 4-group) where that's not possible
|
68 |
+
and embeddings in S2 and S4 respectively are given.
|
69 |
+
|
70 |
+
Examples
|
71 |
+
========
|
72 |
+
|
73 |
+
>>> from sympy.combinatorics.generators import dihedral
|
74 |
+
>>> list(dihedral(3))
|
75 |
+
[(2), (0 2), (0 1 2), (1 2), (0 2 1), (2)(0 1)]
|
76 |
+
|
77 |
+
See Also
|
78 |
+
========
|
79 |
+
|
80 |
+
cyclic
|
81 |
+
"""
|
82 |
+
if n == 1:
|
83 |
+
yield Permutation([0, 1])
|
84 |
+
yield Permutation([1, 0])
|
85 |
+
elif n == 2:
|
86 |
+
yield Permutation([0, 1, 2, 3])
|
87 |
+
yield Permutation([1, 0, 3, 2])
|
88 |
+
yield Permutation([2, 3, 0, 1])
|
89 |
+
yield Permutation([3, 2, 1, 0])
|
90 |
+
else:
|
91 |
+
gen = list(range(n))
|
92 |
+
for i in range(n):
|
93 |
+
yield Permutation(gen)
|
94 |
+
yield Permutation(gen[::-1])
|
95 |
+
gen = rotate_left(gen, 1)
|
96 |
+
|
97 |
+
|
98 |
+
def rubik_cube_generators():
|
99 |
+
"""Return the permutations of the 3x3 Rubik's cube, see
|
100 |
+
https://www.gap-system.org/Doc/Examples/rubik.html
|
101 |
+
"""
|
102 |
+
a = [
|
103 |
+
[(1, 3, 8, 6), (2, 5, 7, 4), (9, 33, 25, 17), (10, 34, 26, 18),
|
104 |
+
(11, 35, 27, 19)],
|
105 |
+
[(9, 11, 16, 14), (10, 13, 15, 12), (1, 17, 41, 40), (4, 20, 44, 37),
|
106 |
+
(6, 22, 46, 35)],
|
107 |
+
[(17, 19, 24, 22), (18, 21, 23, 20), (6, 25, 43, 16), (7, 28, 42, 13),
|
108 |
+
(8, 30, 41, 11)],
|
109 |
+
[(25, 27, 32, 30), (26, 29, 31, 28), (3, 38, 43, 19), (5, 36, 45, 21),
|
110 |
+
(8, 33, 48, 24)],
|
111 |
+
[(33, 35, 40, 38), (34, 37, 39, 36), (3, 9, 46, 32), (2, 12, 47, 29),
|
112 |
+
(1, 14, 48, 27)],
|
113 |
+
[(41, 43, 48, 46), (42, 45, 47, 44), (14, 22, 30, 38),
|
114 |
+
(15, 23, 31, 39), (16, 24, 32, 40)]
|
115 |
+
]
|
116 |
+
return [Permutation([[i - 1 for i in xi] for xi in x], size=48) for x in a]
|
117 |
+
|
118 |
+
|
119 |
+
def rubik(n):
|
120 |
+
"""Return permutations for an nxn Rubik's cube.
|
121 |
+
|
122 |
+
Permutations returned are for rotation of each of the slice
|
123 |
+
from the face up to the last face for each of the 3 sides (in this order):
|
124 |
+
front, right and bottom. Hence, the first n - 1 permutations are for the
|
125 |
+
slices from the front.
|
126 |
+
"""
|
127 |
+
|
128 |
+
if n < 2:
|
129 |
+
raise ValueError('dimension of cube must be > 1')
|
130 |
+
|
131 |
+
# 1-based reference to rows and columns in Matrix
|
132 |
+
def getr(f, i):
|
133 |
+
return faces[f].col(n - i)
|
134 |
+
|
135 |
+
def getl(f, i):
|
136 |
+
return faces[f].col(i - 1)
|
137 |
+
|
138 |
+
def getu(f, i):
|
139 |
+
return faces[f].row(i - 1)
|
140 |
+
|
141 |
+
def getd(f, i):
|
142 |
+
return faces[f].row(n - i)
|
143 |
+
|
144 |
+
def setr(f, i, s):
|
145 |
+
faces[f][:, n - i] = Matrix(n, 1, s)
|
146 |
+
|
147 |
+
def setl(f, i, s):
|
148 |
+
faces[f][:, i - 1] = Matrix(n, 1, s)
|
149 |
+
|
150 |
+
def setu(f, i, s):
|
151 |
+
faces[f][i - 1, :] = Matrix(1, n, s)
|
152 |
+
|
153 |
+
def setd(f, i, s):
|
154 |
+
faces[f][n - i, :] = Matrix(1, n, s)
|
155 |
+
|
156 |
+
# motion of a single face
|
157 |
+
def cw(F, r=1):
|
158 |
+
for _ in range(r):
|
159 |
+
face = faces[F]
|
160 |
+
rv = []
|
161 |
+
for c in range(n):
|
162 |
+
for r in range(n - 1, -1, -1):
|
163 |
+
rv.append(face[r, c])
|
164 |
+
faces[F] = Matrix(n, n, rv)
|
165 |
+
|
166 |
+
def ccw(F):
|
167 |
+
cw(F, 3)
|
168 |
+
|
169 |
+
# motion of plane i from the F side;
|
170 |
+
# fcw(0) moves the F face, fcw(1) moves the plane
|
171 |
+
# just behind the front face, etc...
|
172 |
+
def fcw(i, r=1):
|
173 |
+
for _ in range(r):
|
174 |
+
if i == 0:
|
175 |
+
cw(F)
|
176 |
+
i += 1
|
177 |
+
temp = getr(L, i)
|
178 |
+
setr(L, i, list(getu(D, i)))
|
179 |
+
setu(D, i, list(reversed(getl(R, i))))
|
180 |
+
setl(R, i, list(getd(U, i)))
|
181 |
+
setd(U, i, list(reversed(temp)))
|
182 |
+
i -= 1
|
183 |
+
|
184 |
+
def fccw(i):
|
185 |
+
fcw(i, 3)
|
186 |
+
|
187 |
+
# motion of the entire cube from the F side
|
188 |
+
def FCW(r=1):
|
189 |
+
for _ in range(r):
|
190 |
+
cw(F)
|
191 |
+
ccw(B)
|
192 |
+
cw(U)
|
193 |
+
t = faces[U]
|
194 |
+
cw(L)
|
195 |
+
faces[U] = faces[L]
|
196 |
+
cw(D)
|
197 |
+
faces[L] = faces[D]
|
198 |
+
cw(R)
|
199 |
+
faces[D] = faces[R]
|
200 |
+
faces[R] = t
|
201 |
+
|
202 |
+
def FCCW():
|
203 |
+
FCW(3)
|
204 |
+
|
205 |
+
# motion of the entire cube from the U side
|
206 |
+
def UCW(r=1):
|
207 |
+
for _ in range(r):
|
208 |
+
cw(U)
|
209 |
+
ccw(D)
|
210 |
+
t = faces[F]
|
211 |
+
faces[F] = faces[R]
|
212 |
+
faces[R] = faces[B]
|
213 |
+
faces[B] = faces[L]
|
214 |
+
faces[L] = t
|
215 |
+
|
216 |
+
def UCCW():
|
217 |
+
UCW(3)
|
218 |
+
|
219 |
+
# defining the permutations for the cube
|
220 |
+
|
221 |
+
U, F, R, B, L, D = names = symbols('U, F, R, B, L, D')
|
222 |
+
|
223 |
+
# the faces are represented by nxn matrices
|
224 |
+
faces = {}
|
225 |
+
count = 0
|
226 |
+
for fi in range(6):
|
227 |
+
f = []
|
228 |
+
for a in range(n**2):
|
229 |
+
f.append(count)
|
230 |
+
count += 1
|
231 |
+
faces[names[fi]] = Matrix(n, n, f)
|
232 |
+
|
233 |
+
# this will either return the value of the current permutation
|
234 |
+
# (show != 1) or else append the permutation to the group, g
|
235 |
+
def perm(show=0):
|
236 |
+
# add perm to the list of perms
|
237 |
+
p = []
|
238 |
+
for f in names:
|
239 |
+
p.extend(faces[f])
|
240 |
+
if show:
|
241 |
+
return p
|
242 |
+
g.append(Permutation(p))
|
243 |
+
|
244 |
+
g = [] # container for the group's permutations
|
245 |
+
I = list(range(6*n**2)) # the identity permutation used for checking
|
246 |
+
|
247 |
+
# define permutations corresponding to cw rotations of the planes
|
248 |
+
# up TO the last plane from that direction; by not including the
|
249 |
+
# last plane, the orientation of the cube is maintained.
|
250 |
+
|
251 |
+
# F slices
|
252 |
+
for i in range(n - 1):
|
253 |
+
fcw(i)
|
254 |
+
perm()
|
255 |
+
fccw(i) # restore
|
256 |
+
assert perm(1) == I
|
257 |
+
|
258 |
+
# R slices
|
259 |
+
# bring R to front
|
260 |
+
UCW()
|
261 |
+
for i in range(n - 1):
|
262 |
+
fcw(i)
|
263 |
+
# put it back in place
|
264 |
+
UCCW()
|
265 |
+
# record
|
266 |
+
perm()
|
267 |
+
# restore
|
268 |
+
# bring face to front
|
269 |
+
UCW()
|
270 |
+
fccw(i)
|
271 |
+
# restore
|
272 |
+
UCCW()
|
273 |
+
assert perm(1) == I
|
274 |
+
|
275 |
+
# D slices
|
276 |
+
# bring up bottom
|
277 |
+
FCW()
|
278 |
+
UCCW()
|
279 |
+
FCCW()
|
280 |
+
for i in range(n - 1):
|
281 |
+
# turn strip
|
282 |
+
fcw(i)
|
283 |
+
# put bottom back on the bottom
|
284 |
+
FCW()
|
285 |
+
UCW()
|
286 |
+
FCCW()
|
287 |
+
# record
|
288 |
+
perm()
|
289 |
+
# restore
|
290 |
+
# bring up bottom
|
291 |
+
FCW()
|
292 |
+
UCCW()
|
293 |
+
FCCW()
|
294 |
+
# turn strip
|
295 |
+
fccw(i)
|
296 |
+
# put bottom back on the bottom
|
297 |
+
FCW()
|
298 |
+
UCW()
|
299 |
+
FCCW()
|
300 |
+
assert perm(1) == I
|
301 |
+
|
302 |
+
return g
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/group_constructs.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
2 |
+
from sympy.combinatorics.permutations import Permutation
|
3 |
+
from sympy.utilities.iterables import uniq
|
4 |
+
|
5 |
+
_af_new = Permutation._af_new
|
6 |
+
|
7 |
+
|
8 |
+
def DirectProduct(*groups):
|
9 |
+
"""
|
10 |
+
Returns the direct product of several groups as a permutation group.
|
11 |
+
|
12 |
+
Explanation
|
13 |
+
===========
|
14 |
+
|
15 |
+
This is implemented much like the __mul__ procedure for taking the direct
|
16 |
+
product of two permutation groups, but the idea of shifting the
|
17 |
+
generators is realized in the case of an arbitrary number of groups.
|
18 |
+
A call to DirectProduct(G1, G2, ..., Gn) is generally expected to be faster
|
19 |
+
than a call to G1*G2*...*Gn (and thus the need for this algorithm).
|
20 |
+
|
21 |
+
Examples
|
22 |
+
========
|
23 |
+
|
24 |
+
>>> from sympy.combinatorics.group_constructs import DirectProduct
|
25 |
+
>>> from sympy.combinatorics.named_groups import CyclicGroup
|
26 |
+
>>> C = CyclicGroup(4)
|
27 |
+
>>> G = DirectProduct(C, C, C)
|
28 |
+
>>> G.order()
|
29 |
+
64
|
30 |
+
|
31 |
+
See Also
|
32 |
+
========
|
33 |
+
|
34 |
+
sympy.combinatorics.perm_groups.PermutationGroup.__mul__
|
35 |
+
|
36 |
+
"""
|
37 |
+
degrees = []
|
38 |
+
gens_count = []
|
39 |
+
total_degree = 0
|
40 |
+
total_gens = 0
|
41 |
+
for group in groups:
|
42 |
+
current_deg = group.degree
|
43 |
+
current_num_gens = len(group.generators)
|
44 |
+
degrees.append(current_deg)
|
45 |
+
total_degree += current_deg
|
46 |
+
gens_count.append(current_num_gens)
|
47 |
+
total_gens += current_num_gens
|
48 |
+
array_gens = []
|
49 |
+
for i in range(total_gens):
|
50 |
+
array_gens.append(list(range(total_degree)))
|
51 |
+
current_gen = 0
|
52 |
+
current_deg = 0
|
53 |
+
for i in range(len(gens_count)):
|
54 |
+
for j in range(current_gen, current_gen + gens_count[i]):
|
55 |
+
gen = ((groups[i].generators)[j - current_gen]).array_form
|
56 |
+
array_gens[j][current_deg:current_deg + degrees[i]] = \
|
57 |
+
[x + current_deg for x in gen]
|
58 |
+
current_gen += gens_count[i]
|
59 |
+
current_deg += degrees[i]
|
60 |
+
perm_gens = list(uniq([_af_new(list(a)) for a in array_gens]))
|
61 |
+
return PermutationGroup(perm_gens, dups=False)
|
env-llmeval/lib/python3.10/site-packages/sympy/combinatorics/group_numbers.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Integer, Pow, Mod
|
2 |
+
from sympy import factorint
|
3 |
+
|
4 |
+
|
5 |
+
def is_nilpotent_number(n):
|
6 |
+
"""
|
7 |
+
Check whether `n` is a nilpotent number. A number `n` is said to be
|
8 |
+
nilpotent if and only if every finite group of order `n` is nilpotent.
|
9 |
+
For more information see [1]_.
|
10 |
+
|
11 |
+
Examples
|
12 |
+
========
|
13 |
+
|
14 |
+
>>> from sympy.combinatorics.group_numbers import is_nilpotent_number
|
15 |
+
>>> from sympy import randprime
|
16 |
+
>>> is_nilpotent_number(21)
|
17 |
+
False
|
18 |
+
>>> is_nilpotent_number(randprime(1, 30)**12)
|
19 |
+
True
|
20 |
+
|
21 |
+
References
|
22 |
+
==========
|
23 |
+
|
24 |
+
.. [1] Pakianathan, J., Shankar, K., *Nilpotent Numbers*,
|
25 |
+
The American Mathematical Monthly, 107(7), 631-634.
|
26 |
+
|
27 |
+
|
28 |
+
"""
|
29 |
+
if n <= 0 or int(n) != n:
|
30 |
+
raise ValueError("n must be a positive integer, not %i" % n)
|
31 |
+
|
32 |
+
n = Integer(n)
|
33 |
+
prime_factors = list(factorint(n).items())
|
34 |
+
is_nilpotent = True
|
35 |
+
for p_j, a_j in prime_factors:
|
36 |
+
for p_i, a_i in prime_factors:
|
37 |
+
if any([Mod(Pow(p_i, k), p_j) == 1 for k in range(1, a_i + 1)]):
|
38 |
+
is_nilpotent = False
|
39 |
+
break
|
40 |
+
if not is_nilpotent:
|
41 |
+
break
|
42 |
+
|
43 |
+
return is_nilpotent
|
44 |
+
|
45 |
+
|
46 |
+
def is_abelian_number(n):
|
47 |
+
"""
|
48 |
+
Check whether `n` is an abelian number. A number `n` is said to be abelian
|
49 |
+
if and only if every finite group of order `n` is abelian. For more
|
50 |
+
information see [1]_.
|
51 |
+
|
52 |
+
Examples
|
53 |
+
========
|
54 |
+
|
55 |
+
>>> from sympy.combinatorics.group_numbers import is_abelian_number
|
56 |
+
>>> from sympy import randprime
|
57 |
+
>>> is_abelian_number(4)
|
58 |
+
True
|
59 |
+
>>> is_abelian_number(randprime(1, 2000)**2)
|
60 |
+
True
|
61 |
+
>>> is_abelian_number(60)
|
62 |
+
False
|
63 |
+
|
64 |
+
References
|
65 |
+
==========
|
66 |
+
|
67 |
+
.. [1] Pakianathan, J., Shankar, K., *Nilpotent Numbers*,
|
68 |
+
The American Mathematical Monthly, 107(7), 631-634.
|
69 |
+
|
70 |
+
|
71 |
+
"""
|
72 |
+
if n <= 0 or int(n) != n:
|
73 |
+
raise ValueError("n must be a positive integer, not %i" % n)
|
74 |
+
|
75 |
+
n = Integer(n)
|
76 |
+
if not is_nilpotent_number(n):
|
77 |
+
return False
|
78 |
+
|
79 |
+
prime_factors = list(factorint(n).items())
|
80 |
+
is_abelian = all(a_i < 3 for p_i, a_i in prime_factors)
|
81 |
+
return is_abelian
|
82 |
+
|
83 |
+
|
84 |
+
def is_cyclic_number(n):
|
85 |
+
"""
|
86 |
+
Check whether `n` is a cyclic number. A number `n` is said to be cyclic
|
87 |
+
if and only if every finite group of order `n` is cyclic. For more
|
88 |
+
information see [1]_.
|
89 |
+
|
90 |
+
Examples
|
91 |
+
========
|
92 |
+
|
93 |
+
>>> from sympy.combinatorics.group_numbers import is_cyclic_number
|
94 |
+
>>> from sympy import randprime
|
95 |
+
>>> is_cyclic_number(15)
|
96 |
+
True
|
97 |
+
>>> is_cyclic_number(randprime(1, 2000)**2)
|
98 |
+
False
|
99 |
+
>>> is_cyclic_number(4)
|
100 |
+
False
|
101 |
+
|
102 |
+
References
|
103 |
+
==========
|
104 |
+
|
105 |
+
.. [1] Pakianathan, J., Shankar, K., *Nilpotent Numbers*,
|
106 |
+
The American Mathematical Monthly, 107(7), 631-634.
|
107 |
+
|
108 |
+
"""
|
109 |
+
if n <= 0 or int(n) != n:
|
110 |
+
raise ValueError("n must be a positive integer, not %i" % n)
|
111 |
+
|
112 |
+
n = Integer(n)
|
113 |
+
if not is_nilpotent_number(n):
|
114 |
+
return False
|
115 |
+
|
116 |
+
prime_factors = list(factorint(n).items())
|
117 |
+
is_cyclic = all(a_i < 2 for p_i, a_i in prime_factors)
|
118 |
+
return is_cyclic
|